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CONTENTS CONTENTS

Abstract

In this thesis a photon propagating in a 1D waveguide with multiple chirally coupled
emitters is investigated. A general transfer matrix for multiple emitters is deduced. Based on
this transfer matrix, numerical solutions for the reflectance and transmitance are plotted and
compared with the nonchiral systems. It is found, that the chiral systems are much more prone
to loss, which increases with the difference between the coupling to the fields propagating in the
left and right directions. With the strong coupling the chiral systems has a smaller photonic
band gap than the nonchiral system.
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1 INTRODUCTION

1 Introduction

The introduction of quantum mechanics has led to a whole new understanding of the world. The
last few decades the applications of quantum mechanics in a more practical manner have flour-
ished and the theory has become the foundation in the development of new technologies, such
as quantum computation and quantum information. Light-matter interactions are essential for
building such systems, where quantum optical systems are used to carry information[1].
Light-matter interactions in cavities are of great interest and has been investigated in many as-
pects in order to build quantum optical devices, which enable us to store optical information for
a tunable amount of time[2]. In order to build such devices, it is essential that we understand the
very basic properties of light-matter interactions.
One important aspect of light-matter interactions is the scattering of the photons[3]. The scat-
tering can be changed by using arrays of atoms. Working with such a problem, one are dealing
with a many-body problem. The usual approach to the solution is to solve the system for one
atom, then try to generalize the system of one atom to a whole array of atoms. One method that
has proven very effective is describing the system with a transfer matrix.[4]. This allows one to
investigate important features of the interaction between photons and atoms. In [5] this method
is used in order to look at the scattering properties of the system.
Another aspect is that due to the high velocities of the photons, the coupling between the light
matter is often very weak. To exploit the full potential of light-matter interactions we need sys-
tems with strong coupling, which is slowly becoming a reality. Experimental achievements[6] has
produced near unity coupling effiecency for a system with a quantum dot coupled to a photonic-
crystal waveguide.
Most of the research on systems, with photons interacting with multiple atoms, is based on the
assumption that the systems are nonchiral, i.e. that the interaction between the fields propagat-
ing in the left and right directions are the same. However, recent studies has led to the creation
of chiral systems, where the interaction with the left and right going fields are not the same[7].
The effect of such propagation-direction-dependent emitters has not been investigated much and
is the foundation of this thesis.
In this thesis, I shall be investigating the behaviour of a photon, travelling within a 1D waveguide
with multiple chiral emitters and compare it with the nonchiral system. The main goal is to
derive a general transfer matrix, in order to describe the scattering properties of the system.
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2 PRELIMINARIES

2 Preliminaries

Throughout this thesis, I will assume the reader knows the basic notations and mathematics
used for dealing with quantum mechanics. I will start with a description of the quantization of
the electromagnetic field and continue to the description of the Jaynes-Cummings Model, which
describes the interaction between an atom and a quantized field. This will be the basis for the
derivation of the Hamiltonian operator for the system.

2.1 Quantization of electromagnetic field

I will be looking at a multimode field moving inside a waveguide with multiple emitters. I start by
looking at a classical field, moving in free space without any sources of radiation. Using Maxwell’s
equtations, the electric and magnetic field can be described in terms of a vector potential A(r,t)
[8], where

E(r,t) = −∂A(r,t)
∂t

(2.1a)

B(r,t) = ∇×A(r,t) (2.1b)

The vector potential satisfies the differential eqution

∇2A− 1
c2
∂2A
∂t2

= 0 (2.2)

and the Coulomb gauge condition.
∇ ·A(r,t) = 0 (2.3)

This choice of gauge requires the polarization to be orthogonal to the direction of propagation,
which will simplify the later calculations. Assuming the field is moving within a cubic cavity with
side length L, where L� 1

k , allows me to impose a periodic boundary conditions. Requiring

eikxx = eikx(x+L), eikyy = eiky(y+L), eikzz = eikz(z+L) (2.4)

allows only certain modes. Thus the wave vector can be described as

k = (kx, ky, kz) = 2π
L

(mx,my,mz) (2.5)

where mx, my and mz are integers which can be both positive and negative. Distinct sets of these
integers specify distinct normal modes of the field and k = |k| = ωk/c. In the interval ∆mx, ∆my

and ∆mz, the total number of modes is given by

∆m = ∆mx∆my∆mz = 2
(
L

2π

)3
∆kx∆ky∆kz (2.6)
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2.1 Quantization of electromagnetic field 2 PRELIMINARIES

where the factor of two has been added in order to take the two independent polarizations into
account. The vector potential will be defined as

A(r,t) =
∑
k,s

eks(Aks(t)eik·r +A∗ks(t)e−ik·r) (2.7)

where I sum over all the modes and the two independent polarizations. A(∗)
k,s(t) are complex time

dependent amplitudes and eks is the polarization vector. From the gauge condition (2.3), the
polarizations must be orthogonal to each other and to the direction of propagation. Thus

eks · eks′ = δss′ (2.8)
k · eks = 0 (2.9)

Plugging (2.7) into (2.2) gives the wave equation for the complex amplitude

∂2Aks
∂t2

+ ω2
kAks = 0 (2.10)

which has the solution
Aks(t) = Akse

±iωkt (2.11)

where Ak = Ak(t = 0) and ωk = ck. I only want solutions traveling along k, which correspond
only to the negative solutions. Using (2.7) in (2.1) gives me the electric and magnetic field

E(r,t) = i
∑
k,s

ωkeks
(
Aks(t)eik·r −A∗ks(t)e−ik·r

)
(2.12a)

B(r,t) = i

c

∑
k,s

ωk

( k
|k| × eks

)(
Aks(t)eik·r −A∗ks(t)e−ik·r

)
(2.12b)

where the term k/|k| comes from the fact, that the two polarizations form a righthanded system,
such that

ek1 × ek2 = k
|k| (2.13)

The field energy is given by

H = 1
2

∫
V
dV

[
ε0|E(r,t)|2 + 1

µ0
|B(r,t)|2

]
(2.14)

Looking at the boundary conditions in (2.4) gives me∫
V
dV e±i(k−k′)·r = δkk′V (2.15)
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2.1 Quantization of electromagnetic field 2 PRELIMINARIES

which shows, that only modes with the same integers or exactly opposites contribute to the energy.
Thus the contribution from the electric field is

1
2

∫
V
dV ε0|E(r,t)|2 = ε0V

2
∑
k,s

ω2
k {2Aks(t)A∗ks(t)

−eks · e−ks′
[
Aks(t)A∗−ks′(t) +A∗ks(t)A−ks′(t)

]}
(2.16)

I now look at the contribution from the magnetic field. The cross product can be separated into
two parts

(k× eks) · (k× eks′) = δss′ (2.17)
(k× eks) · (−k× e−ks′) = −eks · eks′ (2.18)

Thus I get a change in sign when calculating the contribution from the magnetic field. I get
1
2

∫
V
dV

1
µ0
|B(r,t)|2 = ε0V

2
∑
k,s

ω2
k {2Aks(t)A∗ks(t)

+eks · e−ks′
[
Aks(t)A∗−ks′(t) +A∗ks(t)A−ks′(t)

]}
(2.19)

Putting (2.16) and (2.19) into (2.14), the two last terms cancel out and I end up with

H = 2ε0V
∑
k,s

ω2
kAks(t)A∗ks(t) (2.20)

From (2.20) it is apparent, that the energy only depends on each individual modes, since all
the terms including crossterms cancel out. Thus, all modes are decoupled and do not interfere
with each other. This feature gives rise to a canonical quantization of the field. Thus I wish to
introduce the canonical momentum pks the canonical position qks, that are both dependent on
time. I define

Aks(t) = 1
2ωk
√
ε0V

(ωkqks + ipks) (2.21a)

A∗ks(t) = 1
2ωk
√
ε0V

(ωkqks − ipks) (2.21b)

Inserting this in the Hamiltonian in (2.20) and it becomes

H = 1
2
∑
k,s

(p2
ks + ω2

kq
2
ks) (2.22)

which is just a sum of multiple independent harmonic oscillators. Looking at Hamiltons equations
of motion[9] I get

q̇ks = ∂H

∂pks
= pks (2.23a)

ṗks = − ∂H

∂qks
= −ω2

kqks (2.23b)
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2.1 Quantization of electromagnetic field 2 PRELIMINARIES

from which it is apparent, that the dynamics of the new variables are the same as what I got from
Maxwell’s equation, since

q̈ks + ω2
kqks = 0 and p̈ks + ω2

kpks = 0 (2.24)

and are thus canonical conjugate variables. This means that I can proceed the quantization by
changing the canonical variables to the canonical operators q̂ks and p̂ks, which satisfy the canonical
commutation relations[10]

[q̂ks,q̂k’s] = [p̂ks,p̂k’s] = 0 (2.25a)
[q̂ks,p̂k’s] = i~δkk’ (2.25b)

This allows me to describe (2.20) as a Hamiltonian operator

Ĥ = 1
2
∑
k,s

(p̂2
ks + ω2

kq̂
2
ks) (2.26)

which is just the quantum mechanical description of a harmonic oscillator. Working with the
harmonic oscillator it is convenient to introduce the annihilation(creation) operators, â(†)

k . These
operators will be defined as

âks = 1√
2~ωk

(ωkq̂ks + ip̂ks) (2.27a)

â†ks = 1√
2~ωk

(ωkq̂ks − ip̂ks) (2.27b)

which fulfils the commuation relations

[âk,âk′ ] =
[
â†k,â

†
k′

]
= 0 (2.28a)[

âk,â
†
k′

]
= δkk′ (2.28b)

This allows me to rewrite (2.26) as

Ĥ =
∑
k,s

~ωk
(
â†ksâks + 1

2

)
(2.29)

The amplitudes in (2.21) can now be described as operators in terms of the annihilation and
creation operators defined in (2.27)

Â
(∗)
ks =

( ~
2ωkε0V

)1/2
a

(†)
ks (2.30)

Thus the electric field can be described as an operator

Ê(r) = i
∑
k,s

( ~ωk
2ε0V

)1/2
eks

[
âkse

ik·r − â†kse
−ik·r

]
(2.31)
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2.2 Jaynes-Cummings Model 2 PRELIMINARIES

where E0 = i
(

~ωk
2ε0V

)1/2
, where V is the volume of quantization.

Since the strength of the magnetic field is in order 1/c compared to the electric field strength, the
effects of the magnetic field are negliable compared to the ones from the electric field and will not
be investigated further.
In this thesis the electromagnetic field is interacting with multiple emitters within a 1D waveguide,
which will lead to guided and unguided modes. Thus the electromagnetic field can be described
as a sum over all guided modes plus a sum over all unguided modes of the waveguide.

E =
∑
k

(guided) +
∑
k

(unguided) (2.32)

The only modes that will interact with the atoms are the ones supported by the waveguide. I will
assume the electric field is focused around the atomic frequency ω0 with a flat profile with cross
section A and extend to some length L� 1/k. The effective volume of quantization will thus be
described as V = AL. To simplify the calculations, I will be assuming the field will be polarized
in the x-direction and propagating in the z-direction. Thus, the guided modes can be described
by the quantized field

Êx(z) =
∑
k

E0
1√
L

[
âke

ikz − â†ke
−ikz

]
(2.33)

where E0 = i
(

~ωk
2ε0A

)1/2
, which is the definition I will be using in the later calculations. Later I

will take the unguided modes into account, by adding a term to my Hamiltonian, which describes
the decay to unguided modes.

2.2 Jaynes-Cummings Model

The interaction between an atom and a quantized electric field is described by the Jaynes-
Cummings model[8].

Ĥ = Ĥa + Ĥf + Ĥint (2.34)

where Ĥa is the free atomic Hamiltonian, Ĥf is the free field Hamiltonian and Ĥint is the inter-
action Hamiltonian, that describes the interaction between the field and the atom.
I am considering a single-mode field in a cavity and a two level atom. The ground state shall be
denoted as |g〉 and the excited state as |e〉. Assuming the dipole moment and the polarization of
the electric field is in the same direction, the interaction Hamiltonian is given by

Ĥint = −d̂ · Êx(zi) (2.35)

where d̂ is the dipole moment operator and Ê is the one found in (2.33) evaluated at the position
of the atom zi. I use an index, as I shall later be looking at an array of atoms.
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2.2 Jaynes-Cummings Model 2 PRELIMINARIES

Looking at parity considerations, one realizes that the dipole moment is odd under parity trans-
formation, so only off-diagonal terms are non-zero. Hence the dipole moment operator can be
written as, in the basis of the atom states

d̂ = |e〉 〈e| d̂ |g〉 〈g|+ |g〉 〈g| d̂ |e〉 〈e| (2.36)

Defining d = 〈e| d̂ |g〉, d∗ = 〈g| d̂ |e〉 and σ̂ij = |i〉 〈j|, where i and j can be either e or g, (2.36) can
be written as

d̂ = (dσ̂eg + d∗σ̂ge) (2.37)

Inserting (2.37) and (2.33) in (2.35)

Ĥint = −
∑
k

E0
1√
L

(dσ̂eg + d∗σ̂ge)
(
âke

ikzi + â†ke
−ikzi

)
= −~

∑
k

1√
L

(
gσ̂egâke

ikzi + gσ̂egâ
†
ke
−ikzi + g∗σ̂geâke

ikzi + g∗σ̂geâ
†
ke
−ikzi

)
(2.38)

where σ̂eg is the operator that takes the atom from the ground to the excited state and σ̂ge from
the excited to the ground state and g(∗) = d(∗)E0/~ is the coupling between the atom and the
field. E0 depends on the cross section of the effective quantization volume, which makes sense
physically. If A is numerically large, the chance that the field will interact with the atom is much
smaller, since the field has more "free" space to propagate in.
Looking at (2.38), it is apparent that σ̂egâ† corresponds to the atom going from the ground to the
excited state by emission of a photon and σ̂geâ corresponds to the atom going from the excited to
the ground state by absorption of a photon. Hence they do not conserve energy and will be left
out. This can also be shown using the rotating wave approximation, where it can be shown that
since I am looking at near resonance frequencies, these two terms will vary in time with a much
higher frequency, and can thus be neglected. I end up with the following interaction Hamiltonian

Ĥint = −~
∑
k

1√
L

(
gâkσ̂ege

ikzi + g∗â†kσ̂gee
−ikzi

)
(2.39)

The free atom Hamiltonian describes the energy between the ground and the excited state and is
given by

Ĥa = ~ω0σee (2.40)

where ~ω0 is the energy between the ground and excited state. Inserting (2.39), (2.40) and (2.29),
without the zero-point energy term, in (2.34) I arrive at

Ĥ = ~ω0σ̂ee + ~
∑
k

1√
L
ωkâ

†
kâk − ~

∑
k

(gâkσ̂egeikzi + g∗â†kσ̂gee
−ikzi) (2.41)
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3 THE MODEL

3 The Model

In this section I will start deducing my Hamiltonian describing the system I am looking at.
After that I will solve the time dependent Schrödinger equation in order to look at the behavior
of an atom interacting with an electromagnetic field. Lastly I will solve the time independent
Schrödinger equation, in order to see how the electromagnetic field scatters when interacting with
an atom.

3.1 The System Hamiltonian

I shall be investigating a photon incident from the right into a waveguide with an emitter. In
section 2.1 I made a detailed description of the quntized field inside the waveguide. In order to
take the decay to modes outside of the waveguide, I will be adding a complex term, ĤS , given by

ĤS = − i~ΓS
2 σ̂ee (3.1)

which describes the decay to unguided modes. This added term will be justified later in section
3.2.
I am investigating near-resonant frequencies and can thus treat the photons propagating in the
left and right direction as separate fields, defining

âke
ikz =

{
âL,ke

−ikz for k < 0
âR,ke

ikz for k > 0
(3.2)

which allows me to rewrite (2.41) as

Ĥ = ~ω0σ̂ee + ~
∑
k

ωkâ
†
kâk − ~

∑
k<0

1√
L

(gL,kâL,kσ̂ege−ikzi + g∗L,kâ
†
L,kσ̂gee

ikzi)

+
∑
k>0

1√
L

(gR,kâR,kσ̂egeikzi + g∗R,kâ
†
R,kσ̂gee

−ikzi)

 (3.3)

where g(∗)
L is the coupling between the atom and the field propagating in the left direction and

g
(∗)
R is the coupling to the field propagating in the right direction. The fact that I use direction-
depended couplings, is what makes the system chiral. In a nonchiral system, on would assume
that gR = gL. In section 3.2 this will lead to two distinct decay rates to modes propagating in
the left and right directions. I wish to go from the Schrödinger picture to the interaction picture.
I define the following Hamiltonian and state vector

Ĥ0 = Ĥa + ~ω0
∑
k

â†kâk (3.4)

∣∣Ψ′〉 = e−
iĤ0t

~ |Ψ〉 (3.5)
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3.1 The System Hamiltonian 3 THE MODEL

This allows me to rewrite the Hamiltonian in the Interaction picture

Ĥ ′ = e
iĤ0t

~ (Ĥ − Ĥ0)e−
iĤ0t

~

= ~
∑
k

∆kâ
†
kâk − ~

∑
k<0

1√
L

(gLâL,kσ̂ege−ikzi + g∗Lâ
†
L,kσ̂gee

ikzi)

+
∑
k>0

1√
L

(gRâR,kσ̂egeikzi + g∗Râ
†
R,kσ̂gee

−ikzi)

 (3.6)

where ∆k = ωk − ω0, is the detuning. From now on I will be working in the Interaction picture
and will write Ĥ ′ as Ĥ.
I wish to change the sum to an integral. From (2.5) I get the separation between points in 1D
k-space, which is

∆k = 2π
L

(3.7)

I define the continous creation and annihilation operators as

â
(†)
k = 1

L

∫ L/2

−L/2
dzÊ+(−)(z)e±ikz (3.8a)

â(†)(k) = 1√
2πL

∫ ∞
−∞

dzÊ+(−)(z)e∓ikz =

√
L

2π â
(†)
k = 1√

∆k
â

(†)
k (3.8b)

where Ê+(z) = âke
ikz and Ê−(z) = [Ê+(z)]†. Looking at the commutator for â(†)(k) I get

[a(k),a†(k)]∆k = [ak,a†k] = δkk′ (3.9)

If I sum (3.9) over all values of k it will equal one. Assuming the separation of modes gets negligibly
small, compared to the full length, the sum goes to an integral and ∆k may be approximated by
the differential dk. Thus I get∑

k

[a(k),a†(k′)]∆k = 1→
∫
dk[a(k),a†(k′)] = 1 (3.10)

The right hand side can only be true if the commutator of the continuous operators equals the
dirac delta function. [

â(k),â†(k′)
]

= δ(k − k′) (3.11)

I multiply the right hand side of (3.6) with ∆k
∆k

Ĥ = ~
1

∆k
∑
k

∆kâ
†
kâk∆k − ~

 1√
2π
√

∆k
∑
k<0

(gLâL,kσ̂ege−ikzi + g∗Lâ
†
L,kσ̂gee

ikzi)∆k

+ 1√
2π
√

∆k
∑
k>0

(gRâR,kσ̂egeikzi + g∗Râ
†
R,kσ̂gee

−ikzi)∆k

 (3.12)
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3.2 Time dependent Schrödinger Equation 3 THE MODEL

Using (3.8) and assuming the separation gets negligibly small compared to the full length, such
that the sum goes to an integral, I can rewrite (3.12) to

Ĥ = ~
∫
dk∆kâ

†(k)â(k)− ~√
2π

{∫
dk(gLâL(k)σ̂ege−ikzi + g∗Lâ

†
L(k)σ̂geeikzi)

+
∫
dk(gRâR(k)σ̂egeikzi + g∗Râ

†
R(k)σ̂gee−ikzi)

}
(3.13)

I now wish to describe it in real space. I define the creation and annihilation operator in real
space, as the fourier transform of the ones in k-space.

ĉR(z) = 1√
2π

∫
dkâR(k)ei(k−k0)z and âR(k) = 1√

2π

∫
dzĉR(z)e−i(k−k0)z (3.14)

ĉL(z) = 1√
2π

∫
dkâL(k)e−i(k−k0)z and âL(k) = 1√

2π

∫
dzĉL(z)ei(k−k0)z (3.15)

which have the following commutation relations[
ĉL(z),ĉ†L(z′)

]
=
[
ĉR(z),ĉ†R(z′)

]
= δ(z − z′) (3.16a)[

ĉL(z),ĉ†R(z′)
]

=
[
ĉR(z),ĉ†L(z′)

]
= 0 (3.16b)

I am assuming the photons are near resonant with the frequency of the atom, thus I can approx-
imate ∆k as

∆k ≈ vg(k − k0)

This allows me to transform (3.13) into real space and my finale Hamiltonian is thus given by

Ĥ =− i~ΓS
2 σ̂ee + ~

(
vg

∫
dz

(
iĉ†L

∂

∂z
ĉL(z)− iĉ†R(z) ∂

∂z
ĉR(z)

)
−
∫
dzδ(z − zi)

{
gLĉL(z)σ̂ege−ik0z + g∗Lĉ

†
L(z)σ̂geeik0z

}
−
∫
dzδ(z − zi)

{
gRĉR(z)σ̂egeik0z + g∗Rĉ

†
R(z)σ̂gee−ik0z

})
(3.17)

where I have added the side term from (3.1), which describes the decay to unguided modes.
The second term in the first line describes the propagation of modes in the left and right going
directions. The two last lines describe the coupling between the left- and right-going quantized
field and the transition |g〉 ↔ |e〉. For a more detailed derivation see Appendix B.

3.2 Time dependent Schrödinger Equation

I wish to solve the time dependent Schrödinger Equation, in order to look at the dynamics of the
atom.

i~
∂

∂t
|Ψ〉 = Ĥ |Ψ〉 (3.18)
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3.2 Time dependent Schrödinger Equation 3 THE MODEL

I use the Hamiltonian found in section 2.2, equation (3.17), described in the interaction picture
and where the rotating wave approximation has been used. I define the state vector

|Ψ〉 = fe(t) |e〉 |∅〉+
∫
dz
(
fR(z,t)ĉ†R(z) + fL(z,t)ĉ†L(z)

)
|g〉 |∅〉 (3.19)

where |∅〉 is the vacuum state. I wish to find solutions that fulfil

fR(z < 0,t) = 0 or fL(z > 0,t) = 0 (3.20)

The left hand side of (3.18) is

i~
∂ |Ψ〉
∂t

= i~
(
ḟe(t) |e〉 |∅〉+

∫
dz
(
ḟR(z,t)ĉ†R + ḟL(z,t)ĉ†L(z)

))
|g〉 |∅〉 (3.21)

Using the commutation relations in (B.4a), the right hand side becomes

Ĥ |Ψ〉 = ~
∫
dz

{(
−ivg

∂

∂z
fR(z,t)− δ(z − zi)fe(t)g∗Re−ik0z

)
ĉ†R(z)

+
(
ivg

∂

∂z
fL(z,t)− δ(z − zi)fe(t)g∗Leik0z

)
ĉ†L(z)

}
|g〉 |∅〉

− ~
{
i~ΓS

2 fe(t) +
∫
dz
(
gLfL(z,t)e−ik0zδ(z − zi)

+gRfR(z,t)eik0zδ(z − zi)
)}
|e〉 |∅〉 (3.22)

I multiply both sides of (3.18) with 〈∅| 〈e| and 〈∅| 〈g| and arrive at

ḟe(t) = −ΓS
2 fe(t) + i

∫
dzδ(z − zi)

(
gLfL(z,t)e−ik0z + gRfR(z,t)eik0z

)
= −ΓS

2 fe(t) + i
(
gLfL(zi,t)e−ik0zi + gRfR(zi,t)eik0zi

)
(3.23a)

∫
dz
(
ḟR(z,t) + ḟL(z,t)

)
=
∫
dz

{(
−vg

∂

∂z
fR(z,t) + iδ(z − zi)fe(t)g∗Re−ik0z

)
+
(
vg
∂

∂z
fL(z,t) + iδ(z − zi)fe(t)g∗Leik0z

)}
(3.23b)

From (3.23b) I get two differential equations

ḟR(z,t) + vg
∂

∂z
fR(z,t) = iδ(z − zi)fe(t)g∗Reik0z (3.24a)

ḟL(z,t)− vg
∂

∂z
fL(z,t) = iδ(z − zi)fe(t)g∗Le−ik0z (3.24b)
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3.2 Time dependent Schrödinger Equation 3 THE MODEL

I start looking at (3.24a). I assume the solution takes the form fR(z,t) = GR(z,τR), where
τR = t− z

vg
. The left hand side of (3.24a) becomes

ḟR(z,t) + vg
∂

∂z
fR(z,t) = ∂

∂τR
GR(z,τR) + vg

(
∂

∂z
GR(z,τR)− 1

vg

∂

∂τR
GR(z,τR)

)

= vg
∂

∂z
GR(z,τR) (3.25)

The same method can be used for fL(z,t), assuming the solution takes the form fL(z,t) = FL(z,τL)
where τL = t+ z

vg
. Using this and the conditions in (3.20), I get the solutions

GR(z,τR) = iθ(z − zi)g∗R
vg

fe(t)e−ik0zi (3.26a)

GL(z,τ) = iθ(−z + zi)g∗L
vg

fe(t)eik0zi (3.26b)

Plugging (3.26a) and (3.26b) into (3.23a) and assuming the atom is placed at the position zi = 0,
I have to evaluate θ(0), which is undefined since the Heaviside function is only defined for values
less or greater than zero. To get a result, I will have to make a choice, thus I will assume θ(0) = 1

2 .
At the end one will see that this choice gives the same result as I arrive at, if I only look at an
atom, with no photons present, see Appendix A, where this approximation has not been used. I
get the following differential equation

ḟe(t) = −ΓL + ΓR + ΓS
2 fe(t) (3.27)

where ΓR(L) = |gR(L)|2/vg. (3.27) has the solution.

fe(t) = e−
Γ
2 t (3.28)

where Γ = ΓR + ΓL + ΓS , is the decay rate of the atom. ΓR and ΓL are the decay of modes
propagating in either the left or right direction inside the waveguide and ΓS is the decay rate to
unguided modes, as shown in Figure 1. The fact that I used direction-dependent couplings in
section 3.1, is what gives rise to chiral decay rates.

1D waveguide

ΓS

ΓRΓL

Figure 1: An atom(red dot) in a 1D waveguide, which may decay in left(ΓL) or right(ΓR) going
guided modes or unguided modes(ΓS).
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3.3 Time independent Schrödinger Equation 3 THE MODEL

The results from (3.26a) and (3.26b) justify the added side term to my Hamiltonian. I could have
solved the time dependent Schrödinger Equation using the sum over all modes in my Hamiltonian
instead, leading to the results I just found, a decay into left and right going guided modes plus a
term of the decay into unguided modes.

3.3 Time independent Schrödinger Equation

I now wish to solve the time independent Schrödinger Equation in order to look at the interaction
between the quantized field an the atom.

Ĥ |Ψ〉 = E |Ψ〉 (3.29)

As before, I will use the Hamiltonian found in section 2.2, equation (3.17) and the state vector
(3.19). The Hamiltonian is described in the interaction picture and the rotating wave approxima-
tion has been used. The energy is E = Ephoton − Eatom. Plugging into (3.29)

E

[
fe |e〉 |∅〉+

∫
dz
(
fR(z)c†Rc

†
R(z) + fL(z)c†L(z)

)
|g〉 |∅〉

]
= ~

∫
dz

{(
−ivg

∂

∂z
fR(z,t)− δ(z − zi)fe(t)g∗Re−ik0z

)
ĉ†R(z)

+
(
ivg

∂

∂z
fL(z,t)− δ(z − zi)fe(t)g∗Leik0z

)
ĉ†L(z)

}
|g〉 |∅〉

− ~
{
i~ΓS

2 fe(t) +
∫
dzδ(z − zi)

(
gLfL(z,t)e−ik0z + gRfR(z,t)eik0z

)}
|e〉 |∅〉 (3.30)

Multiplying with 〈∅| 〈g| and 〈∅| 〈e| on both sides and I get

Efe = −~
(
gLfL(zi)e−ik0z + gRfR(zi)eik0z + iΓS

2 fe

)
(3.31a)

E

∫
dz (fR(z) + fL(z)) = ~

∫
dz

{(
−ivg

∂

∂z
fR(z)− δ(z − zi)feg∗Re−ik0z

)
+
(
ivg

∂

∂z
fL(z)− δ(z − zi)feg∗Leik0z

)}
(3.31b)

From (3.31b) I get differential equations

∂

∂z
fR(z) = iE

~vg
fR(z) + ig∗R

vg
fee
−ik0zδ(z − zi) (3.32a)

∂

∂z
fL(z) = − iE

~vg
fL(z)− ig∗L

vg
fee

ik0zδ(z − zi) (3.32b)

When looking at the scattering, I am only interested in looking at what happens around the atom
at z = zi, and not how the field evolves between the atom. Thus I integrate from zi − ε to zi + ε,
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3.3 Time independent Schrödinger Equation 3 THE MODEL

where zi is the position of the atom and ε is a small distance which I will let go to zero at the
end. ∫ zi+ε

zi−ε
dz

∂

∂z
fR(z) = iE

~vg

∫ zi+ε

zi−ε
dzfR(z) + ig∗R

vg
fe

∫ zi+ε

zi−ε
dzeik0zδ(z − zi) (3.33)

Doing so, the middle term will go to zero in the limit ε → 0. The last integral on the RHS will
just be eik0zi , since zi is included in the area of integration. The left hand side will just be fR(z)
evaluated at two end points. Defining z+

i = zi + ε and z−i = zi − ε and rearranging I get

fR(z+
i ) = fR(z−i ) + ig∗R

vg
fee
−ik0zi (3.34a)

fL(z−i ) = fL(z+
i ) + ig∗L

vg
fee

ik0zi (3.34b)

where fR(z−i ) and fL(z−i ) are to be considered as the left and right going fields a distance −ε
from the atom and fR(z+

i ) and fL(z+
i ) are to be considered as the left and right going fields a

distance +ε from the atom.
Since both fR(z) and fL(z) has to be continuous at zi I can write

fR(L)(zi) = 1
2
(
fR(L)(z+

i ) + fR(L)(z−i )
)

(3.35)

Using the result from (3.34a) and (3.35) I can rewrite (3.31a) as

Efe = −~
[
gLfL(z+

i )e−ik0zi + iΓL
2 fe + gRfR(z−i )eik0zi + iΓR

2 fe + iΓS
2 fe

]
(3.36)

where ΓR(L) = |gR(L)|2
vg

are the decay rates of the left and right going fields. If I rearrange I get an
expression for fe

fe =
−~

(
gLfL(z+

i )e−ik0zi + gRfR(z−i )eik0zi

)
E + i~Γ

2
(3.37)

where I have defined the total decay Γ = ΓR + ΓL + ΓS . Plugging this into (3.34a) I get my two
functions, describing the scattering of the fields

fR(z+
i ) = tR(E)fR(z−i ) + r(E)e−i2k0zifL(z+

i ) (3.38a)
fL(z−i ) = tL(E)fL(z+

i ) + r(E)ei2k0zifR(z−i ) (3.38b)

where I have defined

tR(E) =
(

1− i~ΓR
E + i~Γ

2

)
, tL(E) =

(
1− i~ΓL

E + i~Γ
2

)
, r(E) = − i~

√
ΓRΓL

E + i~Γ
2

(3.39)

For the nonchiral system one would get tR = tL, thus the probability for decays to modes prop-
agating in the left and right directions would be the same. It is important to notice, that the
reflection coefficient is not chiral, and thus the probability for the field to get reflected is the same
for both directions.
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4 SCATTERING OF THE FIELD

4 Scattering of the field

In this section I will be investigating the scattering of the field. Using the transfer matrix
method[4] I will deduce a general transfer matrix, describing the scattering of the field from
a whole ensemble of atoms. I then plot numerical solutions based on the transfer matrix, where
I compare the chiral system with a nonchiral system.

4.1 Transfer Matrix

In section 3.3 I found the equations (3.38) describing the scattering of the field. I now wish to
describe it in matrix form such that(

fR(z+
i )

fL(z+
i )

)
= T

(
fR(z−i )
fL(z−i )

)
(4.1)

where I on the LHS have the fields just right of an atom and on the RHS I have the field just left
to the atom multiplied by some transfer matrix T. Rearranging (3.38b) and inserting in (3.38a)
gives me the matrix

T = D−1MD (4.2)

where

M =

 (
tR − r2

tL

)
r
tL

− r
tL

1
tL

 and D =
(
eik0zi 0

0 e−ik0zi

)
(4.3)

It is important to notice, that the matrix D depends on the position of the atom, zi, hence the
transfer matrix for each atom will be different. If I want to look at an ensemble of N two-level
atoms, I first assume that the atoms are arranged periodically with some lattice constant d and
that the first atom is located at z1 = 0. The n’th atom will thus be located at zn = (n − 1)d.
This allows me to write the transfer matrix for the n’th atom as

Tn = D−(n−1)
0 MD(n−1)

0 (4.4)

where I have defined

D0 =
(
eik0d 0

0 e−ik0d

)
(4.5)

Thus, the transfer matrix for the first atom is just T1 = M, since D0
0 = I, where I is the

indentity matrix. Now if I am looking at an ensemble of N atoms, the full length of the system
is L = (N − 1)d, and the complete transfer matrix, TE is

TE = TNTN−1 · · ·T1 = D−(N−1)
0 MDN−1

0 D−(N−2)
0 MD(N−2)

0 · · ·D−1
0 MD0M (4.6)
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4.1 Transfer Matrix 4 SCATTERING OF THE FIELD

which can be simplified to
TE = D−N0 (D0M)N (4.7)

Thus the output can be written in matrix form in the following way(
fR(L+)
fL(L+)

)
= TE

(
fR(z−i )
fL(z−i )

)
(4.8)

where L+ denotes the position right after the last atom in the ensemble as illustrated on Figure
2.

z−1 TE
L+

z1
d

z2 zN−1
d

zN
fR(z−1 )

fL(z−1 )

fR(L+)

fL(L+)

Figure 2: A 1D waveguide (green area) with N two-level atoms (red dots) separated with the
lattice constant d. The first atom is located at z1 = 0 and the n’th atom is located at zn = (n−1)d.
The full length of the system is L = (N − 1)d. The field on the RHS is described by the field on
the LHS multiplied with the Transfer matrix TE .

To find the transmittance and reflectance for the left going field fL(z) interacting with N atoms,
I will assume to have light incident from the left and (4.8) reads(

fR(L+) = a

fL(L+) = b

)
= TE

(
fR(z−1 ) = 0
fL(z−1 ) = c

)
(4.9)

where b is the incident field, a is the reflected field and c is the transmitted field. TE will have
some matrix elements

TE =
(
T11 T12

T21 T22

)
(4.10)

One can now easily find the transmittance and reflectance in terms of matrix elements, by looking
at the ratio between the incident, reflected and transmitted fields. Thus I get

TL(E) = |c|
2

|b|2
= 1
|T22|2

and RL(E) = |a|
2

|b|2
= |T12|2

|T22|2
(4.11)

To find the reflectance and transmittance for the right going field, one just has to switch around
ΓR and ΓL.
It can be confirmed, that (4.11) gives the same result for one atom, as one would get calculating
the transmittance and reflectance from (3.38).
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4.2 Scattering of ensemble of two-level atoms

In section 4.1 I have just derived equations which allow me to calculate the transmittance and
reflectance from the Transfer matrix of the ensemble, equation (4.11). It can certainly be done
analytically, but for high values ofN the results gets very ugly and does not give much information.
Instead I have made numerical solutions.
The chiral system is highly dependend on ΓS and will in general have a higher loss than the
nonchiral system, see Figure 3. The loss increases with the difference between coupling to the left
and right going fields. The transmittance goes to zero when the number of atoms are increased.
This is due to bragg scattering, reflected fields with a phase 2kd = nπ will have constructive
interference, creating a photonic band gap(PBG), where certain modes cannot pass through[11].
In the nonchiral system, this will lead to complete reflection at resonance and no loss, where the
chiral system will have no transmittance, but always some loss.

(a) ΓS = 1
2 Γ and ΓR = 3

10 Γ (b) ΓS = 1
2 Γ and ΓR = 2

5 Γ

Figure 3: The transmittance and reflectance plotted as functions of the number of atoms in the
ensemble, with k0d = π and E = 0. Both chiral(ΓR 6= ΓL) and the nonchiral(ΓR = ΓL) systems,
denoted with c(chiral) and nc(nonchiral), have been plotted. The relation between ΓS , ΓR and Γ
is noted under the plots. Both plots are between strong and weak coupling. In all cases TR goes
to zero and RR converges to one for the nonchiral system and to some number, depending on the
difference between ΓR and ΓL. The nonchiral system has less loss than the chiral system. It is
the same picture one sees for the strong and weak coupling.

From Figure 3 it is apparent that the chiral system will always be connected to some loss, whereas
the nonchiral system will end up as a Bragg Mirror for high values of N for certain frequencies.
When the system is in the weak coupling regime, the PBG is wider in the chiral system, and
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4.2 Scattering of ensemble of two-level atoms 4 SCATTERING OF THE FIELD

the reflected field is almost nonexistent, thus greatly restricting the allowed frequencies for the
system, see Figure 4. In this case the nonchiral system seems to be more efficient and has more
properties. Looking at the strong coupling regime, the picture changes. Suddenly the PBG is
much wider for the nonchiral system and the loss of the chiral system has decreased dramatically.
The chiral system even allows transmittance of frequencies, where the reflectance of the nonchiral
system reaches unity. Though this is an extreme case with ΓS = 0.01Γ, it is not an unrealistic
picture, since systems with very strong coupling are being developed[6]. I have looked at the
system where the atoms were separated by a lattice constant such that 2k0d = π/4. If the atoms
instead were separated by a lattice constant such that 2k0d = nπ and the system had the strong
coupling, the transmittance of the nonchiral system would almost go to zero with just two atoms,
whereas transmittance for the chiral system would be almost unity and then slowly decrease as
N would increase.

(a) ΓS = 0.9Γ and ΓR = 0.096Γ (b) ΓS = 0.01Γ and ΓR = 0.95Γ

Figure 4: The transmittance and reflectance plotted as a function of E/Γ, with k0d = π/4 and
N = 30. Both chiral(ΓR 6= ΓL) and the nonchiral(ΓR = ΓL) systems, denoted with c(chiral) and
nc(nonchiral), have been plotted. The relation between ΓS , ΓR and Γ is noted under the plots. (a)
is the weak coupling regime and (b) is the strong coupling regime. For the weak coupling regime,
the PBG is bigger for the chiral system, whereas for the strong coupling regime it is opposite.
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5 Conclusion and outlook

In this thesis I have investigated how a photon interacts with a chiral ensemble of atoms within
a 1D waveguide.
I have solved the time dependent Schrödinger equation, in order to look at the dynamics of the
atom. It was shown that the atom will decay into a left or right going guided modes or into
unguided modes and thus leaving the system.
Next the interaction between the field and the atom was investigated. By solving the time de-
pendent Schrödinger equation, I found that the incoming fields would result in a superposition of
a reflected and transmitted field.
Based on the result from the time independent Schrödinger equation, the Transfer matrix method
was used to develop a transfer matrix, describing the interaction for one atom. This was used to
develop a general transfer matrix describing the interaction of one photon with a whole ensemble
of N emitters, based on the assumption that the atoms were arranged periodically with some
lattice constant d.
The general transfer matrix for the ensemble of atoms was then used to produce numerical solu-
tions for the system. The chiral system was compared with the nonchiral systems. It was shown,
that the nonchiral system would have almost no loss as the number of atoms would increase,
whereas the chiral system would have a huge loss. The loss of the chiral system would increase
with the difference between the coupling between the atom and the left and right going fields.
Differences between the strong and weak coupling regimes were investigated, where it was shown,
that the photonic band gap, relating to the Bragg scattering of the system, would decrease for
the chiral system, as the coupling would increase.
The chiral systems shows a different behaviour than the nonchiral systems and it will be inter-
esting to see if such systems can be used to construct arrays of atoms with the desired properties
to build effective quantum systems. On a theoretical manner, this would be easy to investigate
further, now that a general transfer matrix for a chiral system has been developed. One could
imagine looking at an ensemble of atoms with different chirality. Furthermore, I have assumed
that the atoms are placed periodically with a periodic lattice constant. In practice, this is very
hard to accomplish, hence it would be more useful to analyse the system, where the atoms are
randomly placed in the waveguide.
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A DECAY OF SINGLE EMITTER INITIALLY IN EXCITED STATE

Appendix A Decay of single emitter initially in excited state

I wish to describe the decay of a single emitter, which initialy starts in the excited state, with no
photons present. I define the state vector

|ψ(t = 0)〉 = |e〉 |∅〉 , |ψ(t)〉 = fe(t) |e〉 |0〉+
∑
k

fk(t)â†k |g〉 |∅〉 (A.1)

I am only interested in solving the system in order to see how the atom will decay. I could solve
it for all modes and polarizations, but for simplicity, I shall only be looking at guided modes for
k > 0 polarized in the x-direction. The Hamiltonian describing the system is given by

Ĥ = ~
∑
k>0

{
vg(k − k0)â†kâk − gRâkσ̂eg − g

∗
Râ
†
kσ̂ge

}
(A.2)

where â(†)
k is the creation(annihilation) operator, σ̂eg is the operator taking the atom from the

excited to the ground state, σ̂ge is the operator taking the atom from the ground to the excited
state and g(∗)

R = id(∗)/~
(

~ωk
2ε0V

)1/2
is the coupling between the field and the atom The Hamiltonian

is described in the Interaction picture and the rotating wave approximation has been made. I have
furthermore assumed, that the system will have frequencies, ωk close to the atomic frequency, ω0

and thus written (ωk−ω0) = vg(k−k0). I wish to solve the time dependent Schrödinger equation

i~
∂ |ψ(t)〉
∂t

= Ĥ |ψ(t)〉 (A.3)

Plugging in (A.1) and (A.2)

ḟe |e〉 |0〉+
∑
k

ḟkâ
†
k |g〉 |∅〉 = i

∑
k>0
{gRfk(t) |e〉 |∅〉

+(g∗Rfe(t)− fk(t)vg(k − k0))â†k |g〉 |∅〉
}

(A.4)

giving me two coupled differential equations

ḟe = igR
∑
k>0

fk(t) (A.5a)

ḟk = ig∗Rfe(t)− ifk(t)vg(k − k0) (A.5b)

(A.5b) is a linear first order differential equations, which has the solution

fk(t) = ig∗R

∫ t

0
e−ivg(k−k0)(t−t′)fe(t′)dt′ (A.6)

Inserting this in (A.5a) gives me

ḟe = −|gR|2
∑
k>0

∫ t

0
e−ivg(k−k0)(t−t′)fe(t′)dt′ (A.7)
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Assuming the separation between modes in k-space is negligibly small compared to the full length,
∆k can be approximated with the differential dk and the sum goes to an integral

1
∆k

∑
k>0

∆k → 1
∆k

∫ ∞
0

dk

With ∆k = 2π/L (A.9) can be written as

ḟe = −|g̃R|2
1

2π

∫ ∞
0

∫ t

0
e−ivg(k−k0)(t−t′)fe(t′)dt′dk (A.8)

where g̃(∗)
R = id(∗)/~

(
~ωk
2ε0A

)1/2
. In order to solve the above equation, I will be using Weisskopf-

Wigner approximation[12]. Since the field will be focused around the atomic transition frequency,
ω0, I will assume, that the excited state amplitude fe(t′) varies on a rate Γ � ω0, and thus
approximate it as fe(t′) ≈ fe(t) and take it out of the integral. Now, the time of interest will be
t� 1/ω0 and the upper limit of integration can be taken to infinity. I get

ḟe ≈ −|g̃R|2
1

2πfe(t)
∫ ∞

0

∫ ∞
0

e−ivg(k−k0)τdτdk (A.9)

where τ = (t− t′). The integral over dτ can now be rewritten as∫ ∞
0

e−ivg(k−k0)τdτ =
∫ ∞
−∞

H(τ)e−ivg(k−k0)τdτ (A.10)

which is just the Fourier transform of the Heaviside function, which is∫ ∞
−∞

H(τ)e−ivg(k−k0)τdτ = π

|vg|
δ(k − k0)− iP(k) (A.11)

The last term P(k) is the Cauchy Principal part. Because it is complex, it will lead to a change in
frequency, the so called "Lamb-shift", which will diverge and I will thus assume that −iP(k) = 0.
Inserting back in (A.9) and I get

ḟe = −|g̃R|
2

2|vg|
fe(t)

∫ ∞
0

δ(k − k0)dk = −ΓR
2 fe(t) (A.12)

where I have defined ΓR = |g̃R|2
vg

. The solution is, assuming fe(t = 0) = 1

fe(t) = e−
ΓR
2 t (A.13)
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Appendix B Transforming the Hamiltonian to real space

In section 3.1 I arrive at the following Hamiltonian operator for the system described in k-space.

Ĥ = ~
∫
dk∆kâ

†(k)â(k)− ~√
2π

{∫
dk(gLâL(k)σ̂ege−ikzi + g∗Lâ

†
L(k)σ̂geeikzi)

+
∫
dk(gRâR(k)σ̂egeikzi + g∗Râ

†
R(k)σ̂gee−ikzi)

}
(B.1)

In order to transform the Hamiltonian operator in (B.1) I define the creation and annihilation
operators in real space, as the fourier transform of the ones in k-space.

ĉR(z) = 1√
2π

∫
dkâR(k)ei(k−k0)z and âR(k) = 1√

2π

∫
dzĉR(z)e−i(k−k0)z (B.2)

ĉL(z) = 1√
2π

∫
dkâL(k)e−i(k−k0)z and âL(k) = 1√

2π

∫
dzĉL(z)ei(k−k0)z (B.3)

which has the following commutation relations[
ĉL(z),ĉ†L(z′)

]
=
[
ĉR(z),ĉ†R(z′)

]
= δ(z − z′) (B.4a)[

ĉL(z),ĉ†R(z′)
]

=
[
ĉR(z),ĉ†L(z′)

]
= 0 (B.4b)

I am assuming the photons are near resonant with the frequency of the atom, thus I can approx-
imate ∆k as

∆k ≈ vg(k − k0)

Looking at the first term in (B.1) I get∫
dk∆kâ

†(k)â(k) = vg

∫
dk(k − k0)(â†R(k)âR(k) + â†L(k)âL(k))

= vg√
2π

∫
(k − k0)

(∫
dzĉ†R(z)ei(k−k0)zâR(k) +

∫
dzĉ†Lw

−i(k−k0)zâL(z)
)

= vg

∫
dz

(
ĉ†R(z) 1√

2π

∫
dk(k − k0)âR(k)ei(k−k0)z

+ĉ†L(z) 1√
2π

∫
dk(k − k0)âL(k)e−i(k−k0)z

)
= vg

∫
dz

(
iĉ†L

∂

∂z
ĉL(z)− iĉ†R(z) ∂

∂z
ĉR(z)

)
(B.5)

where I between the last two lines have used the fact that

−i ∂
∂z
ĉR(z) = 1√

2π

∫
dk(k − k0)âR(k)ei(k−k0)z (B.6)
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Looking at the second term in (B.1) I get

1√
2π

∫
dk(gLâL(k)σ̂ege−ikzi + g∗Lâ

†
L(k)σ̂geeikzi)

= 1√
2π

∫
dk

{
gLσ̂ege

−ikzi

( 1√
2π

∫
dzĉL(z)ei(k−k0)z

)
+g∗Lσ̂geeikzi

( 1√
2π

∫
dzĉ†L(z)e−i(k−k0)z

)}
=
∫
dz

{
gLσ̂ege

ik0z 1
2π

∫
dke−ik(z−zi) + g∗Lĉ

†
L(z)σ̂gee−ik0z 1

2π

∫
dkeik(z−zi)

}
=
∫
dzδ(z − zi)

{
gLĉL(z)σ̂ege−ik0z + g∗Lĉ

†
L(z)σ̂geeik0z

}
(B.7)

and in the same way it can be shown that

1√
2π

∫
dk(gRâR(k)σ̂egeikzi + g∗Râ

†
R(k)σ̂gee−ikzi)

=
∫
dzδ(z − zi)

{
gRĉR(z)σ̂egeik0z + g∗Rĉ

†
R(z)σ̂gee−ik0z

}
(B.8)

Putting (B.5), (B.7) and (B.8) together and I arrive at my final Hamiltonian in real space

Ĥ =− i~ΓS
2 σ̂ee + ~

(
vg

∫
dz

(
iĉ†L

∂

∂z
ĉL(z)− iĉ†R(z) ∂

∂z
ĉR(z)

)
−
∫
dzδ(z − zi)

{
gLĉL(z)σ̂ege−ik0z + g∗Lĉ

†
L(z)σ̂geeik0z

}
−
∫
dzδ(z − zi)

{
gRĉR(z)σ̂egeik0z + g∗Rĉ

†
R(z)σ̂gee−ik0z

})
(B.9)
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