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Abstract

The range of magnetic scattering in Bi2Fe4O9 has been investigated through
elastic and inelastic neutron scattering on a 2.35 g single crystal at the CAMEA
neutron spectrometer, PSI. The magnetic scattering was measured at temperatures
more than 100K away from the critical temperature, which is where the system
should disorder and magnetic scattering stop. The temperature dependence of the
integrated diffuse intensity was fitted using critical exponents revealing different
fitted critical temperatures depending on whether T > TN , or T < TN , (73 ± 4)K
and (296± 5)K respectively.

Furthermore, an unexpected shift of the magnetic scattering signal in reciprocal
space was detected showing that there is still much to learn about this system.
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2 MAGNETISM

1 Introduction

Magnets have been a part of the human experience since ancient China where lodestones
where used to detect iron. This was believed to be due to compatible chi between these
two materials [1]. Many different theories have since been tried to describe magnets, but
it wasn’t until 1820 that Ørsted noticed a connection between electricity and magnetism.
This was further investigated by Ampere and finally, classically collected as part of
Maxwell’s four equations in the late 19th century [10].

Magnetic interactions in crystals lead to a variety of possibilities regarding how the
quantum mechanical spins should align in order to minimise the energy of the system.
For ferromagnets the spins align and for antiferromagnets the spins antialign [5]. The
latter can lead to degeneracy of the ground state, since the spins might need to antialign
to several spins that are themselves antialigned. This degeneracy is known as frustration
[16].

The field of frustrated systems is still new and not well understood. Recently it
was measured in the frustrated system h-YMnO3 that the critical scattering spans a
temperature range much larger than expected for ordinary magnetic systems [13]. In
order to see if this is a general feature of frustrated magnetic systems or unique to h-
YMnO3, this project has aimed to investigate the magnetic scattering of neutrons in
Bi2Fe4O9.

Bi2Fe4O9 is an interesting example of a frustrated system, as it has an (almost)
Cairo-pentagonal structure [3]. The measurements in this thesis were done on CAMEA,
a neutron spectrometer at the Paul Scherrer Institut in Switzerland, leading to a high
data resolution and making new discoveries possible.

2 Magnetism

2.1 Interactions between particles and fields

Important to the topic of neutron scattering is the field of a magnetic dipole as it con-
stitutes the interactions accountable for magnetic scattering. A magnetic dipole is clas-
sically thought of as an electron moving in a small orbit creating a current and thus a
magnetic field [10]. The strength of such a dipole is known as its magnetic moment, µ.
A magnetic dipole placed at origin creates a vector potential according to [10]

A (r) =
µ0
4π

µ× r

r2
, (1)

which in return leads to a magnetic field

B (r) = ∇×A =
µ0
4π

∇×
(
µ× r

r2

)
. (2)

Magnetic fields interact with atoms with a strength proportional to the magnetic
moment of the atom. This is known as the Zeeman effect [11]. The strength of the
Zeeman potential is given by

HZ = −µ ·B. (3)

1



2.2 Crystals 2 MAGNETISM

Though we classically think of the magnetic moment as a charged ball in some orbit, it is
in quantum mechanics instead proportional to the spin of the particles and can for some
be found in data sheets and books.

2.2 Crystals

When dealing with crystals, it is essential to consider not only the scattering effects of
magnetism, but also how magnetism might affect the structure of the crystal.

If we place an atom with spin sj at each lattice point in a one-dimensional lattice we
might get a constellation as depicted in Figure 1.

Figure 1: Spins in a 1D lattice

The Hamiltonian of any two electrons can be described by their combined state, which
for reasons of symmetry is either the singlet or the triplet state [5],

ΨS =
1√
2
[ψa (r1)ψb (r2) + ψa (r2)ψb (r1)]χS (4)

ΨT =
1√
2
[ψa (r1)ψb (r2)− ψa (r2)ψb (r1)]χT . (5)

The spacial part is denoted with ψ and the spin part with χ. By subtracting the energies,
⟨Ψk|H |Ψk⟩, from each other, we get the spin-dependent part of the Hamiltonian as

Hspin = −2 · ES − ET

2
S1 · S2. (6)

The fraction in front is known as the exchange factor1, J12. From here the general system
can be described by summing over all these interactions in a Hamiltonian known as the
Heisenberg Hamiltonian [5],

Hheis. = −2
∑
i>j

JijSi · Sj . (7)

Depending on the exchange factor, the Hamiltonian minimises the energy either when
the neighbouring spins are aligned or antialigned. Thus, we can characterise the magnets
as those having J > 0, ferromagnets; and J < 0, anti-ferromagnets.

The Hamiltonian can be further simplified, when crystals contain anisotropies. In
such a case the spins are no longer free to orient in all possible directions. Limited this
way, some of the degrees of freedoms are removed and in the most extreme case the spins
are restricted to be either up or down. This is known as the Ising Hamiltonian [5].

It is important to note that the magnetic unit cell in the antiferromagnetic case no
longer is the same size as the crystal unit cell, as the alternating spins only repeat at
every other lattice point.

The exchange interaction is only applicable, when two electrons are close enough to
each other to be in a combined state that need to be treated as such. If an oxygen atom

1Though some use ES − ET [5], and some swap the places of ES and ET in the expression [3].
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2.3 Magnetic order 2 MAGNETISM

is placed between a two transition metals, such as iron, it can act as a bridge between the
two, allowing interactions on larger scales. This process is known as superexchange and
works by aligning the electrons in the one metal atom with one electron in the oxygen
orbital and aligning the other electron with an electron in the other transition metal.
This leads to a setup where antiferromagnetic behaviour is often energetically favoured
since the two oxygen electrons need to be of different spin due to the Pauli exclusion
principle and thus locks one electron in place, in the ferromagnetic case [5].

2.3 Magnetic order

As the Heisenberg Hamiltonian is time-independent we can use it to find the ground
state, which the system must be in at zero temperature. For ferromagnets this is when
the spins align, and for antiferromagnets it is when they anti-align (See Figure 2).

At zero temperature the system is said to be ordered, and it will stay like this as we
heat it up until it starts “melting”. At some high temperature all order is lost, and we
have transitioned into another phase. This leads us to define some order parameter which
shows when this transition happens. For an antiferromagnet this could be the difference
in the magnetisation of the sublattice with all spins aligned upwards, M+, and the
magnetisation of the sublattice consisting of spin-down atoms, M−. When the lattice is
ordered the sublattice magnetisations should be equal in magnitude, |M−| = |M+| =M ,
so the difference is 2M . When the order ceases to exist, each sublattice will on average
have a magnetisation of 0, and thus the order parameter is zero itself. These order
parameters, p, can be defined for different phase transitions, but always with p ̸= 0
for T < TC and p = 0 for T > TC , where TC is the critical temperature of the phase
transition.

2.3.1 Frustrated magnetism

The minimisation of the energy in the different models is all well and good in the case
of one dimensional lattices, as the one in Figure 1 on the previous page or even for
two-dimensional square lattices as the two leftmost on Figure 2. Problems arise in less
trivial structures, where anti-alignment is favoured. Most famously geometric frustration
is found in the triangular lattice.

(a)

↑ ↑

↑↑ (b)

↓ ↑

↓↑ (c)

↑ ↓

?
↓↑

Figure 2: Examples of magnetic order. (a) Ferromagnetic order. All of the spins align.
(b) Antiferromagnetic order, where all adjacent spins antialign. (c) The upper spin in
this system has no clear way to antialign with both of the closest neighbours. Thus the
system is said to be frustrated. This is known as geometric frustration.

The upper spin in Figure 2c is trying to both align upwards and downwards to be
antialigned to both of the lower spins, in the case of the Ising Hamiltonian. This is of
course not possible, so the system has to “choose” one of the two. This is known as

3



3 MAGNETISM IN BI2FE4O9

magnetic frustration. In the case of the triangular lattice in Figure 2 the ground state
has a six-fold degeneracy; each corner has two possibilities of equal energy when the
other spins are fixed. For larger systems, this degeneracy turns macroscopic leading to
new interesting phenomena [16].

2.3.2 Magnons

At temperatures above absolute zero the order can be disrupted by thermal excitations
of the lattice. These vibrations can be quantised as phonons [5]. The same is true
for the magnetic order, where the spin of one atom affects the magnetic field of the
neighbouring atoms. These in return moves and we see a wave in much the same way as
with the phonons but for the spins instead of the lattice. This is possible since the cost of
producing a spin wave is vanishingly small, so even small thermal excitations are enough.
Such excitations are called Goldstone modes, and the quantisation of this specific type
of excitations are known as magnons [5].

3 Magnetism in Bi2Fe4O9

Bi2Fe4O9 is an orthorombic crystal with sidelengths a = 7.9Å, b = 8.4Å, and c = 6.0Å
[8]. The placement of the Fe atoms, S = 5

2 , and O atoms, which are the relevant
ones for magnetism, are shown in Figure 3. The Fe atoms are placed in an almost Cairo
pentagonal lattice with some of the atoms paired just above and just below the pentagonal
plane. The magnetic interactions in bismuth ferrite are due to the eight iron atoms in the
unit cell interacting with each other through superexchange [3]. The interactions can be
seen visualised in Figure 3. Bi2Fe4O9 shows long range magnetic order at temperatures
below TN ∼ 240K [3], as seen in Figure 4. From this order it is possible to identify the
magnetic order vector Qm =

(
1
2 ,

1
2 ,

1
2

)
. We thus expect magnetic peaks at half-integer

coordinates in reciprocal space.

Table 1: Values for the five different exchange factors at play in Bi2Fe4O9. Note that Le
et al. [19] and Beauvois et al. [3] disagree significantly on J1. The potential ferromagnetic
interaction is not severe enough to change the degree of frustration in the system.

J1 J2 J3 J4 J5

[meV], [3] (−3.7± 0.2) (−1.3± 0.2) (−6.3± 0.2) (−24.0± 0.8) (−2.9± 0.1)
[meV], [19] (0.22± 0.03) (−1.39± 0.05) (−6.5± 0.2) (−27.6± 0.6) (−3.1± 0.2)

The fact that most, or maybe even all, of these interactions have J < 0, meaning that
they are antiferromagnets, combined with the almost Cairo pentagonal lattice leads to a
frustrated system. Especially since both sources [3, 19] agree on J3−5 < 0. These are the
in-plane interactions and in themselves, they lead to geometric frustration. Worth noting
is the difference between J3 and J5. Even though the distances between the iron atoms
are the same, the exchange factors are significantly different. This is due to the different
constellations of oxygen atoms and thus different strengths of the superexchanges.
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3 MAGNETISM IN BI2FE4O9

J3

J5

J3

J5

J4

b

a

Figure 3: Structure of the unit cell in bismuth ferrite. Fe atoms are shown in golden
brown and O atoms in red. Bismuth atoms are not shown due to their non-magnetic
behaviour. The magnitude of the different exchange factors can be seen in Table 1.
The illustration is made using VESTA [21]. Positions of the atoms were obtained from
Da Silva et al. [8]. The interaction J1 is between the pairs of Fe ions sandwiching the
pentagonal plane and J2 is between the same Fe ions but in-between planes.

Figure 4: Magnetic ordered arrangement of Bi2Fe4O9 as experienced below TN . Figure
from Beauvois et al. [3].
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4 NEUTRON SCATTERING

4 Neutron scattering

4.1 Neutrons

Neutrons were first detected in 1932 by Chadwick [6] and are nuclear particles with a
neutral electrical charge, and a mass close to that of the proton [20],

mn = 1.6749 · 10−27 kg. (8)

Important for probing magnetic phenomena, the neutron, which is a spin-12 particle, has
a magnetic moment of

µ = γµN ≈ −9.6622 · 10−27 J

T
. (9)

Here the neutron magnetogyric ratio is given by γ = −1.9130 and the nuclear magneton
is given by µN = eℏ

2mp
. The magnetic moment, µ, couples antiparallel to the neutron spin

[20].
Since the neutrons interact with nuclei through the strong nuclear force and with

magnetic moments through the electromagnetic force both characteristics can be inves-
tigated by means of neutron scattering [20].

From quantum mechanics we know that particles behave both as particles and waves.
This behaviour is also true for the neutron giving rise to useful phenomena e.g. Bragg
diffraction. See Section 4.3.

4.2 Neutron sources

In order to do neutron scattering, one uses facilities that have a beam flux, Ψ, of 104 to
109 n

cm2s
at the sample position. A flux of this magnitude is achieved through one of two

means: Fission or spallation [20].
In the case of fission a continuous flux is produced in a conventional fission reactor,

where slow neutrons are sent into a fissile compound, e.g. 235U which in return turns
unstable and sends out 3 neutrons, 141Ba, and 92Kr [20].

Spallation on the other hand sends fast protons in the GeV-regime into a heavy nuclei
exciting this and evaporating neutrons and protons in pulses [20]. One spallation source
is the Swiss Spallation Neutron Source (SINQ) located at the Paul Scherrer Institute
in Switzerland. Despite being a spallation source, SINQ produces a continuous neutron
flux of around 1014 n

cm2s
[24]. Since not all of the 4π solid angle reaches the beam guide,

this corresponds to 109 n
cm2s

at the monochromator and finally a flux of 107 n
cm2s

at the
sample position (see Section 4.6.

4.3 Elastic Scattering

As mentioned previously neutrons can be treated as both particles and waves. When
looking at the conditions required for scattering to happen2, the latter is used in this
treatment.

2And for scattering to be visible

6



4.3 Elastic Scattering 4 NEUTRON SCATTERING

The incoming and outgoing neutrons can, following this treatment, be thought of as
planar waves [4],

ψj (r) =
1√
L3
eikj ·r, (10)

with an energy

Ej =
ℏ2k2j
2mn

, where j = i, f. (11)

A neutron in a specific state can then be described by its wave vector. From Fermi’s
golden rule we get the transition rate per unit time for the scattering of a particle in the
initial state, ki, to the final state, kf [5].

Γi→f =
2π

ℏ
|⟨kf |V |ki⟩|2

dn

dEf
, (12)

where the matrix element is

⟨kf |V |ki⟩ =
∫

dr
e−ikf ·r
√
L3

V (r)
eiki·r
√
L3

(13)

=
1

L3

∫
dr ei(ki−kf )·rV (r) . (14)

This, being the Fourier transform of the potential, can for a periodic potential be rewrit-
ten by introducing r = x + R, where R is a lattice vector. Resulting in the following
simplification.

⟨kf |V |ki⟩ =
1

L3

[∑
R

ei(ki−kf)·R
] [∫

unit−cell
dx ei(ki−kf)·xV (x)

]
, (15)

where L3 is the volume of the unit-cell and thus normalizes the sum. The second term
vanishes unless q = ki − kf is a reciprocal lattice vector G, since G · R = 0 per con-
struction. This condition is known as the Laue condition [23].

From the geometry of Figure 5 it can be seen that

q2 = k2i + k2f − 2kikf cos (2θ) . (16)

Assuming that the Laue condition is satisfied, the length of |ki| = |kf | = k = 2π
λ , and

remembering that |G| = 2π
d [23], where d is the spacing between lattice planes. We put

it all together and get,

q2 = 2k2 (1− cos (2θ)) (17)
=⇒ q = 2k sin θ (18)
=⇒ λ = 2d sin θ. (19)

7



4.3 Elastic Scattering 4 NEUTRON SCATTERING

ki

kf

kf

q

θ 2θ

Figure 5: The scattering vectors, ki and kf , scattering off a plane with angles and
neutron scattering vector, q, shown.

This is exactly Bragg’s law [23], showing that we should expect diffraction only when the
angle is properly tuned to the scattering planes. Note that this is only a rule for elastic
scattering since one of our assumptions were |ki|2 = |kf |2

All this comes to show that when scanning the experimental setup through different
angles we will sometimes see large diffraction signal, and then we know that we have
found a reciprocal lattice vector (See for example Figure 7c).

Knowing where to expect diffraction is only one part of the information that can can
be obtained from scattering experiments. By looking once more at Equation (15) we see
that the second term is still unused. We will call this the structure factor

S(q) =

∫
unit−cell

dx eiq·x V (x) , (20)

and see that the transition rate Γ ∝ |S|2. To get from this expression to the measured
intensity, we first and foremost need to calculate the density of states and secondly look at
the amount of neutrons scattered into a specific part of the crystal. Using Equation (11)
we get the density of states in energy-space within a scattering direction dΩ according
to [20],

dn

dEf

∣∣∣∣
dΩ

=
dn

dVk

∣∣∣∣
dΩ

dVk
dkf

(
dEf

dkf

)−1

(21)

=
L3

(2π)3
dΩ

4π
4πk2f

(
2ℏ2kf
2mn

)−1

=
L3kfmn

8π3ℏ2
dΩ . (22)

8



4.3 Elastic Scattering 4 NEUTRON SCATTERING

Putting this into Fermi’s golden rule and normalising by dividing with the flux of the
source we get the scattering cross section, σ, into a small solid angle, Ω, as

dσ

dΩ
=

1

Ψ

Γi→f,dΩ

dΩ
(23)

=

(
1

L3

ℏki
mn

)−1 L3kfmn

8π3ℏ2
(24)

= L6kf
ki

( mn

2πℏ2
)2

|⟨ψi|V |ψf ⟩|2 , (25)

where we used that the flux is equal to the speed of the neutrons multiplied with the
incoming neutron density i.e. Ψ = |ψi|2 vi. Equation (25) is known as the master
equation for scattering [20] and by applying different potentials the intensity of the
scattering neutrons can be calculated. Worth noting is the factor kf

ki
which is unity for

elastic scattering, but important for inelastic scattering.

4.3.1 Applying different potentials

Scattering of nuclei The scattering off of nuclei is due to the strong nuclear force
which falls off incredibly fast allowing us to approximate the potential as a delta function.
This is known as the Fermi pseudopotential [20, 23].

Vj(r) =
2πℏ2

mn
bjδ (r − rj) , (26)

where bj is the scattering length of the j’th nucleus located at rj , and is in general a
measure of the strength of scattering from the j’th nucleus [23]. For multiple atoms, as is
often the case, this can be written as a sum over j, and we thus get the structure factor

S (q) =

∫
unit−cell

dx eiq·x
∑
j

2πℏ2

mn
bjδ (x− rj) . (27)

Integrating via the δ-function, this is just a sum over the atoms in the unit-cell, so

S (q) =
2πℏ2

mn

∑
j∈u.-c.

bje
iq·xj (28)

So the matrix element becomes

⟨ψf |V |ψi⟩ = L−3 2πℏ2

mn

∑
R

eiq·R ·
∑

j∈u.-c.
eiq·xj (29)

Putting this into Equation (25) gives us

dσ

dΩ
=
kf
ki

∣∣∣∣∣∣
∑
j

bj exp(iq · rj)

∣∣∣∣∣∣
2

. (30)

9



4.4 Inelastic Scattering 4 NEUTRON SCATTERING

Magnetic Scattering Magnetic scattering is governed by the nuclear Zeeman term
for a neutron in the field generated by superposition of magnetic dipoles placed at each
atom in the crystal. From Section 2, we combine Equations (2) and (3) to get

HZ,j =
µ0
4π
gµBγµNσ · ∇×

(
sj × (r − rj)

|r − rj |3

)
, (31)

where sj is the spin of an electron at position rj , g the electronic magnetogyric ratio, and
µB the Bohr magneton [20]. In much the same endeavour as before one can add these
terms to get the full scattering potential, insert it in Equation (25) on the previous page,
and after a couple of pages of vector calculus you get the master equation for magnetic
scattering of unpolarised neutrons [20, eq. (3.29)]

dσ

dΩ
= (γr0)

2
(g
2

)2 kf
ki

∑
α,β

(δαβ − q̂αq̂β) ⟨Qα (q)⟩ ⟨Qβ (q)⟩ . (32)

Here r0 is the electronic radius, α, β run over the Cartesian coordinates, and ⟨∗⟩ should
be understood as a thermal average. Q is the Fourier transform of the spins in the lattice
defined below

Q (q) =
∑
j

exp (iq · rj) sj (33)

= M (q)Fm (q) , (34)

where M is the magnetisation and Fm is the magnetic form factor. In the same way
as for nuclear diffraction this can be expanded which leads to the multiplication of
δ (q −QM +G), where QM is the magnetic ordering vector. This Laue condition for
magnetic scattering shows as for nuclear scattering that we should expect magnetic scat-
tering at periodic vectors q.

Using the equations above we get a theoretical insight in the different scattering
patterns that we measure. In this way we get some valuable information on the structure
and interactions otherwise unseen.

4.4 Inelastic Scattering

In the previous section we looked at scattering in general and even shortly at Bragg’s
law and how it can be derived for elastic scattering. Another important part of neutron
scattering is the ability to look at the dynamics of the system investigated. This can
be done by examining the energy transfers between the crystal and the neutron [20].
The neutrons scatter off of the quantised vibrations or magnetic excitations (phonons
and magnons respectively) and by measuring the energy transferred to the crystal at the
scattering event the dispersion relations of both can be deduced [20]. The scattering from
phonons is temperature-dependent through the Bose factor [20]. This dependence can be
approximated through the Taylor series for kBT ≫ ℏω, resulting in a linear dependence.
This dependence scales proportionally to |q|2 for phonons. Magnons on the other hand
loses intensity for high values of q as it is a magnetic scattering phenomena with the
scattering cross section proportional to the magnetic form factor Fm(q), which in return
gets small for large q [20].

10



4.5 Magnetic Critical Scattering 4 NEUTRON SCATTERING

By also treating the different values of energy transfer, Ei −Ef = ℏω, we move away
from the three dimensional reciprocal space of elastic scattering and instead look at the
four dimensional (q, ℏω)-space. This leads to a new term known as the partial differential
scattering cross section

d2σ

dΩdEf
dEf . (35)

Which for the process of scattering off a sample in an initial state |λi⟩ and with the final
sample state |λf ⟩ is (in combination with the initial and final states of the neutrons)

d2σ

dΩdEf

∣∣∣∣
λi→λf

=
kf
ki

( mn

2πℏ2
)2
L6 |⟨λfkf |V |λiki⟩|2 δ (Ei − Ef + ℏω) . (36)

In the case of magnetic inelastic scattering the spin of the neutron of course has to be
part of the matrix element as well. We then get(

d2σ

dΩdEf

)
magn.

∝
∑
j

eiq·rj

∫ ∞

−∞
e−iωt ⟨s0 (0) sj (t)⟩ dt . (37)

Here ⟨s0 (0) sj (t)⟩ is the correlation factor between two different spins at different times,
as the neutron interacts with itself due to its wave nature [20].

4.5 Magnetic Critical Scattering

The temperature at which an antiferromagnet no longer experiences a sublattice mag-
netisation, M , is known as the Néel Temperature, TN [5]. The Néel temperature is thus
the critical temperature for this transistion. For materials around a critical temperature
we measure some interesting scattering effects known as critical scattering. Critical scat-
tering in magnets, can be modelled using simple power laws [7]. To do this easily the
reduced temperature is defined to be

t =
T − TN
TN

. (38)

In this case many physical properties of the system follows the model

f = a |t|γ , (39)

where γ is known as the critical exponent [7]. This holds for correlation length, specific
heat, magnetisation and susceptibility at temperatures close to the critical temperature.
As a specific example the magnetisation follows [7]

M =M0 (−t)β , for t < 0. (40)

4.6 CAMEA

The Continuous Angle Multi-Energy Analysis spectrometer (CAMEA) is a neutron spec-
trometer located at the Swiss Spallation Neutron Source (SINQ) at the Paul Scherrer
Institut (PSI) in Switzerland [17].
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Figure 6: CAMEA at PSI. Note the different angles and vectors for the neutrons.

Neutrons are sent from SINQ into the monochromator. The monochromator at
CAMEA consists of several pieces of highly ordered pyrolitic graphite [22]. By adjusting
the angles of the monochromator, the beam, and the sample, only a narrow energy band,
Ei, will according to Bragg’s law be sent through. From here the neutrons are scattered
an angle 2θ which can be varied by changing a4 (See Figure 6). Lastly, the neutrons
are sent into one of eight wedges in the detector where they scatter from one of eight
pieces of pyrolitic graphite depending on their energy. This gives a range of possible
measurements of Ef of 3.2–5meV [17]. The neutrons are finally detected in one of the
13 position sensitive 3He-tubes per 7.5◦ wedge [12]. All this gives very high resolution in
both ω and q.

5 Gathering of Data at CAMEA

The data for this project was collected at CAMEA at PSI in Villigen, Switzerland through
two different beamtimes. One in August, and one in November of 2022. The author was
present only during the latter.

In total, elastic and inelastic neutron scattering was measured at 30 different tem-
peratures from 10K to 800K. Some of the measurements were done for a larger area of
q-space, but all were around the rectangle bounded by q = (111̄) to q = (221) as seen on
Figure 7a on the following page. The data taken in August were taken for another part
of q-space, but this is due to the symmetry of the system equivalent, c.f. Figures 7a and
7b.

For both beamtimes the measurements was done on a 2.35 g single crystal of Bi2Fe4O9.
Before measuring at CAMEA, the crystal was aligned along (004) and (220) at ORION
[9], a two axis neutron spectrometer at PSI, in order to get the vertical alignment χ < 1◦.
This was needed as CAMEA only has rotational degrees of freedom in the horizontal
plane. The alignment was completed with χ(004) = 0.723◦ and χ(220) = −0.909◦. At
CAMEA the monochromator was set to Ei = 4.87meV and Ei = 5meV. Each temper-
ature was measured with both a4 = −75◦ and a4 = −79◦. This 4◦ difference is to adjust
for the gaps in between the wedges and get the full picture in q-space. For each measure-
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6 RESULTS

ment a3 was scanned from 25◦–115◦. Afterwards, the gathered data was analysed using
the Python package MJOLNIR [18], as described below.

6 Results

6.1 Q-planes

Using MJOLNIR, the first step of the data analysis was to have a look at the q-planes.
To get an idea of whether the expected behaviour was visible. Two different q-planes
were generated for each temperature. One elastic, ∆E = −0.18meV–0.18meV, and one
inelastic ∆E = 0.5meV–2meV (Though CAMEA only measures up to 1.8meV).

Figure 7: Two different representative maps of reciprocal space measured at 300K, (a),
and 180K, (b). Integrated over the in-elastics with energy transfers from 0.5meV–
2meV. Note the different x-axes as the map at 300K is measured in November and
180K is measured in August. (c) shows a map of the same part of q-space as (a) but
integrated over elastic energy transfers, −0.18meV to 0.18meV. (d) shows the relation
between energy transfer and position in q-space along a cut through the magnetic peaks.
Colourbars (a), (b) and (d) are on logarithmic scales to get a clearer distinction. On (a)
in red is shown the approximate position of the q-cuts described in Table 2.

On the inelastic planes we see magnetic peaks at half-integer valued q-coordinates,
e.g. (1.5, 1.5, 0.5). This is due to the enlarged magnetic unit cell first described in Section
2. We also see some bridge in between the two magnetic peaks like the directional diffuse
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scattering described by Janas et al. [14]. At the integer valued coordinates on Figure 7c,
we see peaks from scattering off nuclear planes. From the inelastic q-planes we can see
that though the magnetic scattering is most intense close to the critical temperature it
is still present at temperatures much higher. This is also consistent with [14].

From the (q, E)-cut (Figure 7d) we can see that the inelastic magnetic peaks show no
clear dispersion allowing us to integrate over large energy areas to get better statistics.
These graphics make it immensely easier to make the proper cuts and find the right
integration areas.

6.2 Q-cuts

After having a look at the q-planes, further investigation of some of the phenomena was
done by integrating the intensity along specific lines with a width of 0.15RLU (See Table
2), in the elastic energy range for the nuclear peaks and in all of the inelastic range for
the rest.

Table 2: A brief overview of the different cuts and their MJOLNIR parameters. Where
a ± is given. “+” was used for data taken in August and “−” for data from November.
The MJOLNIR parameter minPixel was set to 0.01 for cuts with inelastic integration,
and 0.02 for elastic integration. An approximate placement of the different cuts can be
seen in Figure 7a.

qi qf minPixel width

Magnetic peak (MP) (2, 2,±0.5) (1, 1,±0.5) 0.01 0.15
Nuclear peak (NP) (2.1, 2.1, 0) (1.9, 1.9, 0) 0.02 0.15

Bridge (Br) (2, 2, 0) (1, 1, 0) 0.01 0.15
Background 1 (Bg1) (2, 2,±1) (1, 1,±1) 0.01 0.15
Background 2 (Bg2) (1.01, 1.01, 0.5) (0.74, 0.74, 0.86) 0.01 0.15

For each temperature the cuts shown in Table 2 where created and fitted using a
constant fit for the background measurements and a Voigt profile on a linear background
in the rest of the situations. The latter was chosen to combine the line width of the
Gaussian instrument errors and Lorentzian scattering. The Voigt profile was implemented
through the Python library SciPy [25]. An example of each of the fits can be seen in
Appendix B.

In Figure 8 on the next page examples of the different cuts can be seen. Afterwards,
the fitted parameters were further analysed to see if there was any structure to their
development.

6.3 Error on the temperature

In the following analyses the temperature of each measurement plays an important role.
The temperature measured through the experiment can be gathered through MJOLNIR
and averaged for each set of measurements. A Gaussian error has been applied according
to common practice, but looking at the histogram (Figure 9 on page 16) the distribution
is clearly not Gaussian. This choice is suboptimal but the best of many bad alternatives.
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Figure 8: Examples of q-cuts taken at the different places in q-space and at different
temperatures.
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In the end it shouldn’t make too much of a difference as the variance in T is much lower
than the error on any of the fitted parameters or intensities.
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Figure 9: The different temperatures of the furnace through the measurements of 220K.
This is representative of the other temperatures. Even though it takes this form an
arithmetic mean and standard deviation has been applied to represent the different tem-
peratures.

6.4 Background

After fitting the intensity of the background with a constant function at low temperatures,

Fit(q) = c, (41)

it was possible to see the linear temperature dependence as expected from the Bose
factor. An interesting thing happened when looking at the temperature dependence. As
seen in Figure 10 on the next page the fit at a higher q-value has a somewhat larger slope
but not as large as we would have expected given that |q|2 is larger by a factor of 2.76
and the slope is only larger by a factor of 1.48. This can be due to several reasons. One
that both magnons and phonons are at play and two that maybe the lower fit has some
outliers at higher temperatures as they systematically lay above the fit line. Due to these
rather simple results I did not go further with this investigation. The q-dependence of
the background defends the choice of a linear background for the remaining fits.

6.5 Position of magnetic peaks and bridge in q-space

Looking at the q-planes, it was noticed that the magnetic peaks seemed to move closer
to the origin as the temperature increased. For this reason the position of both the
magnetic peak and the bridge were plotted as a function of temperature (Figure 11).

This was done by first fitting to the nuclear Bragg peaks in the elastic q-planes, and
then taking the difference between this fitted centre and the fitted centre of the magnetic
peak and the bridge respectively. This was to ensure that the effect wasn’t just due to
the expansion of the crystal, which would lead to a contraction in all of reciprocal space.

The fitting process was done by first fitting a Voigt profile to all q-cuts. Afterwards
only the cuts where the area under the Voigt was significantly different from zero were
used for the rest of the analysis. This decision was taken using a z-test (see Appendix C)
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Figure 10: Linear temperature dependence of background intensity. As it can be seen
the upper plot has a steeper slope than the lower.

with z > 2 being the cut-off limit. The bordering temperature was fitted once more with
all but the amplitude kept constant using values from the approved fit. If this returned
an amplitude significantly different from zero, the fit was done once more with these
new starting parameters and re-evaluated. The used temperature range thus changed
iteratively.

After all fitting was done the distance between each peak and the nuclear peak pro-
jected along the (hh0)-axis was calculated with the fitting errors propagated.
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Figure 11: Movement of magnetic phenomena as a function of temperature.

6.6 Temperature dependence of magnetic peaks and bridge

The work by Janas et al. [14] (relevant figure shown in Appendix A) showed increased
scattering around the Néel temperature of the frustrated system h-YMnO3. It was for
this reason important to also have a look at the intensity of the magnetic scattering in
Bi2Fe4O9. The integrated area under the Voigt profiles fitted to the q-cuts, with area
significantly different from zero, was deemed fit as a measure of the intensity. This was
plotted against temperature for both the magnetic peaks and the bridge in Figure 12.

Just as in the case of h-YMnO3 we see a large peak for the intensity of the magnetic
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Figure 12: Intensity of magnetic scattering off the bridge and magnetic peaks plotted
against temperature as in Janas et al. [14]. Shown in Appendix A.

peaks just around the critical temperature, TC ≈ 245K. In accordance with Equation
(39), the peak was fitted using a power law,

log (I) = γ · log
∣∣∣∣1− T

TC

∣∣∣∣+ a. (42)

As the powerlaw only fits one side of the peak. The fitting was done iteratively by first
fitting all points with T < TC , for the left side, and then redoing the fit with the new
fitted TC as cut-off until all of the fitted points had T < TC . For the right side of the
peak the same was done with T > TC being the criteria.

Importantly the data from the beamtime in November was scaled by a constant in
order to take different noise levels into account. This factor was set as a free parameter
and changed to get the lowest χ2 overall. The fits can be seen in Figure 13 on the
following page. A corresponding analysis was done on the corresponding data from h-
YMnO3 generously supplied by Sofie Janas. This can be seen in Figure 14.

From the fits we see that TC is significantly different for the two fits to Bi2Fe4O9. At
T > TC the fit shows TC = (73± 4)K where T < TC shows TC = (296± 5)K. Fitting to
h-YMnO3, we get that the two values for TC show no significant difference, (58.0±1.3)K
and (56.7± 0.5)

7 Discussion

7.1 Position of bridge

There is clear evidence for the movement of the magnetic bridge in q-space. We see from
Figure 11 on the previous page that the magnetic peaks are more or less at constant
coordinates up until 200K. Hereafter the bridge is significantly present, and both
signatures start moving collectively closer to origin. At high T the magnetic peaks
apparently start moving back again. This can be due to either the smearing of the
peak at (110), the fact that the errors on the fits at these temperatures are so large
that the points aren’t significantly different from the trend followed by the bridge, or a
combination of the two. In some systems with helical structure it has previously been
shown that a diffraction peak is able to split symmetrically around a commensurable
position in q-space [15]. But since this signal moves asymmetrically, it is hardly the same
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7.1 Position of bridge 7 DISCUSSION

Figure 13: Powerlaw fitted to the high and low temperatures, (a) and (b) respectively.
Note that the upper plot consists of data from both the November and the August
beamtimes. As such the model has a scaling factor.

Figure 14: Powerlaw fitted to the high, (a), and low, (b), temperature data from Janas
et al. [14].
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in this case. Since this movement happens independently of the structural scattering it
isn’t an overall expansion of the crystal either.

7.2 Intensity of magnetic peak and bridge

Just as in Janas et al. [14] (see Appendix A) we see the presence of both the magnetic
peaks and the diffuse bridge in-between. Furthermore, the width of the large peak in
Figure 12 is much wider than what one would expect from non-frustrated systems [7].
Regarding the bridge we see scattering at temperatures much higher than TN , when the
system should be magnetically disordered. This is different from what one would expect
but in accordance with the measurements of h-YMnO3 [14].

All the fits seem to follow the expected power law, though the high temperature fit
for Bi2Fe4O9 (Figure 13) has p < 0.001, from the χ2-test [2]. This might be due to
the model only being appropriate for data sufficiently close to TC [7]. The fitted critical
temperature for Bi2Fe4O9 is importantly significantly different for each fit (z = 35), but
both are also far away from the expected Néel temperature. This is different from h-
YMnO3, where the fitted critical temperature is roughly the same, z = 0.91, though still
far away from TN ≈ 71K [14].

8 Conclusion

During this project measurements of a 2.35 g single crystal of Bi2Fe4O9 at 12 different
temperatures have been conducted, and investigated in combination with another 18
measurements done previously on the same crystal. From the data it was possible to
detect magnetic peaks and a diffuse bridge as those seen in h-YMnO3 [14]. Afterwards,
three different behaviours were investigated, where especially two stand out. First and
foremost the scattering around the critical temperature was found at significantly larger
temperature ranges for different magnetic signals than what would be expected for ordi-
nary systems. This behaviour has previously been seen in h-YMnO3, another frustrated
system, and one explanation might be that this happens for some frustrated magnetic
systems. Secondly, a movement of the magnetic signal in q-space, starting just under
TN , was spotted with no clear explanation available.

We don’t currently have the theory to describe these phenomena. As such one way to
go forward could be to investigate similar systems and see if the same is true for those.
This way we would be able to figure out whether this is a general behaviour of frustrated
systems or if other factors plays a role. Another route would be to take a step back and
look at other parts of the systems to see, if we can get a better explanation for e.g. the
ordered system before going into the unordered, as much of this still isn’t completely
understood. Looking at the inelastic scattering in the ordered phase, we might also get
a better understanding of the spin waves, which might further lead to an explanation of
why we see the bridges in the unordered system.
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A CRITICAL SCATTERING OF h-YMNO3

Appendix

A Critical scattering of h-YMnO3

Figure 15: Temperature dependence of the inelastic neutron scattering data for (a) the
integrated intensity and (b) the correlation length for Γ′ and M’. Scan directions are shown
schematically in (b). Full blue lines are power-law fits to Γ′ data. Both description and
figure from [13, fig. 2a]. Γ′ corresponds to the magnetic peaks descriped in this project,
and M ′ is the bridge.
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B FIT OF Q-CUTS

B Fit of q-cuts

The q-cuts in this project were for the most part fitted using Voigt profiles on a linear
background.

V (x, σ, γ) =

∫ ∞

−∞
Gauss

(
x′, σ

)
· Cauchy

(
x− x′, γ

)
dx′

Fit(x,A, µ, σ, γ,m, c) = A · V (x− µ, σ, γ) +m · x+ c,

where Gauss and Cauchy refer to unit Gaussian and Cauchy distributions. The back-
ground was for low temperatures fitted with a constant. Examples of these fits can be
seen in Figures 16 and 17. Note that these are only examples of the fits. The fit quality
changes drastically when the signal disappears, and the background fit especially becomes
more challenging at higher temperatures as other signals start to emerge.
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Figure 16: Different cuts fitted with Voigt profiles. Though the χ2 is rather high for the
nuclear peak, we see that this is probably due to the very small errors and small amount
of points.
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Figure 17: Constant fit to the low temperature background. (χ2 = 115, ndof = 42).
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C z-TEST

C z-test

When comparing values to each other one needs to take the error on each value into
account. For this a common approach is assuming Gaussian errors and the seeing how
far the values are from each other in units of the errors [2]. We define

z =
A−B√
σ2A + σ2B

. (43)

The z-test can give a p-value through integration of the unit Gaussian, by integrating
and asking “what is the probability that I get a z-value of this or greater”. In other words

p =

∫ z

−∞

1√
2π

exp

(
−x

2

2

)
. (44)

Since this is dependent only on z, another approach is to chose a value for z and regard
all values lower as insignificant. In this report z = 2 have been chosen to decide when a
peak was significant which gives p ∼ 2.28%.

When deciding whether the area under a curve of 0.5± 0.03 is significantly different
from zero one would calculate

z =
0.5− 0√
0.032 − 02

= 1.67. (45)

This is less than two and the conclusion would be that this is not significantly different
from zero.

When comparing two temperatures of (73± 4)K and (296± 5)K one would get

z =
296− 73√
42 + 52

= 34.83, (46)

and conclude that they are definitely different from each other.
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