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Abstract

In this thesis, we aim to investigate the magnetic interactions that occur in two magnetically
frustrated rare earth garnets. The standard approach for doing this includes performing inelastic
neutron scattering on a material below its magnetic ordering temperature and then applying
spin wave theory to fit an interaction Hamiltonian to the obtained data. A newly-developed
program, Spinteract, uses diffuse scattering data taken above a material’s ordering temperature
and semiclassical reaction-field theory to do this instead. We use this program to study the
magnetic interactions in the rare earth compounds Gd3Ga5O12 and Yb3Ga5O12. We verify
established exchange interactions for Gd3Ga5O12 obtaining J1 = 130±3mK, J2 = −3.9±0.1mK,
J3 = 4.2 ± 0.7mK, J4 = 4.0 ± 0.4mK and the theoretical dipolar interaction strength of D =

45.7mK. Then, using Spinteract we fit three Hamiltonians with interaction parameters D, J1D,
and J1J2D respectively to inelastic neutron scattering data taken on Yb3Ga5O12. We also
calculate proposed interaction models found in various literature. We compare these results and
find an optimal magnetic Hamiltonian describing Yb3Ga5O12 to include a dipolar interaction
strength of D ≈ 240mK and potentially including a nearest neighbour exchange interaction J1

in the range −D/g2J < J1 < −25%D/g2J , indicative of ferromagnetic interactions, where gJ is
the Landé g-factor. The quality of the data makes the quantitative size of the found interaction
parameters questionable. However, Spinteract sufficiently replicates the qualitative features of
the data building confidence that a J1D model is a potentially adequate candidate for describing
Yb3Ga5O12. We also confirm that an anisotropic g-factor is required to describe the data.
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2 MAGNETISM AND FRUSTRATION

1 Introduction

In magnetically frustrated systems, competing interactions prohibit the system from ordering
into one unique ground state. Instead, many different states minimizing the energy become
available. The spins of the system remain disordered but may still be correlated resulting in the
emergence of novel states of matter [12]. Magnetic frustration appears in some systems with rare
earth ions like the two isostructural compounds gadolinium gallium garnet Gd3Ga5O12 (GGG)
and ytterbium gallium garnet Yb3Ga5O12 (YbGG) studied in this report. In these examples,
frustration appears due to competing spin-spin interactions and anisotropy.

A variety of methods have been used to investigate the emergent magnetic behaviour in these
systems [6, 10, 11, 12]. Unlike previous methods, which relied on more specialized solutions
to specific problems, a newly developed program, Spinteract [9], promises to fit interaction
parameters directly to experimental data from neutron scattering experiments taken above a
material’s ordering temperature.

In this thesis, we use the program to investigate the magnetic interactions of GGG, which
have already been studied using Spinteract by Joe Paddison, its creator, in order to benchmark
the program, and then we use it on the less-studied YbGG. First, we recreate Paddison’s results
for GGG to gain knowledge of and practice in using the program. Moving on to YbGG, we start
by fitting various interaction parameters to our neutron scattering data to find Spinteract’s
own optimal model for the material and then, we use the program to generate other proposed
models found in various literature [8, 11]. Ultimately, the aim of this report is to explore and
display Spinteract’s ability to generate and compare various magnetic Hamiltonians, and to gain
knowledge of the magnetic interactions that govern the mysterious YbGG.

2 Magnetism and frustration

In this chapter, we provide the necessary theoretical foundation to understand the relevant
magnetic interactions for the two materials studied in this report. We start by introducing some
basic concepts in magnetism followed by a description of the magnetic Hamiltonian we use to
fit our data. Then to gain insight into magnetic excitations, we introduce spin wave theory by
deriving the dispersion relation of a one-dimensional ferromagnetic spin chain. Finally, we make
a short outline of magnetic frustration focusing on how the phenomenon appears in the garnet
structure. The following sections are mainly based on ref. [1].

2.1 Magnetic moments

This report studies the magnetic properties of two rare earth garnets, Gd3Ga5O12 (GGG) and
Yb3Ga5O12 (YbGG). Rare earth garnets are a type of crystal which takes the form A3B5O12.
Here, A is the rare earth ion, for our purpose Gd3+ or Yb3+, B is a non-magnetic ion, and O is
oxygen. Both GGG and YbGG have gallium (Ga) as their non-magnetic ion [3]. In rare earth
ions, electrons in the 4f orbitals carry the magnetic moment, µ, which is described by

µ = µB(gLL + gSS) = µBgJ. (2.1)

Here, µB is the Bohr magneton, L is the orbital angular momentum of the ion with g-factor gL,

1



2.2 Hund’s rules 2 MAGNETISM AND FRUSTRATION

S is the spin angular momentum of the ion with g-factor gS , J is the total angular momentum,
and g is the g-factor. One estimate of the g-factor is the Landé g-factor:

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.2)

The RHS of eq. (2.1) is favorable to use when L and S are not separately conserved which
is generally the case for rare earth ions. This is true for Yb3+ but not for Gd3+. This definition
makes the assumption that gL = 1 and gs = 2. In general, the g-factor is a tensor which is
assumed to be isotropic in eq. (2.2) but in eq. (2.1), g has to be treated as a matrix.

2.2 Hund’s rules

In their ionic state, both Gd and Yb have unfilled 4f shells. Gd3+ has the electron configuration
[Xe]4f7, and Yb3+ has [Xe]4f13. To figure out how the electrons fill these shells, we apply
Hund’s rules. Hund’s rules can be used to estimate the combination of quantum numbers which
minimizes the energy of the atom. It is important to note that these rules, which can only give
information about the ground state configuration, serve as guidelines and ignore crystal field
effects which can be significant in some cases [1]. The rules can be summarized as follows:

(1) Maximize S. The Pauli exclusion principle prohibits electrons of equal spin from being in
the same place. This spreads out the electrons resulting in a lower Coulomb energy.

(2) Maximize L. If we put the electrons in orbits rotating the same way around the nucleus,
the average distance between them will be larger, once again resulting in the lowest possible
Coulomb energy.

(3) J = |L± S|. Positive sign if the shell is more than half full, and negative sign for a shell
less than half full. This rule is only applicable if spin-orbit coupling plays a significant role
in the energy of the state, which is the case for rare earth ions.

Applying these rules to Gd3+, we note that ℓ = 3 for an f shell. To satisfy the first rule, we
put 2ℓ+ 1 = 7 electrons in the spin-up state. Since Gd3+ only has 7 electrons in the f-shell, we
are done, and S = +1

2 · 7 = 7
2 , L = 0, and J = 7

2 .
For Yb3+, we fill 2ℓ+1 = 7 electrons in the spin-up state. Satisfying the second rule, we fill

the remaining 6 electrons in the spin-down state, starting from ml = 3 down to ml = −2. Now,
S = +1

2 · 7− 1
2 · 6 = 1

2 , L = 3, and J = |L+ S| = 7
2 . This is summarized in table 1.

↑↓
ml 3 2 1 0 -1 -2 -3

↑ x x x x x x x
↓

↑↓
ml 3 2 1 0 -1 -2 -3

↑ x x x x x x x
↓ x x x x x x

Table 1: Hund’s rules applied to the 4f7 electrons of Gd3+ (Left) and the 4f13 electrons of Yb3+

(Right).

While Hund’s rules work for Gd3+, this is not always the case for Yb3+. The ground state of
the Yb3+ ion is called a Kramer’s doublet and is an effective spin-12 where mj = ±7

2 [11]. Due
to strong crystal field effects in YbGG, the g-factor is slightly anisotropic, and one needs to use

2



2.3 The magnetic Hamiltonian 2 MAGNETISM AND FRUSTRATION

a g-tensor in eq. (2.1). The diagonal elements of this tensor have previously been found to be
g = (2.84, 3.59, −3.72) in local coordinates [8] while all off-diagonal elements are 0. For GGG,
the Landé g-factor gJ = 2 obtained from eq. (2.2) is used.

2.3 The magnetic Hamiltonian

This report includes two contributions to the spin Hamiltonian of GGG and YbGG to describe
their magnetic properties: The (direct) exchange interaction, Hex, and the dipole interaction,
Hdip, resulting in the following Hamiltonian:

H = Hex +Hdip. (2.3)

2.3.1 The exchange interaction

The exchange interaction arises from the Pauli exclusion principle and electrostatic interactions
as particles of the same charge save energy when they are further apart due to the repulsive
Coulomb force. This is equivalent to satisfying Hund’s first rule.

The exchange term in 2.3 can be expressed by the Heisenberg Hamiltonian which includes
the interaction between all ion sites in the system and with spins free to point in all directions:

Hex =
∑
i,j

Ji,jSi · Sj . (2.4)

Here, Si and Sj are the total spin angular momenta for the ions at site i and j respectively,
and Ji,j is the exchange interaction parameter describing the strength of the interaction between
spin i and j. The sign of Ji,j in eq. (2.4) dictates whether the system is a ferromagnet or an
antiferromagnet. If Ji,j < 0, the system will be in its lowest energy state when the atoms’ spin
align. This makes it a ferromagnet. If Ji,j > 0, the spins will want to anti-align to minimize
the energy, which in turn makes it an antiferromagnet. Another case in which Ji,j > 0 is the
ferrimagnet where the system consists of multiple sublattices aligned in different directions.

Ferro-, ferri- and antiferromagnetism are three examples of ordered magnetic structures.
Magnetic order refers to the ordered sorting of magnetic spins in reference to the crystal lattice
of the system. This is a spontaneous phenomenon which appears at different temperatures for
different systems [1]. This ordering temperature, TO, has different names depending on the mag-
netic order of your system. For ferromagnets, it is called the Curie-Weiss temperature, TC , while
for antiferromagnets, it is called TN for Néel. In general, ferromagnets at temperatures above
TC and antiferromagnets above TN will enter a paramagnetic state. In the paramagnetic state,
thermal fluctuations are much stronger than interactions between spins and as the temperature
rises further, the spins begin to become uncorrelated and will align with an external magnetic
field [12].

2.3.2 The dipole interaction

The dipole term, Hdip, describes the interaction of magnetic dipole pairs in a material. The
interaction between the magnetic moments of two particles, µi and µj , contribute an energy to
the Hamiltonian. If we include all such dipole pairs, we get the following Hamiltonian:

Hdip =
µ0

4π

∑
i,j

1

r3i,j

[
µi · µj −

3

r2i,j
(µi · ri,j)(µj · ri,j)

]
. (2.5)

3



2.4 Spin waves 2 MAGNETISM AND FRUSTRATION

The dipole interaction acts over long ranges although to quantify it, it is common to denote it
by its strength between nearest neighbours. If we only consider the nearest neighbour terms in
the sum from eq. (2.5) and use the definition in eq. (2.1), we can pull out the constant

DDip =
µ0µ

2
B

4πkBr3nn
. (2.6)

This constant is often expressed in units of temperature, hence we have added a factor of 1/kB,
where kB is Boltzmann’s constant. rnn is the distance between neighbouring magnetic moments.
Not everyone follows the convention put forth in eq. (2.6). Some use g2LDDip or |J |2g2LDDip.
In literature, it is common to use the former when describing GGG [6, 9, 10] and the latter
when describing YbGG [8, 11]. This is summarized in table 2. In this thesis, we will follow the
conventions used in the literature. As such, the dipole interaction parameter will be defined as
D = g2LDDip for GGG and D = |J |2g2LDDip for YbGG. For both materials, the squared length
of their total angular momentum, |J |2 = J(J + 1), is also included in the exchange parameter
Ji,j . In table 2, we have calculated the theoretical dipole interaction parameters using eq. (2.6)
in the different conventions.

Ion DDip (mK) g2LDDip (mK) |J |2g2LDDip (mK)
Yb3+ 11.94 15.594 245.6
Gd3+ 11.52 46.10 726.0

Table 2: Dipole interaction parameters for GGG and YbGG. These values are purely
theoretical and calculated using eq. (2.6).

2.4 Spin waves

A well-suited theory for describing magnetic excitations is spin wave theory. As a simple example,
we consider a ferromagnet at 0K. Here, all spins are aligned but at non-zero temperature,
excitations are introduced in the form of spin waves. Spin waves can be produced with arbitrarily
small energies and are therefore the ferromagnetic analogues to acoustic phonons, the quantum
mechanical particle responsible for thermal excitations in solids. The equivalent quasiparticle to
the spin wave is the magnon. However, we will stick to the semiclassical wave picture. The spin
wave propagates as small precessions in the individual spins as seen in fig. 1. A full derivation
of the dispersion relation for spin waves in a one-dimensional (1D) ferromagnetic chain can be
found in appendix A but here, we will simply outline the results [1, 14].

Figure 1: Spins in a 1D ferromagnet form a spin wave at non-zero temperature. (a) Spin wave
seen from the side. (b) seen from above. (c) The precession of one spin seen from the side.

Adapted from [1]

4



2.5 Magnetic frustration 2 MAGNETISM AND FRUSTRATION

We use a Heisenberg Hamiltonian that only considers nearest neighbour interactions to describe
the system1:

Ĥ = −2J
∑
⟨i,j⟩

Ŝi · Ŝj . (2.7)

Using the Heisenberg equations of motion for any operator Q̂ [5],

iℏ
dQ̂

dt
= [Q̂, Ĥ], (2.8)

and the commutator relation,
[Sx, Sy] = iℏεxyzSz, (2.9)

to calculate the motion of a spin Ŝp = (Sx
p , S

y
p , Sz

p) in the chain, we find the relation,

ℏ
dŜp

dt
= 2J Ŝp × (Ŝp−1 + Ŝp+1). (2.10)

Assuming the spins are aligned along the z-direction in the ground state and treating the other
spin-components as perturbations produced by excitations, we find a plane wave solution to the
spin components. This process yields the dispersion relation

ℏω = 4JS(1− cos(qa)), (2.11)

where S is the spin length, q is the magnitude of the spin wave’s wave vector, and a is the
spacing between spins. Since this is a continuous function that goes through (0, 0), we can
see that spin waves can be created with arbitrarily small energies in a 1D ferromagnet. The
dispersion relation can be seen in fig. 2 [1]. It is possible to make similar calculations for more
complex systems but only if they have a well-defined ground state.

Figure 2: Dispersion relation for a 1D ferromagnetic spin chain from eq. (2.11). Figure from [1]

2.5 Magnetic frustration

In some systems, conflicting interactions make it impossible to find a single ground state. In-
stead, a variety of similar degenerate ground states minimizes the energy of the system creating
a ground state manifold, and the system is said to be frustrated. An example of this is an-
tiferromagnetic (AFM) Ising spins on a triangular lattice as shown in fig. 3 where the system
is unable to satisfy competing nearest neighbour interactions and obey anisotropy and lattice
geometry at the same time. The two adjacent spins at the bottom of the triangle are able to
remain unaligned while the third spin at the top can point either way but will in neither case
minimize the energy of both neighbours.

1This Hamiltonian uses a different sign than the one in eq. (2.4), the two should not be confused.

5



3 NEUTRON SCATTERING

Figure 3: Left: Frustrated antiferromagnetic Ising spins on a triangle. Middle: The
hyperkagome lattice with corner sharing triangles, figure from [12]. Right: Two

interpenetrating sublattices that make up the hyperkagome lattice, adapted from [3].

Similarly, frustration occurs on a much larger scale for the rare earth compounds studied in
this report due to their triangular lattice. GGG and YbGG belong to space group Ia3̄d with
their magnetic ion of interest at Wyckoff position 24c. These ions lie on two interpenetrating
sublattices, each with corner sharing triangles [10], as seen on the right in fig. 3. The angle
between the planes spanning two such neighbouring triangles is 73.2◦. This is known as a
hyperkagome lattice [3]. This structure is illustrated in the middle on fig. 3. The space group
and Wyckoff position together with characteristic lengths allow a computer program to calculate
the coordinates of all the magnetic ions for simulation.

For frustrated systems such as those considered here, it is not possible to model excitations
with spin wave theory since they do not have well-defined ground states.

3 Neutron scattering

Neutron scattering is a popular technique for investigating the atomic and magnetic structure
and dynamics of various materials. In the following sections, which are mainly based on [14]
and [7], we outline the fundamental principles and important equations in neutron scattering.

3.1 Fundamentals of neutron scattering

Neutrons carry no electric charge which allows them to probe the bulk of materials and scatter
from nuclei through the strong nuclear force rather than scattering at the surface. Additionally,
neutrons posses a magnetic moment which also allows them to scatter due to magnetic interac-
tions. These facts are exactly what the neutron scattering technique takes advantage of as this
can be used to investigate the atomic and magnetic structure in a given sample. The magnetic
moment of a neutron is

µn = γµN = −9.6624× 10−27 JT−1, (3.1)

where γ is the gyromagnetic ratio of the neutron, and µN is the nuclear magneton. In a neutron
scattering experiment, high energy (MeV) neutrons are produced, often as by-products from
fission or from particle accelerators. The high energy neutrons are slowed down, moderated, to
have energies in the meV range before entering a neutron guide which directs them toward a
sample. After scattering from the sample, the neutrons are measured by a detector [7].

6



3.2 Geometry of solids 3 NEUTRON SCATTERING

3.2 Geometry of solids

To understand the derivation of various neutron scattering equations in the following sections
as well as single crystal scattering profiles introduced in later chapters, some understanding of
the geometry of solids is required. This section only presents what is necessary for this thesis.
For a deeper understanding we refer to [14], upon which this section is based.

In some materials, the atoms arrange themselves in a periodic structure known as a lattice.
A lattice is made up of an infinite set of points given by lattice vectors Rn1,n2,n3 = n1a1+n2a2+

n3a3, ni ∈ Z, where ai are linearly independent lattice vectors. Given these lattice points, we
define the primitive unit cell as the space containing one lattice point which, when repeated,
creates the complete lattice. We define the density of lattice points as

ρ(r) =
∑
n1,2,3

δ(r − Rn1,n2,n3), (3.2)

where δ is the delta function, and r is some point in space. This density is periodic in R meaning
ρ(r) = ρ(r + R) for any R. It turns out that a lattice defined in terms of so-called reciprocal
lattice vectors is very useful. To construct the reciprocal lattice, we wish to create a set of plane
waves with the same periodicity as ρ(r), i.e. a Fourier transform. The wave vectors of the plane
waves will be made up of the reciprocal lattice vectors, which we will denote bi. A point in
reciprocal space will then be Gm1,m2,m3 = m1b1 + m2b2 + m3b3, mi ∈ Z. Now, we take the
Fourier transform of the density and invoke the periodicity in R:

F(ρ(r)) =
∑
n1,2,3

eiG·r (3.3)

=
∑
n1,2,3

eiG·(r+R) ⇒ eiG·R = 1, (3.4)

which implies that

ai · bj = 2πδij , (3.5)

where δij is the Kronecker delta. To better understand the reciprocal lattice, we look at lattice
planes. A family of lattice planes is an infinite set of planes that contains all lattice points, and
where the planes are equally separated and parallel. We specify the different families of planes
in terms of Miller indices. In our two-dimensional (2D) example on fig. 4, the lattice lines are
separated by 1a2 in the â2-direction. In the â1-direction, we say that they are separated by
an infinite number of a1-vectors. We define the Miller indices as the reciprocal values of these
separations, so the Miller indices of the lattice lines in fig. 4 are (01). Then, the reciprocal lattice
vector given by 0b1 + 1b2 will be a normal vector to the lattice lines. For a three-dimensional
(3D) lattice, we simply invoke eq. (3.5) once more when constructing the reciprocal lattice.

7



3.3 Elastic neutron scattering 3 NEUTRON SCATTERING

Figure 4: Left: 2D crystal lattice in real space with lattice vectors a1 and a2. The shaded area
is a primitive unit cell. The dotted lines show two lattice lines. Right: The corresponding

primitive reciprocal lattice obtained from a Fourier transform with reciprocal lattice vectors b1

and b2.

In 3D, we call the Miller indices (hkl) and define the reciprocal lattice vector Ghkl = hb1 +

kb2+ lb3. It is common to define directions in a lattice in terms of the corresponding reciprocal
lattice vector (hkl). For negative Miller indices, an over-bar is used instead of a minus sign.

3.3 Elastic neutron scattering

In elastic neutron scattering, the neutrons do not exchange energy with the sample and hence,
their initial wave vector, k, is equal in magnitude to the final wave vector, k′:

|k| = |k′|. (3.6)

By using Fermi’s golden rule, one can determine how many neutrons scatter and where. Fermi’s
golden rule gives us the transition rate per unit time, Γ(k′,k), from k to k′. If we simply imagine
the sample as a potential, V (r), that the neutrons interact with, we can relate it to the transition
rate via Γ(k′,k) ∝ ⟨k′|V (r) |k⟩2. Additionally, we assume the wave functions of the neutrons to
be time-independent, so the matrix element becomes

⟨k′|V (r) |k⟩ = 1

L3

∫
dr e−i(k′−k)·rV (r). (3.7)

Since we are working with a crystal, we only integrate over points in a single unit cell, x, and
sum over all of them.

⟨k′|V (r) |k⟩ = 1

L3

∑
R

∫
unit cell

dx e−i(k′−k)·(x+R)V (x + R) (3.8)

=
1

L3

[∑
R

e−i(k′−k)·R

] [∫
unit cell

dx e−i(k′−k)·xV (x)
]
, (3.9)

where we use the fact that V (x + R) = V (x) because of the periodicity of the crystal. If
k′ − k ̸= G, each R in the sum will contribute with a point on the complex unit circle and as
the number of unit cells increases, the sum will approach 0. However if k′ − k = G, each term
is equal to 1. This is known as the Laue condition, which is equivalent to Bragg’s law:

|G|
2

= |k| sin θ ⇒ |G| = 4π

λ
sin θ (3.10)

The geometry of this derivation can be seen in fig. 5 (a). Here, λ is the (de Broglie) wavelength
of the neutron, and θ is the scattering angle.
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3.3 Elastic neutron scattering 3 NEUTRON SCATTERING

Figure 5: Geometry of scattering in reciprocal space. (a) Elastic scattering, the geometry
implies that |G|/2 = |k| sin θ. (b) Inelastic scattering, conservation of momentum requires that

Q = G + Qord. + kex..

The integral in eq. (3.9) is called the structure factor, F (Q), where Q = k−k′ is the scattering
vector. As an example of a potential, let us consider the Fermi pseudo-potential which is a delta
function at each atomic site j,

V (x) =
2πℏ2

mn

∑
j

bjδ(x − xj). (3.11)

bj is known as the scattering length and is a measure of "how strong" the neutrons scatter from
nucleus j. This potential is a good approximation of the strong nuclear interaction between
neutrons and nuclei. We can insert this potential in the structure factor resulting in

FN (Q) =
2πℏ2

mn

∑
j

bj

∫
unit cell

dx eiQ·xδ(x − xj) (3.12)

=
2πℏ2

mn

∑
j

bjeiQ·xj . (3.13)

We add the subscript N to indicate that this is the nuclear structure factor. Intensities measured
in experiments are proportional to Γ(k′,k), which in turn is proportional to the structure factor.
In section 3.2, we discussed how Miller indices define lattice planes and thus, we find

Ihkl ∝ |Fhkl|2. (3.14)

This means that the scattering intensity off the lattice planes with normal vector Ghkl = hb1 +

kb2+ lb3 is proportional to the absolute square of the structure factor. A slightly more accurate
equation is the master equation of neutron diffraction:

dσ

dΩ

∣∣∣
coh. nuc.

= e−2W N(2π)3

V0
|FN (Q)|2

∑
G

δ(Q − G), (3.15)

where σ is the scattering cross section defined as the number of neutrons scattered per second
divided by the neutron flux corresponding to an effective area. dσ is an element of this effective
area, and dΩ is a solid angle element. e−2W is the Debye-Waller factor which describes the fact
that some neutrons scatter from phonons. N is the number of unit cells with volume V0. The
LHS is known as the differential scattering cross section and is proportional to the probability
of a neutron scattering into dΩ. The subscript coh. nuc. refers to the fact that the scattering
happens because of our periodic nuclear potential and not from random events.
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3.4 Inelastic neutron scattering 4 SPINTERACT

A derivation of the analogous equation for magnetic scattering is outside the scope of this thesis.
Instead, the elastic magnetic diffraction cross section from [7] is presented here:

dσ

dΩ

∣∣∣
coh. mag.

= (γr0)
2
[g
2
Fm(Q)

]2
e−2W N(2π)3

Vm
|FM (Q)|2

∑
G

δ(Q − G − Qorder), (3.16)

where r0 is the electron radius, and Fm(Q) is the magnetic form factor. N is the number of
magnetic unit cells, and Vm is the volume of these. Qorder is the reciprocal lattice vector which
minimizes the energy of (i.e. orders) the system, and can be thought of as the magnetic analogous
to G. For the dispersion relation found in eq. (2.11) for the 1D ferromagnetic chain, this would
correspond to Qorder = 0. Finally, FM (Q) is the magnetic structure factor at scattering vector
Q. The delta function on the RHS ensures conservation of momentum.

3.4 Inelastic neutron scattering

By measuring the change in the energy of a scattered neutron, one can study the dynamics
of a material. Neutrons can disperse or absorb energy when scattering in a material giving
rise to excitations. This thesis will only consider magnetic excitations. Energy and momentum
conservation imply

ℏω = E − E′ k = k′ + Qorder + G + kex., (3.17)

such that ℏω is an excitation produced in the sample, and kex is the wave vector of the produced
excitation. The geometry of inelastic scattering is visualized in fig. 5 (b). The master equation
for the partial differential magnetic scattering cross section for unpolarized neutrons is

d2σ

dΩdE′

∣∣∣
coh. mag.

= (γr0)
2k

′

k

[g
2
F (Q)

]2
e−2W

∑
α,β

(δα,β − Q̂αQ̂β)S
α,β(Q, ω). (3.18)

The LHS is the intensity of neutrons scattered into a solid angle element, dΩ, with infinitesimal
energy dE′. α and β run over x, y, z, and the factor (δα,β − Q̂αQ̂β) ensures that scattering
only occurs from perpendicular spin components. The most important factor, Sα,β(Q, ω), is the
dynamic correlation function:

Sα,β(Q, ω) =
1

2πℏ

∫ ∞

−∞

∑
j,j′

eiQ·(rj′−rj)⟨sαj (0)sβj′(t)⟩e−iωt dt. (3.19)

Here, j and j′ run over the spins at positions rj and rj′ with α and β components sα and sβ .
Like the structure factor from eq. (3.13), which was essentially a spatial Fourier transform of the
potential, eq. (3.18) is both a spatial and temporal Fourier transform of the correlation between
spins in the sample. In experiments, d2σ/(dΩdE′) is measured, and Sα,β(Q, ω) is calculated from
a Hamiltonian. These quantities can then be compared, and the parameters of the Hamiltonian
can be optimized.

4 Spinteract

In this thesis, we use the program Spinteract, released in October 2022, to model neutron
scattering data taken on two different materials. The program has already been used to model
magnetic interactions in one of these materials, GGG, and we wish to replicate these results to
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5 GADOLINIUM GALLIUM GARNET

develop our understanding of and skills in using the program. Secondly, we use it on the less
studied material YbGG. A comprehensive explanation of how Spinteract works, and what sets
it apart from alternative methods is outside the scope of this thesis. For more details, see [9].
However, this section should serve as context and motivation for using the program.

A common approach for determining magnetic interactions involves the use of spin wave
theory and inelastic neutron scattering performed below a material’s ordering temperature, TO.
Some disadvantages of this approach are that the ordered state has to be well-understood as
well as reachable within temperatures that are accessible in experiments. In this light, some
advantages of using scattering data taken above a material’s ordering temperature immediately
become apparent. To analyse diffuse scattering data, typically taken above a material’s TO,
reverse Monte Carlo methods are often used. However, such methods only describe spin corre-
lations and not the underlying magnetic interactions.

With Spinteract, the user supplies diffuse scattering data from a powder or single-crystal
experiment as well as a magnetic Hamiltonian, which includes the relevant interaction parameters
of the material. Next, the program calculates its own magnetic scattering intensities based on
this model and fits the interaction parameters until a minimal chi-square between experimental
data and calculated intensity is obtained.

Spinteract uses a mean-field approach known as Onsager reaction-field theory. The reaction-
field method is semiclassical which means that it might not be qualified to describe correlated
quantum systems with effective spin-12 , such as YbGG. The long range dipole interaction is
implemented with Ewald summation [9].

In Spinteract, inelastic data has to be energy-integrated, essentially losing the energy-
dependence. Instead of relying on information about energy tranfers, Spinteract is highly de-
pendent on the specified sample temperature.

To run a refinement in Spinteract, a minimum of three files is needed, all in a .txt-format: One
(or more) file(s) containing the diffuse scattering data one wishes to fit to, one configuration
file containing crystallographic and magnetic information about the material and finally, one
parameter file containing the parameter names and their initial values. The user also specifies
the number of points to include in the first Brillouin zone, BZ-points. This is essentially a
measure of the resolution used in the fit.

5 Gadolinium Gallium Garnet

In this chapter, data analysis and Spinteract refinements of neutron scattering data taken on
Gd3Ga5O12 (GGG) will be presented and discussed. We use Spinteract to find the optimal
model for the well-studied magnetic interactions in GGG and recreate Joe Paddison’s results
using the same data. As mentioned in 2.3.2, the convention used for GGG will be one where
D = g2JDDip.

5.1 Introduction to GGG

Our powder data on GGG was provided by Joe Paddison, though it was originally produced
by Oleg A. Petrenko and his team and published in [10]. The measurements were taken on the
D1B instrument at ILL in Grenoble. The data consists of intensity measurements of scattered
neutrons as a function of the scattering angle at 18 temperatures ranging from 0.043− 9K.

11



5.2 Spinteract refinements of different models 5 GADOLINIUM GALLIUM GARNET

In GGG, the spins partially freeze at Tf ≈ 175mK [6]. This is not the same as a long range
ordering temperature, but it does indicate a spin glass transition which is associated with a type
of ordering [13]. For this reason, only measurements taken above Tf will be considered. Data
taken at 9K is used as a measurement of background scattering under the assumption that we
are in the paramagnetic regime where the spins are almost entirely uncorrelated. The 9K data
will be subtracted from the other data sets. Nuclear Bragg peaks are removed prior to any
refinements. This treatment of the data can be seen in fig. 6. Uncertainties are only available
for the data points used in [9] and thus, this thesis has to use the same points. For this reason,
the purpose now is mainly to replicate the results in [9]. The selection of data made in [9] seems
reasonable since 0.175K is the lowest temperature above (or at) Tf . Furthermore, not using
data taken above T = 1.04K seems like an appropriate choice as it is the highest temperature
where the small hump at Q ≈ 1.8Å−1 remains visible in the data. This can be seen on fig. 6.
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0.175 K

0.21 K

0.27 K

0.36 K

0.45 K

0.54 K

0.81 K

1.04 K

IT−9 K(Q)

Figure 6: Neutron diffraction data from [10], IT−9K(Q), for GGG between 0.175 - 1.04 K with
grey uncertainties. 9K data subtracted. An arbitrary spacing of 1.2 is added between each
curve for clarity. Nuclear Bragg peaks have been removed in the two gaps near Q ≈ 3Å−1.

5.2 Spinteract refinements of different models

We fit our data to a model described by the Hamiltonian in eq. (2.3) using Spinteract. Initially,
only dipole interactions as well as exchange interactions between nearest neighbours are mod-
elled, we will call this a J1D model. If this model proves insufficient, next nearest neighbours
will be included in a J1−2D model. This process of considering exchange interactions from fur-
ther neighbours continues until a satisfactory fit is obtained. A model which considers one more
neighbour than the previous one should show improvement in the χ2

red as well as significant
qualitative improvements in the shape of the calculated scattering profile. The resulting models
of this process can be seen on fig. 7. If a model overfits the data, we discard it as its complexity
may not be physical. We include a zoom of the most dominant magnetic peak to get a better
view of the discrepancy between the different fits.
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Figure 7: Data and fits of four different models for GGG at T = 0.175 K. (a) J1D fit, (b)
J1−2D fit, (c) J1−3D fit, and (d) J1−4D fit. In the bottom right box is the reduced chi-square

value for each fit. Below each graph is a difference curve between fit and data.

This process yielded the J1−4D model as the best. Having obtained this model, we plot the fits
for each temperature used in this refinement along with a difference curve between the fit and
data. This is shown in fig. 8.
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Figure 8: Data and fits for GGG using the J1−4D model. Eight temperatures between 0.175

and 1.04K. Below each graph is a difference curve between fit and data.

Finally, the parameter values for each refinement including the insufficient models, the final
model, and reference parameter values for comparison are shown in table 3.
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5.3 Discussion 6 YTTERBIUM GALLIUM GARNET

Gd3Ga5O12 J1(mK) J2(mK) J3(mK) J4(mK) D (mK) χ2
red

Fit J1D 115± 2 0* 0* 0* 45.7* 3.227
Fit J1−2D 117± 2 −3.8± 0.1 0* 0* 45.7* 1.266
Fit J1−3D 117± 2 −3.6± 0.2 −1.1± 0.7 0* 45.7* 1.266
Fit J1−4D 130± 3 −3.9± 0.1 4.2± 0.7 4.0± 0.4 45.7* 1.082

Ref. [9] (2022) 130± 2 −3.8± 0.1 4.0± 0.6 4.0± 0.3 45.7* -
Ref. [15] (2006) 107* -12:-4 -3:12 0* 45.7* -

Table 3: Row 1-4: Fitted parameters for GGG with different models. Row 5-6: Parameters
from other works. * indicates a fixed parameter. χ2

red is only for T = 0.175K.

5.3 Discussion

The fitted parameters for the J1−4D model in table 3 are almost identical to Paddison’s own
results from [9]. The small discrepancies are most likely the result of our refinement using a
different resolution. Thus, we succeeded in recreating Joe Paddison’s results which was one of
our goals. This makes sense since we use the same selected data points.

The J1−4D model is chosen as the model that best describes the data because it shows
significant improvement compared to the J1−3D model. The benefit of considering the extra
neighbour is especially apparent at the peak near Q ≈ 1Å−1 on fig. 7 where the J1−3D fit
lies significantly higher. Furthermore, χ2

red for the J1−4D model is significantly lower. The
J1−5D model’s qualitative improvement in shape and improvement in χ2

red (appendix B) are
not significant enough to warrant the extra exchange parameter. All four models in fig. 7 have
issues correctly fitting the peak near Q ≈ 1Å−1 present in the 175 mK data.

Fig. 8 shows the J1−4D-fits for all eight temperatures. The fits nicely cover the data as
the distinct magnetic peak to the left and the small magnetic bumps to the right become more
pronounced with decreasing temperature. Only the fits for the three lowest temperature data
sets have a little bit of trouble covering the left peak as it becomes exceedingly sharp.

Looking to compare our results with other suggested models apart from Paddison’s to see
how Spinteract holds up to other methods, we look to [15]. They found an optimal model for
describing GGG to be a J1−3D-model with parameter values listed in table 3. Comparing their
model with our J1−3D, we see that our value for J1 lies within ten percent of their value for
the same parameter. Additionally, our value for J2 almost lies within the higher part of their
estimated interval for J2 while our J3 lies within the lower end of their interval for J3.

We suspect that the reason why the J1−4D fit does not accurately capture the peak at
Q ≈ 1Å−1 is that the resolution used in Spinteract was too low. A subsequent Spinteract
J1−4D fit was made with 66% more BZ-points (appendix C). However, this yielded almost
the exact same interaction parameters and showed no improvement in the shape of the peak.
Another explanation is that the spins have entered a state of partial freezing at T = 0.175K
and thus are not suitable to be modelled in Spinteract.

6 Ytterbium Gallium Garnet

In this chapter, data analysis and Spinteract refinements of neutron scattering data taken on
Yb3Ga5O12 (YbGG) will be presented and discussed. We use Spinteract to find the optimal
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parameters in various Hamiltonians describing the magnetic interactions in YbGG. Additionally,
we use Spinteract to recreate other proposed models for YbGG from various literature [8, 11]
and compare these with our own results. As mentioned in 2.3.2, the convention used for YbGG
will be one where the dipolar interaction parameter is D = |J |2g2JDDip.

6.1 Introduction to YbGG

Cold neutron inelastic scattering spectroscopy was performed in 2017 by Lise Sandberg and
Pascale Deen on the CNCS instrument at Oak Ridge National Laboratory in the US on a 1.9
g Yb3Ga5O12 single-crystal. The experiments were done at sample temperatures of 50mK and
13K, with incident energies E = 1.55 and 3.32meV, and energy transfer ranges of ℏω ∈ [−0.5 :

1.5] meV and ℏω ∈ [−1.5 : 3.2] meV respectively. The data was first published in [11]. In both
experiments, the sample was rotated a total of 180◦ through the scattering plane comprising
(-2H, 2H,0) and (L, L, 2L). These coordinates describe Miller-indices which will be elaborated
in the next section.

In YbGG, short range magnetic order appears below 180mK, and long range magnetic
order develops below 54mK [4]. Even though the authors in [11] hoped to achieve a sample
temperature of 50 mK, YbGG is an insulating material and therefore, it is very likely that the
sample temperature was higher than that. In the article, they estimate it to be between 100

and 600mK. This likely puts us above both of the aforementioned ordering temperatures which
works out perfectly for this project since Spinteract only handles diffuse scattering data. For
the time being, the nominal temperature of the data will still be 50mK.

The magnetic interactions in YbGG are not as widely studied as those in GGG. In the
article by Sandberg et al. [11], they use Monte Carlo simulations based on neutron scattering
and magnetic susceptibility measurements to generate two different models, a J1D model and
a J1−2D model, which yielded optimal parameter values of D = 0.21K, J1 = 0.6K, and D =

0.18K, J1 = 0.72K, J2 = 0.12K respectively. In another study by Lhotel et al. [8], they used
a combination of theoretical calculations related to magnetic susceptibility and specific heat
measurements and neutron scattering data to conclude that a possible exchange parameter of
nearest neighbours does not exceed 5-10% of the dipole parameter, in contrast to the conclusions
in [11]. In [4], they find a positive Curie-Weiss temperature which implies ferromagnetic exchange
interactions (J < 0) in contrast to [11]. Due to the 6-fold symmetry of the Wyckoff group 24c,
we expect all scattering due to interactions between Yb3+ ions to show the same symmetry. In
contrast to GGG, crystal field effects in YbGG motivates varying the dipole exchange parameter
rather than keeping it fixed at its theoretical value [11].

6.2 Data preparation

As discussed in section 4, Spinteract requires inelastic data to be energy-integrated for it to be
used in the program. Before starting this process, we make cuts of the data at different values of
L to determine which energy transfers should be examined. This can be seen in fig. 9. We choose
the values of L such that one goes through two Nuclear Bragg peaks and one goes through a
high-intensity section of the data.
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Figure 9: Cuts at different values of L in the data with E = 1.55meV. Left: L = −0.5. Right:
L = −0.25. Positive values of ℏω indicate energy transferred to the sample while negative

values indicate energy absorbed by the neutron. The T = 13K data has been subtracted. Both
graphs have their own logarithmic colormaps.

It is immediately apparent in both cuts on fig. 9 that most scattering occurs around ℏω ≈ 0.
On the left cut with L = −0.5, we clearly see the two nuclear Bragg peaks at H ≈ ±0.75.
On the right cut with L = −0.25, we see a vertical band of intermediate intensity between
H ≈ [−0.25 : 0.25] across most energy transfers. On both cuts, a low-intensity horizontal band
is visible for energy transfers in the range ℏω ≈ [0.5 : 0.75]meV. The fact that most scattering
occurs at ℏω ≈ 0 motivates not including all energy transfers when energy-integrating. Although,
doing this will result in a loss of information present in the horizontal low-intensity band which
might show important features. Therefore, we start by calculating the average intensity across
all energy transfers. For each scattering vector, we calculate the average intensity

Itotal(Q) =
1

NQ

∑
i

Ii(Q), (6.1)

where Ii(Q) is the intensity measured at the ith energy transfer at scattering vector Q, and NQ

is the number of measurements at that scattering vector. The uncertainty of the total intensity
is the individual uncertainties summed in quadrature:

σ2
total(Q) =

1

NQ

∑
i

σ2
i (Q), (6.2)

where σi(Q) is the uncertainty of the intensity at scattering vector Q at the ith energy transfer.
This process is carried out for all scattering vectors, Q, both at 50mK and 13K for each
incident energies and will be labelled as I50mK(Q) with σ50mK(Q) and I13K(Q) with σ13K(Q)

respectively. This can be seen for the 50mK data with incident energy E = 1.55meV in fig. 10.
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Figure 10: (a) I50 mK(Q) using eq. (6.1). (b) σ50 mK(Q) using eq. (6.2). Incident energy of
E = 1.55meV. All 400 energy transfers used. Notice how the intensity scales are different for

the two graphs, and how they share the vertical axis.

The axes on fig. 10 denote Miller-indices. For example, the point (L, H) = (−1.0, 0.5) is
converted to a Miller-index by inserting -1 for L and 0.5 for H. This results in (h, k, l) =

(−1, −1, −2) + (−1, 1, 0) = (−2, 0,−2), so (hkl) = (202).
During a neutron scattering experiment, a variety of scattering occurs; not only magnetic.

For this reason, a high temperature measurement, in this case 13K, is subtracted from the 50
mK data. It can be safely assumed that at 13K, YbGG is well into its paramagnetic regime
because 13K is far above YbGG’s magnetic ordering temperature as discussed in section 2.3.1.
The idea is that the difference between the two data sets only shows the magnetic features
produced from the geometric frustration. The intensity can now be calculated as follows:

I50mK−13K(Q) = I50mK(Q)− I13K(Q) (6.3)

with uncertainties:

σ50mK−13K(Q) =
√
σ50mK(Q)2 + σ13K(Q)2. (6.4)
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Figure 11: (a) I50mK−13mK(Q) using eq. (6.3). (b) σ50mK−13K(Q) using eq. (6.4). (A) Nuclear
Bragg peaks to be removed. Incident energy of E = 1.55meV. All 400 energy transfers used.

After subtracting the 13K measurement, not all data is useful. In fig. 11 (a), we see three obvious
nuclear Bragg peaks, each marked with an (A). Additionally at the edge, we see an oval shape of
high intensity followed by almost no intensity extending further out. This is clearly not physical
and is likely the result something weird happening at the edge of the detector. Finally, a few
data points of low intensity close to the center are clearly the result of erroneous measurements.
For these reasons, we remove all data points which are likely not caused by magnetic scattering.
We deem it more harmful to leave in erroneous data than to delete minimal suitable data. We
call this data Smag(Q) as all the intensity should stem from magnetic interactions.

Looking at Smag(Q) in fig. 12 (a), it is hard to see any structure outside of the high-intensity
center. For this reason, an (almost) elastic data set, Selas(Q), is created only using data from
the eight lowest values of |ℏω|. This range was chosen by examining fig. 9 as well as looking at
cuts for different values of ℏω. These eight lowest values lie in the range −0.0175meV ≤ ℏω ≤
0.0175meV. This can be seen on fig. 12 (b).
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Figure 12: (a) Smag(Q). Nuclear Bragg peaks and non-magnetic data removed. All 400 energy
transfers used. (b) Selas(Q). Same points removed as in (a), data for |ℏω| in range
−0.0175meV ≤ ℏω ≤ 0.0175meV. (A) High-intensity hexagonal center. (B) Sections

connecting the high-intensity center to higher Q features. (C) Low-intensity band at higher Q.
Incident energy of E = 1.55meV.
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In Selas(Q), we see features outside the center which appear to show the expected 6-fold sym-
metry. Furthermore, the center is more well-defined and clearly shows the 6-fold symmetry as
opposed to Smag(Q), where the structure is almost circular with a deformity in the top right.
For both Smag(Q) and Selas(Q), the uncertainties are roughly an order of magnitude larger
than the intensities which is concerning. This is due to the fact that the differences between the
50mK intensities and the 13K intensities are, in general, smaller than the respective uncertain-
ties. This will be elaborated in section 6.4. We notice three important features in Selas(Q): (A)
The high-intensity hexagonal center, (B) intermediate-intensity sections at the corners of the
hexagon, connecting it to the low-intensity features at higher Q, and (C) a low-intensity band
at higher Q that runs around the entire center. When comparing the data to various models in
the upcoming sections, these features are especially important.

We use the exact same procedure for the data with incident energy E = 3.32meV which we
will always denote as E = 3.32meV. This is shown in fig. 13. These data were only recorded in
100 discrete energy transfers (as opposed to 400), and we select Selas(Q) (E = 3.32meV) such
that ℏω has a range of −0.184meV ≤ ℏω ≤ 0.145meV. The advantage of only using the elastic
data is not as obvious here as for E = 1.55meV. Furthermore, the structure seen in fig. 12 (b)
cannot be noticeably recognized in fig. 13 (b). All in all, the E = 3.32meV data seems to be far
more noisy than the E = 1.55meV data. For these reasons, we will be modelling the two data
sets separately.
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Figure 13: (a) Smag(Q) (E = 3.32meV). Nuclear Bragg peaks and non-magnetic data
removed. All 100 energy transfers used. (b) Selas(Q) (E = 3.32meV). Same points removed as

in (a), only data for eight lowest values of |ℏω| used with −0.184meV ≤ ℏω ≤ 0.145meV.

6.3 Modelling in Spinteract

In Spinteract, the user supplies the sample temperature at which the data was recorded. This
raises an issue as the exact sample temperature of our YbGG data is unknown. Varying the
temperature in Spinteract using an upper and lower bound of 0.1K and 0.6K produces widely
different results. The aim of refining precise interaction parameters can thus no longer be
achieved. However, we still hope to compare the qualitative effects of including exchange pa-
rameters in the model as discussed in section 6.1. Determining whether a model including only
the dipole interaction is sufficient to describe the data is especially of interest.
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6.3.1 E = 1.55meV data

For all models fitted or calculated, we will compare with the data in the top half of the figure.
Due to the large uncertainties (see fig. 11 (b)), the values of χ2

red are very small, ∼ 0.05, and
do not seem to reflect the overall quality of the fits. For this reason, we have not included
them. Initially, we produce 3 fits with D, J1D and J1−2D models in Spinteract. These are
shown in fig. 14 and fig. 15 with T = 250mK and 450mK respectively. The default sample
temperature is T = 250mK, and the sample temperature will only be mentioned explicitly if it
is not T = 250mK.
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Figure 14: (a) Selas(Q). Spinteract fits with (b) D fit, (c) J1D fit, and (d) J1−2D fit. Incident
energy of E = 1.55meV. Numbers in top right boxes show fitted interaction parameters and

have units of mK. Number in parentheses indicate ± uncertainty.
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Figure 15: (a) Selas(Q). Spinteract fits with (b) D fit, (c) J1D fit, and (d) J1−2D fit. Incident
energy of E = 1.55meV. Numbers in top right boxes show fitted interaction parameters and

have units of mK. Number in parentheses indicate ± uncertainty. T = 450mK

Comparing the three fits with T = 250mK in fig. 14 with the data, all three fits reproduce the
hexagonal center, though models containing exchange interaction parameters J1 or J1−2 fail to
capture additional details in the high Q sections of the data. Instead, the fit containing only
the dipolar interaction more accurately captures the lower intensity features around the high-
intensity center. Furthermore, the value for D in this fit is much closer to the theoretical value
calculated in table 2 (D = 245.6mK) than the value found in the other two fits.
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The same qualitative differences between fits and data can be seen for the results with the sample
temperature set at T = 450mK in fig. 15, though the parameter value for D in each fit is far
too high compared to the expected theoretical value. This results in further confidence that
the actual sample temperature was closer to 250mK than 450mK. For this reason, the sample
temperature will be fixed at 250mK in the remaining fits and models we present in this chapter.

Next, we examine the models proposed in [11] and described in section 6.1, which we will
denote (Sandberg). The models are calculated with Spinteract and can be seen in fig. 16.

To investigate whether the anisotropic g-factor, as introduced in eq. (2.1), is required to
describe the neutron scattering data, we also create a model using the angular averaged g ≈ 3.42

in a D model, where we fix D = 238mK. This can be seen in fig. 16.
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Figure 16: (a) Selas(Q). (b) Calculated D model with an isotropic g-factor. (c-d) Models from
[11] calculated, not fitted, with Spinteract (c) J1D model, (d) J1−2D model. Incident energy of

E = 1.55meV.

The model including an isotropic g-factor in fig. 16 (b) does not reproduce the data very well.
The center is no longer hexagonal, and the higher Q features look nothing like those in the
data. Looking at fig. 16 (c-d), both models from [11] somewhat reproduce the shape of the
original data though they both fail at replicating the short low-intensity segments connecting
the hexagonal center to the higher Q features further out. The J1D model captures the hexagon
and higher Q features slightly better than the one including an additional exchange constant
J2. Furthermore, the value of D is closer to the theoretical value in the J1D model than in the
J1−2D model.

To investigate the claim that J1 lies within 5− 10% of D from [8], we calculate models with
varying values of J1. We use the value of D = 238mK found in fig. 14 (b). Both positive and
negative values of J1 are considered in fig. 17 and fig. 18 respectively. Models where J1 = ±2D/g2J
are considered in appendix E.
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Figure 17: (a) Selas(Q). J1D models calculated, not fitted, with Spinteract for varying J1 with
(b) J1 = 5%D/g2J , (c) J1 = 25%D/g2J , and (d) J1 = D/g2J . Incident energy of E = 1.55meV.
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Figure 18: (a) Selas(Q). J1D models calculated, not fitted, with Spinteract for varying J1 with
(b) J1 = −5%D/g2J , (c) J1 = −25%D/g2J , and (d) J1 = −D/g2J . Incident energy of

E = 1.55meV.

Looking at fig. 17 and fig. 18, it is not immediately apparent which model best describes the data
as different models capture distinct features of data better or worse than the rest. Comparing
the models for J1 = ±D/g2J in fig. 17 (d) and fig. 18 (d), the latter has a more pronounced high-
intensity hexagonal center, and does a better job at replicating the more diffuse low-intensity
features of the data. Additionally, it captures the connecting segments between the inner high-
intensity features and the surrounding low-intensity features. However in both cases, the model
with lower |J1| seems do a better job in all of these aspects.

The models where J1 = ±25%D/g2J in fig. 17 (c) and fig. 18 (c) only have subtle though
important differences. They both accurately capture the high-intensity center. However, the
one with negative J1 more accurately depicts the sections connecting the center to the higher Q
features.

The models where J1 = ±5%D/g2J in fig. 17 (b) and fig. 18 (b) are essentially identical.
Furthermore, they look very similar to the models where J1 = ±25%D/g2J .

To better compare the different models, we make vertical one-dimensional (1D) cuts through
the data and selected models. For the latter, we choose three good candidates: The D fit from
fig. 14 (b), the J1D model (J1 = −25%D/g2J) from fig. 18 (c), and the J1D model (Sandberg) [11]

22



6.3 Modelling in Spinteract 6 YTTERBIUM GALLIUM GARNET

from fig. 16 (c). We decide to make the cut at L = −0.31 as this should cover all the important
features of the data: The center hexagon, higher Q features, and the sections connecting them
(as explained on fig. 12 (b)). These cuts can be seen on fig. 19. Uncertainties are not included
as these are orders of magnitude larger than the intensities.
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Figure 19: 1D-cuts through L = −0.31 of Selas(Q) (black circles), D fit from fig. 14 (b) (in
red), J1D model (J1 = −25%D/g2J) from fig. 18 (c) (in blue), and the J1D model (Sandberg)

[11] from fig. 16 (c) (in green).

It is immediately apparent that including the small exchange interaction makes almost no differ-
ence to the calculated intensities. Only at H = 0 does the model with J1 = −25%D/g2J produce
slightly higher intensities. The J1D model (Sandberg) produces a noticeably higher peak at low
Q and significantly lower valleys in the ranges H ≈ [−0.5;−0.3] and [0.3; 0.5].

6.3.2 E = 3.32 meV data

In this section, we model Smag(Q) (E = 3.32meV) and Selas(Q) (E = 3.32meV). We produce
3 fits with D, J1D, and J1−2D models for each data set. Results for Smag(Q) (E = 3.32meV)
are included in fig. 20 below whereas results for the elastic set are put in appendix F.
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Figure 20: (a) Smag(Q) (E = 3.32meV). Spinteract fits with (b) D fit, (c) J1D fit, and (d)
J1−2D fit. Numbers in top right boxes show fitted interaction parameters and have units of

mK. Number in parentheses indicate ± uncertainty.
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The parameters found in fig. 20 all have very high uncertainties, which essentially makes them
useless. Additionally, they do not seem to agree very well with the ones found for Selas(Q) in
fig. 14. All three models rotate the hexagon in the center by 30◦ compared to fig. 14. The higher
Q sections of the fits all seem to depict the data adequately although as discussed in section 6.1,
the lack of detailed resolution in the data makes it difficult to say anything meaningful about
the qualitative resemblance between the data and the different fits. The models deemed the
best candidates for describing the E = 1.55meV data were the D fit from fig. 14 (b) and
the model where J1 = −25%D/g2J from fig. 18 (c). These models are calculated for Selas(Q)

(E = 3.32meV) and can be seen in fig. 21.
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Figure 21: (a) Selas(Q) (E = 3.32meV). Spinteract fit/model with (b) D fit from fig. 14 (b),
and (c) J1D model from fig. 18 (c). Numbers in top right boxes show fitted interaction

parameters and have units of mK.

At these high Q values, including an exchange parameter J1 in fig. 21 becomes less noticeable.
The noisy data makes it difficult to conclude anything about the quality of the models.

6.4 Discussion

We have used Spinteract to fit and calculate various models to neutron scattering data for YbGG
with an estimated sample temperature of 0.250 and 0.450K. For the data with E = 1.55meV,
we produced fits for three different magnetic Hamiltonians including 1) a dipolar term, D, 2)
a D-term and a nearest neighbour exchange term, J1, and finally 3) a D-term and exchange
terms between nearest and next nearest neighbours, J1 and J2. In the case where the sample
temperature was set to 0.250K, the fit only including the dipolar term was found to be the
optimal one capturing both the qualitative features of the data while also providing an estimate
of D close to the expected theoretical value. In the case where the temperature was set to
0.450K, roughly the same qualitative features were seen, but the parameters were higher than
expected. This motivated only estimating the sample temperature to be 0.250K moving forward.

Next, we recreated the J1D and J1−2D models found in [11]. The models adequately capture
the low- and high-Q regime though both have room for improvement in the sections connecting
the center to the higher Q parts of the data.

Then, we made models with varying J1 and found that including J1 = ±5%D/g2J essentially
makes no difference to the shape of the model compared to one only including D. Differences
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begin to be noticeable when increasing the nearest neighbour exchange parameter to J1 =

±25%D/g2J . The models with J1 = ±D/g2J are found to be qualitatively worse than the ones
with J1 = ±25%D/g2J . In general, the negative sign on J1 seems to make the features more
diffuse, while the positive sign "streamlines" the higher Q parts. All in all in a J1D model with
D ≈ 240mK, we estimate that the value for J1 which best recreates the data is in the range
−D/g2J < J1 < −25%D/g2J , indicative of ferromagnetic interactions. The low-magnitude J1 and
negative sign is in stark contrast to the J1D and J1−2D models from [11]. However, our results
agree with those reported in [4, 8] that found a positive Curie-Weiss temperature indicative of
ferromagnetic interactions. Additionally, our relatively low estimate of the magnitude of J1 does
not stray too far from the claim that J1 does not exceed 5-10% of D from [8], although the
effects of including such a small J1 are negligible.

The quality of the data, both with E = 1.55 and especially with E = 3.32meV, makes direct
fitting of exchange interaction parameters unfeasible. This is likely because too much emphasis
is put on the low-Q center where intensities are much greater than in the high-Q regions. The
features present at higher Q suffer from a lot of noise, making it difficult to distinguish significant
qualitative details from insignificant ones. As such, we cannot exclude the possibility that a more
complex magnetic Hamiltonian is needed to describe YbGG.

In order to use Spinteract to model YbGG, we have made the assumption that a semiclassical
method is sufficient to describe the magnetic interactions in this system. This was a potential
pitfall due to YbGG being a correlated quantum system with effective spin-12 . However, our
models containing only the dipolar interaction or this plus a low-magnitude nearest neighbour
exchange interaction adequately reproduce the qualitative features of the data and concur with
our theoretical estimate of the value for D. These results build confidence that a semiclassical
assumption can be justified. Implementating an anisotropic g-factor was found to be crucial for
reproducing the scattering intensities.

7 Conclusion and outlook

We have analysed magnetic diffuse scattering data from two different neutron scattering exper-
iments taken on the highly frustrated rare earth garnets GGG and YbGG, and modelled the
magnetic interactions in these compounds using the newly-developed program Spinteract. After
reproducing results created in this program for the well-studied magnetic interactions in GGG,
we succesfully used Spinteract to investigate various magnetic Hamiltonians for YbGG.

Comparing our own original fits and several proposed models calculated in Spinteract, we
conclude that a Hamiltonian containing only a dipolar interaction of magnitude D = 238mK
or potentially also including a nearest neighbour exchange term with a strength in the range
[−D/g2J ,−25%D/g2J ] is able to give a qualified description of the magnetic interactions in YbGG.

To gain further insight into the magnetic interactions of the highly frustrated YbGG, we
would like to analyse more neutron scattering data taken on this material. We only had access
to two of the three Q-dimensions, although a third dimension of data from this exact experiment
does exist, and it would be interesting to extent our analysis to include this as well. Furthermore,
we have observed how Spinteract is highly temperature-dependent. Performing a new neutron
scattering experiment on a YbGG powder sample rather than on a single crystal would achieve
a more reliable sample temperature and thus, more confident results could be generated using
Spinteract.
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A FULL DERIVATION OF DISPERSION RELATION

Appendix A Full derivation of dispersion relation

The following is a more thorough derivation of the dispersion relation found in section 2.4 for
spin waves in a simple 1D ferromagnet. The derivation is based on the ones found in [1, 14]. We
assume a Heisenberg Hamiltonian only with nearest neighbour interactions,

Ĥ = −2J
∑
⟨i,j⟩

Ŝi · Ŝj . (A.1)

Next, we can use the Heisenberg equations of motion for any operator Q̂ [5] from quantum,
mechanics

iℏ
dQ̂

dt
= [Q̂, Ĥ], (A.2)

to calculate the motion of a spin, Ŝp = (Sx
p , S

y
p , Sz

p), in such a system. The index p is used as
to not confuse it with the imaginary unit. If we only consider spin p, the sum over p disappears
from the Hamiltonian, and we only need to consider j = p− 1 and p+ 1. Furthermore, we use
the relation:

[Sx, Sy] = iℏεxyzSz, (A.3)

where εxyz is the Levi-Civita epsilon. We start by computing the equation of motion for Sx
p :

iℏ
dSx

p

dt
= [Sx

p , Ĥ] (A.4)

= [Sx
p ,−2J

∑
⟨j⟩

Ŝp · Ŝj ] (A.5)

= [Sx
p ,−2J

∑
⟨j⟩

Sx
pS

x
j + Sy

pS
y
j + Sz

pS
z
j ] (A.6)

= −i2J
∑
⟨j⟩

(Sz
pS

y
j − Sy

pS
z
j ), (A.7)

where eq. (A.3) was used in the last step. By doing the same for Sy
p and Sz

p , it should become
apparent that:

ℏ
dŜp

dt
= 2J Ŝp × (Ŝp−1 + Ŝp+1). (A.8)

Now, if we assume that all spins are aligned along the z-direction in the ground state, we can
model small excitations as perturbations. For simplicity’s sake, we consider a small excitaion
such that Sz

p = S, and Sx
p = δSx

p , S
y
p = δSy

p , where |δSx
p |, |δSy

p | ≪ |S| (likewise for the other
sites). If we only keep terms that are linear in δSx

p and δSy
p , we obtain:

dδSx
p

dt
=

2JS

ℏ
(2δSy

p − δSy
p−1 − δSy

p+1), (A.9)

dδSy
p

dt
= −2JS

ℏ
(2δSx

p − δSx
p−1 − δSx

p+1), (A.10)

dSz
p

dt
= 0. (A.11)

Now, we have two coupled differential equations and look for plane wave solutions of the form:

δSx
p = ueik·r−iωt, (A.12)

δSy
p = veik·r−iωt, (A.13)
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C GGG J1−4D FIT WITH 66% MORE BZ-POINTS

where we can let k ·r = pqa by introducing a spacing a between spins, and ascribing a magnitude
of q to the spin wave’s wave vector, k. If we take the derivative of eq. (A.12) and put this equal
to eq. (A.9), we find that:

−iωtu =
2JS

ℏ
(v(2− (e−iqa + eiqa))) (A.14)

=
4JSv

ℏ
(1− cos(qa)). (A.15)

Doing a similar calculation for the other equation, one finds u = iv yielding the dispersion
relation

ℏω = 4JS(1− cos(qa)). (A.16)

Appendix B J1−5D model for GGG
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Figure 22: Addition to fig. 7 for a model that also includes the J5 parameter.

Gd3Ga5O12 J1(mK) J2(mK) J3(mK) J4(mK) J5(mK) D (mK)
Fit J1−5D 127± 3 −7± 1 4.8± 0.7 1± 1 3± 1 45.7*

Table 4: Fitted parameters for GGG with a J1−5D model. * indicates a fixed parameter.

Appendix C GGG J1−4D fit with 66% more BZ-points

Gd3Ga5O12 J1(mK) J2(mK) J3(mK) J4(mK) D (mK)
Fit J1−4D 129± 2 −3.85± 0.09 4.3± 0.6 4.0± 0.4 45.7*

Table 5: Fitted parameters for GGG with a J1−4D model and 66% more BZ-points. *
indicates a fixed parameter.
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D YBGG FULL FITS
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Figure 23: A J1−4D fit for GGG T = 0.175K. 66% more BZ-points used than the fits in fig. 7

Appendix D YbGG full fits
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Figure 24: Same fits as shown in fig. 14 but without Smag(Q). (a) D fit, (b) J1D fit, and (c)
J1−2D fit. Incident energy of E = 1.55meV. Numbers in top right boxes show fitted

interaction parameters and have units of mK. Number in parentheses indicate ± uncertainty.
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Figure 25: Models from [11] calculated with Spinteract. (a) J1D model and (b) J1−2D model.
Incident energy of E = 1.55meV.
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Figure 26: J1D models calculated with Spinteract for varying J1. (a) J1 = −5%D/g2J , (b)
J1 = −25%D/g2J , and (c) J1 = −D/g2J . Incident energy of E = 1.55meV.
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Figure 27: J1D models calculated with Spinteract for varying J1. (a) J1 = 5%D/g2J , (b)
J1 = 25%D/g2J , and (c) J1 = D/g2J . Incident energy of E = 1.55meV.
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F YBGG MORE FITS/MODELS (E = 3.32MEV)

Appendix E YbGG J1D model J1 = ±2D/g2J .
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Figure 28: (a) Selas(Q). J1D models calculated with Spinteract for varying J1 with (b)
J1 = −2D/g2J , and (c) J1 = 2D/g2J . Incident energy of E = 1.55meV.

Appendix F YbGG more fits/models (E = 3.32meV)
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Figure 29: (a) Selas(Q) (E = 3.32meV). Spinteract fits with (b) D fit, (c) J1D fit, and (d)
J1−2D fit. Incident energy of E = 3.32meV. Numbers in top right boxes show fitted

interaction parameters and have units of mK. Number in parentheses indicate ± uncertainty.
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