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Abstract
In this thesis the interaction between two dipoles is studied. This is done both in the classical and
quantum picture. Explicit expressions for the decay rates, the frequency shifting and the solution
of the equations of motion are given. The study of this phenomena is motivated by a photon-qubit
entanglement protocol which requires a coupling between a qubit and a dipole-dipole system interacting
with incoming photons in a waveguide. By using the model for the dipole-dipole interaction derived
in this thesis, we calculate the probability of success of the given protocol for different orientations
and distances between the dipoles.
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1 MOTIVATION

1 Motivation
One of the big areas of application for modern physics is the area of quantum computation. As
opposed to currently available computers, quantum computers operate by qubits, which gives them
the upper hand in problems like prime number factorization and simulation of quantum systems
[1]. A promising way of creating qubits are the so called superconducting qubits, which interact
very little with the environment and therefore preserve coherence (quantum properties) over longer
time periods than other forms of qubits [2]. If we in the future make effective quantum computers
by superconducting qubits, it important that they can communicate with each other to exchange
information. Current computers communicate with each other by encoding the information of their
bits into photons and then sending the photons through waveguides to other computers. If the same
is to be done for quantum computers, the information of a qubit has to be encoded into a photon
and sent through a waveguide. Because of negligible losses, quantum information is transmitted best
by optical photons [3]. Here a problem arises, superconducting qubits require very low temperatures
to be super-conductive, but optical photons have very high energies in comparison. Optical photons
will therefore destroy the superconducting properties of the qubit and make it loose coherence if they
interact directly. To create quantum communication for superconducting qubits, a suitable interface
that allows light to interact with qubits indirectly is therefore required.

A protocol for how to create an effective interface was proposed by Das, Elfving, Faez and Sørensen
[4]. This protocol proposes to let the superconducting qubit interact with two molecules, and then let
photons interact with the molecules instead of the qubit. In their proposal they consider a qubit in
the form of a Copper Pair Box (CPB), which has two possible states, |+〉 and |−〉. This CPB is put
outside the edge of a one dimensional waveguide. Inside the waveguide, two molecules can be found,
exchanging energy by dipole-dipole interaction. For simplicity, the molecules can be considered as two
leveled systems, then the ground state is denoted by |g1g2〉 and the combined excited states (dressed
states) by |A〉 and |S〉. The CPB and the molecules interact electrically and can have an influence on
the state of each other. As for the photons, they are sent by very short laser pulses, sending very few
photons at the time. If the energy difference between the qubit states |+〉 and |−〉 is the same as the
energy difference between the dressed states |A〉 and |S〉, then the incomming photons might undergo
a Raman transition, which will encode the state of the qubit into the photon. The process is shown
in figure 1.

Figure 1: Description of the Raman process. A photon excites the system from the ground state to
the |S−〉 state. The energy of the |S−〉 is tuned to be equal to the energy of the |A+〉 state, so that
tunneling between those states can occur. After tunneling the system decays to the new ground state,
sending a photon with less energy than the incoming one. The state of the photon is then coupled to
the state of the qubit.[4]
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2 CLASSICAL MODEL

A crucial requirement for the protocol to work is to have the energy difference between the dressed
states of the dipoles to be equal to the energy difference of the qubit. In the article by Das et. al [4] this
was phenomenologically taken into account, but a proper understanding of this phenomena requires
an accurate dipole-dipole interaction analysis. In this thesis we will therefore give a proper treatment
and dive into the dynamics of the dipole-dipole interaction. Because molecules are considered, the
interaction is described by quantum mechanics, but as one usually does in physics, before tackling a
hard problem, a similar but simpler problem is considered, which usually turns to be helpful. So we
begin by solving the problem in classical mechanics.

2 Classical Model

2.1 One dipole

We want to solve the problem of two oscillating dipoles interacting with each other by the electro-
magnetic field, satisfying Newton’s laws. A good place to begin is by looking at one oscillating dipole
alone interacting with the electromagnetic field. For the classical problem, we will consider a dipole
as being a charged particle attached to a spring. The charge is q, the amplitude of the oscillation is
described by x0 and the spring has a spring constant k. Apart from the dynamics given by the spring,
an accelerated charged particle interacts with the electromagnetic field, giving energy in the form of
radiation. This results in a radiation reaction force, which is given by [5]

Frad = µ0q
2

6πc ȧ . (2.1)

Let us assume that the motion is only on the x direction, then adding this term to the equation of
motion of the harmonic oscillator we get

− µ0q
2

6πc
...
x + ẍ+ kx = 0 , (2.2)

We will approach this problem in a way that is very similar to the way it would be in quantum
mechanics. We therefore define a classical equivalent to the annihilation operator:

A = mωx+ ip

A∗ = mωx− ip ,
(2.3)

where ω denotes the natural spring frequency and p is the momentum of the particle. In the case of
the perfect harmonic oscillator without a driving force we have ẋ = p/m and from Newton’s second
law and Hooke’s law we get: ṗ = −kx+ Fother. Then the derivative of A gives

Ȧ = ωp− ikx+ i
µ0q

2

6πc
...
x = −iωA+ i

µ0q
2

6πc
...
x . (2.4)

This is very difficult to solve, so we make our first approximation. We assume that the system oscillates
always at the same frequency and over short periods of times the amplitude is constant. So for short
time intervals we have

A ≈ A0exp(iφ− ωt) . (2.5)

We should be aware that by this approximation we have assumed that the system is oscillating with
the frequency ω, but in practice this frequency is not equal to the bare spring frequency, because a
driving force usually results in a frequency shift for an oscillating system. We will assume that this
frequency shift is finite and use ω to denote the shifted oscillation frequency. From equations 2.3 and
2.5 it follows that

...
x ≈ −ω2ẋ = −ω2 p

m
= − ω2

2mi(A−A
∗) , (2.6)
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2.2 Two dipoles - Equations of motion 2 CLASSICAL MODEL

which we insert into equation 2.4

Ȧ = −iωA− ω2µ0q
2

12πmc (A−A∗) . (2.7)

This equation is still difficult to solve. To proceed we move into a rotating frame that follows A. First
define the quantity Ã = Aeiωt, which is not oscillating periodically. Its derivative is

˙̃A = Ȧeiωt + iωAeiωt . (2.8)

Applying this to eq 2.7 we move to the rotating frame:

˙̃A = −ω
2µ0q

2

12πmc (Ã− Ã∗ei2ωt) . (2.9)

In this frame we see that the term with A∗ oscillates with the frequency A∗ ∼ e2iωt while the other
term is not oscillating. For this reason we say that contribution of the A∗ term averages to zero and
thus we can ignore it. This is the rotating wave approximation. The final equation reads:

˙̃A− ω2µ0q
2

12πmc Ã = −γ2 Ã , (2.10)

which we recognize as the differential equation for an exponential decay. Here γ = ω2µ0q2

6πmc is the
decay rate of the system. The fact that we divide it by two is by convention, since that one normally
talks about the decay rate with respect to the energy and not to the amplitude. Since the energy is
proportional to the square of the amplitude, its decay rate will be twice as big.

2.2 Two dipoles - Equations of motion

Now we proceed to work with two dipoles that are both oscillating with a frequency ω and are separated
at a distance r from each other. The second dipole enters the equation of motion as a driving force:

− µ0q
2

6πc
...
x1 + ẍ1 + kx1 − F2→1 = 0 . (2.11)

Again we will try to solve this problem in a way that resembles the quantum mechanical problem. So,
similar to eq 2.4 we now have

Ȧ1 = −iωA+ i
µ0q

2

6πc
...
x1 + iF2→1 . (2.12)

Next we should find an expression for the interaction force. The general electric field from an oscillating
dipole is:

E = 1
4πε0

[
k2(n× p)× ne

ikr

r
+ (3n(n · p)− p)

( 1
r3 −

ik

r2

)
eikr

]
, (2.13)

where n is the unit normal vector to the position vector r, k is the wave vector corresponding to the
frequency ω, and p is the dipole moment vector [6]. A common approximation when working with
dipoles is the dipole approximation, where we assume that the field is uniform everywhere where the
dipole is oscillating. Within this approximation we can consider the direction of n to be always the
same. In polar coordinates, both dipoles have two independent angles. But because the electric field
has azimuthal symmetry, without any loss of generality, the interaction can be described by only three
angles, θ1, θ2 and ∆φ, where the last one is the difference of the azimuthal angles (see figure 2). The
electric field radiating from dipole one in the chosen coordinates is

E = 1
4πε0

[
k2 sin(θ1)p1x̂e

ikr

r
+ (3 cos(θ1)n− p1)

( 1
r3 −

ik

r2

)
eikr

]
. (2.14)
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2.2 Two dipoles - Equations of motion 2 CLASSICAL MODEL

Figure 2: Illustration of our choice of coordinates and angles for the problem of two dipoles interacting
with each other. p̂1 and p̂1 are vectors pointing in the direction of the dipoles, and (x, y, z) define the
basis vectors of the coordinate system that is being used.

We will now make the approximation that the dipoles are only affected by the component of the
electric field that is parallel to their dipole moment vector. Then we can write the force acting on the
second dipole as F = qE · p̂2, where we denote the unit vector in the direction of the second dipole
by p̂2. Plugging into equation 2.14 we get

F1→2 = q

4πε0

[
sin2(θ1) sin(θ2) cos(∆φ)k

2

r
+ (3 cos(θ1) cos(θ2)− p̂1 · p̂2)

( 1
r3 −

ik

r2

)]
p1(t)eikr , (2.15)

where
p̂1 · p̂2 = sin(θ1) sin(θ2) cos(∆φ) + cos(θ1) cos(θ2) . (2.16)

For later use we will write this result in terms of Green’s functions. The electric field of a dipole can
be written as [5]

E(r) = ω2

ε0c2G(r, r0) · p (2.17)

Then the force in eq 2.15 can be expressed as

F1→2 = qω2

ε0c2 (G(r, r0;ω1) · p1) · p̂2 = qp1(t)ω2

ε0c2 p̂2 · (G(r, r0);ω1) · p̂1 , (2.18)

where p(t) is for our problem the same as qx(t), which is oscillating periodically. Thus under the
approximation that the system is changing slowly, over short time intervals the dipole moment term
behaves as:

p(t) ≈ qx0 cos (ωt− φ) . (2.19)
We note that

x0 cos (ωt− φ) = A+A∗

2mω , (2.20)

so that we are able to denote the force of the dipoles by using the variables A and A∗, which are the
ones we use for our equation of motion. Before proceeding we write equation 2.15 in the following
way:

F1→2 = 1
i
C1→2(r, θ1, θ2,∆φ)(A+A∗) , (2.21)

where we have defined

C1→2(r, θ1, θ2,∆φ) = ieik1r q2

8πε0mω1

[
sin2(θ1) sin(θ2) cos(∆φ)k

2
1
r

+ (3 cos(θ1) cos(θ2)− p̂1 · p̂2)
( 1
r3 −

ik1
r2

)]

= i
q2

2ε0mω1
k2

1p̂2 · (G(r, r0);ω1) · p̂1 .

(2.22)
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2.3 Two dipoles - Solution for same frequency case 2 CLASSICAL MODEL

We consider now two oscillators, denoted by A1 and A2. To begin with we consider them having the
same spring frequency. Looking at equation 2.10 we can conclude that in the absence of the second
dipole, their individual decay rates would be equal. We now derive the equation of motion for A1.
Looking back to equation 2.12, we complete the equation of motion by replacing the interaction term
from equation 2.21:

Ȧ1 = −iωA1 −
γ

2 (A1 −A∗1) + C2→1(r, θ1, θ2,∆φ)(A2 +A∗2) , (2.23)

where we assumed that the system is changing slowly, as we did in the one dipole case. To be able to
solve this, we make the rotating wave approximation. To do so we transform into the rotating frame.

˙̃A1 = −γ2 (Ã1 − Ã1
∗
ei2ωt) + C2→1(r, θ1, θ2,∆φ)(Ã2 + Ã2

∗
ei(2ωt)) . (2.24)

By the rotating wave approximation we can ignore the oscillating terms finally getting:

˙̃A1 = −γ2 Ã1 + C2→1(r, θ1, θ2,∆φ)Ã2 . (2.25)

By a similar procedure we can obtain the equation for A2

˙̃A2 = −γ2 Ã2 + C2→1(r, θ1, θ2,∆φ)Ã1 . (2.26)

2.3 Two dipoles - Solution for same frequency case

We write the system of equations in matrix form:[ ˙̃A1
˙̃A2

]
=
[

−γ/2 C2→1(r, θ1, θ2,∆φ)
C1→2(r, θ1, θ2,∆φ) −γ/2

] [
Ã1
Ã2

]
. (2.27)

We want to solve this system of equations. If we state it simply we get

˙̃A = MÃ . (2.28)

If this was an ordinary differential equation, the solution for Ã would be

Ã = eMtÃ(0) , (2.29)

which we assume to also apply for a matrix equation. The exponential of a matrix is not easy to
calculate in an arbitrary basis, but if we diagonalize the matrix it becomes

eDt =
[
eλ+t 0

0 eλ−t

]
, (2.30)

where λ± are the eigenvalues of the matrix M. From the diagonal matrix we can recover the original
matrix by the equation M = RDR−1, where R−1 is the transformation matrix from standard basis to
the diagonalized basis. This matrix is formed by the normed eigenvectors in column form.

By writing M = RDR−1 and expanding the exponential function we can see that

eMt = ReDtR−1 . (2.31)

Taking a look at the matrix M, we see that MM∗ = M∗M, which means that it is a normal matrix.
For normal matrices we are sure that the eigenvectors are orthogonal to each other, meaning that R−1

is a unitary matrix. This means that R−1 = R∗.
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2.3 Two dipoles - Solution for same frequency case 2 CLASSICAL MODEL

The eigenvalues of M are
λ± = −γ2 ± C(r, θ1, θ2,∆φ) , (2.32)

where we have used that C2→1 = C1→2 = C, as both oscillators have the same frequency. The matrix
R formed by the eigenvectors is

R = 1√
2

[
1 1
1 −1

]
. (2.33)

Combining these results with equation 2.31 we get

eMt = 1
2

[
eλ+t + eλ−t eλ+t − eλ−t
eλ+t − eλ−t eλ+t + eλ−t

]
. (2.34)

Putting back into equation 2.29 we get the final solution. For oscillator 1 it reads:

Ã1(t) = 1
2
[
(Ã1(0) + Ã2(0))eλ+t + (Ã1(0)− Ã2(0))eλ−t

]
. (2.35)

This solution can be divided into a real and an imaginary part. The real part of the solution represents
the total decay rate of the system. If the dipoles are on top of each other (their separation distance
is zero) and they both start with the same phase, then we should expect the total decay rate of the
system to be the double of the decay rate of one dipole. Let us check if this is true. For the condition
A1(0) = A2(0) equation 2.35 becomes

Ã1(t) = Ã1(0)eλ+t . (2.36)

The decay rate is then given by the real part of the exponential, which we now calculate. For simplicity
we will assume that θ1 = θ2 = π

2 and ∆φ = 0. We then get

Γ1
2 = Re(λ+) = −γ/2 + Re(C(r, 0, 0, 0)) = −γ/2− q2

8πε0mω

[(
k2

r
− 1
r3

)
sin(kr) + k

r2 cos(kr)
]
.

(2.37)
We expand the sine and cosine up to third order. The expression inside the square brackets becomes(

k2

r
− 1
r3

)
sin(kr)+ k

r2 cos(kr) ≈
(
k2

r
− 1
r3

)(
kr − k3r3

3!

)
+ k

r2

(
1− k2r2

2!

)
= −k

5r2

3! +2k3

3 . (2.38)

We let r → 0 and insert this back in equation 2.37

Re(λ+) = −γ/2− q2ω2

12πε0mc3 = −γ , (2.39)

which is indeed double the decay rate of the single dipole case. A plot of the behavior of the decay
rate for oscillator 1 can be seen in figure 3. The decay rate of oscillator 2 is obtained by the real part
of the λ− value, which is very similar to eq 2.37 but the opposite sign after γ/2. As a consequence,
the decay rate of oscillator 2 goes to zero as the distance goes to zero.

The interaction also gives a change in the oscillation frequency for the dipoles, this change is given
by the imaginary part of the eigenvalues. The frequency shift for oscillator 1 is:

δ1 = Im(λ+) = Im(C(r, θ1, θ2,∆φ)) , (2.40)

which as opposed to the decay rate diverges towards infinity for the distance going to zero. A plot of
the behavior of this frequency shift is given in figure 4. For oscillator 2 the behavior of the frequency
shift is the same, but with a minus sign, which means that its frequency shift goes towards minus
infinity for the distance going to zero.
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2.4 Two dipoles - Solution for different frequency case 2 CLASSICAL MODEL

Figure 3: Plot of the decay rate of
dipole 1 as a function of the distance
between them. The frequency of the
spring was assumed to be ω = 7.2 ·
107γ, θ1 = θ2 = π

2 and ∆φ = 0

Figure 4: Plot of the frequency shift-
ing for the dipoles due to the dipole
dipole interaction as a function of the
distance between them.The frequency
of the spring was assumed to be ω =
7.2 · 107γ, θ1 = θ2 = π

2 and ∆φ = 0

2.4 Two dipoles - Solution for different frequency case

Next we solve this problem for two dipoles oscillating with different spring constants. We begin by
looking at equation 2.23:

Ȧ1 = −iω1A1 −
γ1
2 (A1 −A∗1) + C2→1(r, θ1, θ2,∆φ)(A2 +A∗2) .

We note that the decay rate is a function of the spring frequency ω and therefore different for the two
dipoles. When making the rotating wave approximation, there are now many possible rotating frames
to transform to. For this thesis we choose to transform into a frame oscillating with ωs = ω1+ω2

2 , so
Ã1 = A1e

iωst and Ã2 = A2e
iωst. Applying this transformation the above equation becomes

˙̃A1 = i
∆ω
2 Ã1 −

γ1
2 (Ã1 − Ã1

∗
ei2ωst) + C2→1(r, θ1, θ2,∆φ)(Ã2 + Ã2

∗
ei2ωst)) , (2.41)

where we have defined ∆ω = ω2 − ω1. We then apply the rotating wave approximation, where we
approximate that the fastly rotating terms contribution averages to zero. The equation of motion
becomes

˙̃A1 = (i∆ω2 − γ1
2 )Ã1 + C2→1(r, θ1, θ2,∆φ)Ã2e

ik2r . (2.42)

By a similar procedure the equation of motion for Ã2 can be achieved. We will solve this system of
equations by the same method as in the same-frequency case. The system in matrix form reads[ ˙̃A1

˙̃A2

]
=
[
−γ1/2 + i∆ω

2 C2→1(r, θ1, θ2,∆φ)
C1→2(r, θ1, θ2,∆φ) −γ2/2− i∆ω

2

] [
Ã1
Ã2

]
, (2.43)

which has the eigenvalues

λ± = −(γ1 + γ2)
4 ∓

√
(−i∆ω + γ1−γ2

2 )2 + 4C2→1(r, θ1, θ2,∆φ)C1→2(r, θ1, θ2,∆φ)
2

= −(γ1 + γ2)
4 ∓

√
F (∆ω,∆γ, r, θ1, θ2,∆φ)

2

, (2.44)
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2.4 Two dipoles - Solution for different frequency case 2 CLASSICAL MODEL

where we defined the function F (∆ω,∆γ, r, θ1, θ2,∆φ) to be the function inside the square root to
shorten the notation. The naming of the eigenvalues was reverted; the reason will become clear later.
The eigenvalues do not have a physical significance as they had in the same-frequency case, but as
we will see for the quantum calculations, the difference of the imaginary parts will be an important
quantity. It is given by

δtotal = | Im(λ+ − λ−)| , (2.45)

a plot of this quantity can be seen in figure 5. We should note that δtotal goes towards ∆ω for r very
large, and it diverges towards infinity for r → 0.

The matrix that describes the system of equations this time is not normal, which means that we
cannot guarantee that the matrix is diagonalizable. It also means that R−1 = R∗ is no longer a valid
assumption. The R matrix is then to be found by inverting the R−1 matrix in the old fashion way.

The expression for the eigenvectors is long and ugly, which makes R−1 and R even worse. So
for the sake of beauty, one more approximation will be made. Assuming ω ≈ 107γ, we have tested
some values numerically and found that ∆ω is commonly about 6 orders of magnitude bigger than
∆γ, so we make the approximation γ1 = γ2. The functions C1→2 and C2→1 depend on the value
of ω1 and ω2 respectively. We will work with values for ∆ω that are about 7 orders of magnitude
smaller than ω1 and ω2, so the difference in the functions is negligible. We can therefore approximate
C1→2 = C2→1 = C. With this approximation, the eigenvalues become

λ± = −γ2 ∓

√
C(r, θ1, θ2,∆φ)2 − (∆ω

2 )2

2 . (2.46)

We will calculate the solution similarly as we did for the same frequency case, with the only difference
that we have to invert R−1 without any convenient shortcuts. The solution in matrix form is:

[
Ã1(t)
Ã2(t)

]
= 1
B+ −B−

 eλ−tB+ − eλ+tB−

√
1+|B−|2√
1+|B+|2

B−
(
eλ−t − eλ+t

)
−
√

1+|B+|2√
1+|B−|2

B+
(
eλ−t − eλ+t

)
−eλ−tB− + eλ+tB+


[
Ã1(0)
Ã2(0)

]
, (2.47)

with
B± = C(r, θ1, θ2,∆φ)

i∆ω
2 ±

√
C(r, θ1, θ2,∆φ)2 − (∆ω

2 )2
. (2.48)

The change in name for the eigenvalues now becomes clear, as letting ∆ω → 0 we can see that the
matrix reduces to the one we had in equation 2.34. But then, do the eigenvalues reduce to the right
ones? In this limit, we see that F , the quantity inside the square root becomes 4C2, so

√
F = ±2C.

By comparing the eigenvalues in 2.44 to 2.32, we see that we must choose
√
F = −2C for them to be

equal to each other.
What happens in the more general case where ∆ω 6= 0? The square root of complex numbers

is a multivalued function, but there is only one correct solution, so we must pick the square root
that reduces to

√
F = −2C when ∆ω → 0. Any complex number can be written in polar form by

F = reiθ, and its square root by
√
F = r

1
2 ei(

θ
2 +nπ) where n is either 0 or 1. After testing different

values numerically, it was found that n = 0 gives
√
F = −2C when ∆ω → 0. So to keep continuity

we must choose
√
F = r

1
2 ei

θ
2 for all values of F .

We have now finished deriving a model for two dipoles interacting classically. This model can give
us the motion of two dipoles separated at a given distance, with random orientations and oscillation
frequencies that are not too far off from each other. When doing the quantum calculation, if the
resulting model resembles the one we derived here, it will be a sign that our calculations might be
right.
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3 QUANTUM MODEL

Figure 5: Plot of the absolute value of the difference in frequency shift from two dipoles through
different values of ∆ω. The natural spring frequency was assumed to be ω1 = 2.9 · 107γ.

3 Quantum Model

3.1 One dipole

It is time to turn our attention to quantum mechanics. Now we think of a dipole as an electron
orbiting a nucleous, interacting with the quantized electromagnetic field and satisfying the Shcrodinger
equation. Before we consider the main problem of two dipoles interacting with the electromagnetic
field, we work the simpler problem of one dipole alone interacting with the electromagnetic field. This
will be done in the Heisenberg picture since it yields a problem similar to the one in the classical
picture. The general expression for the electric field operator propagating inside a cubic cavity of
volume V in the Heisenberg picture is

Ê(r, t) = i
∑

k

(
ωk~
ε0V

) 1
2

ek
[
âk(t)eik·r − âk†(t)e−ik·r

]
, (3.1)

where âk and âk† are the raising and lowering operators corresponding to the wave vector and polar-
ization k, and ek is a unit vector in the direction of k [7]. The k under the sum denotes a sum of
all the possible modes inside the volume and the two independent polarizations. This field has the
Hamiltonian HF =

∑
k
~ωkâ†kâk.

For simplicity we will now consider a system with only two levels, a ground state |g〉 and an excited
state |e〉. We let their energy difference be ~ω0 and choose the zero point for the energy to be right
between them. The dipole operator for this system is

d̂ = 〈g| d̂ |e〉 |g〉 〈e|+ 〈e| d̂ |g〉 |e〉 〈g| = 〈e| d̂ |g〉 (σ̂− + σ̂+) , (3.2)

where the diagonal terms have been eliminated by parity considerations, the value 〈e| d̂ |g〉 is assumed
to be real and we define the atomic raising and lowering operators as σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e|
respectively. We will also be using the operator σ̂z = |e〉 〈e| − |g〉 〈g|. These operators fulfill the
commutation relations

[σ̂+, σ̂−] = σ̂z , [σ̂z, σ̂±] = 2σ̂± . (3.3)

The atomic Hamiltonian can be written in terms of these operators by HA = 1
2~ω0σz.
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3.1 One dipole 3 QUANTUM MODEL

The interaction Hamiltonian between the field and the atom within the dipole approximation can
be shown to be HI = −d̂ · Ê [7]. The total Hamiltonian becomes

H = HA +HF +HI = 1
2~ω0σ̂z +

∑
k

~
[
ωkâ

†
kâk + igkâk(σ̂+ + σ̂−)− ig∗kâ

†
k(σ̂+ + σ̂−)

]
(3.4)

with

gk = −
(

ωk
~ε0V

) 1
2
eik·rek· 〈e| d̂ |g〉 . (3.5)

We can simplify the Hamiltonian by making the rotating wave approximation. In the free field and
free atomic case respectively, the operators have the following time dependence:

âk(t) = âk(0)e−iωt , â†k(t) = â†k(0)eiωt , σ̂±(t) = σ̂±(0)e±iω0t . (3.6)

For ωk close to ω0, the terms with âσ̂+ and â†σ̂− in the Hamiltonian oscillate with frequency ωk +ω0,
which is much faster than âσ̂− and â†σ̂+, which oscillate with frequency ωk − ω0. We then assume
that all the relevant physical processes in the one dipole case oscillate with a frequency that is much
less than ωk +ω0, so that the contribution of the terms âσ̂+ and â†σ̂− averages to zero. We should be
aware that this only applies for the one dipole case. The Hamiltonian after the approximation reads:

H = HA +HF +HI = 1
2~ω0σ̂z +

∑
k

~
[
ωkâ

†
kâk + igkâkσ̂+ − ig∗kâ

†
kσ̂−

]
. (3.7)

We now derive the Heisenberg equation of motion for the field and the atom. In the case of the
field we derive it for the â operator:

˙̂ak = 1
i~

[âk, H] = −iωkâk − g∗kσ̂− , (3.8)

which has the solution

âk(t) = −g∗k
∫ t

−∞
σ̂−(t′)eiωk(t′−t)dt′ + âk(0)e−iωkt . (3.9)

Similarly we calculate the equation of motion for the σ̂− operator:

˙̂σ− = 1
i~

[σ̂−, H] = −iω0σ̂− −
∑

k
gkσzâk , (3.10)

where in the last term the normal ordering convention has been used, where the creation operators go
before the anihilation operators [8]. We expand equation 3.10 by plugging the expression for âk(t) in
3.9:

˙̂σ− = −iω0σ̂− +
∑

k
|gk|2σz

∫ t

−∞
σ̂−(t′)eiωk(t′−t)dt′ + gkσ̂zâk(0)e−iωkt . (3.11)

We will focus on solving this equation since it contains the dynamics of the dipole. So far the
dipole approximation and the rotating wave approximation have been made. To be able to solve the
equation we have, one more approximation is required, which is the Markov approximation. This
approximation consist of saying that the future state of the coherence operator is not dependent on
its past history. This is to be able to take the σ̂−(t′) out of the time integral. Mathematically we say
σ̂−(t) ≈ σ̂−(0)e−iω0t. Then we can write:∫ t

−∞
σ̂−(t′)e−iωk(t−t′)dt′ ≈

∫ t

−∞
σ̂−(0)e−iω0t′eiωk(t′−t)dt′ ≈ σ̂−(t)

∫ t

−∞
ei(ω0−ωk)(t−t′)dt′ . (3.12)

Page 10 of 20



3.2 Two dipoles - Raw Equation of motion 3 QUANTUM MODEL

Using this, equation 3.11 becomes

˙̂σ− =
[
−iω0 −

∑
k
|gk|2

∫ ∞
0

ei(ω0−ωk)τdτ

]
σ̂− + gkσ̂zâk(0)e−iωkt , (3.13)

where we defined τ = t − t′. The last term in this equation represents electromagnetic noise, in
principle it is always there, but we will assume here that it has very little influence on the dynamics
of the system. We wish now to calculate the second term inside the square brackets. By looking at
the density of electromagnetic modes in a cavity of volume V, it can be shown that for V very large
[7] ∑

k→ 2V
(2π)3

∫ 2π

0
dφ

∫ π

0
dθ sin(θ)

∫ ∞
0

dkk2 , (3.14)

so the second term inside the brackets in 3.13 becomes
1

4π2ε0~

∫ π

0
dθ sin(θ)

∫ ∞
0

dkk2ω(e· 〈e| d̂ |g〉)2
∫ ∞

0
ei(ω0−ω)τdτ . (3.15)

Now we assume that the expectation value of the dipole moment only has a z component, then we can
write e· 〈e| d̂ |g〉 = d cos θ, where d is the value obtained by calculating the expectation value. Then
the above expression becomes

d2

4π2ε0~c3

∫ π

0
dθ sin(θ) cos2(θ)

∫ ∞
0

dωω3
∫ ∞

0
ei(ω0−ω)τdτ . (3.16)

The angle integral can be calculated and gives 2
3 . The time integral can be shown to be [9]∫ ∞

0
ei(ω0−ω)τdτ = πδ(ω0 − ω) + iP

[ 1
ω0 − ω

]
, (3.17)

which we plug into equation 3.16 to get

d2ω3
0

6πε0c3~
+ i

d2

6π2ε0~c3P

∫ ∞
0

ω3

ω0 − ω
dω = Γ

2 + iΩ , (3.18)

where we now have derived an explicit expression for the decay rate Γ. On the other hand, the
frequency shift Ω depends on an integral which value is infinity. This thesis will not cover how to deal
with this problem. We will assume that it has a finite value and we will operate with the corrected
ω0. This is called the lamb shift. The fact that Γ and Ω represent a decay rate and a frequency shift
becomes clear when we replace them into eq 3.13:

˙̂σ− = −
[Γ

2 + i(ω0 + Ω)
]
σ̂− (3.19)

3.2 Two dipoles - Raw Equation of motion

Next we derive the equation of motion for two dipoles in quantum electrodynamics. The Hamiltonian
will be similar to the one in eq 3.4, with the difference that there will be two contributions for the free
atomic Hamiltonian

HA = HA(1) +HA(2) =
2∑
j=1

1
2~ω

(j)
0 σ̂(j)

z . (3.20)

For the electric field we will no longer restrict it to plane waves. From now on we will be using any
generalized mode solution for the electromagnetic wave equation, which will be denoted by Fk(r).
The electric field operator then becomes [10]

Ê(r, t) = i
∑

k

(~ωk
2ε0

) 1
2 [

Fk(r)âk(t)− F∗k(r)â†k(t)
]
, (3.21)
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3.3 Markov Approximation 3 QUANTUM MODEL

so the new interaction Hamiltonian within the dipole approximation becomes

HI = −i
2∑
j=1

∑
k

(~ωk
2ε0

) 1
2

d(j)·Fk(rj)âk(t)(σ̂
(j)
− + σ̂

(j)
+ )− d(j)·F∗k(rj)â†k(t)(σ̂

(j)
− + σ̂

(j)
+ ) ; (3.22)

while the field Hamiltonian is unchanged

HF =
∑

k
~ωkâ†kâk . (3.23)

In the one dipole case we did the rotating wave approximation directly in the Hamiltonian; there we
assumed that events of the frequency scale 2ω0 were negligible. Now that we have two dipoles, as the
distance between them becomes less than the wavelength corresponding to ω0, events of this frequency
scale can be thought to have an influence on the system, so we will proceed with the Hamiltonian
without the rotating wave approximation.

The Heisenberg equations of motion are now derived. We will follow the same procedure as in the
one dipole case. The equation of motion for the electric field annihilation operator reads

˙̂ak = 1
i~

[âk, H] = −iωkâk +
2∑
j=1

(
ωk

2~ε0

) 1
2

d(j)·F∗k(rj)(σ̂
(j)
− + σ̂

(j)
+ ) . (3.24)

It has the solution

âk(t) = âk(0)e−iωkt +
(
ωk

2~ε0

) 1
2

2∑
j=1

d(j)·F∗k(rj)
∫ t

−∞
(σ̂(j)

+ (t′) + σ̂
(j)
+ (t′))eiωk(t′−t)dt′ . (3.25)

For the coherence operator we will be looking specifically at the one from dipole 1, σ̂(1)
− . Its equation

of motion is

˙̂σ(1)
− = 1

i~
[σ̂(1)
− , H] = −iω(1)

0 σ̂
(1)
− +

∑
k

(
ωk

2~ε0

) 1
2

[d(1)·Fk(r1)σ̂(1)
z âk − d(1)·F∗k(r1)â†kσ̂

(1)
z ] , (3.26)

where normal ordering has been used. The next step is to insert the solution for âk from eq. 3.25 and
â†k, which is its hermitian conjugate, to get the full equation of motion:

˙̂σ(1)
− =− iω(1)

0 σ̂
(1)
− +

∑
k

(
ωk

2~ε0

) 1
2 [

d(1)·Fk(r1)âk(0)e−iωkt − d(1)·F∗k(r1)â†k(0)eiωkt
]

+
∑

k

(
ωk

2~ε0

) 2∑
j=1

[
d(1)·Fk(r1)F∗k(rj)·d(j)σ̂(1)

z

∫ t

−∞
(σ̂(j)

+ (t′) + σ̂
(j)
− (t′))eiωk(t′−t)dt′

−d(1)·F∗k(r1)Fk(rj)·d(j)
∫ t

−∞
(σ̂(j)

+ (t′) + σ̂
(j)
− (t′))e−iωk(t′−t)dt′σ̂(1)

z

]
,

(3.27)

where Fk(r1)F∗k(rj) denotes the tensor product of the mode functions.

3.3 Markov Approximation

To shorten equation 3.27, we will define the noise terms as

N =
∑

k

(
ωk

2~ε0

) 1
2 [

d(1)·Fk(r1)âk(0)e−iωkt)− d(1)·F∗k(r1)â†k(0)eiωkt)
]
, (3.28)
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3.3 Markov Approximation 3 QUANTUM MODEL

and introduce the Green’s functions by using the relation [5]

∑
k
ωk·Fk(r′)F∗k(r)e−iωk(t−t′) = 2

∫
dωe−iω(t−t′) ω

2

πc2 Im
{
G(r′, r;ω)

}
. (3.29)

Reversing the order of the product of the mode functions would bring G(r, r′;ω) instead. In this thesis
we will be using the Green’s function for free space, for which the order of r and r′ gives the same
function. This property is assumed to simplify the calculations. If a Green’s function without this
property were to be used, one should be careful of this affects the following calculations.

So far only the dipole approximation has been made, to be able to proceed, we now make the
Markov approximation, as we did in equation 3.12. This time we have four different terms:∫ t

−∞
σ̂−(t′)e−iωk(t−t′)dt′ ≈

∫ t

−∞
σ̂−(0)e−iω0t′eiωk(t′−t)dt′ ≈ σ̂−(t)

∫ t

−∞
ei(ω0−ωk)(t−t′)dt′ ,∫ t

−∞
σ̂−(t′)eiωk(t−t′)dt′ ≈ σ̂−(t)

∫ t

−∞
ei(ω0+ωk)(t−t′)dt′ ,∫ t

−∞
σ̂+(t′)e−iωk(t−t′)dt′ ≈

∫ t

−∞
σ̂+(0)eiω0t′eiωk(t′−t)dt′ ≈ σ̂+(t)

∫ t

−∞
e−i(ω0+ωk)(t−t′)dt′ ,∫ t

−∞
σ̂+(t′)eiωk(t−t′)dt′ ≈ σ̂+(t)

∫ t

−∞
ei(−ω0+ωk)(t−t′)dt′ .

(3.30)

Applying equations 3.28, 3.29 and 3.30 into 3.27 we get:

˙̂σ(1)
− = −iω(1)

0 σ̂
(1)
− +N +

2∑
j=1

1
~πε0c2

∫
dωω2d(1) · Im{G(r1, r2;ω)}·d(j)σ̂(1)

z

×
[
σ̂(1)
z σ̂

(j)
+

∫ ∞
0

e−i(ω
(j)
0 +ω)τdτ + σ̂(1)

z σ̂
(j)
−

∫ ∞
0

ei(ω
(j)
0 −ω)τdτ

−σ̂(j)
+ σ̂(1)

z

∫ ∞
0

ei(−ω
(j)
0 +ω)τdτ − σ̂(j)

− σ̂(1)
z

∫ ∞
0

ei(ω
(j)
0 +ω)τdτ

]
.

(3.31)

To proceed we calculate the time integrals by using equation 3.17. Then we define the quantities

Γ(mn)
± = 2

c2~ε0

∫
ω2d(m) · Im{G(rm, rn;ω)}·d(n)δ(ω(n)

0 ∓ ω)dω , (3.32)

Ω(mn)
± = 1

πc2~ε0
P

∫
ω2d(m) · Im{G(rm, rn;ω}·d(n)

(ω(n)
0 ± ω)

dω , (3.33)

Ω(mn)′
± = 1

πc2~ε0
P

∫
ω2d(m) · Im{G(rm, rn;ω}·d(n)

−(ω(n)
0 ± ω)

dω , (3.34)

so that equation 3.31 becomes

˙̂σ(1)
− = −iω(1)

0 σ̂
(1)
− +N +

2∑
j=1

(1
2Γ(1j)
− − iΩ(1j)′

+ )σ̂(1)
z σ̂

(j)
+ + (1

2Γ(1j)
+ + iΩ(1j)

− )σ̂(1)
z σ̂

(j)
−

−(1
2Γ(1j)

+ + iΩ(1j)′
− )σ̂(j)

+ σ̂(1)
z − (1

2Γ(1j)
− + iΩ(1j)

+ )σ̂(j)
− σ̂(1)

z .

(3.35)

At last we expand the sum over j and apply the product of the atomic operators for the cases where
they correspond to the same dipole. For the cases where they correspond to different dipoles we note

Page 13 of 20



3.4 Rotating wave Approximation 3 QUANTUM MODEL

that σ̂(2)
− σ̂

(1)
z = σ̂

(1)
z σ̂

(2)
− . Then equation 3.35 becomes

˙̂σ(1)
− = −iω(1)

0 σ̂
(1)
− +N

+
(1

2(Γ(11)
− + Γ(11)

+ )− i(Ω(11)′
+ − Ω(11)′

− )
)
σ̂

(1)
+ +

(1
2(−Γ(11)

+ − Γ(11)
− )− i(Ω(11)

− + Ω(11)
+

)
σ̂

(1)
−

+
(1

2(Γ(12)
− − Γ(12)

+ )− i(Ω(12)′
+ + Ω(12)′

− )
)
σ̂

(2)
+ σ̂(1)

z +
(1

2(Γ(12)
+ − Γ(12)

− )− i(−Ω(12)
− + Ω(12)

+

)
σ̂

(2)
− σ̂(1)

z

(3.36)

3.4 Rotating wave Approximation

We would like to simplify equation 3.36 even further. We start by calculating equation 3.32. Even
though the limits of the integral in equation 3.29 are not specified, we can assume that they are from
zero to infinity, since those were the limits for the one dipole case. Then Γ(nm)

− = 0.
We will from now on use the lamb shifted atomic oscillation frequency ω(1)

0 = ω
(1)
0 + (Ω11

+ + Ω11
− ).

We will also assume that the noise terms have no influence on the motion. Then eq 3.36 becomes

˙̂σ(1)
− = −iω(1)

0 σ̂
(1)
− +

(1
2Γ(11)

+ − i(Ω(11)′
+ − Ω(11)′

− )
)
σ̂

(1)
+ −

1
2Γ(11)

+ σ̂
(1)
−

+
(
−1

2Γ(12)
+ − i(Ω(12)′

+ + Ω(12)′
− )

)
σ̂

(2)
+ σ̂(1)

z +
(1

2(Γ(12)
+ − i(−Ω(12)

− + Ω(12)
+

)
σ̂

(2)
− σ̂(1)

z

. (3.37)

To proceed we transform onto the rotating frame, to do so we introduce the quantities ωs = ω
(1)
0 +ω(2)

0
2 ,

˜̂σ(1)
− = σ̂

(1)
− eiωst, ˜̂σ(2)

− = σ̂
(2)
− eiωst and ˜̂σ(j)

+ = ˜̂σ(j)†
− , which oscillate slowly compared to σ̂pm(j). Then

substitute into equation 3.37 to get:

˙̂̃σ− =

i∆ω2 −
Γ(11)

+
2

 ˜̂σ(1)
− +

Γ(11)
+
2 + i(−Ω(12)

+ + Ω(12)
− )

 ˜̂σ(2)
−

ˆ
σ

(1)
z

−

Γ(11)
+
2 + i(Ω(11)′

+ − Ω(11)′
− )

 ˜̂σ(1)
+ ei2ωst −

−Γ(12)
+
2 + i(Ω(12)′

+ + Ω(12)′
− )

 ˜̂σ(2)
+ σ̂ze

i2ωst ,

(3.38)

were we make the rotating wave approximation which says that the contribution of the oscillating
terms averages to zero. The resulting differential equation is

˙̂̃σ(1)
− =

i∆ω2 −
Γ(11)

+
2

 ˜̂σ(1)
− +

Γ(12)
+
2 + i(−Ω(12)

+ + Ω(12)
− )

 ˜̂σ(2)
−

ˆ
σ

(1)
z . (3.39)

This equation is very hard to solve because of the ˜̂σ(2)
− σ̂z

(1) term, where both operators have a time
dependence. This can be solved by changing from the single atom basis to the coupled basis. We do
so by multiplying the whole equation by the identity operator for dipole two. In the case of σ̂(1)

− we
have

σ̂
(1)
− ⊗ I2 = |g1〉 〈e1| ⊗ (|g2〉 〈g2|+ |e2〉 〈e2|) = |g1g2〉 〈e1g2|+ |g1e2〉 〈e1e2| ≈ |g1g2〉 〈e1g2| = σ̂

(1)′
− , (3.40)

where we made the approximation that the double excited state is not present in our system. This
approximation is done because in the protocol where we will apply the model, only very few photons
are present at a time, so double excitations are negligible [4]. Similarly for ˜̂σ(2)

− σ̂z
(1) we get

(˜̂σ(2)
− σ̂z

(1))⊗ I2 = ˜̂σ(2)
− ⊗ σ̂z(1) = |g1g2〉 〈g1e2| − |e1g2〉 〈e1e2| ≈ |g1g2〉 〈g1e2| = −σ̂(2)′

− (3.41)
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3.5 Solution 3 QUANTUM MODEL

Applying this to equation 3.42 we finally get an equation that can be solved:

˙̂̃σ(1)′
− =

i∆ω2 −
Γ(11)

+
2

 ˜̂σ(1)′
− +

−Γ(12)
+
2 + i(Ω(12)

+ − Ω(12)
− )

 ˜̂σ(2)′
− . (3.42)

For the second dipole, the same derivation can be made to achieve

˙̂̃σ(2)′
− =

−i∆ω2 −
Γ(22)

+
2

 ˜̂σ(2)′
− +

−Γ(21)
+
2 + i(Ω(21)

+ − Ω(21)
− )

 ˜̂σ(1)′
− . (3.43)

We see that this system of equations is equivalent to the one we had in the classical case, and so the
solution must be similar.

3.5 Solution

Before stating the solution, we would like to have an expression for all the Ω and Γ constants in the
equations. For Γ we have

Γ(nm)
+ = 2ω(n)2

0
~ε0c2 d(m) · Im

{
G(rm, rn;ω(n)

0 )
}
·d(n) . (3.44)

Starting with Γ(11) and Γ(22), they require the Green’s function to be evaluated at the origin, but the
Green’s function for a point charge has a singularity at the origin. Hence we would rather use another
method for calculating them. Luckily we can safely assume that this is the one dipole decay rate,
which we calculated in section 3.1. Stating the result we got there we have:

Γ(mm) = d2ω3
0

3πε0c3~
. (3.45)

As for the non diagonal Γ terms, they can be calculated if the Green’s function and the direction of
the dipole moments are specified. For this thesis we will be looking at the vacuum Green’s function,
as we did for the classical case. We will return to the non diagonal Γ terms in shortly. To calculate
Ω(12)

+ − Ω(12)
− we use the Kramers-Kronig relation [6], which for our case becomes:

1
π~ε0c2P

∫ ∞
0

[
ω2d(m) · Im{G(rm, rn;ω}·d(n)

(ω(n)
0 + ω)

− ω2d(m) · Im{G(rm, rn;ω}·d(n)

(ω(n)
0 − ω)

]
dω

= ω
(n)2
0

~ε0c2 d(m) · Re
{
G(rm, rn;ω(n)

0

}
·d(n) ,

(3.46)

which is the expression for Ω(12)
+ − Ω(12)

− . We note that it is the same as 3.44 but with the real part
of the Green’s function instead. The total non diagonal coefficients are given by the sum of these
functions:

−Γ(12)
+
2 + i(Ω(12)

+ − Ω(12)
− ) = ω

(2)2
0

~ε0c2 d(1) ·
(
− Im

{
G(r1, r2;ω(2)

0

}
+ iRe

{
G(r1, r2;ω(2)

0

})
· d(2)

= i
ω

(2)2
0

~ε0c2 d(1) ·
(
G(r1, r2;ω(2)

0

)
· d(2) .

(3.47)

We recognize this result as being very similar to the term C2→1 we used for the classical case in
equation 2.22. The spatial and angular dependence are the same up to a constant. We define the
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quantum equivalent of the function C2→1 as

Q2→1(r, θ1, θ2,∆φ) = i
ω

(2)2
0

~ε0c2 d(1) ·
(
G(r1, r2;ω(2)

0

)
· d(2)

= i
eik2rd1d2

4πε0~

[
sin2(θ1) sin(θ2) cos(∆φ)k

2
2
r

+ (3 cos(θ1) cos(θ2)− d̂1 · d̂2)
( 1
r3 −

ik2
r2

)]
,

(3.48)

where
d̂1 · d̂2 = sin(θ1) sin(θ2) cos(∆φ) + cos(θ1) cos(θ2) , (3.49)

and we write the system of equations in matrix form:[ ˙̂̃σ(1)
−

˙̂̃σ(2)
−

]
=
[
−Γ(11)/2 + i∆ω

2 Q2→1(r, θ1, θ2,∆φ)
Q1→2(r, θ1, θ2,∆φ) −Γ(22)/2− i∆ω

2

] [
˜̂σ(1)
−

˜̂σ(2)
−

]
. (3.50)

Now it is evident that we have exactly the same system of equations as in the classical case (equation
2.43). The eigenvalues are obtained by replacing C by Q and γ by Γ in the classical ones (eq 2.44),
and the solution is obtained by replacing Ã by ˜̂σ− in the classical solution (eq 2.47). As the spacial
dependence of C and Q is the same, the plots seen in figures 3, 4 and 5 also apply for the quantum
mechanical system.

The eigenvalues of the system have a greater physical significance for the quantum system than
they have for the classical system. As the equation of motion is diagonalized, we move into the
dressed states basis, rendering the equation of motion for the dressed states. Thus the real part of the
eigenvalues tells us the decay rate of the dressed states, and the absolute value of the difference of the
imaginary parts tells us the energy difference between the dressed states.

ΓS = Re(λ+) = −Γ(11) + Γ(22)

2 + Re(
√
F (∆ω,∆γ, r, θ1, θ2,∆φ))

2 ,

ΓA = Re(λ−) = −Γ(11) + Γ(22)

2 − Re(
√
F (∆ω,∆γ, r, θ1, θ2,∆φ))

2 ,

δtotal = | Im(λ+ − λ−)| = | Im
√
F (∆ω,∆γ, r, θ1, θ2,∆φ)| ,

(3.51)

where F is defined as in the classical model:

F (∆ω,∆γ, r, θ1, θ2,∆φ) =
(
−i∆ω + γ1 − γ2

2

)2
+ 4Q1→2(r, θ1, θ2,∆φ)Q2→1(r, θ1, θ2,∆φ) . (3.52)

We have now successfully developed a model that describes two dipoles interacting with each other
in quantum mechanics. We can see that the behavior in the Heisenberg picture of the operators is the
same as the behavior of the dipoles in the classical picture. The Heisenberg picture usually renders
results that are similar to their classical analogous, which is what we achieved here. Therefore we can
be confident that our results are correct.

4 Application to the protocol
Now that we have developed a model that describes the energy difference and decay rate of the dressed
states, we would like to see what it can tell us about the photon-qubit entanglement protocol described
in the introduction. We now have a superconducting qubit interacting with the system of dipoles.
The superconducting qubit at hand has an oscillation frequency of about 5GHz, and we estimate the
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single atom decay rate of the dipoles as being about 20MHz. The atomic oscillation frequency ω0 has
to be in the range of the incoming photons, which are optical photons, so we estimate to be 5THz.

The plots shown in the preceding chapters assumed a ratio between ω0 and γ in the order of
magnitude 107, because for this ratio one can fully appreciate the dynamics of the system. For the
problem at hand we have a ratio in the order of 105, and a suitable plot for this case can be seen in
figure 6. The resonance condition implies that δtotal = ωq, where ωq is the oscillation frequency of
the superconducting qubit. In practice, when applying the protocol, the only parameter that can be
directly controlled is ∆ω, so this one must be tuned so that the resonance condition is fulfilled. The
value of the energy shifting as a function of distance, angles and ∆ω has been calculated in this thesis,
and is given by δtotal in eq 3.51. In this thesis we will not derive a written expression for the required
∆ω value to achieve resonance. Instead we have done numerical calculations for which value of ∆ω is
required for given values of r, θ1, θ2,∆φ to achieve resonance. The result for θ1 = θ2 = π

2 ,∆φ = 0 can
be seen in figure 7.

Figure 6: Energy difference of the
dressed states as a function of the
distance between the molecules. We
use the assumptions mentioned in the
main text, θ1 = θ2 = π/2 and ∆φ = 0

Figure 7: Plot of the required ∆ω for
the energy difference of the dressed
states to be equal to the qubit energy
θ1 = θ2 = π/2 and ∆φ = 0

After achieving resonance, we would like to know the probability for the Raman process. This is
given by the equation:

P =
(
γ1D
γ

)2 ΓAΓS
γ2

G2

Γ2
AΓ2

S
γ2 +G2

, (4.1)

which was obtained by private conversation with the authors of the protocol, its derivation will not be
covered in this thesis. This equation assumes that the qubit and the dressed states are in resonance,
which means δtotal = ωq. We can calculate the decay rates ΓS and ΓA by using equation 3.51. The
quantity

(
γ1D
γ

)2
is a correction factor to the fact that the scattering happens in a one dimensional

waveguide, not in tree dimensions as we calculated for this thesis. The term G is the transition rates
between the state |S−〉 to |A+〉. We will now find an expression for this transition rate. So far we have
only looked at the problem of the two dipoles ignoring the superconducting qubit. The interaction
Hamiltonian of the qubit and the molecules is given by

HI
mq =

2∑
j=1

~gj
4 τ̂x ⊗ (σ̂(j)

z + I) , (4.2)
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where gj is the coupling constant for the qubit with the dipoles [11], its value will not be calculated
in this thesis. For simplicity we will approximate g2 = 0, assuming that the qubit only couples to
one of the molecules. If this term is added to the original Hamiltonian, the new system of Heisenberg
equations of motion becomes[ ˙̂̃σ(1)′

−
˙̂̃σ(2)′
−

]
=
[
i∆ω

2 −
Γ(11)

2
Γ(12)

2 + iΩ(12)

Γ(21)

2 + iΩ(21) −i∆ω
2 −

Γ(22)

2

]
− iτ̂x

[
gc1 0
0 0

] [
˜̂σ(1)′
−

˜̂σ(2)′
−

]
, (4.3)

where we defined Ω(nm) = Ω(nm)
+ − Ω(nm)

− . The expression for this quantity can be seen in equation
3.46. For later use, we rewrite equation 4.3 in the following way:

σ̇ =
([
−Γ(11)

2
Γ(12)

2
−Γ(21)

2 −Γ(22)

2

]
+ i

[
∆ω
2 Ω(12)

Ω(21) −∆ω
2

]
+ iτ̂x

[
gc1 0
0 0

])
σ . (4.4)

We wish to find the transition rate from the dressed state |S−〉 to |A+〉. By bringing equation 4.3
into the eigenbasis of its first matrix (which we will denote as M matrix), we get the dynamics of the
dressed states. In this basis the first matrix becomes a diagonal matrix, and the second becomes a
matrix with four different terms that couple the dressed states by interacting with the qubit. The
diagonalization of the M matrix can be seen in section 2.4. A problem arises though because the M
matrix is not hermitian, so when moving to its eigenbasis, the terms that couple |S−〉 to |A+〉 are
unclear. As we soon will see, this problem does not arise if we move to the eigenbasis of a hermitian
matrix. Therefore we make the following approximation: instead of transforming to eigenbasis of
the M matrix, we transform into the eigenbasis of the second matrix in 4.4 (which we denote by Ω
matrix), which is hermitian under the approximation Ω(12) = Ω(21) = Ω. Bringing the system into the
eigenbasis of the Ω matrix we write

U †σ̇ = i

([
λ+ 0
0 λ−

]
− U †

[
−Γ(11)

2
Γ(12)

2
−Γ(21)

2 −Γ(22)

2

]
U − τ̂xU †

[
gc1 0
0 0

]
U

)
U †σ , (4.5)

where U and U † are the unitary transformation matrices. The coupling terms we are interested in is
then given by the cross entrances of U †gU , which we now calculate. First we wish to calculate the
eigenvalues and the eigenvectors of the Ω matrix. It has the eigenvalues

λ± = ±

√
∆ω2

4 + Ω2 . (4.6)

Defining the function L± = Ω
λ±−∆ω

2
the normed eigenvectors become

V+ = 1√
L2

+ + 1

[
L+
1

]
, V− = 1√

L2
− + 1

[
L−
1

]
(4.7)

Which compose the unitary matrix U †. The g matrix in the eigenbasis becomes

U †gU = gc1

 L2
+

L2
++1

L+
L2

++1
L+
L2

++1
1

L2
++1

 . (4.8)

The non diagonal entries of this matrix couple the dressed states |A〉 and |S〉 through an interaction
with the qubit. It is still unclear which one specifically couples |S−〉 to |A+〉, but because both non
diagonal terms are the same, by symmetry the coupling term must be:

G = gc1
L+

L2
+ + 1

. (4.9)
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This quantity tells us the rate for the transition between the states |S−〉 and |A+〉. Now we have all
the functions that describe the Raman transition probability in equation 4.1. In figures 8 and 9 we
show plots of of this probability for different angle configurations and different distances between the
dipoles. For every set of angles and distances it is assumed that the quantity ∆ω is tuned so that the
dipoles are in resonance with the qubit.

Figure 8: Scattering probability for
the Raman process for different values
of the difference in azimuthal angles
∆φ, the polar angles are θ1 = θ2 =
π/2. We assumed the qubit coupling
to be g1 = 4γ. The regions in the
left before the lines begin are regions
where resonance cannot be achieved
due to a too strong dipole-dipole in-
teraction.

Figure 9: Scattering probability for
the Raman process for different values
of the polar angle θ2. The other angles
are ∆φ = 0 and θ1 = 0. We assumed
the qubit coupling to be g1 = 4γ. The
regions in the left before the lines be-
gin are regions where resonance cannot
be achieved due to a too strong dipole-
dipole interaction.

We will finish with a brief discussion of the results presented in figures 8 and 9. We can see that
for every set of angles there is an optimum value of r that maximizes the probability. The maximum
probability is about 20% and falls quickly around both sides of the peak. There is also a minimum
value of r required for the transition to be possible. Every distance below this minimum, results in a
dipole-dipole interaction that is too strong, making resonance impossible.

We can see that in the angle configurations where there is no dipole interaction, ie. (θ1, θ2,∆φ) =
(π2 ,

π
2 ,

π
2 ) and (θ1, θ2,∆φ) = (0, π2 , 0), the scattering probability is zero, which can be expected, as the

coupling parameter becomes zero. On the other hand, the best probabilities are not achieved for the
configurations where the dipole-dipole interaction is strongest. The reason is that even though they
have the biggest coupling parameter, they also have the fastest decay rates, lowering the probabilities.
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5 Conclusion
In this thesis we have seen a possible protocol that allows coupling of light to superconducting qubits
without direct interaction, and we achieved a better understanding of the physics in the problem. We
have derived a suitable model of the dipole-dipole interaction present in the protocol, and we have
calculated its probability of success under different conditions.

We derived explicit expressions for the decay rates, frequency shifting and equations of motion of
two oscillating dipoles interacting with each other by the electromagnetic field. We found that the
decay rates of the two dipoles go towards 2 and 0 times the single dipole decay rate respectively as
the distance between them goes to zero. On the other hand, as their distance goes towards infinity,
the decay rate goes towards the original decay rate for both dipoles. They also create a shift in their
oscillation frequency, which goes towards infinity for the distance going to zero, and towards their
frequency difference as the distance goes to infinity. We found that the dynamics obtained by looking
at the classical dynamics of two dipoles are very similar to the dynamics obtained by doing the same
calculations with quantum mechanics when looking at the Heisenberg picture.

We applied the results to the given photon-qubit entanglement protocol. Using our model we
could calculate numerically what frequency difference for the oscillation of the dipoles was necessary
to achieve resonance condition. We found that Raman scattering is possible if the distance between
the dipoles is in the range from 0.2λ to about 0.7λ, depending on the orientation of the dipoles. We
also calculated the success probability once the resonance condition is achieved. Against expectations
we found that angle configurations where the dipoles do not interact strongly give better probability
curves that configurations with strong interactions. We also found that for an optimal configuration,
approximately one of every five photons will undergo a Raman scattering that entangles them with
the qubit. We can therefore conclude that from a theoretical perspective, this protocol is a feasible
way to entangle photons and superconducting qubits, which might in the future open the possibility
of communication between quantum computers.
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