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Abstract

A short introduction to the Kondo model and Keldysh formalism is given. Larsen’s
pseudo-fermions are introduced and used to derive the magnetization and transverse spin
susceptibility of a toy-model. The toy-model consists of a single spin 1

2 in a B-field. Both the
derived magnetization and transverse spin susceptibility agree with well-known theory. Next,
the impurity spin in the Kondo model is expressed in terms of Larsen’s pseudo-fermions.
Using this representation, the propagator of the conduction electrons is expanded perturba-
tively, and all contributions to the vertex up to 3. order in the coupling, g, are calculated.
From this, 1-loop and 2-loop renormalization group (RG) results for the invariant coupling
are derived. A divergence at a finite temperature TK is seen to be present in 1-loop, but not
in 2-loop RG. Finally, the strong coupling regime and the calculation of physical quantities
are discussed, with special emphasis on why we should expect a divergence in the coupling
g as T → 0.
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Figure 1: Resistivity ρ as a function of temper-
ature T in AuFe for different concentrations of
Fe. The figure is taken from Kondo’s original
article (1964) [1]. It is seen that the resistivity
increases when lowering the temperature. The
solid curve is a theoretical fit made by Kondo.
It should be noted that in quantum dots it is
not the resistivity, but the conductance, which
increases as T → 0.

1 Introduction

Many dilute alloys, consisting of a nonmagnetic metal that contains impurities with magnetic
moments, show a minimum in their resistivity-temperature curve. This could be a dilute alloy
such as AuFe. [1] Experiments show, that below a given temperature, the resistance of such
an alloy increases when lowering the temperature further. This, somewhat surprising behavior,
can be seen in fig. 1. In order to describe how this minimum of resistance can occur, Kondo
introduced a model in 1964 [1], which later was named the Kondo model.

The Hamiltonian describing a metal with a Kondo impurity is given by

H = H0 +HK =
∑
kσ

εkc
†
kσckσ +

∑
i,k′σ′kσ

JSic†k′σ′τ
i
σ′σckσ, (1.1)

where S is the spin of the impurity, c†kσ creates an electron with momentum k and spin σ, τ
is the vector of Pauli matrices and εk is the energy of the conduction electrons, including the
chemical potential µ. J is the interaction constant, which we will assume to be positive, i.e.
antiferromagnetic. H0 describes the energy of the conduction electrons (ce) and HK is the ex-
change interaction which takes the spin of the impurity into account. It couples the conduction
electrons indirectly, making this a many-body problem. Here we take the impurity concentration
to be sufficiently small, such that we can neglect any impurity-impurity interaction.

The Kondo effect can not only be seen in bulk metals, but plays an important role in quantum
dots and carbon nanotubes as well. [2] Even though much current research is concerned with
these effects, we will focus on bulk metals here, since it is one of the simplest systems where one
can observe the Kondo effect.
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The following two sections give a short introduction to the formalism we will be using, with
special emphasis on Larsen’s pseudo-fermion (pf) representation. We will also use Larsen’s pf’s
to study a spin 1

2 in a B-field. It is a great warmup before moving to the more complex Kondo
model.

2 Green’s functions and Keldysh formalism

We will now derive a perturbative expansion for the ce-Green’s function using Keldysh formal-
ism. One of the strengths of Keldysh formalism is the simple form it takes in equilibrium as well
as nonequilibrium problems. This is achieved by using contour integrals. Here we will only be
working with the time-independent Hamiltonian H given in eq. 1.1, but the following can be
generalized to include a time-dependent term in H as well.1

Let us start by writing the operators in the Heisenberg picture

ψH(1) = eiHt1ψ(0)e−iHt1 , (2.1)

where 1 ≡ (t1, x1). We can define averages as〈
OH(t)

〉
= Tr[ρ(H)OH(t)], (2.2)

where O is the observable, H is the full Hamiltonian and ρ = (Tr e−βH)−1e−βH as usual. [3] For
calculating physical quantities we will use Green’s functions. For Fermi fields, ψ, we define the
lesser and greater Green’s function as

G<(1, 1′) = +i
〈
ψ†H(1′)ψH(1)

〉
(2.3)

G>(1, 1′) = −i
〈
ψH(1)ψ†H(1′)

〉
, (2.4)

respectively. [3]

We define contours and the contour-ordering operator Tc as follows: For a contour where t1 is
further along the contour than t′1, as seen on fig.2, we write t1 >c t′1, such that

Tc(ψH(1)ψ†H(1′)) =

{
ψH(1)ψ†H(1′) if t1 >c t′1
−ψ†H(1′)ψH(1) if t1 <c t′1

. (2.5)

This allows us to connect contour-ordering to our previous Green’s functions in the following
way

G(1, 1′) ≡ −i
〈
Tc(ψH(1)ψ†H(1′))

〉
=

{
G>(1, 1′) if t1 >c t′1
G<(1, 1′) if t1 <c t′1

. (2.6)

We can now make a perturbative expansion of G upon noting that e−βH = e−βH0v(t0 − iβ, t0),
where

v(t, t0) = T exp

[
−i
∫ t

t0

dt′HK,H0(t′)

]
. (2.7)

1This is beyond the scope of this thesis. See Rammer and Smith [3] for more on how this can be done.
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Figure 2: Keldysh contour for a propagator G(1, 1′) where t1 >c t′1. We will take t2 → ∞ so
both the upper contour, C1, and the lower contour, C2, spans from −∞ to ∞.

Here T is the time-ordering operator and HK,H0 is HK written in the interaction picture. [3]
After some calculations2 we get the following perturbative expansion of the full contour-ordered
ce-Green’s function of n’th order in J

G(n)(τa, τ ′a′) = −i(−i)
n

n!2n
Jn
∫
c
dτ1 . . .

∫
c
dτn

∑
i1...in

∑
γ1...γn
γ′1···γ′n

∑
a1...an
a′1...a

′
n

τ i1
γ′1γ1

τ i1
σ′
1σ1

. . . τ inγ′nγn
τ inσ′
nσn

×
〈
Tc

(
f †
γ′1

(τ1)fγ1(τ1) . . . f †γ′n
(τn)fγn(τn)

)〉
0

×
〈
Tc

(
c†
a′1

(τ1)ca1(τ1) . . . c†a′n
(τn)can(τn)ca(τ)c†a′(τ

′)
)〉

0

, (2.8)

where a ≡ kσ and 〈〉0 is the average taken with respect to the non-interacting Hamiltonian H0.
Here we have written the impurity spin using Larsen’s pf’s. In the next section it will become
clear how this is done. Now, upon applying Wick’s theorem, we get

G(n)(τa, τ ′a′) = A(n) ×

∣∣∣∣∣∣∣∣
[1, 1′] . . . [1, n′]
...

. . .
...

[n, 1′] . . . [n, n′]

∣∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣∣∣
(a, a′) (a, 1′) . . . (a, n′)
(1, a′) (1, 1′) . . . (1, n′)

...
...

. . .
...

(n, a′) (n, 1′) . . . (n, n′)

∣∣∣∣∣∣∣∣∣∣
, (2.9)

with [a, a′] and (a, a′) being the free-particle contour ordered Green’s functions for pf’s and ce’s
respectively, and

A(n) = (−1)f
in

n!2n
Jn
∫
c
dτ1 . . .

∫
c
dτn

∑
i1...in

∑
γ1...γn
γ′1···γ′n

∑
a1...an
a′1...a

′
n

τ i1
γ′1γ1

τ i1
σ′
1σ1

. . . τ inγ′nγn
τ inσ′
nσn

, (2.10)

where f is the total number of ce- and pf-loops. Note that some factors of i have been absorbed
into the free-particle Green’s functions. The last step now is to go from contour integrals to time
integrals. This can be done by noting that if we set t2 →∞ in fig. 2, we can write∫

c
dτ →

∫ ∞
−∞

dt−
∫ ∞
−∞

dt, (2.11)

and it is seen that we can go from contour ordering to time ordering by defining the propagators
and vertices as tensors. From eq. 2.11 it is clear that the vertex must be given by

2We will not go into too much detail on how the perturbative expansion is done. But the main idea is to make
a power expansion of v, and then the result follows readily.
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γ
′

σ ′

γ

σ

a

c

b

d

γ̂cdab ≡

Figure 3: The Keldysh vertex is represented by a dot. Solid lines are ce-propagators and dashed
lines are pf-propagators. Here a, b, c, d take the values 1 or 2 if they reside on the upper contour,
C1 or lower contour C2 respectively. σ and γ describes the spin of the propagators as seen in eq.
2.8.

γ̂cdab =
1

2

(
δacτ

3
bd + δbdτ

3
ac

)
Lτ3γL†
−−−−−→ 1

2

(
δabτ

1
cd + δcdτ

1
ab

)
, (2.12)

where τ i is the i’th Pauli matrix, and all other symbols are clear from fig. 3. In the last step we
have made the transformation Lτ3γL†, with L = 1√

2
(τ0 − iτ2) and τ0 being the 2 × 2 identity

matrix. This is done because the propagators take a nice form under this transformation. [3]
After some lengthy calculations, they are found to be given by

G =

[
GR(1, 1′) GK(1, 1′)

0 GA(1, 1′)

]

=

[
θ(t1 − t′1)(G>(1, 1′)−G<(1, 1′)) G>(1, 1′) +G<(1, 1′)

0 −θ(t′1 − t1)(G>(1, 1′)−G<(1, 1′))

]
. (2.13)

In this way we can go from contour integrals to time integrals, if we view the vertices and
propagators as tensors. By going to the interaction picture, expanding the resulting Green’s
function and going to real time, we have now derived a perturbative expansion of the ce-Green’s
function. Next, let us take a closer look at Larsen’s pseudo-fermions.

3 Larsen’s pseudo-fermions

In order to study the Kondo model, we need to be able to describe the spin of the impurity. As
Kondo showed, it is the dynamic nature of the spin, namely its commutation relations, which
gives rise to the Kondo effect. [1] However, in order to use the formalism of Feynman diagrams
and Wick’s Theorem, we need to represent the impurity spin in terms of fermionic operators.
This can be done in several ways. Here we will use one method given by Ulf Larsen. [4] It has the
advantage that the pf’s have zero chemical potential which simplifies the calculations. However,
as we will see, spurious states can appear, and we have to deal with these.3

3.1 Formalism

We want to include the impurity spin in our Hamiltonian, while still being able to use standard
methods of diagrammatic perturbation theory. This can be done by representing the impurity

3It should be noted that this representation only works for S = 1
2
and S = 1, see [4] for more on this.
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Pseudo-Fermion states for S = 1
2

n State Sz S · S
0 |Ω〉 0 0

1 |↑〉 1
2

3
4

1 |↓〉 −1
2

3
4

2 |↑↓〉 0 0

Figure 4: All possible pf-states. Ω is the state with no pseudo-fermions present. The blue states
are the spurious, unphysical, states. It is seen that all the unphysical states have S · S = 0.

spin using pseudo-fermions. We will write the impurity spin as

Si =
1

2

∑
σ′σ

f †σ′τ
i
σ′σfσ, (3.1)

where f †σ and fσ are creation and destruction operators of pseudo-fermions, which obey the usual
fermion anticommutation rules{

fσ, f
†
σ′

}
= δσ,σ′ , {fσ, fσ′} =

{
f †σ, f

†
σ′

}
= 0. (3.2)

When using pseudo-fermions, we will generate unphysical states as seen in fig. 4. Hence we
need a way to map statistical averages calculated in this extended Hilbert space to the physical
averages, where we only take physical states into account. Let us write4

〈R〉s = 〈R〉e A L , (3.3)

with

A =
Trs

(
e−βHR

)
Tre

(
e−βHR

) , L =
Tre

(
e−βH

)
Trs

(
e−βH

) ≡ Ze

Zs
, (3.4)

where 〈R〉e and 〈R〉s are the average of the operator R calculated in the extended and physical
Hilbert space, respectively. Note that

Tre =
∑
{n},{A}

〈A| 〈n|...|n〉 |A〉 =
∑
{A}

〈A|
2S+1∑
n=0

Trn(...)|A〉 (3.5)

is the trace over all possible states, consisting of all subsets with n number of pseudo-fermions
present. Trn(...) is the trace over all pf states containing exactly n pseudo-fermions, with

∑
{A}

tracing out any remaining degrees of freedom, such as the states of the conduction electrons. Trs

is just the trace over physical states, i.e. states with n = 1.

If R can be written as a sum of products of Si...Sj we get

A =
Trs

(
e−βHR

)
Tre

(
e−βHR

) =
Trs

(
e−βHR

)
Trs

(
e−βHR

) = 1, (3.6)

4The notation used here follows the one used by Larsen in his note [4] on pf’s, where he also treats the S = 1
case.
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since, for S = 1
2 , we have S · S = 0 for the spurious pseudo-fermion states as seen from fig. 4.

We will use this result in the next section, when we look at our toy model of a single spin 1/2
in a B-field.

Now, in order to use pf’s with the Kondo model, let us see how one can go from extended to
physical Hilbert space, when working with Green’s functions for the conduction electrons. Here
we look at the interaction HK given in Eq. 1.1. Just like in eq. 2.6 we define

G(1, 1′) = −i
〈
Tc(ψH(1)ψ†H(1′))

〉
≡ 〈D〉

G0(1, 1′) = −i
〈
Tc(ψH0(1)ψ†H0

(1′))
〉

0
≡ 〈D0〉0 , (3.7)

where the average is taken in extended Hilbert space. Since D0 does not depend on the pseudo-
fermions,5 we can write the physical Green’s functions as

Gs = 〈D〉s , Gs0 = 〈D0〉s0 = 〈D0〉0 = G0, (3.8)

where 〈〉s is the average taken w.r.t. all physical states, i.e. states containing exactly one pf. In
order to map G to Gs we note that since the interaction term is zero for states with zero and
two pf’s, we can write the trace over all pf states as6

Tre(ρD) =
∑
{A}

〈A|Tr0(ρ0D0) + Tr1(ρD) + Tr2(ρ0D0)|A〉

=
1

2
Tre(ρ0D0) + Trs(ρD). (3.9)

Defining U = ρ−1
0 ρ such that 〈U〉0 = Ze

Ze0
, we can write

A =
Trs(ρD)

Tre(ρD)

= 1−
1
2 Tre(ρ0D0)

Tre(ρD)

= 1− G0

2G 〈U〉0
. (3.10)

Now, from the definition of 〈U〉0 and L , it follows from 3.9 that

L =
2 〈U〉0

2 〈U〉0 − 1
, (3.11)

and we finally see from Gs = GA L that

Gs −Gs0 = LG−G0

(
L

2 〈U〉0
+ 1

)
= L (G−G0). (3.12)

5Here the coupling J is effectively zero, since we are using the non interacting Hamiltonian. See the comment
following eq. 2.8.

6Note again that 0 in subscript on ρ simply means w.r.t. the non-interacting Hamiltonian. All notation should
be clear from the above.

6



We can write this in terms of the t−matrix as

Gs −Gs0 = Gs0t
sGs0, G−G0 = G0tG0. (3.13)

This gives us

ts = L t, (3.14)

which maps the t−matrix from extended to physical Hilbert space.7

3.2 Example on spin 1
2
in a magnetic field

In order to get some feel for this new formalism, let us look at a toy model: A single spin 1/2 in
an external B-field. The B-field is constant in time and aligned parallel to the z-axis. We can
write the Hamiltonian, HB, in terms of pf’s as

HB =
B

2

∑
σ′σ

f †σ′τ
3
σ′σfσ =

B

2

(
f †↑f↑ − f

†
↓f↓

)
. (3.15)

And again going to the Heisenberg picture, we can get the time dependence of the pf-operators

∂fσ(t)

∂t
= i[HB, fσ](t) = −iσB

2
fσ, (3.16)

which yields

fσ(t) = fσe
− iσB

2
t, f †σ(t) = f †σe

iσB
2
t, (3.17)

where σ = ±1 for spin up and down respectively. As noted earlier, we can map functions from
the extended to the physical Hilbert space using the relation given in 3.3. For HB given in eq.
3.15 we find

L =
Tre

(
e−βH0

)
Trs

(
e−βH0

) =
2 + eβ

B
2 + e−β

B
2

eβ
B
2 + e−β

B
2

=

(
1 + eβ

B
2

)(
1 + e−β

B
2

)
eβ

B
2 + e−β

B
2

. (3.18)

By noting that G0(σt, σ′t′) = G0

(
σ, (t− t′)

)
δσσ′ , we can get an expression for the greater Green’s

function

G>0
(
σ, (t− t′)

)
= −i

〈
fσ(t)f †σ(t′)

〉
0

= −i
〈
fσf

†
σ

〉
0
e−i

σB
2 (t−t′)

= −i

(
1− nf

(
σB

2

))
e−i

σB
2 (t−t′), (3.19)

7The factor L can be quite difficult to calculate, and it might seem as a big drawback to using Larsen’s pf’s.
Other methods, such as the pf’s introduced by Abrikosov [5] eliminates unphysical states by including a chemical
potential λ

(
f†
↑f↑ + f†

↓f↓
)

in the Hamiltonian. By taking λ to infinity, Abrikosov showed that the unphysical
states got eliminated. He also showed that all diagrams containing more than one pf-loop, when calculating
the ce-selfenergy, went to zero as λ → ∞. However, taking this limit can introduce some even more serious
complications. We will not go into more detail here, but it is important to note that when working with Larsen’s
pf’s, we do not have to include an unphysical pf-potential in the Hamiltonian.
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where nf (ε) = 1
eβε+1

is the Fermi function.

Since the Green’s function given above only depends on the time difference t−t′, we will take the
Fourier transform, and look at the retarded Green’s function GR. Here we add an infinitesimal
part iη to the frequency to ensure that the integral converges. After some calculations we get8

GR0 (σ, ω) =
1

ω − εσ + iη
, (3.20)

with εσ = σB
2 . From this we can construct many new quantities, such as the spectral function

A(σ, ω) = 2πδ(ω − εσ). (3.21)

We can also get the lesser and greater Green’s function by using the relation

G<0 (σ, ω) = iA(σ, ω)nf (ω) , (3.22)
G>0 (σ, ω) = −iA(σ, ω)

(
1− nf (ω)

)
. (3.23)

We will see these quantities again, when working with the Kondo model.

We can now map physical quantities such as the magnetizationM0 to real Hilbert space by using
eq. 3.3, 3.6 and 3.18

M0 = 〈Sz〉s0 = L 〈Sz〉(e)0 =
1

2
L

(〈
f †↑f↑

〉(e)

0
−
〈
f †↓f↓

〉(e)

0

)
=
−i
2

L
(
G<0 (↑, t = 0)− G<0 (↓, t = 0)

)
=

1

2

(
1 + eβ

B
2

)(
1 + e−β

B
2

)
eβ

B
2 + e−β

B
2

(
nf (ε↑)− nf (ε↓)

)
= −1

2
tanh

(
βB

2

)
, (3.24)

which is a well-known result for a spin 1
2 in an external magnetic field. It is seen that multiplying

by L effectively makes tanh
(
x
2

)
→ tanh(x).

To get an even better understanding for this framework, let us look at the magnetic susceptibility
of the spin 1

2 next.

3.2.1 Calculating the transverse spin susceptibility for the toy model

We will now calculate the magnetic susceptibility, χij , where i, j ∈ {x, y, z}. Inspired by eq. 2.6
we define it as [6]

χij0 (τ, τ ′) = −i
〈
Tc

(
Si(τ)Sj(τ ′)

)〉
0

= −i

〈
Tc

1

2

∑
σ′σ

f †σ′(τ)τ iσ′σfσ(τ)
1

2

∑
η′η

f †η′(τ
′)τ iη′ηfη(τ

′)

〉
0

, (3.25)

8Here we look at the retarded Green’s function similar to the one defined in eq. 2.13.

8



where we have used the definition of Larsen’s pf’s from eq. 3.1. Upon evaluating this using
Wick’s theorem, just as we did in eq. 2.9, we get

χij0 (τ, τ ′) = −i
〈
Tc

(
Si(τ)Sj(τ ′)

)〉
0

= − i
4

∑
σ,σ′

[
τ iσ′,σG0(σ, τ, τ ′)τ jσ,σ′G0(σ′, τ ′, τ)

]
+
i

4

∑
σ

[
τ iσ,σG0(σ, τ, τ)

]∑
σ′

[
τ jσ′,σ′G0(σ′, τ ′, τ ′)

]
.

(3.26)

Here we have used the fact that the propagators are proportional to δσσ′ so they can be written
as G0(σ, τ ′, τ).

As an example, let us calculate the retarded transverse spin susceptibility. We will see that it
contains some new physics, compared to the magnetization we calculated earlier. The retarded
transverse spin susceptibility is defined as

χ⊥0 (τ, τ ′) = −i
〈
Tc
(
S−(τ)S+(τ ′)

)〉
=
(
χxx0 (τ, τ ′) + χyy0 (τ, τ ′) + iχxy0 (τ, τ ′)− iχyx0 (τ, τ ′)

)
, (3.27)

where S± = Sx ± iSy as usual. We now have to calculate the relevant χij . It is seen from eq.
3.26 that

χxx0 (τ, τ ′) = χyy0 (τ, τ ′) = − i
4

(
G0(↑, τ, τ ′)G0(↓, τ ′, τ) + G0(↓, τ, τ ′)G0(↑, τ ′, τ)

)
(3.28)

χxy0 (τ, τ ′) = −χyx0 (τ, τ ′) = −1

4

(
G0(↑, τ, τ ′)G0(↓, τ ′, τ)− G0(↓, τ, τ ′)G0(↑, τ ′, τ)

)
. (3.29)

An easy way to go from contour to real times is to use Langreth Theorem. [7] This theorem
states that given an expression of the from C(τ, τ ′) = A(τ, τ ′)B(τ ′, τ), the retarded component
is given by

CR(t, t′) = AR(t, t′)B<(t′, t) +A<(t, t′)BA(t′, t). (3.30)

Noting G0(σ, τ, τ ′) = G0(σ, τ − τ ′) we can perform the Fourier Transform w.r.t t− t′, and using
the expression for G given in eq. 3.22, we get the convolution

χxx,R0 (ω) = − i
4

∫
dω′

2π

(
GR0 (↑, ω′)G<0 (↓, ω′ − ω) + G<0 (↑, ω′)GA0 (↓, ω′ − ω)

+GR0 (↓, ω′)G<0 (↑, ω′ − ω) + G<0 (↓, ω′)GA0 (↑, ω′ − ω)
)

= − i
4

∫
dω′

2π

(
2iπδ(ω′ − ω + B

2 )nf
(
ω′ − ω

)
ω′ − B

2 + iη
+

2iπδ(ω′ − B
2 )nf

(
ω′
)

ω′ − ω + B
2 − iη

+
2iπδ(ω′ − ω − B

2 )nf
(
ω′ − ω

)
ω′ + B

2 + iη
+

2iπδ(ω′ + B
2 )nf

(
ω′
)

ω′ − ω − B
2 − iη

)

=
nf (B2 )− nf (−B2 )

4

(
1

ω +B + iη
− 1

ω −B + iη

)
. (3.31)

Now, going through the same steps for χxy0 , we get

χxy,R0 (ω) = i
nf (B2 )− nf (−B2 )

4

(
1

ω +B + iη
+

1

ω −B + iη

)
. (3.32)
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Using these results in eq. 3.27 we end up with

χ⊥,R0 (ω) =
(
2χxx0 (τ, τ ′) + 2iχxy0 (τ, τ ′)

)
=
nf (B2 )− nf (−B2 )

2

(
1

ω +B + iη
− 1

ω −B + iη
− 1

ω +B + iη
− 1

ω −B + iη

)
= −

nf (B2 )− nf (−B2 )

ω −B + iη
. (3.33)

And mapping to physical Hilbert space using eq. 3.18 we get the result

χ⊥,R0 (ω) = −L
nf (B2 )− nf (−B2 )

ω −B + iη

= −

(
1 + eβ

B
2

)(
1 + e−β

B
2

)
eβ

B
2 + e−β

B
2

nf (B2 )− nf (−B2 )

ω −B + iη

= tanh

(
βB

2

)(
1

ω −B + iη

)
, (3.34)

which is the result we expect for a spin 1
2 in an external magnetic field.

We could include a finite lifetime of the spin. This can be useful when going to the strong
coupling regime of the Kondo model. The pf-propagator is then given as in eq. 5.1, and we
would expect the divergence at ω = B to get broadened by the parameter Γ. The calculations
go like the ones above, but using the new expression for G instead. But the resulting integrals
are now more complicated, and we will not try to perform them here.

However, to get a deeper understanding for the physics that the transverse susceptibility de-
scribes, let us write it in real time as

χ⊥,R0 (t) = −iθ(t)
〈
[S−(t), S+(0)]

〉
, (3.35)

from which we see that the transverse susceptibility contains information about the dynamics
of the spin. If the spin did not have any internal degrees of freedom, and no dynamics, this
commutator would be zero. However, when the energy of the two spin states are far from each
other compared to the temperature, and we look at frequencies close to the energy difference
between these two states, the transverse susceptibility χ⊥,R0 (ω) can become large, and even
diverge.9 Actually, it is exactly the fact that [S−(t), S+(0)] 6= 0 in general, that gives rise to the
Kondo effect as we will see later. This is also described by Kondo in his article from 1964 [1].
With our newfound understanding of Keldysh formalism and Larsen’s pf’s, we are now ready to
deal with the Kondo model.

4 The Kondo model in the weak coupling regime

We will study the Kondo model in the weak coupling regime, that is, for temperatures T greater
than TK .10 Our goal is to calculate the effective, dimensionless coupling constant g = Jν, where

9It is clear that by including Γ in our pf-propagator, we can get rid of the divergence at ω = B. We will see
how this finite lifetime can arise in bulk metals later.

10TK is the Kondo temperature to be defined later.

10



ν is the ce-density of states at the Fermi surface. The coupling plays an important role when
calculating physical quantities such as the resistivity of the metal. But it also gives a great insight
to how the diagrammatic works out when using Larsen’s pf’s. Finally, the vertex shows some
fascinating behavior itself. Depending on which type of diagrams we sum up, different divergences
occur. When summing up infinite series of diagrams, methods from the Renormalization Group
will prove to be very useful, as we will see shortly.

4.1 Vertex diagrams

In fig. 5 all contributions to the vertex up to third order in g are shown.

g = + + +

+ + +

+ + +

1A 2P 2C 3A

3B 3C 3D

3E P1, P2 P3, P4

Figure 5: All 1., 2. and 3. order contributions to the vertex g are shown. 2P and 2C are parquet
diagrams. P1 is made by combining two 2C-type diagrams. We have not shown P2 which is
made by combining two 2P -type diagrams. P3 and P4 are made by combining one 2P - and one
2C-diagram. Again only one of the two possible diagrams is shown. As noted earlier solid and
dashed lines correspond to ce- and pf-propagators, respectively.

Now that we have drawn all the diagrams, we have to do some calculations. We will use the
perturbative expansion given in eq. 2.9, the Keldysh-vertex given in eq. 2.12 and the ce- and
pf-propagators given by 11

G(ω, p) =

[
1

ω−εp+iη (−2πi)sgn(εp)N0δ(ω − εp)
0 1

ω−εp−iη

]
(4.1)

G̃(ω) =

[
1

ω+iη 0

0 1
ω−iη

]
. (4.2)

Note that setting the pf-chemical potential to zero makes G̃K = 0. As we will see, this puts some
restrictions on which diagrams we need to include, when calculating the vertex corrections.

11This can be derived using eq. 2.13 and going thorugh the same steps as we did when deriving eq. 3.20. It
shoud be noted that we assume T → 0 here, so that we can write nf (−εp)− nf (εp) = sgn(εp). This is only used
in the Keldysh component, since it is this component which contains information about the occupation of the
given state.
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ωω

0 0

ω + ε

ε

2P

ωω + ω′ − εω + ω′ − εω

00

ω′

ε3A

Figure 6: Example on how to attach frequencies to the propagators. Note that the incoming
pf-propagator has an external frequency. We could have given the ce-propagator one as well, but
this is not necessary as noted in the text.

4.2 2. order diagrams

Let us start by looking at the two parquet diagrams. These are the 2. order diagrams. We
will only look at g21

11, but g11
21 can be calculated in very much the same way. We will calculate

the first diagram, 2P, in detail. Including a factor of i
4

∑
k τ

k
σ′στ

k
γ′γ on the left hand side,12 and

introducing an UV-cutoff Λ on the ce-band,13 we see from fig. 6 that14

g(2P )21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ

=

(
i

4

)2∑
i1,i2

[
τ i2τ i1

]
γ′γ

[
τ i1τ i2

]
σ′σ

∫
dεp

∫
dε

2π
g2(2γ̂c

′1
1b′ )G

d′c′(ε, εp)G̃
b′a′

(ω + ε)(2γ̂2d′
a′1)

=
(−1)

16

∑
k

(
δγ′γδσ′σ + 2τkσ′στ

k
γ′γ

)∫
dεp

∫
dε

2π
g2G̃R(ω + ε)GK(ε, εp)

=
(−1)

16

∑
k

(
δγ′γδσ′σ + 2τkσ′στ

k
γ′γ

)
∫
dεp

∫
dε

2π
g2 1

ω + ε+ iη
(−2πi)sgn(εp)θ(Λ− |εp|)δ(ε− εp)

=
i

16

∑
k

(
δγ′γδσ′σ + 2τkσ′στ

k
γ′γ

)∫ Λ

−Λ
dεpg

2 1

ω + εp + iη
sgn(εp)

=
i

16

∑
k

(
δγ′γδσ′σ + 2τkσ′στ

k
γ′γ

)
g2 ln

∣∣∣∣∣ω2 − Λ2

ω2

∣∣∣∣∣. (4.3)

The contribution from g(2C) can be found in the same way, and we get

g(2C)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ =

i

16

∑
k

(
−δγ′γδσ′σ + 2τkσ′στ

k
γ′γ

)
g2 ln

∣∣∣∣∣ω2 − Λ2

ω2

∣∣∣∣∣. (4.4)

12We get i from the perturbative expansion, 1
2
from the impurity spin, 1

2
from the Keldysh vertex and a spin

sum from HK .
13The cutoff Λ is essential when doing our RG-calculations.
14Here we have suppressed the frequency-dependence of the vertices on the right hand side. It should be noted

that we could have included a frequency in the incoming and outgoing ce-propagator as well. However, this would
not change the final result in any way, since we take the limit of all external frequencies going to zero in the end,
when doing the RG-calculations later.
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It is seen that the terms containing δγ′γδσ′σ cancel out, and we end up with

g(2)21

11(ω) = 2g2 ln

∣∣∣∣Λω
∣∣∣∣. (4.5)

We will later use ideas from the Renormalization Group to make our vertex independent of the
UV-cutoff Λ.

4.3 3. order diagrams

4.3.1 Diagram 3A and 3B

We can do exactly the same type of calculations for the third order diagrams. For diagram 3A,
using fig. 6, we get15

g(3A)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ

=

(
i

4

)3

(−1)
∑
i1,i2,i3

[
τ i1τ i2τ i3

]
γ′γ

Tr
[
τ i1τ i3

]
τ i2σ′σ

∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3

[(
G̃R(ω + ω′ − ε)G̃R(ω + ω′ − ε)

)(
GR(ω′, εp)G

A(ε, εq)

+GA(ω′, εp)G
R(ε, εq) +GK(ω′, εp)G

K(ε, εq)
)

+
(
G̃A(ω + ω′ − ε)G̃A(ω + ω′ − ε)

)(
GR(ω′, εp)G

R(ε, εq) +GA(ω′, εp)G
A(ε, εq)

)]
.

(4.6)

After some lengthy calculations, which can be seen in appendix 8.1, we end up with

g(3A)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ =

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)
g3

(
2 ln

∣∣∣∣∣Λ2 − ω2

ω2

∣∣∣∣∣− 2 ln

∣∣∣∣∣4Λ2 − ω2

Λ2 − ω2

∣∣∣∣∣
)
. (4.7)

Going through the same kind of calculations for diagram 3B, we get

g(3B)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ =

(
i

4

)3

(−1)
∑
k

(
6τkσ′στ

k
γ′γ

)
g3

(
4 ln |2| − 4 ln

∣∣∣∣Λω
∣∣∣∣) . (4.8)

None of the other diagrams come with logarithmic contributions as we will see shortly. So to
third order in g, keeping track of log-diagrams only, we get the following correction to the vertex

g(3)21

11(ω) =

(
i

4

)2

g3

(
4 ln

∣∣∣∣∣Λ2 − ω2

ω2

∣∣∣∣∣− 4 ln

∣∣∣∣∣4Λ2 − ω2

Λ2 − ω2

∣∣∣∣∣− 24 ln |2|+ 24 ln

∣∣∣∣Λω
∣∣∣∣
)

−→ (−1)
g3

16

(
8 ln

∣∣∣∣Λω
∣∣∣∣− 8 ln |2| − 24 ln |2|+ 24 ln

∣∣∣∣Λω
∣∣∣∣)

= g3

(
2 ln |2| − 2 ln

∣∣∣∣Λω
∣∣∣∣) , (4.9)

where we have taken the limit ω
Λ → 0 since Λ is an UV-cutoff.

15The (−1) comes form the ce-loop.
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4.3.2 Diagram 3C, 3D, 3E

We will now look at the diagrams containing one pf-loop. If we had used Abrikosov’s pf’s we
would expect these to be zero,16 but this is not true when using Larsen’s pf’s.

When the ce- or pf-propagators make a closed loop, we get a trace over the propagators due
to the Keldysh structure. Since G̃ is diagonal, in order for the trace over the pf-loop to be
non-zero, we need an equal number of τ1’s from the Keldysh vertices to get contracted with
the pf-propagators in the loop. This restricts the non-zero terms that can be generated, when
performing the contraction over Keldysh vertices. For diagram 3C in fig. 5 we get

g(3C)21

11(ω) =

(
i

4

)3

(−1)
∑
k

(
6τkσ′στ

k
γ′γ

)∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3

[(
G̃R(ε)G̃R(ω′) + G̃A(ε)G̃A(ω′)

)
(
GK(ω + ω′ − ε, εp)GK(ω, εq) +GR(ω + ω′ − ε, εp)GA(ω, εq)

)
+
(
G̃R(ε)G̃A(ω′) + G̃A(ε)G̃R(ω′)

)
GA(ω + ω′ − ε, εp)GA(ω, εq)

]
. (4.10)

The first part of the first term is zero for ω → 0 since GK(0, εq) = 0, and setting all terms with
poles in only the lower or upper half-plane to zero, we end up with

g(3C)21

11(ω) =

(
i

4

)3

(−1)
∑
k

(
6τkσ′στ

k
γ′γ

)
∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3G̃A(ε)G̃R(ω′)GA(ω + ω′ − ε, εp)GA(ω, εq)

∝
∫
dεp

∫
dεq

∫
dε

∫
dω′

(
1

ε− iη

)(
1

ω′ + iη

)(
1

ω + ω′ − ε− εp − iη

)(
1

ω − εq − iη

)

∝
∫
dεp

∫
dεq

(
1

ω − εp − 3iη

)(
1

ω − εq − iη

)
, (4.11)

and if we assume Λ� ω, we get∫ Λ

−Λ
dεp

∫ Λ

−Λ
dεq

(
1

ω − εp − 3iη

)(
1

ω − εq − iη

)
= (iπ)(iπ). (4.12)

The precise value is not so important, although it is very easy to get from the above. The im-
portant thing to note is that the contribution is non-logarithmic, but also non-zero. This shows
the difference between Larsen’s and Abrikosov’s representations. Here we have to keep diagrams
with pf-loops, however, they are not important to this order, if we only look at log-contributions.

To be sure that this is indeed the case for all 3.order diagrams, let us look at the last two,
non-parquet-type, diagrams. It is easy to see, by following exactly the same line of reasoning,

16See footnote after eq. 3.14.
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that

g(3D)21

11(ω) ∝
∫∫∫∫ [(

G̃R(ε)G̃R(ω′) + G̃A(ε)G̃A(ω′)
)

(
GK(ω + ω′ − ε, εp)GK(ω + ω′ − ε, εq) +GR(ω + ω′ − ε, εp)GA(ω + ω′ − ε, εq)

)
+
(
G̃R(ε)G̃A(ω′) + G̃A(ε)G̃R(ω′)

)
GA(ω + ω′ − ε, εp)GR(ω + ω′ − ε, εq)

]
.

(4.13)

The part which we should expect to yield a log-contribution, is the term containing the Keldysh-
component of the ce-propagator∫

dεp

∫
dεq

∫
dε

2π

∫
dω′

2π

(
G̃R(ε)G̃R(ω′) + G̃A(ε)G̃A(ω′)

)
(
GK(ω + ω′ − ε, εp)GK(ω + ω′ − ε, εq)

)
=

∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π

(
G̃R(ε)G̃R(ω′) + G̃A(ε)G̃A(ω′)

)
(
(−2πi)sgn(εp)δ(ω + ω′ − ε− εp)(−2πi)sgn(εq)δ(ω + ω′ − ε− εq)

)
=

∫
dεp

∫
dεq

∫
dω′

(2π)2

(
G̃R(ω + ω′ − εp)G̃R(ω′) + G̃A(ω + ω′ − εp)G̃A(ω′)

)
(

(−2πi)2sgn(εp)sgn(εq)δ(εp − εq)
)

= 0, (4.14)

which is zero since we can close the contour so that there are no poles in the given half-plane
when performing the integral over ω′.

The last diagram (3E) from fig 5 is zero due to the fact that we have two traces, and therefore
end up with a term like G̃R(ω′)G̃R(ω′) or GR(ω′)GR(ω′), which has poles in only one of the
half-planes.

We can see that G̃ being diagonal restricts the non-zero terms that we can generate from the
Keldysh contraction, and to 3. order they do not contribute with any logarithms. However, they
are non-zero in general, and should therefore be considered carefully.

4.3.3 Diagram P1, P2, P3 and P4

As seen from fig. 5 these diagrams are made by combining parquet-diagrams. We will include
the contribution from these by summing up all parquet-type diagrams to infinite order. This is
done by requiring our vertex to be independent of the cutoff Λ as we will see now.

4.4 Poor man’s scaling - one loop RG

By examining higher order corrections to the vertex, Abrikosov showed that it was only parquet-
diagrams, which gave contributions to leading order in log. [5] Abrikosov summed up all of these
diagrams using a Dyson-like equation. Here, however, we will use the ideas from RG. It is much
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simpler, but it yields the same result.

We want to ensure that the invariant vertex g̃ is independent of the cut-off Λ. This makes sense
physically, since we assume Λ� Tk, ω. If we only include parquet diagrams, i.e. only take second
order contributions into account, eq. 4.5 yields

g̃ = g

(
1 + 2g ln

∣∣∣∣Λω
∣∣∣∣) , (4.15)

from which we get

dg̃

d ln(Λ)
=

dg

d ln(Λ)
+ 2g2 +O(g3) = 0. (4.16)

Now, choosing two limits D0 and D to evaluate g at, it is readily seen that17(
1

2g(D)
− 1

2g(D0)

)
= ln(D)− ln(D0). (4.17)

Setting D equal to the temperature T , and defining the Kondo temperature as TK = D0e
− 1

2g(D0) ,
we get

g(T ) =
g(D0)

1− 2 ln
(
D0
T

)
g(D0)

=
1

2 ln
(
T
Tk

) . (4.18)

We see that for g > 0, ie. an antiferromagnetic coupling, the vertex diverges as T → TK . This
result agrees with the one found by Abrikosov [5].

By solving this simple differential equation, we have effectively summed up an infinite series of
diagrams. Namely, all the parquet diagrams. This shows why RG is such a powerful method.
Instead of solving a Dyson-like equation, we have to solve a differential equation. Now by
expanding the denominator as a geometric series, one can see that we indeed generate all parquet-
diagrams. The divergence at TK does not seem to have any physical meaning, so we will now
try to get rid of it by including 3. order corrections. This means we go from one-loop RG, or
Poor man’s scaling, to two loop RG.

4.5 Going beyond Poor man’s scaling - two loop RG

Including 3. order corrections from eq. 4.9, the equation for the invariant coupling now becomes

g̃ = g

(
1 + 2g ln

∣∣∣∣Λω
∣∣∣∣− 2g2 ln

∣∣∣∣Λω
∣∣∣∣) . (4.19)

With two-loop RG we take both leading and subleading diagrams in log into account. Again,
since g̃ is independent of the cutoff we get18

dg

d ln(Λ)
= −2g2 + 2g3 = 0, (4.20)

17Here the limits enter the integral
∫ D
D0

as shown explecitly in eq. 4.21.
18This result agrees with the one derived by Fowler [8].
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Figure 7: The effective coupling g(T ). The dashed line shows T = TK . It is seen that the
divergence at TK in one-loop RG gets eliminated when going to two-loop RG. The two-loop
result is found by solving eq. 4.23 numerically in Python.

and taking the integral on both sides, like we did in one-loop RG, we get

ln

(
T

D0

)
=

∫ g(T )

g(D0)
dg

1

2g2(g − 1)
=

1

2

∫ g(T )

g(D0)
dg

(
1

(g − 1)
− 1

g
− 1

g2

)
. (4.21)

Performing the integral yields

ln

∣∣∣∣1− 1

g(T )

∣∣∣∣+
1

g(T )
= ln

∣∣∣∣1− 1

g(D0)

∣∣∣∣+
1

g(D0)
− 2 ln

(
D0

T

)
, (4.22)

which we can write as(
1

g(T )
− 1

)
exp

(
1

g(T )

)
=

(
1

g(D0)
− 1

)
exp

(
1

g(D0)

)(
T

D0

)2

. (4.23)

We can see that the divergence at T = TK is gone, and g → 1 as T → 0. This equation can be
solved numerically, and the result can be seen in fig. 7.

5 Perspective and the strong coupling regime

Now that we have seen how Keldysh formalism and Larsen’s pseudo-fermions enable us to cal-
culate the vertex in weak coupling, several questions arise. We will treat some of them here.

5.1 Where did the divergence go?

In the 1970’s Wilson developed Numerical Renormalization Group (NRG) to treat the Kondo
problem. [9] This is a numerical iterative method, where one effectively lowers the temperature
at each iteration. Using NRG Wilson showed that if we start out with a small g > 0, the cou-
pling will flow from a weak coupling regime at high temperature to a strong coupling regime at
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T � TK . Since the results of NRG describes experimental data very well, we would like to see
the same RG-flow in our model. However, we just found that the divergence did not move from
TK to T = 0, but got eliminated completely. This suggests that our perturbation theory breaks
down for T � TK .

In retrospect this makes sense. Throughout we assumed that g � 1, so that the perturbative
expansion in g ln(Λ) makes sense. But for low T we saw g → 1, and therefore we would expect
our perturbation series to break down at this point. We therefore need another way to treat the
problem in this strong coupling regime.

The way Wilson did this, with NRG, was to go from ce-states that were localized around the
impurity to states that were localized around the Fermi surface, since it is these states that are
dominating for T � TK . In appendix 8.2 results are shown from an NRG-program that I wrote
in Python. This program was made by following Wilson’s original article [9], but due to limited
space, we will not go into more detail on how the program was made here. However, analytically
we are working with an UV-cutoff, which we assume to be very large. So we need another way
to deal with this regime.

5.2 Going to strong coupling

We see some new physics when going to the strong coupling regime. The coupling diverges as
T → 0, but the ce-states that can be excited, and interact with the impurity spin, are confined
close to the Fermi surface. In fact, we would expect the number of these states to be ∝ T 1.

When the coupling increases in strength, we would expect the conduction electrons to accumu-
late around the impurity atoms, and as a result the resistance of the metal should increase. This
is exactly the effect Kondo tried to explain, so all is good. However, if the coupling diverges, one
could argue that the resistance should diverge as well, since all the conduction electrons would
be bound to the impurity atoms. But this is not what we find experimentally.

We can explain this by looking at our pf-propagator. When the electrons accumulate around the
impurity spin, they will screen the magnetic moment of the impurity spin, and in this way we
would expect the impurity to have a finite life-time. We can take this into account by defining
the pf-propagator as

G̃(ω) =

[
1

ω+iΓ − 2iΓ
ω2+Γ2 sgn(ω)

0 1
ω−iΓ

]
, (5.1)

and in this way introduce a finite lifetime to the impurity spin. Depending on how g diverges,
this Γ could be finite or infinite. In practice, a self-consistent solution for the vertex and the
pf-propagator would be needed.19 This is however beyond the scope of this project. But in
principle it could be done, if only a limited number, or types, of diagrams are important at
T � TK . In that case the Keldysh formalism gives a very nice framework in which we can
calculate the value of these diagrams, since, as mentioned before, it comes down to doing tensor
contractions and integrals. In this way one could, in theory, write a program that would solve
these diagrams self-consistently, and we could likely use this in nonequilibrium problems as well.

19If we only go to 2. order we can calculate Γ analytically without doing too much work. This can be seen in
appendix 8.3.
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5.3 Calculating physical quantities

In the end we do not want to look at the effective coupling, or the lifetime of the impurity spin.
We want to calculate physical quantities, such as the resistance of the alloy or the magnetic
susceptibility of the spin. If we know the coupling, and the dressed pf-propagator, this would
seem quite straightforward. But we have to remember that we are working with Larsen’s pseudo-
fermions. This means we have a factor L and A to worry about as we saw in eq. 3.14. It is
not clear how we can calculate these factors exact. Using the definition in 3.4 we get

L =
Tre

(
e−βH

)
Trs

(
e−βH

)
=

1
2 Tre

(
e−βH(J=0)

)
Trs

(
e−βH

) + 1

=
Trs

(
e−βH(J=0)

)
Trs

(
e−βH(J)

) + 1, (5.2)

where we have used that spurious states have S · S = 0 as noted earlier. From this it is easily
seen that L = 2 for T � TK . And since the first term is zero for J → ∞, we get L = 1 for
T � TK . In order to get the value for L in between these two limits, one would have to look
at the partition function in greater detail, or get L in some other way. Here, however, it is just
important to note that this is a complication we have to deal with when using Larsen’s pf’s.

6 Conclusion

We have seen how Keldysh formalism gives an effective and intuitive framework for working with
Feynman diagrams and the Kondo model. We also showed how Larsen’s pseudo fermions allow
us to represent the impurity spin in terms of fermionic operators, and therefore enable us to use
the methods known from QFT such as Wick’s theorem. Larsen’s pseudo fermions have the great
advantage that the chemical potential is zero. This makes the calculations simpler, and we do
not have to take the limit where the chemical potential goes to infinity, as Abrikosov had to.
However, there are other factors we have to calculate in order to map results from extended to
physical Hilbert space.

Using these formalisms, we were able to calculate the vertex to leading and subleading order in
log, and to reproduce the results of both Poor man’s scaling derived by Abrikosov [5], and the
results of two-loop RG [8]. These results gave us an insight into the diagrammatic structure,
where diagrams with multiple pf-loops are non-zero in general. However, to 3. order in g, they
did not contribute with any logarithms, due to restrictions when contracting the Keldysh-indicies.

Finally, we developed some intuition for the strong coupling regime, and saw how this coupled
to the results Wilson got using NRG. This suggests that the coupling should indeed diverge for
T → 0, and a lifetime of the impurity spin should be taken into account. However, with a good
understanding of the formalism in weak coupling, it seems very likely that the same methods
can be used to describe the Kondo model in strong coupling as well.
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8 Appendices

8.1 Calculating the vertex contribution from diagram 3A

Here we give the derivation of g(3A). From eq. 4.6 we have

g(3A)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ

=

(
i

4

)3

(−1)
∑
i1,i2,i3

[
τ i1τ i2τ i3

]
γ′γ

Tr
[
τ i1τ i3

]
τ i2σ′σ

∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3

[(
G̃R(ω + ω′ − ε)G̃R(ω + ω′ − ε)

)(
GR(ω′, εp)G

A(ε, εq)

+GA(ω′, εp)G
R(ε, εq) +GK(ω′, εp)G

K(ε, εq)
)

+
(
G̃A(ω + ω′ − ε)G̃A(ω + ω′ − ε)

)(
GR(ω′, εp)G

R(ε, εq) +GA(ω′, εp)G
A(ε, εq)

)]
.

(8.1)

The last term yields zero, since it only contains poles in upper or lower half-plane, so when
closing the contour we can make this zero. The same goes for the first part of the first term. So,
upon performing the sum over the Pauli matrices, we get

=

(
i

4

)3

(−1)
∑
k

(
(−2)τkσ′στ

k
γ′γ

)∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3

(
G̃R(ω + ω′ − ε)G̃R(ω + ω′ − ε)

)(
GA(ω′, εp)G

R(ε, εq) +GK(ω′, εp)G
K(ε, εq)

)
=

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)∫
dεp

∫
dεq

∫
dε

2π

∫
dω′

2π
g3

(
G̃R(ω + ω′ − ε)G̃R(ω + ω′ − ε)

)(
GK(ω′, εp)G

K(ε, εq)
) (

1− sgn(εp)sgn(εq)
)

=

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)∫ Λ

−Λ
dεp

∫ Λ

−Λ
dεq

∫
dε

2π

∫
dω′

2π
g3

(
1

(ω + ω′ − ε+ iη)2

)(
(−2iπ)2δ(ω′ − εp)δ(ε− εq)

) (
sgn(εp)sgn(εq)− 1

)
=

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)∫ Λ

−Λ
dεp

∫ Λ

−Λ
dεqg

3

(
(−1)

(ω + εp − εq + iη)2

)(
sgn(εp)sgn(εq)− 1

)

=

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)∫ Λ

0
dεp

∫ Λ

0
dεqg

3

(
2

(ω + εp + εq + iη)2
+

2

(ω − εp − εq + iη)2

)

=

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)
g3

(
2 ln

∣∣∣∣∣Λ2 − ω2

ω2

∣∣∣∣∣− 2 ln

∣∣∣∣∣4Λ2 − ω2

Λ2 − ω2

∣∣∣∣∣
)
, (8.2)

which gives us the final result
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g(3A)21

11(ω)
i

4

∑
k

τkσ′στ
k
γ′γ =

(
i

4

)3∑
k

(
2τkσ′στ

k
γ′γ

)
g3

(
2 ln

∣∣∣∣∣Λ2 − ω2

ω2

∣∣∣∣∣− 2 ln

∣∣∣∣∣4Λ2 − ω2

Λ2 − ω2

∣∣∣∣∣
)
. (8.3)

8.2 Numerical renormalization group code and results

Following Wilsons article on the Numerical Renormalization Group [9] a program was made that
runs NRG for the Kondo model. I wrote the program in Python and used Wilson’s results as a
benchmark. We will not go into detail on how NRG works, but the main idea is to look at the
Kondo model perturbatively. We start by looking at high energy scales. Here the ce-states in the
metal located close to the impurity atom are important. We then diagonalize the Hamiltonian,
and use the resulting states as our new basis. At each iteration we go to lower energy scales.
This is done by including states that are closer to the Fermi surface. It is these states that
dominate the low energy physics of the system. In essence the method is very similar to how
one would calculate the fine structure of the Hydrogen atom.

There are a lot of technical details on how this is done, but one starts by writing the Kondo
model in terms of a hopping Hamiltonian, and in this way maps the Kondo model to a semi-
infinite chain. At each iteration we add an extra site to this chain, corresponding to going to
lower energies.

The first few energy states generated by the code are shown in fig. 8. After around 25 iterations
the energies of the excited states have converged. Actually the energies at even and odd iterations
converge towards different values. The code yielded 20

Even iterations: 0.6555117± 2× 10−7, 1.3110240± 3× 10−7, 1.9760011± 3× 10−7, ...

Odd itertaions: 1.2963851± 2× 10−7, 2.5927712± 3× 10−7, 2.8259709± 7× 10−7, ...

Wilson showed that for J →∞, the energies of the states are given by

Even iterations: 0.6555, 1.3110, 1.976, ...

Odd itertaions: 1.297, 2.594, 2.827, ...

agreeing well with the results obtained from the NRG-program. Note that the uncertainties are
simply the standard deviation of the mean. But this is clearly not "independent measurements",
since we only look at a single run, with the same parameters for J etc. so we should not be
worried about the results for the odd iterations lying many std’s away from the theoretical
prediction made by Wilson. The important thing to note is that, even if we start out with a
small positive value J , when we go to the low energy limit, we indeed end up in the strong
coupling regime where J diverges.21

20As seen from fig. 8 there is a degeneracy at each energy level. I used this degeneracy to calculate the mean of
each energy level, and in this way got an uncertainty as well. However, a more thorough analysis of uncertainties
is needed.

21We do not give the parameters used for this specific run of the NRG-code. This is because many parameters
are given beyond the coupling, such as the number of states kept after each iteration, the fraction with which we
decrease the energy scale after each iteration etc. See Wilson’s article for more on this. [9]
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Figure 8: The RG-flow of the lowest energy levels at even iterations N . The results are from
a NRG-code which was made by following Wilson’s article on NRG [9]. The dashed lines are
the theoretical prediction for the energies at J =∞ made by Wilson. We see that the energies
converge towards the results expected when J = ∞, indicating that the effective coupling g
indeed does diverge as T → 0. Note that the lowest energy levels are rescaled after each
iteration, otherwise they would just decrease, and converge to zero as N →∞.

8.3 Calculating the pseudo-fermion relaxation rate to 2. order in g

To 2. order in g, the relaxation rate Γ is given by two ce-propagators forming a loop together
with a pf-propagator. Writing Γ in terms of the pf self-energy, Σ, and representing the loop
consisting of one pf- and one ce-propagator by I,22 we get

Γ =
i

2

(
ΣR − ΣA

)
=
i

2

(
Σ> − Σ<

)
=

[
i

2

] [
g2(−1)

(
i

22

)2
] [

6δγγ′
] ∫

dεp

∫
dεq

∫
dω′

2π

(
I<(ω′, εp)G

>(ω′, εq)− I>(ω′, εp)G
<(ω′, εq)

)
=

[
i

2

] [
g2(−1)

(
i

22

)2
] [

6δγγ′
] ∫

dεp

∫
dεq

∫
dω′

2π

[
πnf (εp)δ(ω

′ − εp)(−2πi)nf (−εq)δ(ω′ − εq)

−πnf (−εp)δ(ω′ − εp)(2πi)nf (εq)δ(ω
′ − εq)

]
=

(
i

2

)
g2 π

16

(
6δγγ′

) ∫
dεp(−i)

[
nf (εp)nf (−εp) + nf (−εp)nf (εp)

]
=

3π

8
g2δγγ′

∫ ∞
−∞

1

eβεp + 1

1

e−βεp + 1

=
3π

8
δγγ′g

2kbT. (8.4)

We see that due to the Kondo-interaction we get a non-zero Γ. Note that g diverges at T → 0,
so it is possible to get a nonzero Γ at T = 0.

22The loop, I, is just like the one seen in diagram 2P in fig. 6.
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