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Abstract

In this paper the Wigner function is introduced as an alternative to the Schrödinger picture to solve
quantum mechanical problems. General properties of the Wigner functions are proven and discussed.
The Wigner function formalism is then applied to the harmonic oscillator, the gaussian wavepacket and
the driven harmonic oscillator. We see the Wigner function enables us to describe quantum mechanical
systems, using only a single mathematical object. We find that the Wigner function in some cases offers
an easier way to visualize the properties of quantum systems than the wavefunction does.
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1 The Wigner function

We begin by introducing the Wigner function, by the motivation behind creating it in the first place. In
classical Hamiltonian physics a state is described by a point in a 6N dimensional phase space for the variables
position (q) and momentum (p). There is no uncertainty principle in classical physics, so it is possible to
know a particle’s momentum and position at the same time to an arbitrary presicion. In quantum mechanics
there is an uncertainty priciple that makes it impossible to know both q or x and p at the same time. In
the standard formulation of quantum mechanics one works with probability densities instead. One for the
wavefunction in position-basis and one for the wave function in the momentun-basis

P (x) = |ψ(x)|2, (1)

P (k) = |φ(k)|2. (2)

Where the two functions are connected by a fourier transform and we have used p = h̄k

φ(k) =
1√
2π

∫
dxψ(x)e−ikx. (3)

Where the integral is from −∞ to ∞. This goes for all integrals in this paper unless stated otherwise. It
would be desirable to have a single function that could display the probability in both x and p. The Wigner
function is a function constructed to do just that. It must also be able to give the correct expectation values
for operators. What one would desire is to have a probability distribution in phase space P(x,p), that is
positive everywhere and such that ∫ ∫

dxdpP (x, p)A(x, p), (4)

gives the expectation value of the operator A(x,p). Because of Heisenberg’s uncertainty principle it is not
possible to find such a probability distribution. The Wigner function comes close to fulfill these demands, but
it will not have a direct physical interpretation as a probability distrubition we know from classical physics.
For example the Wigner function can be negative in regions of phase space, which have no physical meaning
if one thinks of it as a probability distrubition [1].

1.1 The Weyl-transform

In constructing the Wigner function one attempts to construct a new formalism of quantum mechanics based
on a phase space formalism. In order to be succesful in creating such a formalism one needs a mapping
between functions in the quantum phase space formulation and Hilbert space operators in the Schrödinger
picture [1]. This mapping is given by the Weyl-transform Ã of an operator Â defined in the following way

Ã(x, p) =

∫
dye

−ipy
h̄ 〈x+

y

2
|Â(x̂, p̂)|x− y

2
〉 (5)

This transformation takes an operator and represents it with a function. We will now show a key property
of the Weyl transform. This property is that the trace of the product of two operators Â and B̂ is given by

Tr[ÂB̂] =
1

2πh̄

∫ ∫
dxdpÃ(x, p)B̃(x, p). (6)

To prove this relation we first start with the Weyl transform of the two operators.

Ã(x, p) =

∫
dye

−ipy
h̄ 〈x+

y

2
|Â(x̂, p̂)|x− y

2
〉, (7)
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B̃(x, p) =

∫
dy′e

−ipy′
h̄ 〈x+

y′

2
|B̂(x̂, p̂)|x− y′

2
〉. (8)

We take the product of these two and integrate over all x and p to find

∫ ∫
dxdpÃ(x, p)B̃(x, p) =

∫ ∫ ∫ ∫
dxdpdydy′e

−ip(y+y′)
h̄ 〈x+

y

2
|Â(x̂, p̂)|x− y

2
〉×

〈x+
y′

2
|B̂(x̂, p̂)|x− y′

2
〉.

(9)

To perform the p integration we use the following result∫
dpe

ipy)
h̄ = 2πh̄δ(y). (10)

This gives a delta function which we will use to do the y’ integration. We now have the following expression

∫ ∫
dxdpÃ(x, p)B̃(x, p) =

∫ ∫ ∫
dxdydy′〈x+

y

2
|Â(x̂, p̂)|x− y

2
〉×

〈x+
y′

2
|B̂(x̂, p̂)|x− y′

2
〉δ(y + y′).

= 2πh̄

∫ ∫
dxdy〈x+

y

2
|Â(x̂, p̂)|x− y

2
〉〈x− y

2
|B̂(x̂, p̂)|x+

y

2
〉.

(11)

With the following change of variables u = x− y
2 , v = x+ y

2 and dudv = dxdy we get

∫ ∫
dxdpÃ(x, p)B̃(x, p) = 2ππh̄

∫ ∫
dudv〈v|Â|u〉〈u|B̂|v〉 = hTr[ÂB̂]. (12)

Thus we have proven a key property about the Weyl transform, that we will use when defining the Wigner
function.

1.2 The Wigner function

Before we define the Wigner function we introduce the density operator ρ̂ [1]. This is for a pure state given
by

ρ̂ = |ψ〉〈ψ|. (13)

We can express this in the position basis in the following way

〈x|ρ̂|x′〉 = ψ(x)ψ∗(x′). (14)

A property of the density matrix is, that it is normalized. That is Tr[ρ̂] = 1. This we show by using the
definition of the trace of an operator.

Tr[ρ̂] =
∑
n

〈n|ρ̂|n〉 =
∑
n

〈n|ψ〉 〈ψ|n〉 =
∑
n

〈ψ|n〉 〈n|ψ〉 = 〈ψ|ψ〉 = 1. (15)

We can also get the expectation value of an operator Â from ρ̂ the following way
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〈A〉 = Tr
[
ρ̂Â
]

= Tr
[
|ψ〉 〈ψ| Â

]
=
∑
n

〈n|ψ〉 〈ψ|Â|n〉 =
∑
n

〈ψ|Â|n〉 〈n|ψ〉 = 〈ψ| Â |ψ〉 . (16)

By using (6) we have

〈A〉 = Tr
[
ρ̂Â
]

=
1

2πh̄

∫ ∫
dxdpρ̃Ã. (17)

We now define the Wigner function as

W (x, p) =
ρ̃

2πh̄
=

1

2πh̄

∫
dye−

ipy
h̄ ψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
. (18)

We can now see that we can write the expectation value on an operator Â as

〈A〉 =

∫ ∫
dxdpW (x, p)Ã(x, p). (19)

The expectation value is obtained through the average of a physical quantity represented by Ã(x, p) over
phase space with quasi-probability density W(x,p) characterizing the state.The expectation values of x and
p are now simply given by

〈x〉 =

∫ ∫
dxdpW (x, p)x, (20)

〈p〉 =

∫ ∫
dxdpW (x, p)p. (21)

In general to find the expectation value of an operator from the Wigner function, one has to consider
the weyl transform of said operator. Suppose we have an operator Â(x̂) that only depends on x̂. The Weyl
transform for an operator of this form is simple. From (5) we have

Ã =

∫
dye

−iyp
h̄ 〈x+

y

2
|Â(x̂)|x− y

2
〉 =

∫
dye

−iyp
h̄ A

(
x− y

2

)
δ(y) = A(x) (22)

So the weyl transform of such an operator is simply a function A with the operator x̂ replaced with x.
This is the same for an operator Â(p̂) since the Weyl transform can be defined in a momentun representation
instead of a position representation. [1]. So for an operator B̂(p̂) that only depends on p̂ the Weyl transform
is the function B(p). This extends to sums of operators that only depends on x̂ and p̂. Consider a Hamilton
operator Ĥ(x̂, p̂) = T̂ (p̂) + Û(x̂). This operator will have the Weyl transform H(x, p) = T (p) + U(x). So
from this result we can determine the expectation value from this Hamilton operator.

〈H〉 =

∫ ∫
dydpW (x, p)H (23)

If one has an operator that is not a sum of operators only depending on x̂ and p̂ but have terms that
depend on both x̂ and p̂ the Weyl transform is not easy to do. [1]
A feature of the Wigner function is that it is normalized in x,p space. This is easily seen by the following
calculation. ∫ ∫

dxdpW (x, p)1̃ =

∫ ∫
dxdpW (x, p) = Tr[ρ̂] = 1 (24)

This follows from the weyl transform of 1̂ is 1.
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1̃ =

∫
dye

−ipy
h̄ 〈x+

y

2
|1̂|x− y

2
〉 =

∫
dye

−ipy
h̄ δ

(
x+

y

2
−
(
x− y

2

))
= 1. (25)

So the Wigner function is normalized in phase space. From the Wigner function it is now straightforward
to obtain the probability distributions in x and p by simply integration over either x or p. If we integrate
the Wigner function over p we get

1

2πh̄

∫
dp

∫
dye−

ipy
h̄ ψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
=

∫
dyψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
δ(y) = ψ∗(x)ψ(x), (26)

where we have used that ∫
dpe−

ipy
h̄ = hδ(y). (27)

The same can be done for the probability distribution in momentum, by integrating over x instead of p.
Another feature of the Wigner function is that it is always real. This can bee seen by taking the complex

conjugate of (18) and changing integration variable from y to - y.

W (x, p)∗ =
1

2πh̄

∫
dye

ipy
h̄ ψ∗

(
x+

y

2

)
ψ
(
x− y

2

)
, (28)

now changing variable from y to -y in the integration we see that we recover (18) again. A feature that
distinguishes the Wigner probability distribution from a classical probability distribution, is the fact that
the Wigner function can take on negative values. To see this we first consider two density operators ρ̂a and
ρ̂b each with an associated state ψa and ψb. We can write the following expression

Tr[ρ̂aρ̂b] = | 〈ψa|ψb〉 |2. (29)

This we now Weyl transform and get

Tr[ρ̂aρ̂b] =
1

2πh̄

∫ ∫
dxdpρ̃aρ̃b =

∫ ∫
dxdpWa(x, p)Wb(x, p) = | 〈ψa|ψb〉 |2. (30)

We now only consider orthogonal states that fufill 〈ψa|ψb〉 = 0. We now have that∫ ∫
dxdpWa(x, p)Wb(x, p) = 0. (31)

This can only be true if the Wigner function is negative in regions of phase space. This is very different
from the classical case and shows us, that the Wigner function does not represent a physical property. Only
the integral of the Wigner function over either x or p has physical meaning. Though we cannot think of the
Wigner function in the same way we think of a classical probability distribution, we can still think of it as a
mathematical object, that will help us to calculate physical observables, much like the way we think of the
wavefunction in the Schrödinger picture.

Another property of a Wigner function is that it must fufill |W (x, p)| ≤ 1
πh̄ This follows from the fact that

we can rewrite the definition of the Wigner function (58), as a product of two wave functions, the following
way.

W (x, p) =
1

πh̄

∫
dyψ1(y)ψ∗2(y) (32)
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Where we have defined the following normalised wave functions ψ1(y) = e−
−ipy
h̄

ψ(x+ y
2 )√

2
and ψ2(y) =

ψ(x− y2 )√
2

and used the following relation∫
dyψ

(
x− y

2

)
ψ∗
(
x− y

2

)
= 2

∫
d
(y

2

)
ψ
(
x− y

2

)
ψ∗
(
x− y

2

)
= 2. (33)

From the definition of the Wigner function (18) it is clear that an even wavefunction at 0,0 will have a
Wigner function that takes on the value + 1

πh̄ . An odd wavefunction will then have a Wigner function at 0,0
with the value − 1

πh̄ .

1.3 Time evolution of the Wigner function

In general for a stationary state we have the solution as [1] [3]

ψn(x, t) = un(x)e−
iEnt
h̄ . (34)

Where un(x) is a real function. By looking at the definition (18) it is clear that for a stationary state

the Wigner function does not explictly depend on time. The phases containing the time evolution e
−iEt
h̄ will

always cancel out.
It is however still possible to derive an equation that governs the time evolution of the Wigner function.

This approach uses the fact that x and p will depend on t. To describe the time evolution of a given Wigner
function, we simply take the derivative with respect to t and use the Schrödinger equation to eliminate the
partial derivatives of the wavefunction.

∂W

∂t
=

1

2πh̄

∫
dye

−ipy
h̄

[∂ψ∗(x− y
2 )

∂t
ψ
(
x+

y

2

)
+
∂ψ(x+ y

2 )

∂t
ψ∗
(
x− y

2

) ]
(35)

∂ψ(x, t)

∂t
= − h̄

2im

∂2ψ(x, t)

∂x2
+

1

ih̄
U(x)ψ(x, t) (36)

Inserting (36) into (35) we find

∂W

∂t
=

1

2πh̄

∫
dye

−ipy
h̄

[ h̄

2im

∂2ψ∗(x− y
2 )

∂x2
ψ
(
x+

y

2

)
− 1

ih̄
U
(
x− y

2

)
ψ∗
(
x− y

2

)
ψ
(
x+

y

2

)
− h̄

2im

∂2ψ(x+ y
2 )

∂x2
ψ∗
(
x− y

2

)
+

1

ih̄
U
(
x+

y

2

)
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

) ]
.

(37)

Rearranging (37), we can write it as

∂W

∂t
=

1

4πim

∫
dye

−ipy
h̄

[∂2ψ∗(x− y
2 )

∂x2
ψ
(
x+

y

2

)
−
∂2ψ(x+ y

2 )

∂x2
ψ∗
(
x− y

2

) ]
+

2π

ih̄2

∫
dye

−ipy
h̄

[
U
(
x+

y

2

)
− U

(
x− y

2

) ]
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)
.

(38)

Defining

∂WT

∂t
=

1

4πim

∫
dye

−ipy
h̄

[∂2ψ∗(x− y
2 )

∂x2
ψ
(
x+

y

2

)
−
∂2ψ(x+ y

2 )

∂x2
ψ∗
(
x− y

2

) ]
(39)

and
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∂WU

∂t
=

2π

ih̄2

∫
dye

−ipy
h̄

[
U
(
x+

y

2

)
− U

(
x− y

2

) ]
ψ
(
x+

y

2

)
ψ∗
(
x− y

2

)
(40)

We see that the time evolution of the Wigner function can be split into two parts. One concerning
the kinetic energy and the other part concerning the potential energy. We therefore arrive at the following
equation.

∂W

∂t
=
∂WT

∂t
+
∂WU

∂t
(41)

We will evaluate these integrals separately begining with the one for ∂WT

∂t We notice that we can write
the first part of the integral in (39) as∫

dye
−ipy
h̄
∂2ψ∗(x− y

2 )

∂x2
ψ
(
x+

y

2

)
= −2

∫
dye

−ipy
h̄
∂2ψ∗

(
x− y

2

)
∂y∂x

ψ
(
x+

y

2

)
. (42)

(42) can be integrated by parts to yield

−2ip

h̄

∫
dye

−ipy
h̄
∂ψ∗(x− y

2 )

∂x
ψ
(
x+

y

2

)
+

∫
dye

−ipy
h̄
∂ψ∗(x− y

2 )

∂x

∂ψ(x+ y
2 )

∂x
. (43)

We now repeat the above procedure with the second part of the integral in (39).

−
∫
dye

−ipy
h̄
∂2ψ(x+ y

2 )

∂x2
ψ∗
(
x− y

2

)
= −2

∫
dye

−ipy
h̄
∂2ψ(x+ y

2 )

∂y∂x
ψ∗
(
x− y

2

)
. (44)

(44) can be integrated by parts to yield

−2ip

h̄

∫
dye

−ipy
h̄
∂ψ(x+ y

2 )

∂x
ψ∗
(
x− y

2

)
−
∫
dye

−ipy
h̄
∂ψ(x+ y

2 )

∂x

∂∗ψ(x− y
2 )

∂x
. (45)

Inserting (44) and (45) back into (39) we get the following result

∂WT

∂t
=

1

4πim

−2ip

h̄

∫
dye

−ipy
h̄

[∂ψ(x+ y
2 )

∂x
ψ∗
(
x− y

2

)
+
∂ψ∗(x− y

2 )

∂x
ψ
(
x+

y

2

) ]
= − p

m2πh̄

∂

∂x

∫
dye

−ipy
h̄ ψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
= − p

m

∂W

∂x
.

(46)

Where the last equality follows from the definition of the Wigner function. The part concerning ∂WU

∂t is
handled as follows. Assume the potential U(x) can be expanded in a power series in x we get

U
(
x+

y

2

)
− U

(
x− y

2

)
=
∑
n

1

n!

∂nU(x)

∂xn

[(−1

2y

)n
−
(−1

2y

)n]
=

1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(x)

∂x2s+1
y2s+1.

(47)

If we insert (47) into (40) we get the final expression for ∂WU

∂t

∂WU

∂t
=

∞∑
s=0

(−h̄2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(x)

∂x2s+1

∂2s+1W (x, p)

∂p2s+1
. (48)
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So we end up with the following expressions for the time evolution of the Wigner function

∂W

∂t
=
−p
m

∂W (x, p)

∂x
+

∞∑
s=0

(−h̄2)s
1

(2s+ 1)!

(
1

2

)2s
∂2s+1U(x)

∂x2s+1

∂2s+1W (x, p)

∂p2s+1
. (49)

If we in the expansion in (47) neglect derivatives of higher order than second order (as is the case for a
harmonic oscillator), then we find

∂W (x, p)

∂t
=
−p
m

∂W (x, p)

∂x
+
∂U(x)

∂x

∂W (x, p)

∂p
. (50)

An important feature of the time evolution in this limit (h̄→ 0) is that (50) is classical. There is no h̄
in the equation. This equation is in fact the classical Liouville equation. This equation can be expressed by
using possion brackets

∂W (x, p)

∂t
= −

{
W (x, p), H

}
= −∂W (x, p)

∂x

∂H

∂p
+
∂W (x, p)

∂p
.
∂H

∂x
(51)

Where the possion bracket is defined as

{
f, g
}

=

N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (52)

Given the Hamilton H = P 2

2m +U(x) it is clear that (51) is equal to (50). The important thing we notice at
this point is, the time does not appear explictly in the Wigner functio W (x, p) for a stationary state. Instead
the time t and the time evolution lies in the coordinates that obey Hamilton’s equations. So in this classical
case one will see the Wigner function moving in phase space as a classical probability distrubition would
in classical physics under the influence of the potential U(x). Every point of the Wigner function follows a
trajectory given by the Liouville equation, so the Wigner function manintains it’s shape as it evolves in phase
space. Thus if the motion of the phase space distrubition is known for the classical analogue to the quantum
problem, all one has to do is to require that every point of the Wigner function move accordingly to this.
This of course is only in the limit where derivatives of higher order than second of the potential vanish. That
is the limit where h̄→ 0. In cases where this is not true the evolution of the Wigner Function will not equal
the classical Liouville equation. Instead there will be quantum corrections that will distinguish it from the
classical case.

An interesting feature of (41) is that it is equivalent to solving the Schrödinger equation. A way to see this
is to show that the relation between Wigner function and the wave equation is one to one up to a constant

phase. Consider the definition of the Wigner function (18). Multiply by e
ipx′
h̄ and integrate over p. We then

find that ∫
dpW (x, p)e

ipx′
h̄ = ψ∗

(
x− x′

2

)
.ψ

(
x+

x′

2

)
. (53)

A simple change of variables to x = x
2 and x′ = x, and we now have that

ψ(x) =
1

ψ∗(0)

∫
dpW

(x
2
, p
)
e
ipx
h̄ . (54)

This means that instead of solving the Schrödinger’s equation, one could in principle find the Wigner
function by solving (41) and from that recover the wavefunctions. However, there are some issues with this
approach. In pratice, it is not necessarily possible to obtain the Wigner function from (41), because if the
given system has a potential with derivatives of higher order than 2, the equation will be a partial differential
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equation of third or higher order. Anoter issue with this approach is, that not all functions of x and p, that
one may find this way, are admissable Wigner functions [2].

2 Wigner functions of the Harmonic oscillator

In this section we will demonstrate how to find a Wigner function and its time evolution for a well known
quantum mechanical problem, the Harmonic Oscillator. Given an ordinary harmonic oscillator, we seek to
calculate the Wigner functions of its groundstate and first excited state. We begin with the well known
Hamiltonian and wavefunctions for the system

Ĥ =
p̂2

2m
+
mω2

2
x̂2, (55)

ψ0 =
(mω
πh̄

)1/4

e−
mω
2h̄ x

2

=
1

4
√
π
√
`
e−

x2

2`2 , (56)

ψ1 =
(mω
πh̄

)1/4
√

2mω

h̄
xe−

mω
2h̄ x

2

=
1

4
√
π

√
2

`
e−

x2

2`2 . (57)

Where `2 = h̄
mω is the characteristic oscillator length for the system. To calculate the Wigner function,

or Wigner distrubition, we simply plug in our given states in the definition and calculate it.

W (x, p) =
1

2πh̄

∫
dye−

ipy
h̄ ψ

(
x+

y

2

)
ψ∗
(
x− y

2

)
, . (58)

W0(x, p) =
1

2πh̄

∫
dye−

ipy
h̄

1√
π`
e−

(x+ y
2 )2

2`2
e−

(x− y
2

)2

2`2

=
1√
π`h

∫
dye−

ipy
h̄ e−

x2

`2
− y2

4`2 =
1

πh̄
e−

x2

`2
− `

2p2

h̄2 ,

(59)

W1(x, p) =
1

πh̄

∫
dye−

ipy
h̄

2x2

√
π`3

e−
x2

`2
− y2

4`2 =
1

πh̄

(
−1 +

2`2p2

h̄2 +
2x2

`2

)
e−

x2

`2
− `

2p2

h̄2 . (60)

We note that our calculated Wigner functions fufill the important relation for Wigner functons which
states that 1

h ≥ |W (x, p)|. We see that the gound state reaches + 2
h̄ at the point 0,0 since the wavefunctions

of the ground state is even. The first excited state has odd wavefunctions and at the point 0,0 the Wigner
function reaches the value − 2

h̄ .

2.1 Time evolution of the Harmonic oscillator

From the section where we derived the time evolution, we know how to calculate the time evolution of the
Wigner function for a harmonic oscillator. This has a symmetric quadratic potential so the time evoluton is
governed by equation (50). So given we can describe the motion classically we turn to the time evolution of
a classical harmonic oscillator. This is given by the known solutions

x0 = x cos(ωt)− p

mω
sin(ωt), (61)

p0 = p cos(ωt) +mωx sin(ωt). (62)

Now the time evolution of the Wigner function lies in the coordinates, so the Wigner function maintains
its shape, but moves around in elliptical orbits in phase space. This means that
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W (x, p, t) = W
(
x cos(ωt)− p

mω
sin(ωt), p cos(ωt) +mωx sin(ωt), 0

)
. (63)

Going back to the Wigner function we found for the grund state, we first translate it by b in the x
direction. We do this because, as we previously stated, a stationary state does not have a time evolution.
By translating the function by b we will be able to observe it’s motion in phase space.

W0(x, p, o) =
1

πh̄
e−

(x−b)2

`2
− `

2p2

h̄2 . (64)

Now inserting the time evolution of the coordinates we find the time evolution of the Wigner function to
be

W0(x, p, t) =
1

πh̄
exp[− 1

`2
(x cos(ωt)− p

mω
sin(ωt))2

− `2

h̄2 (p cos(ωt) +mωx sin(ωt))2].

(65)

This we can rewrite if we use that `2 = h̄
mω

W0(x, p, t) =
1

πh̄
exp[− `

2

h̄2 (p+
bh̄

`2
sin(ωt))2 − 1

`2
(x− b cos(ωt))2]. (66)

The above procedure can also be done for the first excited state (60). If we in this expression insert (61)
and (62) we find the folowing time evolution of (60) by again using that `2 = h̄

mω

W1(x, p, t) =
1

πh̄

(
−1 +

2p2`2

h̄2 +
2x2

`2
+

2b2

`2
− 4bx

`2
cos(ωt) +

4pb

h̄
sin(ωt)

)
e−
−x2

`2
− p

2`2

h̄2 − b
2

`2
+ 2bx
`2

cos(ωt)− 2pb
h̄ sin(ωt).

(67)

Below we have plotted the Wigner function of the ground state and first excited state at different times.
We see that it maintains its shape and moves around in an elliptical trajectory as we have predicted.
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(a) t = 0 (b) t = π
2

(c) t = π (d) t = 3π
2

Figure 1: Time evolution for the ground state of the Harmonic oscillator. We have set the parameters ` and
h̄ to 1

(a) t = 0 (b) t = π
2

(c) t = π (d) t = 3π
2

Figure 2: Time evolution for the first excited state of the Harmonic oscillator. We have set the parameters
` and h̄ to 1
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We can now find the expectation values of x and p from these Wigner functions. For the ground state
they are given as

〈x〉 =

∫ ∫
dxdpW0(x, p)x =

∫ ∫
dxdp

1

πh̄
exp[− `

2

h̄2 (p+
bh̄

`2
sin(ωt))2 − 1

`2
(x− b cos(ωt))2]x

= b cos(ωt),

(68)

and for p we have

〈p〉 =

∫ ∫
dxdpW0(x, p)p =

∫ ∫
dxdp

1

πh̄
exp[− `

2

h̄2 (p+
bh̄

`2
sin(ωt))2 − 1

`2
(x− b cos(ωt))2]p

= −b sin(ωt)

ω2h̄
.

(69)

These expectation values is what we expect from a shifted harmonic oscillator. The expectation value
for x in a ground state of a harmonic oscillator is known to be 0 because it’s a gaussian function centered
around 0. If we shift it so it is centered around b we expect b to be the expectation value. This is what we
see here.

We can also find the expectation value for the first excited state of the energy to check our method yields
the correct results. We expect this result to be 3h̄ω

2 . This is for the unshifted case. From the Wigner function
(60) we find that

〈H〉 =

∫ ∫
dydpW1(x, p)H =

∫ ∫
dydpW1(x, p)

(
p2

2m
+
mω2x2

2

)
=

3h̄ω

2
. (70)

So we see that the found Wigner function gives the correct values. Now that we know our Wigner function
yields the correct results we can use it to find the expectation value of the energy in the shifted case. Again
we look at the fist excited state and we find by using (67)

〈H〉 =

∫ ∫
dydpW1(x, p, t)H =

∫ ∫
dydpW1(x, p, t)

(
p2

2m
+
mω2x2

2

)
=

1

2
ω
(
b2mω + 3h̄

)
(71)

3 The Gaussian wavepacket

Lets consider a free particle with an initial wave function that is a gaussian wavepacket Ψ(x, 0) = Ae−ax
2

.
It’s wave function for time t is known to be [4] 1

Ψ(x, t) =

(
2a

π

) 1
4 e

−ax2

1+ it
τ√

1 + it
τ

, (72)

where τ = m
2h̄a is the characteristic time-scale for the system. We now calculate its Wigner function and

note that the wave function is not a stationary state. So the time dependence will not cancel out when we
perform the tranform, but will be carried over to the Wigner function.

1See the appendix for the details in how to find this wavefunction
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W (x, p, t) =
1

2πh̄

∫
dye

−ipy
h̄ Ψ∗

(
x− y

2
, t
)

Ψ
(
x+

y

2
, t
)

=
1

2πh̄

(
2a

π

) 1
2
∫
dye

−ipy
h̄
e

−a(x− y2 )
2

1− it
τ√

1− it
τ

e

−a(x+
y
2 )

2

1+ it
τ√

1 + it
τ

=
1

πh̄
e−

p2(t2+τ2)
2aτ2h̄2 −2ax2+ 2ptx

τh̄

=
1

πh̄
e−

2a(pt−mx)2

m2 − p2

2ah̄2 .

(73)

Here we have used that τ = m
2h̄a to express the final result. We now see an advantage of the Wigner

function. (73) appears more simple than (72) does. Here we have a relatively simple function to give us all
the information about the system we need instead of a cumbersome wavefunction whose time evolution is
not all that obvious.
Another way of finding this Wigner function is to used (49). Since our potential is zero we can find the
Wigner function at t = 0, and then demand that the variables in the Wigner function behaves according to
classical physics to obtain W (x, p, t). So we begin with Ψ(x, 0) = (2a

π )
1
4 e−ax

2

, and from this we calculate the
Wigner function

W (x, p, 0) =

(
2a

π

) 1
2 1

2πh̄

∫
dye−

ipy
h̄ e−a(x−

y
2 )

2

e−a(x+ y
2 )

2

=

(
2a

π

) 1
2 1

2πh̄
e−2ax2

∫
dye−

ipy
h̄ e−

ay2

2

=

(
2a

π

) 1
2 1

2πh̄
e−2ax2

√
2π

a
e−

p2

2ah̄2 =
1

πh̄
e−

2ax2

m2 −
p2

2ah̄2 .

(74)

Where we have used that the Fourier transform
∫
dye−

ipy
h̄ e−

ay2

2 =
√

2π
a e
− p2

2ah̄2 . Now we have obtained

the Wigner fuction at t = 0. We know from the equation of motion for the Wigner function (49), that our
system’s equation of motion is identical to the Louville equation. This means the variables of the Wigner
function must obey classical equations of motion. So we change the variable from x to pt

m − x or pt −mx
which is the equation of motion for a free particle in classical physics. And we then see that we have obtained
the same result as we got with a direct calculation using the definition of the Wigner function

W (x, p, t) =
1

πh̄
e−

2a(pt−xm)2

m2 − p2

2ah̄2 . (75)

Below we have plotted this Wigner function.
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(a) t = 0 (b) t = π

(c) t = 2π (d) t = 3π

Figure 3: Time evolution of the Wigner function for a free particle. We have set a = 1, m = 1 and h̄ = 1

We see the Wigner function spreads out in x with time. In the Schrödinger picture we know that a wave
packet spreads out in x with time. So a wavepacket that starts off to be localized spreads out and becomes
delocalized. It is interesting to see this feature carried over to the Wigner function. In the Schrödinger
picture when t →∞ we have that

|Ψ(x, t)|2 =
√

2m

√
a

4πa2t2h̄2 + πm2
e
− 2am2x2

4a2t2h̄2+m2 (76)

goes to zero. This simply states that, the probability of finding the particle at every point becomes
equally, with probability zero since the wavefunction is normalized. When we look at (73) we expect that
the Wigner function also goes to zero as t →∞ which it does for a given p.
We notice that the Wigner function does not run parallel to either x or p in the xy plane. This slobe can be
explained due to the classical result for a free particle motion that x = pt

m . Since that the Wigner function
evolves accordingly to clssical equations of motion it must lie on this curve. Another way to explain the slope
is the uncertainty principle. As already explained the more the Wigner function spreads out in x the more
narrow it becomes in p.
A thing we notice about the plots of the Wigner function is that it undergoes a squeezing as t increases.
As the function spreads out in x and becomes wide in this coordinate, it becomes narrow in p around 0.
This is a direct consequence of the uncertainty principle. As the wavefunction spreads out over position and
becomes delocalized, it gains a very well defined momentum. In this case the momentum expectation value
is 0 as can be seen form the following calculation

〈p〉 =

∫ ∫
dpdxW (x, p, t)p =

∫ ∫
dpdx

1

πh̄
e−

2a(pt−xm)2

m2 − p2

2ah̄2 p = 0. (77)

A similar calculation can be done for the expectation value for x of the system.
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〈x〉 =

∫ ∫
dpdxW (x, p, t)x =

∫ ∫
dpdx

1

πh̄
e−

2a(pt−xm)2

m2 − p2

2ah̄2 x = 0. (78)

These results are also known from the problem in the Schrödinger picture. [4]

4 The Driven Quantum Oscillator

2 We now turn to study the behaviour of the the harmonic oscillator when exposed to a driving perturbation,
S(t). We will follow the method in [5] in this section and the next. The Schrödinger equation for such a
system is given by

ih̄Ψ̇(x, t) =

[
− h̄2

2m

∂2

∂x2
+

1

2
mω2

0x
2 − xS(t)

]
Ψ(x, t). (79)

This can be solved by bringing it on a form that resembles the unperturbed harmonic oscillator, and hiding
the perturbation behind transformations made along the way. This is done using unitary transformations.
To get there, we will start by making a change of variables,

x→ y = x− ζ(t), (80)

so that we can write the Schrödinger equation in the new coordinate y,

ih̄Ψ̇(y, t) =

[
ih̄ζ̇(t)

∂

∂y
− h̄2

2m

∂2

∂y2
+

1

2
mω2

0(y + ζ(t))2 − (y + ζ(t))S(t)

]
Ψ(y, t). (81)

From here, it is useful to perform the following unitary transformation,

Ψ(y, t) = eimζ̇y/h̄φ(y, t), (82)

where ζ(t) obeys the newtonian equation of motion

mζ̈ +mω2
0ζ = S(t). (83)

Inserting this into the above and calculating the LHS and RHS seperately, we get for the LHS:

ih̄Ψ̇(y, t) = eimζ̇y/h̄
[
ih̄φ̇−myζ̈φ

]
. (84)

Using (83), we eliminate the double time derivative and get the following expression for the LHS

ih̄Ψ̇(y, t) = eimζ̇y/h̄
[
ih̄φ̇− yφS(t) + yφmω2

0ζ
]
. (85)

For the RHS, we get

[
ih̄ζ̇(t)

∂

∂y
− h̄2

2m

∂2

∂y2
+

1

2
mω2

0(y + ζ(t))2 − (y + ζ(t))S(t)

]
Ψ(y, t)

= eimζ̇y/h̄
[
ih̄ζ̇

∂φ

∂y
−mζ̇2φ− h̄2

2m

∂2φ

∂y2
− ih̄ζ̇ ∂φ

∂y
+
m

2
ζ̇2φ+

m

2
ω2

0y
2φ+

1

2
mω2

0ζ
2φ+mω2

0ζyφ− yS(t)φ− ζS(t)φ

]
(86)

Equating the RHS and LHS and reducing, we see that

2This section has been done in collaboration with Mads Anders Jørgensen and hence also appears in his bachelor thesis

page 15 of 22



Wigner function formalism in Quantum Mechanics June 9, 2015

ih̄φ̇ =

[
− h̄2

2m

∂2

∂y2
+
m

2
ω2

0y
2 − L(ζ, ζ̇, t)

]
φ, (87)

where L = m
2 ζ̇

2 − 1
2mω

2
0ζ

2 + ζS(t) is the lagrangian for a driven harmonic oscillator.
Introducing another unitary transformation specifically to get the lagrangian term to cancel out, we

thereby end up with a form that is highly resemblant of the standard harmonic oscillator.

φ(y, t) = e
i
h̄

∫ t
0
dt′L(ζ,ζ̇,t′)χ(y, t). (88)

This transformation gives us the form of a normal, unperturbed harmonic oscillator

ih̄χ̇(y, t) =

[
− h̄2

2m

∂2

∂y2
+

1

2
mω2

0y
2

]
χ(y, t). (89)

The energies of the harmonic oscillator are known to be En = h̄ω0(n + 1
2 ). Combining this with the

stationary states, ϕn, of the harmonic oscillator, we get that

ϕn(y) =
(mω0

πh̄

) 1
4 1√

2nn!
Hn(y)e−

mω0
2h̄ y2

, (90)

where Hn(x) are the Hermite polynomials. Given this, we have that

χn(y, t) =
(mω0

πh̄

) 1
4 1√

2nn!
Hn(y)e−

mω0
2h̄ y2− i

h̄Ent. (91)

Inserting this expression into our expression for φ, and then that expression into the one for ψ, we get

φn(y, t) =
(mω0

πh̄

) 1
4 1√

2nn!
Hn(y)e−

mω0
2h̄ y2− i

h̄ [Ent−
∫ t
0
dt′L] (92)

ψn(y, t) =
(mω0

πh̄

) 1
4 1√

2nn!
Hn(y)e−

mω0
2h̄ y2+ i

h̄ [mζ̇(t)y−Ent+
∫ t
0
dt′L]. (93)

Now, substituting our variable from y back to x

ψn(x, t) =
(mω0

πh̄

) 1
4 1√

2nn!
Hn(x− ζ(t))e−

mω0
2h̄ (x−ζ(t))2+ i

h̄ [mζ̇(t)(x−ζ(t))−Ent+
∫ t
0
dt′L]. (94)

Now we have our general wavefunction for an arbitrary S(t), which appears in the lagrange function in
the exponent. [5]

4.1 Periodic monochromatic driving force

Let us now try to work with a simple harmonic driving force. We set

S(t) = A sin(ωt+ θ). (95)

Classically, this would be like placing a hamonic oscillator (with frequency ω0) on a platform performing
harmonic movement itself, with frequency ω. With this force, a solution to (83) is

ζ(t) =
A sin(ωt+ θ)

m(ω2
0 − ω2)

, (96)
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where ω 6= ω0.
In order to calculate the action, we need to first calculate the time derivative of the moving coordinate, ζ̇,

ζ̇ =
Aω cos(ωt+ θ)

m(ω2
0 − ω2)

. (97)

We now calculate the action as it appears in our expression for ψ,

∫ t

0

dt′L(ζ, ζ̇, t′) =

∫ t

0

dt′

A2ω2 cos2(ωt′ + θ)

2m(ω2
0 − ω2)2

−
mω2

0(A sin(ωt′+θ)
m(ω2

0−ω2)
)2

2
+
A2 sin2(ωt′ + θ)

m(ω2
0 − ω2)

 =

A2[ωt(ω2
0 − ω2) + (3ω2 − ω2

0) cos(2θ + ωt) sin(ωt)]

4mω(ω2
0 − ω2)2

.

(98)

Inserting this into (94) we find the wavefunctions

ψn(x, t) =(mω0

πh̄

) 1
4 1√

2nn!
Hn(x− ζ(t))e

−mω0
2h̄ (x−ζ(t))2+ i

h̄

[
mζ̇(t)(x−ζ(t))−Ent+

A2[ωt(ω2
0−ω

2)+(3ω2−ω2
0) cos(2θ+ωt) sin(ωt)]

4mω(ω2
0−ω

2)2

]
(99)

[5]

4.2 Wigner functions of the Driven Quantum Oscillator

To find the Wigner function and it’s time evolution of the Driven harmonic oscillator, we will take a different
approach from what was done in the section about the Harmonic Oscillator. Previously the Wigner function
was calculated from a stationary state and then (41) was used to determine it’s time dependence. In this
approach we will find the Wigner function from (99) which is not a stationary state of the Harmonic oscillator
since the driven Harmonic Oscillator does not have stationary states. When we look at (99) we see that it is
in fact a shifted Harmonic oscillator, with the shift depending on time. To find the Wigner function and it’s
time dependence, we start the definition of the Wigner function and insert our wavefunction.

Wn(x, p, t) =
1

2πh̄

∫
dye−

ipy
h̄ ψn

(
x+

y

2

)
ψ∗n

(
x− y

2

)
=

(mω0

πh̄

) 1
2 1

2πh̄2nn!

∫
dye

−ipy
h̄ Hn

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

− y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
− y2

)2

Hn

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

+
y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
+ y

2

)2

(100)

Where again ` =
√

h̄
mω0

is the characteristic oscillator length. This integral cannot be done analytically

for arbitrary n. Only when n is specified can an expression be calculated. This is due to the Hermite
polynomials in the expression. Lets first look at state of the driven oscillator with n = 0 and find it’s Wigner
function.
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W0(x, p, t) =
(mω0

πh̄

) 1
2 1

2πh̄

∫
dye

−ipy
h̄ H0

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

− y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
− y2

)2

H0

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

+
y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
+ y

2

)2

=
1

πh̄
e
− p2

mω0h̄
−mx

2ω0
h̄ −A

2ω0 sin2(tω+θ)

mh̄(ω2−ω2
0)2 −

2Axω0 sin(tω+θ)

h̄(ω2−ω2
0) .

(101)

We see that the W0(x, p) function is nearly identical to (66). The difference an extra phase factor
corresponding the timedependent shift in the oscillator coming from the driving term in the potential. We
note that if we in (101) turn off the driving force. That is in the limit A→ 0, the Wigner function we obtain
are the same as in the case of the undriven oscillator. If we look at (101) near resonance when ω = ω0, we
see that the expression goes towards zero. In a classical driven oscillator resonance is an unstable point for
the system and we see the same here. It is not possible to have a particle in a driven oscillator at resonance.
We can also find the Wigner function for the n = 1 state,

W1(x, p, t) =
1

2

(mω0

πh̄

) 1
2 1

2πh̄

∫
dye

−ipy
h̄ H1

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

− y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
− y2

)2

H1

((
x− A sin(ωt+ θ)

m(ω2
0 − ω2)

+
y

2

)
/`

)
e
−mω

2h̄

(
x−A sin(ωt+θ)

m(ω2
0−ω

2)
+ y

2

)2

=
1

πmω0h̄
2 (ω2 − ω2

0)
2 e
− p2

mω0h̄
−mx

2ω0
h̄ −A

2ω0 sin2(tω+θ)

mh̄(ω2−ω2
0)2 −

2Axω0 sin(tω+θ)

h̄(ω2−ω2
0) ×(

A2ω2
0 +Aω2

0(4mx(ω − ω0)(ω + ω0) sin(tω + θ)−
A cos(2(tω + θ))) + (ω − ω0)2(ω + ω0)2

(
mω0

(
2mx2ω0 − h̄

)
+ 2p2

))
.

(102)

One can take the limit of this Wigner function as ω → ω as well and find that it tends to zero. Again we
see that resonance is not a stable state for the system.
Since our Wigner functions of the driven oscillator resemble those of the undriven harmonic oscillator, expect
the expectation value for p should be zero as it remains centered around this value, while the expectation

value for x should be centered around it’s shifted position. in this case that would be A sin(tω+θ)

m(ω2
0−ω2)

. Lets check

our predictions by calculating the expectation values 〈x〉 and 〈p〉

〈x〉 =

∫ ∫
dxdpW0(x, p, t)x =

A sin(tω + θ)

m (ω2
0 − ω2)

, (103)

〈p〉 =

∫ ∫
dxdpW0(x, p, t)p = 0. (104)

So we see that the found Wigner function gives the correct predictions. For the n=1 state we find the
expectation values to be

〈x〉 =

∫ ∫
dxdpW1(x, p, t)x =

Aω sin(tω + θ)

m (ω2
0 − ω2)

, (105)

〈p〉 =

∫ ∫
dxdpW1(x, p, t)p = 0. (106)
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From these expressions it is also clear that resonance ω = ω0 is an unstable state of the system. 〈x〉 goes
to infinity which means the particle cannot be ”inside” the oscillator.

One may also be interested in the expectation value for the energy 〈H〉 forH = p2

2m+
mω2

0x
2

2 −xA sin(ωt+θ).
This is also calculated using the found Wigner functions.

〈H〉 =

∫ ∫
dxdpW0(x, p, t)H(x, p, t) =

1

2

(
ω0h̄+

A2
(
2ω2 − ω2

0

)
sin2(tω + φ)

m (ω2 − ω2
0)

2

)
. (107)

And for the n = 1 state one finds

〈H〉 =

∫ ∫
dxdpW1(x, p, t)H(x, p, t) =

A2
(
ω2

0 − 2ω2
)

cos(2(tω + φ)) +A2
(
2ω2 − ω2

0

)
+ 6mω0h̄

(
ω2 − ω2

0

)2
4m (ω2 − ω2

0)
2 .

(108)

Again we see why resonance is an unstable state for the system. Near resonance the energies become
infinite which is unphysical.

The Wigner function for the n=0 adn n= 1 state is plotted below with the following parameters:
A = 1 , h̄ = 1, m = 1, θ = 1, ω = 2.05, ω0 = 2.

(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 4: The n = 0 Wigner function of the Driven harmonic oscillator near resonance at various times. We
notice how it corresponds to the Wigner function of the ground state of the undriven harmonic oscillator
now just shifted along the x axis as a function of time.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 5: The n = 1 Wigner function of the Driven harmonic oscillator near resonance at various times. We
notice how it corresponds to the Wigner function of the first excited state of the undriven harmonic oscillator
now just shifted along the x axis as a function of time.

From these plots it is clear, that our wigner functions form are the same as in the case of the undriven
oscillator. Now we only have a time dependent shift in the x coordinate while the distribution along the p
axis remains unchanged.

5 Conclusion

As we have shown the Wigner function offers a formalism equivalent to the formalism offered by the
Schrödinger picture of Quantum mechanics. Quantum problems can be solved and their results obtained
through a single mathematical object. The Wigner function has a strength in it’s ability to visualize a
system and it’s development in time. In some cases the Wigner function has a more simple form than the
wavefunction. Another strength of the Wigner formalism is that in certain limits it behaves as a probability
distribution does in classical physics. This allows for a connection between the realm of classical physics and
Quantum mechanics. A prospective on this paper could be to include spin in the Wigner formalism. One
could ask how the formalism will look if spin is included, and if the same result concerning the time evolution
can be obtained.
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A Appendix

Following [4] we will show how to obtain (72). We begin with our initial wavefunction Ψ(x, 0) = Ae−ax
2

which has to be normalized.

1 = |A|2
∫
dxe−2ax2

= |A|2
√

π

2a
⇒ A =

(
2a

π

) 1
4

. (109)

We use that the wavefunctions at time t can be written as

Ψ(x, t) =
1√
2π

∫
dkΦ(k)e

i
(
kx− h̄k2

2m t
)
. (110)

For t = 0 we know Ψ(x, t), and from this can find Φ(k) via a fourier transform.

Φ(k) =
1√
2π

(
2a

π

) 1
4
∫
dxe−ax

2

e−kx =
1√
2π

(
2a

π

) 1
4
√
π

a
e
k2

4a =
1

(2πa)
1
4

e
k2

4a . (111)

Here we used that
∫
dxe−(ax2+bx) =

√
π
a e

b2

4a . Ψ(x, t) is now found by inserting this result into (110) and
performing the integral.

Ψ(x, t) =
1√
2π

1

(2πa)
1
4

∫
dke

k2

4a e
i
(
kx− h̄k2

2m t
)

=
1√
2π

1

(2πa)
1
4

∫
dke−[k2( 1

4a+ ih̄t
2m )−ikx]

=
1√
2π

1

(2πa)
1
4

√
π√

1
4a + ih̄t

2m

e

−x2

4( 1
4a

+ ih̄t
2m ) =

(
2a

π

) 1
4 e

−ax2

1+ 2ih̄at
m√

1 + 2ih̄at
m

(112)
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