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Abstract

Recent work revealed a significant population of ”hidden galaxies” in the early universe (redshift

z > 3), which systematically escaped optical and near IR telescope imaging due to high dust

content. These peculiar ”NIR-dropout galaxies” can now be identified in state-of-the-art infrared

surveys, where the impact of dust is less strong. This project proposes a semi-automated method

for the identication of the most reliable candidates of ”NIR-dropout galaxies”. The technique takes

advantage of unsupervised and semi-supervised machine learning to classify galaxies. In particu-

lar, we use t-distributed Stochastic Neighbour Embedding (t-SNE) for dimensionality reduction on

unlabeled data, consisting of cutouts of telescope images in various bands. With information from

the COSMOS2020 catalogue we construct a combined model of the telescope image. Subtracting

the model from the the scientific image we produce a residual map that is used for the detection

of the objects constituting our sample. Through visual inspection of the residual image, a sample

of respectively promising and unfit candidates is labelled to allow for semi-supervised classification

of galaxies according to the vote of k neighbours. With this method we are able to classify 128

robust candidates from the entire sample of 2024 unlabelled galaxies, thus reducing the sample to

be visually inspected by a factor of ∼ 15. This method will allow identification and classification of

distant, optically faint galaxies among the millions of object that will be detected in next-generation

surveys such as Euclid. Upon confirmation of the candidates, this might lead to a challenge of our

understanding of galaxy evolution and/or provide insight into the physical features of intrinsically

faint, distant galaxies.

Link to the repository containing the code used in this project:

https://github.com/KimiKreil/Bachelor Thesis Code
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1 Introduction

Reaching a complete understanding of the formation and evolution of galaxies is one of the central

challenges of modern astronomy. To be able to study the early stages of galaxy evolution, we look

for progenitors of present-day galaxies. In an astrophysical context, studying the early universe

implies looking for distant galaxies with a high redshift, i.e. galaxies which emitted the light we

observe at an earlier point in cosmic time. For example, a galaxy at redshift z = 5 (corresponding

to a luminosity distance of 3 Gpc) emitted light ∼ 1 billion years after the Big Bang [1].

One method of identifying a distant galaxy is observing the spectrum and directly measure the

redshift, using the following cosmological redshift formula:

λobs = (1 + z)λemit (1)

where λobs is the observed wavelength, z is the redshift and λemit is the rest-frame wavelength.

For a large sample of galaxies this is, however, quite expensive and thus only photometric data

are available. For that reason, we will adopt another approach utilising broad band photometric

data in looking for so-called ”dropouts”, a technique first introduced in [2]. The intrinsic lumi-

nosity of dropout galaxies falls off sharply below a specific wavelength and the galaxy will thus

be visible in bands with wavelengths longer than the cutoff value, while they will drop out at

shorter wavelengths. The cutoff wavelength can either be a Lyman break (912 AA) or a Balmer

break (3646 AA). As an example, using eq. 1, we would observe the Balmer limit for a galaxy at

z = 5 at λobs = 21876 AA ≈ 2.19µm. Dropouts, with a large break in their continuum flux, have

two possible explanations for their red colours: (i) either dust extinction causes strong redden-

ing of star-forming galaxies, since shorter (bluer) wavelengths are attenuated the most, or (ii) the

dropout galaxy is actually a quiescent galaxy that is intrinsically faint below the given wavelength,

due to ceased star formation [3]. The observed cut off wavelength for a dropout galaxy in the early

universe is longer than that of a low redshift one. A near infrared (NIR)-dropout is therefore not

visible in optical or near infrared wavelengths, but can be detected in surveys at wavelengths above

2µm. In this thesis, we therefore look for NIR-dropouts, which in principle will lead to objects

with higher redshifts than if we looked for, e.g. optical dropouts.

Identifying a dropout galaxy by itself does not guarantee that we have found a galaxy at a high

redshift, since it could be either an intrinsically faint galaxy or a galaxy faint due to dust. Nonethe-

less both findings would be interesting for future research. Finding intrinsically faint galaxies could

provide new information about early death (quenching) of massive galaxies, while a dusty galaxy

can provide insight into our knowledge of the physical features of galaxies with unprecedented dust

contents. Both scenarios will enlighten us on aspects of galaxy evolution that have not been inves-

tigated thoroughly so far.
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The photometric data used for this thesis are from the COSMOS2020 catalogues (Classic and

Farmer), which are still under development by a team of astronomers led by NBI researchers

(Weaver et. al. [4]). The catalogue is an upgraded version of COSMOS2015 [5], which incorporates

new imaging and spectroscopic data in the COSMOS field. Due to the increase in exposure time,

the new catalogue is almost one magnitude deeper in the Visible Infrared Survey Telescope for As-

tronomy (VISTA) bands, and includes all Spitzer/IRAC data ever taken in COSMOS. It contains

source detection and multi-wavelength photometry for 1.7 million sources across the 2 deg2 field.

Due to the rareness of the kind of galaxies we are looking for, a large survey is preferable, since

we will be able to identify a bigger sample of reliable candidates. On the other hand, we also look

for a deep survey due to the faintness of the targets. COSMOS2020, although not a catalogue

based on the deepest surveys available, has the desired balance between the two requirements,

thus providing us with a formidable tool to detect a larger sample of fainter sources. Since we

are interested in NIR-dropouts, we will primarily be working with the UltraVISTA bands (H at

1.65µm and Ks at 2.16µm), along with the IRAC bands: ch1 (λ = 3.57µm) and ch2 (λ = 4.51µm).

This thesis has two separate aims. One is exploring whether a new, better residual map can be

produced from the Farmer catalogue, surpassing classical aperture photometry. The other main

purpose is to devise a new technique for a faster selection of NIR-dropouts.

In the article by Weaver et. al. [4], a new tool for profile-fitting photometric extraction, The

Farmer, is introduced, which provides additional parameters that we can use for fitting the light

profiles of sources, when creating a residual map. The process of developing a residual map of the

IRAC ch1 image from the 2020 catalogue is described in detail in section 2.1 and the results are

reported in section 3.1.

Recent work ([6] and [7]) has started a systematic investigation of a few tens of candidate NIR-

dropouts. The candidates are found to be mostly massive, dusty galaxies from the early universe,

which challenges our understanding of massive galaxy formation. This thesis aims to find such

NIR-dropouts among the million of galaxies detected in the COSMOS field. We therefore propose

a semi-automated method for the identification of the most reliable candidates of NIR-dropouts.

The technique combines unsupervised and semi-supervised machine learning to classify galaxies,

utilising in particular t-distibuted Stochastic Neighbour Embedding (t-SNE) for dimensionality

reduction and k Nearest Neighbour (kNN) voting for classification. The method for classification

of the objects is described in section 2.2.

2 Method

In the two sections below the methods adopted for respectively creating a residual map and for

classification of NIR-dropouts are described.
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2.1 Producing a Residual Map with Profile-Fitting

Since we are interested in objects that are visible in the IRAC bands and not detected in the

NIR bands, we aim to produce a residual map of the IRAC ch1 image. However, due to limited

computing power we refrain from attempting to create a residual map of the entire IRAC image,

the full extent of which is 5.2 arcmin2. Instead we will work with tile 7-7, which is a smaller region

in the image, spanning ∼ 8 arcmin2.

In general a residual map is produced by creating a model of the image and subtracting it from the

scientific image. To produce a model of the entire image one first needs to perform source detection,

so it is known which objects that should be subtracted. Furthermore, one needs to apply either

aperture photometry or model-based photometry, which is in general terms a way of estimating the

flux from a source, so we can subtract appropriate values from the scientific image. The details of

the steps described here, are elaborated in the subsections below.

2.1.1 Source Detection and Aperture Photometry

In the COSMOS2020 Classic catalogue, the object photometry is carried out using SEP [8], a

Python wrapper for SExtractor [9]. To understand how the software works, we performed the

source detection on the telescope images from three bands: two optical bands (g and i) from

the Hypersurprime Camera (HSC) mounted on Subaru and the NIR band Ks from the VISTA

telescope. The code is available in this notebook (link). First, we need to produce background

estimation, since each pixel in a telescope image is the sum of background noise and flux from

the object that we are interested in. The background estimation is a way of mapping the back-

ground flux level in different areas of the image. Subtracting this background map, we can thus

produce a ”clean” image, where the background is ∼ 0 so the pixel flux values within a source on

average only includes the flux we are interested in. There will still be statistical fluctuations present.

Camera Zero Point [mag]

HSC 31.4

VISTA 30

IRAC 21.58

Table 1. Zero point magnitudes to
convert flux densities (in the image’s
native units) into magnitudes for the
listed bands.

There are two main parameters that control the detection of

sources: the deblending threshold and the flux threshold. The

deblending threshold controls when to split objects that are

very close in the image and the flux threshold determines the

signal to noise ratio (S/N) required for a detection. For ex-

ample, a very low flux threshold will lead to the detection of

spurious objects while a high threshold will overlook fainter

objects. These steps provide the coordinates of the detected

objects along with a peak flux corresponding to the value of

the pixel with the highest flux. To find the integrated flux and

the magnitude of the objects, aperture photometry is used. The COSMOS2020 Classic catalogue

uses fixed aperture diameters of respectively 2′′ and 3′′ and computes the aperture flux as the sum

of all pixels within the aperture in the cleaned image (where the background map is subtracted).
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Another option is to adapt the apertures to the size of the sources. Both methods are attempted in

the linked notebook. Here we computed the aperture diameter using the limits xmax, xmin, ymax

and ymin from the SEP output to find the mean extent of the source along the two axes. A visual

representation of the detected sources marked with their adaptive aperture can be found in fig. 10

and 11 in the appendix. The AB magnitude is found with the formula [3]:

mX = −2.5 log10(FX) +m0,X (2)

where mX is the computed magnitude, FX is the measured flux density in the band in native units

and m0,X is the zero-point in band X, which converts the native flux density units into physical

units. In this project, we have used the zero-point magnitudes listed in table 1. Computing the

magnitudes (obtained from fixed 2′′ aperture) with this method, we are able to compare our results

with the 2′′ aperture magnitudes reported in the catalogue. The distribution of the COSMOS2020

Classic magnitudes and ours are both illustrated in fig. 1, along with the difference in magnitude

between corresponding objects plotted in a residual histogram. The residuals are centred at 0

and have a small dispersion, indicating that our measurements are consistent with the ones in the

catalogue.
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Figure 1. The distribution of magnitudes pertaining
to objects in the COSMOS field. In blue, the magni-
tude measurements found by running SEP is plotted.
In orange the 2” magnitudes reported in the COS-
MOS2020 Classic catalogue are displayed. In grey a
residual plot is shown, mapping the difference between
the measured and reported magnitude for each object.

The centroids of the sources found by SEP

in the IRAC ch1 band can then passed to

the software IRACCLEAN [10] to model the

IRAC ch1 emission. The centroids from the

SEP algorithm and the total flux found from

fixed aperture photometry is used to create

point source models of the detected objects.

The point source model is an approximation,

since the light profiles of the galaxies will dif-

fer from a perfect point source. However, due

to the low resolution of the IRAC images and

their large point spread functions (PSFs), much

larger than the expected sizes of our candidates

and of the most distant objects, it is reasonable

to use the point-like approximation. The COS-

MOS team used IRACCLEAN software and a

similar approach as described above, but per-

formed on both ch1 and ch2 in IRAC, to pro-

duce what we will refer to in this project as the classic residual map. There are, however, some

limitations to aperture photometry and the residual map it produces, which is why we will also

explore another approach of creating a residual map.
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2.1.2 Model-Based Photometry

An alternative to aperture photometry is model-based photometry, a method from which the Farmer

tool is developed. The Farmer tool [4], like the previous method, also starts out with a source detec-

tion algorithm (SEP) reporting the centroids of each source detected. Next it identifies particularly

crowded regions where there are multiple objects nearby each other that could present overlapping

flux. Contrary to the previous methods, these sources are modelled simultaneously. Furthermore

this method does not require enforcing a fixed aperture size. Instead the total flux is determined by

fitting an intrinsic light profile to the source, and integrating the area covered by the model below

the surface. The Farmer tool fits one of 5 available models (after PSF convolution) to an observed

source. Common for all the models is that they are parametrised using the centroid position of the

source as a fixed parameter and the total flux as a free parameter. The models are:

1. Point Source models are taken directly from the point spread function (PSF) used. It is

similar to the method applied when using aperture photometry.

2. Simple Galaxy models are circular symmetric, exponential light profile with a fixed 0.45”

effective radius.

3. Exponential Galaxy models are exponential light profiles. In addition to the common

parameters these are parametrised also by effective radius, axis ratio and position angle.

4. DeVaucouleurs Galaxy models are de Vaucouleurs light profiles. These models require

similar parameters as the exponential galaxy model.

5. Composite Galaxy models are combines a Exponential Galaxy profile with a DeVaucouleur

Galaxy profile. The profiles are concentric, and the model, like the others, is therefore only

parametrised by one pair of centroids coordinates. Each component is parametrised by the

free parameters described in the two previous models. In addition there is a “fraction of total

flux” parameter that distributes the flux between the two components.

Except for the Point Source model, they can all be described analytically by changing the parameter

n in a 2d Sérsic profile. n = 1 corresponds to a Exponential Galaxy and n = 4 creates a De

Vaucouleurs Galaxy. The general profile is given by [11] in eq. 3,

I(R) = Ie · exp

(
−bn ·

((
R

Re

) 1
n

− 1

))
(3)

where Ie is the intensity at the effective radius Re that encloses half of the total light from the

model. The constant bn is defined from n, to make sure the total luminosity is obtained when

integrating the profile. Since four models are all analytical, they can easily be integrated to obtain

the total flux. The real challenge lies in choosing the right model and obtaining a converging fit.

The Farmer tool includes a decision tree for selecting the most appropriate model type to fit a given
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source with. The models are tested in the order they are described above (1 to 5), and the quality

of their residuals are ranked, so the best model is chosen. When the most appropriate model type

is selected for all sources, optimisation of the free parameters is performed as the final step, so

that the parameters chosen for one object will not directly affect the parameters of nearby objects.

While this method does improve on some of the drawbacks from aperture photometry, it is almost

impossible to make all model fittings converge. There are a few possible reasons for the failure to

converge. Sometimes a bright source is simply not well described by a smooth profile. It could also

be due to a very blended pair that was not successfully separated in the SEP detection, and thus

not described correctly by a single light profile.

With this process, the Farmer tool can provide us with the parameters needed for creating intrinsic

light profiles of the sources detected in the image. The models describe how we expect the light

to look intrinsically, but when the light is observed through a telescope it is warped due to the

way the imaging system responds to a point source. A point spread function (PSF) describes the

response of an imaging system to a point source, mapping how the light will appear in the image.

Therefore, to create a residual image we need to model the objects as they would appear in the

image. We obtain the final models from a convolution of the intrinsic light profiles with the PSF

of the image. The residual map is then produced by subtracting the convolved models from the

telescope image, carefully placing the models right according to the detected centroid coordinates.

For the next part of the project we need a catalogue containing the coordinates and total flux

of objects detected in the residual image. For this purpose we use SEP source detection and aper-

ture photometry to estimate the total flux. This catalogue will likely contain different objects of

various level of interest: spurious objects, left-over flux from subtracted sources due to imperfections

in the residual image, and dropout galaxies.

2.2 Classification with Semi-supervised Machine Learning

In this thesis, we develop a semi-automated method of selecting NIR-dropout galaxies based on

t-SNE [12] and kNN voting. This method uses as input: 4 telescope image cutouts of each galaxy

in the sample, from respectively the H, Ks, ch1 and ch2 bands. The method is semi-supervised,

and hence will need some parameter tuning along the way and some labels (to be defined in section

2.2.2). With this, the technique will predict whether each galaxy in the sample is a NIR dropout

or not.

2.2.1 Dimensionality Reduction with t-SNE

As mentioned, the input that the method is given for each object in the sample is four small tele-

scope images centred at the object in question. We use cutouts of the size 21×21 pixels, meaning

that we in total will have 21 × 21 × 4 = 1764 features for each object in the sample. Inherently,

this is a very high-dimensional classification problem, and it is particularly difficult to produce
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meaningful predictions from, when the learning is unsupervised. A way to simplify the problem

is embedding the high-dimensional data in a 2-d representation. There are many approaches to

obtaining such an embedding, but for our purposes we will adopt the method of t-SNE, which has

gained a lot of popularity since its release in 2008. A recent NBI paper [13] proposed this novel

technique for classification of galaxies from photometric data, which has inspired the approach ap-

plied here. In particular they used t-SNE to classify quiescent galaxies at z = 1 from their spectral

energy distributions (SEDs).

t-SNE takes a set of high dimensional vectors, in this case the pixels originating from four differ-

ent images, and computes the euclidean distance between each vector. From this it calculates a

probability that two vectors should be considered neighbours. This probability considers the user-

specified hyper parameter perplexity, which determines the sizes of the neighbourhoods based on

the density of the data in the respective regions. The hyper parameter can effectively be understood

as a estimate for the number of neighbours that should be considered similar. Values between 1

and 50 are suggested by the author to be the most appropriate [12]. A low perplexity emphasizes

local structure in the embedding, while a high perplexity will preserve more of the global structure

of the samples. A universally good perplexity value cannot be determined, but should be selected

manually for each data set. This is because the density of the objects varies depending on the

sample size, and thus the number of optimal neighbours will vary. The perplexity is chosen, in

this thesis, by performing the t-SNE embedding for various perplexities and determining which

structure is best suited for the purpose of classifying dropouts.

t-SNE is stochastic in its nature, and will thus compute different embeddings for the same data

set unless the same random seed is specified every time. To be able to reproduce our results,

this was therefore implemented. Its stochastic nature lies in the fact that it will try out different

configurations for the embedding and evaluate the probabilities, which it will try to improve in the

next iteration. Due to the huge dimension of the data, this makes the process much faster, but

also means that the embedding is not reversible, and new objects cannot be added individually

to the embedding space. All data thus has to be given to the algortihm at once. We can specify

the maximum number of iterations for the procedure, and the algorithm will output the number

of iterations it actually used to produce the embedding. This means we can also use the number

of iterations as a tool for choosing the right perplexity. If the number of iterations is smaller than

the maximum number of iterations, this means the embedding has converged in the sense that it

could not find a better configuration for the embedding during the next 300 iterations (since the

default value for the parameter n iter without progress is 300).

Since the t-SNE algortithm is a form of unsupervised machine learning, the embedding map will

be produced without any direct knowledge of what a dropout galaxy looks like. It will however

place objects it considers similar close to each other, even though the algorithm is unaware that

the features are pixels from a series of telescope images. This is also one of the reasons t-SNE is so

popular: the flexibility in its applications makes it a very powerful tool.
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2.2.2 Visual Classification of Tracers

H Band Ks Band

IRAC ch1 IRAC ch2

Figure 2. An example of a tracer for NIR-
dropouts. The object is clearly visible in
the IRAC bands, while it drops out in the
NIR bands.

Thus far the machine learning has been completely unsu-

pervised, but now that a 2-d representation of the sam-

ple is obtained, we need to understand in which region

dropout galaxies are located with another method, since

t-SNE, by itself, is not enough to produce predictions. As

mentioned in section 2.2.1, t-SNE has no direct knowledge

of the features it is mapping, and while it is able to place

similar objects close to one another, it is not able to de-

fine which categories different regions belong to. Even if

the the method performs extremely well for our purpose,

in the sense that it would output 3+ tight clusters that

are well separated from each other, it would still not be

enough, since it would not know which cluster contains

what. We say 3+ clusters here, since we know there will

be at least three kinds of objects: spurious sources, left-

over sources and dropout galaxies.

This is therefore where the semi-supervised learning has

to enter our method. We select ”tracers” in our sample, which are what is determined to be a

reliable NIR-dropouts based on a visual inspection of the objects in the four bands. We look for

objects that are visible in IRAC ch1 and ch2, and which do not appear in the NIR bands H and

Ks. Since the objects we look for are similar to those found in [6] and [7], we can also use these

as a reference. An example of which objects we would classify as a tracer is displayed in fig. 2.

We can then map where the tracers are placed in the embedding by the t-SNE algorithm. If the

tracers cluster well, this is a good indication of a promising region for finding NIR-dropouts.

For the method adopted in this thesis, we also need ”anti-tracers”, which are indicators of non

NIR-dropouts. These are also selected from a visual inspection of the four bands, this time, how-

ever, we look for objects that look nothing alike the tracer displayed in fig. 2.

Since we devise the semi-supervised method for selecting NIR-dropouts in this thesis, we will also

need to validate it. This means we need a sample of tracers and anti-tracers for producing predic-

tions, and additionally a similar sample for validating. In case of future use of the method this is,

however, not necessary, thus reducing the number of objects that has to be visually classified.

2.2.3 Classification with kNN voting

Now that we have an embedding that is more easily visualised and interpreted, and we have tracers

and anti-tracers indicating the interesting regions and the non-interesting regions, we can construct

the semi-supervised algorithm used to produce predictions on the sample. An object can either be

classified as a NIR-dropout or a non NIR-dropout galaxy. The method takes basis in the principle
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of k nearest neighbours and voting. The code performing the classification is divided into the

following modules:

1. First, the distances between an unknown object and all tracers are computed, from which

the k nearest tracers are selected (a range of values 1 < k < 50 will be tested).

2. The votes of the k neighbours are then collected. A neighbour that has been previously

identified as a tracer will vote for a NIR dropout prediction, while an anti-tracer will vote

against.

3. It is checked if the fraction of positive votes is above the threshold fmin, which defines

the minimum fraction required for predicting a dropout. In the implementation we will

experiment different values of fmin, ranging from 0 to 1.

4. On behalf of the above, the predictions are computed.

An alternate strategy would be collecting votes from all the neighbours within a fixed radius in

the 2-d space. The choice of using nearest neighbours instead of this other option is based on

two considerations. First of all the two dimensions of the t-SNE embedding are arbitrary, thus

defining a physically meaningful radius is challenging. Furthermore, the embedding represents an

approximation of the higher dimensional distribution of objects, and therefore we cannot be certain

that a euclidean distance in one region of the embedding is consistent with the distance measured

in another region. Assuming a uniform density of objects in the embedding, using the k nearest

neighbours, would in turn provide a more consistent voting. By introducing the threshold fmin,

we are able to modify our selection of NIR dropouts based on the desired balance of quality and

quantity. One can then select a parameter of fmin that identifies fewer, more robust dropout can-

didates or be less conservative and obtain predictions of more NIR-dropouts that in turn may be

less reliable.

We will evaluate the performance of the model based on the purity of the sample, defined as

TP/(TP + FP ) where TP is the number of true positives and FP is the number of false positives.

We will also produce a receiver operator characteristic (ROC) curve, useful for visualising the per-

formance for different values of fmin, and typically an adopted score measure in machine learning.

The ROC curve is defined as the true positive rate (TPR) as a function of the false positive rate

(FPR) [14].

3 Results

3.1 Residual Map of an IRAC Image

We produced a residual map for a ∼ 8 arcmin2 region in the IRAC ch1 telescope image, by adopting

the model-based photometry method described in section 2.1.2 for creating intrinsic light profiles of
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Model type
Total number
of sources

Number of removed
sources due to
unphysical parameters

Number of
sources modelled

Number of
flagged objects
(of those that
are modelled)

Point Source 6844 1635 5209 69
Simple 188 57 131 6
Exponential 1782 432 1350 17
De Vaucouleur 517 198 319 17
Composite 169 5 164 0

Sum 9500 2327 7173 109

Table 2. Overview of the number of sources modelled in tile 7-7 of the IRAC ch1 telescope image with
parameters extracted from Farmer. Columns from left to right: (1) The model type used, (2) Total number
of detected sources, (3) Number of objects that had to be removed when performing a sanity check, (4)
Number of sources left, that were actually modelled, (5) The number of objects that were modelled even
though the fitting process in Farmer failed to converge.

sources. The parameters used for the Sérsic profiles were extracted by Farmer from the optical-NIR

images of COSMOS2020 and then included in the catalogue and the PSF for the IRAC camera was

used for convolution. In total we detected 9500 sources in the image and modelled 7173 of them,

the vast majority of them being point source galaxies. The number of sources modelled with each

profile type is reported in table 2. Here we also report the number of objects we had to remove

from the modelling process due to unphysical parameters. Examples of these parameters include

negative fluxes, effective radii of zero extent (in the models using this parameter) or axis ratios

above 10, which produced unusually elliptical galaxies appearing as narrow elongated lines. These

are sources where either the modelling did not converge or the model converged to a wrong value.

The number of flagged objects that were modelled is also reported, these are the objects that were

already known to be pathological, for example big saturated stars. In the table we see that the vast

majority of the sources are modelled as point sources. Furthermore, it is clear that a non-negligible

fraction of sources are not modelled. Nonetheless, we produced a combined model image with

the valid models, only including the sources (not the background), and placing the centre of each

source model at the centroid coordinates reported in the COSMOS2020 Classic catalogue. A 1× 1

arcmin2 section of the resulting residual image is displayed alongside the same region in the IRAC

ch1 telescope image in fig. 3. From this section of the image it is not immediately clear that we

have overlooked some sources, since this would have resulted in bright spots in the residual image.

Comparing the two images in the figure, we can see that some models performed well and left an

almost empty residual, while others sources leave patterns in the residual map due to imperfect

modelling.

An example where the modelling performed well and produced a good residual, for each model

type, is displayed in fig. 5. Similarly, two examples, where the profile-fitting did not perform as

well, are displayed in fig. 4.
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Figure 3. The left plot is a zoomed ∼ arcmin2 region in the IRAC ch1 image. To the right, the same region
is displayed in the residual tab created utilising the Farmer tool. Colour, limits and scales are all matched
between the two.
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Figure 5. A good example of source modelling, for each of the five Farmer model types. The first row
displays a cutout from the telescope image. The intrinsic profiles, are convolved with the IRAC PSF in the
second row. The bottom row displays the residual computed by subtracting the second row from the first.
All apertures marked are 2”. And the cutouts are 21×21 pixels corresponding to a sidelength of 3.15”.
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3.2 Dimensionality Reduction
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Figure 4. Two examples where the mod-
elling of the sources was not as succes-
ful. All apertures marked are 2”. And the
cutouts are 21×21 pixels corresponding to
a sidelength of 3.15”.

Performing source detection with SEP on an IRAC resid-

ual map, we identify 3139 objects. We used the classic

residual map (described in section 2.1.1), since we did

not have time, nor computational power, to produce an

IRAC-size robust residual map. Furthermore a few prob-

lems arose in the residual map that was created following

the description in section 2.1.2 (this is discussed in section

4).

A residual catalogue is created, containing information

about the detected sources from telescope images (cutouts

of 21×21 pixels corresponding to 3.15”×3.15”) in four

bands: H, Ks, ch1 and ch2. These cutouts are used as

the input for the t-SNE method, described in section 2.2.1

to create a 2d embedding of the higher dimensional space

(21×21×4) in which each object is represented. To select

an appropriate perplexity value, the embedding is com-

puted for multiple values of the hyper parameter. The

embedding results, from all perplexities explored, are dis-

played in fig. 12, 13, and 14 in the appendix, where the

colours between each consecutive band are mapped. In

fig. 6 a few select embeddings are plotted. Here the colour

Ks− ch1 is used to colour map the sample, since this is where we search for dropouts. The colour

is defined as the difference in magnitude between two bands 1. Due to negative flux values, the

magnitudes are sometimes undefined. These objects are assigned another colour in the plot, de-

pending on which band the problem occurred in, so as to be able to distinguish them from the non

problematic cases. We chose to continue with a perplexity of 40, since it is in the suggested range

between 1 and 50 and it produces a useful clustering with a well separated cluster to the right.

Furthermore the embedding was obtained with 6349 iterations which is lower than the maximum

number of iterations set to 1000, hence the method has converged.

From manual visual inspection of the four bands, we labelled the best tracers and anti-tracers of

NIR dropouts. Furthermore we matched the coordinates of the detected objects in the residual map

with the coordinates from the sources in the COSMOS 2020 Classic catalogue, to identify detection

due to leftover flux in the residual map. The dense cluster located to the right in the middle plot in

fig. 6, is also explored, and mapping the fluxes we find that these are particularly bright sources. In

fig. 7 these regions are explored by plotting a cutouts from objects in each region. This figure also

shows the cutouts for an object that was mapped far away from the others, it is however deemed

1 reference to MBW book
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Figure 6. The t-SNE embedding results for three different perplexities. All embedding has a maximum
number of iterations set to 1000. niter reports the number of iterations actually used.

to be of no interest for our purpose. Looking at the cutout of the tracer, in green, one can see that

it is not visible in the NIR bands but appears in the IRAC bands, as is expected for a tracer of a

NIR-dropout. The example object from the bright sources region, appears much brighter than the

other objects, which is also an indication that this region is in fact bright objects. These cutouts

suggests that t-SNE is actually performing a meaningful embedding, where different regions have

different features.

Outlier
Tracers
Bright Sources
Matched with COSMOS

H Band Ks Band IRAC ch1 IRAC ch2

Figure 7. The main plot shows the t-SNE embedding for perplexity 40, where objects in different regions
are marked. The telescope images of an object in each region is also plotted, where the colourbar is restrained
to the minimum and maximum flux detected for the object shown from the tracer region.
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Figure 8. From left to right: (1) Performance measure as a function of the threshold fmin. In green the
purity is plotted defined as the number of true positive (TP) divided by the number of total number of
predicted positives (TP+FP) where FP is the number of false positives. The maximum purity achieved
is marked with a green dot. (2) The receiver operating characteristic (ROC) curve. The value of fmin

corresponding to the maximum purity is marked with an orange dot. (3) The predictions produced with
fmin = 0.47 and k = 15 which lead to the highest purity.

3.3 Predictions

Before we produce predictions, we need to select a sample of both the tracers and the anti-tracers

for the validation. In total we use 1069 objects anti-tracers and 133 tracers. To produce predictions,

respectively 1025 and 90 non dropouts and tracers are used, while respectively 44 and 43 are used

for validation of the method. The validation sample is selected so it balances the two possible

outputs. We ran the classification code on the training sample, which in addition to the labelled

objects also includes unknown objects.

Testing out various k number of neighbours between 1 and 30, we chose k = 15, since it produces

the best results. With k = 15 neighbours and 100 values of fmin between 0 and 1, we are able

produce the results displayed in the first two left plots in fig. 8. The purity of the NIR dropout

predictions is computed for each run of the classification. The parameters fmin = 0.47 and k = 15

produces the highest purity, found to be 96%, and are therefore selected to produce the predictions

displayed in the far right plot in fig. 8. Out of 2024 objects, 128 are predicted to be NIR-dropouts.

To inspect the results we plot the SED of the predicted NIR-dropouts, shown in fig. 9. For

comparison of different regions in the embedding, the SED for respectively the matched and bright

objects shown in fig. 7 are also shown. Due to the definition of a NIR dropout galaxy we expect

the predicted dropouts to decrease in magnitude (increase in brightness) between bands Ks and

ch1, which is also what the figure displays.
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Figure 9. Spectral energy distribution for objects that are found in the bright source region (blue), objects
in the densest regions of sources matched with the COSMOS2020 Classic catalogue (red) and objects that are
predicted to be NIR-dropouts (green). Undefined magnitudes are replaces with the upper limit of the band
reported in [4]. The errorbars on the plot are made using the 25th and 75th percentile of the distributions
of magnitudes.
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4 Discussion

Throughout this thesis we have mentioned two residual maps: the classic residual map created

with IRACCLEAN as described in section 2.1.1, and the Farmer residual map created for a smaller

section of the full IRAC image, using the Farmer tool as described in section 2.1.2. Both are men-

tioned throughout this work because they each have their advantages and drawbacks.

The classic residual map is an older map that has been well tested and uses an established software

as its base, and is therefore a very robust residual image. The drawback of this residual map arises

from the limitations related to aperture photometry, which is the basis for this map. All sources

in the IRAC telescope image are modelled individually with a point source model, where the flux

is a free parameter that rescales the profile to fit the source. The flux used is the aperture flux,

hence the aperture size is an assumption that is enforced on all sources, even though an adaptive

aperture may have been more appropriate. This is not always a problem as long as the aperture

size is relatively large, including all flux intrinsic to the source, and the surrounding is background

which values are centred around zero. However, since we are working with very faint sources in

this project, even a little contamination in the measure of flux might have a significant effect. The

problem especially arises if there is a blended pair of galaxies, and the intrinsic flux cannot be

properly estimated or divided between the sources. There are thus multiple aspects, we would like

to improve in the classic residual map, which was the motivation behind attempting to create a

new residual image using the recently developed Farmer tool.

In section 2.1.2 we described how the Farmer overcomes some of these drawbacks, for example by

adopting simultaneous modelling of sources in crowded regions. On the other hand, we encoun-

tered entirely new problems with this method. For a significant fraction of the models unphysical

parameters were listed, and we had to remove them from the modelling process all together. These

unphysical parameters are either a result of a failure to converge or the result of converging to a

wrong value. An explanation might be that the Farmer during the fitting process fell into a wrong

local minimum, so an idea for a solution could be narrowing the range of allowed values to those

that are physically meaningful. This problem, of not being able to model all sources, is one of

the main reason we had to use the classic residual map for the prediction of NIR dropouts. The

Farmer is however still not at its final version, and this is likely something that will be improved

in version 2. The possibility that the Farmer tool, in the future, can be used to create a new and

better residual image than what can be done with aperture photometry is still there.

Another main result we showed was our semi-supervised classification of NIR-dropouts. While

we could have hoped that t-SNE would have produced an embedding with more distinct clusters,

the results seem to be robust. We see this especially when considering fig. 7, where t-SNE is able to

perform anomaly detection, placing an outlier far away from the main cluster, during the unsuper-

vised part of our technique. This plot in general tells us that the resulting embedding is meaningful

with different regions displaying different features.
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The technique adopted for producing predictions of dropouts still requires human intervention, as

we need to provide the algorithm with tracers and anti-tracers from a visual classification of the

cutouts. While it is not ideal, that one needs to manually inspect images to be able to produce an

output, the method is after all still much faster than relying only on visual classification, which is

an important result when trying to make classifications from larger surveys. An example of such a

survey is the Euclid which is a wide and deep survey that will perform imaging of very large patches

of the sky in optical and NIR down to ∼ 26 − 27 mag. In such a situation, we will be observing

over a 10 times larger area, and classical visual inspection is next to impossible. In such a scenario

this machine learning method is definitely the preferred technique. The predictions produced with

out method are also quite good, reaching a purity of up to 96%. One can however still tune the

parameter fmin depending on what the predictions are to be used for. Say one wants to perform

spectroscopic follow up on the candidates, a smaller sample that is more reliable is preferable.

5 Conclusion

A novel technique has been devised for the semi-automated classification of NIR-dropouts based

on photometric data sampled from four different bands in the COSMOS field. In particular the

UltraVISTA bands (H at 1.65µm and Ks at 2.16µm), along with the IRAC bands: ch1 (λ =

3.57µm) and ch2 (λ = 4.51µm) from the COSMOS2020 catalogue. The method takes advantage

of semi-supervised machine learning, in particular it uses t-SNE and kNN for producing predictions.

It does, however, need to be provided with a sample of labelled objects that are found from visual

inspection of the cutout images in each band. With the number of neighbours set to k = 15 and

the minimum positive voting fraction selected as fmin = 0.47, the technique predicts 128 NIR-

dropouts from the entire unknown sample of 2024 candidates, with a purity of 96%. This machine

learning technique for classifying dropouts is strongly preferred for large surveys, where it produces

predictions much faster than other techniques, such as manual classification. Suggested future

work for the devised technique is to make sure that all steps are easily adaptable to also produce

predictions for candidates from other fields than the COSMOS. An example of a large and deep,

next generation survey perfect for detecting NIR-dropouts is the Euclid.

The sample of candidates the technique produces predictions on, is found from source detection in a

residual image. It was explored whether it is possible to produce a new, better residual map of the

IRAC ch1 image, utilising model-based photometry, in particular the Farmer tool [4], rather than

a classical approach based on aperture photometry. It is found, that with the current version of the

Farmer tool, this is not within reach. It is however plausible that a future version improving the

way that the model optimisation is performed, can produce a better, more robust residual map.
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Appendix A Source Detection in Optical and NIR bands

HSC: G Band HSC: I Band VISTA: Ks Band

Figure 10. Results from source detection with SEP. An adaptive aperture is plottet at the detected centroid
for each source in the entire image from respectively the g, i (optical) or Ks (NIR) band.

HSC: G Band HSC: I Band VISTA: Ks Band

Figure 11. Zoomed version of fig. 10. The images are 500×500 pixels.
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Appendix B Color Mapped t-SNE Embeddings
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Figure 12. The t-SNE embedding results for nine different perplexities. All embedding has a maximum
number of iterations set to 1000. niter reports the number of iterations actually used. The samples are
colour mapped with the colour defined as mH −mKs
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Figure 13. The t-SNE embedding results for nine different perplexities. All embedding has a maximum
number of iterations set to 1000. niter reports the number of iterations actually used. The samples are
colour mapped with the colour defined as mKs −mch1

iii



Perplexity=2, n_iter=9999 Perplexity=5, n_iter=9999 Perplexity=10, n_iter=9999

Perplexity=20, n_iter=9999 Perplexity=30, n_iter=9999 Perplexity=40, n_iter=6349

Perplexity=50, n_iter=9999 Perplexity=80, n_iter=4599

Magnitude undefined in the blue band Magnitude undefined in the red band

Perplexity=100, n_iter=6499

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

m
ag

_c
h1

 - 
m

ag
_c

h2

Figure 14. The t-SNE embedding results for nine different perplexities. All embedding has a maximum
number of iterations set to 1000. niter reports the number of iterations actually used. The samples are
colour mapped with the colour defined as mch1 −mch2
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