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1 Resumé

I dette Bachelorprojekt udledes et teoretisk udtryk for konduktansen gennem et bøjet carbon
nanorør. Udgangspunktet for studiet af carbon nanorør er grafen, der kan beskrives ved to
undergitre best̊aende af A og B carbonatomer, som definerer AB-underrummet. Ved hjælp af
en tight-binding model opstillede vi en approksimativ Hamiltonoperator og tilhørende energi
dispersion for grafen i nærheden af K(K′)-punkterne, der er defineret som hjørnerne i den
hexagonale første Brillouin zone. Ved brug af periodiske randbetingelser og Blochs theorem
udvidedes billedet til carbon nanorør, der er dannet ved at rulle et grapfenlag sammen til en
cylinder, s̊aledes at en kvasi 1D-dispersion opn̊as.

Systemet udvikledes yderligere ved inkorporation af en række perturbationer. Vi fandt at
et magnetfelt inducerede b̊andgab for metalliske nanorør samt brydning af K(K′)-udartningen
for halvledende rør. Spin-bane koblingen og hybridisering mellem π og σ b̊andene pga.
nanorøret krumning ledte yderligere til en asymmetrisk splitning af Kramer doubletterne,
der best̊ar af hhv. K(K′) ↑ (↓) og K(K′) ↓ (↑), hvor pilene indikerer spinpolarisering langs
med røret, i lednings- og valensb̊andet. Ved at medtage mixing af K og K′ – der opst̊ar pga.
vekselvirkninger med omgivelserne, som bryder rotations symmetrien – blev det samlede re-
sultat en fuldstændig opslitning af de ellers fire-dobbelt udartede energib̊and. De tilhørende
eigenfunktioner bestod af linear kombinationer af alle de otte basis vektorer, der udspænder
det otte-dimensionelle Hilbert rum, som følger af de tre 2-dimensionelle underrum AB, K(K′)
og spin.

Vi inkorporerde en translationel bøjning af røret ved at projicere Hamiltonoperatoren
over i et lokalt koordinatsystem i det bøjede rør i et segment, der antoges at være lige.
Dernæst udarbejdede vi et udtryk til sammensætning af bølgefunktionerne p̊a hver side af
bøjningen, hvor røret antoges at være uendeligt langt s̊a ikke-propagerende løsninger kunne
negligeres. Dette muliggjorde konstruktionen af spredningsmatricen, der relaterer ind- og
udg̊aende bølger. Herudfra bestemtes transmissions- og reflektionskoefficienterne, s̊a et udtryk
for konduktansen ved brug af Landauer formlen kunne bestemmes.

Simuleringer af konduktansen for forskellige nanorørkonfigurationer som funktion af fer-
mienergien blev udført ved brug af et selvkonstrueret MATLAB script, i hvilket forskellige
parametre blev varieret. Nogle af simuleringerne var plaget af ufysiske fluktuationer i trans-
missionen (konduktansen), som må tilskrives begrænsninger i koden. Vi var dog i stand til
at udføre simuleringer for nogle typer nanorørkonfigurationer, der indikerede en række spæn-
dende fænomener. Bl.a. s̊a vi kvantisering af konduktansen i enheder af konduktanskvaten
e2/h, der øgedes i heltallige trin heraf, efterh̊anden som fermienergien førøgedes; en effekt der
tidligere er beskrevet eksperimentelt. Yderligere s̊a vi for visse typer nanorørsbøjninger en
indikation p̊a resonant tunnelering. De numeriske vanskeligheder taler dog for at en udvikling
af koden er nødvendig. Bachelorprojektet har dog en endelig længde, og denne udvikling må
derfor følge i et senere projekt.

Gennem arbejdet med projektet har jeg opn̊aet en markant større indsigt i carbon nanorørs-
fysikken. Rejsen hertil har lang og til tider frustrerende. I den forbindelse vil jeg gerne rette
en stor tak til min vejleder Karsten Flensberg for at kunne lede mig p̊a rette spor. Jeg skylder
ogs̊a en stor tak til de øvrige medlemmer af nano-teori gruppen. Især til Stephan Weiss og
Frederik Treue. En særlig tak skal ogs̊a lyde til Morten Kjærgaard for utrættelig faglig og
moralsk opbakning foruden frugtbare diskussioner og et par skarpe øjne i retteprocessen.

Mathias Dyrberg Loft
Maj 2010, København



Abstract

In this thesis a theoretical expression for the conductance through a bent nanotube is derived.
The idea is inspired by a recent work by K. Flensberg and C. Markus, in which bent nanotubes
are shown to be a prominent candidate for qubit realization [1]. An approximate Hamiltonian
for graphene in the vicinity of the high-symmetry K(K′)-points is developed from the tight-
binding model. An extension to carbon nanotubes, which are constructed from rolling up a
graphene layer, is done using periodic boundary conditions. In addition, various perturbations
are taken into account: the effect of a magnetic field, spin-orbit coupling, curvature induced
hybridization and K(K′)-mixing. As a result, the energy bands split and the eigenstates
become mixed. Assuming the tube to be locally straight, a bending in the translational
direction is included through projection on to the local coordinate system of the tube segment.
An integration routine for connecting the wavefunctions in the beginning and end of the tube is
developed, such that a scattering matrix can be constructed, from which the transmission and
reflection are deduced. From the Landauer formula the conductance can thus be determined.
Using MATLAB, simulations of the transmission (conductance) as a function of the Fermi
energy were performed for various tube geometries. Some of the simulations were haunted
by unphysical fluctuations in the transmission and reflection which needs to addressed in
a future study. However results indicating experimentally reported ballistic transport in
nanotubes and quantized conductance steps in e2/h due to the energy splitting were observed.
In addition, we found indication of resonance tunneling in certain nanotube geometries.
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2 Introduction

Ever since carbon nanotubes (CNT) were discovered by Sumio Iijima in 1991 [2] they have
undergone intense theoretical and experimental study. Hundreds of papers in which electronic
transport properties of nanotubes are studied have been published, showing very large mean
free paths and quantized conductance e.g. [3, 4]. Recent experiments have shown that the
effect of spin-orbit coupling in CNTs, which was at first thought to be negligible, should
also be included when studying ultra clean nanotubes [5]. Various theoretical studies have
contributed to the construction of an effective Hamiltonian including spin-orbit coupling on
the basis of the tight-binding Hamiltonian of graphene [6], showing breaking of the energy
degeneracy yielding Kramer doublets. Further, the introduction of a magnetic field has been
shown to induce spin-splitting and breaking of the degeneracy of the K(K′)-points due to the
Aharonov-Bohm effect [7]. Including the finite curvature of the nanotube surface an elaborate
effective Hamiltonian has been developed [8, 9, 10]. The inclusion of the perturbations is
important when making energy band calculations.

Although many different types of conductance measurements have been performed, few
have focused on bent nanotubes, however some experimental data are available e.g. [11]. The
bent tubes have theoretically been shown to be a prominent candidate for qubit realization via
quantum dots [1]. Therefore it is natural to investigate their electronic properties in greater
detail. In this thesis we develop a theoretical expression for the conductance through a bent
nanotube including the effects of spin-orbit and curvature. To our knowledge this has not
been done before.

We start out by examining the graphene and carbon nanotube physics and develop an
effective Hamiltonian for the unperturbed system following a well described procedure [12, 13].
The derivations involve many lengthy calculations, which have been omitted in the main text.
The interested reader should refer to the appendices for a detailed assessment. We then take
the above perturbations into consideration, and following the methods in [1] we derive an
expression for the Hamiltonian of a bent nanotube as a function of the bending angle.

From the Hamiltonian a routine for integrating the wavefunction along the tube is es-
tablished, thereby enabling the construction of the scattering matrix from which the trans-
mission and reflection are deduced. From the Landauer formula a theoretical expression for
the conductance follows. We end this theoretical assessment by simulating and analyzing the
conductance of various bent nanotube geometries.

3 Elements of Carbon Nanotube Physics

In this section the preliminaries of carbon nanotube physics are established. We start out
by defining the relevant geometries for graphene and carbon nanotubes. We then derive the
dispersion relation and effective Hamiltonian for graphene (See Appendix A) followed by an
extension to carbon nanotubes by use of periodic boundary conditions.

3.1 Graphene

Graphene consists of a single layer of graphite, which is constructed in a hexagonal (honey-
comb) lattice with a carbon atom on each lattice site as illustrated in Figure 3.1 (a). The
distance between two neighboring carbon atoms is ac-c = 1.42Å and the lattice constant is
a = 2.46 Å[13]. In addition to the two tightly bound 1s core electrons, carbon has a valency
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of four, three of which are allocated to form the in-graphene-plane sp-2 hybridized σ-bond.
This leaves one electron to occupy the perpendicular pz orbital, leading to the formation of
the bonding π-band and anti-bonding π∗-band. The hexagonal geometry requires a unit cell
consisting of at least two atoms; one possible choice of lattice vectors spanning a diatomic
unit cell are the non-orthogonal vectors [13, p. 25]

a1 =
a

2

( √
3

−1

)

and a2 =
a

2

( √
3

1

)

. (3.1)

The two carbon atoms in the unit cell are conventionally labeled A and B, as illustrated in
Figure 3.1 (a). With d = RB −RA connecting the two atoms, the honeycomb lattice can be
spanned by two equivalent sublattices consisting of only A and B atoms, which are situated
at

RA = u1a1 + u2a2 and RB = u1a1 + u2a2 + d, (3.2)

where (u1, u2 ∈ Z). The reciprocal lattice vectors for graphene are constructed from the

θ

C

T

y

x
a1

a2

A B

d

K

K’

kx

ky

b2

b1

(a) (b)

Figure 3.1: (a) The
hexagonal graphene lattice
along with the two lattice
vectors a1 and a2. The
chiral vector C and the
translational vector T of
the carbon nanotubes are
also indicated along with
the chiral angle θ. η is the
angle between C and x̂.
(b) The hexagonal FBZ of
graphene along with the
indication of the K and K′

points and the reciprocal
lattice vectors given in red.

condition bi · aj = 2πδij [14, p. 29] and are found to be

b1 =
2π

a

(
1√
3

−1

)

and b2 =
2π

a

(
1√
3

1

)

. (3.3)

The First Brillouin Zone (FBZ) is defined as the volume enclosed by the planes perpendicular
to the bisectors of the reciprocal lattice vectors [14, p. 34]. As seen in Figure 3.1 (b) the
FBZ also constitutes a honeycomb lattice.

As will be clear in what follows, the K and K′ points – which are defined as the two
inequivalent corners of the FBZ – play a very important role in graphene and carbon nanotube
physics, as they constitute the points at which the energetic distance between the π and π∗-
band is at a minimum. In Figure 3.1 (b) the K and K′ points are given as

K =
2π

a

(
1√
3

1
3

)

and K′ =
2π

a

(
1√
3

−1
3

)

. (3.4)

The remaining corners are equivalent to K and K′, since they are connected by reciprocal
lattice vectors and therefore cannot be identified as unique wavevectors.
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3.2 Carbon Nanotubes

A carbon nanotube is constructed by folding a graphene sheet into a hollow cylindrical tube.
This can of course be done in many ways, and it turns out that the folding determines whether
the tube is metallic or semi-conducting. The individual CNTs are uniquely characterized by
the chiral vector which is defined

C = n1a1 + n2a2 (3.5)

where n1, n2 ∈ Z and n2 ≤ n1 to avoid degeneracy. The name is motivated by the observation
that for certain integer pairs, (n1, n1) and (n1, 0), we get achiral nanotubes, meaning that
they have a mirror image with identical structure. The conformations are called armchair

and zig-zag, respectively. For any other conformation, however, the tubes are chiral, i.e. there
is no symmetry plane [13]. Every essential geometric feature of the nanotube may be derived
from the chiral vector.

E.g., the radius is determined by taking the length of the chiral vector divided by 2π,
yielding

R =
|C|
2π

=
a
√

n2
1 + n2

2 + n1n2

2π
(3.6)

since |a1| = |a2| = a and a1 · a2 = a2

2 . In addition, the chiral angle θ is defined as the
angle between the chiral vector and a1. For armchair and zig-zag nanotubes it corresponds
to θ = 30o and θ = 0, respectively. In general is it found from the equation

cos θ =
C · a1

|C||a1|
=

2n1 + n2

2
√

n2
1 + n2

2 + n1n2

. (3.7)

The translation vector is defined as the unit vector of the 1-D nanotube, i.e. it is the direction
and length one has to move through the nanotube before it starts to repeat itself. It is parallel
to the tube axis and perpendicular to the chiral vector and can be expressed in terms of a1

and a2 as follows
T = t1a1 + t2a2.

By definition, the unit cell has to be as small as possible, meaning that we are to choose
the smallest possible integers t1 and t2. From the requirement C · T = 0 we have that
0 = (t1(2n1 + n2) + t2(2n2 + n1)) which has the (minimal) solution

t1 =
2n1 + n1

dR
, t2 = −2n1 + n2

dR
, (3.8)

where dR is the greatest common deviser (gcd) of (2n2 +n1) and (n1 +2n2). In Figure 3.1 (a)
an example of a (4,2)-folded nanotube is illustrated, along with the chiral vector, the chiral
angle and the translational vector.

It is clear that the CNT unit cell contains more atoms than the diatomic unit cell of
graphene. The precise number is found by first determining the number of graphene unit
cells within the larger CNT unit cell, which is done by dividing the volume of the two:

N =
|C × T|
|a1 × a2|

=
2(n2

2 + n2
1 + n1n2)

dR
. (3.9)

Remembering that each unit cell contains two atoms, a total of 2N carbon atoms, or equiva-
lently 2N pz orbitals, are contained within the CNT unit cell. Thus including spin, we have
a total of 4N possible states.
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As a conclusion of this section, the reciprocal lattice vectors of the CNT are stated. Since
the unit cell vectors are orthogonal, so are the reciprocal lattice vectors, i.e. they will be in
the direction of C and T. The vectors are derived from the conditions QC ·T = QT ·C = 2π
and QC · C = QT · T = 0 and are found to be

QC =
1

N
(−t2b1 + t1b2), QT =

1

N
(n2b1 − n1b1), (3.10)

where N is determined from eq. (3.9) and b1 and b2 are the reciprocal lattice vectors of
graphene from eq. (3.3). Due to the folding of the graphene layer, the reciprocal vectors
along the circumferential direction become quantized, resulting in a 1-D band structure. This
phenomenon is treated in great detail, when we develop the dispersion relation for carbon
nanotubes.

3.3 Energy dispersion for graphene

The 2pz-orbitals are the main contributers to the electronic transport in graphene. This
allows us to investigate the energy dispersion through a tight-binding scheme in which we
only focus on the π-band.

In Appendix A a thorough derivation of the energy dispersion for graphene is given. It
relies primarily on Bloch’s theorem and construction of a total wavefunction from linear
combinations of the perpendicular atomic pz orbitals from the two sublattices A and B. The
rest of derivation amounts to solving the Schrödinger equation within this subset. It turns out
that the energy dispersion equals the Fermi energy – which is set as the zero of energy – for
k = K(K′) . Since only electrons in the vicinity of the Fermi-energy contribute to electronic
transport, the dispersion relation is expanded in this region. The formal expansion to first
order can be found in Appendix B and yields the Hamiltonian

H = ~vF

(
0 iκx + τ3κy

−iκx + τ3κy 0

)

, (3.11)

where τ3 = 1(−1) for K(K′) and κ = (κx, κy) is the wavevector expanded around the K(K′)-
points. This gives an expression for the energy dispersion and eigenfunctions in the vicinity
of these high-symmetry points:

ǫ±(κ) = ±~vF |κ|,
(
α

β

)

±
=

1√
2

(∓eiβ
1

)

, (3.12)

where β = arg(α(k)) with α(k) defined in eq. (A.8). We now turn to the – for this thesis –
more interesting case of the energy bands of carbon nanotubes which will be the topic of the
remainder of this section.

3.4 Energy dispersion for carbon nanotubes

The folding of a graphene sheet into a cylindrical carbon nanotube requires that ψk(r +
C) = ψk(r) since the wavefunction has to be continuous in the circumferential direction.
This results in a quantization condition on the circumferential component of the wavevector,
while the translational component remains practically continuous for long nanotubes1. The

1With a finite CNT length L, the vectors are discrete in steps of δk = 2π/L, so for long tubes (≈ µm)
compared to a CNT circumference of the order nm continuity can be assumed.
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(a) (b)

Figure 3.2: The FBZ of graphene
(green) with indication of the K and
K′ points and with (a) the FBZ of a
(4,4)-armchair CNT and (b) (4,2)-chiral
CNT superimposed (red lines). N = 8
and N = 28, respectively, such that
there are 8 and 28 unique wavevectors
each of length 2π/|T|. (In (b) only the
seven lying within the FBZ of graphene
are shown. The blue lines indicate the
extended zone scheme). For the arm-
chair tube, the wavevectors touch the K
points while this is not the case for the
chiral tube.

quantization condition can be derived from the Bloch Theorem [15, p. 157],

ψk(r + C) = eik·Cψk(r) = ψk(r), (3.13)

which leads to the result
k ·C = 2πn, (3.14)

where n ∈ Z. Decomposing the wavevector into a component parallel to the tube axis (kT )
and one perpendicular to it (kC), such that

k = kC + kT = kC
C

|C| + kT
T

|T| , (3.15)

we get the condition kC = 2π
|C|n, since C · T = 0 per definition. The circumference of the

nanotube is small compared to the length of the tube, hence the kC vectors split up and the
2-D graphene bandstructure turns into 1-D subbands labeled by n.

From eq. (3.10) we have the condition on the reciprocal CNT lattice vector NQC =
−t2b1 + t1b2, where N is the number of graphene unit cells within the CNT unit cell eq.
(3.9). With b1 and b2 defined as reciprocal vectors of graphene, NQC also corresponds to
a reciprocal lattice vector of 2-D graphene, such that two wavevectors which differ by NQC

are equivalent. Since t1 and t2 have no common denominator other than unity, none of the
µQC vectors (µ ∈ {1, 2, . . . , N − 1}) are reciprocal lattice vectors of graphene; we thus have
N discrete kC vectors for n ∈ {0, 1, 2, . . . , N − 1}.

The perpendicular bisection of the CNT reciprocal lattice vector in the translational di-
rection have the length π/|T|, such that the FBZ is defined by −π

|T| ≤ kT ≤ π
|T| , with kT being

practically continuous, and the N discretized kC , which are spaced by 2π/|C|. In Figure
3.2 the discretization is demonstrated in the reduced zone scheme (red) and extended zone
scheme (blue) of the FBZ of the CNT for two different geometries; (a) an armchair (4,4)-tube
and (b) a chiral (4,2)-tube. For the armchair tube N = 8, i.e. there are 8 unique wavevectors
which all lie within the FBZ of graphene. For the chiral tube, N = 28 yielding 28 unique
vectors, but only the ones lying within the FBZ of graphene are shown. An example of the
dispersion relation for the (4,4)-armchair tube is given in Figure A.1 (b) in Appendix A
showing eight conductance and eight valence bands since N = 8.
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3.4.1 Carbon nanotube physics in the vicinity of the Fermi energy

In order to determine the approximate Hamiltonian for CNTs around the K(K′)-points, the
expansion in κ at the Fermi energy for graphene eq. (3.11) must be transformed into the CNT

coordinate system spanned by the orthogonal basis
(

T

|T| ,
C

|C|

)

. In Appendix C it is shown

that the Hamiltonian in the reference frame of the carbon nanotube is given

H0 = ~vF

(
0 iκC + τ3κT

−iκC + τ3κT 0

)

(3.16)

As for κy, the translational vector component κT is again continuous, whereas the dis-
cretization of κC may be found from the quantization condition in eq. (3.14) yielding (see
Appendix C for details)

κC =
1

R

(

m− τ3µ

3

)

, (3.17)

where µ is determined from (n2 − n1) = 3N + µ (N ∈ Z). I.e. for (n2 − n1)/3 ∈ Z, µ = 0,
and µ = ±1 for (n2 − n1)/3 /∈ Z in which case the latter term is not an integer. The energy
dispersion within the the K(K′) expansion is found from the Hamiltonian in eq. (3.16) and
becomes

ǫ(κ) → ǫm(kT ) = ±~vF

√

κ2
C + κ2

T . (3.18)

Hence for a carbon nanotube to be gapless, i.e. be metallic, µ = 0. If µ = ±1 there will be
a gap between the conduction and valence bands, since we may not choose an m such that
κC = 0.

In Figure 3.3 the dispersion relations of the lowest lying energy band – corresponding to
the κC being closest to the K(K′)-points – are shown for (a) metallic (4, 4)-armchair tube
(µ = 0) and (b) a semiconducting, chiral (4, 2)-tube(µ = −1). The dispersion relation of
the armchair tube forms the characteristic Dirac-cone, and the conduction and valence band
touch at κy = 0, i.e. at the K(K′) point. The chiral tube has a bandgap.

The conditions for a CNT to be metallic or semiconducting corresponds to whether the
wavevector touch the K(K′) points or not. This is illustrated for the two CNTs in Figure
3.2. In the case of the armchair tube one of the wavevectors touch and the tube is metallic.
However, none of the wavevectors of the chiral tube touch the K(K′)-points. We are thus
unable to choose a m and κT such that the energy of the conduction and valence band
match. It will be shown later that due to perturbations, even metallic tubes will under some
circumstances become semiconducting.

3.5 Subspaces

The Hamiltonian for the CNTs in eq. (3.16) is a 2 × 2-matrix, when keeping τ3 as an entry.
This 2 × 2 systems constitutes the AB-subspace, as illustrated in the diagram below. Each
entry corresponds to the weight of the atomic orbitals on the A and B sublattice and the
mixing between these:

H0 ∼
(
AA AB

BA BB

)

. (3.19)

Since the Hamiltonian has off-diagonal elements there is a mixing of the pz-orbitals from A and
B atoms, which follows from making linear combinations of orbitals from atoms on different
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Figure 3.3: Energy dispersion expanded around the K(K′)-points for the lowest lying energy band.
(a) (4,4)-armchair tube with no external interactions. The conductance and valence band meet at
κy = 0, hence the tube is metallic. (b) (4,2)-chiral tube corresponding to µ = −1. An energy gap is
present due to the periodic boundary conditions, hence the tube is semi-conducting.

sublattices. Inserting τ3 = 1(−1) for K(K′), the subspace is expanded into a 4 × 4-matrix in
which each quadrant corresponds to KK, KK′ K′K and K′K′, i.e.

H0 = ~vF







0 −iκC + κT 0 0
iκC + κT 0 0 0

0 0 0 −iκC − κT

0 0 iκC − κT 0







∼
(

KK KK′

K′K K′K′

)

. (3.20)

Each of the quadrants then corresponds to an AB-subspace as indicated by the coloring. The
Hamiltonian is diagonal in KK′-space, i.e. there is no mixing between the K and K′ points.

In addition, electrons also have a spin degree of freedom, such that an additional subspace
is needed. With all subspaces being 2 × 2 dimensional, we may use the Pauli spin matrices

as a basis since they form a complete set. The spin matrices are denoted σi,τi,Si, i ∈ {1, 2, 3}
and σ,τ ,S are the matrices containing the corresponding 2 × 2-matrices as entries. The
matrices span, respectively, the AB-subspace the KK′-subspace, also called valley-space, and
the spin-subspace. We take the spin space to be the inner subspace, such that each quadrant
in the AB-subspace is further expanded into a 2× 2 spin-subspace. In this language we may
write the Hamiltonian eq. (3.20) very neatly

H = ~vF (τ0σ2S0κC + τ3σ1S0κT ), (3.21)

where τ0, σ0,S0 denote the identities in the relevant subspace.
The formal multiplication of subspace matrices corresponds to outer products, in the sense

that they operate only upon the subspace in question, leaving the others untouched. Therefore
we should write ⊗ in between the matrices, but this notation is clumsy so we refrain from
doing so. Since each of the subspaces is 2× 2, the total Hilbert space is 8× 8 and is spanned
by the eight-dimensional basis which – with the given order of the subspaces – becomes
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1
0
0
0
0
0
0
0















∼KA↑















0
1
0
0
0
0
0
0















∼KA↓















0
0
1
0
0
0
0
0















∼KB↑















0
0
0
1
0
0
0
0















∼KB↓















0
0
0
0
1
0
0
0















∼K ′A↑















0
0
0
0
0
1
0
0















∼K ′A↓















0
0
0
0
0
0
1
0















∼K ′B↑















0
0
0
0
0
0
0
1















∼K ′B↓
(3.22)

The basis vectors {|τ, σ, S〉} are denoted by the quantum numbers τ = 1(−1) for K(K′)
σ = 1(−1) for A(B) and S = 1(−1) for ↑(↓). E.g. |1,−1,−1〉 corresponds to the basis vector
KB ↓. This will be the basis of choice in the remainder of this thesis.

The states in the valence and conduction bands, respectively, are four-fold degenerate for
unperturbed nanotubes. When applying a magnetic field and taking into account spin-orbit
couplings and curvature the energy bands will split up. This is the topic of the next section.

4 Carbon Nanotube Perturbations

The derivation of the Hamiltonian and the corresponding eigenenergies and eigenfunctions
has so far been for infinitely straight and completely isolated nanotubes, in which we have
neglected any possible interactions with the environment. We now turn to the daunting task
of expanding this simple picture to one involving various perturbations of the nanotube. The
first step is to study the effect of placing it in a magnetic field.

4.1 Carbon nanotubes in a magnetic field

The magnetic field couples to both the spin and the orbital motion. Introducing a magnetic
field amounts to a change of the canonical momentum, p → p+ eA, where A is the magnetic
vector potential such that B = ∇ × A. In general, the Schrödinger equation thus reads

1

2m

[
~

i
∇ + eA

]2

ψ = ǫψ. (4.1)

Assuming the magnetic field points in the direction of the tube, the magnetic flux through it
becomes

Φ =

∫

dr2B =

∫

da · (∇× A) =

∮

dl ·A, (4.2)

upon invoking Stokes Theorem. With these conditions the vector potential points in the
direction of the tube circumference such that in cylindrical coordinates

A =
Φ

2πr
φ. (4.3)

The solutions to the Schrödringer equation (4.1) now take the form [15, p.724]

ψ ∝ exp

[

ik · r + i
e

~

∫
r

dr′ ·A(r′)

]

, (4.4)
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which can be seen by insertion into eq. (4.1). Since ∇ ·A = 0 (from eq. (4.3)), applying the
Hamiltonian leads to the following

Hψ =
1

2m

[
−~

2∇2 − 2i~eA · ∇ + e2A2
]
ψ

=
1

2m

[

~
2
(

k +
e

~
A
)2

− 2~eA ·
(

k +
e

~
A
)

+

(
eΦ

2πR

)2
]

ψ; (4.5)

confirming that it is indeed a solution. As a consequence, electrons traveling a complete
circuit acquire an extra phase of Φe

~
where the flux through the tube is Φ = BπR2, since with

r = R we get

i
e

~

∫
r

dr′ ·A(r′) = i
e

~

∫ 2π

0
Rdφ

Φ

2πR
= i2π

e

h
Φ (4.6)

This effect is credited to Aharonov and Bohm. The effect in nanotubes is thus expressed
through a change in the periodic boundary conditions [12],

ψ(r + C) = ψ(r) exp(i2π
e

h
Φ), (4.7)

leading to a change in the circumferential quantum number determined from eq. (3.17)

κC =

(

m+
Φ

Φ0
− τ3µ

3

)

/R, (4.8)

where Φ0 = h
e is the flux quantum. It can be shown that the magnetic field for all practical

purposes only couples to the circumferential component of the momentum [1, Methods] in
nanotubes, such that even when the magnetic field is not aligned parallel to the tube, only
the circumferential component is affected.

In addition, the magnetic field also couples to the spin degree of freedom, exerting a torque
on the spin [16, p. 179]

HZ = µSτ0σ0B · S (4.9)

where µS = 1
2gsµB and S being the Pauli spin matrices in spin-space with eigenvalues ±1.

The Z refers to the Zeeman splitting of the energies. The effects of the magnetic field for the
lowest lying energy level is thus: 1) to induce a gap in the energy spectrum (even in the case
of metallic tubes) and 2) for semiconducting tubes, to induce K(K′)-degeneracy breaking; in
both cases due to the Aharonov-Bohm effect on the circumferential quantization. And finally,
3) to induce a splitting of the energies of different spin directions (up and down along the
tube). The effect is illustrated for a magnetic field of 4 T aligned parallel to the tube in Figure
4.1, with (a) and (b) corresponding to the (4,4)-armchair and (4,2)-chiral tubes which were
shown without a magnetic field in Figure 3.3.

4.2 Spin-orbit coupling and curvature induced σ − π–hybridization

Additional perturbations of the nanotube arise from two sources: 1) The spin-orbit-coupling,
which as the name suggest couples the orbital momentum and spin, leading to σ − π–orbital
hopping and 2) curvature induced hybridizations. This effect occurs because the configuration
of the orbitals change due to the finite curvature of the tube surface (See Figure 4.2). The
formal treatment in the paper by Izumida [9] is to construct an effective Hamiltonian by
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Figure 4.1: Energy dispersion for the lowest lying CNT energy band in the presence of a parallel
magnetic field of 4 T. (a) (4,4)-armchair tube. The magnetic field induce a bandgap, due to the
Aharonov-Bohm effect and splits the energy of the different spin directions due to the Zeeman term.
The inset shows a magnified view of the band gap. (b) (4,2)-chiral tube. A splitting of the spins also
occurs. In addition, since µ = −1 a degeneracy breaking of the K and K′ is seen. The inset shows a
magnified view of the conduction band, showing four non-degenerate bands [6].

calculating these effects using a second-order perturbation framework including only nearest-
neighbor interactions. An in depth discussion of the procedure is beyond the scope of this
thesis. However, a qualitative outline of the calculation scheme will now be given.

The perturbative Hamiltonian consist of two terms H′ = αHSO + βHcurv, such that the
second-order energy correction to the state |ψ0〉 becomes [16, p. 256]

E2
0 =

∑

n

〈ψ0|αHSO + βHcurv|n〉〈n|αHSO + βHcurv|ψ0〉
E0 − E0

n

. (4.10)

We will thus see contributions from ”HSOHSO”, ”HcurvHcurv” and the cross terms containing
”HSOHcurv”. The spin-orbit term can for all practical purposes be shown to yield only intra-
atomic hopping between the pz orbital in the π-band and the py orbital in the σ-band. In
the Izumida paper it is also shown that second order spin-orbit perturbation is negligible
compared to the other relevant energies.

However, with the first-order spin-orbit coupling combined with the effect of curvature,
i.e. ”HSOHcurv”– which induces hopping between the σ-orbitals and π-orbitals on adjacent
A and B-atoms – electron hopping between the pz orbitals on adjacent atoms can occur.
This is illustrated in Figure 4.2 (a) with ∆1 denoting the hopping parameter. Since the
hopping is from atom A to B (and vice versa) it is off-diagonal in AB-space. In addition,
because we need to take into consideration all the intermediate |n〉 states, which are Bloch
states that are spread out over the entire tube, a finite hopping back to the pz orbitals on
the same atom occurs. This is illustrated in Figure 4.2 (b), where the green arrow indicate
the spreading. Since the effective hopping is intra-atomic, the ∆0 is diagonal in AB-space.
The second order curvature term can be shown to yield a finite hopping between the A and
B atom, characterized by the parameter ∆g.
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Figure 4.2: Illustration of the possible electron hopping. (a) Inter-atomic electron hopping due to
spin-orbit coupling and the curvature of the CNT surface. (b) On-site spin-orbit hopping, combined
with the intermediate states being Bloch states and curvature induced hybridization make hopping
back to the beginning pz orbital possible, yielding diagonal terms in the Hamiltonian in AB-space.

Collecting the above effects, the following effective Hamiltonian is obtained2

H1 = ∆0τ3σ0S3 + ∆1τ3σ1S3 + ∆gτ0σ1S0. (4.11)

where ∆1 ∝ 1/R, ∆0 ∝ cos(3θ)/R and ∆g ∝ cos(3θ)/R2, where R is the radius from eq.
(3.6) and θ is the chiral angle defined in eq. (3.7). For a zig-zag tube of radius 1 nm we get
∆0 = −135µeV, ∆1 = 145µeV and ∆g = −7 meV [9]. However, it should be noted that the
values are only approximate.

The ∆g-term is off-diagonal in AB-space but diagonal in spin and valley space and corre-
sponds to a change of the circumferential wavevector resulting in bandgaps, even for metallic
tubes. For armchair tubes, however, this effect is not present since θ = 30o. The ∆1-term
splits the energy of opposite spins due to the S3. The τ3 inverts the effect for K and K′

such that the spin up states in K are energetically degenerate with the spin down states in
K′, resulting in two so called Kramer doublets consisting of K(K′) ↓ (↑) and K(K′) ↑ (↓),
respectively, for both the electron and hole band. Time reversal symmetry is thus retained.
Experimental evidence of the splitting into Kramer doublets due to the spin-orbit coupling is
available [5]. Additionally, the ∆0-term leads to an asymmetric splitting between the Kramer
doublets in the electron and hole band.

In Figure 4.3 the perturbative effects are illustrated for a metallic zig-zag tube of radius 1
nm. In (a) ∆0 = 0 and in (b) ∆0 = −135 µeV, leading to a decrease in the energy splitting
of the conduction bands and an increase in the splitting of the valence bands. In both cases
∆g = −7meV and ∆1 = 145meV.

4.3 KK’-mixing

So far all perturbations have been diagonal in valley-space, meaning that no mixing between
K and K′ occurs. States belonging to different valleys can thus be distinguished. However,
due to the contacts – which are connected to the tube in order to perform measurements, and
the substrate upon which the tube is grown or anything else that breaks rotational symmetry
– a finite mixing of the KK′ states needs to be taken into account. This leads to an additional
term in the Hamiltonian:

HKK ′ = ∆KK ′τ1σ0S0. (4.12)

2An additional term appearing in H2 has been neglected, since it corresponds to a change in the translational
wavevector, which can be absorbed as a phase constant.
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Figure 4.3: Effect of curvature and spin-orbit induced perturbations. (a) Energy dispersion with
∆0 = 0. The splitting of the different spins occurs because of the ∆1 and is symmetric for the valence
and conduction band. (b) The splitting becomes asymmetric for the valence and conduction band
due to the finite ∆0 term (-135 µeV).

The mixing can be thought of as electrons orbiting the tube in opposite directions can
no longer be distinguished, since K(K′) corresponds to clockwise (counterclockwise) mo-
tion around the nanotube circumference [17]. A realistic value of the mixing parameter is
∆KK ′ = 25µeV [1].

4.4 Effective Hamiltonian

When restricting our attention to the lowest lying energy band, i.e. setting m = 0, all the
perturbative terms can be collected along with the unperturbed one to form a total effective
Hamiltonian3

H = ~vF (kgσ1S0 + κT τ0σ2S0) + ∆KK ′τ1σ0S0 + ∆1τ3σ1S3 + ∆0τ3σ0S3 + µBτ0σ0S3B, (4.13)

where kg = Φ
Φ0Rτ3 −

µ
3Rτ0 +

∆g

vF
τ0. The combined effect of the perturbations is thus a lifting

of the degeneracy of potentially all the energy bands with the corresponding eigenvectors
written as linear combinations of all the eight basis vectors from eq. (3.22).

5 Bent Nanotubes

It is natural to ask what happens when the nanotube is not straight. In this case translational
invariance can no longer be assumed. However, assuming moderate bending, i.e. the bend
radius is taken to be much larger than the inter atomic distances, the tube can locally be
considered straight. In the local coordinate system the effective Hamiltonian eq. 4.13 given

3Choosing a different set of graphene lattice vectors leads to a different H0. E.g. setting a1 = a(1, 0) and
a2 = a(1/2,

p

(3)/2) we get H0 = ~vF (κCτ3σ1S0 + κT τ0σ2S0) which is used in much of the literature and will
therefore be adopted as the unperturbed Hamiltonian. The reason for not choosing this set of vectors to begin
with is that they lack the beautiful symmetry of those in eq. (3.1).
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above generalizes to the following expression, when making the change T

|T| → ŷ′

H = ~vF [τ3σ1S0kΦB · ŷ′ − µ

3R
τ0σ1S0 − iτ0σ2S0∂y′ ] + ∆gτ0σ1S0 + ∆KK ′τ1σ0S0

+ ∆0τ3σ0(S · ŷ′) + ∆1τ3σ1(S · ŷ′) +
1

2
gsµB [τ0σ0(B · S)], (5.1)

where kΦ = πR/Φ0, and ŷ′ is the unit translational vector pointing in the axial direction of
the locally straight nanotube segment, such that the momentum operator in this direction
reads py′ = −i~∂y′ . The local (primed) unit vectors are related to the global ones through
the relation (See Figure 5.1)4

ŷ′ = cosϕ′ŷ + sinϕ′x̂ (5.2)

x̂′ = − sinϕ′ŷ + cosϕ′x̂, (5.3)

where x̂ and ŷ are defined as the unit vectors perpendicular and along the tube axis in the
far left side of the tube, which is considered to be semi-infinitely long and straight. In this
thesis, only in-tube-plane magnetic fields are considered. With the external magnetic field
thus defined in the global basis,

B = B(cosϕŷ + sinϕx̂), (5.4)

the last term of the Hamiltonian may be projected onto the local translation and perpendicular
vectors ŷ′ and x̂′ in the following way

1

2
gsµB {τ0σ0(B · S)} =

1

2
gµB

{
τ0σ0

[
B||(S · ŷ′) +B⊥(S · x̂′)

]}
, (5.5)

where || and ⊥ denote the components along ŷ′ and x̂′, respectively. By straight-forward
geometric considerations, the components B|| and B⊥ are found to be

B|| = B cos(ϕ− ϕ′) and B⊥ = B sin(ϕ− ϕ′). (5.6)

5.1 Rotation of spin matrices

The next step is then to project the S matrix onto the local coordinate axis corresponding to
a rotation of the spin operators. For a quantum mechanical system L · n̂/~ is defined as the
generator of rotation about the direction n̂, in the sense that exp(iL · n̂ϕ~) corresponds to a
rotation through ϕ around the direction n̂ [16, p. 196]. For spin-1/2, which is applicable in
our case, the spin-basis transformation from the global to the local coordinate system is thus
given

χ′ = ei(S·n̂)ϕ′/2χ, (5.7)

where n̂ describes an arbitrary direction in the global coordinate system. In Appendix D a
thorough analysis of the effect of the rotation is given. When taking the principle quantization
direction to be along the tube, i.e. Sŷ ≡ S3 and Sx̂ ≡ S1 the transformation to the local

4Note that x̂ denote the direction perpendicular to the tube, and not ẑ, which was the case when deriving
the expression for the π-band in graphene. This is done in order to be consistent with current notation [1].
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Figure 5.1: Relationship between the
global coordinate system y, x (solid red)
and the local coordinate system y′, x′

(dashed red) of a small segment of
length dy′ (light green) in a bent car-
bon nanotube (dark green). The ex-
ternal magnetic field, denoted B (blue)
forms an angle ϕ with the global trans-
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reference frame corresponds to a rotation about the ẑ-axis through the angle ϕ′. The result
is

S · ŷ′ = Sy′ = sin(ϕ′)S1 + cos(ϕ′)S3 (5.8)

S · x̂′ = Sx′ = cos(ϕ′)S1 − sin(ϕ′)S3, (5.9)

such that the local spin-matrices are (not surprisingly) related to the global ones by a unitary
rotation matrix.

5.2 Master Hamiltonian

With the given transformation matrices in order, we may rewrite the Hamiltonian eq. (5.1)
explicitly in terms of ϕ and ϕ′ and the global Pauli spin matrices τi, σi, Si:

H = ~vF

{

τ3σ1S0kΦB cos(ϕ− ϕ′) − µ

3R
τ0σ1S0 − iτ0σ2S0∂y′

}

+ ∆gτ0σ1S0 + ∆KK ′τ1σ0S0

+ ∆1τ3σ1Sy′ + ∆0τ3σ0Sy′ + Bτ0σ0

{
cos(ϕ− ϕ′)Sy′ + sin(ϕ− ϕ′)Sx′

}
(5.10)

where B = 1
2gsµBB. Expanding the expression in all its glory we get the master-Hamiltonian

for an arbitrary in-plane magnetic field of the bent carbon nanotube

H = ~vF

{
τ3σ1S0kΦB cos(ϕ− ϕ′) − iτ0σ2S0∂y′

}
+ [∆1τ3σ1 + ∆0τ3σ0]

[
sin(ϕ′)S1 + cos(ϕ′)S3

]

+ Bτ0σ0

{
cos(ϕ− ϕ′)[sin(ϕ)S1 + cos(ϕ′)S3] + sin(ϕ− ϕ′)[cos(ϕ′)S1 − sin(ϕ′)S3]

}

+ ∆gτ0σ1S0 + ∆KK ′τ1σ0S0. (5.11)

In places where translational symmetry can be assumed, i.e. in the infinitely straight part
where ϕ′ = 0, we make the replacement: −i∂y′ → κy′ and recover eq. (4.13).

6 Conductance Through Bent Nanotubes

The results derived so far are based on theoretical models, and with the study of bent nan-
otubes being fairly new, it would be interesting to relate the models to something measurable.
An obvious starting point is to measure the conductance through a bent tube and evaluate
the influence of the bending. In making theoretical predictions for the conductance, the first
step is to obtain the transmission coefficient. This is the topic of the present section.
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6.1 Derivation of the scattering matrix

As in most of quantum mechanics, the starting point of this derivation is the time-independent
Schrödinger equation. Applying the Hamiltonian eq. (5.11) to |Ψ(y′)〉 – which is the eight-
dimensional wavevector for electrons in the tube written in the basis {|τ, σ, S〉} from eq. (3.22)
– we get

H|Ψ(y′)〉 = E|Ψ(y′)〉. (6.1)

Examining the Hamiltonian in eq. (5.11) we find that it has the form

H = i∂y′M0 + M1(ϕ,ϕ
′),

i.e. there is a part which is constant, M0, and one which depends on the position along the
tube axis through the angle between the tube and the applied magnetic field, M1(ϕ,ϕ

′). The
matrices are defined:

M0 ≡ −~vF τoσ2S0 (6.2)

and

M1(ϕ,ϕ
′) ≡ ~vF {τ3σ1S0 [kc + kΦB cos(θ)]} + [τ3σ1∆1 + τ3σ0∆0]

[
sin(ϕ′)S1 + cos(ϕ′)S3

]

+ Bτ0σ0g
{
cos(θ)[sin(ϕ′)S1 + cos(ϕ′)S3] + sin(θ)[cos(ϕ′)S1 − sin(ϕ′)S3]

}

+ τ1σ0S0∆KK ′. (6.3)

The Schrödinger equation (6.1) can thus be recast in the following way

[
i∂y′M0 + M1(ϕ,ϕ

′)
]
|Ψ(y′)〉 = E|Ψ(y′)〉. (6.4)

6.1.1 Wavefunction integration

Rearrangement of eq. (6.4) yields the set of first-order differential equations

∂

∂y′
|Ψ(y′)〉 = iM−1

0

(
M1(ϕ,ϕ

′) −E
)
|Ψ(y′)〉. (6.5)

With the wavefunction at the starting point of the bent (y′ = 0) described by |Ψ0〉 as a
boundary condition, the set has the solution

|Ψ(y′)〉 = exp
[
iy′M−1

0 (M1(ϕ,ϕ
′) − E)

]
|Ψ0〉, (6.6)

since it fits the boundary conditions and fulfills eq. (6.5). So far everything is exact. When
performing numerical calculations, we assume the tube is straight in a small segment of length
dy′ (Figure 5.1), such that M1 locally remains constant and the solution is valid.

We denote the argument M−1
0 (M1(φ,ϕ

′)−E) by A. In Appendix E it is shown that the
exponential term in eq. (6.6) can be written UDU−1, where

D =







eiy
′λ1 0 · · ·
0

. . .
...

... · · · eiy
′λ8






, (6.7)
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with λi denoting the eigenfunctions of A and U is the matrix consisting of the eigenvectors
of A. The wavefunction thus becomes

|Ψ(y′)〉 = UDU−1|Ψ0〉. (6.8)

Dividing the tube into N locally straight segments, each of length dy′, an expression for the
wavefunction at y′ = Ndy′, corresponding to the far right side of the tube, is established

|ΨN 〉 ≡ |Ψ(Ndy′)〉 = UNDNU−1
N · · ·U2D2U

−1
2 U1D1U

−1
1 |Ψ0〉 ≡ M|Ψ0〉, (6.9)

where the subscript denote the segment number in which the eigenvalues and eigenfunctions
are found.

6.1.2 Determining the wavefunction in the straight tube

In order to perform the stepwise integration of eq. (6.5) along the nanotube, we thus need the
total wavefunction in the straight part of the tube where translational invariance is assumed,
|ΨL(y′)〉. It may be expressed as a linear combination of the right and left going eigenstates of
the Hamiltonian in the straight tube, which are found in the four partially filled conduction
bands5. We neglect the eigenfunctions in the fully filled valence bands, since they do not
contribute to electronic transport.

The process of determining the correct eigenfunctions amounts to choosing the κy’s such
that the energies of the 8 eigenstates (four left traveling and four right traveling) in the
conduction bands match the given Fermi energy E. The precise location of the Fermi energy
is determined partially by the CNT itself and partially by the substrate upon which the tube
is situated, arising from a higher or lower degree of electronic doping. In addition, one or
more back-gates may be included to electrostatically alter the Fermi energy. In the case when
the matching with a real κy is not possible, because the band in question lies above the Fermi
energy such that κy ∈ C, it is an evanescent wave, which in the semi-infinite tube completely
dies out. In Figure 6.1 two different Fermi-energies are illustrated; one for which all the κy′s
are real (E2) and one for which two are imaginary and two are real (E1).

The 8 normalized eigenfunctions of the Hamiltonian are themselves linear combinations
of the {|τ, σ, S〉}-basis given in eq. (3.22). We denote them by µja(κja) and µjb(κjb) where
a corresponds to right-movers and b corresponds to left-movers. j denote which of the four
conduction bands the state belongs to. E.g. in Figure 6.1 µ1a is the right traveling state in
the first band that matches E1 for κy1a. We denote the weights of the j’th right(left) traveling
state by the column vectors Wa(Wb), where

Wb =







w1a

w2a

w3a

w4a






, Wb =







w1b

w2b

w3b

w4b






. (6.10)

E.g. w1a is the weight of the right-traveling eigenstate in the first band in the total wavefunc-
tion. The total wavefunction, which is a sum of left and right movers, can thus be written

|ΨL(y′)〉 =
[
µ1a µ2a µ3a µ4a

]

︸ ︷︷ ︸

¯̄µa

KaWa +
[
µ1b µ2b µ3b µ4b

]

︸ ︷︷ ︸

¯̄µb

KbWb. (6.11)

5The velocity of a wave packet is determined as the gradient of the energy dispersion, such that waves
traveling to the left (right) is associated with a negative (positive) slope of the dispersion relation with respect
to κy .
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Figure 6.1: Energy dispersion in-
cluding nanotube perturbation. Two
different Fermi-levels, E1 and E2 are
illustrated. Grey indicate occupied
states. For E1 the corresponding
κy values are real for the two low-
est lying conduction bands while they
are imaginary for the next two, since
they are above the Fermi energy. For
E2 all the κy-values are real.

¯̄µa(b) is thus the matrix constructed from the four eigenfunctions belonging to the j’th band
of right(left)-traveling waves. The Ka and Kb tack on the plane-wave Bloch factor on the j’th
eigenfunction, i.e.

Kα =







eκ1αy′
0 0 0

0 eiκ2αy′
0 0

0 0 eiκ3αy′
0

0 0 0 eiκ4αy′






. (6.12)

where α = a(b) for right(left)-traveling waves.
On the other side of the bend the tube is again assumed to be semi-infinitely long and

straight. The total wavefunction, |ΨR(y′′)〉, is again constructed as a linear combination of
eigenstates of the Hamiltonian in the form of right and left going plane-waves, expressed by
the weights Wc and Wd, respectively. However, the Hamiltonian is not necessarily the same
as in the beginning.6 Nevertheless, the process of finding the allowed states and matching
corresponding κy’s to the constant energy is completely analogous to the one described above.
The total wavefunction is thus written

|ΨR(y′′)〉 =
[
µ1c µ2c µ3c µ4c

]

︸ ︷︷ ︸

¯̄µc

KcWc +
[
µ1d µ2d µ3d µ4d

]

︸ ︷︷ ︸

¯̄µd

KdWd. (6.13)

The Kβ’s, β ∈ {c, d} once again tack on the Bloch factor, now written in a different reference
frame y′′, such that

Kβ =







eiκ1βy′′
0 0 0

0 eiκ2βy′′
0 0

0 0 eiκ3βy′′
0

0 0 0 eiκ4βy′′






, (6.14)

where β = c(d) for right(left)-traveling waves. In Figure 6.2 (a) a schematic overview of the
incoming and outgoing waves is given. a denote the incoming, right-traveling waves from the
left and b signify left-traveling reflected waves. c indicate the transmitted, right-traveling
waves while d are left-traveling incoming waves from the right.

6This depends on the final orientations of the tube. If it returns to the same configurations, in the sense
that the orientations of the tube with respect to the applied magnetic field is equivalent to the beginning part,
the Hamiltonian – and as a result the eigenfunctions – will be the same.
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d

(a) (b)A1
A2A3A4B1B2B3B4

C1
C2C3C4

Figure 6.2: Schematic overview of the incoming and outgoing waves. (a) General case, where a
and c are the right-going incoming and transmitted waves, respectively. b denote the reflected waves
while d indicate the incoming waves from the right. (b) Example where channels A1,B1 and C2 are
closed. See section 6.1.3 for details. Orange arrows indicate open incoming channels, green indicate
open reflected channels while the blue arrows correspond to open transmissive. Red indicate closed
channels.

6.1.3 Wavefunction matching

We now assume that there are no incoming waves from the right, which corresponds to
Wd = 0. Setting y′ = 0 at the beginning of the bent, such that |ΨL(y′ = 0)〉 ≡ |Ψ0〉 yields
Ka = Kb = 1. Absorbing the remaining Bloch factors into the weight coefficients in Wc we
may set |ΨR〉y′=Ndy′ ≡ |ΨN 〉. Performing the discretization from eq. (6.9) we thus get an
equation which relates the eigenstates and weight vectors on the left and right side of the
bend

¯̄µcWc = M [ ¯̄µaWa − ¯̄µbWb] . (6.15)

which can be rearranged such that

¯̄µc Wc −M ¯̄µbWb = M ¯̄µaWa. (6.16)

We now look separately at the contributions from the four channels of incoming waves:
A1,A2,A3 and A4, which correspond to the right-traveling states in band 1 to 4, respectively.
We define the j’th weight vectors for the transmitted and reflected waves corresponding to
the A′

jth channel by

Wjc =







w1jc

w2jc

w3jc

w4jc






, Wjb =







w1jb

w2jb

w3jb

w4jb






. (6.17)

The row numbers indicate the weight in the total wavefunction of the transmitted and reflected
eigenstate of the corresponding channels (bands), which we denote C1, C2, C3 and C4 for the
transmissive channels (bands) and B1,B2,B3 and B4 for the reflective channels (bands). E.g.
w11c is the weight of µ1c in the wavefunction in eq. (6.13) when regarding contributions from
incoming waves in channel 1 i.e., A1.

Since evanescent states die out in the infinite straight tube, we neglect them in the total
wavefunctions. An evanescent state in the j’th band (on either side of the tube) will thus
correspond to the j’th channel being closed. Hence, Aj,Bj or Cj all have the possibility of
being closed. Whether this is the case depends on the location of the j’th band compared to
the given Fermi energy. However, since the dispersion relation is symmetric around κy = 0;
if state µja is evanescent, so is µjb and Aj and Bj are both closed. Whenever a channel is
closed, the corresponding eigenfunctions and weight indices need to be discarded. To perform



6 CONDUCTANCE THROUGH BENT NANOTUBES 21

this deed, we define the operators Λeig and Λcoeff. Λeig operates in the way that whenever a
channel is closed, it removes the corresponding eigenfunction. Λcoeff operates in an equivalent
way, however it discards the weight coefficients of the closed channels. With this notation eq.
(6.16) may be written in the following form, where we take into account the contributions
from all channels at once:

[
¯̄µcΛeig −M ¯̄µbΛeig

]
(
W1c W2c W3c W4c

W1b W2b W3b W4b

)

Λcoeff = M ¯̄µaΛeig. (6.18)

The 2 × 4 matrix is denoted the coefficient matrix, which is an 8 × 4 matrix when all the
coefficients are written out. The columns correspond to the incoming channels, A1 − A4,
row 1-4 denote the transmissive channels C1 −C4 while row 4-8 denote the reflective channels
B1 − B4. For clarity we provide an example of how the operators Λcoeff and Λeig work. E.g.
say µ1a is an evanescent state, such that channel A1 is closed, so will B1 due to symmetry. If
we also assume µ2c is an evanescent state, channel C2 will be closed. In this case the action
of Λcoeff is to reduce the coefficient matrix in the following way

A1 A2 A3 A4

C1

C2

C3

C4

B1

B2

B3

B4















w11c w21c w31c w41c

w12c w22c w32c w42c

w13c w23c w33c w43c

w14c w24c w34c w44c

w11b w21b w31b w41b

w12b w22b w32b w42b

w13b w23b w33b w43b

w14b w24b w34b w44b















Λcoeff−−−→

A2 A3 A4

C1

C3

C4

B2

B3

B4











w11c w11c w11c

w23c w33c w43c

w24c w34c w44c

w22b w32b w42b

w23b w33b w43b

w24b w34b w44b











. (6.19)

Correspondingly, the number of eigenstates are reduced by the operator Λeig. For the given
example the reduction is done as follows

[
µ1a µ2a µ3a µ4a

]

[
µ1b µ2b µ3b µ4b

]

[
µ1c µ2c µ3c µ4c

]
Λeig−−→

[
µ2a µ3a µ4a

]

[
µ2b µ3b µ4b

]

[
µ1c µ3c µ4c

]
(6.20)

The example is illustrated in Figure 6.2 (b). Rearranging eq. (6.18), a final expression for
the coefficient matrix in terms of the M matrix and the eigenfunctions in the beginning and
end of the tube is established:7

(
W1c W2c W3c W4c

W1b W2b W3b W4b

)

Λcoeff =
[
¯̄µcΛeig −M ¯̄µbΛeig

]−1 M ¯̄µaΛeig = S, (6.21)

where S is the scattering matrix. For the scattering matrix we define

S ≡
(
t
r

)

(6.22)

such that the transmission and reflection matrix t and r, respectively, corresponds to

t =
(
W1c W2c W3c W4c

)
Λcoeff and r =

(
W1b W2b W3b W4b

)
Λcoeff. (6.23)

7If the dimensions have been reduced, the matrix
ˆ

¯̄µcΛeig −M ¯̄µbΛeig

˜

is not necessarily square, and the

inversion is done as a pseudo inverse through the Moore-Penrose method in which A
−1 = (A†

A)−1
A

†.
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Since the transmission is given as the sum of all the |wijc|2 terms, corresponding to the
contributions from all available transmissive channels, it becomes

T =

NT∑

i=1

NI∑

j=1

|t(ij)|2 = Tr(t†t), (6.24)

and the reflection, which is the sum of all the |wijb|2 terms, is written

R =

NR∑

i=1

NI∑

j=1

|r(ij)|2 = Tr(r†r), (6.25)

where NT(NI/NR) is the number of open transmissive (incoming/reflective) channels; Ni =
NT due to symmetry. The sum of the reflection and transmission has to equal the total
number of open incoming channels, since the flux has to be preserved. Hence the scattering
matrix S has to obey

T +R = Tr(t†t) + Tr(r†r) = Tr(S†S) = NI. (6.26)

6.2 From transmission to conductance

When having obtained the transmission for the bent carbon nanotube the next step is to
relate it to a measurable quantity, namely the conductance. It can be shown that for a 1-D
system with N non-degenerate channels the current, when assuming perfect transmission, is
given

I = N
e2

h
V, (6.27)

where e2/h is the conductance quantum φ0 [13, p. 143] and V is determined as the difference
in chemical potential between the left and right electrodes. In the case where transmission
is not perfect we still get a simple expression for the conductance. When assuming zero
temperature we get

G =
e2

h
T. (6.28)

This is the famous Landauer Formula [18], which provides us with the master equation of
this thesis

G =
e2

h
Tr(t†t) (6.29)

By tuning the voltage difference and applying a constant magnetic field across the bent
nanotube we expect to see a higher or lower degree of conductance depending on the Fermi
energy. When sweeping this energy, which is done by applying a back-gate to the sample, we
expect to see changes in the conductance along with some (hopefully) exciting features.

Predicting and analyzing these features will be the topic of the remainder of this thesis, in
which theoretical conductances of various nanotube configurations and external parameters
will be investigated through numerical simulations, using the procedures developed in this
section.
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7 Simulation of Conductance Through Bent Nanotubes

The integration routine for developing the reflection and transmission and thus the conduc-
tance for bent tubes has been implemented using MATLAB. The routine consists mainly of
for-loops and eigenvalue and eigenfunction finding. In Appendix F a walk-through of the
simulation along with examples from the script is given.

7.1 Methods

Many setups for measuring the conductance of nanotubes are possible. However, in all cases
the tube is placed in between one or more electrodes through which current is conducted. In
addition, one or more back-gates may interact electrostatically with the tube [19]. In this
thesis we consider the four geometries depicted in Figure 7.1. (a) a hill-like tube, which is
characterized by the slope and length of the hill. (b) a staircase-like tube which is constructed
by linking two of the configurations from (a) through a straight section, which we set to 50
or 100 nm. (c) A harmonically shaped tube, described by a cosine function undergoing one
oscillation, in which we control the bending through the amplitude and the period. (d) A
ω shaped tube, which is the same as in (c), but with the cosine function undergoing two
oscillations. In all cases the straight sections in the beginning and end of the tubes (indicated
in red) are considered to be long enough that evanescent modes can be neglected. For all the
configurations the tube orientation with respect to an applied magnetic field is the same in
the beginning and end of the tube. The Fermi energy is chosen such that all of the 4 channels
are open, i.e. NI = NR = NT = 4. In Figure H.1 and H.2 in Appendix H a detailed view of
the tube geometries, including the angular dependence on position, is given.

Prior to simulating the conductance of the bent tubes, the script was run on a straight
tube, in which the Fermi energy was varied such that not all of the channels were open.
In all the simulations we used a nanotube of radius 2 nm and the perturbation parameters
∆0 = 145 µeV, ∆1 = −135 µeV, ∆g = −7 meV and ∆KK ′ = 25 µeV as determined in section
4.28.

7.2 Results

The results can be found in Appendix G. Figure G.1 shows simulations on a 500 nm straight
nanotube for various magnetic field orientations and strengths. In all cases clear step-like be-
havior in the conductance of integer values of the conductance quantum φ0 = e2/h is visible.
In (e), where the magnetic field is turned off, the step is 2φ0. In (a) and (b), corresponding
to a magnetic field of 2 T with the angle ϕ = 0 and ϕ = 30o, fluctuations at the transitions
2φ0 → 3φ0 are seen. In addition, in (a) fluctuations also appear at the transition φ0 → 2φ0,
though they are less pronounced.

Figure G.2 shows the result of the simulations for the hill-like conformation for various tube
bendings with a magnetic field of 9 T aligned perpendicular to the tube. In all cases the
conductance (transmission) increases with increasing energy. The conductance of the straight
tube in (a), which acts as a control, is 4φ0 for all the used energies. Integer steps of φ0 in the

8Here the calculation was for a 1 nm tube radius. However, it was noted that the parameters are approxi-
mate, so we have taken the liberty of applying them to a nanotube of radius 2 nm in order to see an enhanced
Aharonov-Bohm effect, which is proportional to the radius.
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(a)

(c) (d)

(b)

Figure 7.1: Experimental setup for measuring the conductance. (a) Two straight sections (red) are
connected to the electrodes (blue) with the hill-like shaped tube (green) in between. (b) Two of the
segments from (a) are placed around a straight segment of varying length. (c) and (d) Same as (a)
but for a harmonically shaped function undergoing one and two oscillations, respectively.

conductance is visible in (c) and (d), where it changes from 3φ0 to 4φ0. (b) shows a frac-
tional step of φ0. (e) and (f) show the results of the simulations for the stairway-like tube,
which is constructed by connecting two 100 nm bend hill-like tubes (purple graph in Figure
H.1) through a straight segment of 50 and 100 nm, respectively. In (e) the conductance
shows a steady level of 3φ0 until the energy reaches approximately 8.45 meV, after which
the conductance rises to 4φ0. A peak in the conductance (transmission) occurs around 8.35
meV. A corresponding dip in the reflection is visible at the same energy. (f) The conductance
pattern resembles that of (e), however the position of the peak/dip, which are both increased,
is displaced.

Figure G.3 (a)-(d) show the result of simulations performed on the harmonically shaped
tube for various degrees of bending with a magnetic field of 9 T aligned perpendicular to the
tube. Again the straight tube yields conductance of 4φ0. The data show a tendency of the
sum of the transmission and reflection not being equal to 4 – especially for large bending in
the low energy regime, e.g. Figure G.3 (d) and Figure G.4 (b) and (d). In all the simulations
the sum nevertheless converges towards 4 with increasing energy.

In (c) and (d) a conductance plateau of 3φ0 is visible followed by a gradual increase to a
conductance of 4φ0. In both cases the increase occurs over an energy span of approximately 0.1
meV. In (d) an additional step is visible, where the conductance increases from approximately
2.2φ0 to 3φ0 over an energy span of 0.2 meV. In (b) a fractional step of φ0 occurs.

Additional simulations for the conductance in which the magnetic field is varied are shown
in Figure G.3 (e) and (f). The tube configuration is the same as in (d), but with the magnetic
field turned off and set to 7 T in (e) and (f), respectively. In (e) a step in the conductance of
2φ0 is visible, but a peak in the sum of the transmission and reflection to around 5.5 occurs
at the transition. The behavior of the conductance in (f) resembles that of (d) just displaced
to lower energies; however the first conductance step is missing.



7 SIMULATION OF CONDUCTANCE THROUGH BENT NANOTUBES 25

Figure G.4 shows simulations for the ω shaped tube, which is build by placing two 100
nm bending tubes (Figure H.2 purple curve) in tandem. (a), (b) and (c) corresponds to a
magnetic field of 5, 7 and 9 T aligned perpendicular to the tube, respectively. In (a) the
conductance is close to 4φ0 for all energies. In (b) an increase in the conductance from
G ≈ 3φ0 → 4φ0 over an energy range of around 0.2 meV is visible. At an energy of circa 8.05
meV a dip in the conductance (and a peak in the reflection) is seen. At an energy of around
8.2 meV the situation is reversed; here a peak in the conductance and a dip in the reflection
is visible. In (c) an extra conductance step, G ≈ 2.2φ0 → 3φ0, is visible at an energy of
approximately 8.2 meV. Again, dips and peaks in the conductance and reflections appear. In
both (b) and (c) the sum of the transmission and reflection fails to equal 4 for energies lower
that 8.5 meV. However, in all the simulations, the sum converger towards 4 as the energy
increases.

7.3 Discussion

Straight-tube. The quantized conductance steps and observed plateaus in Figure G.1 are
characteristic for ballistic transport through a 1-D system, and has also been reported in
CNTs [4, 19, 20, 21]. However, the experimentally observed steps have been of 2e2/h or
4e2/h. Previous theoretical studies also predicted steps of 2e2/h (4e2/h) [22], depending on
the presence (absence) of a magnetic field, but here spin-orbit and curvature effects were not
taken into consideration.

The behavior of the conductance may be described in a way similar to that of a quantum
point contact (QPC). Here a step-like conductance is seen when sweeping a gate voltage, since
this brings the allowed states into the window defined by the chemical potentials of the leads
[14, p.535]. Whenever a state is in the window, there will be a propagating solution yielding
conductance in units of the conductance quantum φ0. In this sense, the process of bringing
the states into the window may be thought of as varying a potential barrier which the states
have to pass through.

The incoming waves of the bent nanotube are defined by a given Fermi energy. If a given
conduction band lies above this energy, the corresponding state in the band is an evanescent
mode, which is neglected in the infinite straight tube. In order for it to become a propagating
solution, the Fermi energy has to be larger than the band in question, i.e. there is a potential
barrier of finite height, but infinite width (in the straight tube) that the waves need to
overcome. In Figure 7.2 (a) and (b) the conduction bands for a magnetic field at ϕ = 30o

and ϕ = 60o, corresponding to Figure G.1 (b) and (c), respectively, are shown. The bottom
of the energy bands, indicated by the straight lines, thus corresponds to the height of the
potential which the waves have to overcome before they become propagating. This explains
why we see four steps in the conductance in Figure G.1 (a)-(d). When all the perturbation
terms are taken into consideration, the four-fold degeneracy is completely broken, yielding
four separated energy bands; as a result four effective potentials appear. When the energy is
increased in the simulations, which in an experiment corresponds to tuning a back-gate which
move the energy bands and thus vary the size of the potentials, the channels are opened one
at a time, in the sense that the potentials are overcome in a step-like manner and we see
perfect conductance from the given channel, since there are no sources of scattering in the
straight tube. From the conductance simulation in Figure G.1 we find that the steps occur
right at the energetic tips of the potentials.

This may also explain why the change in conductance occurs in steps of 2φ0 in Figure G.1
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Figure 7.2: The four non-degenerate conduction bands with B = 2 T where (a) ϕ = 30o and (b)
ϕ = 60o. The straight lines indicate the energy where the steps 1 through 4 occur in Figure G.1 (b)
and (c), respectively. They match the bottom of the energy bands, such that the state belonging to
a given band becomes propagating whenever the energy is tuned to this specific value for the band in
question. This results in the quantized conductance.

(e) where the magnetic field is switched off. In this case the states within the Kramer doublets
are two-fold degenerate, i.e. there are only two potential plateaus. Each band contribute with
two channels thus yielding the two conductance steps of 2φ0.

This reasoning may also explain why the lengths of the conductance plateaus are not
the same for G.1 (b)-(d). In Figure 7.2 it is clear that the energetic distances between the
potentials are not the same; for (a) the first potential step (from band 1 to band 2) is smaller
than the last potential step (band 3 to band 4), while the picture is reversed in (b). However,
in both cases the middle step (band 2 to band 3) is largest. This is consistent with the
observed conductance patterns in Figure G.1 (b) and (c). Thus rotation of the magnetic
field toward ϕ = 0 lowers the first potential barrier, which is expressed in the conductance
simulation through the fact that the first step occurs for a lower energy when ϕ = 60o

than when ϕ = 30o. However, the last conductance step get moved to a higher energy.
This illustrates the effect of the Aharonov-Bohm and Zeeman terms on the energy bands.
When ϕ decreases, the Aharonov-Bohm term increases due to the B cos(ϕ) dependence in
eq. (5.11). The same is true for the Zeeman term proportional to cos(ϕ)S3 while the term
proportional to sin(ϕ)S1 diminishes. The combined effect is that the two lower conductance
bands are displaced downwards, while the upper two are displaced upwards. However, the
displacements are not symmetric (see Figure 7.2), hence we develop the step patterns observed
in the simulations.

It should be noted that while the steps are sharp for the transitions in Figure G.1 (c)-
(e) there are noticeable fluctuations in the transmission and reflection at the transition G =
φ0 → 2φ0 in (a) and (b) such that the sum also fluctuates. This must be due to a numerical
error. It may arise from the process of determining the correct eigenstates exactly at the
point where the defined energy and the bottom of the conduction bands merge. However, it
seemed strange that the fluctuations were only observed for magnetic fields which were close
to being parallel to the tube and that they only appeared at some of the transitions. Further
research is needed in order to determine the cause of this behavior, such that the code may
be optimized in the future.

In addition, although we were able to simulate the conductance through a straight tube
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with any number of channels open, whenever we performed the same scheme for bent tubes,
the transmission and reflection showed fluctuations of up to several hundred orders of mag-
nitude, which certainly cannot be physically correct. As a result, we were only able to study
the bent tubes in the rather limited cases where all four incoming and transmissive channels
were open.

Bent tubes. In general, the simulations yielded an increase in the transmission with in-
creasing energy. This was expected and is in compliance with traditional scattering theory
and experiments. The conductance plateaus and steps of φ0 in a finite magnetic field agree
with the experimental data reported in [11], in which a configuration very similar to the one
used in Figure G.3 (d) (purple curve in Figure H.2 (a)) is investigated. However, in [11]
the conductance steps were also φ0 in the absence of a magnetic field. This was not seen in
our simulations, where the steps were 2φ0 (See Figure G.3 (e)), because of the degeneracy of
states within the Kramer doublets described above.

As for the straight tube, the observed steps and plateaus in the conductance may be at-
tributed to waves passing through potential barriers. However, for bent tubes the barriers
are not uniform throughout the tube. When the tube is bending, ϕ′ changes resulting in a
changed Hamiltonian and consequently a displacement of the energy bands. If the displace-
ment of the j’th band is sufficiently large, the corresponding j’th potential becomes larger
than the energy of the initial state in the j’th band, which then becomes evanescent over some
region, analogous to an imaginary eigenvalue λj in eq. (6.7). As a result, we see reflection.
However, there is a finite probability of the wave passing through the barrier. Especially, if
the distance over which λj is imaginary is short, compared to the length of the tube, and the
conduction band containing the j’th state is close to the given Fermi energy, corresponding
to a low, thin potential barrier, the transmission will be nearly perfect, giving rise to a con-
ductance close to φ0 from the j’th channel. The situation is illustrated in Figure 7.3 for four
incoming waves with different energies. The low-energy wave (red) gets completely reflected
since the evanescent wave in the barrier completely dies out, yielding zero transmission and
as a consequence, zero conductance. For the intermediate-energy wave (blue) a portion of
the wave gets reflected. But the evanescent wave survives the trip through the potential and
thus gets partially transmitted yielding conductance in non-integer values of φ0. The energy
of the green wave is close to the top of the potential, thus we see nearly perfect transmission.
For the high energy wave (yellow) reflection is negligible and the propagating wave is fully
transmitted resulting in conductance of integer value φ0.

Re�ection

Re�ection

Re�ection

L x

E

V

Figure 7.3: Scattering from a potential bar-
rier of height V and width L. The low-
and medium-energy waves (red) and (blue) are
evanescent within the potential barrier. The
red gets fully reflected, while a fraction of the
blue gets transmitted. The green propagat-
ing wave is close to being fully transmitted.
For the high-energy wave (yellow) reflection is
negligible and the wave gets fully transmitted.
Not to scale.

In Figure I.1 the bottom of the four conductance bands are displayed as a function of the
location along the tube for the geometries used in the simulations in Figure G.2,G.3 (b)-(d)
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(i.e. the configurations given in Figure H.1,H.2 (a)). In the above reasoning, the curves thus
correspond to the potential barriers which the waves have to pass through. The dimensions
of the potentials are directly linked to the degree of bending. This explains why only a
partial step of approximately 0.4φ0, 0.5φ0 appears in Figure G.2,G.3 (b). Since the energy
of the incoming waves are close to the top of the largest potential in Figure I.1 (a), only a
small fraction gets reflected. As the energy is increased all solutions become propagating and
reflection becomes negligible and we thus see perfect transmission and conductance.

For the geometries used in Figure G.2 (c),(d) and Figure G.3 (c),(d),(f), however, the
potentials become large enough that one of the states completely dies out. As a result only
three states are transmitted yielding the observed conductance of 3φ0.

It is interesting that an additional conductance step is seen from G ≈ 2φ0 → 3φ0 in Figure
G.3 (d). The difference between the tube configuration in this simulation and the hill-like one
used in simulation G.2 (d), which only shows one conductance step, is that the harmonically
shaped tube has an extra bend upwards (compare the topology in Figure H.2 and Figure H.1
corresponding to the purple lines). This results in an extra potential bump at 250 to 450
nm (compare Figure I.1 (e) and (f)), such that the waves effectively see a double potential
barrier. An incoming wave, which is transmitted through the first potential bump, may die
out when moving through the second, resulting in the observed conductance plateau at 2φ0.
This may also explain why this step is absent in Figure G.3 (f), where the magnetic field is
7 T and why no steps are seen when B = 5 T, since the displacements of the energy bands
in this case are smaller, thus resulting in smaller potential bumps. The result is that for the
energies sweeped in the simulations only one channel dies out, yielding the conductance of
3φ0 for B = 7T, while for B = 5T none die out and G = 4φ0. It should be noted, however,
that transmission is not additive, and in an accurate description we need to treat the two
potentials as a whole.

This may explain why we do not see a complete extinction of the conductance for the
ω shaped tube in Figure G.4 (c). The potential seen by an incoming wave corresponds to
two of the potentials in Figure I.1 (e) placed in tandem, such that there are effectively four
potential barriers. One might think that the wave would get completely reflected for energies
where Figure G.3 (d) showed conductance of 2φ0, however this is not the case. The overall
appearance of the conductance curve resembles that of Figure G.3 (b), however the step from
G ≈ 2φ0 → 3φ0 is much sharper in Figure G.4 (c) and occurs at a higher energy. In addition
dips and peaks in the conductance appear. Peaks in the conductance are also observed for
staircase tube. At energies 8.45 meV and 8.4 meV an increase in the conductance for the
configurations with the intermediate straight segment being 50 and 100 nm, respectively, is
visible. In the latter case the effect more pronounced.

The potential seen by a waves in this case corresponds to two spatially separated symmetric
potential barriers, since the tube is build from linking two hill-like bent tubes (see Figure I.1
(f)) through an intermediate straight section of length 50 nm and 100 nm for Figure G.2 (e)
and (f), respectively. It can be shown that for a spatially separated series of two symmetric
1-D potentials, at certain energies, full transmission occurs even though the transmission
through the individual barriers are small [14, p. 537]. In our simulations we did not see full
transmission, however the peaks correspond to an enhancement of the transmission.

The effect arises because the waves in between the potentials travel back and forward
constantly getting reflected and transmitted and thus acquire a phase. The double barrier
system is illustrated in Figure 7.4. I and R denote incoming and reflected waves, while T
denote the transmitted waves. The red waves denote waves in between the potential barriers
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which travel back and forward. At resonance, the waves will propagate in phase yielding a

I

R

T

L

Figure 7.4: Scattering from two symmetric
barriers placed at a distance L from each other.
I denote incoming waves, R indicate reflected
waves while T denote transmitted waves. The
waves travel back and forward in between the
potentials (red) and acquire a phase. At res-
onance they propagate in phase, yielding en-
hanced transmission.

greatly enhanced transmission (conductance) due to constructive interference. This is called
resonant tunneling. The energies at which resonance effect occurs depend on the distance
between the potentials, since this affects the phase that the waves acquire. This dependence
is visible in the conductance simulation, since the observed peaks occur for different energies
in Figure G.2 (e) and (f).

The effect carries over to the situation in Figure G.4, where the waves effectively see a
potential consisting of four subsequent bumps; i.e. two pairs of the potential landscape shown
in Figure I.1 (e) places in tandem. However, the system becomes much more complicated
in this case. Nevertheless, for certain energies we would expect to see increase (decrease) in
the transmission, whenever the waves are close to being in (out of) phase, expressed as the
observed peaks and dips in the conductance, respectively.

A very important element of the results which has so far been left out of the discussion,
is the failure of the transmission and reflection to equal the expected value of 4, i.e. the
number of open incoming channels. The effect is more pronounced for the harmonically and
ω-shaped tubes for large-bending in the low energy regime. However, in all simulations the
sum converges towards the expected value as the energy is increased. That the sum, for one
does not equal 4, and secondly fails to be constant (e.g. see the oscillations in the red curve
for energies 8 meV to 8.5 meV in Figure G.3 (d) and (f) and Figure G.4 (b) and (c)) is of
course not physically compatible and must be attributed to an error in the simulation scheme.
The error may arise because of the crossings of the non-degenerate bands as the electrons
move along the tube. E.g. the red and blue bands cross in Figure I.1 (c) and (e). Because
the script does not explicitly take into consideration which band a given state belongs to
(during the integration through the tube) errors may occur on this account. This reasoning
may explain why the effect is not as pronounced for the small bend tubes, since none or only
two of the bands cross in this case. However, a more elaborate simulation scheme which keeps
track of which states belong to which bands is needed to determine if this is indeed the cause
of the error.

8 Perspectives

Although the simulations showed problems presumably attributable to numerical issues or
limitations in the code, interesting phenomena emerged from the study; the theoretical model
was able to account for the conductance steps of e2/h, which were previously reported for
a bent nanotube. In addition, we saw indication of resonant tunneling for the staircase and
ω shaped tubes. However, fine-tuning of the code is still needed. The most critical issues
are the sum of the reflection and transmission not equaling the number of channels and the
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failure to study bent tubes in which not all channels are open. The solution might be to
keep track of band numbers and corresponding eigenstates. If the issues are sorted out, an
obvious next step would be to simulate the conductance for a bent tube with a magnetic field
of varying angle and strengths. Additionally, one may investigate other tube geometries, e.g.
conformations where all incoming channels are open while one or more transmissive channels
are closed. Since the bachelor thesis has a finite time span, the completion of this work must
be postponed to a future project.

In a future study is would also be interesting to take into account additional interactions
in the bent CNT Hamiltonian. E.g. the effect of phonon interactions and temperature are
potential candidates. Finally, as noted in the introduction, few measurements focusing on
bent nanotubes are available. It will thus be interesting to see how the theoretical predictions
match the experimental data, when an in-depth study of the electronic properties of bent
tubes is reported.

9 Conclusion

Through a tight-binding model of graphene and the use of periodic boundary conditions
an effective Hamiltonian for the unperturbed carbon nanotubes was established. Inclusion
of perturbative effects from a magnetic field, spin-orbit coupling and curvature induced hy-
bridizations yielded an effective Hamiltonian leading to a breaking of the four-fold degeneracy.
Subsequently the Hamiltonian was extended to bent nanotubes. On the basis of this Hamil-
tonian an integration routine for determining the transmission and reflection as a function of
the bending was developed. Following the Landauer formula the conductance for a bent tube
could be determined.

Five geometries; straight, hill-like, staircase, harmonically and ω-shaped tubes were in-
vestigated. Some of the simulations showed unphysical fluctuations in the transmission and
reflection, which was concluded to be due to numerical errors. However, many interesting
phenomena emerged from the study. In the presence of a magnetic field conductance steps of
integer values of the conductance quantum e2/h appeared, reflecting the complete splitting of
the energy bands. The observed steps have been reported in a previous experimental study of
bent nanotubes [11]. In the absence of a magnetic field we observed integer steps of 2e2/h in
the conductance, which was expected due to the degeneracy of the states within the Kramer
doublets. In addition for the staircase and ω we saw indications of resonant tunneling which
were explained by regarding the bending of the tube as waves traveling through effective
potential barriers. It will be interesting to see how these theoretical will predictions match
the experimental data, when measurements on these tube geometries are reported.
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A Tight-binding approximation for the energy dispersion for

the π-band of graphene

The tight binding approximation is based on the method of constructing the total wavefunc-
tion as a linear combination of localized atomic wavefunctions of the atoms within the lattice.
The Hamiltonian for a single electron in the potential of all the carbon atoms in graphene is
given by

H = Hkin +
∑

R

[Vat(r − RA − R) + Vat(r − (RA + d)
︸ ︷︷ ︸

RB

−R)], (A.1)

where the kinetic part is as usual p̂2/2me and RA and RB denote the position of atom A
and B, respectively. From the periodicity of the lattice we expect the wavefunctions to be
described by Bloch functions. It can be shown that any Bloch function may be written in the
form

ψk(r) =
1√
N

N∑

R

eik·Rφ(r − R) (A.2)

where φ are Wannier functions, which are not necessarily exact atomic wavefunctions, but
often can be approximated to be so [23, 12]. It is clear that ψ fulfills Bloch’s theorem, i.e.
ψ(r + R) = eik·Rψ(r), with the sum taken over all sites. Taking into account that each
unit cell contains two atoms, we adopt superpositions of the Wannier functions, such that
φ(r) = αφA(r) + βφB(r), where φA and φB are approximated as the pz-orbitals on atom A
and B, respectively. When looking separately at the two sublattices and letting d denote the
vector connecting A and B atoms, the total wavefunction can thus be written [23, p. 186]

ψk(r) =
1√
N

∑

RA

eik·RA (αφA(r − RA) + βφB(r− RA − d))

= α
1√
N

∑

RA

eik·RA(φA(r − RA)) + β
1√
N

∑

RB

eik·(RB−d)φB(r− RB)

= αΦA,k(r) + βΦB,k(r) (A.3)

where each of the sums are taken over all the unit cells in graphene, i.e.
∑

RA
=
∑

RB
= N .

The atomic orbitals on each site are normalized, hence the total wavefunction is almost
normalized, |〈ψk|ψk〉|2 ≈ 1, if the overlap 〈φ(r − RA)|φ(r −RB)〉 is small.

Finding the eigenvalues and eigenfunctions is done in the usual way by solving the
Schrödinger equation

Hψk(r) = Ei(k)ψk(r) (A.4)

which can be recast in matrix notation when we focus on the subset defined above. Multiplying
from the left by ψ∗

k(r), followed by integration over all space, results in the equation [13]

(
HAA HAB

HBA HBB

)(
α
β

)

= Ei(k)

(
SAA SAB

SBA SBB

)

(A.5)

where H and S are called the transfer integral and overlap integral matrices, respectively.
The matrix components are thus defined

Hij(k) ≡ 〈Φi,k|H|Φj,k〉 and Sij ≡ 〈Φi,k|Φj,k〉. (A.6)
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From symmetry considerations the two diagonal terms of the transfer integral matrix are
equivalent since the two sublattices only differ by a translation in space. These indices, where
i = A,B, are determined in the following way

Hii = 〈Φi,k|H|Φi,k〉

=
1

N

∑

Ri

∑

R′
i

ei(R−R′)〈φi(r − Ri)|H|φi(r − R′
i)〉

=
1

N

∑

Ri

ǫ0 = ǫ0, (A.7)

since we only consider nearest neighbors atoms, which all belong to the other sublattice.
In other words we neglect terms for which Ri > R′

i and retain only Ri = R′
i and define

ǫ0 ≡ 〈φi(r−Ri)|H|φi(r−R′
i)〉. In a similar manner, the off-diagonal term HAB, is calculated

HAB =
1

N

∑

RB

∑

RA

eik·(RB−d−RA)〈φA(r − RA)|H|φB(r − RB〉

=
1

N

∑

RA

(

1 + e−ik·a1 + e−ik·a2

)

(−γ0)

= −γ0

(

1 + e−ik·a1 + e−ik·a2

)

= −γ0α(k) (A.8)

when we take into consideration only the three neighboring atoms (RA = RB − d, RA =
RB − d + a1 and RA = RB − d + a2). Due to the symmetry of the lattice, the transfer
integral −γ0, which is defined 〈φA(r−RA)|H|φB(r−RB〉 is equivalent in all three cases and
is assumed to be real. From the Hermiticity of H we conclude that HBA = H∗

AB.
The diagonal terms of the overlap integral matrix are set to unity since Sii = 〈Φi,k|Φi,k〉 =

1, (i = A,B) in the nearest neighbor approximation, when assuming that the atomic wave-
function is normalized [13, p. 24]. The off-diagonal terms are found in the same way as
the transfer integral, and we get SAB = S∗

BA = γ1α(k), with γ1 called the overlap integral,
defined 〈φA(r − RA)|φB(r − RB〉. For graphene table values are γ0 = 3.033 and γ1 = 0.129
[13, p. 32].

Finding the eigenvalues now corresponds to solving the secular equation det[H−ES] = 0,
which yields the following two eigenenergies

E+(k) =
ǫ0 + γ0|α(r)|
1 − γ1|α(r)| and E−(k) =

ǫ0 − γ0|α(r)|
1 + γ1|α(r)| . (A.9)

Since each atomic orbital contributes with one electron, i.e. two electrons pr unit cell, 2N out
of a total 4N possible states (due to spin) are filled, such that the valence band is completely
filled. The top of the valance band, ǫ0, thus corresponds to the Fermi energy, ǫF , whenever
α(k) = 0. This can be seen to occur when k = K(K′), where K(K′) are given in eq. (3.4).
Since we are free to choose the zero points of energy, we might as well set ǫ0 = ǫF = 0.

In studying transport phenomena the relevant energy scale is thus the Fermi energy, since
only electrons in the vicinity of this energy are capable of propagating through the crystal
due to the Fermi-statistics and the Pauli principle. Therefore the relevant k scale is in the
vicinity of the K(K)-points, such that the energy is close to ǫ0. Hence – assuming the overlap
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integral is small the product γ1|α(r)| ≪ 1 in the vicinity of the Fermi energy and is thus
neglected in the denominator. The Hamiltonian now take the simple form

H =

(
0 HAB

H∗
AB 0

)

=

(
0 −γ0α(k)

−γ0α(k)∗ 0

)

(A.10)

and the eigenenergies and eigenstates in the A,B-basis given by the pz orbitals on each
sublattice thus become

E±(k) = ±γ0|α(r)|,
(
α
β

)

±
=

1√
2

(

∓ α(k)
|α(k)

1

)

. (A.11)

where

|α(k)| =
√

3 + cos(k · a1) + 2 cos(k · a2) + cos(k · [a1 − a2])

=

√
√
√
√1 + 4 cos

(√
3akx

2

)

cos

(
aky

2

)

+ 4cos2

(
aky

2

)

(A.12)

In Figure A.1 (a) the energy dispersion relation for graphene is plotted i k-space along with
indication of the first Brillouin zone. We note that at the symmetry points, K and K′,
the valence and conduction bands actually touch. Hence graphene is a metal even at low
temperatures.
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Figure A.1: (a) Energy dispersion for graphene with the FBZ along with the K and K′ points
superimposed. The conductance and valence band touch at these high symmetry points. Since the
fermi energy is taken to be the zeroth of energy, graphene is thus metallic. (b) Energy dispersion for
an (4,4)-armchair tube. Since N = 8 eq. (3.9) eight valence and eight conduction bands can be seen.

Dispersion relation for armchair-tube. Since kC || kx for the armchair-tube the kx val-
ues simply split up into the N allowed values, 2πn

|C| . Inserting into eq. (A.11) we get the

dispersion relation depicted in Figure A.1 (b) for a (4,4)-tube. For all but the armchair tube,
the wavevectors are not parallel and we need to project onto the CNT reference frame through
a rotation. This rotation is described in Appendix C.
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B Expansion of the dispersion relation around the K and K′

points

Most of the interesting physics regarding electronic transport happens around the Fermi
energy. If we only take into consideration the first order contributions a much simpler ex-
pression for the dispersion relation is obtained. This approximation is only valid for k-values
close to the K and K′ points, with K(K′) = 2π

a ( 1√
3
, τ3

1
3 ), where τ3 = 1(−1). I.e., writing

k = K(K′)+κ where κ = (κx, κy) we expand the energy dispersion relation around K(K′) for
graphene. In the vicinity of the K(K′)-points the energy is written Ei(k) = ǫ(κ) = ±γ0|α(r)|
since E(K(K′)) ≡ 0. Formally carrying out the expansion of α to first order we find that

α(K(′) + κ) = ∇α(k)|
K(′) · κ = −

(

iκ · a1e
−iK(′)·a1 + iκ · a2e

−ia2·K(′)
)

= −
{

i
a

2

(
κx

κy

)

·
(√

3

1

)

e
−i 2π

a
( 1√

3
,τ3

1
3
)· a

2
(
√

3,1)
+ i

a

2

(
κx

κy

)

·
(√

3

−1

)

e
−i 2π

a
( 1√

3
,τ3

1
3
)· a

2
(
√

3,−1)

}

= −
√

3a

2

{

i(κx +
1√
3
κy)e

−iπ(1+ τ3
3 ) + i(κx − 1√

3
κy)e

−iπ(1− τ3
3 )
}

=

√
3a

2

{

iκx

[

eiπ
τ3
3 + e−iπ

τ3
3

]

+ i
1√
3
κy

[

eiπ
τ3
3 − e−iπ

τ3
3

]}

=

√
3a

2

{

iκx2 cos
(

π
τ3
3

)

− 1√
3
iκy2i sin

(

π
τ3
3

)}

=

√
3a

2

{

iκx2
1

2
+

2√
3
κyτ3

√
3

2

}

=

√
3a

2
(iκx + τ3κy) . (B.1)

Following the definition, HAB = −γ0

√
3a
2 (iκx + τ3κy), the effective Hamiltonian of graphene,

when leaving the τ3 as an entry corresponding to the K(K), is thus written in the following
way

H =

(

0 −γ0

√
3a
2 (iκx + τ3κy)

−γ0

√
3a
2 (−iκx + τ3κy) 0

)

. (B.2)

The eigenenergies can thus be found from ǫ(κ)2 = |HAB|2 (which can also be seen from

(A.11)). Since |α(K + κ)| =
√

3a
2

√

κ2
x + κ2

y =
√

3a
2 |κ| the energy dispersion (A.9) expanded

around the K(K′)-points thus becomes

ǫ(κ) = ±
(

−γ0

√
3a

2

)

|κ|. (B.3)

Whenever one talks about single electrons with definite momentum one actually needs to
consider a narrow range of k′s in k-space which results in a relatively broad span of the
spatial part of the wavefunction thus demanding a wave packet. It can be shown that the
velocity of such a wave packet is given v = ~

−1∂ǫ/∂k [15, p. 415]. We see that the energy
dispersion is independent of direction, only on magnitude of κ such that the velocity, which
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in the vicinity of the Fermi energy, corresponds to the Fermi velocity is given by

vF =
−γ0

√
3a

2~
. (B.4)

We are then capable of providing an approximative solution for the dispersion relation and
eigenstates, within the vicinity of the K-points:

ǫ±(κ) = ±~vF |κ|,
(
α

β

)

±
=

1√
2

(∓eiβ
1

)

, (B.5)

where β = arg(α(k)) since α(k) = |α(k)| exp{iarg[α(k)]}.
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C Rotation of the graphene Hamiltonian into the CNT refer-

ence frame

From Figure 3.1 (a) we see that the graphene Hamiltonian eq. (3.11) given in the (x, y)-
coordinate system compared to the CNT unit vectors is given

H = ~vF

(
0 (iκx + τ3κy) e

−iτ3η

(−iκx + τ3κy) e
iτ3η 0

)

. (C.1)

This follows from the observation that
(
κx

κy

)

=

(
cos η − sin η
sin η cos η

)(
κC

κT

)

, (C.2)

such that the matrix elements of the Hamiltonian become

H12 = ~vF [i(cos ηκC − sin ηκT ) + τ3(sin ηκC + cos ηκT ] (C.3)

H21 = ~vF [−i(cos ηκC − sin ηκT ) + τ3(sin ηκC + cos ηκT )] . (C.4)

Collecting the like-terms we thus find

H12 = ~vF [iκC(cos η − iτ3 sin ηκC) + τ3κT (cos ηκT − τ3 sin ηκT )] (C.5)

H21 = ~vF [−iκC(cos η + iτ3 sin ηκC) + τ3κT (cos ηκT + τ3 sin ηκT )] . (C.6)

since (τ3)
2 = 1, which indeed gives us the Hamiltonian in eq. (C.1). Transforming the

Hamiltonian into the reference frame of the CNT thus corresponds a to rotation of the (x, y)
coordinate system through the angle η by means of the unitary rotation matrix

U =

(
eiτ3η 0

0 1

)

(C.7)

with τ3 = 1(−1) corresponding to the K(K′)-point. The effective Hamiltonian, in the CNT
coordinate system, thus becomes H0 = UHU−1 [6], i.e.

H0 = ~vF

(
0 iκC + τ3κT

−iκC + τ3κT 0

)

(C.8)

Circumferential quantization Here the full calculation of the quantization of the cir-
cumferential wavevector of the nanotube is given. The quantization condition from Bloch’s
theorem yields

k ·C = 2πn, (C.9)
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such that

2πn = k ·C
2πn = (K(K′) + κ) · C

2πn =

[

2π

a

( 1√
3

τ3
1
3

)

+ κC
C

|C| + κT
T

|T|

]

·C

2πn =

[

2π

a

( 1√
3

τ3
1
3

)]

·
[

n1
a

2

(√
3

−1

)

+ n2
a

2

(√
3

1

)]

+ κC |C|

2πn = π
[

n1(1 − τ3
3

) + n2(1 +
τ3
3

)
]

+ κC |C|

κC =
1

2R

[

2n− (n1 + n2) +
τ3
3

(n2 − n1)
]

. (C.10)

where R = |C|/2π. It is clear that the latter term is an integer if the equation (n2 − n1) =
3N +µ (N ∈ Z) yields µ = 0, while it is a non-integer for µ = ±1. The second term, however,
is always an integer since (n1 +n2) ∈ Z. Absorbing all the integer values into m the quantized
wavevector may be written

κC =
1

R

(

m− τ3µ

3

)

. (C.11)
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D Rotation of the spin matrices

From the generator of rotation the spin-basis transformation from the global to the local
coordinate system is given

χ′ = ei(S·n̂)ϕ′/2χ, (D.1)

where n̂ describes an arbitrary direction in the global coordinate system. Hence the local
spin-basis is derived – with the global spin-basis defined

χ+ =

(
1

0

)

and χ− =

(
0

1

)

, (D.2)

i.e. χ = aχ+ + bχ− – by investigating the effect of the transformation on these basis vectors,
which are the eigenvectors of S3. This gives us

χ′
+ = ei(S·n̂)ϕ′/2χ+ and χ′

− = ei(S·n̂)ϕ′/2χ−. (D.3)

Thus, the 2 × 2 change of base matrix ei(S·n̂)ϕ′/2 will now be derived. The generalized expo-
nential operator is defined such that

ei(S·n̂)ϕ′/2 =
∞∑

k=0

1

k!
(i(S · n̂)ϕ′/2)k =

∞∑

k=0

1

n!

(
iϕ′

2

)k

(S · n̂)k. (D.4)

In order to be consistent with current notation we set the principle quantum axis in the
direction of the tube (ŷ), such that

S3 = Sŷ ≡
(

1 0
0 −1

)

. (D.5)

S · n̂ = Si for i = 1, 2, 3 for n̂ equal to x̂, ẑ = x̂× ŷ, and ŷ respectively, where

S1 =

(
0 1
1 0

)

, S2 =

(
0 −i
i 0

)

, S3 =

(
1 0
0 −1

)

. (D.6)

It can easily be shown that

(Si)
n =

{
1, for n even
Si, for n uneven

(D.7)

Thus eq. (D.4) becomes

ei(S·n̂)ϕ′/2 =
∞∑

k = 0,
even

1

k!

(
iϕ′

2

)k

1 +
∞∑

k = 1,
uneven

(
iϕ′

2

)k

(S · n̂)

= 1

∞∑

k = 0,
even

(−1)(n/2) 1

k!

(
ϕ′

2

)k

+ i(S · n̂)

∞∑

k = 1,
uneven

(−1)(n−1)/2 1

k!

(
ϕ′

2

)k

. (D.8)
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The first and the latter sum is identified as cos(ϕ′/2) and sin(ϕ′/2), respectively. The change-
of-base matrix is thus given

R = 1 cos(ϕ′/2) + i(S · n̂) sin(ϕ′/2). (D.9)

For a rotation through the angle ϕ′ around the ẑ direction the matrix becomes

Rẑ(ϕ′) =

(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)

. (D.10)

With the given rotation, the spinor basis are transformed in the following way

χ′
+ = Rẑ(ϕ′)χ+ =

(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)(
1
0

)

=

(
cos(ϕ′/2)
− sin(ϕ′/2)

)

. (D.11)

χ′
− = Rẑ(ϕ′)χ− =

(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)(
0
1

)

=

(
sin(ϕ′/2)
cos(ϕ′/2)

)

. (D.12)

From linear algebra it is given, that if the transformation f : H → H is represented by the
matrix S and S′ in the old and new basis, respectively, then

S′ = RSR−1. (D.13)

This allow us to determine the new operators S′
i = S · î′ for i = y, x, z in terms of the the old.

For ŷ we get the the primed operator in the following way

S′
ŷ = Rẑ(ϕ′)SŷR

−1
ẑ(ϕ′) (D.14)

=

(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)(
1 0
0 −1

)(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)−1

=

(
cos(ϕ′/2) sin(ϕ′/2)
− sin(ϕ′/2) cos(ϕ′/2)

)(
cos(ϕ′/2) − sin(ϕ′/2)
− sin(ϕ′/2) − cos(ϕ′/2)

)

(D.15)

=

(
cos2(ϕ′/2) + sin2(ϕ′/2) −2 sin(ϕ′/2) cos(ϕ′/2)
−2 sin(ϕ′/2) cos(ϕ′/2) sin2(ϕ′/2) − cos2(ϕ′/2)

)

=

(
cos(ϕ′) sin(ϕ′)
sin(ϕ′) − cos(ϕ′)

)

= sin(ϕ′)S1 + cos(ϕ′)S3. (D.16)

This can also be seen by expressing ŷ′ in terms of ŷ and x̂

S · ŷ′ = S · [cos(ϕ′)ŷ + sin(ϕ′)x̂]

= (S1, S2, S3) · (sin(ϕ′), 0, cos(ϕ′))

= sin(ϕ′)S1 + cos(ϕ′)S3. (D.17)

An equivalent calculation yields the local spin-operator in the ˆ̂x′ direction:

S′
x = S · [− sin(ϕ′)ŷ + cos(ϕ′)x̂] = cos(ϕ′)S1 − sin(ϕ′)S3 (D.18)
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E Evaluation of the exponential operator

We write A = M−1
0 (M1(φ,ϕ

′) − E). Instead of attacking the problem directly and Taylor
expanding the exponential operator to a desired order, we turn to the much more numerically
robust procedure of matrix diagonalization. From Linear Algebra it is given that when A is
diagonalizable, the operator can be written A = UDU−1, where D is a diagonal matrix with
the eigenvalues of A λj written in the diagonal and U is the matrix with the j’th column
consisting of the normalized eigenvector corresponding to the j’th eigenvalue of A. Applying
the definition of the exponential operator,

eA =

∞∑

n=0

1

n!
An, (E.1)

to A′ = iy′A = iy′UDU−1 = UD′U−1, with D′ = iy′D, we find

eiy
′A =

∞∑

n=0

1

n!

(
UD′U−1

)n
=

∞∑

n=0

1

n!
UD′nU−1, (E.2)

where in the the last step we have used that

(
UD′U−1

)n
=
(
UD′U−1

)n−2 (
UD′U−1UD′U−1

)
= . . . = UD′nU−1, (E.3)

because U−1U = 1. Since U and U−1 are represented by finite-dimensional (8 × 8) matrices
the operators are linear and bounded; hence they are continuous. This allows us to write

eUD′ U−1
=

∞∑

n=0

1

n!
UD′ nU−1

= lim
N→∞

N∑

n=0

1

n!
UD′ n U−1

= lim
N→∞

[

U

(
N∑

n=0

1

n!
D′ n

)

U−1

]

= U lim
N→∞

(
N∑

n=0

1

n!
D′ n

)

U−1

= U

( ∞∑

n=0

1

n!
D′ n

)

U−1

= U eD
′
U−1. (E.4)

Calculation of the exponential operator applied to D′ yields,

eD
′
=

∞∑

n=0

1

n!







iy′λ1 0 · · ·
0

. . .
...

... · · · iy′λ8







n

= lim
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n=0







1
n!(iy

′λ1)
n 0 · · ·
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n!(iy
′λ8)

n
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1
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1
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Taking the limit in the sum for N → ∞ we get

eD
′
=







∑∞
n=0

1
n!(iy

′λ1)
n 0 · · ·

0
. . . 0

... · · · ∑∞
n=0

1
n!(iy

′λ8)
n







=







eiy
′λ1 0 · · ·
0

. . .
...

... · · · eiy
′λ8







= D. (E.5)
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F Walkthrough of the simulation routine

The program for determining the transmission and reflection of the bent tube is separated
into three main parts:

1. Generation of the dispersion relation.

2. Define given Fermi energy and search for κy′ , reduce dimensions if necessary

3. Integration though the bent tube followed by collection of the transmission and reflec-
tion.

The dispersion relation is found by sweeping the desired span of κy′ and calculating the
eight eigenvalues (and eigenfunctions) of the Hamiltonian to that specific κy′ . Whenever the
conformation of the end of the tube differs from that of the beginning, the eigenfunctions and
the eigenvalues also need to be found here.

The Fermi energy is then set to a given value, and a reverse search in the dispersion
relation is initiated by finding the minimum energy difference between the four conduction
band and the given fermi energy. This is done for both positive and negative κy′s through the
build-in MATLAB command [C,I]:min(abs(E-E(i)), which returns the energetic difference
C and the corresponding eigenfunction of band i with right and left going waves a and b
respectively9. Since the min command was found to be accurate to within ≈ 10−9 eV, we set
a threshold of 10−7 eV, in the sense that if i is greater than this value, the µij is filled with
zeros. This is implemented in the script in the following way (for µa).

for j=1:1:4;

if abs(E(i)-E)>1.0*10^(-7);

mu_a(:,j)=0;

else

’’fill with eignvectors’’

end

end

If the configuration is different at the end of the tube, an analogous search is done here.
Otherwise we set µa = µc.

The eigenfunction matrix is then reduced if necessary. This is done by controlling if an
entire column is filled with zeros, meaning that the channel is closed. The procedure for the
reduction is done via the following for-loop

del=any(mu_a,1); % Check if all entries in column is zero

m=0; % Reset counter

for i=1:1:4; % Run loop through the 4 eigenstates

m=m+1; % Add to counter

if del(i)==0; % Enter loop for del if entry is zero

mu_a(:,m)=[]; % Delete the correct entries

m=m-1; % Move back one column

else

9When studying the dispersion relation for realistic parameters, the gradient was always positive (negative)
for κy > 0(< 0), such that we always associate waves traveling to the right (left) with κy > 0(< 0).
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mu_a(:,m)=mu_a(:,m); % Do nothing

end

end

When the correct eigenfunctions are found, we integrate through the tube. This is done
as described above by for each step finding the UDU−1 for the matrix A which changes as
a function of the tube angle with respect to the global coordinates. The angle dependence is
determined by parameterizing the curve, such that we always take the same step dy′ in the
translational direction, while varying the angle ϕ′ accordingly. Following the full integration
the scattering matrix is calculated in the following way by the Moore-Penrose inversions
routine

S=([mu_c -M*mu_b]’*[mu_c -M*mu_b])^(-1)*[mu_c -M*mu_b]’*M*mu_a

The transmission and reflection coefficients are gathered. The energy is then raised and the
energy search and wavefunction integration is repeated.
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G Results
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Figure G.1: Transmission (conductance) as a function of energy for a straight tube of length 500 nm.
The graphs correspond to different alignments of a 2T magnetic field, i.e. ϕ = 0, ϕ = 30o, ϕ = 60o

and ϕ = 90o for (a)-(d), respectively. (e) shows the transmission (conductance) with the magnetic
field switched off. The transmission and reflection are in arbitrary units, conductance is in units of
the conductance quantum, e2/h. Blue: Transmission (conductance); Green: Reflection; Red: Total.
In (c)-(b) the blue line merge, because the reflection is negligible. See text for detailed discussion.
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Figure G.2: Transmission (conductance) and reflection as a function of energy. The graphs corre-
spond to different hill-like tube bendings of 0 nm, 20 nm, 40 nm and 100 nm, (a)-(d), for a metallic
zig-zag tube (µ = 0, θ = 0) with a radius of 2 nm in a magnetic field of 9 T aligned perpendicular
to the straight tube. See Figure H.1 for details. (e) and (f): Simulations for a tube constructed
from connecting two 100 nm bending hill-like tubes through a straight segment of 50 and 100 nm,
respectively. The transmission and reflection are in arbitrary units, while conductance is displayed in
units of the conductance quantum, e2/h. Blue: Transmission (conductance); Green: Reflection; Red:
Total. See text for detailed discussion.
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Figure G.3: Transmission (conductance) and reflection as a function of energy. The graphs corre-
spond to different harmonically shaped tube bendings of 0 nm, 20 nm, 46 nm and 100 nm for (a)-(d)
for a metallic zig-zag tube (µ = 0, θ = 0) with a radius of 2 nm in a magnetic field of 9 T aligned per-
pendicular to the straight tube. (e) and (f): same as (d) but with a magnetic field of B=0 and B=5T,
respectively. The transmission and reflection are in arbitrary units, while conductance is displayed in
units of the conductance quantum, e2/h. Blue: Transmission (conductance); Green: Reflection; Red:
Total. See text for detailed discussion. In Figure H.2 the bending and angular dependece is illustrated.
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Figure G.4: Transmission (conductance) and reflection as a function of energy. The ω configuration
corresponds to two harmonically shaped tubes with bending of 100 nm (Figure H.2 purple curves)
placed in tandem. The graphs show simulation for a magnetic field of 5,7 and 9 T aligned perpendic-
ular to the tube for (a), (b) and (c), respectively. The transmission and reflection are in arbitrary
units, while conductance is displayed in units of the conductance quantum, e2/h. Blue: Transmission
(conductance); Green: Reflection; Red: Total. See text for detailed discussion.
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H Tube geometries
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Figure H.1: Relevant geometries for the hill-like tubes. (a) Tube bending as a function of the length
in the (global) ŷ-direction. The tubes, listed from top to bottom corresponds to the configurations
used in simulations (b)-(d) in Figure G.2. (b) The angle between the starting part of tube and the
locally straight tube. Graphs of the same color in (a) and (b) correspond to the same tube.
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Figure H.2: Relevant geometries for harmonically shaped tubes. (a) The tube bending as a function
of the length in the (global) ŷ-direction. The tubes, listed from top to bottom corresponds to the
configurations used in simulations (b)-(d) in Figure G.3. (b) The angle between the starting part of
tube and the locally straight tube. Graphs of the same color in (a) and (b) correspond to the same
tube.
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I Potential barriers of bent tubes
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Figure I.1: Bottom of the four conduction bands of a metallic zig-zag tube (µ = 0, θ = 0) of radius
2 nm as a function of the location along the tube. (a), (c) and (e) correspond to the tube geometries
depicted in Figure H.2 (a), listed from top to bottom. (b), (d) and (f) correspond to the tube
geometries depicted in Figure H.1 (a), again listed from top to bottom. The size of the potential
bumbs are closely related to the geometry of the tube, which is expressed through a varied bend angle.
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