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Abstract

In this thesis we explore key concepts in the field of condensed matter physics and translate
these into visualisations using the computer programming language Python. Concepts explored
include the geometry of crystal structures, families of lattice planes, neutron scattering and the
band structure of two dimensional materials. Four distinct programs are written to visualize each
of these concepts, and they are bundled into one open-source software package available at https:

//github.com/NikolaiNielsen/Bachelor, along with documentation on its use.
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1 Introduction

The goal of this thesis is to investigate phenomena arising from the discrete translational symmetry
of crystals and visualize these with interactive programs, such as to increase the ease of learning
for students new to the field. In the first section we will focus on providing some shared background
knowledge on the phenomena. The following three sections will then provide a look into the phenomena
we will visualise.

In section 3 we will focus on the geometry of crystal systems: lattices, unit cells and the basis. In
section 4 we look at the reciprocal lattice, how this relates to the direct lattice of the previous section,
along with scattering. Lastly in section 5 we discuss the band structure of two dimensional materials
and the Fermi surface.

For the background knowledge we look at the nearly free electron model in one dimension, along
with Bloch’s theorem. The nearly free electron model illustrates some key concepts which will be
useful later on, like reciprocal lattice vectors and how the dispersion relation change with the potential
strength, while Bloch’s theorem provide us with the knowledge of why band structures and scattering
phenomena work the way they do.

First though, a note on the tools used to visualise these concepts.

1.1 General implementation

All of the programs in this project will be implemented in the open source programming language
Python, using the standard library, along with the NumPy and Matplotlib packages. Numpy adds the
necessary tools for handling arrays and linear algebra operations, whilst Matplotlib is used for plotting
the results.

One thing to note is that doing numerical calculations will lead to some numerical error. As such
testing for numerical equality will often time yield the ”wrong” result. Because of this, we employ the
isclose function provided by NumPy, which takes 4 arguments: a, b, atol and rtol. a and b are
the numerical values to be tested for equality, atol is the absolute tolerance and rtol is the relative
tolerance. The function then tests if |a−b| ≤ (atol+rtol · |b|), with default values for atol and rtol

being 1 · 10−8 and 1 · 10−5 respectively.

2 Background

2.1 Nearly Free Electron model in One Dimension

The nearly free electron model is, as the name suggests, a model in which electrons are moving in a
medium with a small perturbing potential, such that they are nearly free. As such we assume that
electrons are essentially free, but experience some small periodic potential which we shall treat as a
perturbation to the free particle Hamiltonian. The following discussion will largely follow that of [1].

In general, the Hamiltonian is

H = H0 +H ′, H0 =
p2

2m
, H ′ = V (x) = V (x+ na), n ∈ Z, (2.1)

where a is the spacing between atoms and m is the mass of the electrons. In zeroth order perturbation

theory the electrons are free, and as such described as plane waves: |k〉 =
√
L
−1
eikx, where L is the

length of the material and
√
L
−1

is the normalization factor. These states have zeroth order energies
E0(k) = ~2k2/2m. Now, to calculate anything in perturbation theory, we need the matrix elements of
the potential 〈k′|V |k〉. These are

〈k′|V |k〉 =

∫ +∞

−∞
e−i(k

′−k)xV (x) dx ≡ Vk′−k. (2.2)

Due to the periodicity of the potential we can write this integral as a sum of integrals by setting
x = x′ + na

〈k′|V |k〉 =

∞∑
n=−∞

e−i(k
′−k)na

∫ a

0
e−i(k

′−k)x′V (x′) dx′. (2.3)
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This sum is infinite for a discrete set of values k′ − k, namely

k′ − k =
2πj

a
≡ Gj , j ∈ Z, (2.4)

where Gj is called a reciprocal lattice vector (with xn = na being a direct lattice vector). If k′ − k is
not a reciprocal lattice vector, then this sum is just 0, akin to how roots of unity sum to 0.

Because the matrix element is nonzero only for a discrete set of values of k′ − k, only these will
contribute to the energy (and wave function) of |k〉, meaning that |k〉 can only scatter into another
state if it is separated by a reciprocal lattice vector. Further interesting things happen if the energies of
these plane waves separated by reciprocal lattice vectors are equal to that of |k〉. Due to the parabolic
dispersion of the plane waves, the first case where these conditions apply is for k around π/a and
k′ = −k. Here E0(k) = E0(k

′), and the wave vectors are separated by a reciprocal lattice vector (the
smallest non-trivial one, in fact, G−1 = −2π/a). Due to this we need to treat the problem in degenerate
perturbation theory.

For this case, there are 4 relevant matrix elements:

〈k|H|k〉 = E0(k) + V0, 〈k′|H|k′〉 = E0(k +G−1) + V0, 〈k′|H|k〉 = 〈k|H|k′〉∗ = VG. (2.5)

For simplicity we assume V0 = 0, as it is just a constant. Around these values of k and k′ we take the
wave function as |ψ〉 = α |k〉+β |k +G−1〉, which means that the energy can be found as the eigenvalue
of the Hamiltonian in this two-dimensional subspace of these two plane waves:(

E0(k) V ∗G
VG E0(k +G−1)

)(
α
β

)
= E

(
α
β

)
, ⇒ (E0(k)− E)(E0(k +G−1)− E)− |VG|2 = 0. (2.6)

In the simple case of k being exactly π/a, the energy is just E± = E0(k)± |VG|, which means there is a
band gap of 2|VG| at ±π/a. In the not-so-simple case of k = π/a− δ, where δ is some small (positive)
number, we get

E0(k) =
~2

2m

[(π
a

)2
+ δ2 − 2π

a

]
, (2.7)

E0(k +G−1) =
~2

2m

[(π
a

)2
+ δ2 +

2π

a

]
, (2.8)

with an eigenenergy of [1]

E± =
~2

2m

[(π
a

)2
+ δ2

]
± |VG|

√
1 +

(
2π~2δ

2ma|VG|

)2

. (2.9)

As we are dealing with δ ≈ 0, we expand the square root to second order and get

E± =
~2π2

2ma2
± |VG|+

~2δ2

2m

[
1± ~2π2

ma2|VG|

]
, (2.10)

where the second term in brackets is larger than unity (for small perturbations) [1], such that the
dispersion is a negative parabola in δ, for E−. This all means that for k = π/a (or equivalently −π/a),
a gap appears in the dispersion relation, and the energy in the lower branch is lowered, such that
∂E/∂k = 0 (see figure 1). As it turns out this is happens for any half reciprocal lattice vector, as then
k = jπ/a and k′ = −jπ/a = k +G−j is separated by a reciprocal lattice vector. These characteristics
(scattering only being allowed for states separated by reciprocal lattice vectors, and bands of energy
appearing at regular intervals) also appear in systems of higher dimensions, as we will see in sections
4 and 5.
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2.2 Bloch’s Theorem

/a 0 /a
k

E

Figure 1: Dispersion relation
of electrons in the (nearly) free
electron model, for −π/a ≤
k ≤ π/a. The solid orange line
is for a nearly free electron,
whilst the dashed blue line is
for a free electron.

In the previous section we considered the case of an electron in a weak
periodic potential, where the wave function is essentially a plane wave.
But is this always the for real materials? Can we really be sure that
we can treat the wave function as plane waves even when the potential
strength is cranked up? It turns out we can, and the proof of that lies
with Bloch’s theorem.

The assumption here is that we are working with a periodic poten-
tial, such that V (r + R) = V (r) for all lattice points. As such the full
Hamiltonian has a discrete translational symmetry, which means that
all translation operators T̂R (that translate by any lattice vector R)
commute with the Hamiltonian: [Ĥ, T̂R] = 0. This further means that
we can simultaneously diagonalize these operators and find a shared
basis of eigenstates.

The eigenvalue of the translation operator must have a magnitude
of unity, as it otherwise would break the translation symmetry inherent
to the system. So the only possible eigenvalue is a phase shift. Further
we need all translation operators to commute with each other, and
T̂R1 T̂R2 = T̂R1+R2 . With these restrictions the only possible eigenvalue
is

T̂Rψ(r) = eik·Rψ(r) = ψ(r + R), (2.11)

where the last equality is just the definition of the translation operator.
This means we can write the wave function as a plane wave times some function that has the same
periodicity as the crystal:

ψ(r) = eik·ru(r), (2.12)

where u(r) carries this periodicity of the crystal. As we shall see in section 5, we can write a periodic
function as a sum of plane waves over reciprocal lattice vectors. This then also applies to u, as it is
periodic in the unit cell. Due to this, we can write the wave function as

ψ(r) =
∑
G

uG,ke
i(G+k)·r, (2.13)

where uG,k is some number. This will be important in the context of scattering and band structure as
we will see in sections 4 and 5.

Further this form motivates the definition of crystal momentum. Say we work in one dimension.
Here we see that changing k → k + 2π/a yields the same wave function and the states are therefore
physically equivalent. This means that the wave vector is only defined up to a integer multiples of
2π/a, and can be chosen in the interval −π/a ≤ k ≤ π/a. We call momentum for wave vectors in this
range crystal momentum. This range is also called the first Brillouin zone, where the n’th Brillouin
zone is defined as the set of points k, for which 0 is the n’th nearest point on the reciprocal lattice.
This also generalises to higher dimensions where we just deal with vectors in stead of numbers. So the
first Brillouin zone is the set of points k for which 0 is the nearest lattice point in reciprocal space, for
example.

For the above reason, the wave vector k in Bloch’s theorem must be crystal momentum.

3 Lattices and crystal structure

3.1 Theory

There are three parts to the description of a crystal structure. First is the lattice. This is the mathe-
matical “framework” upon which the physical part of the crystal lies. It can be defined in a number of
ways, however the one we will use here is standard and can be found in for example [1] or [2].

A lattice is defined as the infinite set of points produced by a linear combination of
independent primitive lattice vectors, with integer coefficients.
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Throughout this thesis, the primitive lattice vectors are labelled ai, and the coefficients ni, so for a
d-dimensional lattice, the lattice points R are given by

R =

d∑
i=1

niai. (3.1)

For this thesis we will mainly focus on the cases of d = 3 (visualization of lattices, families of lattice
planes and scattering) and d = 2 (visualization of the band structure).

A thing to note is that the choice of primitive lattice vectors is not unique. A new set of primitive
lattice vectors can be created by taking a linear combination of the original primitive lattice vectors,
with integer coefficients. If the original set is ordered in a matrix A =

(
a1 a2 · · · an

)
, and the

new set in a matrix B =
(
b1 b2 · · · bn

)
, then B = MA, where M is the matrix containing the

coefficients. This matrix must have integer entries, and its inverse likewise. The integer entries of the
direct coefficient matrix M makes sure that any lattice point generated with the new set of primitive
lattice vectors will also have integer coefficients when expressed in the old set of primitive lattice vectors.
The integer entries of the inverse matrix M−1 then makes sure that this process will also happen in
reverse.

The second part is the unit cell. This is the building block of the lattice. It is a region of space
which, when stacked will completely tile the space. Like with the choice of primitive lattice vectors,
the choice of unit cell is not unique. In particular we distinguish between two type of unit cells: the
smallest possible unit cell and everything else. The smallest possible unit cell is called a primitive unit
cell, and must contain only one lattice point (it cannot contain zero lattice points, as then it would
not recreate the lattice when tiled). Any unit cell containing more than one lattice point is called a
conventional unit cell. Usually a conventional unit cell is chosen for ease of calculation (as we will see
in the scattering simulation), where the primitive lattice vectors constitute an orthogonal set.

The third part of the crystal structure is the basis. This is a description of the physical objects
that make up the structure, and their positions in relation to the lattice. In our case the objects are
atoms. The basis is specified as a list of vectors that are to be added to the lattice points, specifying
the position of the atoms in the crystal.

The user can create any type of crystal they want by specifying any set of primitive lattice vector
and supplying any desired basis. However a small selection of crystals will be available as presets.
These include the 14 Bravais lattices with a 1 atom basis [at (0, 0, 0)], named in table 1. Each of these
will specify the primitive lattice vectors for a corresponding primitive unit cell. Furthermore five other
crystal presets will be available, named in table 2. Specifications of all of these presets are available in
the appendix A.

Simple cubic base centred cubic (bcc)

face centred cubic (fcc) tetragonal

body centred tetragonal orthorhombic

body centred orthorhombic face centred orthorhombic

base centred orthorhombic simple monoclinic

base centred monoclinic hexaonal

triclinic rhombohedral

Table 1: The 14 Bravais lattices

fcc, conventional bcc, conventional

zincblende wurtzite

diamond (zincblende with 1 atom)

Table 2: Other available crystal presets
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3.2 Implementation

Mathematically speaking, a lattice is infinite. A physical crystal, of course, is not. However, even
though a real crystal is finite, plotting all of the atoms would be infeasible, both due to the number
of atoms, and the fact that each atom would be way too small. So for the purposes of this program,
only a couple of unit cells will be plotted. A good amount seems to be 8 unit cells: 2 in each of the
directions specified by the primitive lattice vectors. This keeps the size of the plot relatively small,
whilst still showing the important parts of the crystal structure. As such, in the following we assume
that ni ∈ {0, 1, 2} for all ni.

In creating a program that plots these structures, the thought should always be on how the end
product looks. Mainly we want the plot to be as clear and instructive as possible. This constitutes
plotting only full unit cells: no unit cell can have missing atoms. There is a caveat to this however.
Say we define the unit cell to have atoms on the boundary, then these atoms will be in multiple unit
cells. One could say no matter how many unit cells we plot, we would always get some amount of
unfinished unit cells. As such we will plot the 8 unit cells along with any atoms on the border of these.

Figure 2: One conventional
unit cell for a bcc lattice. If
we naively plot all atoms asso-
ciated with a lattice point, we
will end up with atoms outside
the unit cells we want to plot.

Even with the above considerations we need to remember that the
screen is still just a two dimensional projection of the actual three
dimensional phenomena. As such without some form of depth percep-
tion, the crystal will just look like a weird two dimensional pattern.
This is fixed by including grid lines. They, along with the ability to
interactively rotate the crystal, give the required depth perception to
allow the user to comprehend the crystal as a three dimensional struc-
ture, and not as a two dimensional sheet of dots.

For the crystals that can be expressed as a lattice with orthogonal
primitive lattice vectors and a basis (cubic, tetragonal and orthorhom-
bic), we usually want to plot orthogonal grid lines, whilst for other
crystals plotting grid lines along the lattice vectors will be more use-
ful.

In the case of plotting primitive unit cells, the ones furthest away
from the origin (say with n1 = n2 = n3 = 2) may not be filled. Say the
basis consists of only one atom. Then this atom will just be placed on
the lattice points, and there is no problem, as this is the edge of the
unit cell. However, if the basis consists of two atoms (or more), where
one is placed at (0, 0, 0) and the other has some positive coordinates,
then this second atom will be in a unit cell which is not supposed to be
plotted (it would necessitate plotting the lattice points corresponding
to ni = 3). An example of this is figure 2, which shows one unit cell of a simple cubic lattice, with a
two atom basis (corresponding to a conventional bcc unit cell). A way to correct for this is to write
each plotted atoms position as a linear combination of the primitive lattice vectors with coefficients n′i
(where the coefficients here are real numbers, as they do not necessarily align with the lattice points).
If the coefficients are 0 ≤ n′i ≤ 2 for all n′i, then we plot the point.

For plotting conventional unit cells when the user inputs primitive lattice vectors (for cubic, tetrag-
onal and orthorhombic lattices), we need something similar, otherwise a situation like in figure 3 may
occur. To fix this we calculate the side lengths of the cuboid plot box that just contains the paral-
lelepiped arising from plotting the lattice points with the specified coefficients (ni ∈ {0, 1, 2}), and fill
this plot box completely with atoms.

To calculate this, the program creates the 8 possible vectors arising from linear combinations of
the primitive lattice vectors, with coefficients from the minimum and maximum coefficients and taking
the limits of the plot box as the minimum and maximum values for these 8 vectors. For the specified
lattice points, these 8 vectors are:

v1 = 0, v2 = 2a1, v3 = 2a2, v4 = 2a3,
v5 = 2(a1 + a2), v6 = 2(a1 + a3), v7 = 2(a2 + a3), v8 = 2(a1 + a2 + a3).

(3.2)

These are the vertices of the aforementioned parallelepiped. The side lengths of the plot box are then
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taken as the maximum coordinates for these vectors, minus the minimum values (the side length in x
might be v8,x − v0,x for example). Then we plot atoms for a larger range of coefficients to completely
fill out this plot box. If some atoms fall outside of the box we hide them.

3.3 Step-by-step

Figure 3: An attempt to plot
eight conventional unit cells
for an FCC lattice, by us-
ing primitive lattice vectors
with coefficients in the set
{0, 1, 2}. This does not fill
out all eight unit cells, so
we need to plot more lattice
points than this. In practise
we need {−2,−1, 0, 1, 2, 3, 4}

When the program is run it will either load the chosen crystal preset
or plot the user’s manually input crystal. If a crystal preset is chosen,
the program loads it in such a way as to make the resulting plot as
informative as possible (eg. place lattice vectors along cardinal axes
for an orthogonal lattice, to make plotting grid lines easier). If the
user manually specifies the lattice and basis, the program attempts
to classify the lattice according to the specifications in the appendix
A (except for zincblende, diamond and wurtzite). Next the program
checks whether or not the crystal should be rotated to make plotting
prettier.

In general the rotation algorithm tries to align one lattice vector
with the x-axis. a1 is preferred, but is only chosen to lie along the
x-axis if it forms an orthogonal pair with at least one other primitive
lattice vector. The second primitive lattice vector of the pair (a2 being
preferred) is then aligned along the y-axis. If the three primitive lattice
vectors form an orthogonal set, then the last vector of the set will now
be aligned along the z-axis.

The actual rotation is done by rotating the whole crystal (each
primitive lattice vector and all vectors in the basis) around the cross
product between the initial vector and the destination vector. Rotating
the crystal such that a1 lies along the x-axis is done by rotating along
a1×x̂, with an angle of sin θ = |a1×x̂|/|a1|. However, this might rotate
the crystal the wrong way, depending on the orientation between the
two vectors. Because of this the program checks whether or not the
rotated initial vector and the destination vector are parallel (that is, if
the rotated a1 is parallel to x̂). If this is not the case, the whole crystal
is rotated about the same vector, with an angle −2θ.

Five of the Bravais lattices have specialised rotation functions: hexagonal, base centred monoclinic
and the three face centred lattices.

For the hexagonal lattice, the program detects which primitive lattice vectors constitute the trian-
gular lattice and orients them such that one is along the x-axis and the other is in the xy-plane (easily
done by rotating the third primitive lattice vector such that it is parallel with the z-axis). The same
approach is used for the base centred monoclinic, but here the program always aligns a1 along the
x-axis, and a2 in the xy-plane. Here however, the easy option of rotating a3 is not available. Instead
the program uses the fact that the vector rejection of a2 with a1 is orthogonal to a1 (the vector rejection
of a2 with a1 being a2 minus the projection of a2 along a1):

a2,rej = a2 − a2,proj = a2 −
a2 · a1

|a1|
a1. (3.3)

This vector rejection is then in the yz-plane, and the crystal can be rotated around a1 with the angle
the rejection makes with ŷ: cos θ = a2,rej · ŷ/|a2,rej |.

For the face centred lattices, the ideal, rotated lattice is created from the magnitudes of the primitive
lattice vectors: if |a1| = a, |a2| = b, |a3| = c, then a′1 = (a/2, b/2, 0),a′2 = (a/2, 0, c/2),a′3 = (0, b/2, c/2).
First the crystal is rotated such that a1 aligns with a′1, by using their cross product. Then the crystal
is rotated such that the now rotated a2 aligns with a′2, via the vector rejection of a2 with a′2. A thing
to note is that these 5 rotation functions necessitates primitive lattice vectors of the form specified in
the appendix. If the user specifies a lattice unlike those in the appendix, the program will not be able
to identify it, and as such may rotate it “incorrectly”. This could lead to the program not being able
to impose grid lines along the cardinal axes for an fcc lattice, for example.

6



With the lattice and basis rotated, the program finds the limits of the plot box as written above,
after which the crystal is generated. This is done by looping over the three ranges specified by the
minimum and maximum coefficients, creating each lattice point R by Eq. (3.1). For each lattice point
the program calculates the positions of the n atoms in the basis, by adding one of the n vectors in the
basis to the lattice point, i.e. ratom,i = R + rbasis,i. Lists of the colours and sizes associated with each
atom are also created at this point. After creating all the atoms, the program deletes any that may lie
outside the limits of the plot box.

The only thing missing now is to create the grid lines and plot everything. The program has two
ways of creating grid lines: along the primitive lattice vectors and along the cardinal axes.

Creating grid lines along the primitive lattice vectors works by taking each lattice point Rn, and
finding the lattice point Rm the furthest away from it, in the (positive) direction of these lattice vectors,
such that Rm = Rn + αai, where α > 0, for all i ∈ {1, 2, 3}, and creating lines between Rn and Rm.
This does create duplicate grid lines, but these do not show on the final plot, since they are all plotted
with the same width and colour.

Creating grid lines along the cardinal axes works by finding the minimum spacing between lattice
points on these axes (called ax, ay and az), and using these as the spacing between grid lines. The
program then finds the maximum and minimum coordinates of lattice points along the cardinal axes
(called xmin, xmax, etc.). This is used to create ranges corresponding to each lattice points on the
cardinal axes: The range for the x-axis starting at xmin and ending at xmax with steps of ax.

These ranges then specify a grid of lattice points on the xy, xz and yz-planes. The program then
creates lines orthogonal to these planes, stretching from zmin to zmax for the points in the xy-plane,
and similarly for the other two planes.

With everything calculated a blank figure is created with limits as calculated above. The atoms are
plotted with colours and sizes specified by the user. The grid lines are plotted with a uniform size and
colour and lastly the primitive lattice vectors are plotted with corresponding labels.

3.4 Examples

As an example, we plot a simple cubic lattice with a two atom basis (corresponding to the basis of a
bcc lattice with conventional unit cells), where the atoms on the lattice points are grey and the body
centred atoms are blue (figure 4), we write the following:

1 Lattice(lattice_name="conventional bcc",

2 colors =["xkcd:cement", "b"])

Or we could plot a hexagonal lattice with a one atom basis (figure 5):

1 Lattice(lattice_name="hexagonal")

When plotted using the program, these plots are interactive and can be rotated.

a1
a2

a3

Figure 4: A simple cubic lattice with a
two atom basis: One atom on the lattice
points and another in the middle of each
unit cell.

a1
a2

a3

Figure 5: A hexagonal lattice with a one
atom basis. The lattice consists of a se-
ries of triangular lattices stacked on top
of each other.
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4 Reciprocal lattice and scattering

4.1 Theory

The reciprocal lattice is an incredibly useful construct, as it allows for an easy description of wave
phenomena, where the main variable is the wave vector k. The reciprocal lattice is a lattice (as defined
in the previous section), but in reciprocal space. This again means that the free variable is not position,
but the wave vector.

The definition of a reciprocal lattice is all of the points G, that satisfy

eiG·R = 1, (4.1)

for any lattice point in real space R. Further, the primitive lattice vectors of the reciprocal lattice all
satisfy the property [2]

ai · bj = 2πδij , (4.2)

where δij is the familiar Kronecker delta. This property of the reciprocal lattice vectors is what makes G
a lattice in reciprocal space. The real space lattice points have the coordinates R = n1a1+n2a2+n3a3,
and say an arbitrary point in the reciprocal space is constructed as

G = m1b1 +m2b2 +m3b3, (4.3)

then plugging these into Eq. (4.1) we get

ei(n1a1+n2a2+n3a3)·(m1b1+m2b2+m3b3) = e2πi(n1m1+n2m2+n3m3), (4.4)

where the second equality follows from the defining property of the primitive lattice vectors in reciprocal
space. For G to be part of the reciprocal lattice, for any choice of integer ni, then mi need also be
integers. As such the reciprocal lattice really is a lattice, as defined in section 3.1, but in the reciprocal
space. Usually (in the case of lattice planes and scattering) we express the 3 coefficients for the reciprocal
lattice vectors using Miller indices (hkl), where h = m1, k = m2, l = m3.

Now, to actually construct the reciprocal primitive lattice vectors, the following formulas are used:

b1 =
2π a2 × a3

a1 · (a2 × a3)
, b2 =

2π a3 × a1

a2 · (a3 × a1)
, b3 =

2π a1 × a2

a3 · (a1 × a2)
, (4.5)

where the cross product in the numerator ensures that ai and bj are orthogonal to each other for i 6= j,
and the denominator serves as a sort of normalization, such that the dot product equals 2π. Further,
by dimensional analysis, bi has dimensions m−1, as expected for wave vectors.

The reciprocal lattice can also be understood in terms of families of lattice planes. First, a lattice
plane is defined as any plane that contains at least 3 lattice points (this also guarantees that an infinite
set of lattice points is contained by the plane, by virtue of the non-uniqueness of the primitive lattice
vectors). A family of lattice planes is an infinite series of parallel planes, equally spaced, such that all
points of the lattice is contained in the planes, and that all planes contain lattice points.

First consider the series of planes containing the points rm, defined by

G · rm = 2πm, (4.6)

for some integer m. This form ensures that all lattice points are contained in the planes. The minimum
distance between planes can then be calculated from

G · (r2 − r1) = 2π, (4.7)

as the minimum distance will be when (r2 − r1) and G are parallel, yielding

d =
2π

|G|
. (4.8)

Now any reciprocal lattice vector will give yield a set of equidistant, parallel planes, but not all of these
sets will be families of lattice planes. The family of lattice planes in the direction Ĝ will have have some
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distance d = 2π/|G|, where G is a reciprocal lattice vector. An infinite set of reciprocal lattice vectors
share this direction, but increasing the magnitude of the reciprocal lattice vector G will decrease the
distance between the set of planes, and at some point there will be planes that do not contain any
lattice points.

As such, there is some minimum magnitude of the reciprocal lattice vector that defines a given
family of lattice planes. This means that for a family of lattice planes, the distance is d = 2π/|Gmin|.

4.1.1 Scattering

In a scattering experiment, an incoming collection of waves (be it electrons, neutrons, x-ray photons or
something completely different) with wave vector k is incident upon a crystal. Some of these will be
scattered into states with wave vector k′ whilst others will pass on through.

The following derivation of the scattering criteria and intensities follow that of [1].
To find the general conditions for scattering, we start with Fermi’s Golden Rule, which is a measure

of the transition rate between states. It is given as

Γ(k′,k) =
2π

~
| 〈k′|V |k〉 |2δ(Ek′ − Ek), (4.9)

where the matrix element is

〈k′|V |k〉 =

∫ +∞

−∞

e−ik
′·r

√
L3

V (r)
eik·r√
L3

dr =
1

L3

∫ +∞

−∞
e−i(k

′−k)·r V (r) dr, (4.10)

which is just the Fourier transform of the potential! Further, we assume the potential is periodic
in the unit cell, allowing us to use the same trick as with the Nearly Free Electron Model: Since
V (r + R) = V (r) for any lattice point R, we can define r = R + x where x is a position within the
unit cell, and then split up the integral into an infinite sum over lattice points:

〈k′|V |k〉 =
1

L3

∫ +∞

−∞
e−i(k

′−k)·(R+x)V (R+x) dx =
1

L3

∑
R

e−i(k
′−k)·R

∫
unit-
cell

e−i(k
′−k)·xV (x) dx. (4.11)

Now, as in the one dimensional case, this sum of complex exponentials has two possible outcomes. If
k′ − k is a reciprocal lattice vector, all the terms are unity and the sum adds up to the total number
of unit cells in the crystal. If k′ − k is not a reciprocal lattice vector, then the terms will just oscillate,
like roots of unity, summing to 0. This condition is called the Laue condition:

k′ − k = G. (4.12)

Furthermore, when the scattered wave leaves the crystal, it has to have the same magnitude of the
wave vector as the incoming wave, as required from the delta function in Fermi’s Golden Rule:

|k′| = |k|. (4.13)

Together these conditions are statements of conservation of crystal momentum and energy respectively.
With the conditions met we still need to find the actual scattering amplitudes. This is where the integral
in Eq. (4.11) comes in. It turns out that the intensity of the scattered wave vector is proportional to
the absolute square of this integral, called the structure factor [1]:

I ∝ |S(G)|2, S(G) =

∫
unit-
cell

e−iG·xV (x) dx. (4.14)

This is as far as is workable without specifying the form of the potential. For now we will assume we
are working with neutron scattering. Since neutrons are not charged, they only scatter from the atomic
cores by nuclear forces, and not from electrons. For this reason we model the potential of each atom
in the unit cell as a delta function with some appropriate potential strength associated:

V (x)
∑

atoms j

fjδ(x− xj), (4.15)
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where the potential strength is called the form factor. With this potential, the structure factor becomes

S(G) =
∑

atoms j

fje
iG·xj . (4.16)

For the purposes of the program, we will further restrict the available lattice to a simple cubic with
a basis. This will allow us to illustrate the core ideas of scattering whilst keeping any clutter to a
minimum.

Another thing this allows us to show is systemic absences. For a cubic lattice with a basis, the
structure factor becomes

S(G) = Shkl =
∑

atoms j

fje
i(hb1+kb2+lb3)·xj =

∑
atoms j

fje
2πi(hxj+kyj+lzj), (4.17)

where the coordinates of xj are in units of the lattice constant a. For a bcc lattice, which corresponds
to a simple cubic lattice, with two identical atoms at (0, 0, 0) and (1/2, 1/2, 1/2) (again in units of the
lattice constant), the structure factor becomes

Shkl = f (1 + e2πi(h/2+k/2+l/2)) = f (1 + eπi(h+k+l)) = f (1 + (−1)h+k+l), (4.18)

meaning that for there to be any scattering for a bcc lattice, h + k + l must be even. This is what is
known as a systemic absence. There is also a systemic absence for fcc lattices, which can be thought
of as a simple cubic lattice, with identical atoms at (0, 0, 0), (1/2, 1/2, 0), (1/2, 0, 1/2) and (0, 1/2, 1/2):

Shkl = f (1 + eπi(h+k) + eπi(k+l) + eπi(h+l)). (4.19)

Here all of h+ k, k+ l and h+ l must be even, corresponding to h, k, l all being either even or odd. As
such there are systemic absences in both bcc and fcc lattices, but not simple cubic lattices, where all
combinations of h, k and l can lead to scattering.

4.2 Implementation

The scattering program creates one figure with two sets of axes. One interactive set with the physical
setup, including the desired crystal structure, incoming probe beam, detector screen and detected
scattering events. The second shows only a top down view of the detector screen with the detected
scattering events.

For the first set of axes, the scattering program builds upon the lattice plotting program. It plots
the desired lattice (simple cubic with a basis), calculates scattering for this crystal given a list of form
factors and an incoming wave vector, and displays the results on a simulated detection screen. The
wave vectors point of impact is kept fixed, but the magnitude and angle of incidence can be changed
by the user.

On the second set of axes we plot a top down view of the detection plane, along with scattering
events and the associated Miller indices. To make the program more user friendly, we (by default)
define the incoming wave vector in units of 2π/a, such that the user does not need to always include
these factors.

Calculating the actual scattering is done by first creating the reciprocal lattice with Eq. (4.5),
and next creating an array of reciprocal lattice vectors with indices h, k, l ∈ {−5,−4, . . . , 5} (excluding
h = k = l = 0 as this just results in a ”scattered” wave vector equal to the incident wave vector).
This of course does not constitute the whole possible range reciprocal lattice vectors, but a line has to
be drawn somewhere. This interval includes 113 − 1 = 1330 different reciprocal lattice vectors, which
should be plenty to get an understanding of scattering.

This array of reciprocal lattice vectors is then used to calculate the ”scattered” wave vectors by Eq.
(4.12). These do not necessarily meet the other criteria of energy conservation, though, and there are
further criteria to consider.

The first additional criteria is the direction of the scattered wave vector. The scattered wave vector
has to point in the direction of the detection screen, otherwise it will not physically ”hit” the screen.
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In the program the detection screen is placed parallel to the xy-plane, with z = z0, z0 > 0. As such
any scattered wave vector will need to have k′z > 0 to be detected.

Second is any systemic absences. The reason we need to check for this is the fact that we show the
Miller indices on the second set of axes. So if we do not filter out any scattering wave vectors, whose
intensity is zero, we will get a spot on the detection plane with zero intensity, but the Miller indices still
plotted. The systemic absence is calculated by taking the absolute square of Eq. (4.16) and checking
whether or not it is equal to 0. If so we exclude the wave vector from the scattered events.

These three criteria (conservation of energy, proper direction, and a lack of systemic absence) are
all calculated by the program, and if a scattered wave vector does not fulfil all of them, it is discarded.

Left are only a handful, if any, of scattered wave vectors. For each of these, the impact point of
the scattered wave vector on the detection plane has to be calculated. This is done by calculating the
intersection between a line and a plane. The line is defined by the point of impact p0 of the incident
wave vector along with the scattered wave vector k′. The plane is defined as mentioned above, with
z = z0. In this case the intersection happens when

p0,z + t · k′z = z0, (4.20)

for some value of t. This value of t can then be used to calculate the point of intersection p as

p = p0 + tk′. (4.21)

These points are then plotted in the first set of axes along with the detection plane and the incoming
wave vector (scaled so its length is equal to the wavelength), and on the second set of axes along with
the associated Miller indices.

Two additional features for the scattering program are also available. The first is the ”show all”
feature. This plots all outgoing wave-vectors and their associated lines (starting at the impact point for
the incident beam, and ending at the intersection between the outgoing wave vector and the detection
plane).

The second is a ”highlighting” feature. This feature works by taking a set of Miller indices and
highlighting the scattering associated with said set (if scattering occurs for this reciprocal lattice vector).
It plots the relevant scattering event in a different colour, and plots the associated family of planes.

d

D

θ

Figure 6: The dis-
tance between to
adjacent planes is
d, and the verti-
cal distance D is
d/ cos θ

These planes are created in one of two ways. If the plane is not perpendicular
to the xy-plane (corresponding to a normal vector n with a z-component different
from 0) the equation of the plane is used with the origin as the starting point r0.
For the normal vector, the program uses the displacement vector d = 2πĜ/|G|:

0 = d · (r− r0) = n · r, ⇔ z = −dxx+ dyy

dz
. (4.22)

The program then calculates the z-component of the plane from a given array of
x and y-values. This, of course, only creates one plane. Each subsequent plane is
created by displacing the original plane vertically by an amount d/ cos θ = d2/dz
(see figure 6). This process is repeated in the positive direction until the smallest z-
value of the uppermost plane is outside of the plot box, and likewise in the negative
direction, yielding a full set of parallel planes, spaced by d (at least within the plot
box).

However, if the plane is perpendicular to the xy-plane, this method does not
work. Here the program creates a plane from the span of two vectors perpendicular to the displacement
vector. Since the plane is perpendicular to the xy-plane, one such vector is ẑ, the unit vector in the
z-direction. Then the second vector can just be taken as the cross product between d and ẑ. Again
the origin is taken as the starting point:

r = r0 + sẑ + t(ẑ× d). (4.23)

To get any subsequent planes, an integer multiple of the displacement vector d is added to the starting
plane.
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d

Figure 7: A bcc lattice show-
ing the (001) family of lattice
planes.

For both of these methods the planes need to be limited so they
are only plotted within the plot box. This is done by replacing the z-
component of any point outside the plot box with NaN, which will cause
Matplotlib to not plot the associated point. This is especially pertinent
in the second case, where not only the z-component may be outside
the plot box, but also the x and y-components may be. Because of this
ẑ/4 and (ẑ × Ĝ)/4 are used to increase the resolution of each plane,
along with a large range of values for s and t (in this case taken to
be integers, though the same effect could be achieved by using a more
densely packed interval for s and t and keeping the original vectors).

Further, a second program is added alongside the scattering pro-
gram. This second program just allows the user to plot any crystal,
along with any family of lattice planes, defined by a set of Miller indices
supplied by the user.

4.3 Examples

Say we just want to plot the (001) family of lattice planes for a bcc
lattice, then we write the following and get figure 7.

1 Reciprocal(lattice_name="bcc",

2 indices =(0,0,1))

As another example, consider the case of simulating neutron scattering on a cubic lattice with a four
atom basis (one at lattice points, the others at the centres of the faces of the unit cell). We set the relative
form factors as 1 for the atoms on the lattice points and 0.5 for the others. We set kin = (0, 0,−1.5) in
units of 2π/a. Lastly we highlight the scattering corresponding to the Miller indices (112). This is all
done by the following line, and produces figure 8.

1 Scattering(k_in=np.array([0, 0, -1.5]),

2 basis=np.array ([[0, 0, 0],

3 [0.5, 0.5, 0],

4 [0.5, 0, 0.5],

5 [0, 0.5, 0.5]]) ,

6 highlight =(1,1,2),

7 form_factor=np.array ([1, 0.5, 0.5, 0.5]))

But what if we want to plot scattering on regular fcc lattice, with the same wave vector as before?
Then we just set the scattering length for all atoms to 1. This gives figure 9, where we have also set
identical colours for the four atoms to emphasize that they are now identical.

1 Scattering(k_in=np.array([0, 0, -1.5]),

2 basis=np.array ([[0, 0, 0],

3 [0.5, 0.5, 0],

4 [0.5, 0, 0.5],

5 [0, 0.5, 0.5]]) ,

6 form_factor=np.array ([1, 0.5, 0.5, 0.5]) ,

7 colors =[’xkcd:cement ’]*4)

Note on this figure the absence of any scattering. This is an example of a systemic absence for the fcc
lattice, because not all indices in each of the 5 sets are even (or odd). The highlighted scattering event
in figure 8 has 2 odd indices and 1 even index.

5 Band structure

5.1 Theory

In a crystal, the potential must necessarily be periodic in the unit cell, otherwise the discrete transla-
tional symmetry is broken. As such the following equation holds for any lattice vector R:

V (r + R) = V (r). (5.1)
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Scattering on a cubic lattice. kin = (2 /a) [ 0.   0.  -1.5]

[-1 -1  2]

[-1  1  2]

[0 0 3]

[ 1 -1  2]

[1 1 2]

Detection screen.
Form factors: [1.  0.5 0.5 0.5]

Figure 8: Scattering on a cubic lattice with a four atom basis (one at lattice points and the others on
the faces of the unit cell), with form factors of 1 for the lattice point atoms, and 0.5 for the others.
The choice of incoming wave vector gives rise to 5 scattering events, corresponding to 5 different sets
of miller indices.

Scattering on a cubic lattice. kin = (2 /a) [ 0.   0.  -1.5]
Detection screen.

Form factors: [1 1 1 1]

Figure 9: The same scattering setup as in figure 8, but with equal form factors for the four atoms
(effectively an fcc lattice). Note the absence of scattering events due to systemic absence, since for each
of the sets of Miller indices either h+ k, k + l or h+ l is odd.
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Due to this periodicity, the potential can also be expressed as a sum over reciprocal lattice vectors. To
see this, we start with the potential operator:

V̂ =

∫ +∞

−∞
V (r) |r〉 〈r| dr. (5.2)

We insert two continuous identities for k and k′, which is the equivalent of taking the Fourier transform
of the potential:

V̂ =

∫ +∞

−∞
V (r)

[∫ +∞

−∞
|k〉 〈k| dk

]
|r〉 〈r|

[∫ +∞

−∞
|k′〉 〈k′| dk′

]
dr, (5.3)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
V (r) |k〉 〈k|r〉 〈r|k′〉 〈k| dk′ dk dr. (5.4)

The two middle brakets are 〈k|r〉 =
√

(2π)3
−1
e−ik·r and 〈r|k′〉 =

√
(2π)3

−1
eik

′·r, where
√

(2π)3
−1

is a
normalization factor. This then becomes

V̂ =
1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
V (r)e−i(k−k

′)·r |k〉 〈k′| dk′ dk dr. (5.5)

Next we use the now familiar trick of letting r = R + x:

V̂ =
1

(2π)3

∫ +∞

−∞

∫ +∞

−∞

[∑
R

ei(k
′−k)·R

]∫
unit-
cell

V (x) e−i(k−k
′)·x |k〉 〈k′| dx dk′ dk. (5.6)

This sum, like before, equals 0 for k′ − k 6= G. However, when k′ − k = G this sum becomes infinite
(given the infinite amount of lattice points), with a prefactor of (2π)3/a−3 [1]. This then gives

V̂ =
1

a3

∑
G

∫ +∞

−∞

∫ +∞

−∞
δ(k′ − k−G)

∫
unit-
cell

V (x) e−iG·x |k〉 〈k′| dx dk′ dk, (5.7)

=
∑
G

VG

∫ +∞

−∞
|k〉 〈k−G| dk, VG =

1

a3

∫
unit-
cell

V (x)e−iG·x dx, (5.8)

where VG is the Fourier transform of the potential, in G, over the unit cell, which is the same as
the structure factor for scattering, except for a normalisation factor. Now, inserting two additional
identities, but this time for r and r′:

V̂ =
∑
G

VG

∫ +∞

−∞

[∫ +∞

−∞
|r〉 〈r| dr

]
|k〉 〈k + G|

[∫ +∞

−∞
|r′〉 〈r′| dr′

]
dk, (5.9)

=
∑
G

VG

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

√
(2π)3

−1
eik·r

√
(2π)3

−1
e−i(k+G)·r′ |r〉 〈r′| dk dr dr′, (5.10)

=
1

(2π)3

∑
G

VG

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
e−iG·r

′
eik·(r−r

′) |r〉 〈r′| dk dr dr′. (5.11)

We can get rid of two of these integrals, if we use the fact that [3]

δ(r− r′) =
1

(2π)3

∫ +∞

−∞
eik·(r−r

′) dk, (5.12)

as we then get

V̂ =
∑
G

VG

∫ +∞

−∞
e−iG·r |r〉 〈r| dr, (5.13)

which, if the prefactors and the sum is taken inside the integral, is the same form as we started with!
Thus we get our desired result of

V (r) =
∑
G

VG eiG·r, VG =
1

a3

∫
unit-
cell

V (x) e−iG·x dx, (5.14)
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where we have made the substitution G → −G in the expression for V (r). This does not change the
sum index as all terms are still included, and as we shall see below, we have VG = V−G, so the above
equality holds.

This form allows us to write the Schrödinger equation in a form where the dispersion relation is
easily calculated numerically. First we Fourier transform the equation:∫ +∞

−∞
e−ik·r

[
p2

2m
+ V (r)

]
ψ(r) dr =

∫ +∞

−∞
e−ik·rE ψ(r) dr = E ψ̃(k). (5.15)

The kinetic energy term is just

F
[

p2

2m
ψ(r)

]
= − ~2

2m

∫ +∞

−∞
e−ik·r∇2ψ(r) dr =

~2k2

2m
˜ψ(k), (5.16)

whilst the potential energy term is

F [V (r)ψ(r)] =

∫ +∞

−∞
e−ik·r V (r)ψ(r) dr =

∫ +∞

−∞
e−ik·r

[∑
G

eiG·r VG

]
ψ(r) dr, (5.17)

=
∑
G

VG

∫ +∞

−∞
e−i(k−G)·r ψ(r) dr, (5.18)

where the integral is just the Fourier transform of the wave function, in k−G:

F [V (r)ψ(r)] =
∑
G

VG ψ̃(k−G). (5.19)

With this expression, the whole equation becomes∑
G

[
~2k2

2m
δG,0 + VG

]
ψ̃(k−G) = E ψ̃(k). (5.20)

This equation gives the energy for a single value of k, by relating the state ψ̃(k) to all other states with
the same crystal momentum. If we then consider all the different equations for states with the same
crystal momentum ψ̃(k−G), we can describe them all as a matrix equation, where the eigenvalues are
the energies for the state with wave vector k, in all of the different bands. The first (lowest) eigenvalue
is thus the energy of ψ̃(k) in the lowest band.

To calculate the dispersion relation for a given lattice and potential we then need to find the
eigenvalue of the above matrix equation for a range of different k. However, due to the unbounded
nature of G, the matrix and vector will both have an infinite amount of elements. For the purposes of
the program we need to only allow some set of G, making the matrix and vector finite dimensional.

This can be thought of through the lens of perturbation theory. If we have a free particle (corre-
sponding to no allowed value of G), we just get a 1×1 “matrix”, whose eigenvalue trivially is the energy
of a free particle. Adding the potential for G = 0 gives the first order perturbation, shifting the state
by some constant energy (the matrix equation still only has one allowed state). Allowing the set of next
smallest values for G would then constitute a second order perturbation, where the particle is allowed
to scatter into these states. Further allowing a larger set of G will give a more accurate calculation of
the dispersion relation for the particle, until finally it becomes exact when the full, infinite spectrum
of values for G is included.

5.2 Implementation

In the above calculations we have assumed a three dimensional system. In the following however, we
will restrict ourselves to two dimensions and a square lattice with lattice spacing a. The reciprocal
lattice vectors G can then be indexed with the coefficients m1 and m2, as G = 2π

a (m1x̂ +m2ŷ). This
also means that the sum over G can be expressed as a double sum over m1 and m2.
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To describe the matrix it is helpful to first describe the vector in the equation. Let us call this |ψ〉.
This consists of ψ̃(k + G) for all the allowed G. Let us also call these ψ[m1,m2]:

|ψ〉 =



...

ψ̃(k−G1)

ψ̃(k)

ψ̃(k + G1)
...

 =



...
ψ[0,−1]
ψ[0,0]

ψ[0,1]
...

 , (5.21)

where G1 = 2π
a ŷ, for example. Correspondingly we write VG as V[m1,m2].

The matrix in the above equation can be split into two different matrices: One for the kinetic energy
T , which is just a diagonal matrix, and one for the potential energy V . The diagonal elements of the
kinetic energy matrix are just the energy of the state, if no potential was present:

T =
~2

2m



. . .

(k−G1)
2

k2

(k + G1)
2

. . .

 . (5.22)

The potential energy matrix is a bit more complicated. It is best described with an example. Say we
allow m1,m2 ∈ {−1, 0, 1}. The sum still has an infinite amount of terms, but we only allow 9 of these
in our matrix equation. These terms have pairs of coefficients for ψ that are in the ordered list

[m1,m2] ∈ {[−1,−1], [−1, 0], [−1, 1], [0,−1], [0, 0], [0, 1], [1,−1], [1, 0], [1, 1]}. (5.23)

If we then calculate (part of) the row equation for m1 = −1,m2 = 0 (which is the second row of
the potential matrix) we get

Eψ[−1,0] =
∞∑

m′
1=−∞

∞∑
m′

2=−∞

V[m′
1,m

′
2]
ψ[−1−m′

1,−m′
2]
,

= · · ·+ V[−2,−1]ψ[1,1] + V[−2,0]ψ[1,0] + V[−2,1]ψ[1,−1] + . . .

+ V[−1,−1]ψ[−2,1] + V[−1,0]ψ[−2,0] + V[−1,1]ψ[−2,−1] + . . .

+ V[0,−1]ψ[−1,1] + V[0,0]ψ[−1,0] + V[0,1]ψ[−1,−1] + . . .

+ V[1,−1]ψ[0,1] + V[1,0]ψ[0,0] + V[1,1]ψ[0,−1] + . . . .

Now, the 4th to 6th shown terms contain “disallowed” states, i.e. they have coefficients for ψ outside
of the allowed range. The other 9 shown terms are “allowed” states however.

As for the ordering of the rows of the matrix: [−1,−1] is the first pair of coefficients in the ordered
set of coefficients. Because of this V[0,1]ψ[−1,−1] is the first term in the matrix equation, and V[0,1] is
then the first element in the matrix row. The whole row is then:(

V[0,1] V[0,0] V[0,−1] V[1,1] V[1,0] V[1,−1] V[−2,1] V[−2,0] V[−2,−1]
)
. (5.24)

The algorithm for constructing the potential matrix is as follows:

1. Choose a range of values for m1 and m2 and arrange them in an ordered set.

2. For each pair of coefficients in this set, ([m1,m2], corresponding to some row), calculate [m1 −
m′1,m2−m′2], where [m′1,m

′
2] are all the pairs of coefficients from the same set, corresponding to

the columns of the matrix.

3. This new pair of coefficients, [m1 − m′1,m2 − m′2], will be coefficients for the potential at the
corresponding matrix element: V[m1−m′

1,m2−m′
2]

. (The corresponding matrix element is the one
with row/column corresponding to the position of [m1,m2]/[m

′
1,m

′
2] in the ordered set).
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With this algorithm in mind, we can see a couple of characteristics of the matrix:

• The diagonal elements are all V[0,0], corresponding to the state not being scattered into any other
state.

• The matrix is Hermitian, if V[m1,m2] = V[−m1,−m2], which is the same condition one gets when
using perturbation theory to calculate the band structure in the Nearly Free Electron Model, see
section 2.1. This is all very fortunate since the potential matrix must necessarily be hermitian for
the whole Hamiltonian to be hermitian, which it has to be, since it corresponds to an observable
quantity, namely energy.

On the last characteristic: Since the potential is real and symmetric (rather, it is even about any lattice
point R, in both the x and y-direction), it is guaranteed that V[m1,m2] = V[−m1,−m2]. This is because
the Fourier transform of a real and even function is also real and even [3]. As such, for any periodic
potential (that is even in both x and y about lattice points) the potential matrix, and therefore also
the whole Hamiltonian is hermitian!

Specific potentials implemented in the program include a two dimensional Dirac Comb, and a
harmonic potential:

Vdirac(r) = V0a
2
∑
R

δ(r−R), Vharmonic(r) = V0

[
cos

(
2π

a
x

)
+ cos

(
2π

a
y

)]
, (5.25)

where the a2 in the Dirac comb potential arises from the fact that the Dirac delta function carries
units m−2 (in general it carries units that are inverse of its argument as can be seen from Eq. (5.12)
by dimensional analysis). Now, V[m1,m2] for the Dirac Comb potential is easily calculated. We let the
unit cell run from −a/2 to a/2 in both x and y, to make sure the delta functions are well within the
integration limits. Then it just becomes:

V[m1,m2] = V0
a2

a2

∫ a/2

−a/2

∫ a/2

−a/2
ei2π(m1x+m2y)/aδ(r) = V0 dx dy, (5.26)

and the potential matrix is just a matrix full of ones, scaled by V0. For the harmonic potential we let
the unit cell run from 0 to a in both directions and get

V[m1,m2] =
V0
a2

∫ a

0

∫ a

0
ei2π(m1x+m2y)/a

[
cos

(
2π

a
x

)
+ cos

(
2π

a
y

)]
dx dy. (5.27)

This can be split into two integrals, I1 and I2. The first is

I1 =
V0
a2

∫ a

0

∫ a

0
ei2π(m1x+m2y)/a cos

(
2π

a
x

)
dx dy, (5.28)

=
V0
2a2

∫ a

0
ei2πm2y/a dy

∫ a

0
ei2πm1x/a

[
ei2πx/a + e−i2πx/a

]
dx, (5.29)

=
V0
2a2

∫ a

0
ei2πm2y/a dy

∫ a

0
dx

[
ei2π(m1+1)x/a + e−i2π(m1−1)x/a

]
dx. (5.30)

Now if m2 = 0, the integrand in the y-integral is just 1, and the whole integral evaluates to a. If m2 6= 0
this is not the case. However, the antiderivative evaluated at both ends is the same, and the whole
integral is 0: ∫ a

0
ei2πm2y/a dy =

a

i2πm2

[
ei2πm2y/a

]a
0

= 0. (5.31)

The same goes for the integrals in x, but with m1 ± 1 instead of m2. As such

I1 =
V0a

2

2a2
[δm2,0(δm1,1 + δm1,−1)] , (5.32)

with a similar result for I2. V[m1,m2] is then

V[m1,m2] =

{
V0
2 if [m1,m2] ∈ {[0, 1], [0,−1], [1, 0], [−1, 0]},

0 else.
(5.33)
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And the potential energy matrix is

Vharmonic =
V0
2



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


. (5.34)

With this we have the full Hamiltonian matrix, and we can solve it for a range of k to get the dispersion
relation for a particle in a square lattice.

To calculate the dispersion relation, the program needs values for V0, a and ~2/2m along with the
range of coefficients for G. To make this more simple for the user, we define k0 ≡ 2π/a (the same
factor as in the scattering program) and E0 ≡ ~2k20/m. These allow us to rewrite the equation in a
dimensionless form: ∑

G̃

[
k̃2

2
δG̃,0 + ṼG̃

]
ψ̃(k̃− G̃) = Ẽψ̃(k̃), (5.35)

with G̃ ≡ G/k0 = m1x̂ + m2ŷ, k̃ ≡ k/k0 ṼG̃ ≡ VG/E0 and Ẽ ≡ E/E0. This also redefines the first

Brillouin zone to be −1/2 ≤ k̃ ≤ 1/2 in each direction.
With this the Hamiltonian matrix is created. The program also takes a value for the number of

points in the first Brillouin-zone in k-space and creates linearly spaced points from −1/2 to 1/2.
For each point in the Brillouin zone the program then creates the corresponding kinetic energy

matrix, adds the potential energy matrix, and finds the eigenvalues for the resulting matrix. These
values are stored in a multidimensional array (represented as a series of matrices, each with size nk×nk,
where nk is the number of points in the Brillouin zone, in each direction). When the energies for all
coordinates are calculated, the lowest energies for each of the points (corresponding to the first matrix
in the multidimensional array) will then be the dispersion of the particle in the first band.

Next we aim to find the Fermi sea and surface, and not just the dispersion relation. For a crystal
with monovalent atoms the electrons fill up half a band, corresponding to half the area of the first
Brillouin zone (in two dimensions). To represent this we use the fact that we have discretised the
Brillouin zone into n2k points. The Fermi sea is then covered by the values of k which have an energy
lower than the n2k/2’th lowest energy. So to plot only the Fermi sea for a 2D material, we order the
energies in the band from lowest to highest, find the middle value, and only plot points that have an
energy lower than, or equal to, this energy.

5.3 Examples

Say we just want to find the dispersion of a free particle. Then we just call the program with Ṽ0 ≡
V0/E0 = 0. For good measure we can specify that the potential should be the Dirac potential and that
we want the edges of the dispersion relation shown (to increase visibility on a printed page):

1 Band_structure(V0=0,

2 potential=’dirac’,

3 edges=True)

And if we want the high-potential limit of the harmonic potential (which happens to be Ṽ0 = 1) we
write

1 Band_structure(V0=1,

2 edges=True)

We do not need to specify that the potential should be harmonic, as this is the default argument. To
be explicit we could add the argument potential=’harmonic’. These lines produce figures 10 and 11
respectively.
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Figure 10: The dispersion relation for a free particle in a square lattice of monovalent atoms, along
with the Fermi surface.
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Figure 11: The dispersion relation of a particle in a strong harmonic potential, on a square lattice of
monovalent atoms, along with the corresponding Fermi surface.

6 Discussion

In this thesis we set out to create a suite of programs to visualise key concept in the field of condensed
matter physics. These concepts included crystal structures, families of lattice planes, a simulation of
neutron scattering, along with band structures of two dimensional materials.

The end result is a code package written in Python which accomplishes just that. It includes 4
main functions: Lattice, Reciprocal, Scattering and Band structure. These 4 functions take in a
wealth of arguments, supplied by the user, and produce some sort of figure. Examples of these being
the crystal structure of hexagonal lattice with a one atom basis (figure 5), the (001) family of lattice
planes for a bcc lattice (figure 7), neutron scattering on an fcc lattice (figures 8 and 9) or the band
structure of a monovalent two dimensional material with a high strength potential (figure 11).

More can be done with these programs though, and they are by no means a comprehensive resource.
For the lattice plotting program, there is currently no perfect algorithm to detect type of lattice that
the user has input.

The algorithm employed to detect lattices relies on the user inputting primitive lattice vectors with
the specifications from appendix A. These lattices can be rotated and scaled to the heart’s desires, and
the program will still detect them. But the algorithm does not take into account the non-uniqueness
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of primitive lattice vectors.
The ”easy” way to take this into account would be to use the method specified in section 3.1,

calculating the matrix M for the different lattices and checking whether or not it meets the necessary
criteria. However, this method cannot work if the user also rotates the lattice. Different magnitudes of
input primitive lattice vectors will also complicate things, as the program would have to check a range
of different sets of primitive lattice vectors for each lattice. For example, say the user inputs an fcc
lattice with a1 = a ·(1, 0, 0), a2 = a ·(0, 1/2, 1/2) and a3 = a ·(1/2, 0, 1/2). There is currently no way for
the program to ”know” which magnitude to use for the primitive lattice vectors used for comparison,
and the only recourse is to brute-force check all combinations.

So currently no catch-all solution of classification is implemented. A thing to note is that the current
algorithms only depend on the primitive lattice vectors. A different approach may be to construct the
full crystal and look for a specific ”type” of unit cell, corresponding to one of the Bravais lattices.
However, this will necessarily involve a more complicated algorithm, which unfortunately there was not
time for.

Furthermore, the program only calculates the relevant quantities for one specific set of values per
function call. As such, if the user wants to see how systemic absences appear in scattering experiments,
or how the Fermi surface distorts for stronger potentials, they will need to manually call the relevant
function multiple times with different form factors or potential strength. This gets tedious after a while.

A solution to this is to create some sort of GUI which will display input boxes or sliders for
the relevant quantities, automatically call the functions and display the results. This can be done, for
example with the python package Flask, which allows the creation of web-applications. These can be run
locally on the users machine and allows for javascript integration. This is especially useful (necessary,
even!) for accomplishing the goal of added interactivity, as Matplotlib figures can be rendered as
javascript objects.

With regards to distortion of the Fermi surface: The next (small) step would be to maybe include
different two dimensional lattices. A rectangular lattice would be as simple as altering a value or two in
the code, for example. But perhaps a better change would be to bump up the dimensions of the lattices
to three. Doing this, however, means we run into problems with the number of available dimensions. It
seems we live in a universe with only three spatial dimensions, which means we will use up all of those
just specifying the geometry of the lattice, leaving no dimension for any other quantities of interest -
like the dispersion relation of the particles in the crystal.

This limits us to only looking at isosurfaces of energy - like the Fermi surface, where we in two
dimensions could view the entire Fermi sea (and the rest of the dispersion relation). While this would
be enough to view the distortion of the Fermi surface (especially if combined with a web-app as specified
above), there is the added issue of the computational time required. Currently, for a two dimensional
lattice, with nk values of k in each direction, and nG allowed values of G (again in each direction),
necessitates finding the eigenvalues of n2k matrices of size n2G×n2G. By default these values og nk and nG
are around 100 and 7 respectively, meaning the program diagonalises 104 49× 49 matrices. Increasing
the dimensionality would increase both the number of matrices to be diagonalised, and the size of these.
We would increase the amount of matrices by a factor of nk, and the size of each of these would go
from n2G × n2G to n3G × n3G. With the standard arguments this would necessitate the diagonalisation of
106 matrices of size 343× 343. A very considerable increase.

As it currently stands the program does take a while to compute the band structure (around a
second or so, for a decent resolution), and to get the same resolution in three dimensions would take
at least a factor nk ≈ 100 longer (assuming it takes the same amount of time to diagonalise a 49× 49
matrix as it does a 343× 343 matrix, which it most certainly does not). So if three dimensions are to
be considered, the program would need to be thoroughly optimised. One way to do this would be to
employ an algorithm to find just the lowest eigenvalue of these matrices, as we are only concerned with
the lowest band - i.e. the Fermi surface.

A line had to be drawn somewhere though, and a two dimensional lattice seemed like a reasonable
compromise between added dimensionality and computational complexity.

One last issue is in regards to the programming language and packages chosen. Python is an
interpreted language, which means that it necessarily trades computational speed for added ease of
development. There are alternatives to this, like Nim or Julia, which are properly compiled or just-
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in-time compiled respectively. They do not, however, have as large a community as Python does, and
therefore not as big a support for third-party packages like Matplotlib.

Further, Matplotlib has one glaring issue in that it does not support a fully fledged 3D graphics
engine. This means that all the three dimensional figures in this thesis and the programs are actually
just 2D projections of underlying 3D data (of course, computer screens are 2D, so the projection has to
happen at some point, but the way Matplotlib does it has significant drawbacks). This creates artefacts
like how there is no proper support for the intersection of surface plots. This can be seen in the band
structure program, where the orange horizontal plane, indicating the Fermi energy, does not properly
intersect the dispersion relation, seen in blue.

There are other packages, like Mayavi which do support proper 3D plotting. However, these prob-
lems (and their potential solution in this package) were discovered too late in the process of writing, so
could not be solved in time.

In conclusion: 4 programs have been created which illustrate concepts in the field of condensed
matter physics. While they are not without their flaws or potential for improvement, they do still hold
merit, and could be a valuable tool if used in combination with traditional book-based learning.
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A Lattice Classification

As mentioned in the main text, the choice of primitive lattice vectors is not unique, and the following
is just an example of one such choice. It is however the choice used in the program for classification.

Cubic lattices

All of these lattices can be described with a cubic conventional unit cell, with side lengths a. All vectors
as such in units of a.

Simple cubic

The simplest lattice. Orthogonal axes and lattice vectors of equal lengths:

a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 1)

Face Centered cubic

In the primitive unit cell we chose

a1 = (1/2, 1/2, 0), a2 = (1/2, 0, 1/2), a3 = (0, 1/2, 1/2).

With this choice, all internal angles are 60 degrees (cos θ = 1/2). They each form 45 degree angles with
respect to two cardinal axis (cos θ =

√
2/2), and are orthogonal with respect to last. All lengths equal

(
√

2/2).
In a conventional unit cell, the primitive lattice vectors are the same as the simple cubic lattice,

but the basis consists of four (row) vectors:

basis =


0 0 0

1/2 1/2 0
1/2 0 1/2
0 1/2 1/2


Body centered cubic

The choice of primitive lattice vectors is

a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (1/2, 1/2, 1/2).

The internal angles for this choice are: a1 and a2 are orthogonal. a1 and a2 with a3 has cos θ =
√

3/3
(roughly 54.74 degrees). a1 and a2 have length 1, while a3 has length

√
3/2.

For the conventional unit cell we have a two atom basis:

basis =

(
0 0 0

1/2 1/2 1/2

)
Tetragonal

Tetragonal lattices also have orthogonal axes. But the difference between them and cubic lattices, is
that tetragonal lattices only have 2 primitive lattice vectors of same length. As such we choose

a1 = (a, 0, 0), a2 = (0, a, 0), a3 = (0, 0, b)

This is also the choice of primitive lattice vectors with conventional unit cells for the following variants
of the tetragonal lattice:
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Body centered

This almost has the same primitive lattice vectors as the body centred cubic lattice, except that we
increase the z-coordinate on a3:

a3 = (a/2, a/2, b/2).

Then cos θ = a/
√

2a2 + b2 is the angle between a1 (or a2) and a3. And we have |a3| =
√
2a2+b2

2 , giving
cos θ = |a1|/2|a3|:

a1 = (a, 0, 0), a2 = (0, a, 0), a3 = (a/2, a/2, b/2)

|a1| = a = |a2|, |a3| =
√

2a2 + b2

2
,

cos θ12 = 0, cos θ23 = cos θ31 =
|a1|
2|a3|

=
|a2|
2|a3|

Face centered

Again we just increase the z-coordinate for the primitive lattice vectors, and get:

a1 = (a/2, a/2, 0), a2 = (a/2, 0, b/2), a3 = (0, a/2, b/2),

|a1| =
√

2

2
a, |a2| =

√
a2 + b2

2
= |a3|,

cos θ12 =
|a1|
2|a2|

= cos θ31 =
|a1|
2|a3|

, cos θ23 =
b2

a2 + b2
=

2a2
2 − a1

2

2a2
2

=
2a3

2 − a1
2

2a3
2

base centered

The base centred tetragonal lattice is like a tetragonal lattice, but with an atom in the middle of the
base of each unit cell:

a1 = (a/2, a/2, 0), a2 = (0, a, 0), a3 = (0, 0, b)

|a1| =
√

2

2
a, |a2| = a, |a3| = b

cos θ12 =

√
2

2
, cos θ31 = cos θ23 = 0

Orthorhombic

The orthorhombic lattice still has orthogonal primitive lattice vectors, but they are all of different
magnitudes: Let’s assume the conventional unit cell has

a1 = (a, 0, 0), a2 = (0, b, 0), a3 = (0, 0, c)

Body centered

a1 = (a, 0, 0), a2 = (0, b, 0), a3 = (a/2, b/2, c/2),

|a1| = a, |a2| = b, |a3| =
√
a2 + b2 + c2

2
,

cos θ12 = 0, cos θ31 =
a√

a2 + b2 + c2
=
|a1|
2|a3|

,

cos θ23 =
b√

a2 + b2 + c2
=
|a2|
2|a3|

And the third length, c, can be expressed as c2 = 4a3
2 − a1

2 − a2
2

These two last are also the angles a3 make the x-axis and y-axis respectively. Angle with z-axis is
cos θ3z = c√

a2+b2+c2
= 2(4a3

2 − a1
2 − a2

2)/|a3|
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Face centered

a1 = (a/2, b/2, 0), a2 = (a/2, 0, c/2), a3 = (0, b/2, c/2),

|a1| =
√
a2 + b2

2
, |a2| =

√
a2 + c2

2
, |a3| =

√
b2 + c2

2

cos θ12 =
a2√

a2 + c2 ·
√
a2 + b2

,

cos θ31 =
b2√

b2 + c2 ·
√
a2 + b2

,

cos θ23 =
c2√

a2 + c2 ·
√
b2 + c2

,

and the spacings are

a2 = 2(a1
2 + a2

2 − a3
2), b2 = 2(a1

2 − a2
2 + a3

2), c2 = 2(−a1
2 + a2

2 + a3
2).

As such the angles can be written

cos θ12 =
a1

2 + a2
2 − a3

2

2 · |a1| · |a2|
, cos θ31 =

a1
2 − a2

2 + a3
2

2 · |a1| · |a3|
, cos θ23 =

−a1
2 + a2

2 + a3
2

2 · |a2| · |a3|

Base centered

a1 = (a, 0, 0), a2 = (a/2, b/2, 0), a3 = (0, 0, c)

|a2|2 =
a2 + b2

4
, b2 = 4a2

2 − a1
2,

cos θ12 =
a√

a2 + b2
=
|a1|
2|a2|

, cos θ31 = cos θ23 = 0

Simple monoclinic

The simple monoclinic lattice can be viewed as an infinite series of rectangular lattices stacked on top
of each other, but with each by some amount with respect to the one below it. We have:

|a1| = a, |a2| = b, |a3| = c, cos θ12 = cos θ23 = 0, cos θ31 6= 0,

where a1 and a2 are along the x and y-axes, respectively. a3 = c · (cos θ31, 0, sin θ31)

Base centered monoclinic

a1 = (a, 0, 0), a2 = (a/2, b/2, 0), a3 = c · (cos θ31, 0, sin θ31)

|a1| = a, |a2| =
√
a2 + b2

2
, |a3| = c

cos θ12 =
|a1|
2|a2|

, cos θ23 =
a cos θ31√
a2 + b2

=
a1 · a3

2 · |a2| · |a3|

Hexagonal

The hexagonal lattice is an infinite series of triangular lattices, regularly stacked on top of each other.
a1 and a2 are orthogonal to a3, and 60 degrees between them:

a1 = a · (1, 0, 0), a2 = a · (1/2,
√

3/2, 0), a3 = (0, 0, b)

|a1| = |a2| 6= |a3| cos θ12 = 1/2, cos θ31 = cos θ23 = 0
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Triclinic

For this lattice we have no equal sides, nor any equal angles:

|a1| 6= |a2| 6= |a3|, θ12 6= θ31 6= θ23.

An example (from aflowlib.org/CrystalDatabase/triclinic_lattice.html) is

a1 = (a, 0, 0), a2 = b · (cos γ, sin γ, 0), a3 = (cx, cy, cz),

cx = c cosβ, cy = c
cos θ − cosβ · cos γ

sin γ
, cz =

√
c2 − c2x − c2y

where γ is the angle between a1 and a2, β is the angle between a1 and a3, and θ is the angle between
a2 and a3.

Rhombohedral

|a1| = |a2| = |a3| and θ12 = θ31 = θ23 but they’re not right angles. An example is

a1 = (a, b, b), a2 = (b, a, b), a3 = (b, b, a),

which looks like the addition of a simple cubic lattice and a face centred cubic one, with different lattice
spacings.

Wurtzite

The Wurtzite lattice is made up of equally spaced triangular lattices (with 120 degrees instead of 60
degrees), with a 4 atom basis:

a1 = a · (1/2,−
√

3/2, 0), a2 = a · (1/2,
√

3/2, 0), a3 = (0, 0, b),

basis =


0 0 0

0 −a
√

3/3 b/2
0 0 u · b
0 −a

√
3/3 (1/2 + u) · b


where u ≈ 3/8 (for the preset in the program we use u = 3/8).

Zincblende (and diamond)

The Zincblende is a two atom face centred cubic crystal:

a1 = (1/2, 1/2, 0), a2 = (1/2, 0, 1/2), a3 = (0, 1/2, 1/2),

basis =

(
0 0 0

1/4 1/4 1/4

)
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