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Abstract

In this thesis, the Shockley model for topological insulators is used to analyze
the properties of localized edge states in a 1D system. This was done by deriving
analytical solutions to bulk- and boundary states, and comparing these with
numerical calculations. The relation between the existence of zero-energy edge
states and topological properties of the bulk Hamiltonian is described, and finite
size effects are characterized. The 1D model is generalized to 3D, where spin is
now taken into consideration by adding a Rasha spin-orbit coupling term. The
energy spectrum and wavefunctions are derived, and as an example, the model is
used for a diamond lattice structure. Lastly, the concept of topological invariants
is illustrated and its usage for determining which materials can be topological
insulators is discussed.
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1 Introduction
In the last few decades there has been an important advance in condensed matter
physics, which is the discovery of topological quantum systems. One of these systems
is the so-called topological insulator (TI), and in these there have been observations
of states that possess extraordinary properties. They can, for example, accomodate
states that can only live on the surface of the material, which show immunity to dis-
order, and have spin locked perpendicular to the momentum[1]. As we will see in this
thesis, such states are characteristic of the topological state of matter, and will be
described in detail.

Topology is a mathematical branch concerned with the properties of geometrical ob-
jects that are preserved under continuous deformation. In ordinary language, these
are the attributes of a shape that we cannot change by only squeezing or expanding,
if we are not allowed to tear or punture the object. An orange is therefore topologi-
cally equivalent to a banana, but not to a doughnut, as the first cannot be deformed
continuously to make a hole in the middle. The hole in this case, plays the role of
a topological invariant. Similarly, topological insulators have properties that are pre-
served, even if we change the parameters in the Hamiltonian continously. A change in
a topological invariant is evidence of a topological phase transition. The difference be-
tween a topological phase transition and a normal phase transitions will be described
in subsequent sections. The first sign of topology in condensed matter physics was
found in 2D integer quantum hall systems, where the Hall conductance only takes
integer multiples of a conduction "quanta", i.e. σxy = ν e

2

h
, where ν is an integer. In

1982 it was shown that this integer (called the filling factor) was a topological invariant
[2]. This invariant has been shown experimentally to be an integer accurate to a 10−9

precision, and is an example of a type Z index (which can be any positive integer),
but topological insulators can also be type Z2 (which can only be 0 or 1, topologically
trivial or non-trivial). The quantum hall effect (QHE) occurs in systems in a magnetic
field and only in 2D, but in topological insulators, edge states can exist without an
external field. It is then called the quantum spin hall effect (QSHE), because of the
spin-momentum locking and can exist even in 3D systems.

The topological insulators are formed by elements having high atomic number Z,
as relativistic effects of the electrons are more prominent in heavier elements, and
they can play the role of the magnetic field. The bulk material is an insulator, in
which valence electrons are prohibited from conduction by a band gap. Because of the
Bulk-boundary correspondance a topological state has associated edge/surface states,
which have dispersions going from the valence band to the conduction band, hence
the name gapless. These are protected from disorder by time-reversal symmetry, but
it is possible to create a gap in the dispersion of the edge states. For example, one can
create a gap by introducing a superconductor to a surface, where Majorana fermions
can exist. These have the property of being their own anti-particles, and are of great
interest in the development of quantum computers[1].
In this thesis I will first describe a simple 1D model, which later will be generalized to
3D, and the focus will be on the characteristics of the edge states, and the criteria for
their existence. Surprisingly, this can all be described using the good old band theory
and ordinary quantum mechanics, so let us get started.
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2 1D Shockley model

2.1 The Hamiltonian for the system

In this section the 1-dimensional Shockley model will be treated (as in [3]), and the
criteria for the existence of edge-states will be derived. I will first note that all figures
in this thesis are self-made unless otherwise stated, , and all plots and calculations
are made with MathematicaTM. Let us consider a linear chain of atoms, with two
different atoms in the unit cell, A and B, depicted in figure 1. Interactions between
the electrons are neglected, and to begin with the spin degree of freedom will be
abscent from consideration. For simplicity, the wavenumber k will be a dimensionless
quantity throughout the analytical calculations.

Figure 1: Sketch of the 1D chain of atoms in consideration. The integer unit cell
coordinate is denoted by z, and the intracell and intercell hopping amplitudes are
denoted by t1 and t2 respectively. The grey box depicts the unit cell

The chain of atoms are connected by alternating tight-binding hopping amplitudes,
t1 and t2. These are a measure for the bond energy between two adjacent atoms,
determined by inter-atomic matrix elements. If t→ 0, it is impossible for an electron
to hop into neighbouring sites. If the hopping term exists between two atoms (t > 0),
electrons will stay on both of them, thereby lowering their kinetic energy. These
hopping amplitudes can be staggered, i.e. (t1 6= t2). To find the eigenstates of the
system, and the energy spectrum, I will analyze the corresponding Hamiltonian for
the system [3]. This can be written in a second quantized form as

H =
∑
z

Ψ†(z)
[
UΨ(z) + VΨ(z − 1) + V†Ψ(z + 1)

]
(1)

U =

(
0 t∗1
t1 0

)
V =

(
0 t∗2
0 0

)

Here t1 (intracell) and t2 (intercell) are the aforementioned tunneling amplitudes,
z is the unit cell coordinate and Ψ(z) is the spinor

Ψ(z) =

(
ψa(z)
ψb(z)

)
Where ψa(z) and ψb(z) are the wavefunctions on the A or B sublattice respectively.

In other words, Ψ(z) is the unit cell wavefunction, which contains the sublattice space
of A and B. The operator U accounts for the intracell hopping, as it only contains
t1 and acts on the same cell (only a Ψ(z)†UΨ(z) term occurs in the Hamiltonian).
Conversely, the operator V only contains t2 and acts on both adjacent cells (it couples
to Ψ(z − 1) and Ψ(z + 1) ).
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2.2 Energy spectrum and eigenstates

Like all solid-state systems, our chain of atoms can be divided into two regimes, the bulk
and the boundary. Firstly, the characteristics of the bulk will be described. To solve the
Hamiltonian in Eq. (1), it is a good idea to Fourier transform (which is always a good
idea when dealing with nearest neighbour coupling). We assume periodic boundary
conditions for the bulk, for simplicity. The Fourier transformation then takes the form

Ψ(z) =

∫ 2π

0

dk

2π
eikzΨ(k) (2)

Where our wavefunctions will now be a function of k, i.e. the crystal momentum.
Crystal momentum is like a wave envelope that describes how the function varies from
one unit cell to the next. Inserting this in Eq. (1) collapses the sum over z, and one
obtains

H =

∫ 2π

0

dk

2π

(
Ψ†(k)

[
U + Ve−ik + V†eik

]
Ψ(k)

)
=

∫ 2π

0

dk

2π
Ψ†(k)H(k)Ψ(k) (3)

Where H(k) is the bulk momentum space Hamiltonian for the system, acting on
the AB sublattice space. Using the expressions for U and V , it writes

H(k) =

(
0 t∗(k)
t(k) 0

)
, t(k) ≡ t1 + t2e

ik = t1 + t2q (4)

Where q = eik. The Schrödinger equation for this Hamiltonian thus becomes

H(k)Ψ(k) = E(k)Ψ(k) ⇔
(

0 t∗(k)
t(k) 0

)(
ψa(k)
ψb(k)

)
= E(k)

(
ψa(k)
ψb(k)

)
(5)

Solving this eigenvalue problem is straight-forward, and if t1 and t2 are assumed
real, the energy spectrum and eigenstates are

E(k) = ±|t(k)| = ±
√
t21 + t22 + 2t1t2 cos k Ψ(k) =

1√
2

(
ei arg[t(k)]

±1

)
(6)

Which corresponds to two particle-hole symmetric energy bands plotted in figure
2. Interestingly, one notices that the bulk eigenstates have equal probability of living
on either sublattice (〈ψa|ψa〉 = 〈ψb|ψb〉 = 1

2
), and it does not depend on the hopping

amplitudes.

2.3 Real space bulk eigenstates - analytical and numerical

To find the real space eigenstates for a finite system, one needs to impose the corre-
sponding boundary conditions. In the following, I will work with the atomic coordinate
x instead of the unit cell coordinate z. Because of inversion symmetry Ek = E−k, so
the general solution inside the crystal will be a superposition of the form [4]

Ψ±(x) = AΨ±(k)eikx +BΨ±(−k)e−ikx Ψ±(0) = Ψ±(N + 1) = 0 (7)
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Where N is the number of sites, and A and B are complex constants to be deter-
mined by the boundary conditions.

Figure 2: Plot of the symmetric bulk energy spectrum in Eq. (6) for t1 = 0.5
and t2 = 1. In general there will be a non-zero energy gap for staggered hopping
amplitudes (t1 6= t2), with the size B = |t1− t2|, and the maximum distance between
the bands is A = |t1 + t2|. The C-band is the conduction band, and the V-band is
the valence band. The latter will be completely filled for T → 0, up to the Fermi
energy EF (in this case at EF = 0), thus describing an insulator.

It should be noted that in this analysis, the lattice constant a is set to unit length.
The boundary conditions are made such that the wavefunction vanishes in the fictious
sites x = 0 and x = N+1. From this we get the quantization of the crystal momentum
to be kl = π

N+1
l, and the bulk wavefunctions are found using Eq. (7) and inserting

Eq. (6), which gives

Ψ±(x) = C

(
sin(klx+ arg [t(kl)])

± sin(klx)

)
Where C = 1√

〈Ψ|Ψ〉
is some overall normalization constant determined numerically.

The ± in the B-lattice function in the spinor is associated with E±. If the energy is
negative the two functions are of opposite amplitudes as seen in figure 3, where the
analytical solutions are plotted with the numerical calculations (more in Appendix A).

2.4 Edge states

To analyze the edge states, we first introduce a cut in the 1D chain and consider it
a half-infinite system for simplicity, as in figure 1. This corresponds to a cut in a
t2-link, so an A atom is exposed on the edge. The wavefunctions are now described
with the unit cell coordinate z, and boundary conditions are imposed, such that the
wavefunctions vanish at a fictious site z = 0 and z → +∞, i.e.

ψa(0) = 0, ψb(0) = 0 (8)
ψa(+∞) = 0, ψb(+∞) = 0 (9)
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(a) (1,+) (b)

(c) (-1,-) (d)

Figure 3: Plot of the analytical bulk solutions a and c together with the numerical
solutions b and d, for n = 30 lattice sites. The red colour is sublattice A and the blue
is sublattice B. The analytical solutions are denoted with (l,sign(E).). Additional
functions can be seen in Appendix E.

Something interesting happens when the hopping amplitudes are of equal strenth
|t1| = |t2|, as there now exist a k0 such that E(k0) = t(k0) = 0 from Eq. (6). A zero-
energy mode has come into existence! In this particular case k0 = π but in general it
is possible to have a zero-enery state for |t2| > |t1| as we see in Eq. (4)

t(k0) = t1 + t2e
ik0 = t1 + t2q0 = 0⇔ q0 = −t1

t2
(10)

This implies that for the zero-energy mode, k0 is a complex number. This may
seem spooky, but it is generally the case that there can exist solutions with complex
wavevectors inside the energy gap, and it turns out that these are situated at the
surface on a finite sized crystal [5], hence the name edge state. To find the wavefunction
for this state we solve the Schrödinger equation in Eq. (5) with E(k) = 0. The two
equations for the sublattices then decouple, and give

t(k)ψa(k) = (t1 + t2e
ik)ψa(k) = 0

t∗(k)ψb(k) = (t∗1 + t∗2e
−ik)ψb(k) = 0

Where we seek a non-trivial solution. In real space these equations become (using
Eq. (2))

t1ψa(z) + t2ψa(z + 1) = 0 (11)
t∗1ψb(z) + t∗2ψb(z − 1) = 0 (12)

Giving recursion relations for the wavefunctions at different values of z. Now, we
can find ψb(z) from Eq. (12) by utilizing the first boundary condition in Eq. (8). For
z = 1 we get
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t∗1ψb(1) + t∗2ψb(0) = t∗1ψb(1) = 0

And ψb(1) = 0 can be used for the equation for z = 2 giving ψb(2) = 0 and so on.
The conclusion is that ψb(z) = 0. The z − 1-term is not contained in the equation for
ψa(z), so this might give something. If we now look at Eq. (11) we get for z = 1

t1ψa(1) + t2ψa(2) = 0

If we set ψa(1) = 1 we get an equation similar to Eq. (10). We then identify
ψa(2) = q0, and plug this into the equation for z = 2

t1ψa(2) + t2ψa(3) = t1q0 + t2ψa(3) = 0⇔ t1 + t2ψa(3)q−1
0 = 0

Which again looks like Eq. (10), but now

ψa(3)q−1
0 = q0 ⇔ ψa(3) = q2

0

And if one continues, the solution for sublattice A becomes ψa(z) = qz−1
0 = and

Ψ0(z) is thus

Ψ0(z) = C

(
1
0

)
qz−1

0 , C =

(
−t22
t21 − t22

)− 1
2

, q0 = −t1
t2
, E0 = 0 (13)

Where the normalization constant is found by C = 1√
〈Ψ0|Ψ0〉

. This wavefunction

is plotted in figure 4, and we see that it decays exponentially into the bulk, with a
penetration depth ξ = 1/ ln |t2/t1| (appendix B). We can see how localized it is by
calculating the expectation value of z

〈z〉 =
∞∑
z=1

C2z
(
qz−1

0

)2
=

t22
t22 − t21

This value grows with increasing t2, so the edge state becomes more localized for
small t2. Also noted is the fact that there is a divergence at t1 = t2, i.e. the critical
value where the edge state disappears.

2.5 Shockley criterion and the winding number

The wavefunction in Eq. (13) has to satisfy the second boundary condition Eq. (9) as
well, which is that Ψ(z) has to vanish at infinity. This only happens if

|q0| =
|t1|
|t2|

< 1 (14)

Otherwise we would have runaway solutions. Eq. (14) is also known as the Shock-
ley criterion which states:
In the 1D tight-binding model with alternating tunneling amplitudes, the
edge state exists if the bond of the greater magnitude is broken at the bound-
ary.[3]
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Figure 4: Plot of the wavefunction for the edge state in Eq. (13) on both sublattices,
as a function of the unit cell coordinate z for the first 10 unit cells. Here t1 = 0.6
and t2 = 1, and the penetration depth is ξ = 1.96.

So if we break the t2 link, the edge state will exist if |t2| > |t1| and vice versa. An
interesting consequence is that the edge state only lives on the sublattice exposed to
the edge. The Shockley criterion can also be stated in terms of a Winding number.
When k sweeps the Brillouin zone, t(k) defines a contour in the complex plane C
(see figure 5f-5j). This is equivalent to the contour of t(q) for |q| = 1. As previously
mentioned, if this contour contains the origin, i.e. t(q0) = 0 the edge state exists. This
can be formulated by the contour integral

W =
1

2πi

∮
C

dq
d

dq
ln [t(q)] (15)

Which has the property (shown in Appendix C) that if t(q0) = 0 is inside the
contour C we get W = 1 and if not we get W = 0. In other words, if |t2| < |t1|
the contour cannot "reach" the origin (see figure 5f and 5g ) which is required for the
existence of the edge states. This is summarized by

W =

{
0 No edge state exists (|t2| < |t1|)
1 Edge state exists (|t2| > |t1|)

(16)

This winding number can also be expressed using the bulk Hamiltonian eigenfunc-
tions Ψ(k) from Eq. (6), by what is called the Zak phase which can be understood in
the following way. If the Hamiltonian undergoes an adiabatic evolution, it will change
the eigenstates by a phase factor. This phase has a contribution from the time evolu-
tion and one from the Berry phase. If the variation is cyclical in a parameter (e.g. the
first Brillouin zone) this phase can become an observable invariant. The Zak phase is
the Berry phase of the first Brillouin zone[6], and is given by

Z =
1

i

∮
dk〈Ψk|∂kΨk〉

By using the bulk eigenstates in Eq. (6), and denoting φ ≡ arg[t(k)] one gets (proved
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in [6])

Z =
1

2i

∮
i
dφ

dk
dk =

∆φ

2
=

{
π If t(k) encloses the origin
0 Otherwise

Where ∆φ is the variation in φ over the Brillouin zone. So we see, the Zak phase is
just π times the winding number of t(k) around the origin. The fact that the Zak
phase is calculated with the bulk Hamiltonian eigenfunctions, but tells if an edge state
exists, is due to what is called the Bulk-boundary correspondance, i.e. characteristics
of the physics on the edge can be determined by properties of the bulk.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5: a-e are dispersion relations for five different settings of hopping amplitudes
(compare figure 2): (a): t1 = 1, t2 = 0; (b): t1 = 1, t2 = 0.5; (c): t1 = 1, t2 = 1; (d):
t1 = 0.5, t2 = 1; (e): t1 = 0, t2 = 1. Plotted in f-j are the complex contours of t(k)
as the wavenumber k sweeps the Brillouin zone, k = 0 → 2π. Interestingly b) and
d) look identical, and one could easily be tricked into thinking they were the same
insulator, but a topological invariant (the winding numer) distinguishes them.

2.6 Topological phase transitions

Phase transitions can be decribed by Landau Theory, which describes the spontaneous
symmetry breaking of a system. For example, a liquid has complete rotational sym-
metry, while it only has discrete rotational symmetry after the transition to a crystal
has occured. But in the case of figure 5, when we vary the parameters through the
critical value, no symmetry is broken, so how can a phase transition occur? The tran-
sition is said to be a Topological phase transition. It is different from our everyday
phase transitions, for example the water→ice transition (or in the lives of physicists:
paramagnet→ferromagnet or metal→superconductor) which can be called "Landau-
like". Here, the transition is not between two distinct symmetries, but between two
different topological phases, called the trivial phase and the topological phase (or non-
trivial phase) [7]. These two phases can be described by topological invariants, an
example of this is the winding number discussed section 2.5.

One can adiabatically deform a Hamiltonian, which is to change the parameters with-
out closing the bulk gap, and the new Hamiltonian is then said to be connected to the
original. For this to be true the topological invariant cannot change. If the topological
invariant changes between two interfaces, a topological transition has occurred, the
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bulk gap has at some point been closed, and gapless edge states now exists. This is an
example of the Bulk-boundary correspondance. In the 1D case, all Hamiltonians with
|t2| > |t1| are adiabaticly connected and non-trivial, while |t2| < |t1| are Hamiltonians
in the trivial phase.

2.7 Finite sized system - Numerical solution to edge states

In the analytical calculations in previous sections, a semi-infinte system was consid-
ered. Only one edge was exposed, but one can easily imagine that interesting things
happen when including the second boundary. The analysis of this was done numeri-
cally using the real space tight-binding Hamiltonian in Appendix A. In figure 6, the
energy spectrum is shown for different values of the hopping amplitudes t1 and t2. We
see the expected result, edge states exists for figure 6b with |t2| > |t1| and not for 6a.
There are two zero energy modes, one for each edge, and as they are degenerate the
eigenstates will be in the form of bonding and anti-bonding states shown in Appendix
D. As mentioned before, the edge states decay into the bulk with penetration depth
ξ = 1/ ln |t2/t1|, which means that there will be an exponential overlap (∼ e−

ξ
L where

L is the system length) between the two edge states. This overlap becomes larger for
smaller system sizes and will create a gap (hybridization), just as in 6c. In figure 16
in Appendix D, the energyspectrum is plotted, as a function of hopping amplitudes,
where the same conclusion applies.

(a) t1 = 1, t2 = 0.7
and n = 60

(b) t1 = 0.7, t2 = 1
and n = 60

(c) t1 = 0.7, t2 = 1
and n = 12

Figure 6: Energyspectra for different values of t1 and t2. The Shockley criterion is
not sattisfied in a) so we observe no zero energy edge states, while in b) there are two
- one for each edge. a) and b) are the same size systems (n = 60 lattice sites) while
c) is only n = 12, so the edge states will hybridize, creating a gap between them.

One weird effect is that even though the constituent particles are electrons, there
can exist quasi-particles in the system that carry a fraction of an electronic charge [7].
If we fill the system up with electrons to the Fermi energy EF = 0 in the hybridized
case, only the negative energy edge state will be filled. The state hosts 1 electron,
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but is placed on either side of the system, so for a sufficiently large system each edge
"carry" 1

2
e charge. This quasiparticle can also be localized on domain walls of the

system[7]. This effect is also observed in the biological system Polyacetylene but in
this case solitions take the role of the electrons1.

3 3D Shockley model
The 1D model, discussed in sections 2 can be generalized to 3D by considering the
sublattices A and B as two-dimensional atomic layers instead of 1D chains. This is
sketched in figure 7, where the layers are perpendicular to the z-direction. In this
case, everything in the Hamiltonian in Eq. (34) is now dependent on the in-plane
momentum p = (px, py). To distinguish between the z-direction and the xy − plane,
pz will throughout this thesis be denoted by k. The Hamiltonian includes on-site
energy (in this case in-plane), so can be written on the same form as in Appendix F

H =

(
h(p) t∗(k,p)
t(k,p) −h(p)

)
(17)

Where the off-diagonal tunneling amplitudes

t(k,p) = t1(p) + t2(p)eik (18)

are now dependent on the in-plane momentum p. The intralayer Hamiltonian is
represented by h(p) and is assumed to not depend on the out-of-plane momentum
k. This means that there is no coupling between identical sublattices across the unit
cells, i.e. no tunneling from A to A or B to B. Similar to the 1D case, a cut of
the t2 link is introduced. For some fixed p, the problem reduces to the 1D case
(which will also become apparent later on), where the same conclusions hold, e.g. the
Shockley criterion from Eq. (14) still has to be obeyed for there to be gapless edge
states. Therefore the p dependence of t1(p) and t2(p) gives a restriction for where in
the (px, py) plane an edge state exists. This can be described by Vortex lines in 3D
momentum space described in section 3.1.2.

3.1 Rashba spin orbit coupling

When including the spin degree of freedom in the Hamiltonian in Eq. (17), h(p) and
t(k,p) become 2 × 2 matrices, so H becomes a 4 × 4 matrix, and the wavefunctions
become 4-spinors, including both spin-space and sublattice space. The Hamiltonian
can be written in a ingenious form, similar to the 1D case with on-site energies in
Appendix F from Eq. (36), with the Pauli vector τ = (τx, τy, τz). In this case, the
dot product consists instead of Kronecker products between the components of τ and
d(k,p) = (σ0Re[t(k,p)], σ0Im[t(k,p)], h(p)). The vector d(k,p) thus contains the
off-diagonal terms t(k,p) and the spin dependent in-plane Hamiltonian h(p)

H = τ · d(k,p) =
∑
i

τi ⊗ di(k,p) Ψ(k,p) =


ψa↑
ψa↓
ψb↑
ψb↓

 (19)

1Fractional charge from Topology in Polyacetylene and Graphene - R. Jackiw, MIT



3.1 Rashba spin orbit coupling 11

Figure 7: 3D version of the system in
figure 1, described by Hamiltonian Eq.
17. The Rashba vector in the spin-orbit
coupling is staggered on the sublattices
n = ±ẑ.

The spin dependence can affect the
energies through the so-called Rashba ef-
fect. This is a momentum dependent
spin splitting of bands prevalent in 2D
condensed matter systems, when inver-
sion symmetry is broken2. The in-plane
Hamiltonian h(p) when including the
Rashba spin orbit coupling becomes [3]

h(p) = ν (σ × p) · ẑ
= ν [σxpy − σypx]

= ν

(
0 py + ipx

py − ipx 0

)
Where ν is in units of velocity. By

assumption, the off-diagonal term t(k,p)
is proportional to the unit matrix, i.e. has no spin dependence. In the following,
the (k,p) dependence of t will be supressed, for notational convenience. The total
Hamiltonian is thus

H = τx ⊗ σ0Re[t] + τy ⊗ σ0Im[t] + τz ⊗ ν(σxpy − σypx)

=


0 i ν|p|e−iϕp t∗ 0

−i ν|p|eiϕp 0 0 t∗

t 0 0 −i ν|p|e−iϕp
0 t i ν|p|eiϕp 0

 (20)

Where I have rewritten px + ipy = |p|eiϕp . The |p| is the magnitude of the in-plane
momentum, and ϕp corresponds to the angle from the x-axis to p. The energyspectrum
is found in Appendix G to be

E± = ±
√
|t|2 + ν2|p|2 (21)

Which reduces to the 1D energies from Eq. (6) for p→ 0. When t = 0 the spectrum
is gapless, with dispersion

E0 = ±ν|p|

Surface states with this dispersion exist only if the Shockley criterion is obeyed, i.e. for
those p where |t2(p)| > |t1(p)|. This case is shown in figure 8, where the transparent
Dirac cones are dispersions for the surface states. This dispersion is the same linear
dispersion as for masless Dirac fermions (the Dirac equation gives surface states living
on the interface between systems with negative and positive mass, with dispersion
εp = ±v|p| 3). The spinor eigenfunctions of Eq. (20) are

2New perspectives for Rashba spin-orbit coupling - Nature Materials 14, 871-882, 2015 - A. Man-
chon, H.C. Koo et al.

3Topological insulators and the Dirac equation - Shun-Qing Shen, Wen-Yu Shan et al.
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Ψ1
± = c



E±
t

−i ν|p|eiϕp
t

1
0

 , Ψ2
± = c



i ν|p|e−iϕp
t
E±
t

0
1

 , c =
1√

2
(

1 + ν2|p|2
|t|2

)
(22)

Which reduces to the 1D spin-degenerate bulk eigenfunctions for p → 0 (see ap-
pendix H).

(a) |t2| < |t1| (b) |t2| = |t1| (c) |t2| > |t1|

Figure 8: Plots of energyspectra as a function of in-plane momentum, for k = π.
If |t2| < |t1| no surface states exists. When |t2| = |t1| the Hamiltonian undergoes
a topological phase transition, and for |t2| > |t1| surface states exist with linear
dispersion, illustrated by the transparent Dirac cones. The trivial phase a) could
represent vacuum, and the c) phase a TI. At the boundary between these to cases,
there will be a closing of the gap which gives rise to the surface states.

3.1.1 Surface state wavefunction

To find the wavefunction for the gapless state, we consider again the cut of a t2
link, as in figure 7, perpendicular to the ẑ direction. The x̂ and ŷ directions are
considered infinite, and will thus have Bloch-wave solutions to the Hamiltonian, due
to translational symmetry in the crystal, thus px and py are good quantum numbers.
The interesting part of the total wavefuntion is the z-dependence, so the ansatz is that
this will be of the form

Ψ0
py ,pz(z) = ψ0

py ,pze
ik0z (23)

Where ψ0
py ,pz is some z-independent 4-spinor, to be found in the following. The

wavenumber k0 is expected to be imaginary, as to get the exponentially decaying
function into the bulk. We find k0 by solving the equation

t(k0,p) = t1(p) + t2(p)eik0 = 0⇔ eik0 = −t1(p)

t2(p)
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This can then be inserted into Eq. (23), normalized such that Ψ0
py ,pz(1) = ψ0

py ,pz , and
denoted − t1(p)

t2(p)
≡ q0(p) similar to the 1D case. We get

Ψ0
py ,pz(z) = C · ψ0

py ,pz · q0(p)z−1

Where C is a normalization constant. As previously mentioned, the 3D case reduces
to the 1D case for a fixed value of the in-plane momentum p, and we can see the two
cases have the same z-dependence. The surface state is localized on the A-sublattice
planes, and exists when the Shockley criterion |t2(p)| > |t1(p)| is satisfied [3]. ψ0

py ,pz

can then be found by analyzing the Schrödinger equation for ψb↑ = ψb↓ = 0. This is
done in Appendix I. The full beast is then

Ψ0
py ,pz(z) = C


1

∓ieiϕp
0
0

 q0(p)z−1, C =

(
−2t2(p)2

t1(p)2 − t2(p)2

)− 1
2

(24)

Which is very similar to the 1D edge states (see Eq. (13)), where the extra factor
2 in C is due to normalization of the spinor). The wavefunction in Eq. (24) contains
the two p-dependent hopping amplitudes t1(p) and t2(p), but these are determined by
the specific material used. For some p the z-dependence of this wavefunction is just
like the 1D version in Eq. (13), and will thus look like figure 4. The interesting spin
structure of Ψ0

py ,pz(z) will be analyzed in section 3.1.3.

3.1.2 Vortex lines in 3D momentum space

Figure 9: The blue curve corresponds
to t(k,p) = 0, while γ1, γ2 and γ3 are
contours around which one can calculate
the phase winding. The shaded area in
the (px, py)-plane is where the Shockley
criterion is satisfied, hence surface states
exists in this region. (Picture is from [3])

As we see from Eq. (24), the criterion for
existence of surface states might only be
satisfied in a certain region of the (px, py)-
plane, in order to sattisfy the boundary
conditions. To find this region, we can
visualize 3D-momentum space and use
the concept of the previously discussed
Winding number from Eq. (15). We
know that the gapless surface states ex-
ist when t(k,p) = 0, but t(k,p) is in
general a complex number. This gives
us two equations Re [t(k,p)] = 0, and
Im [t(k,p)] = 0. In 3D momentum space,
two equations will define a line (see figure
9), which will be referred to as a Vortex
line [3].

If we use the integral from Eq. (15),
and generalized it to 3D by

W (γ) =
1

2πi

∮
γ

dl
d

dl
ln[t(k,p)]

Evaluated around a closed curve γ, we get the winding number. Here, l = (k,p)
is a parametrisation used for simplicity. For example, the integral around the curve
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γ3 containing the vortex line (figure 9), is W (γ3) = 1 just like the 1D case seen in
Eq. (16), and Appendix C). The periodicity of the Brillouin zone allows us to define
a closed contour γ1 and γ2 by varying k for a fixed (px, py) over the Brillouin zone.
These contours can be merged into each other, such that γ1 and -γ2 becomes γ3. We
can then conclude

W (γ3) = W (γ1)−W (γ2)

And from W (γ1,2) ≥ 0 we deduce that W (γ1) = 1 and W (γ2) = 0. So by Eq. (16), a
non-zero winding number is required for the existence of a surface state, and therefore
surface states exists in the shaded area in figure 9, i.e. inside the area enclosed by the
projection of the vortex line. We will see in subsequent sections that this domain can
include Dirac points, and that the number of Dirac points included determines if the
TI is in a weak phase or a strong phase.

3.1.3 Helical surface states

Figure 10: Sketch of the spin structure
of the surface state wavefunctions in Eq.
(24), superpositioned on the energy spec-
trum. The starting point of the arrows
are the momenta, while the arrow indi-
cates the direction of the spin. These are
calculated in Appendix J.

We can now show why the wavefunc-
tions in Eq. (24), have the character-
istics of the QSHE. The spin character-
istics are calculated in Appendix J, and
gives the spin structure shown in figure
10. We see that the spin is locked to
the in-plane momentum, hence the name
Helical surface states4. Electrons travel-
ling in opposite directions will have op-
posite spin, showing time-reversal sym-
metry (also discussed in Appendix M).
Therefore they are protected from any
time-reversal symmetric pertubation[8]
as long as it is small enough. One way to
understand it is by considering an elec-
tron undergoing backscattering. Looking
at figure 10, the Fermi surface will be a
cross section of this energyspectrum. If
an electron reverses its direction of mo-
tion, the opposite moving state will al-
ready be occupied, so by Pauli’s exclusion
principle, this cannot happen.

3.2 Shockley model for a diamond lattice

In this section, the model described so far will be used for a particular example, namely
for the diamond lattice structure, with a Hamiltonian in the same form as Eq. (17).
We consider the crystal structure shown in figure 11, which is a particular orientation
of the diamond lattice, and all the relevant vectors used, are depicted as well. The
δi are in-plane vectors, which can be used to determine the p-dependence of the off-
diagonal function t(k,p), which as we have seen, contains most of the information
about the surface states.

4From particle physics, the helicity is the projection of a particles spin along its momentum
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Figure 11: Sketch of the diamond lattice structure, with the hopping amplitudes
used in the calculations. The A (red) and B (blue) are sublattice planes. The δi are
in-plane normalized translation vectors used to determine t(k,p). (Figure is from
[3])

The diagonal spin-orbit Hamiltonian h(p) is given by [3]

h(p) =
2
√

2

3
νSO

∑
i,j,l=1,2,3

εijl (σ · [ai × aj]) sin(pδl) (25)

Where νSO is the strength of the spin-orbit interaction, εijl is the Levi-Civita sym-
bol defined as in Appendix K. The nearest-neighbour vectors an, n = 1, 2, 3, and
calculation of the energy spectrum are shown in Appendix L. As seen before, the en-
ergy spectrum of the in-plane Hamiltonian is the same as for the gapless surface states
E0(p)

E0(p)

νSO
=± (

32

9
[
3

4

(
sin2(pδ1) + sin2(pδ2) + sin2(pδ3)

)
− 1

2
(sin(pδ1) sin(pδ2) + sin(pδ2) sin(pδ3) + sin(pδ3) sin(pδ1))])

1
2 (26)

Figure 12: Particle-hole symmetric en-
ergy spectrum for the in-plane Hamilto-
nian in Eq. (25) as a function of in-plane
momenta px and py, for νSO=1. Notice
the Dirac cones at the TRIM points.

This spectrum is plotted in figure 12.
Dirac cones are found at time-reversal-
invariant momenta (TRIM) points p∗ ∈
{Γ,M1,M2,M3} (Appendix L). These
points in the Brillouin zone have the
property that time-reversal (p → −p)
brings them to points which can related
to the orignal points via reciprocal lattice
vectors, i.e. the same crystal momentum
(−p+G = p). The off-diagonal function
t(k,p) is found in [3] to be

t(k,p) = t1(p) + t2e
ik

t1(p) = t1(1 + e−ip·δ1 + eip·δ2)

Which describes the tunneling between
sublattice planes A and B. Notice that
the momentum-dependent function t1(p)
includes the constant tight-binding amplitude t1, but the two are distinct. It is more
convenient to analyze the modulus of this quantity given by
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|t1(p)|
|t1|

=

√
t1(p)∗t1(p)

|t1|
=
√

3 + 2 cos(pδ1) + 2 cos(pδ2) + 2 cos(pδ3) (27)

In section 3.1.2, it was shown that the criteria for excistence of surface states
t(k,p) = 0, defined a vortex line in momentum space, which projection on the (px, py)-
plane defined the area where surface states exists. Given the form of t(k,p) this equa-
tion is equivalent to |t1(p)| = |t2|, which determines the boundary. Consequently, as
in previous sections, surface states only exist when the following condition is sattisfied

|t1(p)| < |t2| ⇔
|t1(p)|
|t1|

<
|t2|
|t1|
≡ α (28)

The condition |t1(p)|
|t1| < α is shown in figure 13 for various values of α. The Dirac

points are shown as well, and whether these are included in the allowed region or not,
can determine which phase the TI is in. Whenever an odd amount of Dirac points is
included the TI is said to be in a strong topological phase, and for an even number
of points, the TI is in the weak phase [9]. In this analysis a cut of the t2-link was
assumed, but if a t1-link is cut at the boundary, the converse of Eq. (28) is true, i.e.
surface states exist for |t1(p)|

|t1| > α. In figure 13 for this case, the white area is thus
where the surface states exist. All these conclusions are summarized in table 1. An
even number of Dirac cones can disappear under certain conditions, but for an odd
number there will always be at least one Dirac cone. This is the reasoning behind
the nomenclature for the phases, and will be discussed again in section 4, where these
phases can be attributed to the Z2 topological indices.

t2 cut t1 cut TI phase

0 < α < 1 - M1,2,3,Γ Weak
1 ≤ α < 3 M1,2,3 Γ Strong

3 ≤ α M1,2,3,Γ - Weak

Table 1: This table summarizes the conclusions made in this section. Choosing which
link is broken at the boundary, one can then determine the included Dirac points for
various values of α, and conclude which TI phase the solid is in.

3.3 External magnetic field

In Appendix M the concept of time-reversal symmetry is discussed. By adding an
external magnetic field, one can break time-reversal symmetry, and the surface states
described in previous sections are no longer symmetry-protected against disorder. If
the magnetic field is applied in the ẑ- direction, and we assume that this will not affect
the hopping amplitudes t1(p) and t2(p) (i.e. the lattice will not be distorted, which
requires large field strengths), the total Hamiltonian can be written as

H = τx ⊗ σ0Re[t] + τy ⊗ σ0Im[t] + τz ⊗ [ν(σxpy − σypx) + g∗µBBzσz]

Where g∗ is the effective g-factor. By the same method used to obtain Eq. (21), the
bulk- and surface spectrum is found to be
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(a) α = 1/3 (b) α = 2/3 (c) α = 1

(d) α = 1.1 (e) α = 2 (f) α = 3

Figure 13: Illustration of the region in the (px, py)-plane where surface states exists,
shown in blue. The red points, marked in a), are the TRIM points of the BZ, and
these have associated Dirac cones.

E± = ±
√
|t|2 + ν2|p|2 + (g∗µBBz)2

E0 = ±
√
ν2|p|2 + (g∗µBBz)2

Which has opened a gap in the dispersion for the surface states of ∆Z = 2g∗µBBz.
Where before the surface could be decribed as massless Dirac fermions, now they are
massive in the sense that the gap gives a curvature in the dispersion, giving rise to an

effective mass m∗ = ~2
(
d2E
dk2

)−1

. The Quantum Anomalous Hall effect (QAHE) can
be realized in this system, which is a version of of the QHE without the need of a
strong magnetic fields5.

4 Topological invariants
As has been mentioned in previous sections, the role of topology in condensed mat-
ter systems is expressed in terms of topological invariants. In mathematics, this can
for example be expressed in the Gauss-Bonnet theorem [10], relating the integral of
the Gaussian curvature of a 2D object embedded in 3D, to its genus (i.e. number of
holes). This number is a topological invariant which cannot change under continuous
deformation.

5Chiral Surface Modes in Three-Dimensional Topological Insulators - Journal of the Physical
Society of Japan 85, 053707 (2016) - K. Hattori and H. Okamoto
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The topological invariants in condensed matter physics are similar, but describe more
abstract spaces. The Gaussian curvature is generalized to a curvature form called
the Berry curvature, which can be thought of as a local gauge field connected with
the Berry phase, similar to the vector potential in electromagnetism [11]. We have
seen that the topological invariants have associated symmetry-protected gapless sur-
face states, which is a demonstration of the Bulk-boundary correspondance. These
invariants can be used as a tool to predict what kind of materials that are topological
insulators. This section will decribe how to determine the symmetry class of a system,
and thus find the corresponding topological classification[9], which topological invari-
ant can the TI be classified with.

The symmetry classes seen in the figure in Appendix N, are defined by the pres-
ence/absence of time reversal symmetry Θ (TR), particle-hole symmetry Ξ (PH) (also
known as charge conjugation symmetry) and chiral symmetry Π = ΞΘ (C) (also
known as sublattice symmetry), the latter of which is the combination of the first two.
These symmetries are present if the bulk momentum space Hamiltonian H obeys the
following transformations [12]

ΘH(k)Θ−1 = H(−k) TR (29)
ΞH(k)Ξ−1 = −H(−k) PH (30)
ΠH(k)Π−1 = −H(k) C (31)

Where one can then determine the symmetry class by finding Θ2, Ξ2 and Π2. Once
you have determined the symmetry class of a TI, you can find the topological charac-
teristic in the periodic table of topological systems, shown in Appendix N. No topology
means 0, the Z class is a topological invariant that can take any integer value, and a
Z2 invariant can only take the value 0 or 1 (trivial/non-trivial). An example could be
the TKNN6 invariant from the 2D QHE. In this case, which according to Appendix
N is class A (no symmetry), with d = 2, the classification is Z, which is precisely the
filling factor in the quantized Hall conductance σxy = ν e

2

h
, related to the number of

filled Landau levels. The QSH phase which we have seen in action in 3D topological
insulators, can be differentiated from an ordinary band insulator by the so-called Z2

topological invariant. For 3D topological insulators there are four Z2 invariants needed
to describe the system, namely (ν0; ν1, ν2, ν3) [9]. The ν0 invariant distinguishes be-
tween the weak TI phase (ν0 = 0) and the strong TI phase (ν0 = 1), already seen in
section 3.2. Here, the spectrum of surface states in the strong phase, included an odd
amount of Dirac points, while the weak contained an even amount. So one might ask
the question, why does an odd number of Dirac cones imply that the TI is strong?
This can be argued from figure 14, which is a plot of the edge state dispersion between
two TRIM points ΓA and ΓB in a Θ-invariant 2D insulator (Θ is the operation of
time-reversal defined in Appendix M).

Depending on the specifics of the Hamiltonian near the edge, one can have edge states
within the gap. We know from Kramers theorem that these are two-fold degenerate at
the TRIM points, due to E(k) = E(−k). Away from these points, spin-orbit coupling
will split the degeneracy into two levels. There are two ways in which states at ΓA can
connect to states at ΓB. One is depicted in figure 14a, where they connect pairwise,

6Named after Thouless-Kohmoto-Nightingale-den Nijs
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and the Fermi energy EF thus crosses an even number of times, or not at all. In this
case the bound states can be "pushed" out of the energy gap, by adiabatically chang-
ing the Hamiltonian, thus eliminating the edge states. In figure 14b, this cannot be
done, and the Fermi energy crosses an odd number of times. Hence, the odd number
of crossings is topologically protected thereby describing the strong topological phase
[9].

Now that I have described the ν0 invariant, what about the other three? In the weak
phase ν0 = 0, the system can be thought of as stacked 2D QSH states in the direction
of a reciprocal lattice vector given by the three remaining invariants Gν =

∑3
i νibi. The

(ν1, ν2, ν3) are interpreted as Miller indices, explained in Appendix Q. This analogy is
lost for ν0 = 1, which describes an entirely unique topological phase. The method for
finding the Z2 invariant is described in Appendix O.

Figure 14: Electron dispersion between TRIM points ΓA and ΓB [13]. In a) the
Fermi energy EF crosses the edge states an even number of time (weak phase,
ν0 = 0), while in b) it crosses an odd number of times (strong phase, ν0 = 1).
(Picture taken from [13]).

As an example, the symmetry class of the 1D Hamiltonian from Eq. (4) is de-
termined in Appendix P. By this method one can determine if a Hamiltonian can be
topologically non-trivial, and thus find new materials that are topological insulators.
Some TI’s were theoretically predicted prior to experimental observation, such as in
Graphene ([8]), HgCdTe quantum well structures ([14]), and in Bi1−xSbx ([9]). When
searching for new materials, a good place to look are materials including atoms with
high atomic number Z. This is because heavy atoms have larger relativistic effects to
the energyspectrum, necessary to cause band-inversion [13]. For example7, SO scales
with Z4. In normal insulators (or even vaccum) the conduction band is comprised of
s-like electrons and valence band of p-like electrons[13]. Relativistic corrections, like
spin-orbit coupling, the Darwin term, the mass-term etc., can be derived by taylor
expanding the relativistic Dirac equation in the parameter v

c
. These can cause the s-

and p-bands to swap, so that the filled band consists of p-electrons, and this inverted
state can be identified with the topological state. For the bands to invert, there must
be a place where they intersect, i.e. the band cross at the boundary where the gapless
edge states exists. Most litterature state that the spin-orbit correction is the most
important relativistic term for the existence of topological insulators, but more recent

7Atomic Physics -Christopher J. Foot - Oxford university press 2005
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work states that this is not the case8.

The most prominent candidate recently discovered is one of the Second generation
materials Bi2Se3 [15], which has a simple Dirac cone surface spectrum and a large
band gap of ≈ 0.3eV (estimate taken from [15] at the Γ point), indicating that it can
show topological features even at room temperature! (0.3eV

kB
= 3480K). In [3] it is

argued that Bi2Se3 is indeed a strong TI, which can be decribed with the Shockley
model utilized in this thesis. Amazingly, this simple model can describe fairly complex
systems, and it will be very exiting to see which topological quantum systems will be
found in future work, theoretically or experimentally. Maybe one day a topological
insulator at room temperature will even be found in common materials in nature.

5 Conclusion
In this thesis I have described a simple model for topological insulators, called the
Shockley model. The main focus has been on the existence of symmetry protected
edge/surface states, and how these relate to the topological characteristics. Firstly,
the one dimensional system was described by solving the Schrödinger equation for the
relevant Hamiltonian, and the analytical solutions were compared to the numerical
results. This gave the basis for further analysis, which was the search for zero energy
edge states, and the criteria for their existence. Some arguments were given for the
topological nature of the system, and finite size effects were discussed. This model
was then generalized to three dimensions, where a Rashba spin orbit coupling term
was added. The new 3D wavefunctions showed similarities to the 1D case, while also
exhibiting spin-momentum locking, and immunity to backscattering by time-reversal
symmetry. The criteria for existence of surface states were shown, and as an example,
the model could then be used to analyze a diamond lattice structure. Some exotic
properties arised when introduced to an external magnetic field, which was briefly
discussed. Finally, the concept of topological invariants was introduced, and the recipe
for finding out which systems can be topological insulators was discussed.

6 Acknowledgements
I would like to thank my advisor Jens Paaske for the inspiration to this project, and
for helping whenever a problem ensued. It has been a very exciting time, and the
introduction to topics in condensed matter research has been much appreciated. I
would like to thank Marieke van Beest and Gorm Ole Steffensen for reading my thesis,
and giving valuable feedback. Finally, I would like to thank the CMT group for having
me, and to the lunchclub for the everyday entertainment.

7 References
[1] Shun-Qing Shen. The family of topological phases in condensed matter. National Science

Review., 2013.

8Band inversion mechanism in topological insulators: A guideline for materials design Phys. rev.
B 85, 235401 (2012)– Z. Zhu, Y. Cheng et al. -



7 References 21

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance
in a two-dimensional periodic potential. Phys. Rev., 49(405), 1982.

[3] Sergey S. Perchgova and Victor M. Yakovenko. Schockley model description of surface states in
topological insulators. Phys. Rev. B, 86(075304), 2012.

[4] William Shockley. On the surface states associated with a periodic potential. Phys. Rev., 56,
1939.

[5] Charles Kittel. Introduction to solid state physics. Wiley, 2005.

[6] P. Delplace, D. Ullmo, and G. Montambaux. The zak phase and the existence of edge states in
graphene. Phys. Rev. B, 84(195452), 2011.

[7] J. K. Asbóth, L. Oroszlány, and A. Pályi. A short Course on Topological Insulators. Springer,
2015.

[8] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev. Letters, 95(226801),
2005.

[9] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions. Phys. Rev.,
98(106803), 2007.

[10] C. L. Kane. Topological Band Theory and the Z2 invariant. Elsevier, 2013.

[11] Andrei Bernevig and Titus Neupert. Topological superconductors and category theory. 2015.

[12] J. C. Y. Teo and C. L. Kane. Topological defects and gapless modes in insulators and supercon-
ductors. Phys. Rev. B., 82(115120), 2010.

[13] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. RevModPhys, 82(3045), 2010.

[14] B. Andrei Bernevig and Shou-Cheng Zhang. Quantum spin hall effect. Phys. Rev. Letters,
96(106802), 2006.

[15] Haijun Zhang and Chao-Xing Liu et al. Topological insulators in bi2se3, bi2te3 and sb2te3 with
a single dirca cone at the surface. Nature Physics, 5(438), 2009.

[16] Liang Fu and C. L. Kane. Topological insulators with inversion symmetry. Phys. Rev. B.,
76(045302), 2007.

[17] J. J. Sakurai and J. J. Napolitano. Modern Quantum Mechanics. Pearson, 2014.

[18] K. F. Riley and M. P. Hobson. Essential mathematical methods. Cambridge, 2011.



22

Appendices
A Real space representation to the 1D Hamiltonian
If one writes out the Hamiltonian from Eq. (1) in a real space basis, e.g. for N = 3
unit cells, it reads

H =


0 t∗1 0 0 0 0
t1 0 t2 0 0 0
0 t∗2 0 t∗1 0 0
0 0 t1 0 t2 0
0 0 0 t∗2 0 t∗1
0 0 0 0 t1 0

 (32)

which has non-zero entries on each side of the diagonal, corresponding to nearest neigh-
bour coupling. The diagonal is zero, because of the abscence of on-site potentials in
this model.

B Penetration depth of edge states
The penetration depth ξ is defined at the depth, where the edge state ψa(z) has decayed
to e−1 of its initial value. By plugging in

ψa(z + ξ) = e−1ψa(z)⇔ qz+ξ−1
0 = e−1qz−1

0 ⇔ qξ0 = e−1(
−t2
t1

)ξ
= e⇔

∣∣∣∣∣
(
−t2
t1

)ξ∣∣∣∣∣ = e⇔
∣∣∣∣t2t1
∣∣∣∣ξ = e⇔ ξ ln

∣∣∣∣t2t1
∣∣∣∣ = 1⇔ ξ =

1

ln
∣∣∣ t2t1 ∣∣∣

C The winding number
The winding number in section 2.5 was expressed using the following contour integral

W =
1

2πi

∮
C

dq
d

dq
ln [t(q)]

If we calculate the integrand using the chain rule, we get

W =
1

2πi

∮
C

dq
t′(q)

t(q)

Which has a pole in q = q0. Therefore, if this pole is not contained in the contour
C, as in the cases in figure 5f-5h, we get W = 0 according to Cauchy’s theorem[18]. If
the pole is contained in C, as in figure 5i and 5j, we instead use the residue theorem.
The fact that the integrand is of the form g(q)

h(q)
and q = q0 is a simple pole, simplifies

the calculation

W =
1

2πi
2πi
∑
j

Rj = R(q0) =
g(q0)

h′(q0)
=
t′(q0)

t′(q0)
= 1
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So to sum up,

W =

{
0 No edge state exists
1 Edge state exists

D Edge state results - Numerical analysis

(a) Even state (b) Odd state

Figure 15: Plot of the numerical edge states as a functions of lattice site coordinate,
where a) is the even state, and b) is the odd state. Here t1 = 0.5 and t2 = 1.

(a) n = 16 (b) n = 40

Figure 16: Plots of energy spectra as a function of t2 where t1 = 1 is held fixed. This
shows the transition from a fully dimerized case, with no intercell hopping between
unit cells, to the case of larger intercell compared to intracell hopping, i.e. t2 > t1
where we have edge states. Notice that for larger number of sites n, the hybridization
becomes smaller, which can be seen as a smaller gap around t2 = t1 = 1.
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E Comparison of bulk eigenstates - analytical and
numerical

(a) (−2,+) (b)

(c) (−2,−) (d)

(e) (−3,+) (f)

Figure 17: Comparison of analytical and numerical bulk eigenstates

F 1D model including on-site energy - Analytical cal-
culation

To generalize the model in section 2, we can add on-site energies for the sublattices A
and B. If we denote these by εa and εb the Hamiltonian from Eq. (4) reads

H(k) =

(
εa t∗(k)
t(k) εb

)
(33)

But as we saw previously for the case without on-site potentials, the edge state
is localized on only one sublattice. Therefore, adding the constant energy only shifts
the energy of the edge state E0 = εa. This Hamiltonian can be written in a more
symmetric expression as
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H(k) =
εa + εb

2
+

(
h t∗(k)
t(k) −h

)
⇒
(

h t∗(k)
t(k) −h

)
, h =

εa − εb
2

(34)

Omitting the first term, being an offset that shifts the entire spectrum. The char-
acteristic equation gives us the bulk energy spectrum of

E(k) = ±
√
h2 + |t(k)|2 (35)

Which, compared to Eq. (6) is gapped for h 6= 0. The Hamiltonian in Eq. (34)
can be cast in a form more generally used in condensed matter physics litterature, by
using Pauli matrices. If we denote τ = (τx, τy, τz) working on the AB-sublattice space,
where

τx =

(
0 1
1 0

)
τy =

(
0 −i
i 0

)
τz =

(
1 0
0 −1

)
Then the Hamiltonian simply becomes

H = τ · d(k), d(k) = (Re[t(k)], Im[t(k)], h) (36)

The Shockley criterion now needs to be restated, and becomes more complex. As
k sweeps the Brillouin zone, d(k) traces a closed contour Γ in this 3D-space, and if the
projection of Γ onto the xy-plane includes the origin, an edge state exists [3].

G Energyspectrum of the 3D Rashba spin orbit Hamil-
tonian

The energyspectrum of Eq. (20) can be found utilizing a clever trick, by squaring the
Hamiltonian, and using that the Pauli matrices are involutory, i.e. their own inverse
τ 2
i = σ2

i = I. Additionally it is used that the sublattice space and the spin space are
decoupled, i.e. τ does not act on σ. In this case, if Â and B̂ are operators acting on
different spaces, we use

(
Â⊗ B̂

)(
Â′ ⊗ B̂′

)
= ÂÂ′ ⊗ B̂B̂′, and one obtains

H2 =
(
τ 2
x ⊗ σ2

0

)
Re[t]2 +

(
τ 2
y ⊗ σ2

0

)
Im[t]2 +

(
τ 2
z ⊗ σ2

x

)
ν2p2

y +
(
τ 2
z ⊗ σ2

y

)
ν2p2

x

= I ⊗ I(Re[t]2 + Im[t]2 + v2(p2
x + p2

y))

Where all cross-terms vanish due to the anti-commutation relations for the Pauli
matrices {σi, σj} = 2δijI. The energyspectrum is then

E± = ±
√
|t|2 + ν2|p|2
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H 3D Bulk eigenfunctions for p → 0 - Rashba spin
orbit case

The bulk eigenfunctions for the Rashba spin orbit case are in the limit p→ 0

Ψ1
±

p→0
=

1√
2


±e−i arg[t(k,p)]

0
1
0

 , Ψ2
±

p→0
=

1√
2


0

±e−i arg[t(k,p)]

0
1


If one substitutes k with −k in these, the result is new eigenfunctions with the same
energy. Additionally, if the two functions with negative energy (ΨA

− and ΨB
−) flips sign,

the wavefunctions achieve the same form as in the 1D case (see Eq. (6)), and has equal
probability on both sublattice planes A and B. Ψ1

± corresponds to spin up, and Ψ2
±

corresponds to spin down.

I 3D surface state spinor
The 4-spinor ψ0

py ,pz can be found by looking at the SE, with a Hamiltonian given by Eq.
(20) together with E0 = ±ν|p|. Written out in real space, this gives the 4 recursion
equations

i ν|p|e−iϕpψa↓(z) + t∗1ψb↑(z) + t∗2ψb↑(z − 1) = ±ν|p|ψa↑(z)

−i ν|p|eiϕpψa↑(z) + t∗1ψb↓(z) + t∗2ψb↓(z − 1) = ±ν|p|ψa↓(z)

−i ν|p|e−iϕpψb↓(z) + t1ψa↑(z) + t2ψa↑(z + 1) = ±ν|p|ψb↑(z)

i ν|p|eiϕpψb↑(z) + t1ψa↓(z) + t2ψa↑(z + 1) = ±ν|p|ψb↓(z)

which can be cleaned up by using ψb↑ = ψb↓ = 0.

i ν|p|e−iϕpψa↓(z) = ±ν|p|ψa↑(z)

−i ν|p|eiϕpψa↑(z) = ±ν|p|ψa↓(z)

t1ψa↑(z) + t2ψa↑(z + 1) = 0

t1ψa↓(z) + t2ψa↑(z + 1) = 0

The last two equations are in accordance with the z-dependence found, and show
that ψa↑(z) and ψa↓(z) differ only of a z-independent function, found by the first two
equations by setting ψa↑(z) = 1

ψa↑(z) = 1 ψa↓(z) = ∓ieiϕp

J Spin texture of surface states
To analyze the spin properties of the surface states, one can calculate the expectation
values of the functions in Eq. 24 with the components of Ŝ = ~

2
σ. In this section I

have calculated the expectation values of the spin part of the wavefunction in Eq. (24).
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The z-dependent part of the wavefunction is already normalized and will not affect to
expectation values. I consider only the first two entries in the spinor, corresponding

to spin up and spin down on the sublattice A, i.e. ψa = 1√
2

(
1

∓ieiϕp

)
. One then gets

〈Sx〉 =
~
2
〈ψa|σx|ψa〉 =

~
4

(
1 ±ie−iϕp

)(0 1
1 0

)(
1

∓ieiϕp

)
=

~
2

(
±eiϕp ∓ e−iϕp

2i

)
= ±~

2
sin (ϕp)

〈Sy〉 =
~
2
〈ψa|σy|ψa〉 =

~
4

(
1 ±ie−iϕp

)(0 −i
i 0

)(
1

∓ieiϕp

)
=

~
2

(
∓eiϕp ∓ e−iϕp

2

)
= ∓~

2
cos (ϕp)

〈Sz〉 =
~
2
〈ψa|σz|ψa〉 =

~
4

(
1 ±ie−iϕp

)(1 0
0 −1

)(
1

∓ieiϕp

)
=

~
2

(
1− 1

2

)
= 0

Where the ± refers to the sign of the energy. The spin is therefore locked perpen-
dicular to the in-plane momentum, as shown in figure 10.

K Some properties of the Pauli spin matrices
The matrices are involutory

σ2
x = σ2

y = σ2
z = I

With commutation and anticommutation relations

[σi, σj] = 2iεijkσk {σi, σj} = 2δijI

Where εijk is the Levi-Civita symbol, obeying

εijk =


+1 If (ijk) is an even permutation
−1 If (ijk) is an odd permutation
0 Otherwise

εijkεimn = δjmδkn − δjnδkm

One can then derive the prodcut of two Pauli matrices as

σiσj =
1

2
{σi, σj}+

1

2
[σi, σj] = iεijkσk + δijI

And the product of 3 pauli matrices as

σlσiσj = σl (iεijkσk + δijI) = iεijkσlσk + δijσl = iεijk (iεlkdσd + δlkI) + δijσl

= −εijkεlkdσd + iεijlI + δijσl = εkijεkldσd + iεijlI + δijσl

= (δilδjd − δidδjl)σd + iεijlI + δijσl (37)

After this rather tedious calculation, one can then conclude

σaσbσc = iI σaσaσc = σc σaσbσa = −σb
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L Characteristics of the diamond lattice structure
The nearest-neighbour vectors, an are found to be

a1 =
1

2
√

3

(√
3, 1,−2

√
2
)

a2 =
1

2
√

3

(
−
√

3, 1,−2
√

2
)

a3 =
1

2
√

3

(
0,−2,−2

√
2
)

And the in-plane time-reversal-invariant momenta are

Γ = (0, 0)

M1 =
(
−π,−π/

√
3
)

M2 =
(
−π, π/

√
3
)

M3 =
(

0, 2π/
√

3
)

The energy spectrum of the Hamiltonian in Eq. (25) can be found by writing h(p)
in the form using σ = (σx, σy, σz)

h(p) =
4
√

2

3
νSO (σ · [a1 × a2] sin(pδ3) + σ · [a2 × a3] sin(pδ1) + σ · [a3 × a1] sin(pδ2))

= σ · d(p)

d(p) =
4
√

2

3
νSO


1√
2

(sin(pδ2)− sin(pδ1))
1√
6

(2 sin(pδ3)− sin(pδ2)− sin(pδ1))
√

3
6

(sin(pδ1) + sin(pδ2) + sin(pδ3))


In this form, the spectrum is

E0(p)2 = |d(p)|2 = ν2
SO

32

9
[
3

4

(
sin2(pδ1) + sin2(pδ2) + sin2(pδ3)

)
−1

2
(sin(pδ1) sin(pδ2) + sin(pδ2) sin(pδ3) + sin(pδ3) sin(pδ1))]

M Time-reversal symmetry
The operation of time-reversal is representet by the operator Θ. For a real space
Hamiltonian to be time-reversal invariant, it has to obey

[H,Θ] = HΘ−ΘH = 0⇔ ΘHΘ−1 = H

For a spin-1/2 particle, the time-reversal operator obeys Θ2 = −1. This means that
Θ−1 = −Θ, and Θ can be represented as[17]
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Θ = iσyK Θ−1 = −iσyK (38)

One can then ask the question: How does time-reversal act on physical observables like
position, momentum and spin? To compute this, one can let the complex conjugation
operator in Θ act on everything to the right, and use the porperties of the Pauli
matrices (Appendix K)

ΘxΘ−1 = iσyKx(−iσyK) = iσyxi(−σy)KK = x
ΘpΘ−1 = iσyK(−i~∂x)(−iσyK) = iσyi~∂xi(−σy)KK = i~∂x = −p

ΘσxΘ
−1 = iσyKσx(−iσyK) = iσyσxi(−σy)KK = σyσxσy = −σx

ΘσyΘ
−1 = iσyKσy(−iσyK) = iσy(−σy)i(−σy)KK = −σyσyσy = −σy

ΘσzΘ
−1 = iσyKσz(−iσyK) = iσyσzi(−σy)KK = σyσzσy = −σz

(39)

So we see that time-reversal has the expected effect, i.e. even in the position x, but
odd in both linear momentum and spin. A Hamiltonian of the usual form (p2 for
the kinetic part and V = f(x) for the potential) is thus time-reversal invariant. For
the Hamiltonian in Eq. (20), consisting of both sublattice space and spin space, the
time-reversal operator is of the form Θ = iτ0⊗ σyK. The τ part will be omitted since
τ0 preserves everything. For momentum space Hamiltonians, time-reversal symmetry
implies

ΘH(k)Θ−1 = H(−k) (40)

Which can be used to check the Rashba Spin-orbit Hamiltonian HR,

ΘHR(px, py)Θ
−1 = iσyK [ν(σxpy − σypx)] (−iσyK) = iσy [ν(σxpy + σypx)] i(−σy)KK

= ν(σyσxσypy + σyσyσypx) = ν(−σxpy + σypx) = HR(−px,−py)
(41)

An important consequence of time-reversal symmetry is the Kramers degeneracy
theorem, which states that for every eigenstate of a time-reversal invariant system,
with spin-1

2
, there is at least one other state with the same energy (called the time-

reversed partner). This can be expressed by

H(k)|k〉 = E(k)|k〉 H(k)(Θ|k〉) = Θ(H(−k)|k〉) = E(−k)(Θ|k〉)

Where Eq. (40) was used by exchanging k → −k. This shows that time-reversal
invariant momenta points (TRIM), where k and −k can be related by a reciprocal
lattice vector, are two-fold degenerate. Is there a term one can add to the Hamiltonian
to break time-reversal symmetry, and thereby split this degeneracy? One can imagine
that a term depending only on spin will break time-reversal symmetry, as the spin
operators are odd under time-reversal. Such a term could be a Zeeman term,HZ =
g∗µBB · S , which stems from the fact that the intrinsic magnetic dipole moment of
the electron couples to an external magnetic field B.
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N Periodic table of topological insulators and super-
conductors

Figure 18: Periodic table of TI and TS, where the symmetry class can be determined
by presence (or abscence) of time-reversal symmetry Θ, particle-hole symmetry Ξ
and chiral symmetry Π = ΞΘ. The ±1 is given by the value of Θ2 or Ξ2 and a 0
means no symmetry. After determining these, the dimensionality d can then show
the topological characteristic. (Table is from [13]).

O The Z2 index
The difference between a material being in the Quantum spin Hall phase or the or-
dinary insulating phase is the existence of topologically protected boundary states,
characterized by the Z2 topological invariant. A 3D topological insulator can be de-
cribed by four Z2 numbers denoted by (ν0; ν1, ν2, ν3), where ν0 determines if the system
is in a strong or weak topological phase. This section will describe how to determine
these numbers, and is based on [9].

The recipe for determining (ν0; ν1, ν2, ν3) is as follows. First one needs to solve the
bulk momentum space Hamiltonian so that you can construct a unitary matrix given
by

wij(k) = 〈ui(−k)|Θ|uj(k)〉

Where Θ is the TR operator. Notice that we start with the bulk wavefunctions to
compute the Z2 numbers (Bulk-boundary correspondance). Now, by using the TRIM
points of the system, which can be expressed using the primitive reciprocal lattice
vectors (bi) as Γi=n1,n2,n3 = 1

2
(n1b1 + n2b2 + n3b3) where nj = 0, 1, the wij(k) matrix

can be used to evaluate a new entity δ

δi =

√
det [w(Γi)]

Pf [w(Γi)]
= ±1
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Figure 19: Picture of four different topological phases denoted by (ν0; ν1, ν2, ν3). The
first row depicts the value of δi at the various TRIM points Γi, while the second
shows possible Fermi surfaces seen from the (001)-plane (ẑ-direction). The filled dots
are Dirac cones included in the spectrum.[16] (The reason for the latter has to do
with time-reversal polarization, which will not be discussed in this thesis). (Figure
is from [9])

This can seem a bit frightening at first, but is actually fairly simple. In the denominator
is the Pfaffian which is defined in the following way 9. For an anti-symmetric matrix A
the determinant can be written as the square of a polynomial det [A] = Pf [A]2 which
is precisely the Pfaffian. For example, an 2 × 2 matrix A with non-zero entries on
the anti-diagonal has a Pfaffian that just picks out the A12 entry. After this rather
technical procedure is completed, one can determine the topological invariants as

(−1)ν0 =
∏

nj=0,1

δn1,n2,n3 (42)

(−1)νi=1,2,3 =
∏

nj 6=i=0,1;ni=1

δn1,n2,n3 (43)

To clarify this let us look at an example. In figure 19 the reciprocal lattice of a cubic
structure is shown, together with the value of δ at each of the 8 TRIM points. To
find ν0, according to Eq. (42) we just have to multiply δ at each point. The only case
where this gives −1 is the last case, as the other three has an even amount of "−1’s".
Therefore only the last case has ν0 = 1. To find the other three Z2 numbers is a bit
more tricky. For example, let us find ν3. From Eq. (43) we just have to multiply
all δi for all points with n3 = 1. In all shown cases this gives ν3 = 1. The second
row shows the possible Fermi surface arcs, and we observe that the only phase with
an odd number of dirac cones is with ν0 = 1, i.e. the strong phase. Thus, we first
determine the bulk wavefunctions, do some mathematical analysis, and end up with
the four topological invariants (ν0; ν1, ν2, ν3) that describe the topological phase.

P Symmetry class example
Let us determine the symmetry class of the spin-less Hamiltonian in the 1D case from
Eq. (4). It has a TR symmetry given by Θ = K, PH symmetry as Ξ = τzK, and C

9https://en.wikipedia.org/wiki/Pfaffian

https://en.wikipedia.org/wiki/Pfaffian
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symmetry as Π = τz because of the following relations

H(k) = τxRe[t(k)] + τyIm[t(k)]

ΘH(k)Θ−1 = K (τxRe[t(k)] + τyIm[t(k)])K = τxRe[t(k)]− τyIm[t(k)] = H(−k)

ΞH(k)Ξ−1 = τzK (τxRe[t(k)] + τyIm[t(k)]) τzK = τz (τxRe[t(k)]− τyIm[t(k)]) τz

= −τxRe[t(k)] + τyIm[t(k)] = −H(−k)

ΠH(k)Π−1 = τz (τxRe[t(k)] + τyIm[t(k)]) τz = −τxRe[t(k)]− τyIm[t(k)] = −H(k)
(44)

In accordange with equations (29)-(31). Evaluating the square of these, Θ2 = KK = 1,
Ξ2 = τzKτzK = 1 and Π2 = τ 2

z = 1, where 1 means the identity, and looking
at Appendix N, shows that this belongs to class BDI. Thus, it has a Z topological
classification, which is the winding number discussed in section 2.5. Not all integers
can be obtained, but this is due to the specifics of the system, i.e. there can only be
one edge-state per edge.

Q Miller indices
In section 4 the concept of a weak TI is introduced, and the corresponding topological
invariants (ν1, ν2, ν3) was related to a reciprocal lattice vector Gν =

∑
i νibi where

bi are the primitive reciprocal lattice vectors of the system. (ν1, ν2, ν3) can then be
interpreted as Miller indices for a surface that determines the direction of stacked 2D
QSH system[9]. So what are these Miller indices?

Miller indices is also known as the index system for crystal planes[5], and are de-
noted by integers (hkl). To specify a crystal plane, you need 3 points (that are not
on a straight line), and it turns out to be advantageous to use the reciprocal lattice
vectors to decribe surfaces. It is done using the following rules

• Find the intercepts of the plane with the axes given by a1, a2, a3.

• Take the reciprocals of the numbers

• Reduce to integers having the same ratio

For example, if a plane intersects at x = 4, y = 2, z = 2, the index of the plane would
be (422)→ (1

4
1
2

1
2
)→ (122). In figure 20 there a a couple of examples of surfaces, with

their corresponding Miller indices. In cubic crystals a vector with coordinates [hkl] is
a normal vector to the plane (hkl), but this is not true for other crystal structures.
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Figure 20: Examples of crystal surface planes and their associated Miller indices.
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