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A B S T R A C T

This thesis presents a study of diffractive scattering of high-energy
protons. Hadronic diffraction is not well-understood and many al-
ternative approaches exist. The Monte Carlo event generator Pythia

8 follows a Pomeron-based approach, where the invariant mass of
the diffractive system and the squared momentum transfer t of the
system is set up according to a phenomenological Pomeron flux pa-
rameterization, which is parameterized by the super-critical Pomeron
trajectory, α(t) = 1 + ε + α′t, where the intercept parameter ε and the
slope parameter α′ can be tuned by the user.

A fast detector response simulation of the ALFA and ATLAS de-
tectors has been developed in the Rivet toolkit for the purposes of
this thesis. The developed simulation framework is able to handle the
beam transport of diffractively scattered protons as well as impose the
kinematic acceptance of the ALFA detector which was found to be ap-
proximately ξ . 0.22, with a pseudorapidity coverage of 9 . |η| . 13.

The simulation framework has been used in a phenomenological
study of single diffraction, in order to study observables most sensi-
tive to the Pomeron flux parameters. Using this information, a statis-
tical fit procedure to determine the Pomeron flux parameters ε and α′

has been developed and tested on several generated test samples.
Data recorded at

√
s = 13 TeV, β∗ = 90 m, and θC = 2× 50 µrad

at the ATLAS experiment in the Run 2 period has been analysed.
Several structures in the measured single diffractive distributions are
observed in data which are not present in the simulation. An inves-
tigation into the possible background sources of these structures is
presented.
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1
I N T R O D U C T I O N

“The Monte Carlo simulation has become the major
means of visualization of not only detector performance

but also of physics phenomena. So far so good. But it often
happens that the physics simulations provided by the

Monte Carlo generators carry the authority of data itself.
They look like data and feel like data, and if one is not

careful they are accepted as if they were data.”

— J. D. Bjorken [1]

The perhaps apocryphal story goes that at some time in the 4
th cen-

tury BC the ancient greek philosopher Democritus caught the smell
of a nearby bakery and postulated that small invisible pieces of bread
had floated through the air and into his nose. He called these small
pieces for “atoms” [2].

The “atomic model” of Democritus has, however, little in common
with modern science. In the 1960s and 1970s a theory emerged that
describes all known elementary particles as well as their interactions,
with the notable exception of gravity. This theory is known as the
Standard Model of Particle Physics. In 2012 one of the last missing pieces
of the theory, the elusive Higgs boson, was discovered at the Large
Hadron Collider (LHC) at CERN [3, 4]. Even though the Standard CERN is derived

from the historical
“Conseil Européen
pour la Recherche
Nucléaire”.

Model has achieved the status of orthodoxy and has met every exper-
imental test, it is known to be incomplete. It does not explain gravity
or the nature of dark matter and dark energy that constitute the major-
ity of the energy present in the Universe. Neither does the Standard
Model adequately explain neutrino masses or neutrino oscillations
and it is insufficient to explain the matter-antimatter asymmetry in
the Universe.

1.1 motivation and scope

Hadronic processes such as the proton-proton collisions happening at
the LHC, are usually classified into soft and hard processes. The hard
processes are characterized by a large momentum transfer which en-
ables one to use the perturbative regime of Quantum Chromodynam-
ics (QCD). For these kinds of interactions, the theoretical predictions
from QCD closely match experimental results. However, when the
transferred momentum is small, as is the case for soft processes, this
no longer holds. The push has been to search for New Physics at
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2 introduction

even higher energies, to discover possible extensions to the Standard
Model. But the study of low momentum transfer processes are of
equal importance.

Around 25% of all proton-proton collisions at the LHC will be so-
called diffractive events, where a hypothetical Pomeron will be ex-
changed between the colliding protons, resulting in the production
of particles in a limited region of rapidity. The Pomeron must be a
color singlet with quantum numbers of the vacuum as described in
the coming chapters. Diffractive scattering is primarily a soft process
and therefore non-perturbative in nature. The properties of diffractive
scattering and dissociation is well-described by the phenomenology
of Pomeron exchange in the form of Regge theory – the study of scat-
tering as a function of angular momentum which is allowed to take
any complex value. Regge theory, which was developed in the 1960s,
predates the quark-gluon model, and it is still not clear how to unite
it with QCD. Diffraction has been a steady part of the program at
most high energy particle physics experiments, but due to its non-
perturbative nature, further insight into the underlying process has
been limited. The true nature of the Pomeron has so far remained
unattainable. However, in the picture of Ingelman and Schlein [5] the
Pomeron takes a partonic substructure and can be treated as a com-
posite particle. In a proton-proton collision the Pomeron can be emit-
ted by one proton and subsequently interact with the other proton
in a large momentum transfer process between the constituent par-
tons. This opens up the field of hard diffraction. Here the Pomeron is
assumed to have both a flux as well as a structure function – the exact
shape of which are not known, but different parameterizations exists
and are used by Monte Carlo event generators to simulate proton-
proton collisions.

The opening quote by J. D. Bjorken is a sobering warning of be-
ing careful not to accept the physics simulations provided by Monte
Carlo event generators as if they were data. Diffraction is not well-
understood and several alternative models exists. The Monte Carlo
event generator Pythia 8 [6] follows a fairly conventional Pomeron-
based approach, which makes use of a Pomeron flux parameteriza-
tion that can be set by the user. This thesis sets out to study diffractive
scattering, with a focus on single diffraction, at the ATLAS and ALFA
experiments at the LHC. The final goal of this thesis is to determine
which of the available Pomeron flux parameterizations in Pythia 8

that best fits the current
√

s = 13 TeV data from the ATLAS and
ALFA experiments.
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1.2 outline of thesis

This thesis is divided into four major parts along with a fifth part
comprised of the appendix.

The first part introduces the theory background necessary for the
content of this thesis. A short introduction to the Standard Model is
given as well as a description of the physics at hadron colliders. The
theory behind diffraction is described in some detail along with the
various Pomeron parameterizations used in the Monte Carlo event
generator Pythia 8 [6].

The second part describes the experimental setup relevant for this
study, i.e. the LHC, the ATLAS detector, and the ALFA detector.

The third part presents a phenomenological study of the different
Pomeron flux parameterizations in Pythia 8 to establish observables
which show good sensitivity to the various parameters of the models
and to determine how well one can test their validity. For this pur-
pose, a simulation framework has been developed in the Rivet toolkit
[7], which will be described in detail. In addition, the acceptance re-
gion of the ALFA detector has been studied.

The fourth part is an analysis of the new 13 TeV data from the 2015

Run 2 period using the ALFA sub-detector of the ATLAS experiment
at the LHC, along with a comparison of the simulated distributions
from the generated proton-proton collisions with measured distribu-
tions. Several attempts at reducing the background in the data distri-
butions is presented.





Part I

T H E O RY

The goal of this thesis is to study diffractive scattering
of high-energy protons. To accomplish this we must first
gain an understanding of the currently accepted theories
of particle physics. This part will therefore first present
a short introduction to the Standard Model of particle
physics, followed by a walkthrough of diffractive theory
and Regge theory. Finally, the phenomenological models
and parameterizations for diffraction used in the Monte
Carlo event generator Pythia will be discussed.





2
T H E S TA N D A R D M O D E L

The Standard Model (SM) of particle physics is the commonly ac-
cepted theory of elementary particles and their interactions through
the strong, electromagnetic, and weak force. This chapter will pro-
vide a description of the Standard Model, along with a summary of
the particles and forces in it.

The information in this chapter is based on references [8], [9], [10],
[11], [12], and [13], unless otherwise noted.

2.1 elementary particles and their interactions

The matter particles of the Standard Model (SM) are fermions (par- In particle physics
it is customary to
use natural units,
based on universal
physical constants,
where c = h̄ = 1.
Energy is usually
given in electron-
volt, where 1 eV ≈
1.602× 10−19 J.

ticles with half-integer spin that follows Fermi-Dirac statistics), and
come in two types: leptons and quarks. There are six leptons, classified
according to their electric charge, electron number, muon number,
and tau number. Both the leptons and the quarks form three distinct
flavor doublets, which are known as the three generations of matter.
The six leptons are listed in Table 2.1. There are also six antileptons
with all their signs reversed. For example, the anti-electron (known
as the positron) carries a charge of +1. There are in total 12 leptons.

Table 2.1: The spin-1/2 leptons of the SM. Neutrino masses are extremely
small and can for most purposes be taken to be zero. Values from [14].

Generation Name Flavor Mass [MeV] Charge [e]

1st
Electron e 0.5110 −1

Electron-neutrino νe 0 0

2nd
Muon µ 105.7 −1

Muon-neutrino νµ 0 0

3rd
Tau τ 1.776× 103 −1

Tau-neutrino ντ 0 0

Similarly, there are also six flavors of quarks, classified by electric
charge, strangeness, charm, beauty, and truth. As already noted, the
quarks also fall into three generations, and are listed in Table 2.2. Each
quark also have an antiquark, and the quarks comes in three distinct
colors, giving 36 quarks in total.

7



8 the standard model

Table 2.2: The spin-1/2 quarks of the SM. Notice that the light quark masses
are imprecise and speculative. Values from [14].

Generation Name Flavor Mass [MeV] Charge [e]

1st
Up u 2.2 2/3

Down d 4.7 −1/3

2nd
Charm c 1.27× 103 2/3

Strange s 96 −1/3

3rd
Top t 173.21× 103 2/3

Bottom b 4.18× 103 −1/3

Finally, every interaction (or force) has its mediator, in the form of
spin-1 gauge bosons. In the current view, there are just four funda-
mental forces in nature: strong, electromagnetic, weak, and gravitational.
To each force belongs a physical theory, however gravity is not yet a
part of the Standard Model, as a complete satisfactory quantum me-
chanical description of gravity is missing. The three forces that are a
part of the SM, and their mediators, are listed in Table 2.3. There are
eight gluons, one photon, two W bosons, and one Z boson, giving a
total of 12 gauge bosons.

Table 2.3: The forces of the SM and their corresponding mediators, the spin-
1 gauge bosons. Values from [14].

Force Mediator Label Mass [GeV] Charge [e]

Strong Gluons (8) g 0 0

Electromagnetic Photon γ 0 0

Weak
W bosons W± 80.385 ±1

Z boson Z0 91.188 0

The strong interaction, described by QCD, is the central theory of
this study, as diffractive scattering is a QCD phenomenon. Hence, the
primary focus of this chapter is on the theory of the strong interaction.
However, a brief description of the theory of the electromagnetic and
weak interactions is included as the presence of electroweak particles
in diffractive scattering can tell us a lot about diffraction and the as-
sociated Pomeron, as explained later.

Not listed in any of the tables, is the scalar (spin-0) Higgs boson,
with a mass of 125.09 GeV [14]. The Higgs boson was discovered by
the ATLAS and CMS experiments at the LHC in 2012 [3, 4]. The Higgs
boson was introduced into the SM, to give mass to the massive W
and Z bosons, through the Higgs mechanism. The Higgs boson also
generates the mass of the fermions through the Yukawa couplings
and could generate neutrino masses through the seesaw mechanism.
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2.2 quantum field theory

The Standard Model (SM) is a quantum field theory (QFT), that com-
bines quantum mechanics with special relativity. A complete review
of QFT would be beyond the scope of this thesis, and as such, this
section will only serve as a short introduction.

Small→

Fast ↓ Classical Mechanics Quantum Mechanics

Relativistic Mechanics Quantum Field Theory

Since elementary particles are extremely small and quantum me- It is not clear how
small an elementary
particle like the
electron actually is,
but the size of it will
be less than 10−18 m

chanical in nature, as well as typically extremely fast with velocities
comparable to c, they naturally find themselves in the domain of
quantum field theory. In QFT, particles are treated as excited states
of the underlying physical matter fields. The dynamics of this system
can be described by the Lagrangian, L = T−V, where T denotes the
kinetic energy and V is the potential energy. If we restrict ourselves to
local theories, the Lagrangian for a continous field can be written as
the spatial integral over a Lagrangian density L. The behavior is then
based on the principle of least action, which states that the trajectory,
xµ, followed by the system through some configuration space, is that
for which the action,

S =
∫

Ldt =
∫
L(φ, ∂µφ, xµ)d4x (2.1)

is stationary. Here φ is the continous field and ∂µ is the space-time
derivative. The trajectory for which the action S is stationary, will
satisfy the Euler-Lagrange equations of motion for the field φ,

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0 (2.2)

As the Lagrangian completely describes the behavior of the field, it
can be written in terms of the behavior of the free field Lfree and the
interactions of the field Lint (either with it self or with other fields) by

L = Lfree + Lint (2.3)

The terms in the Lagrangian must be invariant under local gauge
transformations. The most general is the Standard Model Lagrangian,
which is invariant under the local unitary product symmetry group
SU(3)× SU(2)× SU(1). The three factors of gauge symmetry will to-
gether give rise to the three fundamental interactions in the Standard
Model (gravity is excluded).
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2.2.1 Feynman Diagrams and Rules

The situation for quantum fields is somewhat different compared to
that of classical fields, as in QFT the system is allowed to follow all
possible paths (or trajectories), though the classical path is often the
most dominating with smaller contributions from other paths. These
contributions enter as quantum fluctuations (or corrections) around
the classical path. So in QFT, instead of having a single uniquely
defined path, we have a sum over all possible paths, which can be
used to calculate a quantum transition amplitude. This sum is called
the Feynman path integral. Expressing the transition amplitude as
a perturbative sum is the main idea in perturbation theory. Given a
Lagrangian (that defines the behavior of the free field as well as its
interactions) and by the use of the Feynman path integral, the transi-
tion amplitude (i.e. the probability of going from an initial state to a
final state) can be calculated by using Feynman diagrams.

Feynman diagrams are pictorial representations of the contribu-
tions to the transition amplitude, which is also known as the matrix
element M. For each different path exists a topologically different
Feynman diagram. The matrix elementM contains all the dynamical
information of the system and is calculated by evaluating the rele-
vant Feynman diagrams, using the Feynman rules appropriate to the
interaction in question, whether that be electromagnetic, strong, or
weak interaction. In the SM, forces are described as point-like inter-
actions between particles. These points of interactions are drawn in
Feynman diagrams, as vertices in space-time with particles going in
or out as lines. Each vertex has an associated coupling, that signifies
the strength of the interaction, i.e. the probability of that interaction
happening. In the following, the QFT formulation of the forces in the
SM will be briefly introduced.

2.3 the electroweak theory

Electroweak (EW) theory is the unified theory of the electromagnetic
interaction (quantum electrodynamics, QED) and the weak interaction.
The electroweak interactions are mediated by four gauge bosons: the
photon γ, the Z0 boson, and the two W± bosons. The four gauge
fields are collected under the gauge symmetry SU(2) × U(1). The
SU(2) × U(1) symmetry is spontaneously broken into U(1) in the
Higgs mechanism to explain how the heavy gauge bosons (W± and
Z0) acquire mass.

All electroweak interactions are characterized by a general, dimen-
sionless, and mass independent coupling strength of α ≈ 1/137 [14],
also known as the fine-structure constant.
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The photon couples to electric charge, as seen in the first vertex in
Figure 2.1. In electroweak interactions, electric charge is conserved,
which means that the sum of charge flowing into a vertex must be
equal to the sum of charge flowing out of a vertex.

�

f

f

�iQfe�µ

W±

⌫`

`

�i gW

2
p

2
�µ(1 � �5) W±

qj

qi

�i gW

2
p

2
�µ(1 � �5)Vij

Z0

f

f

�i gZ

2 �µ(cV � cA�
5)

Figure 2.1: The vertices for the electroweak interaction along with their re-
spective couplings, where gW ∝ gZ ∝ e ∝

√
α. Here f is any fermion, ` is

any charged lepton, and qi is a quark of flavor i.

In addition to electric charge, all fermions in the SM have a flavor,
which is associated with a quantum number called the lepton num-
ber L` where ` = e, µ, τ. Lepton number is conserved in electroweak
interactions and is defined as

L` ≡ N(`)− N(`) + N(ν`)− N(ν`) (2.4)

where N is the number of the given particle.
Similarly to lepton numbers, each quark species has a related quan-

tum numbers (known as strangeness, charm, etc.) that are seperately
conserved in all types of interactions, except the weak interactions.

The neutral current interactions of the electroweak theory are me-
diated by the Z0 boson and conserves both electric charge and flavor
quantum numbers. This means that neutral current interactions are
always of the form Z0 f f as seen in the vertex in Figure 2.1. When
the Z0 couple to charged leptons, the interaction becomes similar to
that of the photon γ, and the two processes will interfere and may
collectively be referred to as Z0/γ∗. The asterix in γ∗

indicates that the
photon is off its
mass shell.

The charged current interactions are mediated by the W± bosons
which has integer electric charge (as opposed to the neutral Z0) and
will therefore not couple directly to fermions and their anti-particles



12 the standard model

due to charge conservation. In the leptonic sector, the W± bosons
couple exclusively to the flavor doublets,

(
νe

e

)
,

(
νµ

µ

)
,

(
ντ

τ

)
(2.5)

which is illustrated by the third vertex in Figure 2.1. In the quark
sector, the W± must couple to a up-type and a down-type quark in
the form of the doublets,

(
u

d′

)
,

(
c

s′

)
,

(
t

b′

)
(2.6)

since quarks have fractional charges and charge is conserved. Here,
one must take into account the difference between the mass eigen-
states and weak isospin eigenstates of the quarks. The weak eigen-
states (d′, s′, b′) are linear combinations of the mass eigenstates (d, s, b)
as given by the unitary Cabbibo-Kobayashi-Maskawa (CKM) matrix,




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 (2.7)

Most interactions are within the same generation, but a non-negligible
amount of inter-generational mixing does occur, which means that
flavor is not strictly conserved in charged current interactions. The
biggest mixing of the quarks occur in the first two generations, d and
s, while the mixing with b-quarks is very small.

2.4 quantum chromodynamics

Quantum chromodynamics (QCD) is the quantum field theory of the
strong interaction and is described by the gauge group SU(3). The
strong force is characterized by the strong coupling αs. QCD interac-
tions are mediated by the exchange of the gluons. Central to QCD is
the color quantum number, to which the gluons couple. Color charge
is conserved in all QCD interactions, in addition to electric charge
and flavor quantum numbers. Quarks come in three color charges
labelled ‘red’, ‘green’, and ‘blue’, or R, G, and B, with correspond-
ing anti-colors R, G, and B, which is similar to the single ∓1 electric
charge. (Anti-)quarks therefore carry one (anti-)color charge to which
the gluon couple. Unlike the neutral photon, gluons themselves carry
color charge and there are eight different color combinations of glu-
ons and hence eight gluons. Only quarks and gluons carry color
charge and are therefore the only particles that interact through the
strong force. QCD is an unbroken symmetry which leaves the gluon
massless.
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The Lagrangian of QCD is given by

LQCD = qi(iγµ(Dµ)ij −mqδij)qj − 1
4

Ga
µνGµν

a (2.8)

where qi denotes a quark field with color index i, γµ is a Dirac matrix,
mq allows for the possibility of non-zero quark masses (induced by
the Yukawa couplings in the Higgs mechanism), Ga

µν is the gluon
field strength tensor for a gluon with color index a, and Dµ is the
covariant derivative in QCD,

(Dµ)ij = δij∂µ − igsta
ij A

a
µ (2.9)

where Aa
µ is the gluon field with color index a, ta

ij is proportional to
the Hermitian and traceless Gell-Mann matrices of SU(3), and gs is
also known as the strong coupling, and is related to αs by

g2
s = 4παs (2.10)

Since the gluons carries color charge themselves, and since gluons
couple to color charge, gluons will exhibit self-interaction. The gluon
self-coupling arises from the − 1

4 Ga
µνGµν

a term in the Lagrangian lead-
ing to triple and quartic self-couplings. The possible vertices of QCD
are shown in Figure 2.2.

g

g

g

/ gs / p
↵s

g

g

g

g

/ g2
s / ↵s

g

q

q

�i gs

2 �a�µ

Figure 2.2: The vertices of the QCD interactions along with their respective
couplings.

The strong coupling αs is not constant but depends on the distance
scale or, equivalently, the momentum transfer Q2 of the QCD inter-
action. The momentum transfer Q2 in the case of gluon-exchange The EM coupling

α is also a running
coupling and grows
with Q2 despite
photons being
electrically neutral
and hence will
not self-interact.
Instead, the vacuum
polarization of
photons will create
virtual ee pairs
leading to screening
effects.

between two quarks in the t-channel, is shown in the diagram in Fig-
ure 2.3. Since the strong coupling αs depends on the energy scale
at which it is probed, it is referred to as a running coupling, and the
behavior takes the form of

αs(Q2) ∝
1

ln(Q2/Λ2
QCD)

(2.11)

where ΛQCD ≈ 200 MeV is the QCD scale. This behavior is seen in
Figure 2.4. Numerically, the value of the strong coupling is usually
specified at a specific reference scale of the Z0 boson mass, Q2 = M2

Z,
where αs(M2

Z) ≈ 0.12 [14].
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p2

p1

p4

g

p3

q

q

q

q

Q2 = t

= (p1 � p3)
2

= (p2 � p4)
2

Figure 2.3: Gluon-exchange be-
tween two quarks and the associ-
ated momentum transfer Q2.

threshold matching at the heavy quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Results from
data in ranges of energies are only given for Q = MZ0 . Where available, the table also contains the
contributions of experimental and theoretical uncertainties to the total errors in αs(MZ0).

Finally, in the last two columns of table 1, the underlying theoretical calculation for each mea-
surement and a reference to this result are given, where NLO stands for next-to-leading order, NNLO
for next-next-to-leading-order of perturbation theory, “resum” stands for resummend NLO calculations
which include NLO plus resummation of all leading und next-to-leading logarithms to all orders (see
[39] and [32]), and “LGT” indicates lattice gauge theory.

Figure 17: . Summary of measurements of αs(Q) as a function of the respective energy scale Q, from
table 1. Open symbols indicate (resummed) NLO, and filled symbols NNLO QCD calculations used in
the respective analysis. The curves are the QCD predictions for the combined world average value of
αs(MZ0), in 4-loop approximation and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV.

In figure 17, all results of αs(Q) given in table 1 are graphically displayed, as a function of the
energy scale Q. Those results obtained in ranges of Q and given, in table 1, as αs(MZ0) only, are not
included in this figure - with one exception: the results from jet production in deep inelastic scattering
are represented in table 1 by one line, averaging over a range in Q from 6 to 100 GeV, while in figure 17
combined results for fixed values of Q as presented in [67] are displayed.
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Low rLarge r
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Asymptotic
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Color
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Figure 2.4: The behavior of αs(Q2) as a function of the re-
spective energy scale Q2 along with measurements. Fig-
ure from [15].

Distance scale r and momentum transfer Q2 are inversely related
due to the Heisenberg uncertainty principle, r ∼ h̄c/|Q|. This means
that the strong coupling αs diverges at large distances. This is mani-
fested in the quark-antiquark potential on the form of

V(r) ≈ − a
r
+ br (2.12)

where the 1/r term is the Coulomb potential and the r term is the
color potential. The color potential will dominate at high separation
r between the quarks. This is known as linear color confinement and
means that colored states (e.g. individual quarks and gluons) can-
not exist in isolation beyond distances of the order of a few fm. This
means that all physically observable states in nature must be color
singlet states. All of these color neutral states are called hadrons and
must be either baryons, qqq states like the proton, or mesons, qq states
like the pions. Color confinement is the starting point of hadronization
as will be discussed in the following chapter.

At low distance scales and larger momentum transfers Q2, the
strong coupling αs decreases, as seen in Figure 2.4. Hence, at very
large energies or very small distances (e.g. in the early Universe, in
quark-gluon plasmas, or inside hadrons) the strong coupling essen-
tially vanishes and the quarks no longer feel the strong force between
them. The quarks and gluons (collectively known as partons) can
then propagate freely with virtually no interactions. This is known
as asymptotic freedom.
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2.5 kinematics

The different theoretical approaches to diffraction are based on the
identification of the relevant kinematic regimes, as we shall see later.
This section will therefore give a short introduction to the kinematics
and coordinate system used for high energy pp-collisions.

The usual set of coordinates is Bold-face symbols
will in this thesis
denote two- and
three-vectors.

pµ = (E, p) = (E, px, py, pz) (2.13)

where the beam of protons is aligned with the z-direction. An impor-
tant kinematic variable in particle physics is the rapidity, defined with
respect to the beam axis pz and using natural units where c = 1,

y =
1
2

ln
(

E + pz

E− pz

)
(2.14)

where pz is the momentum along the beam axis z. It is also customary
to consider the transverse momentum pT (i.e. the momentum trans- Experimentalists

often use pT to de-
note the transverse
momentum, while
phenomenologists
and theoreticians
tend to use p⊥.
Throughout this
thesis, pT will be
used.

verse to the beam axis) defined as

pT =
√

p2
x + p2

y (2.15)

The transverse mass is defined as

mT =
√

m2 + p2
x + p2

y =
√

m2 + p2
T (2.16)

which enable us to rewrite the rapidity y as

y = ln
(

E + pz

mT

)
= ln

(
mT

E− pz

)
(2.17)

If experimentalists cannot measure m they may assume m = 0.
Instead of rapidity y, they can then measure the pseudorapidity η,

η =
1
2

ln
( |p|+ pz

|p| − pz

)
= ln

( |p|+ pz

pT

)
(2.18)

since y ' η in the massless limit. Using that θ is the polar angle, i.e.
the angle the three-momentum p makes with the positive direction
of the beam axis z and that pz = |p| cos(θ) (in spherical coordinates),
we can write the pseudorapidity as

η =
1
2

ln
( |p|+ |p| cos(θ)
|p| − |p| cos(θ)

)
=

1
2

ln
(

1 + cos(θ)
1− cos(θ)

)

=
1
2

ln
(

2 cos2(θ/2)
2 sin2(θ/2)

)
= ln

(
cos(θ/2)
sin(θ/2)

)

= − ln
[

tan
(

θ

2

) ]
(2.19)

which thus only depends on the polar angle, i.e. is a solely geometric
quantity.
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The concepts of rapidity and pseudorapidity are important in par-
ticle physics, since the difference in rapidity, ∆y, is invariant under
Lorentz boosts,

y′2 − y′1 = y2 − y1 (2.20)

This is however not the case for pseudorapidity,

η′2 − η′1 6= η2 − η1 (2.21)

Both y and η will often be referenced throughout this thesis.

For most purposes in high energy physics, one can equate the ra-
pidity y with the pseudorapidity η without making too large of an
error. This is because we usually find ourselves in the massless limit,
E� m. However, if we consider y as a function of the polar angle θ,

y =
1
2

ln




√
|p|2 sin2(θ) + |p|2 cos2(θ) + m2 + |p| cos(θ)

√
|p|2 sin2(θ) + |p|2 cos2(θ) + m2 − |p| cos(θ)


 (2.22)

and compare it with the expression for η in Equation 2.19, we see that
for a beam proton with E = 6500 GeV and θ → 0, we get a different
behavior for y and η as illustrated in Figure 2.5 and 2.6. For θ = 0,
we see that ymax ' 9.5 while ηmax = ∞. Hence, for protons in the
extreme forward direction (which are the particles of interest in this
thesis) one should be careful when comparing rapidity and pseudo-
rapidity.

✓

Rapidity y

Pseudorapidity ⌘

Figure 2.5: Rapidity y and pseudorapidity η
as a function of the polar angle θ for a proton
with mp = 0.938 GeV and E = 5 GeV.

✓

Rapidity y

Pseudorapidity ⌘

Figure 2.6: Rapidity y and pseudorapidity η
as a function of the polar angle θ for a pro-
ton with mp = 0.938 GeV and E = 6500 GeV.
Plotted for low values of θ.



3
P H Y S I C S AT H A D R O N C O L L I D E R S

In the previous chapter we introduced the Standard Model of particle
physics, its particle content, and the rules of interactions of these par-
ticles. In this chapter, we concern ourselves with the issue of particle
production at a hadron collider. We will take a detailed look at the
anatomy of hadron collisions as well as the way in which these can
be studied through simulation by Monte Carlo event generators.

The content of this chapter is based on references [13], [16], [17],
[18], and [19], unless otherwise noted.

3.1 parton distribution functions

The proton is not an elementary particle but consists of three valence
quarks (two up-quarks and one down-quark) as well as having a time-
dependent substructure of a virtual sea of quarks and gluons – see
Figure 3.1 and 3.2. For collision energies above the QCD confinement
scale ΛQCD ≈ 200 MeV, it is possible to probe the internal, dynamic
structure of the proton through deep inelastic scattering (DIS). The
substructure of the proton can be described by parton distribution
functions (PDFs), which are a necessary input to almost all theoreti-
cal predictions for hadron colliders.

The parton distribution function fi/p(x, Q2) gives the probability of
finding in the proton a parton of flavor i (quarks or gluons) carrying a
fraction x = p/P of the proton momentum P with Q being the energy
scale of the hard interaction.

Figure 3.1: An illustration of the vir-
tual quark-gluon sea in the proton. Image
credit of Deutsches Elektronen-Synchrotron
(DESY).

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

f

i

(x ,Q2) = number density of partons i

at momentum fraction x and probing scale Q

2.
Linguistics (example):

F

2

(x ,Q2) =
X

i

e

2

i

xf

i

(x ,Q2)

structure function parton distributions

Torbjörn Sjöstrand PPP 4: Parton distributions and initial-state showers slide 2/44

Figure 3.2: The time-dependent substructure of
the virtual quarks and gluons in the proton. Im-
age from [17].
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In Figure 3.3 the PDFs for the gluon, up, down, and anti-up quark
are plotted for two different values of Q2. If the proton only consisted
of the three valence quarks one would expect them to have x = 1/3.
However, this is far from the case due to the sea of quarks and gluons.
The PDFs fi/p(x, Q2) can be interpreted as the number density of par-
tons of type i in the proton that carries momentum fraction x when
probed at energy Q2. The bumps in the PDFs for the u and d quarks
around x ≈ 1/3 is evidence of the presence of the valence quarks in
the proportions as expected. The component of the PDF for the up-
quark that does not come from the valence quarks, must then come
from the sea quarks. This component is equal to the PDF for the anti-
up-quark, uS(x, Q2) = u(x, Q2). For very low x, the PDFs show that
sea quarks are quite numerous. Already with the gluon, it is clear that
the simple picture of only valence quarks do not hold. When probing
the proton at higher energy scales Q2, the valence quark structure be-
comes less pronounced. One could say that the proton is then probed
with finer resolution, and hence is more sensitive to the sea (non-
valent) structure.

(a) Q2 = 10 GeV2 (b) Q2 = 104 GeV2

Figure 3.3: PDFs from the CTEQ6.6 set for the up (xu(x)), down (xd(x)), and anti-up (xū(x))
quarks as well as for the gluon (xg(x)). Plotted using the Durham HepData Project PDF plotter,
available at http://hepdata.cedar.ac.uk/pdf/pdf3.html.

The PDFs can be parameterized as

x fi/p(x, Q2) = Aixai(1− x)bi (3.1)

The parameter ai is associated with small-x Regge behavior while bi
is associated with large-x valence counting rules. For example, the
high x behavior of the gluon PDF is approximately xg(x) ∼ (1− x)6.
Additional factors to the parameterization can be introduced to allow
for greater flexibility when fitting data.

http://hepdata.cedar.ac.uk/pdf/pdf3.html
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3.2 factorization theorem

From parton distribution functions, we see that pp-collisions are actu-
ally interactions between the constituent partons. Now that we know
what we are colliding we would also like to understand how to com-
pute the probabilities for the parton-level scattering interactions, at
least at the energies that are sufficiently large so that perturbation
theory holds. The relevant measure of the probability of a scattering
process in particle physics, is the cross-section σ, defined as

σ =
Number of interactions per unit time per target area

Incident Flux
(3.2)

To get the cross-section (or probability) for pp-collisions, one can “un-
tangle” the parton-level interactions by using the QCD factorization
theorem – factorizing the contributions from the parton distribution
information and the parton interactions. The factorization theorem is
essentially the sum over the possible partons that can be taken out
of the protons and then the probability for those particular partons
to interact with each other. Hence, cross-sections for a scattering sub-
process a + b → n at hadron colliders can be computed in collinear
factorization by

σ = ∑
a,b

∫ 1

0
dxadxb

∫
fa(xa, µF) fb(xb, µF)dσ̂a+b→n(µF, µR) (3.3)

where

• fi(xi, µF) is the PDF for the parton i with momentum fraction
xi of the parent hadron (in our case the proton) when probed at
the factorization scale µF, and

• σ̂a+b→n denotes the parton-level cross-section for the production
of the final-state n, through the initial partons a and b. It de-
pends on the factorization scale µF, the renormalization scale
µR, and the final-state Lorentz invariant phase-space dΦn. Usu-
ally the scales are set to µ2

F = µ2
R = Q2.

3.3 event generators and the structure of an event

Monte Carlo (MC) event generators are capable of simulating a wide
range of the most interesting processes that are expected at hadron
colliders such as the LHC. Several general purpose MC event gener-
ators exists, such as Pythia [6], Herwig [20], and Sherpa [21], along
with numerous more specialised event generators. Common for all
the event generators is that they utilize the factorization of different
components of hadronic collisions, as per Equation 3.3. This allows
for the compartmentalization of the event generation into various spe-
cialized subroutines.
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In this section, we will give a description of the structure of a typi-
cal hadronic event, and the implementation in the Monte Carlo event
generators that are used to simulate such collisions.

3.3.1 Hard Scatter Matrix Element

Most of hadronic processes of interest involve a large momentum
transfer (called hard processes), either to produce heavy particles or
jets with a large pT. Therefore the simulation of subprocesses with
a large invariant momentum transfer is at the core of every simula-
tion of high energy hadronic processes. Since quarks and gluons are
asymptotically free, such reactions can be described by perturbation
theory. This makes it possible to compute a lot of the features of the
process by using Feynman diagrams.

From the factorization theorem in Equation 3.3, we had the parton-
level cross-section σ̂a+b→n which specify the hard subprocess. The
parton-level cross-section depends on the matrix element squared
|Ma+b→n|2, by

dσ̂a+b→n(µF, µR) =
1
2s
|Ma+b→n|2(Φn; µF, µR)dΦn (3.4)

where s is the hadronic center-of-mass energy squared. The matrix
element can be written as a sum over Feynman diagrams,

Ma+b→n = ∑
i
F (i)

a+b→n (3.5)

However, any summation over quantum numbers can be moved out-
side the square, which allows one to sum over the helicity and color
orderings, such that

|Ma+b→n|2(Φn; µF, µR) = ∑
hi ,cj

|M{ij}
a+b→n|2(Φn, {hi}, {cj}; µF, µR) (3.6)

The factorization theorem holds to all orders in perturbation theory,
but when the parton-level (subprocess) cross-section is computed be-
yond the leading order, there are som subtleties to consider. It is
normal to only consider the leading-order (LO) subprocess matrix
elements, but with the ever increasing precision of modern particle
physics experiments, it can be necessary to go to next-to-leading or-
der (NLO). NLO corrections are, however, beyond the scope of this
thesis.

3.3.2 Parton Showers

The previous section discussed the generation of a hard subprocess
according to the lowest-order matrix elements. This will give a good
description of the momenta of the outgoing jets. But to give a more
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complete picture of the process and the internal structure of the jets
and the distributions of the accompanying particles, any fixed or-
der will be insufficient. The effect of higher orders can be simulated
through the use of a parton shower algorithm. Higher-order diagrams
are increasingly difficult to calculate and the parton shower algorithm
can be used to approximate the effect of additional legs and to all
higher orders. The algorithm is typically formulated as an evolution
in momentum transfer down from the high scales associated with the
hard process to the low scales of order ∼ 1 GeV, which is associated
with the confinement of the partons.

The hard subprocess involves large momentum transfer, and hence
the partons involved are highly accelerated. Just like accelerated elec-
tric charges will emit QED radiation in the form of photons, the ac-
celerated colored partons will emit QCD radiation in the form of glu-
ons. However, unlike the photon, the gluons themselves carry color
charges and can therefore radiate further. This will lead to parton show-
ers. The showers correspond to higher-order corrections to the hard
subprocess.

Let us consider the almost-collinear splitting of a parton of flavor i Collinear means that
the emitted parton
is soft (low energy)
and hence have an
angle to the parent
parton going as
θ → 0.

into partons j and k. This could be for example, the splitting q→ q+ g.
If the n-parton differential cross-section before splitting is dσn, then
after splitting, it is

dσn+1 ≈ dσn
αs

2π

dθ2

θ2 dz dφ Pi→jk(z, φ) (3.7)

where z is the fraction of the radiating partons momentum carried
away by the emitted parton, θ and φ are the opening and azimuthal
angle of the splitting, and Pi→jk is the DGLAP splitting kernel for the
branching i→ j + k:

Pq→qg(z) =
1 + z2

1− z
(3.8)

Pq→gq(z) =
1 + (1− z)2

z
(3.9)

Pg→gg(z) =
z4 + 1 + 1(1− z)4

z(1− z)
(3.10)

Pg→qq(z) =
1 + (1− z)2

z
(3.11)

Pq→qg(z) = Pq→qg(z) (3.12)

The splitting kernels are universal, meaning that they allow for a
process-independent implementation in MC event generators. These
branchings may not just occur for the final-state partons but for the
initial-state partons as well. These two categories are referred to as fi-
nal and initial state radiation (FSR and ISR), and are handled separately
in event generators.
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Note that instead of the opening angle θ in Equation 3.7, one can
instead use the radiated (off-shell) partons virtuality Q2 = z(1 −
z)θ2E2 = M2 or mass M, or its momentum transverse to the emit-
ting parton p2

T = z2(1− z)2θ2E2, since

dθ2

θ2 =
dQ2

Q2 =
dM2

M2 =
dp2

T
p2

T
(3.13)

We see that z and either of these variables differ in character, as the
virtuality Q2 is “temporal” in that it has memory of the preceding evo-
lution, since the virtuality of the emitting parton decreases for each
splitting, while z is purely “spatial”, i.e. has no memory of the preced-
ing evolution. The parton shower procedure therefore starts from the
high energy final-state partons from the hard subprocess, and then
performs an iterative evolution down in one of the temporal evolu-
tion variables. This will result in a shower of radiated partons, until
all final-state particles reach energies of O(ΛQCD). The divergences
in the splitting probability and splitting kernels will in principle re-
sult in the emission of infinitely many soft collinear partons. This is
not of any consequence for physical measurements since the number
of final-state partons above some finite energy threshold is always fi-
nite. Therefore, these divergences are avoided in event generators by
setting sensible lower limits on z and Q2.

Fig. 1 Pictorial representation of a tt̄h event as produced by an event generator. The hard interaction (big
red blob) is followed by the decay of both top quarks and the Higgs boson (small red blobs). Additional
hard QCD radiation is produced (red) and a secondary interaction takes place (purple blob) before
the final-state partons hadronise (light green blobs) and hadrons decay (dark green blobs). Photon
radiation occurs at any stage (yellow).

on the understanding of LHC physics. The construction, maintenance, validation and extension of event
generators is therefore one of the principal tasks of particle-physics phenomenology today.

The inner working of event generators

Fig. 1 pictorially represents a hadron-collider event, where a tt̄h final state is produced and evolves by
including effects of QCD bremsstrahlung in the initial and final state, the underlying event, hadronisation
and, finally, the decays of unstable hadrons into stable ones. Event generators usually rely on the fac-
torisation of such events into different well-defined phases, corresponding to different kinematic regimes.
In the description of each of these phases different approximations are employed. In general the central
piece of the event simulation is provided by the hard process (the dark red blob in the figure), which
can be calculated in fixed order perturbation theory in the coupling constants owing to the correspond-
ingly high scales. This part of the simulation is handled by computations based on matrix elements,
which are either hard-coded or provided by special programs called parton-level or matrix-element (ME)
generators. The QCD evolution described by parton showers then connects the hard scale of coloured
parton creation with the hadronisation scale where the transition to the colourless hadrons occurs. The
parton showers model multiple QCD bremsstrahlung in an approximation to exact perturbation theory,
which is accurate to leading logarithmic order. At the hadronisation scale, which is of the order of a
few ΛQCD, QCD partons are transformed into primary hadrons (light green blobs) by applying purely
phenomenological fragmentation models having typically around ten parameters to be fitted to data.
The primary hadrons finally are decayed into particles that can be observed in detectors. In most cases
effective theories or simple symmetry arguments are invoked to describe these decays. Another impor-
tant feature associated with the decays is QED bremsstrahlung, which is simulated by techniques that
are accurate at leading logarithmic order and, eventually, supplemented with exact first-order results. A
particularly difficult scenario arises in hadronic collisions, where remnants of the incoming hadrons may
experience secondary hard or semi-hard interactions. This underlying event is pictorially represented by
the purple blob in Fig. 1. Such effects are beyond QCD factorisation theorems and therefore no complete
first-principles theory is available. Instead, phenomenological models are employed again, with more
parameters to be adjusted by using comparisons with data.

3

Figure 3.4: Illustration of a hadronic event as generated by a MC event gen-
erator. The hard interaction (red blob) is followed by ISR (blue) and FSR
(red). Finally hadronization occurs (green). Photon radiation occurs at any
stage (yellow). Image from [21].
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3.3.3 Hadronization

QCD becomes non-perturbative at energies of O(ΛQCD). At this point
the parton shower process breaks down. From Section 2.4, we know
that, due to color confinement, all particles must exists in color-singlet
states. Therefore, Monte Carlo event generators needs a specific model
and procedure to enforce a color-neutral recombination of the final-
state. Such a model will handle the transition from the partonic “fi-
nal” state to a complete representation of the actual hadronic final
state. The color-singlet primary hadrons may then subsequently de-
cay further.

Monte Carlo event generators generally handle hadronization in
three steps:

1. The partonic system is first mapped onto a continuum of high
mass hadronic states. This either done through the use of “strings”,
as in the Lund string model [22] of Pythia [6], or by the use of
“clusters” as in the cluster model [23] of Herwig [20];

2. The strings or clusters are then iteratively mapped onto discrete
sets of primary hadrons. This is done through string fragmenta-
tion or cluster splittings depending on the model used;

3. Finally the primary hadrons will undergo sequential decay into
secondaries, resulting in stable products seen in the final state.

The most widely used string model today is the Lund string model,
implemented in Pythia. In this model, the final-state partons result-
ing from the hard scatter matrix element, as well as the initial and
final state radiation, are connected by color strings. The color strings
ensure the conservation of color charge, and may have complicated
multi-parton topologies. Simple q – q strings form the starting point.
As the quarks move apart, linear color confinement implies a poten-
tial V(r) = κr at large distances r (see Equation 2.12). The string ten-
sion is κ ∼ 0.9 GeV/fm [13]. As the partons move apart, the potential
energy in the string increases, eventually allowing virtual qq pairs to
transition to real particles by absorbing energy from the string. This
is referred to as string breaking or string fragmentation, and is illus-
trated in Figure 3.5. The process of breaking the strings into separate
color-singlet pieces is continued until ordinary hadrons remain, with
insufficient energy to cause further string fragmentation.
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3.3.4 Soft Physics, Underlying Event, and Multiparton Interactions

Apart from the hard subprocess and the associated initial and final
state radiation, the pp collision in the Figure 3.4 contains other soft
(low energy) activity which is collectively called the underlying event
(UE). This covers the non-interacting remnants of the colliding pro-
tons, often labelled the beam remnants, as well as the possibility of
multiple parton interactions (or multiparton interactions, MPI) within the
colliding protons besides the hard interaction, as illustrated in Fig-
ure 3.6. The soft physics of the underlying event can interfere with
the hard subprocess and may obscure the details of the hard interac-
tion, which is most often the process of interest.

P. Skands Introduction to QCD
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Figure 30: a) Illustration of string breaking by quark pair creation in the string field. b)

Illustration of the algorithmic choice to process the fragmentation from the outside-in, splitting
off a single on-shell hadron in each step.

until only ordinary hadrons remain. (We will give more details on the individual string breaks
below.)

Since the string breaks are causally disconnected (as can easily be realized from space-
time diagrams like the one in figure 30, see also [6]), they do not have to be considered in any
specific time-ordered sequence. In the Lund model, the string breaks are instead generated
starting with the leading (“outermost”) hadrons, containing the endpoint quarks, and iterating
inwards towards the center of the string, alternating randomly between fragmentation off the
left- and right-hand sides, respectively, figure 30 b. One can thereby split off a single well-
defined hadron in each step, with a mass that, for unstable hadrons, is selected according to a
Breit-Wigner distribution.

The details of the individual string breaks are not known from first principles. The Lund
model invokes the idea of quantum mechanical tunneling, which leads to a Gaussian suppres-
sion of the transverse momenta and masses imparted to the produced quarks,

Prob(m2
q , p

2
?q) / exp

 
�⇡m2

q



!
exp

 
�⇡p2?q



!
, (82)

where mq is the mass of the produced quark and p? is the transverse momentum imparted to
it by the breakup process (with the q̄ having the opposite p?).

Due to the factorization of the p?and m dependence implied by equation (82), the p?spectrum
of produced quarks in this model is independent of the quark flavour, with a universal average
value of ⌦

p2?q

↵
= �2

= /⇡ ⇠ (240MeV)2 . (83)

Bear in mind that “transverse” is here defined with respect to the string axis. Thus, the p?in a
frame where the string is moving is modified by a Lorentz boost factor. Also bear in mind that
�2 is here a purely non-perturbative parameter. In a Monte Carlo model with a fixed shower
cutoff Qhad, the effective amount of “non-perturbative” p?may be larger than this, due to
effects of additional unresolved soft-gluon radiation below Qhad. In principle, the magnitude
of this additional component should scale with the cutoff, but in practice it is up to the user
to enforce this by retuning (see section 5.4) the effective � parameter when changing the
hadronization scale. Since hadrons receive p? contributions from two breakups, one on either

— 54 —

Figure 3.5: Illustration of a color string breaking
by quark pair creation in the string field. Image
from [13].

p

p

Figure 3.6: Feynman diagram of multipar-
ton interactions (MPIs) in a pp event.

Even in the absence of a hard interaction, soft inclusive physics
can occur. Such events are called minimum bias events (or simply min-
bias or MB), which is an experimental term that is used to define a
certain class of events that are selected with the minimum possible
selection bias. This is to ensure that they are as inclusive as possi-
ble. In theoretical context, the term “minimum bias” is often used to
denote a specific classes of inclusive soft QCD subprocesses, which
are the dominant processes in the experimental context. Minimum
bias events make up most of the events observed at hadron colliders.
Most studies at hadron colliders focus on heavy resonances (for exam-
ple the Higgs boson) produced in hard scatter interactions. In these
studies, minimum bias events will mostly manifest themselves as a
diffusive “noise” of soft particles. However in the study presented in
this thesis, diffractive scattering are the processes of interest. Diffrac-
tion most often finds itself in the class of soft physics, and hence are
often included in the definition of minimum bias events along with
non-diffractive events. In the following chapter, the theory, signature,
and phenomenology of diffractive events will be described in some
detail.
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D I F F R A C T I V E T H E O RY

This chapter will introduce diffractive scattering of high-energy pro-
tons, as hadronic diffraction is the process of interest in this thesis.
First, diffractive scattering will be defined in purely particle physics
terms. Then the kinematics of scattering processes will be reviewed,
with a special focus on diffractive reactions. Relativistic S-matrix the-
ory will be introduced to provide way for a description of Regge
theory. Finally, the postulated Pomeron is introduced along with the
different phenomenological parameterizations of the Pomeron flux as
implemented in Pythia 8.

The information in this chapter is based on references [24], [25],
[26], [27], [28], and [29], unless otherwise noted. The reader is referred
to these sources for more details and information.

4.1 definition

A general definition of diffractive scattering can be formulated as:

1. A high-energy reaction in which no quantum numbers are exchanged
between the colliding particles.

Diffraction is then the phenomenon that takes place as the energy in-
creases, and whenever the resulting outgoing particles have the same
quantum numbers as the incident particles. Definition 1 is general
enough to cover all cases:

elastic scattering , where the exact same incident particles come
out after the interaction (Figure 4.1a),

p + p→ p + p (4.1)

single diffraction (sd), where one of the incoming protons leaves
the collision while the other decays into a bunch of final-state
particles with the same quantum numbers as the original pro-
ton, i.e. only one proton dissociates (Figure 4.1b),

p + p→ p + X (4.2)

double diffraction (dd), where both protons decay into bunches
of multiple particles, each of the bunches carrying the same
quantum numbers as their respective parent proton, i.e. both
colliding protons dissociate (Figure 4.1c),

p + p→ X + Y (4.3)

25
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central diffraction (cd), where both protons are intact and
are seen in the final state and an additional bunch of particles
is produced with the quantum numbers of the vacuum (Fig-
ure 4.1d),

p + p→ p + X + p (4.4)

The request alone of no exchange of quantum numbers is not a suf-
ficient condition for a process to be diffractive. It would not elimi-
nate a possible contamination of processes of non-diffractive origin.
However the number of such processes is expected to become asymp-
totically smaller and smaller at higher energies compared to that of
diffractive processes. That is why the definition explicitly demand
high-energy processes.

Diffractive scattering processes are often inclusive, i.e. some of the
final-state particles will escape detector acceptance and are hence
left unmeasured. When the entire final-state is not fully measured,
it would be difficult to know whether the outgoing system has the
same quantum numbers as the incoming particles. Therefore, it is
often more convenient to provide a second operational and experi-
mentally more useful definition, which is equivalent to the first:

2. A diffractive reaction is characterized by a large, non-exponentially
suppressed rapidity gap in the final-state.

Following this definition, a process such as the one in Equation 4.2
is diffractive if a large rapidity gap (i.e. a large angular separation) is
observed between the final-state proton p and the system X. However,
there may be some events of the type in Equation 4.2 which display a
large rapidity gap, although they are of a non-diffractive nature. The
number of such events are expected to be exponentially suppressed.
Denoting the final-state gap in pseudorapidity space as ∆η, then the
distribution of diffractive events is roughly

dN
d∆η

∼ constant (4.5)

while that of non-diffractive events is

dN
d∆η

∼ e−∆η (4.6)

as the final-state particles in a non-diffractive event is assumed to
be uniformly distributed in rapidity and to follow Poisson statistics.
The distribution of final-state particles in the (η, φ)-plane for non-
diffractive events is illustrated in Figure 4.2.
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Figure 4.1: The four processes covered by diffractive definition 1. The left
figures are the relevant Feynman diagrams, and the right figures are the
final-state distributions in the (η, φ)-plane. These distributions are only for
illustrative purposes and to give a general idea of the final-state for each
process.
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Figure 4.2: Distribution of non-diffractive (ND) events in the (η, φ)-plane.
Some gaps in rapidity space between particles will occur, but the gap size
will be exponentially suppressed. The simplest exchanged particle between
the two protons which will lead to a ND event is, in QCD, a single gluon.

Strictly speaking, one should not refer to a specific event as be-
ing diffractive or non-diffractive. Instead one should talk about the
diffractive and non-diffractive components of the total cross-section.
If a specific event is referred to as diffractive, what is really meant
is that the event is in a kinematic region (i.e. of rapidity gap or of
the relative energy loss ξ as discussed later) where diffraction is the
dominant contribution to the total cross-section:

σtot = σel︸︷︷︸
Elastic

+ σsd + σdd + σcd︸ ︷︷ ︸
Diffractive

+ σnd︸︷︷︸
Non-diffractive︸ ︷︷ ︸

Inelastic

(4.7)

At
√

s = 13 TeV, pp collisions are expected to have [30]

σtot ≈ 100 mb (4.8)

σel ≈ 25 mb (4.9)

σsd ≈ 20 mb (4.10)

σnd ≈ 50 mb (4.11)

The term diffraction was introduced in high-energy physics in 1950s,
and borrows from optical terminology. In optics, the intensity I of
diffracted light at small angles θ and large wave numbers k, is given
by

I(θ) ' I(0)(1− Bk2θ2) (4.12)

where B is proportional to the squared radius of the obstacle or the
slit in the screen, and q ' kθ is the momentum transfer. As we shall
see, diffractive hadronic processes have a similar behavior of the cross-
section,

dσ

dt
' dσ

dt

∣∣∣∣
t=0

e−B|t| ≈ dσ

dt

∣∣∣∣
t=0

(1− B|t|) (4.13)

for small |t| ≈ θ2. The slope parameter B is proportional to the
squared radius of the target hadron, which in our case is the proton
with a charge radius, rp ≈ 0.88 fm [14].
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4.2 two-body scattering

Consider the two-body process 1+ 2→ 3+ 4, a special kind of which
is the single diffractive inclusive process 1 + 2 → 3 + X (which is
the process of interest in this study), where X denotes a system of
particles. The kinematics of two-body processes is described by the
three Mandelstam variables, defined as

s = (p1 + p2)
2 = (p3 + p4)

2 (4.14)

t = (p1 − p3)
2 = (p2 − p4)

2 (4.15)

u = (p1 − p4)
2 = (p2 − p3)

2 (4.16)

The Mandelstam variables obey the identity

s + t + u =
4

∑
i=1

m2
i (4.17)

which can be derived from the definitions and the energy-momentum
conservation, p1 + p2 = p3 + p4. Therefore, only two of the Mandel-
stam variables are independent. The Mandelstam variables can be
interpreted as the center-of-mass (CM) energy in the three different
channels,

1 + 2 → 3 + 4 (s-channel) (4.18)

1 + 3 → 2 + 4 (t-channel) (4.19)

1 + 4 → 2 + 3 (u-channel) (4.20)

where a bar indicates the anti-particle with opposite momentum. In
the s-channel, we have CM energy

√
s = ECM, and squared momen-

tum transfer |t| = Q2.

p2

p1

p4

p3

(a) s-channel.

p2

p1

p4

p3

(b) t-channel.

p2

p1

p4

p3

(c) u-channel.

Figure 4.3: The three tree-level Feynman diagrams corresponding to the
three Mandelstam variables.
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If we consider the s-channel process in the center-of-mass (CM)
system, we have by definition p1 + p2 = 0, which enables us to write
the four-momenta of the particles as

p1 = (E1, p) = (E1, 0, 0, pz) (4.21)

p2 = (E2,−p) = (E2, 0, 0,−pz) (4.22)

p3 = (E3, p′) = (E3, pT, p′z) (4.23)

p4 = (E4,−p′) = (E4,−pT,−p′z) (4.24)

where the coordinate system was chosen so that particle 1 and 2 travel
along the z-axis. Then by this convention, the s-channel scattering
angle θ can be introduced as

p′z = |p′| cos θ and |pT| = |p′| sin θ (4.25)

The energies E1, E2, E3, and E4 can be expressed in terms of s as

E1,2,3,4 =
1

2
√

s
(s + m2

1,2,3,4 −m2
2,1,4,3) (4.26)

Similarly for the momenta, we get:

p2 = p2
z = E2

1 −m2
1 (4.27)

=
1
4s
[
s− (m1 + m2)

2] [s− (m1 −m2)
2]

p′2 = p2
T + p′2z = E2

3 −m2
3 (4.28)

=
1
4s
[
s− (m3 + m4)

2] [s− (m3 −m4)
2]

4.3 kinematics of diffraction

The particular process of interest in this thesis is single diffraction
which is part of single-inclusive processes,

1 + 2→ 3 + X (4.29)

where X is a system of particles. Reactions of this form are described
by three independent variables. It is customary to use the Mandel-
stam variables s and t (defined in Equation 4.14 and 4.15) as well as
the invariant mass of the X system,

M2
X = (p1 + p2 − p3)

2 (4.30)

where it is assumed that X is not a real particle on the mass shell and
hence MX is not fixed.

In the CM system the four-momenta of the three known particles,
p1, p2, and p3, can be written as in Equations 4.21-4.23. If we limit
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ourselves to the asymptotic case where s and M2
x are much larger

than the masses of the particles, we have

|p| = pz '
√

s
2

, E1, E2 '
√

s
2

(4.31)

in the limit of s� m2
1, m2

2, and

|p′| ' s−M2
X

2
√

s
, E3 '

s−M2
X

2
√

s
(4.32)

in the limit s, M2
X � m2

3. In the case of single diffractive pp-scattering,
we will have m = m1 = m2 = m3.

Q = p1 � p3

|t| = Q2
IP

p2

p1

MX

p3, ⇠

�y

Figure 4.4: Feynman diagram of a single diffractive pp interaction. The com-
mon kinematic variables ξ, t, MX , and ∆y are shown.

A kinematic variable of common use when discussing single diffrac-
tive processes is the relative energy loss ξ, defined as Some use the

similar Feynman’s
xF variable in-
stead, defined as
xF ≡ |p3|z/(p1)z.

ξ ≡ 1− E3

E1
' M2

X
s

(4.33)

which will be used extensively throughout this thesis.

The squared momentum transfer t is another commonly used vari-
able in the description of diffractive scattering and will also be fre-
quently referenced in this thesis. From Equation 4.15 we see that

t = (p1 − p3)
2 = p2

1 + p2
3 − 2p1 p3

= m2
1 + m2

3 − 2E1E3 + 2p1 · p3

= 2m2
p − 2E1E3 + 2|p1||p3| cos θ (4.34)

Here θ is the scattering angle between p1 and p3 and we have as-
sumed that m1 = m3 = mp. We have also used that

pµ pµ = gµν pµ pν = E2 − p2 = m2 (4.35)

where gµν is the Minkowski metric with signature (+,−,−,−).
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In the limit s, M2
X � m2

p the transverse momentum of the outgoing
scattered particle is

p2
T = p2

3 sin2 θ ' −t
(

1− M2
X

s

)
(4.36)

From Equation 4.33 and 4.36 we see that

−t ' p2
T

1− ξ (4.37)

Hence, t ' −p2
T for ξ ' 0. Note that t ≤ 0.

Another frequently used kinematic variable for describing single
diffraction is rapidity y (defined in Equation 2.14) and especially the
rapidity gap ∆y. For very fast particles, i.e. in the limit pz → ∞, rapid-
ity takes the form:

y =
1
2

ln
E + pz

E− pz
' ln

2pz

mT
(4.38)

where mT is the transverse mass, defined as

mT ≡
√

m2 + p2
T (4.39)

The rapidity of the scattered particle 3 at large s is

y3 =
1
2

ln
E3 + p′z
E3 − p′z

' ln
√

s
mT

(4.40)

The maximum value of y3 is obtained when pT = 0,

(y3)max = ln
√

s
m

(4.41)

The average value of yX corresponds approximately to a momentum
(pX)z ' −

√
s/2 and to a transverse mass (MX)T ' MX, hence

〈yX〉 ' − ln
√

s
MX

(4.42)

The maximum absolute rapidity of the X system is the rapidity of a
particle with momentum ∼ √s/2 and transverse mass ∼ m,

|yX|max ' ln
√

s
m

(4.43)

whereas the minimum absolute rapidity corresponds to a particle
with momentum ∼ (m/M)

√
s/2 and transverse mass ∼ MX,

|yX|min ' ln
m
√

s
M2

X
(4.44)
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The final-state rapidity gap between the scattered particle 3 and the
edge of the rapidity distribution of the X system is then roughly

∆y ' ln
s

M2
X

(4.45)

By using the definition of the relative energy loss ξ from Equation 4.33,
a relation between ξ and the rapidity gap can be found to be

ξ ' e−∆y (4.46)

It is customary in the literature to use the pseudorapidity gap ∆η here
instead. However, one should be careful not to make a too large error
in identifying the rapidity y with the pseudorapidity η for a particle
with a very small scattering angle θ (see Section 2.5).

pX
y

�y ' ln
s

M2
X

y3 ⇠ ln

p
s

mln
M2

X

m
p

s
ln

mp
s

(ln
M2

X

m2

Figure 4.5: Rapidity distribution in the final state of a single diffractive pro-
cess.

From 4.31 and Equation 4.33, we see that the longitudinal momen-
tum transfer in a single diffractive process with s, M2

X � m2 is

|∆pz| = |pz − p′z| '
M2

X
2
√

s
(4.47)

According to Good and Walker (1960) [31], the coherence condition
between the outgoing and incoming waves that defines diffraction is

|∆pz| .
1
R

(4.48)

where R is the size of the target, which is in our case a proton so that
R is of the order of 1 fm. With the appropriate factors of h̄ and c, this
corresponds to:

|∆pz| '
M2

X
2
√

s
. 1 GeV ⇒ M2

X
s
� 1 ⇒ ξ ∼ 0 (4.49)

Diffractive events will therefore have a small relative energy loss ξ
and hence a large rapidity gap ∆y.
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4.4 S-matrix theory

The S-matrix theory was developed in the 1960s as an attempt to
completely describe the strong interactions, alternatively to quantum
field theory. Some of the methods of S-matrix theory are still useful
for describing hadronic phenomena.

The scattering matrix (or S-matrix) is the linear operator which
transforms the initial or ingoing state |i〉 of a scattering process into
the corresponding final or outgoing state | f 〉:

S|i〉 = | f 〉 (4.50)

where the initial state |i〉 is defined at the time t = −∞ and the
final state | f 〉 is defined at t = ∞. The states represents plane waves
where all the particles can be considered free and non-interacting.
The probability for transition is given by,

Pi→ f = |〈 f |S|i〉|2 (4.51)

The S-matrix elements are related to, the arguably most important ob-
servable in particle physics, the scattering cross-section. By subtract-
ing the identity operator from S, we can obtain the transition matrix
T:

S = 1 + iT (4.52)

By enforcing four-momentum conservation, pi = p f , the S-matrix
elements can be written:

Si f ≡ 〈 f |S|i〉 = δi f + i(2π)4δ4(p f − pi)A(i→ f ) (4.53)

where A(i → f ) is the relativistic scattering amplitude, which for a
scattering process of the type 1 + 2 → n particles, is related to the
differential cross-section by:

dσ =
1
Φ
|A(i→ fn)|2dΦn (4.54)

where Φ is the incident flux and dΦn is the Lorentz-invariant phase-
space (LIPS) measure for n particles in the final-state. The total cross-
section is obtained by integrating and summing over all possible num-
bers of particles n in the final-state.

The general properties assumed for the S-matrix are:

• relativistic invariance,

• unitarity – S†S = SS† = 1 which follows from the conservation
of probability,
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• analyticity – the scattering amplitude A(s, t) is an analytical func-
tion of the kinematical variables, s and t, when these are contin-
ued to complex values,

• crossing symmetry – knowing A(s, t, u) in either the s-, t-, or u-
channel makes it is possible to analytically continue the ampli-
tude to the other channels.

It is natural to require S to be relativistically invariant. The matrix
elements of S can then be expressed in terms of Lorentz-invariant
combinations of the kinematic variables in the form of the Mandel-
stam variables.

4.4.1 The Optical Theorem

An important result that follows directly from unitarity is the optical
theorem. In the case of a 2 → 2 elastic scattering, the initial and final
states are identical, |i〉 = | f 〉. In this case, one can find that

σtot =
2
Φ

Im Ael(s, t = 0) (4.55)

which is the formulation of the optical theorem for relativistic 2 →
2 scattering. The optical theorem can be used to provide a relation
between the elastic and total cross-section by

dσel

dt
∝ σ2

tot (4.56)

Hence, measurements of the differential elastic cross-section dσel/dt,
can be used to fit and extract the total cross-section.

4.4.2 The Froissart-Martin Bound

An important and rigorous theorem found from the theory of the
S-matrix, is the Froissart-Martin bound that states that the total cross-
section cannot grow faster than ln2(s),

σtot(s) ≤ c ln2
(

s
s0

)
, as s→ ∞ (4.57)

where s0 is an unspecified energy scale and c is a constant bound by

c ≤ π

m2
π

≈ 60 mb (4.58)

where mπ is the pion mass. The Froissart-Martin bound will give an
upper bound on the asymptotic (increasing energy) behavior of the
total cross-section.
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4.5 regge theory

Regge theory was developed in the 1960s and precedes QCD. It has
had significant phenomenological success in describing soft and non-
perturbative hadronic processes, for which no alternative theoretical
framework is – at least presently – available. The ultimate goal of
studying hard diffractive processes is to translate Regge theory into
the language of QCD, the theory of strong interactions.

The idea of Regge theory is to introduce into scattering theory,
the analytical continuation of scattering amplitudes into the com-
plex angular-momentum plane. Regge theory is based on the general
properties of field theory and the relativistic S-matrix: unitarity, cross-
ing symmetry, and analyticity. Let us consider a generic reaction by
single-particle exchange in the s- and t-channel (see Figure 4.3a and
4.3b). Our starting point will be the partial-wave expansion of the
scattering amplitude in the s-channel, A(s, t), given by

A(s, t) =
∞

∑
`=0

(2`+ 1)A`(s)P`(z) (4.59)

where

A`(s) =
1
2

∫ +1

−1
dzP`(z)A(s, t(z, s)) (4.60)

and where ` is the s-channel angular momentum, P`(z) are the Leg-
endre polynomials, and

z ≡ cos(θ) = 1 +
2t

s− 4m2 (4.61)

We can then use crossing symmetry to go to the t-channel:

A(s, t) =
∞

∑
`=0

(2`+ 1)A`(t)P`(zt) (4.62)

with

zt ≡ cos θt = 1 +
2s

t− 4m2 (4.63)

In the high-energy limit of s→ ∞ and keeping t be fixed, we get

P`(zt) ∼
|zt|→∞

z`t ⇒ A(s, t) ∼
s→∞

s` (4.64)

This leads us to a divergent series for A(s, t). Introducing complex
angular momenta allows getting a representation for A(s, t) which is
valid in all channels. The relativistic partial-wave amplitude A`(t) can
be analytically continued to complex ` values. The resulting function,
A(`, t), will then have simple poles at

` = α(t) (4.65)

where α(t) is called the Regge trajectory.
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In the presence of a Regge pole, the partial-wave amplitude A(`, t)
behaves for `→ α(t) as

A(`, t) ∼
`→α(t)

β(t)
`− α(t)

(4.66)

where β(t) is the residue function. The Regge trajectory α(t) takes
integer values of ` at some non-physical value of t (i.e. for t > 0).
These Regge poles corresponds to resonances or bound states of in-
creasing angular momentum (i.e. spin) `. The Regge trajectory α(t) (or
Reggeon) then interpolates such resonances or bound states. Reggeons
are collectively denoted by the symbol IR.

A simple way to visualize the Regge trajectories, is to expand α(t)
in a power series around t = 0. Then we get a linear trajectory for
small t:

α(t) = α(0) + α′t (4.67)

where α(0) is the intercept and α′ is the slope of the Regge trajectory.
The leading mesonic trajectories, the ρ, the f2, the a2, and the ω, are
all shown in Figure 4.6. The leading mesonic trajectories all lie on the
same trajectory, with an intercept α(0) ≈ 0.5 and a slope α′ of the
order of 1 GeV−2.

Figure 4.6: Plot of J = α(t) vs. |t| for differ-
ent observed resonances. The leading mesonic
Regge trajectory is indicated by the solid line,
while the Pomeron trajectory is indicated by
the dashed line. A JPC = 2++ glueball candi-
date state X(1900) observed by the WA91 col-
laboration is also shown. Figure from [32].

Figure 4.7: The total cross-sections for pp
and pp scattering as a function of the center-
of-mass energy,

√
s. The cross-sections has

been fitted with σtot = XsαIP(0)−1 + YsαIR(0)−1

where X and Y are reaction-dependent free
parameters. We see that αIP(0) ≈ 1.08 and
αIR(0) ≈ 0.547. Figure from [33]. For a recent
result see [34].
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The scattering amplitude of a two-body scattering process can, in
the large s limit and in the case of a single Reggeon exchange, be
written as

A(s, t) = f (t)sα(t) (4.68)

where the function f (t) includes both the residue and the signature
factor. The optical theorem then implies that the total cross-section is

σtot 's→∞

1
s

Im A(s, t = 0) ∼
s→∞

sα(0)−1 (4.69)

in the case of a single-pole contribution. If more than one pole con-
tributes, then the total cross-section is given by a sum of terms of the
form

σtot ∼∑
i

Aisαi(0)−1 (4.70)

The high-energy behavior of the total cross-section is then determined
by the intercept of the Regge trajectory, as

α(0) > 1 ⇒ σtot increases (4.71)

α(0) = 1 ⇒ σtot constant (4.72)

α(0) < 1 ⇒ σtot decreases (4.73)

The leading mesonic trajectory with an intercept of α(0) ∼ 0.5, will
give a decreasing contribution for low t to the total cross-section,
σtot ∼ s−0.5. On Figure 4.7 we see that this works for low energies
but will not describe the asymptotically increasing total cross-section
observed. To describe the increasing total cross-section for higher en-
ergies, one needs to introduce the Pomeron.

4.6 the pomeron

To account for the increase in the total pp cross-section an additional
Regge trajectory is introduced. This trajectory is known as the Pomeron,The Pomeron is

named after one
of the founding

fathers of hadronic
diffractive physics,

I. Ya. Pomeranchuk.

a hypothetical particle with the quantum numbers of the vacuum,
denoted by IP. The Pomeron trajectory does not correspond to any
meson and is often modelled as

α(t) = 1 + ε + α′t (4.74)

where ε = 0 corresponds to a critical Pomeron. A Pomeron with ε > 0
is called supercritical, and will give rise to an increasing total cross-
section. Fits to the total cross-section for different types of elastic scat-
tering [35], indicates that

αIP(0) = 1 + ε = 1.08 and α′IP = 0.25 GeV−2 (4.75)

which will give a ∼ s0.08 term to the total cross-section.
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The framework of Regge theory describes hadronic reactions at
high energies in terms of the exchange of ‘objects’ called Reggeons.
A proton may emit (and reabsorb) a Reggeon (for example a positive
pion π+) for a short virtual while, as seen on Figure 4.8. If another
proton were to probe this proton at this point, it would interact with
the Reggeon. A pion carries color charge and hence a color connection
between the two protons would arise. This would result in multiple
particle production in the full rapidity space between the two pro-
tons. Exchange of mesonic Reggeons will dominate at low interaction
energy.

n0

Virtual ⇡+ (“Reggeon”)

p+ p+

Figure 4.8: Proton emitting and then reabsorb-
ing a virtual Reggeon, in this case a π+.

p+

Virtual Pomeron IP (“glueball”)

p+ p+

Figure 4.9: Proton emitting and then reabsorb-
ing a virtual Pomeron.

The Reggeon with quantum numbers of the vacuum and which
dominates asymptotically (i.e. at high energy) is the Pomeron. A pro-
ton may emit (and reabsorb) a Pomeron for a short virtual while,
as seen of Figure 4.9, similarly to the Reggeons. This is more likely
at high energy. The exchange of other scalar particles with vacuum
quantum numbers, contributing to non-diffractive events, is suppressed
at high energy. Therefore in Regge theory, the diffractive reactions are
those dominated by Pomeron exchange.

IP

p

p p

)
X

�y
IP

p

p p

)

Figure 4.10: Feynman diagrams of a single diffractive pp-scattering by the exchange of a Pomeron
with a partonic substructure in the picture of Ingelman and Schlein [5].
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In the picture of Ingelman and Schlein [5] the Pomeron takes a
partonic substructure. The Pomeron is expected to be a glueball state,
rather than a conventional resonance. It results from a complicated
exchange of gluons (at least two) in a so-called gluon ladder. The Feyn-
man diagram for a glueball Pomeron in a single diffractive event is
shown in Figure 4.10. The Pomeron trajectory along with a JPC = 2++

glueball candidate is shown in Figure 4.6.

4.6.1 Two-Pomeron Model: A Soft and a Hard Pomeron

Hadronic processes are usually classified in two distinct classes: soft
processes and hard processes.

The soft processes are characterized by an energy scale of the order
of the hadron size R ∼ 1 fm, as well as a small momentum transfer
squared |t| ∼ 1/R2. Perturbative QCD is inadequate to describe soft
reactions and hence Regge theory has been the go-to framework for
soft hadronic processes.

The hard processes are characterized by two energy scales: one
is the hadron size, and the other is a hard energy scale. The mo-
mentum transfer is of the order of the hard scale and is quite large,
Q2 & 1 GeV2. The high momentum transfer allows the use of pertur-
bative QCD. Deep inelastic scattering and events with a large-pT jet
production are two examples of hard processes.

Diffraction most often find itself in the soft regime. However, hard
diffraction is of great interest as it opens up the possibility of studying
diffractive scattering in a perturbative setting as well as probing the
QCD nature of the Pomeron. The ultimate goal is to translate Regge
theory into the language of QCD.

The Pomeron that emerges from the fits to the total cross-sections,
with an intercept of ε ≈ 0.08, is often called the soft Pomeron. The soft
Pomeron is non-perturbative, and hence very difficult to derive from
QCD, but is well known from a large amount of data from the last 60

years.
There also seems to be a hard Pomeron, described by the perturba-

tive BFKL equation of QCD, but as of yet is supported by little or no
experimental data. A perturbative QCD approach predicts a much
higher intercept of ε ≈ 0.15 for the hard Pomeron. There are some
experimental hints of the existence of the hard Pomeron [36], but a
lot still remains to be understood about hard Pomeron exchange.
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4.6.2 The Pomeranchuk Theorem

The Pomeranchuk theorem for total cross-sections states that at high en-
ergy the total cross-sections for proton-proton and proton-antiproton
scattering become equal,

σtot(pp) '
s→∞

σtot(pp) (4.76)

The theorem is nicely illustrated in Figure 4.7, where the total cross-
sections for pp and pp scattering is plotted. For increasing center-of-
mass energy

√
s, the two cross-sections get asymptotically closer.

The Pomeranchuk theorem can be understood in the context of
the Pomeron and the Reggeons. For low interaction energy

√
s, the

exchange of mesonic Reggeons (such as the pions) will dominate. But
at high energy, the exchange of the Pomeron will dominate. As the
Pomeron carry the quantum numbers of the vacuum, it will treat
protons and antiprotons alike. This is not the case for the mesonic
Reggeons.

4.7 pomeron flux parameterization

Hadronic diffraction is not well-understood and many different ap-
proaches exist. In this section we will consider the approach followed
by the general-purpose event generator Pythia 8 [6]. Pythia follows
a conventional Pomeron-based approach pioneered by Ingelman and
Schlein [5] that makes use of the full Pythia machinery of parton
showers, hadronization, and multiparton interactions. For a full re-
view of the diffractive models in Pythia, see references [37] and [38].

The soft diffraction framework in Pythia 8 was originally devel-
oped for its predeccesor Pythia 6, but rewritten and expanded for the
new version. The total cross-section is calculated using the Donnachie-
Landshoff parameterization [33] which includes both a Pomeron and
a Reggeon term. The elastic and diffractive cross-sections are then
calculated using the Schuler-Sjöstrand model [30], which is based on
Regge theory and gives an exponential t-dependence and an approx-
imate dM2/M2 mass dependence. Additional fudge factors are intro-
duced to dampen the cross-section.

The hard diffraction framework in Pythia 8 is based on the assump-
tion that the Pomeron exists inside the proton in the Ingelman-Schlein
spirit [5]. In this view, a Pomeron flux fIP/p(xIP, t) is introduced, where
xIP is the Pomeron momentum fraction from the proton, and t is the
Pomerons spacelike virtuality. The Pomeron flux can be seen as a
parton distribution function (PDF) describing the number density of
Pomerons in the proton. In addition, the Pomeron has a partonic sub-
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structure and hence has PDFs itself, fi/IP(x, Q2), similar to the proton.
Given these assumptions, the proton PDF can be split into a diffrac-
tive and a non-diffractive part, as

fi/p(x, Q2) = f ND
i/p (x, Q2) + f D

i/p(x, Q2) (4.77)

with the diffractive part f D
i/p being described using the factorization

approach of Ingelman and Schlein, as

f D
i/p(x, Q2) =

∫ 1

0
dxIP fIP/p(xIP)

∫ 1

0
dx′ fi/IP(x′, Q2)δ(x− xIPx′)

=
∫ 1

x

dxIP

xIP
fIP/p(xIP) fi/IP

(
x

xIP
, Q2

)
(4.78)

where

fIP/p(xIP) =
∫ tmax

tmin

fIP/p(xIP, t) dt (4.79)

and where fi/IP is the number density of partons in the Pomeron.
Here we have used the Feynman variable for the Pomeron xIP, instead
of the relative energy loss of the scattered proton ξ. However they
have a simple relation,

ξ ' 1− xIP (4.80)

This model also implements a dynamic gap survival, by evaluating
on an event-by-event basis, the possibility for additional multiparton
interactions (MPIs) in the pp system. If no further MPIs are found,
then the event is diffractive. Only if no additional MPIs are found
in the pp system, is the IPp system set up. This is illustrated in Fig-
ure 4.11. This means that there will not be any MPIs in the pp system
but the model do allow for MPIs in the IPp system.

Figure 1: The dynamical gap survival implemented in Pythia 8. The
model do not allow for MPIs in the pp system, but allows for additional
MPIs in the Pp system.

The probability for side A,B, to be di↵ractive is then given by the ratio
of di↵ractive to inclusive PDFs,

PD
A

=
fD
i/B

(x
B

, Q2)

f
i/B

(x
B

, Q2)
for AB ! XB ,

PD
B

=
fD
i/A

(x
A

, Q2)

f
i/A

(x
A

, Q2)
for AB ! AX . (3)

The model also implements a dynamical gap survival, cf. Fig. 1. On an
event-by-event basis we evaluate the possibility for additional MPIs in the pp
system, and if no further MPIs are found, then the event is di↵ractive. Thus
initially eq. (3) has no consequence, with all events still handled as being
nondi↵ractive. Only if no additional MPIs are found is the event classified
as di↵ractive, and the Pp system set up. A full evolution is then performed
in this subsystem, along with the hadronisation of the colour strings in
the event. At this point, the nondi↵ractive events can be discarded if an
exclusively di↵ractive sample is wanted, otherwise they can be kept for an
inclusive sample consisting of both non- and single-di↵ractive events.

The dynamical gap survival introduces an additions suppression of the
di↵ractive events, such that the total probability for hard di↵raction drops
from⇠ 10% to⇠ 1%. In Table 1 we show the number of events passing either
the probabilistic criterion of eq. (3) (PDF selection) or both the probabilistic
and the dynamical gap survival (MPI selection) for a variety of the P fluxes
and PDFs available in Pythia 8. These fractions are very model dependent,
of course. They depend both on the P parametrization and on the free
parameters of the MPI framework, although many of the distributions tend
to be mainly driven by only one of them.

Distributions a↵ected by the modelling of the P flux and PDF are e.g.
the chosen xP value, hence the mass of the di↵ractive system, as well as the
value of the squared momentum transfer, t and through that the angle at

4

Figure 4.11: Illustration of the dynamic gap survival in the hard diffraction
model in Pythia. Figure from [38].

Many distributions will be affected by the modelling of the Pomeron
flux as well as the Pomeron PDF. These distributions include the rel-
ative energy loss ξ, and hence the invariant mass of the diffractive
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system MX and the rapidity gap size ∆y. The squared momentum
transfer t and hence the scattering angle θ of the surviving proton
will also be affected. It was observed in [38] that the distributions
will be affected more by the choice of the Pomeron flux parameteriza-
tion than by the choice of the Pomeron PDF.

Seven different Pomeron flux parameterizations are available in
Pythia 8, and are shown in Figure 4.12. Three of the seven param-
eterizations are studied in this thesis. The three includes the Schuler-
Sjöstrand [30], the Donnachie-Landshoff [33], and the Minimum Bias
Rockefeller (MBR) [39] parameterizations. The Schuler-Sjöstrand pa-
rameterization is the default setting in Pythia and all three are used
in the official Monte Carlo sample generation by both the ATLAS and
CMS experiments. In addition, the three differs quite a lot as seen in
Figure 4.12, and will hence give a good overall look into diffraction.
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Figure 1: The seven di↵erent Pomeron fluxes included in Pythia on linear (a) and logarithmic
scale (b). Note that the MBR flux has not been renormalized (see [28]). The QCD charge-weighted
sum, eq. (8), of the five di↵erent Pomeron PDFs compared to the NNPDF 2.3 proton PDF on
linear (c) and logarithmic scale (d).

is that the P PDF sets we compare are all based on H1 analyses, with largely the same data and
with correlated assumptions for the definition of di↵ractive events. This is especially notable in
the quark distributions, which are close to identical. Also the close a�nity of gluons at lower x
values should not be overstressed. Finally, note that the H1 parametrizations only apply down
to x = 10�3, and are frozen below that. This is likely to underestimate the low-x rise of PDFs,
which as well could have been of the same shape as in the proton.

In the end, what matters is the convolution of the P flux with its PDFs, and that is shown in
Fig. 3. There would be too many combinations possible to show individually, so we only indicate
the range of possibilities and a few specific combinations. This may be on the extreme side, since
some fluxes and PDFs come as fixed pairs, not really intended to be mixed freely. The key feature
to note is that in this convolution the Pomeron part is now falling steeper at large x than the
proton as a whole. This has the immediate consequence that di↵ractive hard subcollisions are not
necessarily going to be produced more in the forwards direction than the bulk of corresponding
nondi↵ractive ones, but on the contrary may be more central. The di↵erence is not all that
dramatic, however. It is also partly compensated by a somewhat slower increase of the P towards
lower x values, a feature that derives from the artificial freezing of the P PDF below x = 10�3.
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Figure 1: The seven di↵erent Pomeron fluxes included in Pythia on linear (a) and logarithmic
scale (b). Note that the MBR flux has not been renormalized (see [28]). The QCD charge-weighted
sum, eq. (8), of the five di↵erent Pomeron PDFs compared to the NNPDF 2.3 proton PDF on
linear (c) and logarithmic scale (d).

is that the P PDF sets we compare are all based on H1 analyses, with largely the same data and
with correlated assumptions for the definition of di↵ractive events. This is especially notable in
the quark distributions, which are close to identical. Also the close a�nity of gluons at lower x
values should not be overstressed. Finally, note that the H1 parametrizations only apply down
to x = 10�3, and are frozen below that. This is likely to underestimate the low-x rise of PDFs,
which as well could have been of the same shape as in the proton.

In the end, what matters is the convolution of the P flux with its PDFs, and that is shown in
Fig. 3. There would be too many combinations possible to show individually, so we only indicate
the range of possibilities and a few specific combinations. This may be on the extreme side, since
some fluxes and PDFs come as fixed pairs, not really intended to be mixed freely. The key feature
to note is that in this convolution the Pomeron part is now falling steeper at large x than the
proton as a whole. This has the immediate consequence that di↵ractive hard subcollisions are not
necessarily going to be produced more in the forwards direction than the bulk of corresponding
nondi↵ractive ones, but on the contrary may be more central. The di↵erence is not all that
dramatic, however. It is also partly compensated by a somewhat slower increase of the P towards
lower x values, a feature that derives from the artificial freezing of the P PDF below x = 10�3.
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(b) Logarithmic scale

Figure 4.12: The seven different Pomeron flux parameterizations implemented in Pythia 8 on
linear (a) and logarithmic (b) scale. Figures from [37].

In the following, the three Pomeron flux parameterizations of inter-
est in this thesis are briefly reviewed.

4.7.1 The Schuler-Sjöstrand Parameterization

The Schuler-Sjöstrand parameterization [30] is the default setting in
Pythia 8. Based on a critical Pomeron with ε = 0 and α′ = 0.25 GeV−2,
giving a mass spectrum roughly like dM2/M2 and a mass-dependent
exponential t-slope that will reduce the rate of low-mass states. The
Pomeron flux parameterization is given by

fIP/p(ξ, t) =
1
ξ
(0.02)σ2

IPp exp
(

2t
[

2.3 + 0.25 ln
(

1
ξ

)])
(4.81)

where σIPp is the assumed Pomeron-proton effective cross-section, as
used for multiparton interactions in diffractive systems. By default set
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to σIPp = 10 mb in Pythia. The Schuler-Sjöstrand parameterization in
Pythia 8 does not allow the user to vary the two parameters of the
Pomeron trajectory, ε and α′.

4.7.2 The Donnachie-Landshoff Parameterization

A conventional Pomeron description, attributed to Donnachie and
Landshoff [33]. Based on a supercritical Pomeron with ε > 0, which
will give a stronger peaking towards low-mass diffractive states, and
with a power-law t distribution. The Pomeron flux parameterization
is given by

fIP/p(ξ, t) =
9β2

4π2 ξ
1−2α(t)F2

1 (t) (4.82)

where β2 = 3.43 GeV−2 is the Pomeron-proton coupling and

F2
1 = 0.27e(8.38 GeV−1)t + 0.56e(3.78 GeV−1)t + 0.18e(1.36 GeV−1)t (4.83)

The original model only covered single diffraction but has been ex-
panded by analogy to include double and central diffraction. In the
Donnachie-Landshoff parameterization, the two parameters of the
Pomeron trajectory, ε and α′, can be varied.

4.7.3 The Minimum Bias Rockefeller (MBR) Parameterization

The MBR model and parameterization [39] follows a renormalized
Regge theory model, successfully tested using CDF data. Includes
single, double, and central diffraction. The Pomeron flux parameteri-
zation is given by

fIP/p(ξ, t) =
1

Ngap(s)
β2

16π
F2

1 (t)ξ
1−2α(t) (4.84)

where β2 = 43.11 GeV−2 is the Pomeron-proton coupling and

F2
1 (t) =




4m2
p − 2.8t

4m2
p − t


 1

1− 1
1− t

0.71




2



2

(4.85)

≈ 0.9e(4.6 GeV−1)t + 0.1e(0.6 GeV−1)t (4.86)

In the MBR parameterization, the two parameters of the Pomeron tra-
jectory, ε and α′, can be varied. There are many additional parameters
that can be set for the MBR model (such as Ngap) but they will not be
studied in this thesis.



Part II

E X P E R I M E N T

In the previous part, the creation of particles from proton-
proton collisions at hadron colliders was described in some
detail. This part will provide an explanation of the de-
tection and measurement of the produced and scattered
particles. First an overview of the Large Hadron Collider
(LHC) at CERN is given, followed by a description of the
ATLAS detector and the sub-detectors to the extent rele-
vant to this study. Finally, the ALFA detector will be intro-
duced, which allows for the detection and measurement
of the diffractively scattered protons.
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T H E L A R G E H A D R O N C O L L I D E R

This chapter introduces the Large Hadron Collider (LHC) at CERN.
As the ALFA Roman Pots are installed onto the LHC beam pipe, some
knowledge of the LHC is required.

5.1 the cern accelerator complex

The information in this section is based on ref. [40] and [41].
The CERN accelerator complex was established in 1954. The goal

was originally to study atomic nuclei but it was soon applied to
the study of interactions between subatomic particles. The complex
houses the largest particle accelerator ring in the world with a circum-
ference of 26.7 km. The ring was finished in 1988 and up until 2000

housed the Large Electron-Positron Collider (LEP), which was the
most powerful accelerator of leptons ever built. The ring now houses
the Large Hadron Collider (LHC) which from its onset of operations
in 2008 represents the state-of-the-art of particle accelerators.

Figure 5.1: Overview of the CERN accelerator complex. Image from
[OPEN-PHO-ACCEL-2016-001-2], © 2017 CERN.

47
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The LHC is a two-ring superconducting accelerator and collider in-
stalled in a 26.7 km ring located 45 to 170 m below the surface. The
LHC is the last step in a larger injection chain that gradually acceler-
ates protons from rest, up to beam energies of 6.5 TeV.

First, a strong electric field is used to strip electrons off of hydro-
gen atoms to yield protons. The protons are then injected into the
Linear Accelerator 2 (Linac2) where an array of three radiofrequency
(RF) accelerator tanks will accelerate the protons up to energies of
50 MeV. The beam of protons will then enter a series of three proton
synchrotrons – the Proton Synchrotron Booster (PSB), the Proton Syn-
chrotron (PS), and the Super Proton Synchrotron (SPS). The proton
beam, leaving the SPS with an energy of 450 GeV, will then enter the
LHC.

Once the LHC has reached its target beam energy, the proton beams
in the two counter-rotating beam pipes will collide at four interac-
tions points, where the four major LHC experiments are located: AT-
LAS, CMS, LHCb, and ALICE. The LHC beam pipe is about 3 cm in
diameter and has a high vacuum of ∼ 10−7 Pa to ensure sufficiently
long beam lifetimes.

In the first period of operation (Run 1, 2009 to 2013) the LHC col-
lided protons at a center-of-mass energy of

√
s = 7 and 8 TeV. In the

ongoing second period of operation (Run 2, 2015 to 2018) the nominal
energy has been

√
s = 13 TeV and is expected to reach 14 TeV.

5.2 luminosity

An important quantity in collider physics (besides the beam energy)
is the luminosity L – the number of particles passing down the line
per unit time, per unit area. Given a cross-section σ for some process,
the total interaction rate dN/dt is given by

dN
dt

= L× σ (5.1)

where L is the instantaneous luminosity. For the LHC, the nominal
peak instantaneous luminosity is L = 1034 cm−2s−1 [41]. Integrating
over time, will give the total number of collisions (or events), as

Since both in-
tegrated and

instantaneous lu-
minosity is denoted

by L, we need to
rely on the context

and the choice of
units to distinguish

between the two.

N = σ
∫
Ldt (5.2)

where in practice, the integrated luminosity
∫
Ldt is the instanta-

neous luminosity integrated over some LHC run duration, and is
measured in units of inverse barn (b−1), where 1 b = 10−24 cm2. The
integrated luminosity is a measure of the total amount of data col-
lected during an LHC run, and will be frequently referred to as sim-
ply the luminosity with the symbol L.
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5.3 running parameters

This section will give a short introduction to the running parameters
and conditions for ensuring collisions. For more in-depth informa-
tion on the theory behind particle acceleration, the reader is referred
to references [42], [43], and [44].

The LHC houses 1232 main superconducting dipole magnets, that
are used to bend the paths of the protons. In the linear section around
the ATLAS interaction point, a magnetic lattice will focus and tighten
the trajectory of the protons inside the beam pipe, to ensure that the
stable and precisely aligned beams will collide at the interaction point.
This magnetic lattice can be set up into different running configura-
tions, also known as the optics. The optics is set depending on the type
of run and collisions that should proceed. Naturally, this configura-
tion is of interest to any measurement done with the ALFA detector,
as a linear section of magnets is installed in the ∼ 240 m between
the ATLAS interaction point and the ALFA stations, that will affect
the trajectory of an elastically or diffractively scattered proton in the
extreme forward direction. Hence, specific running parameters and
optics will be requested for studies with ALFA.

To describe the movement of the protons around the LHC ring, a
three-dimensional comoving coordinate system is defined and illus-
trated in Figure 5.2. A position on the reference orbit is given by s
with the beam axis in the z-direction. The actual proton orbit can
deviate from the reference orbit. The radially outward displacement
is denoted by x, while the upward displacement is denoted by y. A
given proton can be described by two vectors (u, u′) where u = {x, y},
with u being the position and u′ = du/dz being the slope of the par-
ticle path relative to the beam axis.

If we ignore energy loss (i.e. momentum dispersion) of the protons,
then the oscillating orbits of the protons are given by a single func-
tion β(s), called the amplitude function, which is determined by the
configuration of the magnetic lattice. The orbits are given by

u(s) =
√

εβ(s) cos [Φ(s)− δ] (5.3)

u′(s) = −
√

ε

β(s)
(
sin [Φ(s)− δ] +

√
ε cos [Φ(s)− δ]

)
(5.4)

where

• Φ(s) =
∫ s

0
dz

β(z) is the phase function,

• δ is an arbitrary constant phase shift, and

• ε is the transverse emittance as described below.
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lipse for a single proton at a particular
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area of πε.

The solutions will map out an ellipse in the transverse phase space
(i.e. the (u, u′)-plane), centered at zero, but different for each point s
along the ring. The ellipse is shown in Figure 5.3. The shape of the el-
lipse will change with β(s), but the area is constant. Here u represents
both the horizontal x and the vertical y deviation from the closed or-
bit of the proton. Hence, β(s) represents two different functions βx(s)
and βy(s), and likewise will δ represent two different constants. The
maximum angular deviation is u′max =

√
ε/β and the maximum po-

sition deviation is umax =
√

εβ.

The transverse emittance ε is defined as the area (divided by π) of the
ellipse that contains a certain fraction (usually 95%) of the beam pro-
tons. The emittance is determined solely by the initial conditions. As
for the β-function, there exists a separate horizontal εx and vertical
εy emittance. The emittance changes as a function of the beam mo-
mentum – increasing the energy of the beam protons will reduce the
emittance. Therefore, it is often more useful to consider the normalized
emittance εN , defined as

εN = γβε =

(
p0

m0c

)
ε (5.5)

which is constant during the acceleration of the beam protons. Here
β and γ are the relativistic functions.
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5.4 beam optics and crossing angle

The value of the amplitude function, β(s), at the interaction point is
referred to as the optics of a run with the symbol β∗ ≡ β(s = 0).
The value of β∗ will refer to the distance from the interaction point
(the focus point) where the beam width is twice as wide as at the
interaction point.

+z

Interaction

Point (IP)

�⇤

��/2

Figure 5.4: Illustration of the optics, β∗, as the distance from the interaction
point where the beam width is twice that at the interaction point.

The LHC magnets can be tuned to a different optics for any given
run. For most LHC runs, the optics is chosen to have a low β∗ value
(around 0.55 m) to get as small beams as possible and thereby a large
luminosity. This setting is ideal for the search for new physics be-
yond the SM, as it will provide a large number of total events and
therefore more statistics for very rare events which are interesting for
Higgs and Beyond the Standard Model (BSM) physics.

However, in the data runs used in this thesis, a large optics of
β∗ = 90 m has been used. This will give large beams but low lu-
minosity and small angles of the incoming beam protons.

The low luminosity will result in a small pile-up (multiple simul-
taneous proton-proton collisions per bunch crossing). A low pile-up
is necessary for proper reconstruction of tracks in ALFA. In Run 1,
during the 2012 data-taking, the peak instantaneous luminosity was
∼ 7× 1033 cm−2s−1, resulting in every hard interaction being accom-
panied by an average number of pile-up collisions of 〈µ〉 = 20.7 [45].

The expected average pile-up multiplicity (i.e. number of collisions
per bunch crossing), 〈µ〉, is given by [46]

〈µ〉 = L× σinel.

Nbunch × fLHC
(5.6)

where L is the instantaneous luminosity, σinel. is the total inelastic
cross-section, and Nbunch × fLHC is the average bunch-crossing fre-
quency, which is nominally (25 ns)−1 for Run 2 but was (50 ns)−1 for
Run 1.
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Pile-up interactions are often of a soft QCD nature, and can drown
out the single diffractive signal in ALFA. We are therefore interested
in the pile-up being as low as possible. For the diffractive data runs
analyzed in this thesis, the average number of pile-up collisions was
〈µ〉 ≈ 0.0863 at an average instantaneous luminosity L ≈ 8.21 ×
1030 cm−2s−1 [47].

The small angles of the beam protons will make it possible to ne-
glect the angles of the incoming protons and thereby making it easy
to measure the scattering angle of the diffractively scattered protons.
In fact, a high β∗ is necessary for data taking with the ALFA detector,
as the ALFA detector is built to measure scattered protons with very
small angles.

Furthermore, to avoid that a given bunch from beam 1 will collide
with several bunches from beam 2, the LHC beams will collide with
a crossing angle. The crossing angle of the beams are set in the (y, z)-
plane and for the data runs of interest in this study, the crossing angle
is set to θC = 2× 50 µrad as seen on Figure 5.5, i.e. each beam will
have an angle −50 µrad with respect to the beam axis.

z

Beam 2 Beam 1

✓c

2✓c

y

Figure 5.5: Illustration of the beam crossing angle at the LHC.

We will throughout this thesis set the coordinate system such that
the ATLAS interaction point IP1 is at s = 0 or z = 0. The proton
beams will have a certain size and hence the interaction vertex will
be distributed around the beam spot – the point of bream crossing.
Measurements of the position and size of the beam spot for the data
run studied in this thesis are shown in Figure 5.6.
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Figure 5.6: Beam spot measurements from the ATLAS inner detector in run 282026 [48].

The average beam spot position and size along with uncertainties
are estimated from the graphs in Figure 5.6 and are found to be

xBS = (−0.62± 0.05) mm, σx, BS = (0.14± 0.05) mm (5.7)

yBS = (−0.79± 0.05) mm, σy, BS = (0.14± 0.05) mm (5.8)

zBS = (−3.0± 1.0) mm, σz, BS = (53.0± 1.0) mm (5.9)

These values will be used in both the simulation and data analysis.
The normalized emittances can be used to find the beam diver-

gence for a given run. The beam divergence will contribute to the
angles of the diffractively scattered protons and can be found by [49]

DBeam n
u =

√
εBeam n

u
γβ∗

where u = {x, y} (5.10)

where γ = EBeam
mp
≈ 6929.64, β∗ = 90 m, and εu are the normalized

transverse emittances which are found from wire scans [50] of the
beam during data taking. From the LHC eLogBook [51], the normal-
ized emittances for our data runs were found to be

εBeam 1

x = (3.5± 0.4) µm× rad (5.11)

εBeam 1

y = (3.3± 0.3) µm× rad (5.12)

εBeam 2

x = (4.3± 0.4) µm× rad (5.13)

εBeam 2

y = (3.5± 0.4) µm× rad (5.14)

with a 10% uncertainty on the wire scans [49]. The beam momentum
spread due to the beam divergence, can be found by the simple rela-
tion, σpu = Du × p.



54 the large hadron collider

The measurements of the beam spot widths from before can be
used as a stability check of the wire scans. The beam spot width is
related to the emittance by [49]

σu =

√
β∗/γ√

1/εBeam 1

u + 1/εBeam 2

u
where u = {x, y} (5.15)

where a Gaussian distribution is assumed for both beams. We get
the calculated beam spot widths to be σx = 0.16 mm and σy = 0.15
mm, which are in approximate agreement with the average measured
values from Figure 5.6.

5.5 simulation of beam transport

Several dipole and quadrupole magnets exists between the ATLAS in-
teraction point and the ALFA Roman Pots, as depicted on Figure 5.7.
The knowledge about the magnetic lattice in the LHC between the
interaction point and the ALFA detectors, can be used to simulate the
trajectories of the diffractively scattered protons in the beam pipe.

IP1
Q1 Q3

Q2 D1
TAS

D2 Q4

TAN Q5 Q6

237 m

Q7

8 m

ALFA RPs

Beam 1

Beam 2

Figure 5.7: Illustration of the magnets between the ATLAS interaction point
and the ALFA Roman Pots. Items labelled with a ‘D’ are dipole magnets,
while items labelled with a ‘Q’ are quadrupole magnets. Reproduction of
similar figures from [52] and [53].

The standard package for the simulation of the behavior of charged
particles in alternating-gradient accelerators, is MAD-X [54] – a general-
purpose tool specifically adapted to the design of the LHC. MAD-X
allows for the use of the thick lens case in contrast to the thin lens ap-
proximation. MAD-X will generate Twiss files that contains information
on each element of the magnetic lattice (dipoles, quadrupoles, drift
spaces, solenoids, bending magnets, beam monitors, etc.). For each
element, a large amount of information is stored, including the po-
sition s, the values of β(s), Φ(s), and δ in both the horizontal and
vertical direction, as well as the aperture survival information. MAD-X
does not take the LHC collimators into account, however this is not
important as the collimators was, for the data runs used in this thesis,
retracted far enough away from the beam as to not have an effect on
the aperture survival.
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The Twiss files generated by MAD-X can be used by the Athena
package ForwardTransportFast to simulate the proton trajectories in
the LHC beam pipe. ForwardTransportFast will transport particles
directly from the interaction point to a specified position s on the
beamline. The package reads the given HepMC event collection and
appends successfully transported particles to the collection. The pack-
age will in the case of the ALFA detector, only transport protons with
a positive charge. Other particles that may live long enough and have
a large enough energy to reach the ALFA detector, such as antipro-
tons, charged pions, and muons, will therefore not be simulated by
ForwardTransportFast. For this purpose, a more involved simulation
using Geant4 [55] may be necessary. However, a full Geant4 simu-
lation of ALFA does not exist at present time. ForwardTransportFast
is preceded by the older Athena package ALFA_BeamTransport.

The trajectories of protons from the ATLAS interaction point to the
ALFA detectors for a collision energy

√
s = 13 TeV, optics of β∗ = 90

m, and a crossing angle θC = 2 × 50 µrad are shown for different
proton energies in Figure 5.8 and 5.9. The approximate positions of
the quadrupoles and dipoles, that are responsible for the bending and
focusing of the protons, are also shown. In addition, kicker magnets
in both the vertical and horizontal directions are located between the
interaction point and the ALFA stations, to ‘kick’ the protons into
position. The x and y coordinates in the transverse plane for different
values of s were found using MAD-X and ForwardTransportFast. The
protons were generated with a primary vertex at (0, 0, 0). The protons
were generated according to the beam such that px = 0 and

py = − sin(50 µrad)× 6500 GeV ≈ −0.325 GeV (5.16)

such that pT = 0 relative to the beam. The coverage of the ALFA
detector in x and y is roughly shown. A proton with ξ = 0.16 but
otherwise resembles a beam proton will hit the inner ALFA detector
at z = 237 m and might just barely hit the outer detector at z = 245
m detector. See Figure 8.14 for the exact shape of the ALFA detectors
in the transverse plane. Note that the trajectories will also depend on
px and py as well as the interaction vertex, xIP and yIP. The momen-
tum dependence is shown in Figure 5.10 and 5.11, while the vertex
dependence is shown in Figure 5.12 and 5.13. Notice that px and xIP

will only affect the trajectory in the x-direction, and that py and yIP

will only affect it in the y-direction. This is because the horizontal and
vertical betatron oscillations are completely decoupled in a linear sec-
tion of an accelerator containing only dipoles and quadrupoles. The
dependence of the ALFA hit position on energy loss, momentum, and
primary vertex will be studied in detail in Section 8.2.
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From Figure 5.8 it is seen that with increasing energy loss ξ, the
proton deflection in the x-axis direction as well as the y-axis direc-
tion increases. The deflection in x is also for protons in events with
a non-zero crossing angle. The deflection in y is due to the crossing
angle and will be discussed later. The difference in the x-coordinate
between the near and far stations, ∆x = x245 m − x237 m, will likewise
grow with ξ.
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Figure 5.8: Energy dependence of the proton trajectory in the (x, z)-plane.
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The small bent in the trajectory in the y-direction (Figure 5.9, 5.11,
and 5.13) around the quadrupole triplet (Q1, Q2, Q3) is due to the
non-zero crossing angle. A kicker magnet will focus deviating pro-
tons in the y-direction right before the ALFA stations.
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Figure 5.10: px dependence of the proton trajectory in the (x, z)-plane.
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6
T H E AT L A S D E T E C T O R

The ATLAS detector [52] is one of the two general-purpose detectors
at the LHC, with CMS [56] being the other. The ATLAS detector is
designed for precision measurements of the Standard Model as well ATLAS stands for

‘A Toroidal LHC
ApparatuS’.

as the observation of new physics at the TeV-scale. ATLAS is installed
at IP1 at the LHC, is 44 m long, 25 m in diameter, and weighs about
7000 tonnes. ATLAS has a cylindrical structure, as seen on Figure 6.1,
and is described by a coordinate system centered around the nomi-
nal interaction point (IP) where the pp-collisions occur. Most of the
ATLAS sub-detectors are segmented into bins of η and φ, since soft
final-state particles are expected to be roughly uniformly distributed
in y and φ, where the rapidity has been approximated to pseudo-
rapidity which allows for a purely geometrical subdivision. Starting
from the interaction point, final-state particles will traverse through
the layers of the ATLAS detector, passing the inner detector (ID), the
calorimeters, and finally the muon spectrometer.

Figure 6.1: Computer generated overview of the ATLAS detector. Image from
[CERN-GE-0803012-01], ATLAS Experiment © 2017 CERN.

59
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For the purpose of studying single diffractive scattering, the AT-
LAS detector is able to measure different properties of the diffrac-
tively dissociated system. For this, the inner detector and the calorime-
ters are of special interest. The inner detector will be able to recon-
struct a primary vertex that is necessary for the reconstruction of the
kinematics of the diffractively scattered proton. Both the inner detec-
tor and the calorimeters are important for the measurement of the
large rapidity gap as well as the invariant mass of the dissociated sys-
tem.

In the following sections, the basic structure of the different com-
ponents of the ATLAS detector (called ‘sub-detectors’) are described
to some detail, along with their specialized role in the detection and
measurement of the different aspects of the final-state of pp-collisions.
A full description of the ATLAS detector can be found in ref. [52].

6.1 magnet system

The ATLAS magnet system is designed to bend charged particles ac-
cording to the Lorentz force. The bending allows for charge determi-
nation of the charged particles as well as a more precise measurement
of the momentum.

The innermost magnet is a superconducting solenoid magnet, which
consists of a single coil and produces a magnetic field of 2 T in the
direction of the beam axis. The solenoid has an axial length of 5.8 m
and a radius of 2.5 m. It surrounds the inner detector and is designed
to minimize the amount of material in front of the calorimeter to en-
sure that the energy loss of the particles in the magnet is kept to a
minimum.

Beyond the calorimeter system, a three-component toroidal mag-
net is located. The toroid magnets are air-core magnets that produce
an azimuthal magnetic field in the muon spectrometer. The magnets
are split into a central (‘barrel’) part, with an axial length of 25.3 m,
and two end-cap parts with a length of 5 m. The toroid magnets pro-
vides approximately 0.5 T in the barrel region, and 1 T in the end-cap
regions.

6.2 inner detector

The ATLAS inner detector (ID) consists of three parts at increasing ra-
dial distance from the beam pipe: the pixel detector, the semiconduc-
tor tracker (SCT), and the transition radiation tracker (TRT). The three
sub-detectors can, in combination, measure the positions of charged
particles at different radii from the beam axis. This makes it possi-
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ble to fit and reconstruct the particle trajectory. Each ID sub-detector
is separated into a barrel part, with cylindrical geometry centered
around the interaction point, and two end-cap parts, with axial sym-
metry, located at each end of the barrel. The entire ID ensures a com-
bined pseudorapidity coverage of |η| < 2.5. An additional pixel layer,
the insertable B-layer [57], was installed between the beam line and
the older pixel detector during the long shutdown in 2013 and 2014.
An cut out of the combined ID before the installation of the insertable
B-layer is shown in Figure 6.2 and 6.3.

Figure 6.2: Computer generated cut out of the ATLAS inner detec-
tor, showing the pixel detector, the SCT, and the TRT. Image from
[CERN-GE-0803014-01], ATLAS Experiment © 2017 CERN.

The primary vertex of the interaction can be reconstructed by asso-
ciating two or more tracks to a possible vertex position. For minimum
bias data samples, the charged tracks used in the reconstruction of the
primary vertex is usually required to have a pT > 100 MeV. The spa-
tial resolution of the reconstructed vertex will depend on the number
of tracks associated to the vertex. The resolution of the x-coordinate
for the reconstructed primary vertex in the ID as a function of the
number of associated tracks is seen in Figure 6.4. The resolution of
the y-coordinate is identical to that of the x-coordinate as the ID is
symmetric in the azimuthal angle.

6.2.1 Pixel Detector

The pixel detector is located closest to the beam line and consists of
semiconductor pixel sensors, effectively acting as solid-state ionisa-
tion chambers. The pixel sensors are almost completely depleted of
free charge carriers. A charged particle passing through the depleted
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regions will generate electron-hole pairs which are then collected by
the bias voltage, and detected as small electric currents at the read-
out. The pixel sensors have a thickness of 250 µm and a nominal size
of 50× 400 µm2. The choice of the 1 : 8 rectangular pixel sensors is
due to the ID being immersed in a solenoidal magnet field resulting
in a bending in the φ-direction. Hence, precision in the φ-direction
is more valuable than in the axial direction – at least for small bend-
ing radii. The intrinsic resolution in the transverse direction is 10 µm
while it is 115 µm in the longitudinal direction.

Figure 6.3: Computer generated image of
a slice of the ATLAS inner detector. Image
from [CERN-GE-0803014-03], ATLAS Exper-
iment © 2017 CERN.

Figure 6.4: The resolution of the x-coordinate of
the reconstructed primary vertex by the ID as
a function of the number of associated tracks.
Figure from [58].

The insertable B-layer (IBL) installed for Run 2, is a single-layer
cylindrical pixel detector located between the beam pipe and the
three-layer pixel detector at a distance of 31 mm < R < 40 mm from
the interaction point. This required the inner radius of the beam pipe
to be reduced by 4 mm from 29 to 25 mm. The IBL was installed to
improve the reconstruction of the primary and especially secondary
vertices. The small distance from the interaction point will further-
more improve the precision of the impact parameters, d0 and z0.

6.2.2 Semiconductor Tracker (SCT)

The SemiConductor Tracker (SCT) consists of silicon sensors with
strip readout rather than the pixel geometry of the pixel detector. This
makes it more affordable to cover the larger volume outside the pixel
detector with the silicon tracking sensors, but results in an inherently
degraded resolution. This is remedied by a pair-wise grouping of
sensor modules, that are rotated with a small stereo angle to obtain
the z-measurement. A charged particle that traverse one SCT layer,
will then effectively cross two silicon strips. The hit resolution is then



6.3 calorimetry 63

given by the effective cross-sectional area of the two strips. Each sili-
con sensor is 6.36× 6.40 cm2 and consists of 768 read-out strips with
a separation of 80 µm. Each layer is double-sided with an angle of 40
µrad between the silicon sensors in the two layers. This results in an
intrinsic resolution of 17 µm in the transverse direction, and 580 µm
in the longitudinal direction.

6.2.3 Transition Radiation Tracker (TRT)

The Transition Radiation Tracker (TRT) is a straw drift tube detec-
tor that covers up to |η| < 2.0. In contrast to the two other ID sub-
detectors, the TRT uses approximately 300000 long, gas-filled, cylin-
drical straw tubes (cathodes) with a diameter of 4 mm and with a
tungsten wire (anode) running along their centers for charged parti-
cle detection. When a charged particle passes a TRT straw, it ionizes
the gas atoms inside the straw. The tungsten wires are operated at a
large bias voltage which results in the electrons causing an avalanche
of secondary ionization which is deposited in the anode wire and
read out as an electrical signal. The TRT straw tubes are interleaved
with a dielectric foil to enhance the transition radiation of charged
particles, which yields much larger signals in the TRT straws than
standard minimum ionizing particles, and are used to separate elec-
trons from e.g. pions during the reconstruction. The TRT will only
provide hit information in the (R− φ) plane with an intrinsic resolu-
tion of 130 µm. This is a deliberate choice as the solenoid magnet will
only bend charged particles in the φ direction.

6.3 calorimetry

Calorimeters measure the energy of particles (such as electrons, pho-
tons, and hadronic jets) by absorbing them in the detector material.
The calorimeters of ATLAS are sampling calorimeters, consisting of
alternating layers that absorb and measure the spray of particles. The
calorimeter system of ATLAS are grouped into three parts: the electro-
magnetic (ECAL), hadronic (HCAL), and forward (FCAL) calorimeter.
A cut out of the combined calorimeter system is shown in Figure 6.5.

6.3.1 The Electromagnetic Calorimeter (ECAL)

The Electromagnetic Calorimeter (ECAL) is a sampling calorimeter
with lead as the absorbing material and liquid argon (LAr) as the
active material, in which electrodes are embedded for signal detec-
tion. The ECAL is located just outside the central solenoid that sur-
rounds the ID. Electrons and photons will interact differently from
hadrons as they do not participate in the strong interaction. Electrons
lose energy to electromagnetic bremsstrahlung, loosing a factor of
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Figure 6.5: Computer generated cut out of the ATLAS calorimeter system,
showing the electromagnetic (ECAL), the hadronic (HCAL), and the for-
ward (FCAL) calorimeters. Image from [CERN-GE-0803015], ATLAS Experi-
ment © 2017 CERN.

1/e of their energy over one radiation length X0. The bremsstrahlung
photons will produce e+e− pairs after a length (9/7)X0 which gives
rise to an electromagnetic (EM) shower. Final-state photons will also
generate an EM shower albeit slightly later. The ECAL extends to
over 22X0 in the barrel region and over 24X0 in the end-cap region.
The barrel region covers |η| < 1.475, while the end-cap regions cover
1.375 < |η| < 3.2. The calorimeter uses an accordion geometry to
ensure full φ coverage with no cracks. The ECAL consists of a pre-
sampler followed by three layers in the barrel region and two in the
end-cap regions. The presampler consists of an active LAr layer and
covers |η| < 1.8. The purpose of the presampler is to correct the en-
ergy of the electrons and photons before they reach the three main
layers. The second layer collects the majority of the deposited energy,
and the third layer is designed to collect the tails of the EM showers
and determine whether there are any punch-through into the HCAL.

6.3.2 The Hadronic Calorimeter (HCAL)

The Hadronic Calorimeter (HCAL) is located outside the ECAL and
consists of a central Tile calorimeter with the absorbing layers made
of steel and the active material made of scintillating tiles, covering the
barrel (|η| < 1.0) and extended barrel (0.8 < |η| < 1.7) regions. The
end-cap calorimeter is based on a copper-LAr sampling calorimeter
which covers 1.5 < |η| < 3.2. Final-state hadrons will leave only a
small fraction of their energy in the ECAL. The HCAL therefore re-
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lies on the strong interaction to measure the energy of the hadrons,
where the length scale of the process is characterized by the nuclear
interaction length λ, which is the mean free path between inelastic
strong interactions. Each strong interaction in the HCAL produce sec-
ondary particles (mainly pions) which themselves interact with the
calorimeter medium, giving rise to hadronic showers. The central Tile
calorimeter consists of three layers while the end-cap LAr calorimeter
consists of four layers arranged in wheels, as seen in Figure 6.5. The
total length of the calorimeter system in the barrel region is 9.7λ of
which the HCAL makes up 7.4λ. The end-cap LAr calorimeter has a
length similar to the Tile calorimeter. The large total interaction length
of the calorimeter means that there are very little punch-through to
the outer muon spectrometer, and that the calorimeter system pro-
vides reliable measurements of the total energy inside the η coverage.

6.3.3 The Forward Calorimeter (FCAL)

The Forward Calorimeter (FCAL) is a LAr sampling calorimeter in-
stalled to ensure high |η| coverage and to reduce non-muon radiation
into the muon spectrometer. The FCAL extends over 3.2 < |η| < 4.9,
ensuring a combined calorimetric coverage of |η| < 4.9. The FCAL
consists of three layers, each with a depth of 45 cm. The first layer uses
copper as the absorption material and mainly measures EM showers.
The second and third layer uses tungsten as the absorption material
and are designed to measure hadronic showers. The FCAL has a to-
tal depth of approximately 10λ with a coarser granularity than the
ECAL and HCAL.

6.4 muon spectrometer

The muon spectrometer is the outermost sub-detector system of AT-
LAS. The only particles that escape the calorimeter system are muons
with energies above 5 GeV. This is due to their not participating in
the strong interactions (and hence will not leave any energy in the
HCAL) and having a large mass compared to the electron and will
therefore give off less Bremsstrahlung. The muons are therefore ex-
pected to be the only particles to arrive outside the calorimeter, in a
second set of tracking detectors. The muon spectrometer relies on the
bending of the muons by the large volume of the air-core toroid mag-
net to achieve excellent stand-alone momentum determination and
charge identification of muons with a transverse momentum as high
as pT & 3 TeV. The muon spectrometer consists of several different
kinds of sub-detectors – some used for high precision measurement
of the pT of the muons, and some with a coarser resolution used as
triggers in the data-taking process.
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6.5 trigger system

If the LHC runs with its design bunch spacing of 25 ns, then the
rate of bunch crossing happening in the ATLAS detector is 40 MHz,
i.e. 40 million proton bunch crossings happen every second. It is not
possible to read out and save the information on all of the collisions,
nor are all the collisions interesting for a given analysis. Most ATLAS
analyses are interested in events with high-pT objects such as jets, elec-
trons, muons, taus, or missing transverse momentum. To filter out the
most interesting events to be saved, a trigger system is designed and
used. The ATLAS trigger system works in two levels – one more spe-
cific than the other.

The first level is the Level 1 trigger, denoted L1, and is implemented
in the hardware. The L1 trigger makes a decision on whether to keep
or reject an event, based on information from hits in the trigger cham-
bers in the muon spectrometer and energy deposits measured by the
trigger towers in the calorimeters. The trigger decision is done by the
Central Trigger Processor (CTP) based on this information and uses
look-up tables to see whether the trigger requirements are met. The
L1 trigger requires around 2.5 µs to reach a decision and will reduce
the rate of events to ∼ 100 kHz. The trigger forms Regions of Interest
(RoIs) which are passed on to the next level.

The second level is the High Level Trigger, denoted HLT, and is a
merged collection of the previous Level 2 (L2) and the Event Filter
(EF) triggers from Run 1. The HLT relies mostly on the algorithms
of the former EF trigger system to make decisions. This includes a
requirement of a finer granularity of the calorimeter and an addition
of track information from the inner detector. The average rate of the
HLT is ∼ 1 kHz.

6.6 minimum bias trigger scintillator

Most of the ATLAS sub-detectors have their own dedicated trigger
systems and items. However, the Minimum Bias Trigger Scintillator
(MBTS) is not associated with any specific sub-detector, but is de-
signed to check and refine noisy and faulty channel maps of ATLAS
in the commissioning phase of LHC. The MBTS are scintillation de-
tectors composed of 2 cm thick doped polystyrene. The MBTS are
mounted as disks around the LHC beam pipe on both sides of the
interaction point, labelled as A and C sides, with B being the bar-
rel region. Each disk consists of 8 wedges, which are composed of
an inner ring, covering a pseudorapidity range of 2.76 < |η| < 3.86,
as well as an outer ring, covering 2.08 < |η| < 2.76. The light emit-
ted from the scintillator is collected by 8 wavelength shifting optical
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fibers (WLS) that are embedded at the edges of the scintillator and
connected to photomultipliers. Energy deposits above the threshold
of 50 mV corresponding to 0.23 pC [59] will result in the L1 MBTS
trigger to fire. The MBTS will trigger on almost all inelastic events.
As the MBTS is a very inclusive trigger, the data sample that will
trigger the MBTS is called minimum bias, and covers the experimental
definition given in Section 3.3.4.

6.7 the lucid sub-detector

LUCID (Luminosity measurements Using Cherenkov Integrating De-
tector) is a dedicated luminosity monitor for the ATLAS experiment.
The LUCID detector is made of two modules installed at z = ±17 m
on both sides of the ATLAS interaction point. Each modules is made
of four quartz fibre bundles. When a charged particle traverses the
module, the produced Cherenkov radiation is carried to 16 photo-
multiplier tubes protected by shielding some 2 m aways.

6.8 particle signature in atlas

The ATLAS detector is a general-purpose detector and designed such
that most final-state particles will leave a distinct trace. Figure 6.6
shows how the measurements in the ATLAS sub-detectors are com-
bined to identify and measure different types of particles:

photons are not electrically charged and will therefore not leave
any track in the ID. However, they can be identified by creating
an electromagnetic shower in the ECAL, where they will deposit
all their energy.

electrons will leave a shower in the ECAL similar to that of pho-
tons. Unlike the photons, they are charged particles and will
therefore also leave a track in the inner detector.

muons have a long enough lifetime to be treated as stable particles
in the detector. They will not be stopped by the calorimeters
and will therefore reach the muon spectrometer.

charged hadrons such as protons and charged pions will leave
tracks in the ID and will be completely absorbed by the HCAL.
They may also deposit some energy in the ECAL.

neutral hadrons such as the neutron and neutral pion will not
be measured by the ID or ECAL, but will deposit all their energy
in the HCAL.

neutrinos interact only through the weak force and will leave the
detector without a trace. They can be indirectly measured by
the missing transverse energy.
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jets are narrow cones of particles originating from strongly inter-
acting particles that hadronize. Jets will deposit energy in the
calorimeters, especially the HCAL. They may leave tracks in
the ID.

Figure 6.6: Computer generated image representing how different particles are detected in the
ATLAS detector. Image from [CERN-EX-1301009], ATLAS Experiment © 2017 CERN.
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T H E A L FA D E T E C T O R

The ALFA detector is designed to detect and measure protons in the
extreme forward direction, making it possible to tag diffractively scat-
tered protons. ALFA consists of eight identical tracking detectors in- ALFA stands

for ‘Absolute
Luminosity for
ATLAS’.

stalled in Roman Pots at 237 m and 245 m from the interaction point
on either side of ATLAS, pairwise above and below the beam pipe. In
Figure 7.1 the positions of the eight ALFA detectors are shown along
with the numbering convention used in this thesis. The eight detec-
tors are paired into four stations. Each station consists of two Roman
Pots – an upper and a lower – with tracking detectors approaching
the beams in the vertical coordinate y. The ALFA detectors are able
to measure protons in the transverse plane only few milimetres from
the beam in order to reach the small t regime.

This chapter presents an introduction to the ALFA detector, and is
based on references [60] and [61], unless otherwise noted.

z

y

Beam 1 Beam 2

ATLAS
Interaction Point

x

1

2

3

4

5 7

86

A-side C-side

237 m8 m

Figure 7.1: Side view of the positions of the eight ALFA stations and the
LHC beam configuration with the ATLAS and beam coordinate systems.
The ALFA Roman Pots on the A-side are stationed on the outgoing beam 2,
while on the C-side they are stationed on the outgoing beam 1.

7.1 main detectors

The main detector (MD) is a tracking detector where traversing pro-
tons are detected and their position is measured. The MD consists
of ten fibre planes, with two perpendicular layers of 64 scintillating
fibres in each layer. The fibers have a size of 0.5× 0.5 mm2 and are
coated with aluminium to reduce the amount of light propogating
from one fiber to another neighboring fiber, also known as optical
cross-talk. The layers of fibers are glued to a titanium substrate. The
plates of fibers are arranged with an angle of ±45◦ to the vertical
coordinate y in a diamond shape and perpendicular to each other.
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The perpendicular planes are referred to as the U- and V-planes. The
plates are arranged after each other in the z-direction, i.e. the direc-
tion of the beam. This results in a pattern of alternating fibre layers
which forms pixels in the u and v coordinates that are rotated 45◦

with respect to the usual (x, y) coordinates. For one plane with an
U and V layer with perpendicular fibres the resulting pixels have
a width of d = 500 µm which gives a width in the x − y plane of
dx,y =

√
2 · 500 µm ≈ 707 µm. The theoretical spatial resolution of a

single fiber in the (u, v) can be calculated as the Root-Mean-Square
(RMS) as

σu,v =

√∫ d/2

−d/2

(x− x0)2

d
dx

x0=0
=

√∫ d/2

−d/2

x2

d
dx =

d√
12
≈ 144 µm

(7.1)

which is also true in the (x, y) plane due to the geometry. To further
improve the resolution, the planes have been staggered with multi-
ples of 1/10 of the fibre width. This results in a final theoretical reso-
lution of the MD of 14.4 µm. In practice the actual resolution is deto-
riated due to imperfect staggering, cross-talk, noise, and inefficient
fibre channels. The actual resolution was measured in several test
beams to be around 30 µm. The orientation of the U- and V-planes of
the MD with respect to the beam axis is illustrated in Figure 7.2 and
7.3.

7.2 overlap detectors

The overlap detectors (OD) are placed on each side of the MD as
shown in Figure 7.2. The OD is dedicated to precisely measure the
distance between the upper and lower MDs to align the detectors.
This is necessary as the position of the movable Roman Pots that
houses the MD and ODs are not fixed from one data taking to another.
The ODs consists of three layers of 30 scintillating fibres which are
glued to the front and back side of titanium plates. These plates are
staggered by 1/3 of the fibre width to improve resolution. The plates
are oriented horizontally, since the OD is only used to align in the
vertical direction. The ODs are aligned to the MD with an uncertainty
that does not exceed 8 µm. The single-track resolution is about 50 µm
but can be significantly improved by using many hits. A resolution
of 20 µm is achieved with a few thousand tracks. The position of the
ODs with respect to the MDs is illustrated in Figure 7.2.

7.3 multi anode photomultiplier tubes

The fibers from both the MDs and ODs are connected to Multi An-
ode PhotoMultiplier Tubes (MAPMTs) which are located outside the
Roman Pots. The scintillation-light signals from the fibers are guided
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by means of total internal reflection out of the RP to the photomul-
tiplier tubes. The MAPMTs convert the light signal into an electrical
signal that is directed to front-end electronics with signal amplifiers
and readout buffers to digitally store signals above a certain thresh-
old. The scintillating fibres are connected to the MAPMTs such that
cross-talk between neighboring fibres is reduced.

Figure 7.2: A schematic view of a pair of ALFA
tracking detectors in the upper and lower Ro-
man Pots. Although not shown, the ODs on ei-
ther side of each MD, are mechanically attached
to the MDs. The orientation of the scintillating fi-
bres are indicated by the dashed lines. The plain
layer visible in front of the lower MD, is one of
the trigger counters. On the upper detector, the
trigger counter is located on the opposite side of
the fibres. Image from [53].

Beam pipe

Figure 7.3: Photograph of the side view
of one of the ALFA detectors, with the
aluminium-coated scintillating fibres clearly
visible. The ten layers of scintillating fibres
of the MDs are seen in the middle for both
the upper and lower detector, while the ODs
are located on either side of the MDs. The
detectors are located just a few mm from the
beam for high β∗ runs as pictured here. The
orientation of the beam pipe relative to the
detectors is also shown. Image from [62].

7.4 trigger counters

Both the MD and ODs are completed with trigger counters, used to
select and trigger on miscellaneous event topologies, e.g. elastically or
diffractively scattered protons. The main and overlap trigger counters
consists of 3 mm thick plastic scintillator plates that cover the active
areas of the MD and ODs. The scintillator plates are painted with a
white reflective paint to ensure maximum light yield. Each MD has
two separate scintillator plates in order to make local coincidence. The
ODs only need one scintillator plate, since the coincidence is obtained
from signals in the upper and lower overlap trigger counters. The
signals from the trigger tiles are carried to PMTs outside the Roman
Pots by clear fibres.



72 the alfa detector

7.5 roman pots

The tracking detectors (MD and ODs) and the trigger counters are lo-
cated inside Roman Pots (RPs) which functions as vessels providing
a secondary vacuum that allows the ALFA detectors to approach the
beam inside the beam pipe. The Roman Pots separate the detectors
from the ultra high primary vacuum inside the beam pipe. Each RP
has a thin steel window of 0.2 mm thickness at the bottom as a direct
separation between the detector and the beam. Two additional steel
windows of 0.5 mm thickness are located in front and behind the MD.
The secondary vacuum in the RPs reduces the bending of the win-
dows and allows the pots to be moved closer to the beam. The RPs
are kept on movable flanges which allows them to be moved close to
the beam. Motors are used to achieve the positioning with 5 µm steps.
The position is measured by Linear Variable Displacement Transform-
ers (LVDT) which are calibrated by laser measurements. The LVDT is
calibrated with respect to the geometric center of the beam pipe and
the real beam positions are measured in special runs where the RPs
are moved closer to the beam until the bottom RP windows start to
scrape the beam edges. The pots needs to be movable as the beam
will have different sizes and locations depending on the beam optics,
as discussed in Section 5.3 and 5.4. The upper and lower RPs are il-
lustrated in Figure 7.4.

Beam axis

Main detector

ALFA Roman Pots

Overlap
detector

PMFs

MAPMT

Fiber connectors

Figure 7.4: A 3D cut-through view of an upper and lower detector and their
Roman Pots. For clarity the routing of the fibres to the photodetectors is not
shown. Figures from [63] and [64].
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7.6 track reconstruction

A proton traversing the MD will give a fiber hit in several of the layers.
By assuming that the trajectory of the proton is perpendicular to the
detector plane, the common overlap region of the hit fibers can be
used to reconstruct the proton track. The overlap of fiber hits in the U-
plane is illustrated in Figure 7.5. The reconstructed hit position of the
proton is the middle of the overlap region and the size of the overlap
is a measure of the precision. The track is reconstructed in the fiber
(u, v) coordinate system and then translated into (x, y) coordinates
by a simple rotation,

(
x

y

)
=

(
cos 45◦ − sin 45◦

sin 45◦ cos 45◦

)(
u

v

)
(7.2)

The coordinates are given with respect to a precision hole in the ti-
tanium plates. This is referred to as the detector coordinate system,
and the track coordinates need to be transformed into the beam co-
ordinate system, in which the physics analysis is performed. This is
accomplished by an alignment procedure, which uses the distances
between the upper and lower detectors along with the rotation of the
detector with respect to the beam, to transform the track coordinates.
The alignment procedure will be described in detail later.

Figure 7.5: Illustration of the principle used to reconstruct tracks in ALFA.
Figure from [53].
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7.7 naming convention

Several different naming conventions are used for the ATLAS sta-
tions and detectors. For the analysis of data, a simple numbering
scheme similar to that in Figure 7.1 is normally used. However, each
station, Roman Pot, and detector all have separate names. The naming
convention for ALFA is shown in Figure 7.6. These names are used
throughout this thesis, especially on the hitmaps for each station.
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Figure 7.6: Illustration of the ATLAS – ALFA mapping with the ALFA naming convention shown.
Figure by Sune Jakobsen, 31 March, 2016.

7.8 event signature in alfa

In Figure 7.7 the event signature of elastic and diffractive events in
both the ATLAS and ALFA detectors are shown. Theoretically, one
would assume the two scattered protons in elastic events to be ‘back-
to-back’ and would therefore hit two consecutive ALFA detectors on
either side of the interaction point. For single diffractive events, with
just one scattered proton and a dissociated system of particles, one
would expect the proton to hit two consecutive ALFA detectors on
one side with all other ALFA detectors being empty. Some of the
particles from the dissociated system may hit ATLAS.
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Figure 7.7: Simplified illustrations of the event signature in the ATLAS and
ALFA detectors for the different types of events happening at IP1.





Part III

S I M U L AT I O N

With an understanding of the theory behind diffraction
as well as an understanding of the experimental setup for
the detection and measurement of diffractive events, we
can now embark on a phenomenological study of diffrac-
tive scattering. A thorough description of the simulation
framework developed for the purposes of this study will
be presented, in which the kinematical regions allowed
by the ALFA detector will be discussed. The simulation
framework will be used to study the observables most sen-
sitive to model parameters. Finally, a study of how well
one can test the validity of the models will be presented.





8
S I M U L AT I O N F R A M E W O R K

For the purposes of this thesis, a simulation framework for single
diffractive scattering has been developed, using Pythia 8 [6] and the
Rivet toolkit [7]. The simulation framework is significantly faster than
a full Geant4 [55] simulation without losing too much in accuracy.
Another benefit is that the framework is completely independent of
any ATLAS code and software, and can therefore be used by a wider
audience. The simulation framework can be easily applied to the anal-
ysis of all types of diffraction as well as elastic scattering. However,
single diffraction has been the focus of this study.

Single diffractive events have been generated using Pythia and
then saved as HepMC [65] files. A custom analysis in the Rivet toolkit
has been written that reads and analyzes the saved HepMC files. The
Rivet analysis handles beam transport of the scattered protons as well
as a fast detector simulation of both the ATLAS and ALFA detec-
tors. The various components of the simulation framework will be
described to some detail in the following sections.

8.1 generated pythia 8 samples

The Monte Carlo event generator Pythia 8.2 has been used to gener-
ate single diffractive events. Single diffractive events can be generated Pythia output has

been in the form of
gzip-compressed
HepMC event record
files that contains
the complete truth
information on
events. Compression
was found to reduce
the file sizes to a
third of the original.

in Pythia by setting the QCD process flag,

SoftQCD:singleDiffractive = on

The Pomeron flux parameterization can then be set by the flag,

Diffraction:PomFlux

with an integer value where 1 is the Schuler-Sjöstrand parameteriza-
tion, 4 is Donnachie-Landshoff, and 5 is MBR, as described in Sec-
tion 4.7. If either Donnachie-Landshoff (4) or MBR (5) is set, then the
intercept ε and slope α′ of the Pomeron trajectory,

α(t) = 1 + ε + α′t (8.1)

can be set. The two parameters can be set within the minimum and
maximum values in Pythia,

εmin = 0.02 εmax = 0.15 (8.2)

α′min = 0.1 GeV−2 α′max = 0.4 GeV−2 (8.3)

79
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Multiparton interactions (MPIs) can be toggled in Pythia with the
PartonLevel:MPI flag. All plots in this chapter has been generated
with the Schuler-Sjöstrand (1) parameterization that uses fixed pa-
rameter values (ε = 0 and α′ = 0.25 GeV−2) and with MPI toggled on.
The effect of MPI and the Pomeron flux parameters will be studied
in the phenomenological study in the next chapter.

Two proton beams with a nominal energy of Ebeam = 6.5 TeV are
colliding in the z-direction like it was for the LHC and ATLAS in
Run 2 of 2015. The coordinate system in the simulations is the same
as for the ATLAS detector. Two sets of simulated samples have been
generated – one with an angle between the colliding beams, i.e. a
crossing angle as described in Section 5.4, and one with no crossing
angle. The beam parameters used in Pythia for the different two sets
are listed in Table 8.1.

Table 8.1: Beam parameter values used for the event generation of the
diffractively scattered protons in Pythia 8. B1 = Beam 1, B2 = Beam 2.
Note that Pythia works in units of GeV and mm.

Parameter θC = 0 µrad θC = 2× 50 µrad

E (B1, B2) 6500 GeV 6500 GeV

px (B1, B2) 0 0

py (B1, B2) 0 sin(−50 µrad)× E ≈ −0.325 GeV

pz (B1) 6500 GeV cos(−50 µrad)× E

pz (B2) −6500 GeV − cos(−50 µrad)× E

The spread of the interaction vertex can be set according to a sim-
ple Gaussian distribution in Pythia. The widths of the vertex distri-
butions σx, σy, and σz are taken from beam spot measurements done
by the ATLAS inner detector. The beam spot measurements for the
data run of interest in this thesis, are seen in Figure 5.6 with the esti-
mated average values listed in Equation 5.7 - 5.9.

Pythia also allows for a modest Gaussian beam momentum spread
to be set. The beam momentum spread has been found from the beam
divergence as calculated according to Equation 5.10 with the emit-
tance values from Equation 5.11 - 5.14. The uncertainties are found
from error propagation.

The vertex spread and beam momentum spread are common for all
generated Pythia samples and can be seen in Table 8.2. Vertex and
momentum spread has very little effect on the final-state distributions
as seen in Figure 8.1 and 8.2.
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Table 8.2: Common parameter values used for the event generation of the
diffractively scattered protons in Pythia 8. B1 = Beam 1, B2 = Beam 2.
Note that Pythia works in units of GeV and mm.

Parameter Value

σx (0.14± 0.05) mm

σy (0.14± 0.05) mm

σz (53.0± 1.0) mm

σpx (B1) (0.0154± 0.0009) GeV

σpy (B1) (0.0150± 0.0007) GeV

σpx (B2) (0.0171± 0.0008) GeV

σpy (B2) (0.0154± 0.0009) GeV

σpz 0

Note that the beam energy smearing σpz has not been set. The rea-
son for this is technical and has to do with Rivet not allowing the
center-of-mass energy of analyzed events to differ. This is not a sig-
nificant problem, as σpz will, like the beam momentum spread, have
very little effect on final-state distributions. The beam energy smear-
ing can be found from the intrinsic energy uncertainty ∆E/E and will
be roughly σpz ≈ 734.5 MeV [66].
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8.2 beam transport of scattered protons

The simulation framework needs to be able to handle the beam trans-
port of the generated diffractive protons from the interaction point
to the ALFA detectors. As explained in Section 5.5, the MAD-X soft-
ware and the ForwardTransportFast package can handle the trans-
port. However, the simulation framework developed in this thesis
should be fast and independent of any ATLAS software (such as
Athena). Hence, a proton transport parameterization has been found
with parameters from fits to the output of ForwardTransportFast.

The kinematics of the proton at the interaction point can be de-
scribed by three variables: the energy (E) and the x- and y-components
of the three-momentum (px and py). Alternatively, one could describe
the kinematics by the relative energy loss (ξ), the transverse momen-
tum (pT), and the azimuthal angle (φ), since we have

ξ = 1− E√
s/2

, pT =
√

p2
x + p2

y, φ = arctan
(

py

px

)
(8.4)

In most of this thesis, ξ, pT, and φ will be used as they are more
relevant for the physics. The scattered protons will be uniformly dis-
tributed in φ so the interesting distributions are in ξ and in pT where
pT is related to the momentum transfer, t ∼

s→∞
−p2

T.

In general a protons coordinates in the transverse plane at any posi-
tion s along the ring is denoted u(s), where u = {x, y}, and is related
to the protons coordinates and momentum at the interaction point by
the transport matrix Mu [67],




u(s)

u′(s)

(∆p)/p


 = Mu




u∗

u∗′

(∆p∗)/p


 (8.5)

where we have used the thin lens approximation. Here the asterisk (*)
denotes the values at the interaction point, s = 0, i.e. u∗ = u(0). Note
that u′ = du/ds which can be expressed by θu or pu. The transport
matrix is given by

Mu =




√
β
β∗ (cos Φ + α∗ sin Φ)

√
ββ∗ sin Φ Du

(α∗−α) cos Φ−(1+αα∗) sin Φ√
ββ∗

√
β
β∗ (cos Φ− α sin Φ) D′u

0 0 1


 (8.6)

where β is the amplitude function, α is the derivative of β, and Φ is
the phase function. D is the dispersion which is irrelevant for elas-
tic scattering but is important for diffractive scattering. Notice that
the beam transport will not affect the total momentum and hence the
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momentum loss of the proton, (∆p)/p = (∆p∗)/p. In the literature
on beam transport it is common to use the momentum loss (∆p)/p
rather than the energy loss ξ. They are however equivalent in the rel-
ativistic limit where E� mp.

Equation 8.5 is acquired when using the thin lens approximation.
MAD-X allows for the use of the thick lens case where non-linear terms
will enter. This non-linearity will depend on the proton energy loss
ξ and will therefore be important for diffractive studies. Hence, we
need to find a parameterization with non-linear terms.

In the following, we will use the convention uIP ≡ u∗ and denote
the u-coordinate at the ALFA stations at s ≈ 237 m and s ≈ 245 m
collectively as uRP. The parameterization of the u-coordinate of the
proton at the ALFA Roman Pots was found to be

uRP

(
uIP,

pu, IP

p
,

∆p
p

)
= Fu

(
∆p
p

)
· uIP

+ Gu

(
∆p
p

)
·
[

pu, IP

p

]

+ Hu

(
∆p
p

)
(8.7)

where Fu, Gu, and Hu are all functions of the momentum loss ∆p
p .

Hence, the dependence on the initial position and momentum is lin-
ear but with an energy-dependant slope.

Note that the x- and y-coordinates are decoupled, i.e. xRP will not
depend on yIP or py, IP, and vice versa. This is because the linear sec-
tion of the LHC between the ATLAS interaction point and the ALFA
Roman Pots only contains dipole and quadrupole magnets (see Fig-
ure 5.7), and in such sections, the horizontal and vertical betatron os-
cillations are completely decoupled [42]. This makes the beam trans-
port parameterization somewhat simpler.

The Fu, Gu, and Hu functions are fitted to the output from the
Athena transport package ForwardTransportFast as quartic polyno-
mials on the form of

Fu

(
∆p
p

)
= fu, 0 + fu, 1 ·

(
∆p
p

)
+ fu, 2 ×

(
∆p
p

)2

+ fu, 3 ·
(

∆p
p

)3

+ fu, 4 ×
(

∆p
p

)4

(8.8)

where fu, n, gu, n, and hu, n are all constant parameters found from the
fits. Notice that the units are [Fu] = 0 and [Gu] = [Hu] = mm. We
end up with 30 parameters in total of the beam transport parameter-
ization for each ALFA station and beam setting. The parameters will
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depend on the collision energy (
√

s), optics (β∗), and crossing angle
(θC). Notably, we have Hy = 0 for θC = 0 µrad, but a non-zero Hy

for θC = 2× 50 µrad. This was discussed in Section 5.5, where it was
found that a non-zero crossing angle would also result in a shift of
the protons in the y-direction and not just in the x-direction.

Note that for elastic events, with ∆p = 0, the three functions Fu, Gu,
and Hu all reduce to constants. Hence, we lose the non-linearity and
revert to the matrix formulation,

uRP

(
uIP,

pu, IP

p

)
= a× uIP + b×

(
pu, IP

p

)
+ c (8.9)

where a, b, and c are the matrix elements from Equation 8.6. The
beam transport of elastic protons are therefore a lot simpler than that
of diffractive protons.

A particle gun allows us to generate protons where we can scan
over values of xIP, yIP, px, IP, py, IP, and p. ForwardTransportFast us-
ing Twiss files from MAD-X can then transport the protons down the
beam pipe to the ALFA detectors, and will provide values for xRP and
yRP at all four ALFA stations.

First we have scanned over different values of momentum loss ∆p
and for each value then scanned over different values of xIP to see
how xRP behaves. In Figure 8.3, xRP as a function of xIP for ∆p = 0 is
plotted and fitted with a straight line. For each ∆p value, a straight
line has been fitted. The slope of the line is Fx and is plotted in Fig-
ure 8.4. The function Fx can then be fitted with a quartic polyno-
mial on the form of Equation 8.8. The same has been done for the
y-coordinate to find Fy in Figure 8.5 and 8.6.
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Figure 8.3: xRP as a function of xIP for ∆p = 0.
Fitted with a straight line, with slope Fx(0).
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Figure 8.5: yRP as a function of yIP for ∆p = 0.
Fitted with a straight line, with slope Fy(0).
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Figure 8.6: The function Fy as a function of
∆p/p. Fitted with a fourth degree polynomial.

The same procedure we used to find Fx and Fy has been used to
find Gx and Gy, in Figure 8.7, 8.8, 8.9, and 8.10.
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Figure 8.7: xRP as a function of px, IP for ∆p =
0. Fitted with a straight line, with slope Gx(0).
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Figure 8.8: The function Gx as a function of
∆p/p. Fitted with a fourth degree polynomial.
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Figure 8.9: yRP as a function of py, IP for ∆p =
0. Fitted with a straight line, with slope Gy(0).
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∆p/p. Fitted with a fourth degree polynomial.
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Simply keeping xIP = yIP = 0 and px, IP = py, IP = 0, while scan-
ning over values of ∆p, will give us Hx and Hy as shown in Figure 8.11

and 8.12.
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Figure 8.11: The function Hx as a function of
∆p/p. Fitted with a fourth degree polynomial.
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Figure 8.12: The function Hy as a function of
∆p/p. Fitted with a fourth degree polynomial.

Fourth degree polynomials were found to fit the output from MAD-X

and ForwardTransportFast better than e.g. second degree polynomi-
als. In Figure 8.13 the residual for the function Hy for a second degree
and a fourth degree polynomial fit are shown. The residual is the dif-
ference between the ForwardTransportFast output and the respective
fit values evaluated at the given (∆p)/p values.
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Figure 8.13: The residual for the function Hx, for a second degree polyno-
mial (red) and a fourth degree polynomial (blue).

All beam transport parameters found from the fits are listed in
Appendix A.
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The diffractively dissociated system, denoted X, in single diffrac-
tive systems will on average per event contain about 1.4 protons, 0.8
anti-protons, 12 positive pions, 12 negative pions, and 0.003 of both
muons and anti-muons. All of these particles are electrically charged
with sufficiently long lifetimes (τ & 10−6 s) to allow them to travel to
the the ALFA stations and leave a track in the detectors, given that
they have a large enough energy (E & 5200 GeV) and are scattered
in the extreme forward direction. In Section 5.5 it was noted that
ForwardTransportFast is not able to transport negatively charged
particles. Particles with the same charge as the positive proton, such
as the positive pion and muon, will be affected by the magnetic lattice
in the same way as the protons.

The simulation framework as implemented in Rivet will loop over
all positively charged protons, pions, and muons in the event, and
transport them to the ALFA stations. Events with more than one suc-
cessfully transported particle will be discarded. In events with exactly
one successfully transported particle, the particle will be assumed to
be a proton and reconstructed as such. This will naturally introduce
a background source, as the ALFA detectors are not able to discern
protons from other charged particles. Both positively and negatively
charged particles from the system will contribute to the background.
Since the simulation framework is only able to transport positively
charged particles, any estimation of this background will be smaller
than expected. The background of positive particles from the disso-
ciated system was estimated to make up about (0.13± 0.01)% of se-
lected events, where the events were selected using the full simulation
framework. Looping over all particles that may hit the ALFA detec-
tors in each event will also enable the simulation framework to work
on non-diffractive events, which are expected to account for a signifi-
cant part of the background.

A beam proton, with ξ = 0, px = 0 GeV, and py = −0.325 GeV, will
have a small shift in the y-direction due to the crossing angle. The
beam positions at the ALFA stations are

ybeam, 237 m = 1.1962 mm (8.10)

ybeam, 245 m = 1.0923 mm (8.11)

These coordinates are in the LHC coordinate system. The beam coor-
dinate system will have the beam at (x, y) = (0, 0) at each position s
on the LHC ring.
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8.3 alfa acceptance and detector simulation

The ALFA detector only covers a small geometrical region of the polar
angle, θ, and the azimuthal angle, φ. Unlike most of the sub-detectors
of ATLAS, ALFA does not cover the entire azimuthal region. The re-
sult is that not all diffractively scattered protons will hit ALFA and
be measured. The outline of the ALFA main detectors in the trans-
verse plane is seen on Figure 8.14 in blue. The LHC beam screen is
illustrated in red.

Figure 8.14: Illustration of the shape of the ALFA main detectors (blue) and
the LHC beam screen (red) in the plane transverse to the beam direction.

The ALFA Roman Pots are assumed to be displaced about 6 mm
in the y-direction from the beam position at (0, 0) in the beam co-
ordinate system. This is the usual setting for diffractive runs. The
actual detector positions for our data run are listed in Table 10.1 and
has been used for additional accuracy. There is an additional 450 µm
from the edge of the ALFA Roman Pots to the ALFA main detectors
[49], which needs to be accounted for as well. Note that the beam
position in the LHC coordinate system is given by Equation 8.10 and
8.11. Figure 8.14 is therefore in the beam coordinate system.

It is possible to use a single particle gun to generate single pro-
tons in the extreme forward direction. The trajectory of these protons
down the LHC beam pipe from the ATLAS interaction point (IP1) to
the ALFA Roman Pots (RPs) can then be simulated using the Athena
package ForwardTransportFast, as described in Section 5.5. Varying
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the kinematics of the protons in the single particle gun will allow one
to check the acceptance as a function of the proton kinematics, for any
given beam energy and optics. An understanding of the acceptance
regions will not only give insight into the physics that can be ana-
lyzed with ALFA but will also provide cuts on the proton kinematics
in the simulation framework. Using a single particle gun, one million
protons have been simulated, where the kinematics of the protons
were scanned over 100 different values each of the three variables: ξ,
pT, and φ. The protons were generated at the interaction point set at
(0, 0, 0) and then transported down the LHC beam pipe to z = 237 m
using ForwardTransportFast. The accepted variable configurations
can then be plotted.

Acceptance of the protons will depend on the beam energy (
√

s),
the optics (β∗), as well as the crossing angle (θC). The crossing an-
gle will have an interesting effect on the acceptance and therefore
both θC = 0 µrad and θC = 2 × 50 µrad have been considered for
comparison. Note, however, that data considered in this thesis is for
θC = 2× 50 µrad.

The transverse momentum (pT) is taken relative to the beam axis
for both settings of crossing angle. For 0 µrad the beam axis coincide
with the z-axis in the LHC coordinate system, while for 2× 50 µrad
the beam axis is shifted down in the LHC (y, z)-plane with a small
angle relative to the z-axis. The four momenta of the beams are listed
in Table 8.1. The protons have been generated with a flat distribution
in the three kinematic variables, but in data the ξ and pT distributions
are not expected to be described by a flat distribution. Only the φ dis-
tribution is expected to be flat. This is, however, not important for the
acceptance plots as they are inherently physics independent.

There are two versions of the acceptance plots presented. The first
is the LHC acceptance which is how many protons that survived the
aperture down the beam pipe to the first ALFA station at z = 237
m. Between IP1 and the ALFA Roman Pots, the magnets situated on
the beam pipe can bend the protons so much that they are lost. The
second is the ALFA acceptance which takes the accepted protons from
the LHC acceptance and then adds the additional requirements that
protons must hit within the LHC beam screen and the ALFA main
detectors. This will naturally reduce the acceptance compared to the
LHC acceptance.

For θC = 0 µrad the three-dimensional LHC and ALFA acceptance
plots are shown in Figure 8.15 and the two-dimensional projections
are shown in Figure 8.16 and 8.17. For θC = 2× 50 µrad the accep-
tance plots are shown in Figure 8.18, 8.19, and 8.20.
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Figure 8.15: Three-dimensional acceptance plots for
√

s = 13 TeV, β∗ = 90 m, and θC = 0 µrad.
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Figure 8.16: Two-dimensional projections of the LHC acceptance plots for θC = 0 µrad.
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Figure 8.17: Two-dimensional projections of the ALFA acceptance plots for θC = 0 µrad.
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Figure 8.18: Three-dimensional acceptance plots for
√

s = 13 TeV, β∗ = 90 m, and θC = 2× 50 µrad.
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Figure 8.19: Two-dimensional projections of the LHC acceptance plots for θC = 2× 50 µrad.
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Figure 8.20: Two-dimensional projections of the ALFA acceptance plots for θC = 2× 50 µrad.
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The acceptance plots in ξ, px, and py are available in the Appendix
in Section B.1 for θC = 2× 50 µrad.

The LHC acceptance is up to 100% in the region of ξ < 0.2 and
pT < 0.5 GeV. For pT < 0.5 GeV, the acceptance in φ is nearly uni-
form. Otherwise, the structure seen in φ is due to the asymmetry
of the ALFA detector in the azimuthal direction. When considering
the ALFA acceptance, the acceptance in this region is significantly re-
duced. For 0 µrad no protons with a pT < 0.2 GeV will hit ALFA as
these protons will be too close to the beam axis and will therefore
pass between the two main detectors. But for 2 × 50 µrad the pro-
tons may hit ALFA even with a pT ≈ 0 GeV, given that they have a
0.135 . ξ . 0.185. To fully understand why, it is necessary to turn
to the distributions of hits in the ALFA detectors by looking at ALFA
hitmaps. The ALFA hitmaps will be studied in the combined simula-
tion results in Section 8.6.

The protons used to make the acceptance plots were generated at
the interaction vertex (x, y, z) = (0, 0, 0). As seen in Section 5.5 the
proton trajectory will also depend on the primary vertex from which
the protons originate. Hence, the primary vertex will also influence
the acceptance. However as seen in the proton trajectory plots (Fig-
ure 5.12 and 5.13) as well as in the beam transport fits (Figure 8.3 and
8.5) this dependence is very weak and given the relatively small ver-
tex spread in Table 8.2 the acceptance due to the vertex spread will
have no effect in our case.

The ALFA main detectors at z = 237 m have a tracking resolution
of 30 µm, while the main detectors at z = 245 m are assumed to have
a resolution of 40 µm due to multiple scattering. The resolution was
measured in several test beams [66, 68]. Since multiple scattering and
the resulting shower effects will be dependent on the energy of the
protons, then so will the resolution at z = 245 m. However, this en-
ergy dependency has not yet been properly studied.

The simulation framework will first check whether the proton hit
(x, y)-coordinate is within acceptance. This is done by using the LHC
acceptance plots as essentially “look-up tables” and by requiring the
coordinates to be within both the ALFA detector and the beam screen
regions as outlined in Figure 8.14. The coordinates are then smeared
with a Gaussian function with a width of 30 µm for the near stations
and 40 µm for the far stations. If the proton hit is smeared outside
the overlap regions of ALFA and the beam screen then the event will
be cut. This is to simulate an edge cut that will be used in the data
analysis.
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8.4 kinematic reconstruction of the protons

Once the (x, y)-coordinate of the transported proton has been through
the acceptance and smearing, it will be given as input to the recon-
struction code to get the kinematics of the proton at the interaction
point, i.e. the energy, E, and the transverse components of the three-
momentum, px and py. The reconstruction code used in this study
is the Copenhagen Reconstruction package, also known as ALFAReco.
The ALFAReco package will be briefly described in this section and the
performance and resolution of the reconstruction fits will be shown.
For a full run-down of the details on the method used by ALFAReco

as well as the precision of the package, see ref. [69].

ALFAReco utilizes a parameterization of the proton kinematics that
is very similar to the one found in Equation 8.7. To handle the re-
construction of a protons kinematics giving its hitmap positions, a χ2

function is constructed based on the parameterization. The χ2 func-
tion is then minimized using Minuit [70]. The expectation values in
the χ2 function is provided by interpolations of the parameterization
that are stored in parameter files. The interpolation is done with the
Akima method [71]. These parameter files can be constructed with the
use of ForwardTransportFast and will be read by ALFAReco before
reconstruction. A parameter file must be created for each different
beam setting, i.e. energy (

√
s), optics (β∗), and crossing angle (θC). Pa-

rameter files for
√

s = 13 TeV, β∗ = 90 m, and both θC = 0 µrad and
θC = 2× 50 µrad have been generated for this study. ALFAReco along
with the parameter file for θC = 2× 50 µrad will also be used on data.
Special care is to be taken to which coordinate system the provided
(x, y)-coordinates are expressed in, as the parameter files are gener-
ated according to the LHC coordinate system.

The reconstruction resolution of E, px, and py, from a simulation
using ALFAReco with the generated parameter file, is shown in Fig-
ure 8.21 - 8.26. The resolution is found for simulated single diffractive
events. The uncertainty on the reconstruction is primarily from the
position smearing at the ALFA detector as described in the previous
section, but will also have small contributions from the accuracy of
the ALFAReco parameterization and the numerical precision of Minuit.
The middle ‘gap’ in the resolution plot for py in Figure 8.26 is from
the ALFA detector simulation where there is a gap between the detec-
tors. In Figure 8.27 the χ2 values of the reconstruction fits performed
by ALFAReco are plotted for simulated single diffractive events. The
distribution has been fitted with a χ2 distribution for a number of de-
grees of freedom (NDF) of 1, as this is the expected NDF for a single
proton fit.
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Figure 8.21: The resolution of the recon-
structed E from ALFAReco.
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Figure 8.22: The reconstructed E from
ALFAReco vs. the truth E.
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Figure 8.23: The resolution of the recon-
structed px from ALFAReco.
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Figure 8.24: The reconstructed px from
ALFAReco vs. the truth px.
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Figure 8.25: The resolution of the recon-
structed py from ALFAReco.
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Figure 8.26: The reconstructed py from
ALFAReco vs. the truth py.
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8.5 fast atlas detector simulation

In addition to the ALFA detector simulation, a fast and simple ATLAS
detector response simulation in C++ was developed for the purposes
of this study. The simulation includes pseudorapidity (η) and trans-
verse momentum (pT) acceptance for each of the sub-detectors: Inner
Detector (ID or Tracker), ECAL, HCAL, FCAL, and Muon Spectrom-
eter (MS). The pseudorapidity coverage of the ATLAS sub-detector
systems was discussed in Chapter 6 and is summarized in Table 8.3
as well.

As outlined in Section 6.2, the Inner Detector (ID) detects charged
particles (electrons, muons, protons, pions, and charged kaons). The
ECAL detects photons and electrons. The HCAL detects hadrons (pro-
tons, neutrons, pions, charged kaons, and the neutral KL). The FCAL
detects the same as the ECAL and the HCAL. The Muon Spectrome-
ter only detects muons.

The energy resolution of each ATLAS sub-detector system has also
been simulated through the smearing of either the energy or the pT

measurement.

The combined ID system measures the momentum of charged par-
ticles using the curvature of the helical trajectory of the particles that
is a result of the homogeneous, solenoidal magnetic field inside the
ID. This will provide a reconstructed track in the ID system where
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the main uncertainty is through the measurement of the hit position.
This will give a relative pT resolution of [42]

σpT

pT
= a · pT ⊕ b (8.12)

where the ⊕ refers to the addition in quadrature.

All parts of the ATLAS calorimeter (ECAL, HCAL, and FCAL) are
sampling calorimeters, where the absorber material that produces
the particle shower is distinct from the detector material that mea-
sures deposited energy from the shower. This means that the energy
measurement is effectively just a counting of the number of particles
produced in the shower cascades. The relative energy resolution is
therefore given by a Poissonian term [42],

σE

E
=

a√
E
⊕ b (8.13)

where a is the stochastic variable and b is the constant term due to
non-uniformities and calibration uncertainties.

The main source of uncertainty of the muon momentum measure-
ment in the Muon Spectrometer (MS) is due to multiple scattering in
the large volume of the lever arm. To reduce the multiple scattering of
the muons, an air-core toroid magnet design has been used instead of
using an iron core, though the iron core would enhance the strength
and uniformity of the magnetic field. The momentum resolution for
the Muon Spectrometer due to multiple scattering is given by [42]

σpT

pT
∝ const. (8.14)

Multiple scattering dominates the resolution at low pT. For larger
values of pT, the resolution is similar to that of the tracker, in Equa-
tion 8.12.

The η and pT coverage requirements as well as the nominal energy
resolution of each sub-detector system are summarized in Table 8.3.
The requirements outlined in this table was used to develop the fast
and simple simulation of the ATLAS detector that is a part of the sim-
ulation framework used in this thesis.

The Minimum Bias Trigger Scintillator has also been simulated by
checking for charged particles in the η range, 2.08 < η < 3.86. This
is a very simple simulation of the role of the MBTS as a trigger in
minimum bias samples. A more thorough simulation would take into
account the charge deposited in the MBTS scintillator disks.
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Table 8.3: Performance goals of ATLAS and a summary of the requirements of a fast ATLAS
simulation. The values are taken from [52].

Sub-detector η coverage pT coverage Resolution

ID |η| < 2.5 pT ≥ 100 MeV σpT /pT = 0.05% · pT ⊕ 1%

ECAL |η| < 1.37 pT ≥ 500 MeV σE/E = 10%/
√

E⊕ 0.7%

1.52 ≤ |η| < 2.47

2.5 ≤ |η| < 3.2

HCAL |η| < 3.2 pT ≥ 500 MeV σE/E = 50%/
√

E⊕ 3%

FCAL 3.2 ≤ |η| < 4.9 pT ≥ 500 MeV σE/E = 100%/
√

E⊕ 10%

MS |η| < 2.7 pT ≥ 500 MeV σpT /pT = 10%

8.6 combined simulation results

The simulation framework can be used on simulations of single, dou-
ble, and central diffractive events, as well as elastic events. Note that
for elastic events, the simulation framework simplifies significantly,
as the acceptance plots in Figure 8.18a and 8.18b are reduced to a 2D
plane in pT and φ for ξ = 0, and the beam transport is reduced to a
simple linear matrix formulation.

In this study, the primary focus is on single diffractive events, as
they have a unique signal in ALFA and are the most common diffrac-
tive reactions. Hence, simulated events are required to have exactly
one hit in two ALFA detectors in one of the four arms, as illustrated
in Figure 7.7b. In addition, a requirement of at least two tracks with
pT > 100 MeV in the ATLAS inner detector, to simulate the recon-
struction of a primary vertex, as well as a requirement of at least one
charged particle to hit the MBTS on the opposite side of the ALFA hit,
are imposed. A simple cut flow table of simulated single diffractive
events, generated according to the Schuler-Sjöstrand Pomeron flux
parameterization in Section 4.7.1, is seen in Table 8.4. Note that the
acceptance will change according to the Pomeron flux parameteriza-
tion, as will be discussed in the following chapter.

Table 8.4: Cut flow table for simulated SD events with the Schuler-Sjöstrand
Pomeron flux parameterization.

Cut in Simulation Percentage of passed SD events

At least one hit in ALFA (42.75± 0.07)%

Exactly one hit in ALFA (42.38± 0.07)%

At least two tracks in ID (24.43± 0.05)%

Hit in MBTS on opposite side (21.60± 0.05)%
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8.6.1 ALFA Hitmaps

A diffractively scattered proton may hit and be measured by one of
the ALFA detectors given that the proton finds itself in the accepted
kinematic region. The proton is assumed to hit the ALFA main de-
tectors perpendicular to the layers of scintillating fibres, where the
proton track can be reconstructed as outlined in Section 7.6. This will
provide a hit position, (x, y), of the proton in the plane transverse to
the beam axis at the respective ALFA station.

The resulting hitmaps for simulated single diffractive protons for
θC = 2× 50 µrad in the two stations on the A-side are seen in Fig-
ure 8.28a and 8.28b. The distribution of proton hits on the A-side will
be similar to that on the C-side. The binning of the hitmaps reflect
the 40 µm resolution of the ALFA main detectors. The hitmaps for
θC = 0 µrad are seen in Figure 8.29a and 8.29b. The hitmaps for elas-
tic events are shown in Figure 8.30a and 8.30b. Note the larger hit
multiplicity in the upper detectors for the θC = 2 × 50 µrad single
diffractive hitmaps. This was discussed in Section 5.5 and 8.2 and is
due to the non-zero crossing angle giving an extra dependence of the
y-coordinate on the proton momentum loss.
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Figure 8.28: Hitmaps of single diffractively scattered protons for θC = 2× 50 µrad in the ALFA
stations on the A-side. Overlaid with the outline of the ALFA main detector (solid blue line) and
the LHC beam screen (dashed red line).
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The outline of the ALFA main detector (solid blue line) and the
LHC beam screen (dashed red line) is overlaid on top of the hit maps
to indicate the edge cuts on the hits.
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Figure 8.29: Hitmaps of single diffractively scattered protons for θC =
0 µrad in the ALFA stations on the A-side. Overlaid with the outline of
the ALFA main detector (solid blue line) and the LHC beam screen (dashed
red line).
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Figure 8.30: Hitmaps of elastically scattered protons for θC = 2× 50 µrad
in the ALFA stations on the A-side. Overlaid with the outline of the ALFA
main detector (solid blue line) and the LHC beam screen (dashed red line).



100 simulation framework

The hitmaps can help with the understanding of the acceptance
plots in Section 8.3. Protons with φ ≈ 0 and φ ≈ ±π will have no
ALFA acceptance as the ALFA main detectors are only in the vertical
direction. Elastically scattered protons, where we have no energy loss,
will all lie on a narrow band or ellipse around x = 0 mm, which is
narrow in x but has a large spread in y. However, for diffractively
scattered protons, a larger energy loss will give larger x and y values.
The deflection to higher y values for larger energy loss ξ will also
explain why particles with pT ≈ 0 GeV and a non-zero energy loss, ξ,
may hit the upper detector and therefore be accepted. The more hits
in the upper detector compared to the lower detector will also explain
the asymmetry seen in φ for the acceptance plots, as φ ≈ +π/2 is in
the direction of the upper detector while φ ≈ −π/2 is in the direction
of the lower detector.

It is expected that the hitmaps and the acceptance plots are similar
for the ALFA stations on the A-side compared to those on the C-side,
as the magnet setup on either side of the ATLAS detector are nearly
identical.

The difference between the coordinates in the near and far ALFA
stations are shown in Figure 8.31 and 8.32, and illustrates the deflec-
tion in x and y. Most particles will be centered around x = 0 which
corresponds to ξ ' 0 – i.e. protons that resembles elastically scattered
protons as seen in Figure 8.30a and 8.30b. The proton hits as shown in
the hitmaps will – alongside the reconstructed primary vertices from
which the protons originate – be used by ALFAReco to reconstruct the
kinematics of the protons, i.e. E, px, and py.
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8.6.2 Physics Distributions

The resulting ξ distribution from ALFAReco is plotted in Figure 8.33

(in blue) along with the distribution for the truth level (in red). The
detector acceptance and simulation restricts the acceptance to ξ .
0.22. The peak is close to ξ ' 0 indicating the prevalence of low-
mass diffractive systems. In the simulation framework, the peak is
normal-distributed around ξ = 0, rather than sharply peaked. This
is a result of the 30 µm and 40 µm detector resolution of the ALFA
main detectors. The t distribution is shown in Figure 8.34 where for
low |t| we have a small scattering angle, |t| ∼ θ2, that will result in
the proton passing between the upper and lower ALFA detectors.
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Figure 8.33: ξ distribution for truth level and
after all smearing, acceptance, and cuts in the
simulation framework.
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Figure 8.34: t distribution for truth level and
after all smearing, acceptance, and cuts in the
simulation framework.

The px and py distributions for the proton at the interaction point
are seen in Figure 8.35 and 8.36. The py distribution is centered around

py, beam = − sin(50 µrad)× 6500 GeV ≈ −0.325 GeV (8.15)

corresponding to the beam. Protons with a py larger than py, beam will
generally hit the upper detector, as yRP ∝ py. However, protons with
a py value similar to that of the beam, could hit the upper detector
if they have a large energy loss, as already discussed. This is also
illustrated in the acceptance plots in Figure 8.18b and 8.20.
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after all smearing, acceptance, and cuts in the
simulation framework.
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after all smearing, acceptance, and cuts in the
simulation framework.

The pT distribution is plotted in Figure 8.37 for simulation and
truth level. The simulation allows values down to pT = 0 due to the
non-zero crossing angle. The φ distribution is shown in Figure 8.38

where the truth distribution is uniformly distributed and the simula-
tion distribution reflects the acceptance in Figure 8.20b and 8.20c.
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Figure 8.37: pT distribution for truth level and
after all smearing, acceptance, and cuts in the
simulation framework.
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Figure 8.38: φ distribution for truth level and
after all smearing, acceptance, and cuts in the
simulation framework.

The absolute pseudorapidity |η| distribution of the diffractively
scattered protons is shown in Figure 8.39. Note that the ALFA de-
tector restricts the acceptance to 9 . |η| . 13 with most protons (and
hence the largest acceptance) in the 9 . |η| . 11.5 range.
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Figure 8.39: |η| distribution for truth level and
after all smearing, acceptance, and cuts in the
simulation framework.
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The crossing angle θC will naturally affect the py distribution and
therefore the pT distribution as well. For θC = 2× 50 µrad the accep-
tance in pT extends towards smaller pT values down to pT = 0, as
shown in Figure 8.40. However, the crossing angle will not affect the
reconstructed ξ and t distributions, as shown in Figure 8.41 and 8.42.
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Figure 8.41: ξ distribution for θC = 2× 50 µrad
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The ξ and t distributions are only affected by the Pomeron flux
parameterization. This will be studied in detail in the next chapter by
using the simulation framework as outlined in this chapter.





9
P H E N O M E N O L O G I C A L S T U D Y

This chapter presents a phenomenological study of single diffractive
pp events using the simulation framework from the previous chap-
ter. The observables most sensitive to the parameters ε and α′ in the
Pomeron flux parameterizations in Pythia will be presented, along
with a study of some of the possible background sources. Finally, a
fit procedure to discern the model parameters ε and α′ that best fits
data will be introduced and tested on simulated test samples.

9.1 observables sensitive to model parameters

The aim of this section is to study the effect of the Pomeron flux pa-
rameterization on different observables. The goal is to ideally find
observables that are particularly sensitive to the model parameters ε

and α′.

To understand the sensitivity of observables to the model parame-
ters, nine different samples for both the Donnachie-Landshoff and the
Minimum Bias Rockefeller (MBR) parameterization have been gener-
ated. All samples are generated according to the common settings
outlined in Section 8.1. In addition, the samples scans over the possi-
ble permutations of the three values of the parameters,

ε = {0.02, 0.085, 0.15} (9.1)

α′ = {0.1, 0.25, 0.4} GeV−2 (9.2)

where we have used the allowed minimum and maximum values
along with the default values in Pythia.

The Pomeron flux as defined in Section 4.7 will provide the distri-
bution of single diffractively scattered protons in ξ and t, given some
values of the parameters ε and α′. This is seen by considering the
predicted cross-section for hard single diffractive events [24],

dσSD

dξdt
= fIP/p(ξ, t) σIP/p (9.3)

where factorization has been used. Note that σIP/p is the assumed
Pomeron-proton effective cross section, set to 10 mb. Here the proba-
bility (expressed as a cross-section) to get a single diffractive pp scat-
tering event is given by the probability of taking a Pomeron out of one
of the colliding protons (expressed by the Pomeron flux, fIP/p) times
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the probability of that Pomeron interacting with the other colliding
proton (expressed by σIP/p). From Equation 5.2 we know that

dN
dξdt

= L dσ

dξdt
(9.4)

where L is the integrated luminosity. Hence, the Pomeron flux pa-
rameterization will affect the distributions of ξ and t, as well as the
distributions of any related observables, e.g. pT and ∆y.

The sensitivity to the model parameters will show itself in two
ways: the event count (i.e. the total cross-section) and the shape of
the distribution (i.e. the differential cross-section). The event count is
the relative number of accepted events. Both types of sensitivity have
been studied. The accepted event count in percentage for the nine
different samples for each Pomeron flux parameterizations are listed
in Table 9.1 and 9.2. Notice that the event count is most sensitive to ε.
A larger ε will give a smaller accepted event count, while a larger α′

will give a slightly larger event count. The difference in the number of
accepted events may be caused by the differences in the shape of the
distributions, notably in ξ, pT (affecting the ALFA acceptance), and
the charged track multiplicity nch (affecting the ATLAS acceptance).

Table 9.1: Accepted event count in percentage for the nine different samples
with the Donnachie-Landshoff Pomeron flux parameterization and with
MPIs.

ε = 0.02 ε = 0.085 ε = 0.15

α′ = 0.1 GeV−2 (19.44± 0.04)% (10.11± 0.03)% (4.08± 0.02)%

α′ = 0.25 GeV−2 (21.33± 0.05)% (11.28± 0.03)% (4.63± 0.02)%

α′ = 0.4 GeV−2 (21.58± 0.05)% (11.62± 0.03)% (4.64± 0.02)%

Table 9.2: Accepted event count in percentage for the nine different samples
with the Minimum Bias Rockerfeller (MBR) Pomeron flux parameterization
and with MPIs.

ε = 0.02 ε = 0.085 ε = 0.15

α′ = 0.1 GeV−2 (21.55± 0.05)% (16.25± 0.04)% (11.41± 0.03)%

α′ = 0.25 GeV−2 (23.16± 0.05)% (17.64± 0.04)% (12.55± 0.04)%

α′ = 0.4 GeV−2 (23.23± 0.05)% (17.84± 0.04)% (12.63± 0.04)%

The sensitivity in the shape of the distributions will be presented
by the following sensitivity plots. The four observables ξ, t, pT, and
∆y are common in studies of diffraction and therefore make a good
starting point for studying the sensitivity. Note that the following
sensitivity plots does not take the event count into account, but are
normalized such that only the difference in shape is illustrated.
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The sensitivity plots for the reconstructed relative energy loss ξ are
shown in Figure 9.1. Notice that the sensitivity plots to the left are
for varying ε while keeping α′ constant at the Pythia default value
α′ = 0.25 GeV−2. The sensitivity plots to the right are for varying α′

while keeping ε constant at the default value ε = 0.085. The top sensi-
tivity plots are for the Donnachie-Landshoff Pomeron flux parameter-
ization while the bottom plots are for the Minimum Bias Rockefeller
(MBR) parameterization. Furthermore, the sensitivity plots are nor-
malized such that only the sensitivity in the shape of the distributions
is illustrated. The sensitivity will therefore not reflect the sensitivity
of the relative event count (or acceptance). All sensitivity plots in this
section will follow this scheme.

The shape of the ξ distribution is primarily sensitive to ε. Notice
that the Donnachie-Landshoff parameterization exhibits a higher sen-
sitivity to ε than the MBR parameterization. This will be evident for
all observables that are sensitive to ε.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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Figure 9.1: ξ distributions for different values of the model parameters, ε and α′.



108 phenomenological study

The sensitivity plots for the reconstructed squared momentum trans-
fer t are shown in Figure 9.2. It is seen that t is primarily sensitive to
α′. Notice that both Pomeron flux parameterizations exhibit similar
sensitivity to α′ compared to ε.

The observables ξ and t are not independent as seen in Equation 4.34

and 4.37. Hence, we see a small sensitivity to α′ in the ξ distribution
and a small sensitivity to ε in the t distribution.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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(d) MBR – varying α′, keeping ε constant.

Figure 9.2: t distributions for different values of the model parameters, ε and α′.
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The correlation plot between the reconstructed ξ and t for a sim-
ulated single diffractive sample with the Schuler-Sjöstrand Pomeron
flux parameterization is shown in Figure 9.3.
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Figure 9.3: Correlation plot of the reconstructed ξ and t for the Schuler-
Sjöstrand parameterization.

The sensitivity to the model parameters ε and α′ in the ξ vs. t corre-
lation plot are shown in Figure 9.4 and 9.5 respectively. The sensitivity
plots have been created by taking the ratio between the correlations
plots for the samples with the extreme values of the respective pa-
rameter. It is seen that the ε sensitivity is primarily in the ξ direction,
while the α′ sensitivity is primarily in the t direction.
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Figure 9.4: Ratio between the correlation plot
of the reconstructed ξ and t for ε = 0.02 and
ε = 0.15 for the Donnachie-Landshoff parame-
terization.
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The sensitivity plots for the reconstructed transverse momentum
pT of the diffractively scattered proton are shown in Figure 9.6. It is
seen that pT is primarily sensitive to α′. This is not surprising since
pT is related to t according to Equation 4.36 and 4.37, such that

t '
s→∞
−p2

T (9.5)

If pT is calculated according to the LHC coordinate system, i.e. simply
pT =

√
p2

x + p2
y, then pT is independent on ξ unlike t. However, if pT

is calculated relative to the beam axis (which is the case here) then pT

is slightly dependent on ξ. This is due to the rotation in the plane of
py and pz by the non-zero crossing angle, where pz is reconstructed
from E, px, and py given by ALFAReco. However, due to the crossing
angle being of the order of µrad this dependency is rather small.

 [GeV]
T

Scattered Proton p
0 0.2 0.4 0.6 0.8 1 1.2 1.4

E
ve

nt
s 

/ 7
.5

 M
eV

 (
N

or
m

al
iz

ed
)

5−10

4−10

3−10

2−10

' = 0.25α = 0.02, ε
' = 0.25α = 0.085, ε

' = 0.25α = 0.15, ε

Pythia 8 Single Diffraction radµ50 × = 2
C

θ* = 90 m,  β = 13 TeV,  s

εDonnachie-Landshoff, varying 

20
40
60
80100

120
140
160180
200
220

 [GeV]
T

Scattered Proton p

0 0.2 0.4 0.6 0.8 1 1.2 1.4

R
at

io
 

0

1

2

(a) DL – varying ε, keeping α′ constant.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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Figure 9.6: pT distributions for different values of the model parameters, ε and α′.
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9.1.1 Rapidity Gap Definitions

The forward pseudorapidity gap ∆ηF is common in diffractive anal-
yses with just the ATLAS detector [72]. It is defined as the largest
pseudorapidity gap from the ATLAS inner detector edge to the first
reconstructed track, as illustrated in Figure 9.7. ∆ηF is most sensitive
to ε as seen in Figure 9.8. This is expected as ξ and the rapidity gap
are related according to Equation 4.46.
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Figure 9.7: Illustration of the forward pseudorapidity gap ∆ηF.
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(a) DL – varying ε, keeping α′ constant.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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(d) MBR – varying α′, keeping ε constant.

Figure 9.8: Forward pseudorapidity gap in ATLAS ID ∆ηF distributions for different values of the
model parameters, ε and α′.
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By tagging and measuring the rapidity of the diffractively scattered
proton it is possible to reconstruct the full rapidity gap ∆y in the
diffractive system. The definition of the full rapidity gap is illustrated
in Figure 9.9. As seen in the sensitivity plots in Figure 9.10 the full
rapidity gap ∆y is mostly sensitive to ε similar to ξ ' e−∆y and ∆ηF.
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Figure 9.9: Illustration of the full rapidity gap ∆y.
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(a) DL – varying ε, keeping α′ constant.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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(d) MBR – varying α′, keeping ε constant.

Figure 9.10: Rapidity gap ∆y distributions for different values of the model parameters, ε and α′.
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9.1.2 Additional Studied Observables

There are many additional observables related to single diffractive
events that may exhibit sensitivity to the model parameters. The ones
already presented – ξ, t, pT, and the rapidity gaps – were found to be
the most sensitive. This section will discuss some of the other distri-
butions that were studied.

As seen in Table 9.1 and 9.2, the event count after the acceptance
cuts of the simulation framework will depend on the model param-
eters, and especially on ε. This is partly a result of the kinematic
acceptance regions for the diffractively scattered protons, which is
reflected in the ξ, t, and pT distributions. The kinematic acceptance
of ALFA is also shown in the distribution of the absolute pseudora-
pidity |η| of the scattered proton. The absolute pseudorapidity |η|
is related to the scattering angle θ which in turn is related to the
squared momentum transfer t. Hence, |η| will primarily be sensitive
to α′. The dependence of the event count on the model parameters is
also partly a result of the acceptance of the diffractively dissociated
system – notably the charged multiplicity nch in the ATLAS inner de-
tector, which is primarily sensitive to ε. This is not surprising, since
the multiplicity is tied to the invariant mass MX of the system which
in turn is dependent on the relative energy loss ξ. The diffractively
dissociated system is a QCD system of particles and will therefore
undergo hadronization. In the Lund string model the average mul-
tiplicity of an event after hadronization will behave as a Poissonian
multiplicity distribution [17],

〈nch〉 ≈ c0 + c1 ln(E) (9.6)

where c0 and c1 are constants and E is the energy in the system. Both
the |η| and nch sensitivity plots are shown in the Appendix in Sec-
tion B.2. The average pT of the ID tracks as a function of nch, that is
〈pT〉(nch), was also studied but found to show no significant sensitiv-
ity to the model parameters.

Other studied observables include the linearized 2D sphericity de-
fined as [17] Linearized sphericity

is a collinear safe
alternative to
sphericity.Lab =

∑i
pa

i pb
i

|pi |
∑i |pi|

a, b ∈ {x, y, z} (9.7)

This was particularly studied in the transverse plane (a = x, b = y)
along with correlations with the sum of transverse momentum ∑i pT

i
and the energy loss ξ. The linearized sphericity will naturally be dom-
inated by the high-energy diffractively scattered proton. This can be
remedied by setting pz = 0 or by only considering the reconstructed
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tracks in the inner detector. However, none of the studied distribu-
tions related to the linearized sphericity were found to show any sig-
nificant sensitivity to ε or α′. The linearized sphericity can be consid-
ered in other planes, e.g. the plane extended by the scattered proton
and the beam axis. However, these were not studied in this thesis due
to time constraints.

9.1.3 Quantization of Sensitivity

To quantize the sensitivity to the model parameters of the event count
and the shape of the distributions for the different observables, the
Chi-Squared (χ2) test have been used. The χ2-test can provide the
compatibility between the samples for the two extreme cases in the ε

and α′ ranges (given in Equation 9.1 and 9.2) for each observable. The
compatibility will be given in the form of a χ2-value related to the
number of degrees of freedom (NDF). The larger the χ2/NDF-value
the larger the difference and hence the given distribution is more sen-
sitive to the respective parameter.

The χ2 function describing the ε sensitivity in the event count is
just the squared difference,

χ2
ε =

(Nε max − Nε min)
2

Nε max + Nε min
(9.8)

where N is the event count (or alternatively the total cross-section σ).
A similar χ2 function can be written for α′.

The values listed in Table 9.1 and 9.2 have been used to estimate
the sensitivity in the accepted event count. The event counts for the
minimum and maximum parameter values for the studied parameter
and the default value for the other parameter have been used. For
instance, χ2

ε is calculated from the event count values for ε = 0.02
and 0.15, and for the default α′ = 0.25 GeV−2. The sensitivity χ2-
values in the accepted event count for the Donnachie-Landshoff (DL)
parameterization are

χ2
ε, DL = 10.7 (9.9)

χ2
α′, DL = 0.104 (9.10)

while for the MBR parameterization we have

χ2
ε, MBR = 3.14 (9.11)

χ2
α′, MBR = 0.0753 (9.12)

A high χ2-value indicates a higher sensitivity. It is seen that the event
count is more sensitive to ε and that the Donnachie-Landshoff param-
eterization is more sensitive than MBR.
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Note that MPIs in the diffractively dissociated system will slightly
affect the accepted event count. This is because MPIs will give a
higher chance of a larger charged multiplicity and therefore a higher
chance that a particle from the system will hit the inner detector. In
Table 8.4 it is listed that the accepted event count of a single diffractive
sample for the Schuler-Sjöstrand parameterization with MPIs will, af-
ter the selection cuts in the simulation framework, be (21.60± 0.05)%.
A similar sample but without MPIs will be (20.82± 0.05)%. This dif-
ference is expected to be independent of the model parameters, ε and
α′, as MPIs will not affect the shapes of the ξ and t distributions.

The χ2 function describing the ε sensitivity in the shape of a given
distribution is given by

χ2
ε = ∑

i∈bins

(ni,ε max − ni,ε min)
2

σ2
i,ε max + σ2

i,ε min
(9.13)

where ni is the number of events (or alternatively the differential
cross-section dσ) in bin i of the given distribution. σi is the uncer-
tainty on ni. A similar χ2 function can be written for α′.

The χ2/NDF values for the sensitivity in the shapes of the stud-
ied distributions are shown in Table 9.3. The χ2-values have been
calculated for the two samples with the extreme values of the given
parameter being studied while the other parameter is at the default
value. A larger χ2/NDF value indicates a higher sensitivity to the
given model parameter.

Table 9.3: Sensitivity in the shape of the distributions given as χ2/NDF from the χ2 test. Listed
for samples with MPIs.

Donnachie-Landshoff (DL) Minimum Bias Rockefeller (MBR)

ε α′ ε α′

ξ 1.413× 104/158 1.786× 103/163 6.279× 103/157 1.976× 103/163

t 1.765× 103/198 7.868× 103/198 6.400× 102/198 1.356× 104/198

pT 1.826× 103/197 8.666× 103/199 6.553× 102/197 1.478× 104/199

∆y 1.260× 104/127 1.618× 103/131 6.313× 103/127 2.273× 103/127

∆ηF 1.170× 104/181 1.628× 103/181 6.033× 103/181 1.771× 103/181

|η| 2.281× 103/141 7.832× 103/137 7.155× 102/140 1.362× 104/139

nch 1.060× 104/140 1.434× 103/136 5.151× 103/135 1.525× 103/135

The χ2-values agree with the previous conclusions on the sensi-
tivity of each distribution. The distributions of ξ, ∆y, ∆ηF, and nch
are primarily sensitive to ε, while t, pT, and |η| are primarily sensi-
tive to α′. It seems that ξ and pT are the most sensitive observables.
The Donnachie-Landshoff parameterization exhibits a larger sensitiv-
ity than the MBR parameterization.
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9.1.4 Effects of Multiparton Interactions

As discussed in Section 4.7, the model for hard diffraction in Pythia

implements dynamic gap survival which ensures that MPIs only oc-
cur in the IPp system and not in the pp system. Hence, toggling MPI
on and off in Pythia will have no effect on the shape of the distri-
butions related to the diffractively scattered proton, as illustrated in
Figure 9.11 and 9.12.
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However, MPIs will naturally give a longer tail towards higher mul-
tiplicities in the diffractively dissociated system. This is illustrated in
Figure 9.13, where the charged multiplicity nch is plotted for MPI tog-
gled on and off.
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9.2 background study

In the previous section, the distributions were plotted for the single
diffractive (SD) signal. But some of the other types of events that are
illustrated in Figure 7.7, could be reconstructed as single diffractive
events, and would then count as background. A good understanding
of the possible background contributions is important when fitting
for the Pomeron flux parameterization.

• Non-diffractive (ND) events may have charged particles with a
high enough energy (E & 5200 GeV), a long enough lifetime
(τ & 10−6 s), and are scattered in the extreme forward direction
so that they hit the ALFA stations and are reconstructed as a
diffractive proton. Along with a false proton tag some of the
non-diffractive system may hit the ATLAS inner detector and
MBTS.

• Double diffractive (DD) events could likewise have charged parti-
cles hitting ALFA on one side with a signal in the ID and MBTS,
with a similar distribution as the ND events.

• Central diffractive (CD) events could have one of the scattered
protons leaving a well-reconstructed track on one side while
the other proton could have missed the ALFA detectors or were
not reconstructed.

The contribution of these background channels are seen in Fig-
ure 9.14 and 9.15 for the ξ and t distributions, which have been scaled
according to the acceptance and relative cross-sections (Equation 4.8
- 4.11). Note that the CD background may be overestimated as it will
be dependent on the ALFA track reconstruction efficiency which is
not well known and have not been included in the simulation.
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The non-diffractive (ND) and double diffractive (DD) background
is expected to be significant for large ξ and t values. This region in ξ

and t are the most sensitive to the model parameters, as seen in the
sensitivity plots in Figure 9.1 and 9.2. The ND events are indepen-
dent of the Pomeron flux parameterization and will therefore count
as a constant term in the fit procedure. However, the DD events are
unfortunately dependent on the Pomeron flux parameterization.
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Figure 9.16: Hitmaps of the non-diffractive background protons for θC =
2× 50 µrad in the ALFA stations on the A-side.
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Figure 9.17: Hitmaps of the double diffractive background protons (with
Schuler-Sjöstrand) for θC = 2× 50 µrad in the ALFA stations on the A-side.
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The hit distribution of the ND background protons are seen in Fig-
ure 9.16. In the transverse plane the ND protons coincide with the
single diffractive (SD) signal shown in Figure 8.28. The hit distribu-
tion of the DD background is shown in Figure 9.17 and is roughly
similar to that of the ND background.

The local angle of the protons in the ALFA detector can be ex-
pressed as

θx =
x245 m − x237 m

d
(9.14)

where d = 8.258 m is the distance between the near and far ALFA
stations. The local angle as a function of the x237 m hit position for the
single diffractive signal is seen in Figure 9.18. Note that the ellipse
around (θx, x237 m) = (0, 0) are the protons with very low energy loss
ξ ' 0, and are therefore nearly elastic (or quasi-elastic). The long tail
or ‘banana’ shape extending towards larger θx values are for protons
with an increasing energy loss ξ.
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Figure 9.18: Correlation of the single diffractive hit x-coordinate versus the
local angle θx for the A-side.

The non-diffractive background is shown in Figure 9.19 and the
double diffractive background in Figure 9.20. Here hits are roughly
uniformly distributed in the single diffractive region.
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Figure 9.19: Correlation of the non-diffractive
hit x-coordinate versus the local angle θx for
the A-side.
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Figure 9.20: Correlation of the double diffrac-
tive hit x-coordinate versus the local angle θx
for the A-side.

The correlation between the reconstructed energy loss ξ and squared
momentum transfer t is shown for the non-diffractive background in
Figure 9.21 and for the double diffractive background in Figure 9.22.
The double diffractive background seems to primarily cluster around
large ξ and low t values. The non-diffractive background exhibits
similar behavior but the non-diffractive sample generated here is un-
fortunately plagued by low statistics.
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Figure 9.21: Correlation plot of the recon-
structed ξ and t for the non-diffractive back-
ground.
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Figure 9.22: Correlation plot of the recon-
structed ξ and t for the double diffractive back-
ground with the Schuler-Sjöstrand parameter-
ization.

Note that the cluster of events observed at large ξ and low t values
in the double diffractive and the non-diffractive background samples
may not be representative of the underlying physics (or truth) distri-
bution but is rather a consequence of the kinematic acceptance region
of ALFA as seen in the ξ vs. pT acceptance plot in Figure 8.19a, where
nearly 100% acceptance is seen for 0.15 . ξ . 0.18 and for low pT.
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It has been shown in this section that the central diffractive back-
ground is distributed in a very similar way to the single diffractive sig-
nal and is most likely of negligible size. However, the non-diffractive
and double diffractive background may be of significance, and have
been found to be most easily distinguishable from the single diffrac-
tive signal in the correlation plot between ξ and t.

9.3 optimal observables method

The kinematics of the simulated protons will be determined by the
Pomeron flux, which is a distribution over ξ and t. We now allow the
Pomeron flux to be a function of the two parameters ε and α′ as well,

fIP/p(ξ, t; ε, α′) (9.15)

The objective is now to possibly construct observables that are maxi-
mally sensitive to the model parameters – so-called optimal observables.

Mathematically, the Pomeron flux is a scalar function fIP/p : R4 →
R. Assuming differentiability, then for such a function, each compo-
nent of the gradient ∇ f will give the rate of change of the function
with respect to the standard basis based on the variables. The direc-
tional derivative of the function f in some arbitrary direction u in the
basis extended by the variables, will be given by the product of the
gradient and the direction,

Du f (a) = lim
h→0

f (a + hu)− f (a)
h

(9.16)

= ∇ f (a) · u (9.17)

= ||∇ f (a)|| cos θ (9.18)

where θ is the angle between the vectors ∇ f and u. The direction
of steepest ascent, i.e. where the directional derivative is maximal, is
the direction where θ = 0, i.e. where ∇ f and u points in the same
direction. If we have a small correction δa to the variables around
some expansion point a, the Taylor expansion is then

f (a + δa) = f (a) +∇ f · δa + . . . (9.19)

where the linear correction term ∇ f · δa is maximized when δa is in
the same direction as ∇ f . This is the idea behind the method of Op-
timal Observables [73] which can be applied to any reaction where
the differential cross-section depends on a certain number of small
parameters, and which are to be estimated. The method of Optimal
Observables attempts to project onto a single variable the kinematic
information which is most sensitive to a particular model parameter.
For each parameter, an optimal observable exists.
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Optimal observables have previously been applied to studies of
anomalous gauge couplings in hadronic collisions [74]. As a short
example, consider an extension to the Standard Model (SM) with an
anomalous coupling λ. The optimal observable would then be

O(λ) = lim
ελ→0

dσ(SM + ελ)− dσ(SM)

ελdσ(SM)
(9.20)

where dσ is the differential cross-section. Expanding the cross-section
in the anomalous coupling λ one can write

dσ ≈ dσ0 + dσ1 · λ + . . . (9.21)

where dσ0 = dσ(SM). The optimal observable would then be

O(λ) = dσ1

dσ0
(9.22)

The optimal observable for λ is the relative change in the event prob-
ability (cross-section) when the λ parameter is moved from its SM
value by some small amount ελ.

In our case, a certain set of parameter values, (ε0, α′0), will take the
role of the expansion point. The first order corrections in the expan-
sion will be the derivatives with respect to the parameter values in
question. The Taylor expansion takes the form,

fIP/p(ξ, t; ε, α′) = fIP/p
∣∣
ε0,α′0

+

(
∂ fIP/p

∂ε

∣∣∣∣
ε0,α′0

)
(ε− ε0)

+

(
∂ fIP/p

∂α′

∣∣∣∣
ε0,α′0

)
(α′ − α′0)

+ . . . (9.23)

In this way we can construct optimal observables that are functions
of ξ and t as well as the expansion point given by ε0 and α′0. The
optimal observable that is optimally sensitive to ε, is given by the
partial derivative of the Pomeron flux fIP/p with respect to ε,

Oε(ξ, t; ε0, α′0) =

(
∂ fIP/p

∂ε

∣∣∣∣
ε0,α′0

)/(
fIP/p

∣∣
ε0,α′0

)
(9.24)

where it has been normalized to the Pomeron flux value at the expan-
sion point. The optimal observable for α′ is likewise given by

Oα′(ξ, t; ε0, α′0) =

(
∂ fIP/p

∂α′

∣∣∣∣
ε0,α′0

)/(
fIP/p

∣∣
ε0,α′0

)
(9.25)
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The Pomeron flux parameterization for both Donnachie-Landshoff
and MBR takes the form,

fIP/p(ξ, t; ε, α′) ∼ ξ−1−2ε−2α′t (9.26)

as seen in Equation 4.82 and 4.84.
The derivatives are then

∂ fIP/p

∂ε
∼ −2 ln(ξ)ξ−1−2ε−2α′t ∼ −2 ln(ξ) fIP/p (9.27)

∂ fIP/p

∂α′
∼ −2t ln(ξ)ξ−1−2ε−2α′t ∼ −2t ln(ξ) fIP/p (9.28)

Hence, our optimal observables are given by

Oε = −2 ln(ξ) (9.29)

Oα′ = −2t ln(ξ) (9.30)

This explains why ξ is more sensitive to ε and why t is more sensi-
tive to α′ as seen in Figure 9.1 and 9.2, since the linear t grows faster
than the logarithmic ln(ξ). It is worth noting here that the optimal
observables are maximally sensitive to their respective parameters –
not exclusively sensitive to their respective parameters. This means
that Oε will also depend on α′ and vice versa.

The Pomeron flux parameterization in Equation 9.26 takes a very
simple form when expressed in terms of the optimal observables,

fIP/p(Oε,Oα′ ; ε, α′) ∼ exp
(
Oεε +Oα′α

′) (9.31)

which holds for both Pomeron flux parameterization models in Pythia.

The attempt in this section was to construct observables that are
maximally sensitive to the model parameters. However, due to the
exponential nature of the Pomeron flux parameterizations it would be
necessary to include all terms in the infinitely long Taylor expansion
in Equation 9.23 rather than just the linear terms as presented here.
This will unfortunately make the optimal observables unviable in the
analysis and the following fit procedure. But the optimal observables
seems to indicate that ξ already exhibits maximal sensitivity to ε as
seen in Equation 9.29.
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9.4 fit procedure

The primary goals of this thesis is to determine which Pomeron flux
parameterization in Pythia 8, of the three introduced in Section 4.7,
that best fits current

√
s = 13 TeV data at ATLAS and ALFA. This

section will present a statistical fit procedure that can estimate the
model parameters ε and α′ for the Donnachie-Landshoff and MBR
parameterization.

The fit procedure will use the sensitivity in the shape of the dis-
tributions to fit the parameters. Here the distributions for the recon-
structed ξ and pT will be used as they were particularly sensitive to
each their parameter as shown in Section 9.1. We will consider pT

instead of t in this section as pT is slightly more sensitive than t, and
to avoid double counting since ξ and t are not independent of each
other (as seen in Equation 4.34).

We are interested in fitting ε and α′ in measured ξ and pT dis-
tributions. This can be solved by using the method of least squares
[75], where the squared difference between a set of measurements
and their predicted values are minimized. The χ2 function to be min-
imized takes the general form

χ2(ε, α′) =
n

∑
i

(Oi − Ei(ε, α′))2

σ2
Oi
+ σ2

Ei

(9.32)

where Oi are the observations, and Ei are the expectation values. Note
that we allow some uncertainty on the theoretical expectation.

The observations Oi will be the measured dN/dξ and dN/dpT,
while the expectation values Ei will be based on the Pomeron flux
parameterization fIP/p(ξ, t; ε, α′). The full χ2 function takes the form,

χ2(ε, α′) =
nξ

∑
i

[
dNobs

dξ
− Eξ,i(ε, α′)

]2 1
σ2
ξ, obs + σ2

ξ, exp

+
npT

∑
i

[
dNobs

dpT
− EpT ,i(ε, α′)

]2 1
σ2

pT , obs + σ2
pT , exp

(9.33)

where we sum over bins of ξ and pT.

9.4.1 Minimization with Minuit

The minimization of the χ2 function is handled by the Minuit package
[70] as implemented in the ROOT data analysis framework. This is
done in order to determine the two model parameters, ε and α′, for a
given sample. Minuit is a physics analysis tool to find the minimum
value of a multi-parameter function and analyze the shape of the
function around that minimum.
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9.4.2 Expectation Values

There are many possible ways to find the bin-wise expectation values
Ei(ε, α′) for the ξ and pT distributions. One method is to call Pythia

and generate a new single diffractive sample for every iteration in the
minimization. This will introduce a Poissonian uncertainty on every
expectation value. This is computationally very demanding as Minuit
will go through several hundreds of iterations. It may be possible to
significantly lower the generation time in Pythia by disabling pro-
cedures that will only affect the dissociated system and not the scat-
tered protons (such as hadronization, ISR, FSR, and MPIs).

An alternative to this method would be to generate a single ref-
erence sample, with the Pythia default values of ε = 0.085 and
α′ = 0.25 GeV−2, and then apply a specific weight to each event,

w =
dσ|ε,α′

dσref.
(9.34)

where dσ|ε,α′ is calculated from the Pomeron flux parameterization.
The reference sample is then reweighted to a new parameterization
based on the Pomeron flux. This is unfortunately complicated by the
detector effects and smearing shown in Section 8.6.2.

The method used in this thesis, is to fit the number of events in each
ξ and pT bins for the nine generated samples from Section 9.1 that
scanned over different values of ε and α′. A particular non-equidistant
binning has been used for the ξ and pT distributions and is illustrated
in Figure 9.23 and 9.24.
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Figure 9.23: Distribution of the reconstructed
ξ with the non-equidistant binning used in the
fit procedure.
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Figure 9.24: Distribution of the reconstructed
pT with the non-equidistant binning used in
the fit procedure.
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The ranges 0.025 ≤ ξ ≤ 0.16 and 0.525 GeV ≤ pT ≤ 1.0125 GeV
exhibit large sensitivity and does not include the detector smearing
seen at low ξ and pT values nor the low statistics at larger values.
The width of the bins in these ranges was chosen to include sufficient
statistics while avoiding a too large of a spread of the central ξ and pT

values in each bin. The events outside the ranges are included as over-
flow and underflow bins which ignores the shape of the distributions.

The normalized number of events for the nine generated samples
in each bin in the ξ and pT distributions are fitted as functions of the
model parameters ε and α′. The 2D fit function is modelled after the
shape of the Pomeron flux parameterizations,

Ei(ε, α′) = abε+cα′+d (9.35)

where a, b, c, and d are fit parameters. A set of the fit parameters with
uncertainties are found for each bin for both ξ and pT and are used to
construct the expectation values in the χ2 function in Equation 9.33.
A χ2 function with the sets of fit parameters can be constructed for
both the Donnachie-Landshoff and the MBR parameterization. Note
that MPIs will not have a significant effect on the ξ and pT distribu-
tions using the non-equidistant binning and will therefore not affect
the fits (see Section 9.1.4). The values from the nine samples for the
Donnachie-Landshoff parameterization along with the fit surface for
two bins in ξ and pT are shown in Figure 9.25 and 9.26.
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nine samples (markers) plotted along with the
fitted expectation function (surface).
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Figure 9.26: The distribution dN/dpT as a
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the fitted expectation function (surface).

The uncertainties σξ, exp and σpT , exp on the expectation values Eξ,i
and EpT ,i are found through error propagation of the uncertainties on
the fit parameters in Equation 9.35.
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9.4.3 Test Samples with Unknown Parameterization

Two test samples were generated by the thesis supervisor with Pomeron
flux parameterizations that were unknown to the author by the time
of development and testing of the fit procedure. This was to ensure a
fair test of the fit procedure without bias. Note that the provided test
samples were generated without a crossing angle, θC = 0 µrad. This
makes no difference as the fit procedure is independent on the beam
settings. Furthermore, in Section 8.6.2 the crossing angle was found
to have little effect on the shape of the ξ and pT distributions in the
region of large ξ and pT values where the sensitivity was largest.

Test sample 1 contains 3, 411, 054 events and was generated with
the Donnachie-Landshoff parameterization without MPIs and with
the true parameter values

ε = 0.04 (9.36)

α′ = 0.15 GeV−2 (9.37)

The fit procedure using the Donnachie-Landshoff parameterizations
to find the expectation values found the parameters with a minimum
χ2 = 6.27. This was significantly better than the MBR parameteri-
zation which found the parameters with a minimum χ2 = 276.93.
Hence, the fit procedure was able to find the correct Pomeron flux
model. The parameters with uncertainties were found to be

ε = 0.042± 0.002 (9.38)

α′ = 0.154± 0.007 GeV−2 (9.39)

which are within 1σ of the true values. The constructed χ2 as a func-
tion of ε and α′ for test sample 1 is shown in Figure 9.27 and 9.28.
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Figure 9.27: The constructed χ2 as a function
of ε and α′ for test sample 1.
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The contour plot from Minuit for test sample 1 with the true and
fitted parameters overlaid is shown in Figure 9.29.
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Figure 9.29: Contour plot from Minuit for test sample 1. The true and fitted
parameters values are shown.

Test sample 2 contains 2, 973, 321 events and was generated with
the MBR parameterization with MPIs and with the true parameter
values

ε = 0.13 (9.40)

α′ = 0.35 GeV−2 (9.41)

The fit procedure using the Donnachie-Landshoff parameterizations
found the parameters with a minimum χ2 = 15.89. With the MBR pa-
rameterization the parameters were found with a minimum χ2 = 8.32.
The MBR parameterization then gave the best fit where the parame-
ters with uncertainties were found to be

ε = 0.130± 0.004 (9.42)

α′ = 0.361± 0.004 GeV−2 (9.43)

Here the fit procedure found the exact ε value within 1σ. However, the
α′ value was only found within 3σ. The constructed χ2 as a function
of ε and α′ for test sample 2 is shown in Figure 9.30 and 9.31. The
contour plot from Minuit for test sample 2 with the true and fitted
parameters overlaid is shown in Figure 9.32.
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Figure 9.30: The constructed χ2 as a function
of ε and α′ for test sample 2.
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Figure 9.31: The contour lines of the con-
structed χ2 for test sample 2.
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Figure 9.32: Contour plot from Minuit for test sample 2. The true and fitted
parameters values are shown.

9.4.4 Test Samples with Known Parameterization

Four test samples were generated by the author and therefore had
a known parameterization at the time of development and testing
of the fit procedure. All four test samples were generated with the
Donnachie-Landshoff parameterization and with MPIs. The true pa-
rameter values along with the values found from the fit are listed in
Table 9.4. The contour plots are shown in Figure 9.33. All found val-
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ues are at least within 2σ of the true values. The largest uncertainty
is generally in the α′ parameter.

Table 9.4: True and fitted parameter values for the four test samples gener-
ated by the author.

Test sample True values Fitted values

1
ε = 0.05 ε = 0.048± 0.003

α′ = 0.32 GeV−2 α′ = 0.316± 0.010 GeV−2

2
ε = 0.12 ε = 0.119± 0.004

α′ = 0.2 GeV−2 α′ = 0.202± 0.012 GeV−2

3
ε = 0.03 ε = 0.031± 0.003

α′ = 0.15 GeV−2 α′ = 0.158± 0.008 GeV−2

4
ε = 0.125 ε = 0.127± 0.005

α′ = 0.35 GeV−2 α′ = 0.364± 0.014 GeV−2
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(c) Test sample 3.
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Figure 9.33: Contour plots by Minuit of the four test samples generated by the author.
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9.4.5 Conclusions on Fit Performance

The fit procedure will provide the fitted values for ε and α′ with un-
certainties from Minuit. The fitted values was found to be generally
within at least 2σ of the fit uncertainty for most samples. The fit pro-
cedure will also provide a “goodness-of-fit” χ2 value (i.e. the found
minimum χ2 value) which can be compared between the Donnachie-
Landshoff and the MBR parameterizations to find the parameteriza-
tion model in Pythia that gives the best fit.

Since ε and α′ will affect the accepted event count, they will also
influence the statistical Poissonian uncertainty used in the fit for the
expectation value. For instance, for larger ε we saw a lower accepted
event count and would therefore see a larger relative uncertainty. This
could shift the constructed χ2 function slightly and introduce an ad-
ditional systematic uncertainty.

Generating additional samples which scan over more values (e.g. 5
instead of the 3 used here) of the model parameters would naturally
improve the resolution and the fits to find the expectation values. The
trade-off is time and storage space spent on generating the extra sam-
ples. More events generated per sample will also improve the fit with
the same consequences.

In Section 9.1 it was found that the Donnachie-Landshoff parame-
terizations was more sensitive to the model parameters than the MBR
parameterization. Hence, the allowed limits on the distributions are
larger for Donnachie-Landshoff which makes it easier to fit to data
due to allowed freedom to the fit, but could also introduce a larger
uncertainty on the fitted parameters. It may even be possible to falsify
the MBR parameterization if it is found to be not possible to fit data
within the limits of the distributions.





Part IV

D ATA A N A LY S I S

In the previous part, a statistical fit procedure that allows
for the testing of the validity of the phenomenological
models of diffraction was presented and utilized on sev-
eral simulated test samples. This part will present an anal-
ysis of the new 13 TeV data from the 2015 Run 2 period
using the ATLAS and ALFA experiments at the LHC. Mea-
sured distributions will be compared to the simulated dis-
tributions from the previous part. Several attempts at re-
ducing the background in data will be presented. Finally,
the thesis work is summarized along with some remarks
regarding future studies of diffraction.





10
D I F F R A C T I V E R U N S

This chapter presents an analysis of data collected from the ATLAS
and ALFA experiment at the LHC. The analysis is only preliminary,
since the full alignment of the ALFA detectors has not yet been found
for the run used in this analysis, and there has not yet been developed
a complete and official Monte Carlo simulation for comparison.

The resulting measured distributions from data will be compared
to the simulated distributions from the simulation framework that
was presented in Chapter 8. As with the simulations, the focus of the
data analysis has been exclusively on single diffractive events.

10.1 data samples

The data is from ATLAS run 282026, taken on 15 - 16 October 2015

at the LHC. The run has 14, 975, 165 events corresponding to an in-
tegrated luminosity over the entire run of 111.3 nb−1. The center-of-
mass energy of the run was

√
s = 13 TeV and the optics used had a

beta function value at the interaction point of β∗ = 90 m. Run 282026

had 671 colliding bunches and the beams collided with a crossing an-
gle of −50 µrad, as already discussed.

Run 282026 took data from LHC fill 4499. Data runs are divided
into so-called luminosity blocks (lumi-blocks or LBs), which are col-
lections of temporally consecutive events, and roughly amounts to
a minute of data taking. For each lumi-block, a data quality flag is
set, which signals whether or not that block should be used for anal-
ysis. This is described by a so-called good runs list (GRL) which are
generated for each run.

10.2 detector alignment from elastic events

The precision of the measurement of the diffractively scattered proton
kinematics depends strongly on the knowledge of the detector posi-
tion with respect to the beams. The detector positions were measured
during data taking by LVDTs (Linear Variable Differential Transform-
ers) with a precision of 100 - 200 µm. These positions are listed in
Table 10.1 and are for the Roman Pot edge. There is an additional 450
µm from the RP edge to the main detector edge. For the analysis, we
need to know the detector positions with better precision in order to
make use of the tracking precision of 30 µm in the ALFA MDs. This

135
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alignment comes in two steps: a beam-based alignment and an off-
line alignment using elastic events.

A beam-based alignment is performed in a separate dedicated LHC
fill before the fill in question and will use the same beam settings.
Each of the eight ALFA Roman Pots will then be, one at a time, moved
from their garage position towards the beam in steps of 10 µm until
the LHC beam-loss monitors gives a signal above a certain threshold.
Knowing the vertical positions of the upper and lower RP windows
with respect to the beam, it is then possible to find the center of the
beam as well as the distance between the upper and lower RPs.

After data taking, an off-line alignment procedure is performed to
transform reconstructed track positions in the ALFA detectors from
the detector coordinate-system to the beam coordinate-system. This
alignment procedure is a track-based alignment using proton tracks
from elastic-scattering events. The full and final alignment depends
on the optics and track reconstruction efficiency and has not yet been
found for the data run used in this study. However, a track-based
alignment using elastic events has been performed by the author as
detailed in the following.

First, elastic events have been selected with the following cuts:

• a golden event in the ALFA detectors, i.e. a track in the two upper
detectors on one side, and a track in the two lower detectors on
the opposite side,

• otherwise empty ALFA detectors,

• beam-screen cut,

• level-1 triggers for elastic events (L1_ALFA_ELAST15 and
L1_ALFA_ELAST18),

• veto on level-1 triggers for systematic effects (L1_ALFA_SYST17
and L1_ALFA_SYST18),

• an empty inner detector and calorimeter of ATLAS.

Where the elastic and systematic L1 triggers used here, are the most
efficient with a trigger efficiency close to 100% [49]. An additional cut
on the horizontal track coordinates of |x| < 2.5 mm has been done
to remove most of the background from central diffractive events.
A perhaps more efficient cut would have been selecting everything
within an ellipse in the correlation plots seen in Figure 10.1 and in
Figure 10.3, which is one of the usual selection criteria for elastic
events. However, for this simple alignment procedure, the cut in |x|
had a similar effect.
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For the alignment of each ALFA detector, three parameters are nec-
essary: the rotation angle around the beam axis, and the horizontal
and vertical position offsets. The distribution of tracks from elastic-
scattered protons will form a narrow ellipse in the (x, y)-plane, with
its major axis in the vertical direction and with an aperture gap be-
tween the upper and lower detectors. The distribution of track hits
in the (x, y)-plane for one of the detectors is seen in Figure 10.2. A
linear fit to the profile histogram of the track distribution will give
the small rotation angle θz around the beam axis. Each detector will
have a rotation angle on the order of a few mrad. The values from the
fits are listed in Table 10.1.
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Figure 10.1: Correlation plot of the horizontal
reconstructed track positions for the inner de-
tectors. The track coordinates are in the detec-
tor coordinate system.
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Figure 10.2: Linear fit to a profile histogram
of the track pattern in the x − y-plane for
RP6 (B7R1U) to determine the rotation angle
around the beam axis. The track coordinates
are in the detector coordinate system.

The horizontal position offset ∆x can be found from the mean value
of a Gaussian fit to the projection of the horizontal track position in
each detector, as seen in Figure 10.4. The values of ∆x are also listed
in Table 10.1.
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Figure 10.3: Correlation of reconstructed hori-
zontal track position versus the local angle for
RP7 (B7R1L).
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The vertical alignment is found from the LVDT measurements. How-
ever an additional correction may be applied, as the inner and outer
detectors may have a small relative offset. This offset can be found by
considering the correlation of the vertical track position of the inner
detector versus the difference between the vertical track position of
the outer detector and the inner detector. This can then be fitted with
a linear function,

y245 m − y237 m = a× y237 m + b (10.1)

where, if no offset is present, should cross the origin, i.e. b = 0. This
is illustrated in Figure 10.5 and Figure 10.6. The vertical positions will
then be corrected by the offset b as such:

y237 m = y237 m +
b
2

, y245 m = y245 m −
b
2

(10.2)

as it is not known which of the detectors are misaligned.
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Figure 10.5: Correlation of reconstructed ver-
tical track position versus vertical local angle
θy ≈ youter − yinner for the elastic arm in RP1
(B7L1U) and RP3 (A7L1U).
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Figure 10.6: Correlation of reconstructed ver-
tical track position versus vertical local angle
θy ≈ youter − yinner for the elastic arm in RP2
(B7L1L) and RP4 (A7L1U).

The alignment procedure as outlined here, should optimally be
performed in multiple iterations until a convergence is met. This
is because the elastic event selection will depend on the alignment
through the correlation cuts and vice versa. However, in this study, a
simple alignment procedure with just a single iteration has been per-
formed. The track based alignment will also depend on input from
the optics and the elastic track reconstruction efficiency. None of these
have been worked out yet and hence the final results for the align-
ment are not finished. In a more complete alignment, the distance
measurements between the upper and lower ALFA Roman Pots in
each station would be used instead of the LVDT measurements, as
they would be more accurate. The distance measurements would be
based on readouts of the overlap detectors.
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Table 10.1: Track-based alignment parameters used to align the ALFA detec-
tors in this study. The LVDT measurements are from [76] with an uncertainty
of about 100 µm.

Detector LVDT ymeas. [mm] ∆x [mm] θz [mrad]

RP1 5.71± 0.10 0.6148± 0.0004 5.132± 0.173

RP2 −6.02± 0.10 −0.1617± 0.0004 0.030± 0.179

RP3 6.47± 0.10 0.7178± 0.0003 3.352± 0.119

RP4 −6.53± 0.10 0.4805± 0.0003 −1.151± 0.122

RP5 6.28± 0.10 0.1850± 0.0003 −0.576± 0.123

RP6 −6.77± 0.10 0.2323± 0.0003 0.066± 0.121

RP7 5.18± 0.10 0.2275± 0.0004 1.197± 0.178

RP8 −6.54± 0.10 0.3351± 0.0004 −0.137± 0.177

10.3 single diffractive event selection cuts

After performing the alignment of the ALFA detector for our run we
can now turn towards selecting single diffractive events for analysis.
This section will describe the cuts used to obtain a nearly clean sam-
ple of single diffractive events. The selection criteria will mirror what
we used in our simulation framework in Section 8.6.

10.3.1 Luminosity Blocks

The events in our data run has been first selected from an ATLAS
good-runs-list (GRL) which signals whether the detector was in a
good enough condition such that the lumi-block containing the given
event can be used for physics analysis.

On the ALFA side, there exists specialized criteria for a good lumi-
block. First, the ALFA Roman Pots must be in the final position for
data taking. Second, the duration of the lumi-block must be more
than 60 s. Third, the dead time of the ALFA and ATLAS detectors
must be less than 5% of the lumi-block duration. The lumi-blocks in
run 282026 passing the ALFA criteria are found from ref. [47] to be 5
- 8 and 10 - 238.

10.3.2 Bunch Crossing Identifiers (BCID)

Each bunch crossing is given a unique ID called a bunch crossing ID
or BCID. Not all bunches in a given beam will have a collision with a
bunch in the other beam. These are called unpaired bunches and may
give a signal in the ALFA detector due to beam background or beam
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halos. The unpaired bunches for our run can be found from ref. [47]
and are removed to reduce the background.

10.3.3 Signal in ALFA

The ALFA SD event selection criteria requires exactly one reconstructed
track in each of the two ALFA detectors of one of the four arms. The
number of U and V plates used in the track reconstruction was re-
quired to be NU , NV > 5 out of the total 10 plates for both U and V.
This is to ensure a well-reconstructed track. The distributions of hits
in the U and V plates are shown in Figure 10.7. All other detector
arms are required to be empty. The reconstructed hit coordinates in
the transverse plane is required to be within an edge cut defined by
the ALFA and beam screen region as illustrated in Figure 8.14. Hits
outside the overlap region between ALFA and the beam screen are
expected to be from beam background.
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Figure 10.7: Number of hits in each ALFA detector plate for the stations at z = 237 m.
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Figure 10.8: Simplified illustration of the signal diffractive event selection using ALFA and ATLAS.
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10.3.4 Signal in the MBTS

The MBTS is used to signal activity in the ATLAS detector for mini-
mum bias samples. Combined L1 trigger items for the MBTS and the
ALFA detector has been used to trigger on events where 1 or 2 MBTS
segments has fired on the opposite side of the ALFA detectors with a
reconstructed track. The combined L1 triggers are

L1_MBTS_1_A_ALFA_C, L1_MBTS_1_C_ALFA_A,
L1_MBTS_2_A_ALFA_C, L1_MBTS_2_C_ALFA_A

and has been used to select single diffractive events. In addition, the
event selection requires at least one MBTS segment (on the opposite
side of the ALFA hit) with a deposited charge Q over a certain sig-
nal threshold (set to 0.15 pC). The deposited charge Q in one of the
MBTS segments on the A-side is shown in Figure 10.9 for paired and
unpaired bunches. Unpaired bunches will have no collisions at the in-
teraction point and any charge deposited in the MBTS will therefore
be background or noise. The charge deposited from the MBTS back-
ground will mainly be below the chosen signal threshold and is also
present for the paired bunches. A veto on signals on the side with
the ALFA hit can also be imposed but has been found to significantly
reduce the amount of events, resulting in low statistics. The MBTS
veto has therefore not been included in the event selection.
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10.3.5 Signal in the ATLAS Inner Detector

We require a reconstructed vertex in the ATLAS inner detector as the
primary vertex is important for the precise reconstruction of the pro-
ton kinematics. The average number of pile-up collisions was 〈µ〉 ≈
0.0863, as discussed in Section 5.4, and there are therefore a small
probability of more than one collision happening for any given bunch
crossing. Assuming a Poisson distribution the probability of k colli-
sions happening in a given bunch crossing can be estimated as

P(k collisions) =
e−〈µ〉〈µ〉k

k!
(10.3)

Hence, the probability of two collisions happening in a given bunch
crossing is suppressed by a factor

P(1 collision)
P(2 collisions)

=
e−〈µ〉〈µ〉1/1!
e−〈µ〉〈µ〉2/2!

≈ 23 (10.4)

compared to the probability of just one collision. A requirement of
exactly one reconstructed vertex is imposed to ensure a clean sample
and to reduce background from pile-up.

The reconstruction of the primary vertex requires at least two tracks.
The following cuts are imposed on the reconstructed charged tracks
to tighten the quality of the tracks:

• pT ≥ 100 MeV,

• |η| < 2.5,

• require tracks to have at least one hit in the B-layer (first pixel
layer) if they pass a module that is expected to be active,

• if a B-layer hit is not expected then require at least one hit in
the pixel detector,

• |d0| < 1.5 mm (transverse distance of track origin to the primary
vertex),

• |z0| sin θ < 1.5 mm (longitudinal distance of track origin to the
primary vertex),

• χ2 probability > 0.01 for reconstructed tracks with pT > 10 GeV,

• a requirement of SCT hits with regard to the track pT:

– nSCT > 2, for pT < 200 MeV,

– nSCT > 4, for 200 MeV < pT < 300 MeV,

– nSCT > 6, for pT > 300 MeV,

The track selection criteria are similar to those of previous minimum-
bias analyses at the ATLAS detector [77].
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The number of reconstructed vertices for events that have passed
the ALFA and MBTS cuts are shown in Figure 10.10. A large fraction
of events either does not have a reconstructed vertex or have more
than one. In events with more than one reconstructed vertex it is un-
clear which vertex the diffractively scattered proton originated from.

The coordinates of the reconstructed primary vertices are shown
in Figure 10.11 - 10.13. The vertex distributions have been fitted with
Gaussian distributions and the resulting mean values and standard
deviations corresponds reasonably well with the beam spot measure-
ments in Equation 5.7 - 5.9.
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Figure 10.10: Distribution of reconstructed ver-
tices in the ATLAS inner detector for events
passing the ALFA and MBTS cuts.
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Figure 10.11: Reconstructed primary vertex x-
coordinate plotted with a Gaussian fit.
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Figure 10.12: Reconstructed primary vertex y-
coordinate plotted with a Gaussian fit.
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Figure 10.13: Reconstructed primary vertex z-
coordinate plotted with a Gaussian fit.

The uncertainties given by the primary vertex reconstruction in the
inner detector can be used in ALFAReco instead of the beam spot un-
certainties for additional accuracy. These are shown in Figure 10.14

and 10.15.
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Figure 10.14: Distribution of the primary vertex reconstruction uncertainties.
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Figure 10.15: The primary vertex reconstruction uncertainties as functions of the number of
charged ID tracks that passed the track criteria.

10.3.6 Signal in the ATLAS Calorimeter System

Reconstructed topo-cluster jets in the ATLAS calorimeter system has
not been included in the data analysis, as there were some problems
with the jet cleaning algorithms. The calorimeter system can extend
the pseudorapidity coverage for the particles from the diffractively
dissociated system up to |η| < 4.9 from the inner detector coverage of
|η| < 2.5. Therefore requiring a signal in the calorimeter instead of the
inner detector will increase the number of observed single diffractive
events. However, unlike the inner detector the calorimeter does not
reconstruct a primary vertex which is necessary for a precise proton
reconstruction. The calorimeter is therefore not of vital importance
for our analysis of single diffractive events.
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10.3.7 Reconstruction of Proton Kinematics

Finally the kinematics of the proton at the interaction is reconstructed
by using ALFAReco with the produced ALFAReco parameter file for√

s = 13 TeV, β∗ = 90 m, and θC = 2× 50 µrad as described in Sec-
tion 8.4. The reconstructed track hit positions in both the near and
far ALFA detectors in one of the four armlets along with the recon-
structed primary vertex with uncertainties by the ATLAS inner detec-
tor is given as input to the ALFAReco reconstruction code.

As described in Section 8.4 the ALFAReco parameterization was gen-
erated assuming a beam spot position at (xBS, yBS) = (0, 0) in the LHC
coordinate system. However, the actual beam spot position was mea-
sured by the ATLAS inner detector and is listed in Equation 5.7 - 5.8.
Hence, the actual beam spot position is given as input to ALFAReco for
correction. Note that both the measurement of the primary vertex per
event as well as the measurement of the beam spot are done by the
ATLAS inner detector measurement and is therefore in the ATLAS
coordinate system. Ideally, one should transform the ALFA inner de-
tector measurements to the LHC coordinate system. Unfortunately,
no information about the difference between the two coordinate sys-
tems has been found. The measurements from the ATLAS inner de-
tector has therefore been used as if they given in the LHC coordinate
system which will result in a systematic error on the reconstructed
proton kinematics.
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Figure 10.16: Correlation between the reconstructed ξ and the ALFAReco re-
construction fit probability for data.
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The reconstruction fit performed by ALFAReco may fail if conver-
gence in Minuit is not achieved. Events with a failed proton recon-
struction will be discarded.

10.3.8 Resulting Cutflow

In Table 10.2 the resulting cutflow is presented. Requiring exactly
one reconstructed track in ALFA will reduce the number of events
significantly, as will the requirement of a hit in the MBTS on the
opposite side, and the requirement of a single good reconstructed
primary vertex.

Table 10.2: Cutflow table for the single diffractive event selection in run
282026. Listing number of events passing each cut.

Cut Number of Events

Total events in data sample 14822415

GRL and ALFA lumi-block cuts 14439022

Only paired bunches 14226546

Exactly one track in ALFA 2983052

Hit in one of the four arms 2958803

NU > 5 and NV > 5 2924248

ALFA and beam screen edge cut 2848701

Hit in opposite side of MBTS 1067264

Exactly one primary vertex 767522

At least two good tracks in the ID 749186

Successful Proton Reconstruction 748909

In Table 8.4 it was listed that about 21.6% of simulated single diffrac-
tive events would survive the detector acceptance in the simulation
framework. Assuming that about 20% of all pp interactions are single
diffractive (see Equation 4.10), we can estimate the final number of
selected events to be 14822415 · 20% · 21.6% ≈ 640328, which is closer
than anticipated to the actual number of 748909. The discrepancy in
the event count may be caused by the Pomeron flux parameterizaton
since the accepted event count does depend on the model parame-
ters as seen in Table 9.1 and 9.2. The discrepancy may also in part be
explained by background. The possible background sources will be
investigated in the following sections.
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10.4 background sources

Even with the event selection cuts, the resulting selected single diffrac-
tive sample will not be completely free of background. Some of the
possible background sources was discussed in Section 9.2. However,
additional sources of background may exist that were not possible to
simulate with the developed simulation framework. This section will
discuss these possible background sources.

Elastic events with only one of the elastically scattered protons leav-
ing a reconstructed track in the ALFA detector while a non-diffractive
pile-up event giving a signal in the ATLAS detector. The relative event
count of this background will depend on the track reconstruction ef-
ficiency of ALFA, the pile-up rate, and the exact cross-sections for the
different types of pp interactions.

The vacuum inside the LHC beam pipes play an important role
in the performance and operation of the accelerator. Residual gas in
the beam pipes can lead to not only a degradation of the beam qual-
ity but can also be a source of background. Protons originating from
beam-gas interactions can be detected in the ALFA detector in coinci-
dence with a pile-up event in the ATLAS inner detector and MBTS.

The beam particles may interact with magnet material or collima-
tion instrumentation which results in a beam halo – a collection of
particles that do not move on the designed trajectory but will follow
upstream parallel to the beam. Some of the beam halo can also origi-
nate from the beam-gas interactions. Charged particles from the beam
halo may leave a signal in ALFA along with some activity in ATLAS.

Low energy decay products from collision debris either from the
actual (in time) collision or the ones before (out of time) may give
a signal in the ATLAS inner detector and MBTS. This background
is called afterglow. Finally, instrumental noise in ALFA and/or the
MBTS may make up some of the background.

A full study of the background sources is beyond the scope of this
thesis, as it requires a full simulated Monte Carlo sample with knowl-
edge of the cross-sections as well as the acceptances and efficiencies of
the ALFA and ATLAS detectors. Some of the beam halo background
will be studied later but a full understanding of the beam related
backgrounds may require a FLUKA simulation [78, 79].
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10.5 comparison of data and simulation

The distributions of hits from the reconstructed tracks in the ALFA
detector for selected events are shown in Figure 10.17. There are sig-
nificantly more hits with x > 0 than in the simulated single diffractive
hitmaps in Figure 8.28. This is most likely due to background sources
as discussed in the previous section.
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Figure 10.17: Hitmaps of single diffractively scattered protons from data run 282026 in the ALFA
stations on the A-side. Overlaid with the outline of the ALFA main detector (solid blue line) and
the LHC beam screen (dashed red line).

In the ∆x plot in Figure 10.18 a much larger tail towards larger dif-
ferences in the x-coordinates between the near and far stations is seen
for data. This is also seen by a much larger and more pronounced
diffractive ‘banana’ shape in the correlation plot between the local an-
gle θx and the x-coordinate for the near station in Figure 10.20.

A secondary ellipse which is narrow in θx but spread out in x is
observed in data. This secondary ellipse is not observed in the sim-
ulated single diffractive events in Figure 9.18 and is due to beam
background as we shall see later.
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Figure 10.18: Difference in the proton hit x-
coordinate between the near and far ALFA sta-
tion, ∆x = x237 m − x245 m, on the A-side.
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Figure 10.19: Difference in the proton hit y-
coordinate between the near and far ALFA sta-
tion, ∆y = y237 m − y245 m, on the A-side.
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Figure 10.20: Correlation of the single diffractive hit x-coordinate versus the
local angle θx for the A-side.

The distribution of the reconstructed relative energy loss ξ is shown
in Figure 10.21. A large number of protons with a negative energy
loss, corresponding to an energy larger than the beam energy, are ob-
served for data but not seen in simulation. These protons corresponds
to the hits with a negative x-coordinate.

Regge theory predicts that the single diffractive cross-section falls
rapidly with the relative energy loss ξ,

dσSD

dξdt
∼ ξ−1−ε for s� |t| (10.5)
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This behavior is modelled by the Pomeron flux parameterizations in
Pythia as shown in Equation 4.81, 4.82, and 4.84. However, a flat
plateau (or shoulder) is present for larger ξ values in data which
is in disagreement with the expectation from Regge theory. The ex-
pected non-diffractive and double diffractive background as shown
in Figure 9.14 is not large enough to explain this plateau. This plateau
needs to be understood before the fit procedure to discern the best
Pomeron flux model parameters can be applied to data.

The distribution of the reconstructed squared momentum transfer
t is shown in Figure 10.22. Significantly more events with a high t
value are observed in data compared to simulation. The expected
non-diffractive and double diffractive background in Figure 9.15 is
again not large enough to describe the discrepancy.
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Figure 10.21: Distribution of the reconstructed
ξ for data and simulation with the Schuler-
Sjöstrand parameterization.
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Figure 10.22: Distribution of the reconstructed
t for data and simulation with the Schuler-
Sjöstrand parameterization.

The correlation plot between the reconstructed ξ and t is shown
in Figure 10.23. Several structures in the correlation plot for data are
observed that are not present in the single diffractive simulation plot
in Figure 9.3.

First, a ‘boomerang’ shape around ξ ' 0 and extending to higher
t values is observed. This is due to beam background and will be
investigated later.

Second, a large number of events is observed at low t values but
large ξ values compared to the single diffractive simulation. This clus-
ter of events corresponds to the shape of the non-diffractive and dou-
ble diffractive background in Figure 9.21 and 9.22. This is a part of
the origin of the observed flat plateau in ξ.

Finally, a more pronounced ‘wing’ structure going from low ξ and
t values to higher values are observed in data than in simulation.
This wing structure may be the primary contribution to the large
discrepancy observed in the t distribution at large t values.
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Figure 10.23: Correlation plot of the reconstructed ξ and t for data.

The cluster and the wing structure seems to be a consequence of
the kinematic acceptance of the ALFA detector, since both the cluster
and the wing structure are visible in the ξ vs. pT acceptance plot in
Figure 8.20a. The correlation between ξ and pT for data is shown in
Figure 10.24 and the ALFA acceptance in the same ranges is shown
in Figure 10.25, where two bands give rise to the cluster and wing
structures.
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Figure 10.24: Correlation plot of the recon-
structed ξ and pT for data.
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Figure 10.25: Two-dimensional acceptance plot
of the ALFA acceptance for ξ vs. pT .

The resulting ξ vs. t distribution for data (or alternatively ξ vs. pT)
seems to be a mapping of the underlying physics (or truth) distri-
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butions onto the kinematic acceptance regions of the ALFA detector.
The underlying physics distributions may then be a combination of
the single diffractive signal along with the double diffractive and non-
diffractive backgrounds as well as the beam background. This is illus-
trated in Figure 10.26. The expected sizes of the double diffractive
and non-diffractive background from the simulation in Figure 9.14

and 9.15 may have been underestimated. The fit procedure in Sec-
tion 9.4 could be modified such that the relative normalizations of
the background sources (NSD/NDD and NSD/NND) could be fitted as
free parameters, along with ε and α′.

+NDD⇥ +NND⇥NSD⇥⇥

0
BBBBBBB@

1
CCCCCCCA

=

Figure 10.26: Illustration of the mapping of the underlying physics distribution for the SD signal
and the DD and ND background as mapped onto the kinematic acceptance region. The contribu-
tion from the beam background is not shown.

A cut can be performed on the ‘goodness’ of the ALFAReco recon-
struction fit. The fit probability as a function of ξ is shown in Fig-
ure 10.16. The distributions of the reconstructed ξ and t for data for
different ranges of the fit probability are shown in Figure 10.27 and
10.28. Some of the beam background at negative ξ is seemingly re-
moved with the cut on the reconstruction fit probability but other
than that it is seen that the cut will not have any significant effect on
the shape of the distribution. Most notably is the flat plateau at large
ξ which is still present.
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Figure 10.27: Distribution of the reconstructed
ξ for data for different ranges of the ‘goodness’
of the reconstruction fit.
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The number of charged tracks in the ATLAS inner detector after
the single diffractive event selection is shown in Figure 10.29. The
charged multiplicity in the simulated single diffractive events for both
MPI toggled on and off is also shown. Data seems to peak around 4
charged tracks while simulation peaks at 11. The cause of this could
be that some of the quality requirements of the charged tracks in the
data analysis was not included in the simulation. A full Geant4 sim-
ulation may be needed to test for this. Data seems to indicate that
MPIs does happen in the diffractively dissociated system.
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Figure 10.29: Distribution of the charged track multiplicity nch in the ATLAS
ID for data compared to simulations with and without MPI.

Certain structures in the distributions (most notably the flat plateau
in ξ) are observed in data but not in simulation. These structures and
effects must be accounted for before the fit procedure to discern the
Pomeron flux parameters can be used on data. The following sections
will investigate some possible sources of background that may give
rise to these structures.

Additional data distributions (including px, py, pT, and |η|) are
shown in the Appendix in Section B.3.
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10.6 random uncorrelated coincidences

Charged particles from the beam background (beam-gas interactions
and beam halo) may hit the ALFA detector and leave a reconstructed
track. Such a track could coincide with some activity in ATLAS – e.g.
a non-diffractive event – and could contribute to the background in
the single diffractive event selection. This background contribution is
called Random Uncorrelated Coincidences (RUCs).

It is possible to study this accidental coincidence background by se-
lecting unpaired bunches in the data run. Unpaired bunches will not
contain any pp collisions as no bunch crossing is happening. Hence,
any signal in ALFA present in unpaired bunches will be from beam
background. The distribution of the hits from reconstructed tracks in
the ALFA detector in unpaired bunches are shown in Figure 10.30.
The differences in the x- and y-coordinates are shown in Figure 10.31

and 10.32, respectively. The beam background is distributed in an el-
lipse that is seemingly symmetric in the x-direction in contrast to the
single diffractive signal.
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(a) Near station: z = 237 m.

x [mm]

25− 20− 15− 10− 5− 0 5 10 15 20 25

y 
[m

m
]

40−

30−

20−

10−

0

10

20

30

40

N
um

be
r 

of
 h

its

0

100

200

300

400

500

ATLAS Work In Progress

radµ50 × = 2
C

θ* = 90 m,  β = 13 TeV,  s

RUC Background, Data, Run 282026

A-side,  245 m,  ALFA Station: B7L1

(b) Far station: z = 245 m.

Figure 10.30: Hitmaps of beam background particles from unpaired bunches in data run 282026

in the ALFA stations on the A-side. Overlaid with the outline of the ALFA main detector (solid
blue line) and the LHC beam screen (dashed red line).
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Figure 10.31: Difference in the beam back-
ground particle hit x-coordinate between the
near and far ALFA station, ∆x = x237 m −
x245 m, on the A-side.
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Figure 10.32: Difference in the beam back-
ground particle hit y-coordinate between the
near and far ALFA station, ∆y = y237 m −
y245 m, on the A-side.

The correlation plot of the local angle θx vs. the x-position of the
reconstructed tracks in the near station is shown in Figure 10.33. Most
of the beam background is distributed in an ellipse that is narrow
in θx but is spread out in x. This is also reflected in the hitmap in
Figure 10.30a and the ∆x plot in Figure 10.31. This ellipse is not visible
in the simulated single diffractive signal in Figure 9.18.
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Figure 10.33: Correlation of the beam background particle hit x-coordinate
versus the local angle θx for the A-side.

The hit positions have been given to ALFAReco along with the aver-
age values of the primary vertex coordinates in Figure 10.11 - 10.13

and the average vertex reconstruction uncertainties in Figure 10.14 to
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study how the beam background is distributed in ξ and t. The dis-
tribution of the beam background in ξ is shown in Figure 10.34. The
beam background can explain the prevalence of events for ξ < 0 that
was observed in data that was not observed in simulation. The distri-
bution of the beam background in t is seen in Figure 10.35, where the
beam background seems to flatten out for high t values.
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Figure 10.34: Distribution of the reconstructed
ξ for the beam background particles in un-
paired bunches.
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Figure 10.35: Distribution of the reconstructed
t for the beam background particles in un-
paired bunches.

The correlation plot between ξ and t is seen in Figure 10.36. The
beam background from RUCs forms a ‘boomerang’ shape around
ξ ' 0 extending towards larger t values. This boomerang shape was
also observed in the selected single diffractive sample in Figure 10.23.
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Figure 10.36: Correlation of the reconstructed ξ and t for the beam back-
ground particles in unpaired bunches.
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The beam background is perhaps most easily distinguishable in
the correlation plot of θx vs. x in Figure 10.33, as some of the beam
background ellipse lies outside the ‘elastic’ ellipse and the diffractive
banana shape. The size of the beam background can be estimate by
choosing a RUC selection region in the shape of a side-band as illus-
trated on Figure 10.37 and 10.38. The RUC selection region is cho-
sen well outside the signal region (as seen on Figure 9.18) and will
only contain background events. The background events can then be
scaled such that the integral of events inside the selection region for
the RUC background sample matches that of the data sample.
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Figure 10.37: Correlation between the local an-
gle θx and the near station hit x-coordinate for
the selected data sample with the RUC selec-
tion region.
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Figure 10.38: Correlation between the local an-
gle θx and the near station hit x-coordinate for
the RUC beam background sample with the
RUC selection region.

Alternatively, the size of the beam background from RUCs can be
estimated by considering events with a relative proton energy loss
ξ < −0.02 as no single diffractive signal event will be in this region.

Once the RUC beam background has been correctly scaled relative
to the data sample, the beam background can be subtracted from
the data sample distributions. The resulting ξ and t distributions are
shown in Figure 10.39 and 10.40.

While the RUC beam background can account for the events with
ξ < −0.02 it can not account for all of the flat plateau at large ξ

values. Nor can the beam background account for all of the observed
discrepancy in data and simulation at large t values. The events with
large ξ and t values are of particular interest as they are particularly
sensitive to the Pomeron flux parameterization as seen in Section 9.1.

In the ξ distribution after beam background subtraction in Fig-
ure 10.39 it seems that the Gaussian shape around ξ ' 0 is slightly
wider for data than for simulation. This could hint that the detector
resolution of the far ALFA stations are larger than the estimated 40
µm due to energy-dependent shower effects from multiple scattering.
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Figure 10.39: Distribution of the reconstructed
ξ for data corrected for beam background com-
pared to simulation with the Schuler-Sjöstrand
parameterization.
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Figure 10.40: Distribution of the reconstructed
t for data corrected for beam background com-
pared to simulation with the Schuler-Sjöstrand
parameterization.

10.7 background reduction with lucid

The pseudorapidity coverage of the LUCID detector is 5.6 < |η| < 5.9
[80] while the ALFA detector covers 9 . |η| . 13 (see Figure 8.39).
Hence, a single diffractively scattered proton that hits the ALFA de-
tector will not hit the LUCID detector as well. However, the spray
of particles from the single diffractively dissociated system may hit
the LUCID detector on the opposite side. This is illustrated in Fig-
ure 10.41.

p

+z X

ALFA A-side ALFA C-side

⇠ 240 m

⇠ 17 m

LUCID
A-side C-side

LUCID

⇠ 17 m

⇠ 240 m

Figure 10.41: Simplified illustration of a single diffractive event signature in ALFA and LUCID.

In non-diffractive and double diffractive events with a reconstructed
track in ALFA, there may be hits in LUCID on the same side as the
ALFA hit, since we have sprays of particles in both directions. This
is not expected in the single diffractive signal and a LUCID cut can
therefore be used to remove background events.
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After the MBTS selection, an extra cut has been imposed using
the LUCID detector. The L1 trigger item L1_LUCID will pass for a
given event if LUCID on either the A-side or the C-side has been fired
during the event. When knowing on which side the ALFA detector
was hit, we can use the combined LUCID and ALFA L1 trigger items,

L1_LUCID_A_ALFA_C,
L1_LUCID_C_ALFA_A

to see whether LUCID fired on the opposite side of the ALFA hit. If
LUCID fired on the same side as the ALFA hit, the event is counted
as background. If LUCID did not fire on either side then the event is
discarded.

Let us first investigate the background events that are removed by
the LUCID cut. The correlation between the local angle θx and the
x-coordinate of the hit position in the near station for the LUCID
background is shown in Figure 10.42. It is seen that some of the beam
background is removed by the LUCID cut, as the secondary ellipse is
present. The LUCID cut will also remove a significant portion of the
diffractive ‘banana’ shape at higher θx values.
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Figure 10.42: Correlation of the LUCID background hit x-coordinate versus
the local angle θx for the A-side.

The distributions of the reconstructed ξ and t are shown in Fig-
ure 10.43 and 10.44 for the LUCID background events. The LUCID
background seem to include some of the beam background with
ξ < −0.02. Furthermore, the LUCID background may explain some
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of the flat plateau observed at large ξ values. However, the LUCID
background does not seem to be able to explain the background at
large t values.
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Figure 10.43: Distribution of the reconstructed
ξ for the LUCID background.
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Figure 10.44: Distribution of the reconstructed
t for the LUCID background.

The correlation between ξ and t for the LUCID background events
is shown in Figure 10.45. Here the beam background ‘boomerang’
shape is visible along with a significant amount of events at ξ ' 0 and
very low t values that may originate from beam background as well.
Besides the beam background, the LUCID background also shows a
very similar distribution of events to that of the non-diffractive and
double diffractive background in Figure 9.21 and 9.22 with a large
amount of events at large ξ and low t values.
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Figure 10.45: Correlation of the reconstructed ξ and t for the LUCID back-
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The distributions of the reconstructed ξ and t of the selected single
diffractive sample after the LUCID cut are shown in Figure 10.46 and
10.47. It is seen that the LUCID cut may not be strict enough and will
not remove all of the expected background.
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The relative scale of the beam background from RUCs compared to
the single diffractive signal could be estimated since the beam back-
ground was easily separated from the signal in the θx vs. x correlation
plot (as well as in the ξ distribution). This made it possible to subtract
the beam background from the data distributions.

The background causing the flat plateau for large ξ values may be
caused by non-diffractive and double diffractive background events.
Unfortunately, these background events are not easily separated from
the signal events and hence the relative scale is not known. The LU-
CID cut may not be strict enough to remove the expected background.
Since the exact cause and relative scale of the expected background
at large ξ and t values is not known, the fit procedure to discern the
Pomeron flux parameters can not be applied on data.

The flat plateau in ξ has been observed before at the ALFA detector
for
√

s = 8 TeV [69, 81]. The flat plateau has also been observed at
other experiments, such as the CERN ISR [82] and the CERN SPS
[83] both around

√
s = 540 GeV. Hence, the flat plateau seems to be

energy independent and could be a detector or accelerator effect.
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10.8 electroweak gauge bosons in diffractive systems

The common phenomenological approach to diffraction is based on
the Ingelman-Schlein [5] approach of a Pomeron with a partonic sub-
structure. In this view, the Pomeron often takes the form of a glue-ball
state. Similar to the proton, the Pomeron would then, when probed
at high energy, exhibit a sea of virtual quarks and gluons. Due to the
possibility of virtual quarks in the Pomeron, diffractively dissociated
systems may contain electroweak gauge bosons, W± and Z0, as per
the electroweak vertices, qq → W±/Z0, as shown in Figure 2.1. The
production of W’s and Z’s in the diffractively dissociated proton will
therefore be a sign of a partonic substructure of the Pomeron. The
process is illustrated for single diffraction in the Feynman diagram of
Figure 10.48.

X

9
>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

IP

p

p

W±/Z0

p

Figure 10.48: Feynman diagram of the production of a W± or Z0 in a single
diffractive pp event with a partonic Pomeron.

The existence and prevalence of W and Z bosons in the diffractively
dissociated system can be studied by considering the distribution of
the invariant mass MX of the system and whether statistical signif-
icant ‘bumps’ (which can be fitted to Breit-Wigner distributions) at
mZ ≈ 91.2 GeV and mW ≈ 80.4 GeV [14] are observed. However,
the MX distribution is bounded by the ξ acceptance of the ALFA
detector. Furthermore, it is expected from Regge theory that the sin-
gle diffractive cross-section follows a 1/M2

X dependence so that high
mass diffractively dissociated systems rarely occurs.
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11.1 summary and outlook

The primary goal of this thesis has been to understand the effects of
the phenomenological Pomeron flux parameterizations (available in
the Monte Carlo event generator Pythia 8) on final-state observables
in single diffractive events, in order to fit measured distributions lead-
ing to constraints on the Pomeron flux parameterizations and their
allowed parameter space.

A fast detector response simulation of the ALFA and ATLAS de-
tector has been developed for the purposes of studying diffractive pp
scattering at

√
s = 13 TeV. The developed simulation framework is

able to handle the beam transport of diffractively scattered protons.
Knowledge about the magnetic lattice in the LHC beam pipe section
between the ATLAS interaction point and the ALFA Roman Pots have
been used to parameterize the hit position of the scattered proton in
the ALFA detector in the transverse plane to the beam, as functions of
the energy and the horizontal and vertical components of the interac-
tion point and momentum. Furthermore, the simulation framework
imposes the kinematic acceptance of the ALFA detector which was
found to be approximately ξ . 0.22, with a pseudorapidity coverage
of 9 . |η| . 13.

The simulation framework has been used in a phenomenological
study of single diffraction. The relative energy loss ξ was found to be
the observable most sensitive to the Pomeron flux parameter ε while
the transverse momentum pT of the scattered proton was found to
be the observable most sensitive to the α′ parameter. Using this in-
formation, a statistical fit procedure to determine the Pomeron flux
parameters has been developed and tested on several generated test
samples. It was found that the developed fit procedure is generally
able to estimate the parameters within at least 2σ of the uncertainty
from the fit minimization for most of the test samples.

Data recorded at
√

s = 13 TeV, β∗ = 90 m, and θC = 2× 50 µrad at
the ATLAS experiment in the Run 2 period has been analysed. Event
selection cuts have been applied in order to obtain as clean and pure
a single diffractive sample as possible. However, even after the event
selection, several structures in the measured distributions from data
indicates background not predicted by the simulation framework.
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Background from beam related sources materialize as a secondary
ellipse in the correlation between the local angle θx and the hit po-
sition x237 m, and as a ‘boomerang’ shape in the correlation between
the reconstructed ξ and t. It is possible to separate the beam back-
ground from the single diffractive signal in these two channels and
thereby estimate the relative normalization in order to subtract the
beam background.

In addition to the beam background, a flat plateau at large ξ values
is observed which is expected to be a result of an observed ‘cluster’
and ‘wing’ structures in the correlation between the reconstructed ξ

and t. These structures correspond to the expected shape of the dou-
ble diffractive and non-diffractive background as mapped onto the
kinematic acceptance of ALFA. However, the estimated size of the
background from the simulation framework is not large enough to
explain what is seen in data. It is possible that the simulation frame-
work underestimates this background. This could be caused by the
simulation framework not being able to transport negatively charged
particles from the interaction point to the ALFA detectors. In addition,
the expected single diffractive, double diffractive, and non-diffractive
cross-sections in Equation 4.8 - 4.11 may differ from the actual cross-
sections. Unfortunately, it has not been possible to find a channel in
which this background could be separated from the single diffractive
signal in order to estimate the relative normalization scale. Due to the
large discrepancy between the shape of the simulated and measured
distributions, it has not been possible to use the fit procedure on data.
It may be possible to include the background normalization as a free
parameter in the fit procedure along with ε and α′. The fit procedure
could then, besides fitting the Pomeron flux parameterization, also
estimate the size of the background.

The ALFA detector provides a great opportunity to study diffrac-
tive pp scattering at high energies. The data analysis presented in
this thesis is still at a preliminary level. Effective optics and a final
alignment using distance measurements from the overlap detectors
will reduce systematic errors and improve the reconstruction of the
proton kinematics. The use of reconstructed topo-cluster jets in the
calorimeter in the event selection may reduce background. Finally, a
full Monte Carlo simulation of the ALFA detector and the LHC mag-
netic lattice between the interaction point and the ALFA Roman Pots
will make it possible to properly study the beam background as well
as the double diffractive and non-diffractive background.
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11.2 prospects of further research

High-pT interactions with the production of heavy resonances and/or
hard QCD jets are the main interest of many studies at both ATLAS
and CMS. But the possibility of tagging protons in the extreme for-
ward direction with the ALFA detector (or alternatively the TOTEM
experiment [84] at IP5) opens up for a lot of potential studies of soft
QCD processes such as diffractive scattering. A potential prospect of
further research into diffractive pp-scattering is the study of multiple
rapidity gaps in single diffractive events.

In a normal single diffractive event, the dissociated system of parti-
cles is expected to behave as essentially a non-diffractive event, where
any smaller rapidity gaps within the system are expected to be expo-
nentially suppressed. However, if we allow for the possibility of dou-
ble pomeron exchange in single diffractive events, we should be able
to observe an additional rapidity gap in the system. This is illustrated
in the Feynman diagram in Figure 11.1 along with the expected final-
state. Studying the second largest rapidity gap in single diffractive
events in data could give information on the nature of the Pomeron
as well as the factorization of the single diffractive cross-section with
regard to the Pomeron flux factor.
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Figure 11.1: Left: Possible Feynman diagram of a single diffractive event with double pomeron
exchange. Right: Final-state of a single diffractive event with two rapidity gaps.
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B E A M T R A N S P O RT PA R A M E T E R S

The parameterization of the u-coordinate (u = {x, y}) of the proton
at the ALFA Roman Pots can be written as

uRP

(
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p
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)
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)
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(
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p

)
(A.1)

where Fu, Gu, and Hu are all functions of the momentum loss ∆p
p ,
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(
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(A.4)

Giving in total 30 parameters for each station and beam setting. The
parameters are listed in Table A.1 and A.2. Note that the units and
uncertainties on the parameters are not listed.
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Table A.1: Beam transport parameters for θC = 0 µrad.
√

s = 13 TeV, β∗ = 90 m, θC = 0 µrad

Station 1: A245 Station 2: A237 Station 3: C237 Station 4: C245

fx, 0 −1.0922 −1.2399 −1.2400 −1.0922

fx, 1 3.8050 2.6336 2.6333 3.8044

fx, 2 10.463 7.8948 7.8920 10.467

fx, 3 14.747 11.499 11.488 14.744

fx, 4 9.9386 7.0032 7.0585 9.7079

gx, 0 −1.5727× 104 −1.0293× 104 −1.0292× 104 −1.5725× 104

gx, 1 −7.9407× 104 −8.8003× 104 −8.8004× 104 −7.9399× 104

gx, 2 2.3461× 105 1.6264× 105 1.6260× 105 2.3454× 105

gx, 3 4.7062× 105 3.4906× 105 3.4901× 105 4.7083× 105

gx, 4 1.7591× 106 1.2619× 106 1.2615× 106 1.7575× 106

hx, 0 2.6980× 10−4 1.9743× 10−4 1.7418× 10−4 2.6463× 10−4

hx, 1 10.830 −5.0019 −5.0039 10.825

hx, 2 1.6609× 102 1.1428× 102 1.1419× 102 1.6605× 102

hx, 3 2.4108× 102 1.7271× 102 1.7315× 102 2.4106× 102

hx, 4 1.1875× 103 8.2300× 102 8.2161× 102 1.1870× 103

fy, 0 −2.1014× 10−2 9.7387× 10−3 9.7317× 10−3 −2.1011× 10−2

fy, 1 −10.716 −11.779 −11.781 −10.719

fy, 2 −23.104 −27.260 −27.266 −23.114

fy, 3 −27.132 −40.286 −40.301 −27.158

fy, 4 −78.576 −1.1735× 102 −1.1735× 102 −78.646

gy, 0 2.5231× 105 2.7781× 105 2.7784× 105 2.5238× 105

gy, 1 −3.6878× 105 −3.4770× 105 −3.4770× 105 −3.6877× 105

gy, 2 −7.9352× 105 −8.7960× 105 −8.7974× 105 −7.9409× 105

gy, 3 −1.0256× 106 −1.1317× 106 −1.1315× 106 −1.0226× 106

gy, 4 −2.3563× 106 −4.0249× 106 −4.0273× 106 −2.3696× 106

hy, 0 0 0 0 0

hy, 1 0 0 0 0

hy, 2 0 0 0 0

hy, 3 0 0 0 0

hy, 4 0 0 0 0
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Table A.2: Beam transport parameters for θC = 2× 50 µrad.
√

s = 13 TeV, β∗ = 90 m, θC = 2× 50 µrad

Station 1: A245 Station 2: A237 Station 3: C237 Station 4: C245

fx, 0 −1.0922 −1.2399 −1.2400 −1.0922

fx, 1 3.8047 2.6338 2.6332 3.8038

fx, 2 10.468 7.8929 7.8914 10.472

fx, 3 14.759 11.493 11.493 14.760

fx, 4 9.7578 7.0732 7.0727 9.5396

gx, 0 −1.5727× 104 −1.0293× 104 −1.0292× 104 −1.5725× 104

gx, 1 −7.9406× 104 −8.8003× 104 −8.8004× 104 −7.9399× 104

gx, 2 2.3458× 105 1.6263× 105 1.6260× 105 2.3454× 105

gx, 3 4.7097× 105 3.4911× 105 3.4904× 105 4.7088× 105

gx, 4 1.7580× 106 1.2617× 106 1.2615× 106 1.7574× 106

hx, 0 2.7749× 10−4 1.8427× 10−4 1.7775× 10−4 2.7497× 10−4

hx, 1 10.829 −5.0010 −5.0051 10.825

hx, 2 1.6610× 102 1.1426× 102 1.1422× 102 1.6606× 102

hx, 3 2.4100× 102 1.7283× 102 1.7294× 102 2.4103× 102

hx, 4 1.1877× 103 8.2271× 102 8.2217× 102 1.1871× 103

fy, 0 −2.1037× 10−2 9.7374× 10−3 9.7521× 10−3 −2.1007× 10−2

fy, 1 −10.715 −11.779 −11.781 −10.719

fy, 2 −23.110 −27.261e −27.263 −23.113

fy, 3 −27.146 −40.286 −40.287 −27.155

fy, 4 −78.444 −1.1734× 102 −1.1746× 102 −78.672

gy, 0 2.5231× 105 2.7781× 105 2.7784× 105 2.5238× 105

gy, 1 −3.6878× 105 −3.4770× 105 −3.4770× 105 −3.6877× 105

gy, 2 −7.9385× 105 −8.7959× 105 −8.7970× 105 −7.9409× 105

gy, 3 −1.0223× 106 −1.1318× 106 −1.1319× 106 −1.0226× 106

gy, 4 −2.3663× 106 −4.0246× 106 −4.0261× 106 −2.3694× 106

hy, 0 13.708 15.087 15.089 13.712

hy, 1 12.555 17.015 16.977 12.539

hy, 2 9.1016 17.697 17.627 9.0876

hy, 3 −8.7326 2.5076 2.4771 −8.6634

hy, 4 4.3438 35.585 35.358 4.3734
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D I S T R I B U T I O N S

b.1 acceptance plots in ξ , px , and py for θC = 2× 50 µrad

Below are the 2D projections of the LHC and ALFA acceptance plots
in ξ, px, and py. Notice that px and py are in the LHC coordinate
system. Hence, the beam is at px = 0 and py = −0.325 GeV.
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Figure B.1: Two-dimensional projections of the LHC acceptance plots for θC = 2× 50 µrad.
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Figure B.2: Two-dimensional projections of the ALFA acceptance plots for θC = 2× 50 µrad.
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174 distributions

b.2 observables sensitive to model parameters

The sensitivity plots for the absolute pseudorapidity |η| of the diffrac-
tively scattered proton are shown in Figure B.3. It is seen that |η| is
primarily sensitive to α′.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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Figure B.3: Absolute pseudorapidity |η| distributions for different values of the model parameters,
ε and α′.
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The sensitivity plots for the charged multiplicity nch in the diffrac-
tively dissociated system are shown in Figure B.4. It is seen that nch
is primarily sensitive to ε, especially at low multiplicities.
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(a) DL – varying ε, keeping α′ constant.
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(b) DL – varying α′, keeping ε constant.
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(c) MBR – varying ε, keeping α′ constant.
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(d) MBR – varying α′, keeping ε constant.

Figure B.4: Charged multiplicity nch distributions for different values of the model parameters, ε
and α′.
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b.3 comparison plots of data and simulation

Additional final-state distributions for selected single diffractive events
in data run 282026 are shown in Figure B.5 - B.8. The data distribu-
tions are plotted alongside simulated single diffractive events with
the Schuler-Sjöstrand Pomeron flux parameterizations. Note that dis-
crepancies between data and simulation may be explained by back-
ground as explained in Chapter 10.
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Figure B.5: Distribution of the reconstructed
px for data and simulation with the Schuler-
Sjöstrand parameterization.
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Figure B.6: Distribution of the reconstructed
py for data and simulation with the Schuler-
Sjöstrand parameterization.
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Figure B.7: Distribution of the reconstructed
pT for data and simulation with the Schuler-
Sjöstrand parameterization.
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Figure B.8: Distribution of the reconstructed
|η| for data and simulation with the Schuler-
Sjöstrand parameterization.
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