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Abstract

The area of quantum information has the potential to revolutionize
many fields, such as computing, communication, material and chem-
ical research, and fundamental science. Building a reliable quantum
computer is faced with many challenges, due to the intrinsic quantum
nature of the hardware. Due to this, it is useful to construct simula-
tors where the influence of the environment is a completely controlled
parameter. A model that is able to quickly predict the feasibility of a
system configuration would accelerate technological development. It is
therefore the aim of this thesis, to present a powerful analytical simu-
lator tool, to gain insight into the workings of a superconducting quan-
tum processor, supplementary to the information directly available in
experimentation. The focus of this, will be on the readout process, and
the physics of heterodyne measurements in the dispersive regime. It
presents simulations, discussing findings related to dispersive shift, the
Zeno effect, and trajectory inference from measurement records.
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1 Introduction

Classical computers have proven immensely useful for expanding computa-
tional capabilities, thereby granting access to larger solution spaces and previ-
ously unobtainable answers due to the limited computational speed. However,
the capabilities of classical computers are inherently limited by a fundamental
constraint. Ultimately, each processing unit in classical computers, execute
instructions in a serial fashion. Because of this, algorithms for which there
are no known polynomial time scaling solutions, rapidly expand in computa-
tional complexity to a point where no classical processing can reach a solution
within an acceptable time frame. Quantum computers demonstrate a poten-
tial to accelerate certain computationally hard tasks, and extend the range of
solutions which is reachable within reasonable time.

Quantum information has therefore become an active research area, with
the aim of engineering better quantum processors, and one day, hopefully,
exhibit quantum supremacy. In this pursuit, the field has advanced from ex-
ploring the behavior of isolated single qubit systems, to the development of
multi-qubit processors[1]. As these systems expand, the simulation of the en-
tangled behavior of their states on a classical processor will eventually become
unfeasible. However, as this thesis demonstrates, it is still possible to extract
useful information about a reasonably sized multi-qubit system, within a sen-
sible computational time-frame, if proper considerations have been made to
the performance and optimization of such a simulation.

Research is made into different hardware platforms for the implementation
of the qubits. A promising candidate for the construction of a scalable quan-
tum processor, is one where the qubit information is stored on anharmonic
oscillators within a superconducting circuit. Hence, this thesis investigates
the architecture of such a circuit and leverages it to construct a scalable sim-
ulator. This simulator is proficient in simulating qubits as well as the effects
of measuring them.

The measurement of the system’s state is accomplished through continuous
measurement, which doesn’t immediately project the state onto the computa-
tional basis, but gradually feeds the information to the observer. This scheme
is described by a stochastic master equation (SME)[2], where the measure-
ment back action, allows for multiple possible outcomes of the state evolu-
tion, described by a quantum trajectory. Due to quantum measurements’
inherent randomness, these trajectories signify the probabilistic, rather than
deterministic, evolution of the system’s state. The evolution of each quantum
trajectory, is embarrassingly parallel, which allows for complete utilization of
the cores, and boosts the performance of simulating additional trajectories lin-
early with the number of cores available. In reality, it is not completely linear,
because of data reduction nuances, which are described in the implementation
section of this thesis.
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2 Description of the system

The realization of quantum computation hinges on the fulfillment of several
fundamental prerequisites that a quantum computer needs in order to ef-
fectively assist in solving complex problems that exceed the computational
capacity of classical computers. The physicist David P. DiVincenzo has iden-
tified five essential criteria that a quantum computer must satisfy in order to
achieve quantum supremacy[3]. DiVincenzo’s ideas can be concisely encapsu-
lated as follows:

1. Scalable system, with well-characterized qubits
A fundamental requirement that arises from the encoding of information
on a quantum computer is that the system must manifest the properties
of a two-level quantum system, such as the spin of an electron. The
realization of this objective is not contingent on the exclusive use of
spinors to create qubits, but rather on the existence of a vector sub-
space in which the system exhibits spinor-like characteristics that are
stable and accessible at a reasonable cost. Additionally, scalability is a
crucial consideration in the development of quantum computing tech-
nologies, as classical computers excel at performing computations on a
large number of bits. Furthermore, achieving quantum supremacy ne-
cessitates the consideration of scalability, as classical computers are ca-
pable of performing fast and dependable bit operations on a vast number
of bits. While certain quantum algorithms have the potential to scale
exponentially in terms of computation speed, surpassing the computa-
tional performance of classical computers demands the deployment of a
sufficiently large number of qubits. However, the cost associated with
scaling the number of qubits represents a formidable challenge due to
the inherent quantum nature of the problem.

2. Ability to initialize its qubits
The ability to exercise control over input values constitutes a fundamen-
tal tenet of computing, whether in the context of classical or quantum
computing. To achieve this objective, it is necessary to initialize the reg-
isters of the computing system to a known state, which can subsequently
be transformed into the desired state via the application of unitary gate
operations. This requirement also plays a crucial role in quantum error-
correction, which will be expanded upon in subsequent sections of this
thesis.

3. Long coherence time
A fundamental requirement for quantum computation is the preserva-
tion of long coherence times for the qubits. Specifically, the quantum
state must retain its information for a duration exceeding the time re-
quired to execute calculations and perform readouts. This requires the
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coherence time to exceed the duration between initialization and mea-
surement. Decoherence of qubits typically results from dephasing or
decay and is primarily attributable to the environment. To mitigate
the impact of environmental noise, it is necessary to effectively isolate
the qubit from its surroundings. However, this requirement poses a sig-
nificant challenge to scalability, as quantum computation relies on the
entanglement of qubits, necessitating the engineering of interactions be-
tween them. Moreover, the greater the number of entangled qubits,
the more challenging it becomes to protect them from the environment,
thereby exacerbating the issue of decoherence.

4. Universal quantum gates
Turing completeness can be achieved by a classical computer through
the use of a small set of logic gates, i.e. AND, OR, and NOT gates,
which form a universal set of gates for classical computation. According
to the Church-Turing thesis, this allows classical computers to compute
any classical algorithm. While quantum computers expand the ways in
which algorithms can be solved, they do not alter the concept of Turing
undecidability, which posits that some problems lack algorithms that can
provide answers within a finite amount of time. Quantum computing
does change some aspects of complexity and how certain problems scale
with input values. Similar to how a Turing-complete computer requires
a universal set of gates, any universal quantum computer can be repre-
sented by a combination of a proper two-qubit gate and a set of single-
qubit gates. The choice of specific gates is dependent on the selected
qubit as well as the hardware employed. Furthermore, the set of gates
utilized may be subject to change as further research into their charac-
teristics may reveal additional benefits of alternative gate schemes. A
more detailed analysis of this topic will be presented in section 4.1.

5. Efficient measurement
Upon completion of the computation, it is necessary to read out the
result to the registers. The ability to measure the state of each qubit
in a reliable manner within a short time frame is essential to avoid
decoherence and achieve high-fidelity results, i.e., to reduce the error in
the output. The act of measurement destroys superpositions of state,
which is a topic of interest in measurement theory. This thesis aims
to examine the characteristics of continuous measurement on a system,
and delve deeper into the topic of readout and its effects.

In the pursuit of constructing a qubit, numerous candidates have been
identified, encompassing ion traps[4], neutral atoms[5], quantum dots[6], topo-
logical qubits[7], photonic qubits[8], and electron spin in crystal lattice[9]. The
focus of this thesis, however, is the examination of a superconducting circuit-
based model of the transmon qubit.
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As emphasized by DiVincenzo’s third criterion, the indispensability of iso-
lating the qubit from the surrounding environmental noise cannot be over-
stated. Additionally, the challenge posed by thermal energy is not to be ne-
glected, as unwanted transitions driven by quanta of energy may contribute to
qubit decoherence. For the manifestation of the system’s quantum behavior,
it is imperative that dissipation be minimized. Consequently, superconduct-
ing materials are employed in the fabrication of the circuit, ensuring zero
resistance at the designated operating temperature.

2.1 Quantum harmonic oscillator

An approach to understand the properties of the transmon qubit, is to start by
examining the properties of the classical LC-circuit, then subsequently employ
canonically conjugate quantum operators to transform the Hamiltonian for its
quantum counterpart.

In a series-connected circuit with linear capacitance, C, and linear induc-
tance L connected in series, as shown in Fig. 1a, the first step to derive
the equations motion for the circuit entails the application of Ohm’s law for
inductors and capacitors:

VL = L
dI

dt
=

d2Q

dt2
(2.1)

I = C
dVC
dt

=
d

dt
(CVC) =

dQ

dt
⇒ VC =

Q

C
. (2.2)

Here, VL and VC denote the voltage on the inductor and capacitor respec-
tively, I represents the electric current traversing the circuit, and Q signifies
the electric charge accumulation on the capacitor. Owing to the linearity of
inductance and capacitance, L and C remain constant, and the definitions of
their linearity yield Q = CV as well as a magnetic flux, derived from Faraday’s
law, on the inductor: Φ = LI.

Kirchhoff’s voltage and current rules dictate that VL + VC = 0 and IL =
IC = I. Consequently, through direct substitution of equations (2.1) and
(2.2), the following is derived:

Q̈(t) +
1

LC
Q(t) = 0, . (2.3)

This expression is recognized as the equation of motion for a classical harmonic
oscillator. The physical interpretation of this equation is understood from the
conservation of energy, with the energy stored in the two fields. The energy
is either stored in the magnetic field around the inductor as charges move
through it and modify the magnetic flux, or it is stored in the magnetic field as
charges accumulate on the capacitor. When charging the capacitor, additional
work is performed, further contributing to the energy storage.
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The equation of motion contains a charge variable, denoted by Q(t), which
can be linked to a generalized position coordinate, leading to the interpreta-
tion of the inductor as an inertia component of the system. The selection of
a position coordinate is entirely arbitrary, and hence for reasons that shall
later become apparent, a different choice of generalized position coordinates
is introduced by defining the branch flux of a circuit element as:

Φ =

∫ t

∞
V (τ)dτ. (2.4)

Equation (2.3) may be reformulated in terms of the branch flux, resulting in
Φ̈+Φ/LC = 0. Note that, although branch flux represents a more general flux
compared to magnetic flux, in the context of a linear inductor, the branch flux
and magnetic flux are entirely equivalent. With this choice of coordinates, the
circuit’s energy oscillates between the electrical energy of the capacitor and the
magnetic energy of the inductance. Consequently, the energy of a capacitor
and the energy of an inductor can be expressed as kinetic and potential energy,
respectively:

KC =
1

2
CV 2, (2.5)

UL =
1

2L
Φ2. (2.6)

Owing to equation (2.4), V = Φ̇, which leads to the Lagrangian for the circuit:

L = KC − UL =
1

2
CΦ̇2 +

1

2L
Φ2. (2.7)

It is important to note that the calculation of the Euler-Lagrange equation
returns the appropriate equations of motion. This Lagrangian can be em-
ployed to map (ϕ, ϕ̇) → (p, ϕ) and derive the Hamiltonian. The conjugate
momentum to the flux is computed as follows:

p =
∂L
∂ϕ̇

= Cϕ̇. (2.8)

In this coordinate system, the capacitor’s charge, Q = Cϕ̇, is not unexpectedly
associated with the momentum coordinate. The Hamiltonian is then defined
by the Legendre transformation:

H = pϕ̇− L =
1

2
CΦ̇2 +

1

2L
Φ2. (2.9)

This Hamiltonian is analogous to a mechanical harmonic oscillator, character-
ized by a mass of m = C and a resonant frequency ωr = 1/

√
LC. To quantize

the Hamiltonian, momentum and generalized position must be promoted into

5



operators, (Q,Φ) → (Q̂, Φ̂), ensuring that they adhere to the canonical com-

mutation relations
[
Φ̂, Q̂

]
= iℏ. Subsequently, the new Hamiltonian can be

expressed in terms of the Dirac step operators of a quantum harmonic oscil-
lator (QHO):

Ĥ = ℏωr

(
â†â+

1

2

)
, (2.10)

where â† denotes the creation operator and â represents the annihilation op-
erator. These two operators act upon the eigenstates of the QHO, altering
their state: â |n⟩ =

√
n |n− 1⟩ and â† |n⟩ =

√
n+ 1 |n+ 1⟩. A very general

definition of the annihilation operator is:

â =
1√
2
(q̃ + ip̃) . (2.11)

q̃ and p̃, denotes some reduced generalized position and momentum operator
respectively. Translated into the case of the LC-circuit, that is the Hamilto-
nian of Eq. (2.9), these operators take the form:

q̃ =

√
ωrC

ℏ
Φ̂ =

ϕzpf√
2
ϕ̂, (2.12)

p̃ =
1√
ℏCωr

Q̂ =
nzpf√

2
n̂, (2.13)

Here, ϕzpf and nzpf represent the zero-point fluctuations of the two coordi-

nates, expressed in terms of the reduced charge: n̂ = Q̂/(2e), and the reduced
flux: ϕ̂ = 2πΦ̂/Φ0, where 2e is the combined charge of a Cooper pair in the
superconducting circuit, and Φ0 denotes the flux quanta. Defining the photon
number operator as N̂ = â†â, the following commutation relations will prove
valuable later:[

â, â†
]
= 1,

[
N̂ , â†

]
= â†

[
N̂ , â

]
= −â (2.14)

Written in terms of the reduced charge and flux, the Hamiltonian for the QHO
can be rewritten as:

Ĥ = 4Ecn̂
2 +

1

2
ELϕ̂

2, (2.15)

where EC = e2/(2C) = EL/(32n
4
zpf ) and EL = (Φ0/2π)

2 = 2EC/ϕ
4
zpf . The

LC circuit boasts a notable advantage in its ability to offer protection against
dispersion, a crucial factor for achieving long coherence times. To ensure
this protection, the energy separation between adjacent states, ℏωr, must
be considerably greater than the energy of the mean thermal fluctuations
at the operational temperatures, kBT . Generally, qubits are operated at a
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temperature of approximately T ≈ 20mK, with conducting qubits possessing
frequencies surpassing 4GHz. Consequently, the noise levels encountered are
several orders of magnitude lower than the frequencies employed to drive
transitions [10, 11].

Despite this useful property of the QHO, its linear characteristics hin-
der its utility for facilitating quantum information processing. In accordance
with DiVincenzo’s first criterion, a qubit must operate in a superposed state
consisting of binary values. Due to the linear nature of the QHO, the transi-
tion energies between adjacent energy eigenstates are degenerate, presenting
a challenge for effective qubit implementation.

To address this issue, it is necessary to explore energy regimes that expose
a subspace within the larger Hilbert space, in which single-level excitations
are exclusively permitted. A methodology must be developed to confine the
qubit’s logical states such that they operate strictly within this two-state
system. In essence, the goal is to drive excitations between the logical states
of the quantum system without simultaneously inducing excitations between
all other contiguous energy eigenstates.

L Cr
+

−

(a) The LC circuit.

J Cs
+

−

(b) Josephson Junction circuit.

Figure 1: Two distinct electrical circuit diagrams are pictured above. In (a),
a series arrangement of an inductor, L, and a capacitance, C, is presented,
also commonly referred to as a resonator. The coiled wire of the inductor is
responsible for inducing a magnetic field, while the plates of the capacitance
generate an electrical field. In (b), a simple transmon qubit is illustrated.
The effects of the junction, J , are comprehended exclusively through quantum
mechanics, originating from the tunneling of Cooper pairs, which alters the
branch flux and functions as a non-linear inductance when contrasted with
the LC-circuit.

2.2 Josephson junction and the transmon qubit

It is imperative to consider only quantum systems in which the energy sepa-
ration between higher states is sufficiently distinct from the energy separation
of other states. An effective Hamiltonian for the circuit must be devised that
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retains the benefits of the LC-circuit, while allowing the dynamics of higher-
level states to be disregarded. The incorporation of a non-linear, dissipation-
less component into the circuit serves as a solution. By substituting the linear
inductor with a Josephson junction, a non-linear term can be introduced to
the Hamiltonian.

The Josephson element has been demonstrated to exhibit the behavior of
a non-linear inductor[12]. With the Hamiltonian expressed in terms of the
branch flux, the inductance term in the equations can be readily replaced
with the energy of the Josephson junction. Originating from the Josephson
equations, two new equations for the voltage and currents traversing the circuit
are obtained:

I = IC sin (ϕ̂), (2.16)

V =
ℏ
2e

dϕ̂

dt
, (2.17)

In this context, IC represents the critical current, defined as the maximum su-
percurrent that can flow through the junction without developing any voltage
across it. When the current flowing through the junction surpasses the critical
current, the superconducting properties of the junction are lost. By employ-
ing Eq.(2.16) and Eq.(2.17), the energy of the Josephson circuit element can
be derived as follows:

UJ =

∫ t

−∞
V (τ)I(τ)dτ =

ICℏ
2e

∫ t

−∞
ϕ̇ sin(ϕ)dτ = −EJ cos(ϕ). (2.18)

EJ is called the Josephson energy, and it replaces the inductive energy in the
QHO. The Hamiltonian for the non-linear circuit is defined by incorporating
the new potential energy term as

Ĥ = 4EC n̂
2 − EJ cos

(
ϕ̂
)
, (2.19)

where C is now regarded as the total capacitance of the circuit, deriving from
both the contribution of the previous capacitance and the capacitance ob-
tained from the junction itself. In order to include the lowest order non-linear
terms, the cos (ϕ̂) is Taylor expanded to 4th order terms, and the Hamiltonian
is expressed in natural units, such that ℏ can be disregarded:

Ĥ ≈ 4EC n̂
2 +

1

2
EJ ϕ̂

2 − 1

24
EJ ϕ̂

4 − EJ

= ω0

(
â†â+

1

2

)
− EC

12

(
â† + â

)4 − EJ

(2.20)

where it is noted that EJϕ
4
zpf = 2EC . The zero point energy does not influence

the qubit dynamics and can thus be neglected if the focus is solely on the sys-
tem evolution. Therefore, constant terms are dropped from the Hamiltonian.
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Eq. (2.20) can be rewritten in terms of its eigenvalues H =
∑

nEn |n⟩⟨n|.
Employing perturbation theory, the energy to first order, En, can be derived:

En ≈ ω0n− EC

12

(
6n2 + 6n+ 3

)
= ωqn− EC

2
n(n− 1) + constant, (2.21)

where ωq = ω0−EC represents the resonance frequency of the transmon qubit.
The constant term is disregarded, and the Hamiltonian is expressed as

Ĥ =
∑
n

(
ωq −

EC

2
(n− 1)

)
n |n⟩⟨n| . (2.22)

Utilizing the identity, â†â =
∑

n n |n⟩⟨n|, Eq. (2.22) can be rewritten in terms

of the creation and annihilation operators, yielding Ĥ = ωqâ
†â + δâ†â†ââ/2,

where δ = −EC , which corresponds to the Hamiltonian of the Duffing oscil-
lator. By ensuring that EC is sufficiently large, excitations of higher energy
can be avoided, effectively transforming Eq (2.22) into a Hamiltonian describ-
ing the dynamics of only the ground and first excited state: Ĥ = ωq |1⟩⟨1|.
Since the bottom of the Hamiltonian is not of concern, a constant term,
ωqI/2 = ωq/2 (|0⟩⟨0|+ |1⟩⟨1|), can be subtracted from the Hamiltonian, al-
lowing the lowest two energy states to be written using the spin operator:

Ĥ = −ωq
σ̂z
2
, (2.23)

where σ̂z = |0⟩⟨0| − |1⟩⟨1| represents the Pauli spin operator. Long lifetimes
are not the sole consideration for improving the fidelity of a quantum circuit,
see Sec. 4; the system should also be capable of implementing fast and reliable
gate operations. To achieve this, the ability to precisely tune the frequency
of individual qubits, bringing them into or out of resonance, is often desirable
for finely controlling interactions and entanglement among the qubits.

One method to engineer tunable qubits involves the utilization of supercon-
ducting quantum interference devices (SQUIDs) by replacing a single junction
with two parallel Josephson Junctions. This approach effectively modifies the
Hamiltonian, permitting the variation of the Josephson energy[13, 14], and
consequently, the adjustment of the qubit frequency, ωq. Such qubits are
commonly known as split-transmon qubits. Despite the benefits of tunable
qubits, they come with a downside: the introduction of additional error due
to flux fluctuations. Various techniques have been developed to combat this
noise, including the implementation of flux qubits[15]. For the purposes of this
paper, it is assumed that these errors are sufficiently mitigated, allowing the
selection and alteration of qubit frequencies during simulation time without
significant decoherence.
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Figure 2: (a) Illustrates the energy potential of the quantum harmonic oscil-
lator originating from the parallel LC-oscillator circuit. The units along the
vertical direction are measured in transition energy of the resonator frequency,
such that the energy levels of the resonator, given by En = ℏωr(n + 1/2),
representing the energy of the n photons populating the resonator, are each
separated by a single tick. (b) Depicts the Josephson Junction potential,
shifted so that the bottom of the sinusoidal well rests at zero. The units are
measured in the transition frequency between the ground and the first excited
state, which corresponds to the energy of the qubit’s idling frequency. The
non-linearity of the potential disrupts the degeneracy of the states, resulting
in a non-constant energy separation, allowing for a restriction to a two-level
dynamical subspace where quantum computation can occur.

2.3 Interactions

The transmon qubit enables the creation of a qubit, yet it does not provide
control over its manipulation or facilitate entanglements between different
qubits. To design such interactions, the circuit of the transmon qubit must
be coupled to another circuit without compromising the qubit dynamics or
its coherence time. A viable solution to this challenge involves coupling the
qubit to another circuit through the use of a capacitor with capacitance Cg.

For two circuits with capacitance C1 and C2, and a potential U(Φ1,Φ2),
dependent only on the constituent branch fluxes, the circuits are capacitively
coupled by Cg, as depicted in Fig. 3. By applying Kirchhoff’s law, it is de-
termined that the change in flux running through the capacitor is given by
Φ̇1 − Φ̇2. Consequently, the complete circuit possesses a Lagrangian[16]:

L =
1

2
C1Φ̇

2
1 +

1

2
C2Φ̇

2
2 +

1

2
Cg

(
Φ̇1 − Φ̇2

)2
− U(Φ1,Φ2). (2.24)

The kinetic energy can be written using matrices, by defining the vectors Φ,
and the matrix Ĉ:
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U(Φ1) U(Φ2)

C1 C2

Cg

Figure 3: Schematic of two circuits that are capacitively coupled with a ca-
pacitance Cg. The two circuits have a self capacitance of C1 and C2 for the
first and second circuit respectively. Each circuit has an inducting component,
which is not necessarily linear, giving the Lagrangian a potential U(Φ).

Φ =

(
Φ1

Φ2

)
, (2.25) Ĉ =

[
C1 + Cg −Cg

−Cg C2 + Cg

]
. (2.26)

With the defined matrices, the Lagrangian can be transformed into a more
concise form:

L =
1

2
Φ̇⊺ĈΦ̇− U(Φ). (2.27)

In order to determine the Hamiltonian, as was done in Eq. (2.7), the momen-
tum conjugate must first be identified, which corresponds to the charges of
the two capacitors with capacitance C1 and C2:

Q1 =
dL
dΦ̇1

= C1Φ̇1 + C1

(
Φ̇1 − Φ̇2

)
, (2.28)

Q2 =
dL
dΦ̇2

= C2Φ̇2 − C2

(
Φ̇1 − Φ̇2

)
. (2.29)

Expressed in vector form, Q = (Q1, Q2)
⊺, Eq. (2.28) and (2.29) provide the

equations of motion. These equations can then be reformulated in terms of
the change in branch flux:

Q = ĈΦ̇ ⇒ Φ̇ = Ĉ−1Q. (2.30)

Considering that Ĉ is symmetrical, its inverse is also symmetrical, leading to
(Ĉ−1Q)⊺ = Q⊺Ĉ−1. The Hamiltonian is obtained using the Legendre trans-
formation:

H = Φ̇⊺Q− L = Φ̇⊺Q− 1

2
Φ̇⊺ĈΦ̇+ U(Φ)

=
1

2
Q⊺Ĉ−1Q+ U(Φ).

(2.31)
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If the two circuits are sufficiently separated, such that the magnetic flux of one
system does not affect the potential of the other system, the total potential
can be represented as a sum over the two coupled circuits, U(Φ) = U1(Φ1) +
U2(Φ2). By calculating the inner product, the Hamiltonian becomes:

H =
1

2

Q2
1

C̃1

+
1

2

Q2
2

C̃2

+
Q1Q2

C̃g

+ U1(Φ1) + U2(Φ2), (2.32)

whereQi = (Cj+Cg)/((C1+Cg)(C2+Cg)−C2
g ), for (i ̸= j) and i, j = 1, 2, while

C̃g = Cg/((C1 +Cg)(C2 +Cg)−C2
g ). The interaction term, Hint = Q1Q2/C̃g,

facilitates energy exchanges between the two systems. Moreover, the coupling
induces a shift in the kinetic energy of each of the two circuits, altering it by
an amount 1/Q̃i − 1/Qi.

Consider a scenario in which a transmon qubit is capacitively coupled to an
LC resonator circuit through a weak capacitance Cg, such that Cq, Cr ≫ Cg.
In this situation, the shift in kinetic energy becomes negligible, resulting in
H = Hq +Hr +Hint. Upon appropriate quantization of the two circuits, with
Qi → 2en̂1, it is found that:

Ĥint =
Cg

ECrECq

n̂rn̂q =
Cgnzpf,rnzpf,q

ECrECq

i2(âr − â†r)(âq − â†q)

= g(âr − â†r)(â
†
q − âq),

(2.33)

In this case, g = Cgnzf,rnzf,q/(ECrECq). For the two lowest levels of the
transmon qubit, the annihilation operator is rewritten as a spin down operator,
with âq → σ̂−. When considering frequencies where higher-order terms, such
as double excitation (σ̂+â

†) and de-excitation terms (σ̂−â), average to zero,
the circuit picture becomes analogous to actual fermions with 1/2 spins placed
in a microwave cavity, see Fig. 4. Consequently, the interaction Hamiltonian
takes the form of the Jaynes-Cummings interaction Hamiltonian,

Ĥint = g(σ̂+â+ σ̂−â
†). (2.34)

The qubits can be excited at the cost of a photon in the cavity, and vice-versa.
For a two-level qubit, the complete Hamiltonian between the LC resonator
(2.9), and the transmon qubit (2.23), described by the Jaynes-Cummings
Hamiltonian, is for a single qubit

Ĥ =
1

2
ωqσ̂z + ωrâ

†â+ g(σ̂+â+ σ̂−â
†). (2.35)

Recent advancements in superconducting qubits have significantly extended
coherence times, reaching into the millisecond regime[17]. The coherence time
is anticipated to increase by about a factor of ten over the next three years,
demonstrating a promising trajectory for the development of these qubits[18].
This trend towards exponentially longer coherence times in superconducting
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circuits has been dubbed Schoelkopf’s law, named in honor of the substantial
contributions made by Robert J. Schoelkopf in the field of superconducting
qubits. As a result of these advancements and the potential for further im-
provements, the transmon qubits present a highly viable avenue for research
into universal quantum computers and the ongoing quest to develop practical
quantum computing technologies.

ωq

|1⟩

|0⟩

â†σ̂−

âσ̂+

Figure 4: Depiction of the optical representation of qubits placed inside a
resonator cavity. A qubit, such as a dopant atom with nuclear spin 1/2 in
a solid-state material, may interact with the microwave field of the cavity
through the emission or absorption of a photon in the cavity. It is important
to emphasize that the analogy becomes imperfect when higher-level states of
the transmon qubit are considered.

3 Extending the wave function formalism

Though the investigation of a single qubit in a cavity reveals a plethora of
intriguing physics, it falls short of capturing many of the crucial phenomena
that enables quantum supremacy. To delve into these concepts, it is imper-
ative to broaden the scope of the system’s physics into larger Hilbert spaces,
encompassing the dynamics of multiple distinct qubits and enabling the con-
struction of entangled states. This section aims to present the mathematical
framework facilitating such an extension, specifically in cases where each qubit
is coupled to the same resonator circuit.
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3.1 Multiple qubits

The extension of a two-state Hilbert space into 2n states for n different qubits
is a straightforward process. A tensor operation that yields the tensor product
of the various Hilbert spaces, H1 ⊗ H2 ⊗ ... ⊗ Hn, is required, ensuring that
operations within any single subspace remain independent of the others. The
mathematical operation exhibiting these properties on sets of matrices is the
tensor operation, denoted by the same symbol, ⊗, and known as the Kronecker
product. The Kronecker product generates new basic vectors from the single
qubit state, such as |0⟩⊗|0⟩, |0⟩⊗|1⟩, |1⟩⊗|0⟩, and |1⟩⊗|1⟩ for a two-qubit
system. For the sake of simplicity, these states are often represented as |00⟩,
|01⟩, |10⟩, and |11⟩. A basic set of eigenvectors for the desired Hilbert space,
specifically the one characterizing an n-qubit system without considering the
resonator, can be readily constructed. These eigenvectors are derived from
eigenvectors of the sub-Hilbert spaces comprising the system,

|m⟩ =
n⊗
q

|mq⟩ . (3.1)

In this context, eachmq represents the local constituent states of an individual
qubit, assuming values of either |0⟩ or |1⟩ depending on the global eigenvector
of |m⟩. According to the principles of quantum mechanics, if each of these
states constitutes a solution to the Schrödinger equation, then any linear
combination of these states is also considered a valid solution,

|ψ⟩ =
2n∑
m

cm |m⟩ . (3.2)

3.1.1 Density Matrix

It should be noted that if the state can be expressed as a product of states,
such as |ψ⟩ = |ψ1⟩⊗ |ψ2⟩⊗ · · · ⊗ |ψn⟩, then it does not represent an entangled
state. By examining the pure state density matrix, defined as ρ = |ψ⟩⟨ψ|, the
density matrix for a non-entangled state, composed of two constituent states,
can be similarly expressed as,

ρ = |ψ⟩⟨ψ|
= (|ψ1⟩ ⊗ |ψ2⟩)(⟨ψ1| ⊗ ⟨ψ2|)
= |ψ1⟩⟨ψ1| ⊗ |ψ2⟩⟨ψ2|
= ρ1 ⊗ ρ2.

(3.3)

The pure state density matrix provides an alternative approach for examining
the system’s evolution. However, for the density matrix to accurately describe
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a physical process, it must satisfy several properties:

ρ† = ρ, (3.4)

ρ2 = |ψ⟩⟨ψ|ψ⟩⟨ψ| = |ψ⟩⟨ψ| = ρ, (3.5)

Tr(ρ) =
∑
m

⟨m|ψ⟩⟨ψ|m⟩ =
∑
m

|cm|2 = 1. (3.6)

It is common to be in situations where complete knowledge about the state of
a qubit is not available, for instance, even if complete knowledge is assumed
upon initialization, the qubit will experience decoherence over time. A more
comprehensive discussion on modeling decoherence processes can be found in
Section 6.1. For the time being, it is sufficient to note that the pure state
description may not adequately describe the state of the qubit after a certain
period. In such cases, the qubit is said to be in a mixed state. As information
about the system is lost over time, for instance due to dephasing or decay
of the state, the best description that can be provided may involve assigning
equal probabilities for the qubit to be in the states |0⟩ and |1⟩. In theory,
there could be several states that the qubit might occupy. If the state begins
in |ψ⟩, it will evolve into a mixture of different states |ψk⟩ over time, each with
probability pk. This scenario can be captured by defining the general density
matrix as:

ρ =
∑
k

pk |ψk⟩⟨ψk| . (3.7)

Under the more general definition, it can be straightforwardly confirmed that
two properties of the pure state density matrix also hold for a general mixed
state density matrix, namely, the matrix being Hermitian (Eq. (3.4)) and
having a unit trace (Eq. (3.6)). It should be noted that the density matrix
is idempotent (Eq. (3.5)) only for pure states, providing a simple method to
determine the purity of a state. Within this framework, the expectation value
of any observable is given by:

⟨A⟩ =
∑
k

pk ⟨ψk|Â|ψk⟩ = Tr
(
ρÂ
)
. (3.8)

Decoherence processes are, in practice, attributable to entanglement with the
environment. Two distinct scenarios may necessitate the use of a mixed state
to describe the system. The first scenario is akin to the Bayesian interpretation
of probability, where an observer might lack complete knowledge about the
state of the system, and therefore, the mixed state can be employed to describe
their uncertainty. In this situation, another observer might use a different
density matrix to characterize the same system. The second use of mixed
state, is in the description of a system entangled with another. Interestingly,
mixed state dynamics allow for the exclusion of information about the larger
system. If the larger system is in an entangled state, then even if complete
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knowledge exists about the larger system, the subsystem must be described
using mixed state dynamics.

Consider the Bell state |ψ−⟩ = (|0A1B⟩ − |1A0B⟩) /
√
2, where qubits be-

longing to systems A and B have been explicitly designated. When the leading
qubit, A, is the only one of interest, the focus can be restricted to that system
by taking the partial trace over system B on its pure state density matrix,
ρ = |ψ−⟩⟨ψ−| = (|0A1B⟩ − |1A0B⟩)(⟨0A1B| − ⟨1A0B|)/2, resulting in the mixed
state density matrix exclusively for qubit A:

ρA = TrB(ρ) =
1∑

mB=0

(IA ⊗ ⟨mB|) ρ (IA ⊗ |mB⟩)

=
1

2

1∑
mB=0

(IA ⊗ ⟨mB|) (|0A1B⟩ − |1A0B⟩) (⟨0A1B| − ⟨1A0B|) (IA ⊗ |mB⟩)

=
1

2
(|0A⟩⟨0A|+ |1A⟩⟨1A|) .

(3.9)

In this case, IA ⊗ |mB⟩ (|0A1B⟩ − |1A0B⟩) = (|0A⟩ ⟨mB|0B⟩ − |1A⟩ ⟨mB|1B⟩)
was utilized, and similarly for the bra side, resulting in only the terms where
mB was the same state surviving. It is observed that ρA is a 50/50 density
matrix, indicating that the most accurate description of the system for qubit
A is a 50/50 superposition of its two basic states. The same procedure could
have been applied for qubit B, yielding an identical density matrix to that
of system A. This concept of tracing out the second qubit while preserving
only the information on the first qubit is also employed in Sec. 6.1 to derive
the Markov-Born master equation, which describes the effects of the larger
environment on the qubit state.

3.1.2 Coupling additional qubits to the resonator

Revisiting the Jaynes-Cummings Hamiltonian from earlier, the addition of
more qubits to the cavity results in extra spinors. To ensure that each spinor
operates on the correct constituent state, i.e., on the appropriate Hilbert
spaces, their corresponding operators are defined as follows:

σ̂
(s)
k =

⊗
r

{
σ̂k if s = r,

I otherwise,
(3.10)

In this context, σ̂k denotes the chosen Pauli matrix, e.g., σ̂
(1)
z /2 = σ̂z ⊗ I/2

and σ̂
(2)
z /2 = I ⊗ σ̂z/2 represent the spin matrices along the z direction for

a pair of qubits. Similar operators can be defined in a straightforward man-
ner. As evidenced by Eq. (3.10), each such operator must commute with a
different operator acting on a distinct Hilbert space, while their commutation
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with operators on the same Hilbert space must obey the same laws as they
otherwise would. In particular, the new spin matrices must obey the following
commutation relations: [

σ̂
(s)
± , σ̂(q)

z

]
= ±2δsqσ̂

(s)
± , (3.11)[

σ̂
(s)
+ , σ̂

(q)
−

]
= δsqσ̂

(s)
z , (3.12)

where δsq represents the Kronecker delta function. The advantage of such
a notation can be readily demonstrated by describing a larger system com-
posed of numerous transmon qubits interacting via a resonator. Each qubit
within the cavity can similarly exchange excitation with the resonator by ei-
ther absorbing a photon from, or emitting a photon to the cavity. Thus, the
Hamiltonian of Eq. (2.35) assumes the form:

Ĥ = ℏωrâ
†â+

∑
s

[
ℏωs

σ̂
(s)
z

2
+ gℏ

(
â†σ̂

(s)
− + âσ̂

(s)
+

)]
. (3.13)

Here, the summation is of various qubits within the resonator. The resonator
functions as a mediator for these qubits and can be employed to generate
entanglements between different qubits. In case of homodyne detection, this
setup has been studied extensively in the bad cavity limit. Quantum trajec-
tories for this setup in the bad cavity limit, as well as balanced homodyne
detection schemes (see Sec. 6.2.1), have been explored[19]. In this work, these
effects will be examined within the context of typical readout regimes.

3.2 Quantum entanglements

As previously mentioned, an entangled state is characterized by the inability
to factorize its state-vector or its density matrix (as demonstrated in Eq. (3.3))
into products of its constituent states, signifying that the entangled pair forms
a single quantum state. In Sec. 2, it was noted that interactions are necessary
to entangle qubits. This becomes readily apparent when examining a pair of
Hamiltonians, Ĥ1 and Ĥ2, where Ĥ1 operates solely on the first qubit, and
Ĥ2 on the second, meaning they operate on their respective Hilbert spaces,
H = H1⊗H2, and their Hamiltonians commute. If the state is a non-entangled
pure-state, the dynamics of the state vector are as follows:

d |ψ(t)⟩
dt

= −i
(
Ĥ1 + Ĥ2

)
|ψ1(t)⟩ ⊗ |ψ2(t)⟩ , (3.14)

|ψ(t)⟩ = e−i(Ĥ1+Ĥ2)t |ψ1(0)⟩ ⊗ |ψ2(0)⟩
= e−iĤ1t |ψ1(0)⟩ ⊗ e−iĤ2t |ψ2(0)⟩ .

(3.15)

As the interaction term in the Jaynes-Cummings Hamiltonian is the only com-
ponent connecting degrees of freedom between the qubits, an evident method
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for maintaining a non-entangled state involves detuning the resonator fre-
quency ωr significantly away from any of the qubit frequencies.

In the realm of quantum information mathematics, entanglements origi-
nate from a series of unitary matrices operating on the space of a single qubit,
as well as a unitary operation acting on the space of both qubits. These op-
erations are discussed in Sec. 4, along with a brief explanation of the physical
mechanisms behind them.

Modeling entanglements constitutes one of the challenging issues in simu-
lating qubit dynamics on a classical computer, as it causes time and memory
to scale with an O(2n) complexity in relation to the qubit count. Although
optimization methods for simulation performance will be discussed later in
section 7, the inherent nature of the problem makes it impossible to mitigate
the exponential scaling.

For quantum supremacy, algorithms must harness the capability to op-
erate in parallel on a superposition of multiple classical inputs. However,
to obtain only the correct output, incorrect answers must undergo destruc-
tive interference before readout commences. Quantum entanglement plays a
pivotal role in accomplishing this. A few algorithms have already been identi-
fied, such as Shor’s prime factorization algorithm[20] and Grover’s fast search
algorithm[21]. Entanglements constitute the singular aspect of quantum com-
puting that cannot be simulated within a reasonable time frame on a classical
computer. As a result, entanglement serves as an essential ingredient enabling
a quantum computer to achieve quantum supremacy.

4 Logical gates in a quantum Processor

A prerequisite for the performance of universal quantum processing is a method
to transform the state of a initialized qubit into any other state the qubits
could assume. A single qubit can take on all superpositions of the form:

|ψ⟩ = cos (θ) |0⟩+ eiϕ sin (θ) |1⟩ . (4.1)

To reiterate a key aspect of Sec. 3.2, it is insufficient to implement operators
that perform transformations on single qubits at a time. Such operators can
only produce product states comprised of constituent states of the general
form given in Eq. (4.1). To utilize the power of a qubit, multi-qubit gates that
can generate entanglements between the qubits is essential. To understand
how universal computation in a quantum computer might be achieved, it
is beneficial to first familiarize oneself with the mathematical concepts that
enable classical computers to attain Turing completeness.

4.1 Universality of classical gates

It is widely recognized that a classical computer operates exclusively on bits
of data. Therefore, any logical operation processed on a string of bits, must
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Input Not OR AND XOR
x1 x2 ¬x1 ¬x2 x1 ∨ x2 x1 ∧ x2 x1 ⊕ x2
0 0 1 1 0 0 0
0 1 1 0 1 0 1
1 0 0 1 1 0 1
1 1 0 0 1 1 0

Table 1: The truth table of the three basic logical operations, conjunction
(AND), disjunction (OR), negation (NOT), outlining the universality of clas-
sical gates, in addition to the secondary operator, the exclusive or (XOR).

have a Boolean function associated with it. Achieving universality in a classi-
cal computer thus amounts to identifying generators of the Boolean algebra.
Implementing operations for all possible Boolean logical operations is not re-
quired. Instead, to achieve classical universality, it is sufficient to implement
a universal set of Boolean gates.

In the instance of a single bit, two possible outcomes can be mapped,
thereby requiring the existence of two possible unary operations in the Boolean
algebra: the trivial identity operator, which maintains the input unchanged,
and the complement, also referred to as the not operator, typically denoted as
¬, which flips the input bit. It is important to highlight that these operations
are entirely reversible, meaning that the input value can be determined from
the output.

A binary Boolean operation maps two input bits onto a single output bit.
The two bits permute among four input values, each of which can map onto
two potential output values. Consequently, there exist 4 × 2 = 8 distinct
binary operations. In contrast to the unary bit gates, these operations are
entirely irreversible from the output values. For the sole purpose of achieving
universality, direct implementing all eight gates is deemed an unnecessary
complexity. It can be shown that only two binary operators are required,
namely the AND operator, denoted as ∧, and the OR operator, denoted as ∨.

For universality, it is sufficient to construct a set of three gates, namely
AND, OR, and NOT, and utilize combinations of these three to enable the
operation of every Boolean function. Table 1 displays the truth table for the
OR and AND gates, while also illustrating the truth values for the combined
XOR gate, constructed from the other gates as, (x1∨x2)∧¬(x1∧x2), on inputs
x1, x2 = {0, 1}. The XOR is used for the addition of two binary numbers on
a classical computer, typically denoted with the operator ⊕, the modulus 2 of
x1 + x2.

4.2 Single qubit gates

The quantum format of the Boolean operators in classical processing, consti-
tutes a complete set of unitary operators. Quantum information processing
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is not generally designed to operate only on strings of binary digits. Rather,
a collection of n qubits can represent the superposition of any binary string
permutation with a length of n digits. A single qubit, expressed in the general
form of Eq.(4.1), can assume a continuum of different values. For this reason,
a single qubit gate is inadequate for transforming the qubit into any permitted
superposition. Universality requires the capability to execute operations on
arbitrary single qubit states, |ψ⟩ = a |0⟩ + b |1⟩, mapping the infinitely many
potential input states onto infinitely many possible output states. This sec-
tion is devoted to the theoretical considerations for a universal set of quantum
gates, as well as how they might be practically implemented for the supercon-
ducting qubit.

4.2.1 Bloch-sphere

To built a more insightful intuition of the two-level quantum state, it is conve-
nient to construct a visual geometrical representation. Group theory informs
that the two-level system constitutes a 1/2 representation of the special uni-
tary group, SU(2). The group under examination is locally isomorphic to
the special orthogonal group, SO(3), which corresponds to the group of ro-
tations for the three-dimensional real-numbered vector space, R3. Given the
isomorphism, it is entirely feasible to represent any two-level state vector,

ψ(t) = exp
(
−i
∫ t

0
Ĥdτ

)
ψ(0) = U(t)ψ(0), at any time, t, as a point on a

sphere, where U(t) consequently signifies a rotation on this sphere.
To construct this mapping, the density matrix of a single qubit must first

be considered. Any 2 × 2 Hermitian traceless matrix can be depicted as a
linear combination of the Pauli matrices. To establish a valid density matrix,
the trace condition is ensured by adding the identity matrix, multiplied by a
factor of 1/2. Therefore, a general representation of the single qubit system
density matrix is given by:

ρ =
1

2
(I + uxσ̂x + uyσ̂y + uzσ̂z) =

1

2
(I + u · σ) , (4.2)

where u is referred to as the Bloch vector, and σ is a three-dimensional vec-
tor with the Pauli matrices as elements. The density matrix is a positive
semi-definite matrix, implying that for all vectors v ∈ Cn, the density ma-
trix complies with the condition v†ρv ≥ 0. Demonstrating this condition is
straightforward. Any such vector can be written as a linear combination of
basis states, v =

∑
m vm |m⟩ ∈ Cn. Then, the eigenvalues for the density

matrix,
∑

k pk = 1, ensure that 0 ≤ pk ≤ 1, leading to
∑

k pk|vk|
2|ck|2 ≥ 0.

This introduces an additional constraint on the Bloch vector, specifically that
∥u∥ ≥ 1. All the degrees of freedom for ρ are represented by the Bloch vector,
u, and any evolution signifies a change in the vector, which, for pure states
where Tr(ρ2) = Tr(ρ) = 1 ⇒ (u⊺σ)2 = ∥u∥ = 1, corresponds to a rotation
on the Bloch sphere. As a result, this geometrical representation can also
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provide a useful visual aid for certain decoherence processes that cause the
Bloch vector to gravitate towards the center of the Bloch sphere.

|0⟩−|1⟩√
2

|0⟩+|1⟩√
2

|0⟩−i|1⟩√
2

|0⟩+i|1⟩√
2

|1⟩

|0⟩

uxuy

uz

|ψ⟩

Figure 5: An illustration of the Bloch sphere. The three axis, x, y, and z,
along which the states (|0⟩+ |1⟩)/

√
2, (|0⟩+ i |1⟩)/

√
2, and |0⟩ are respectively

located. These axes are designated as such due to their corresponding Pauli
matrices. The three components of the Bloch vector u, representing the state
|ψ⟩, are explicitly depicted.

The diagonal elements of the density matrix correspond to state ampli-
tudes, signifying that the north and south poles of the sphere represent the
computational states, |0⟩ and |1⟩, respectively. Additionally, trajectories along
longitudinal lines represent changes in θ. The off-diagonal elements of the den-
sity matrix constitute the coherence, with the equator representing an equal
superposition of |0⟩ and |1⟩, and rotations along latitudinal lines correspond-
ing to shifts in the qubit phase, ϕ. Refer to Fig.5 for a visualization of the
Bloch sphere. The Bloch sphere visually demonstrates that pure states are
completely described by the two phases, in accordance with Eq.(4.1).

4.2.2 Universality of single qubit quantum gates

The well-established normalization constraint of quantum state vectors dic-
tates that their evolution is described by unitary operators. In fact, it is
relatively simple to show that the generator of any unitary operator is a Her-
mitian matrix. For the unitary operators of the subgroup SU(N) ⊂ U(N), the
constraint of det Û = 1 implies that these generators possess additional prop-
erties; specifically, they are all traceless, and have anti-Hermitian commutator
that obeys the relation[22]:

[Ta, Tb] =
∑
c

ifabcTc, (4.3)
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where fabc represents the anti-symmetric structure constant of the algebra.
For a single qubit, whose evolution is described by a matrix in SU(2), three
Hermitian traceless matrices that satisfy these conditions are readily identified
as the three Pauli matrices. In the Bloch sphere representation, rotations can
occur in any of the three major planes, characterized by their rotation angle,
denoted by θk, around the k’th axis perpendicular to the plane of rotation,
where k = {x, y, z}. As per the Lie algebra, any unitary operation on the
Bloch sphere is generated by a linear combination of the three Pauli matrices
and can be expressed as:

U(θx, θy, θz) = ei
∑

k
θk
2
σk , (4.4)

where σk represents the corresponding Pauli matrix. The implementation of
Hamiltonians that enable such gate operations frequently presents additional
challenges, such as the potential for one of the three rotations to exist only
virtually, as discussed in Sec. 4.2.4. A more direct approach entails rotations
around a single axis at a time:

R̂k(θk) = ei
θk
2
σ̂k . (4.5)

The aforementioned gates are commonly referred to as non-Clifford gates, or
rather, all but a few angles of R̂k(θk) results in a Clifford gate, as opposed
to Clifford gates, which are discussed in Sec. 4.2.3. In principle, every uni-
tary gate can be constructed using these rotation matrices. This may appear
intuitive, as any rotations can be described by three Euler angles.

At first glance, this might seem obvious, since any rotation can be charac-
terized by three Euler angles. However, upon closer inspection, how someone
constructs any arbitrary unitary matrix, e.g. U(2a, 0, 2b), may not be imme-
diately evident owing to the non-commuting property of the Pauli matrices,
that is:

Û = ei(aσ̂x+bσ̂z) ̸= eiaσ̂xeibσ̂z . (4.6)

A straightforward method involves approximating the gate by constructing
the right-hand side of the equation using sequences of smaller rotations. If a
single small rotation takes place over a time ∆t, the unitary evolution char-
acterizing this rotation is approximately represented by I − iH∆t. Assuming
the complete unitary gate requires the time t, the number of constituent gate
rotations performed is n = t/∆t. The unitary operation of a small angle rota-
tion 2a∆t, around x, succeeded by another small angle rotation 2b∆t, around
y, is expressed by the unitary:

∆Û = (1 + iaσ̂x∆t) (1 + ibσ̂z∆t) = 1 + i (aσ̂x + bσ̂z)∆t+O(∆t2) (4.7)

If each pulse, implementing a rotation, is short, such that t≫ ∆t, the second-
order terms in ∆t may be neglected. Shortening the time duration of each
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pulse increases the number of pulses needed to complete the gate operation,
which signifies a large n. By selecting units where t = 1, the time is mea-
sured in units corresponding to the duration required to complete the entire
sequence of rotations. As the limit for n → ∞ is approached, Eq. (4.7) can
be reformulated in terms of n in this limit:

Û = lim
n→∞

(
1 +

i (aσ̂x + bσ̂z)

n

)n

= ei(aσ̂x+bσ̂z). (4.8)

This expression aligns precisely with the gate of interest. Therefore, by ap-
plying this procedure, every gate operating exclusively on a single qubit can
be realized by approximation. The fidelity of the desired gate should theoret-
ically increase with a sufficiently large number of smaller rotation pulses. For
large n, the subsequent approximation is thus deemed to be accurate:

Û = ei
∑3

k(akσ̂k/n) ≈
3∏
k

eiakσ̂k/n. (4.9)

Employing only the rotational gates, enables the mapping of any single qubit
input to any position on the Bloch sphere, establishing these gates as a uni-
versal set of single qubit quantum gates.

4.2.3 Clifford gates

The Pauli matrices that generate the algebra, are also encompassed within the
algebra. It is straightforward to verify, since these operators are Hermitian
matrices and they square to the identity, hence they are unitary and also
candidates for gate operations. The properties of σx, σy, and σz suggest that
ensuring closure is straightforward by incorporating the remaining elements in
the multiplication table. These elements form the Pauli group for single qubit.
By convention, the gates represented by the Pauli matrices are designated as X̂,
Ŷ, and Ẑ, corresponding to each respective axis. The single-qubit Pauli group,
denoted by P1, is a rank 16 group comprising the following members[23]:

P1 = {±I,±X̂,±iX̂,±Ŷ,±iŶ,±Ẑ,±iẐ} (4.10)

From a theoretical standpoint, the set of Clifford gates constitutes an intrigu-
ing collection of gates. Clifford gates represent the set of unitary operators
that normalize the Pauli Group. For the Pauli group of the single qubit Hilbert
space, the group of Clifford gates are therefore defined as:

N (P1) = {Û ∈ U(2) | ÛP1Û
† = P1}. (4.11)

Utilizing the properties of the Pauli matrices, which include anti-commutation,
hermiticity, and squaring to the identity, the following can be readily demon-
strated:

σ̂k(±σ̂l)σ̂†
k = ±(σ̂kσ̂l)σ̂k = ±(−σ̂lσ̂k)σ̂k = ∓σ̂l, (4.12)

σ̂k(±I)σ̂†
k = ±σ̂kσ̂k = ±I, (4.13)
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namely, each conjugation maps to a unique element in P1, confirming the Pauli
matrices themselves as members of the Clifford gates. A specific Clifford gate
of interest is the Hadamard gate, denoted by Ĥ. The Hadamard gate executes
π rotations about an axis running diagonally through the x − y plane, as
illustrated in Fig. 6. The matrix describing this unitary operator is provided
by:

Ĥ =
1√
2

(
1 1
1 −1

)
. (4.14)

An interpretation of the Hadamard gate, is that it swaps information acces-
sible along x and z direction, such that eigenvectors of Ẑ, is transformed into
eigenvectors of X̂. By representing the gate using the outer product of the
basis states, the translation between basis states becomes evident:

Ĥ =
1√
2
(|0⟩⟨0|+ |0⟩⟨1|+ |1⟩⟨0| − |1⟩⟨1|) = |+⟩⟨0|+ |−⟩⟨1| . (4.15)

Here |±⟩ = 1/
√
2(|0⟩ ± |1⟩), are the basis states in the x direction, such that

the eigenvalue equation yields; σ̂x |±⟩ = ± |±⟩. The benefit of the Clifford
gates is that their conjugation with the Pauli gates, is by definition a member
of the Pauli group. In the case of the Hadamard, this conjugation transforms
the three Pauli gates as:

ĤX̂Ĥ
†
= Ẑ, (4.16)

ĤŶĤ
†
= −Ŷ, (4.17)

ĤẐĤ
†
= X̂. (4.18)

Another gate, the Ŝ gate, rotates the Bloch-vector π/2 radians around the
z-axis. States along the y direction, gets rotated into the x direction, so that
in a similar fashion to the Hadamard gate, the Ŝ gate transforms basis states
of Ŷ into basis states of X̂:

Ŝ = |0⟩⟨0|+ i |1⟩⟨1| = |+i⟩⟨+|+ |−i⟩⟨−| . (4.19)

Here |±i⟩ = 1/
√
2(|0⟩ ± i |1⟩), are the eigenstates of Ŷ, with equivalent eigen-

values to Ẑ and X̂. The conjugation of Ŝ on X̂, Ŷ and Ẑ are therefore:

ŜX̂Ŝ
†
= Ŷ, (4.20)

ŜŶŜ
†
= −X̂, (4.21)

ŜẐŜ
†
= Ẑ. (4.22)

These Clifford gates also alters the angles about which rotations of the non-
Clifford gates performs. To understand how, consider the conjugation of any
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unitary operator Û on some arbitrary hermitian matrix Ĥ, then raising the
conjugation to any power of k, can be expressed in a very straightforward
way: (

ÛĤÛ †
)k

= ÛĤÛ †ÛĤÛ † . . . ÛĤÛ † = ÛĤkÛ †. (4.23)

With the acquired understanding of Eq. (4.23), it is now possible to work out
the conjugation of Clifford gates, onto the rotational gates:

ÛR̂j(θj)Û
† = Ûei

θj
2
σ̂j Û † = Û

[
∞∑
k

(
i
θj
2

)k σ̂k
j

k!

]
Û †

=
∑
k

(
i
θj
2

)j

(
Û σ̂jÛ

†
)k

k!
= ei

θ
2
Û σ̂jÛ

†
.

(4.24)

Substituting Û with any of the Clifford gates, transforms rotations, as de-
scribed by equations (4.16)-(4.18) and equations (4.20)-(4.22). Eq. (4.24)
demonstrates, that it is sufficient for a universal set of gates, to just include
a single rotational matrix, in addition to the Clifford gates. Fig. 6 illustrates
the Bloch sphere transformation of the discussed Clifford gates, in addition
to the non-Clifford, T̂ gate.

4.2.4 Implementation of single qubit gates

The implementations of non-Clifford gates in Superconducting qubits, primar-
ily fall in either of two categories. This section shall focus on the case, when
the qubit is in capacitive coupling to a microwave drive line.

By applying Kirchoff’s law to formulate the Lagrangian, the Hamiltonian
for this coupling can be derived. Subsequently, by restricting the analysis
to the lowest two energy transitions, a Hamiltonian of the following form is
obtained[24, p. 28] [25, p. 187-190]:

Ĥ = −ωq

2
σ̂z + ΩVd(t)σ̂y. (4.25)

Here Ω = Qzpf/(1 + (C/Cd)), where Qzpf is the zero point fluctuation of the
charge, C is the capacitance on the capacitor and Cd is the coupling capaci-
tance. Additionally, Vd(t) denotes the time dependent voltage. Transforming
the Hamiltonian into the interaction frame, also called the rotating frame,
by performing the unitary operation Uint = exp(−iωqσ̂z/2). Written in this
frame, the driving term of Eq. (4.25) is written as:

Ĥd,RF = U †
RF ĤdURF = ΩVd(t) (cos(ωqt)σ̂y − sin(ωqt)σ̂x) (4.26)

Assuming that the voltage takes a sinusoidal form with some amplitude V0e(t),
called the envelope. The generic form is obtained:

Vd(t) = V0e(t) sin(ωdt+ ϕ) = e(t) (cos(ϕ) sin(ωdt) + sin(ϕ) cos(ωdt)) (4.27)
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Figure 6: Representations of various gate operations on the Bloch sphere are
illustrated. (a) The X̂ gate rotates the qubit π radians in the yz-plane of the
Bloch sphere. (b) Ŷ induces a rotation of π radians in the xz-plane. (c)-(e)
Operations involving the Ẑ, Ŝ and T̂, performs rotations within the xy-plane,
by π, π/2 and π/4 radians, respectively. It is important to mention that the
T̂ gate does not fall under the category of a Clifford gate. (f) The Haddamard
gate rotates the qubit π radians about an axis diagonal in the xz-plane.
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where ωd is drive frequency. Adopting the in-phase, I = cos(ϕ), and out
of phase, Q = sin(ϕ) components, and applying the proper trigonometric
identities, the drive Hamiltonian can be expressed in the rotating frame as:

Ĥd,RF =
1

2
ΩV0e(t)

[
I (cos((ωq + ωd)t)− cos((ωq − ωd)t)) σ̂x

Q (sin((ωq + ωd)t) + sin((ωq − ωd)t)) σ̂x

−I (sin((ωq + ωd)t)− sin((ωq − ωd)t)) σ̂y

−Q (cos((ωq + ωd)t) + cos((ωq − ωd)t)) σ̂y

] (4.28)

Applying the rotating wave approximation, eliminates rapidly oscillating terms,
ωq+ωd, as they will average to zero in time spans of the system evolution. The
detuning terms, ∆ω = ωq−ωd, are kept, and the Hamiltonian is expressed as:

Ĥd,RF =
1

2
ΩV0s(t)

[
− I cos(∆ωt)σ̂x +Q sin(∆ωt)σ̂x

+I sin(∆ωt)σ̂y −Q cos(∆ωt)σ̂y

] (4.29)

In order to comprehend the implications of Eq. (4.29), it is helpful to exam-
ine the situation where the drive frequency is tuned to the qubit resonance
frequency. This tuning simplifies the Hamiltonian:

Ĥd,RF = −Ω

2
V0s(t) (Iσ̂x +Qσ̂y) . (4.30)

The Hamiltonian is then controlled, by adjusting the phase ϕ. Qubit state
evolution taking place between times t = 0 and a later time t is described by
the unitary operation:

Û(t) = e−i
∫ t
0 Ĥddτ = exp

(
i

2
ΩV0 (Iσ̂x +Qσ̂y)

∫ t

0

e(τ)dτ

)
. (4.31)

A phase ϕ = 0 yields a R̂x(θx) gate, while ϕ = π/2 leads to a R̂y(θy) gate.
From Eq. (4.31), the rotational angle is given by:

θ = −
∫ t

0

ΩV0e(τ)dτ. (4.32)

For the purpose of simulation, it can be assumed that the envelope formula is
a square wave with normalized pulse amplitude, such that rotating the qubit
π radians around the x axis in the Bloch sphere, is simply to execute the gate
for a duration of t = π/(ΩV0).

4.3 Gates between multiple qubits

4.3.1 Universality of two qubit quantum gates

In the case of multiple qubits, it is necessary to implement gates that can
introduce entanglements between them. The generators for this algebra, is
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CNOT
Input Output
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

CZ
Input Output
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |10⟩
|11⟩ -|11⟩

Table 2: Truth table of the CNOT and the CZ gates, where the first bit
represents the control bit, and the second is the target, i.e. the input state is
|ψ⟩ = |qcontrol⟩ ⊗ |qtarget⟩.

the generators of the SU(4) group. This is given by:

Ti+3(j−1) = σ̂i ⊗ σ̂j, (4.33)

Ti+9 = σ̂i ⊗ I, (4.34)

Ti+12 = I ⊗ σ̂i. (4.35)

That is fifteen in total, where i, j = 1, 2, 3, such that hsi represents the Pauli
matrices. T10 to T15 represents the generators operating only on the first or
the second qubit, while T1 to T9 generates entanglements. The Hamiltonian
working on the qubit Hilbert space, is then a linear combination of the gen-
erators, and so the unitary operators furnishing SU(4), written in a general
form, is given by:

Û = ei
∑

k akTk (4.36)

A two qubit unitary gate of theoretical interest, is that of the Clifford gate
typically referred to as the controlled not gate, CNOT, also called the con-
trolled X̂ gate, CX. One qubit is assigned as control, the another as target,
the unitary gate inverts the target qubit, for the branches of the state vector,
where the control bit has the value 1. The truth table for the gate is displayed
in Table 2.

The CNOT gate operation, in the matrix representation, is a Hermitian
4× 4 matrix of the form:

ĈX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.37)

Or written in tensor notation, using the X̂ gate, and the basis vectors, this
gate can be written as:

ĈX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X̂ (4.38)
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In this notation, the behavior of the truth table becomes apparent. The in-
teresting property of the gate, is how it transforms the single qubit X Clifford
gate, i.e.

ĈX(I ⊗ X̂)Ĉ†
X = ĈX(|1⟩⟨0| ⊗ I + |0⟩⟨1| ⊗X) (4.39)

= |0⟩⟨1| ⊗ X̂+ |1⟩⟨0| ⊗ X̂ = X̂⊗ X̂ (4.40)

That is, the CNOT gate transforms the generator T13, into the generator
T1. From T1 it is straightforward, using the Clifford gates, to construct the
remaining generators. For example, suppose one is interested in the rota-
tion exp{iaX ⊗ Z}, simply conjugate the exp{iaX ⊗X} by Ĥ on the second
qubit:

(I ⊗ Ĥ)eiaX̂⊗X̂(I ⊗ Ĥ†) = eiaX̂⊗Ẑ (4.41)

The approximation for small angle rotations in SU(2), is similarly true for
the generators of SU(4), simply replace the generators of SU(2) in Eq. (4.9),
with the generators T̂1 to T̂16:

Û = ei
∑16

k (akT̂k/n) ≈
16∏
k

eiakT̂k/n. (4.42)

4.3.2 Implementation of two qubit gates

The CNOT gate, although theoretically elegant, is not typically the preferred
gate for implementation in superconducting circuits. It should be recalled that
qubits are capacitively coupled to a resonator, which mediates the interaction
between the qubits. A method for achieving two-qubit gates involves utilizing
this coupling while temporarily permitting the circuit to access higher energy
states. The actual dynamics of the system are characterized by a Hamiltonian
of the form, as seen in Sec. 2.2:

Ĥ = ωrâ
†
râr +

∑
s

(
ωsâ

†
sâs +

δs
2
â†sâ

†
sâsâs + gs

(
â†sâr + âsâ

†
r

))
(4.43)

By restricting Eq.(2.21) to the lowest three energy states and denoting E
(q)
n

as the energy of the n’th state in the q’th qubit, the additional state modifies
the Jaynes-Cummings Hamiltonian for the two-qubit system to:

Ĥ = ωrâ
†
râr +

2∑
n=0

(
E(1)

n |n⟩⟨n| ⊗ I + I ⊗ E(2)
n |n⟩⟨n|

)
+
∑
s

gk
(
â†sâr + âsâr

)
= ωrâ

†
râr +

2∑
n=0

2∑
m=0

Enm |nm⟩⟨nm|+
∑
s

gk
(
â†sâr + âsâr

)
,

(4.44)
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where Enm = E
(1)
n +E

(2)
n . The second line of Eq.(4.44) arises due to the prop-

erty that
∑

n |n⟩ ⟨n| ⊗ I =
∑

n |n⟩ ⟨n| ⊗
∑

m |m⟩ ⟨m| =∑n |n⟩
∑

m |nm⟩ ⟨nm|.
By limiting the interaction term to only allow energy exchanges that conserve
the total excitation of the transmon circuit, the states of |02⟩ and |20⟩ can be
employed to drive phase transitions, conditioned on the state of |11⟩.

In order to analyze this dynamic, a simpler scenario can be considered,
wherein only the second qubit is allowed to access the second excited state. It
can be demonstrated that the Hamiltonian of the system can be approximated
as:

Ĥ = ωra
†a+

2∑
s

(
ω̃s
σ̂
(s)
z

2
+ χsâ

†âσ̂(s)
z + S (χs, gs)

)
+ ω02 |02⟩⟨02|+ J12 (|11⟩⟨02|+ |02⟩⟨11|) ,

(4.45)

The approximation is valid when the system resides in the dispersive regime,
with further details provided in Sec. 5.1. Particular attention should be given
to the second line of the expression. The ω02 |02⟩⟨02| induces a time-dependent
phase on the |02⟩ state, and a coupling of J12 drives transitions between |11⟩
and |02⟩.

Consider a pulse targeting this transition between the two states |11⟩ ↔
|02⟩ and implementing a population inversion between them. Subsequently,
the system idles for a period before another pulse reverses the population in-
version of the first. During the idling period, a phase shift is induced, enabling
the operation of a controlled phase gate. By choosing the appropriate pulse
and idling duration, ensuring that the proper leakage and phase conditions
are satisfied, it is possible to utilize this procedure to perform a controlled Ẑ
gate, which possesses the following matrix representation:

ĈZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (4.46)

The CZ gate operation can be transformed into a CNOT gate operation, by
conjugation of Haddamard gates on the target qubit:

(I ⊗ Ĥ)ĈZ(I ⊗ Ĥ) = I ⊗ Ĥ(|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Ẑ)I ⊗ Ĥ (4.47)

= (|0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X̂) = ĈX (4.48)

This transformation is also depicted in a quantum circuit diagram in Fig. 7.

4.3.3 Fidelity of gates

Leakage, cross talking, calibration and decoherence[26][27] are among some
of the great challenges in realizing fault tolerant quantum gates. A mea-
sure is required to describe how accurately the implementation of a unitary
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|q1⟩ •

|q2⟩
(a) CNOT gate.

|q1⟩ Z

|q2⟩ H • H

(b) Effective CNOT gate.

Figure 7: A quantum circuit diagram of the Hadamard gate is presented.
Quantum circuit diagrams share similarities with classical circuit diagrams;
however, due to the reversibility of quantum gates, no multi-qubit gates ter-
minate a qubit line, resulting in quantum circuit diagrams being drawn as
parallel lines with gates operating between them. (a) Depicts a direct CNOT
gate implementation, where the thick dot represents the control qubit and the
circled plus denotes the target qubit. (b) Displays an effective CNOT gate op-
eration, where the boxed H represent the Hadamard operation and the boxed
Z, connected to a control qubit, represents the CZ gate operation.

gate matches the intended operation, i.e. the extent to which the performed
computation of single gates deviates from the theoretical results. Fidelity
quantifies how well the final state approximates the intended target state, in
other words the closeness of the two quantum states. Completely distinguish-
able states, such as as pair of orthogonal states, has the fidelity of zero, while
two identical states results in a fidelity of one.

Mathematically, fidelity is defined as the squared Bhattacharyya coeffi-
cients. Suppose two mixed states are given, with a probability pk of being in
a state |ψk⟩ and a probability qk of being in a state |φ⟩. From the definition
of the density matrix, pk and qk can also be considered as eigenvalues for
their respective density matrices ρ1 =

∑
k pk |ψk⟩⟨ψk| and ρ2 =

∑
k qk |φk⟩⟨φk|,

where |ψk⟩ and |φk⟩ are the corresponding eigenvectors. The fidelity between
the two systems is then given by:

F (ρ1, ρ2) =

(∑
k

√
pkqk

)2

= (Tr(
√
ρ1ρ2))

2 . (4.49)

If both states in question are pure state matrices, then Eq. (4.49) has a simple
reduction, and the fidelity of the two states can deduced directly from the inner
product squared of the state vectors:

(Tr(
√
ρ1ρ2))

2 =
(
Tr
(√

|ψ⟩⟨ψ|φ⟩⟨φ|
))2

= |⟨ψ|φ⟩|2. (4.50)

To reach fault tolerant quantum computers, the fidelity for individual gates
must be very close to unity. For most quantum algorithms, when scaled to
problems that are intractable on classical hardware, the fidelity of individ-
ual gates must lie well above the 0.99 threshold to demonstrate quantum
supremacy. This arises from the fact that errors propagate in entangled pairs,
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and even small errors on individual qubits can, for sufficiently deep layers of
quantum circuits, propagate the errors throughout the entire system[28].

4.4 No cloning theorem

Simulations allow for the initialization of registers to any value, including the
inference of previously attained states from a stochastic quantum trajectory.
This capability arises from the fact that system evolution can be monitored
during simulation run time by accessing computer memory. In contrast, in
reality, due to the wave function collapse upon measurement, the qubit state
is only read out at the end of computation. Consequently, its state before
being projected onto the basis states remains an unknown superposition.

If cloning the qubit state during the computation process were possible,
acquiring this knowledge without disrupting the computation of the main
set of qubits could be feasible. However, due to the unitary time evolution of
quantum states, creating an identical copy of an arbitrarily unknown quantum
state is rendered impossible.

In order to prove the no-cloning theorem, consider the scenario where the
objective is to clone a state |ϕA⟩ onto a blank state |χ⟩, analogous to a printer
cloning a painting onto a blank canvas. The mechanism employed should
implement a unitary operator, denoted as Û , which transforms the blank state
|χ⟩ into the desired cloned state, |ψA⟩. If |ϕA⟩ is truly arbitrary, then the
unitary operator should also be capable of cloning any other arbitrary state,
|ϕB⟩ onto |χ⟩ as well. In other words, the unitary operation should perform
the following transformations:

Û |ϕA⟩⊗|χ⟩ = |ϕA⟩⊗|ϕA⟩ (4.51)

Û |ϕB⟩⊗|χ⟩ = |ϕB⟩⊗|ϕB⟩ . (4.52)

In the present work, no assumptions have been made regarding the shape
of Û . However, it can be demonstrated that, in order to satisfy the given
expressions, |ϕA⟩ and |ϕB⟩ cannot be considered as two arbitrary states, but
must instead be related to each other. To explore this relationship, the inner
products between the two states are calculated. Initially, the left-hand side of
the equations is examined by taking the bra of (4.51) and applying it to the
ket of (4.52), followed by determining the norm of the resulting expression:∣∣∣⟨ϕA|⊗⟨χ| Û †Û |ϕB⟩⊗|χ⟩

∣∣∣ = |(⟨ϕA|⊗⟨χ|) (|ϕB⟩⊗|χ⟩)|
= |⟨ϕA|ϕB⟩⊗⟨χ|χ⟩|
= |⟨ϕA|ϕB⟩|.

(4.53)

The same is done on the right-hand side of the equation:

|(⟨ϕA|⊗⟨ϕB|) (|ϕB⟩⊗|ϕB⟩)| = |⟨ϕA|ϕB⟩⊗⟨ϕA|ϕB⟩| = |⟨ϕA|ϕB⟩|2, (4.54)
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Upon combining the two sites, it is found that |⟨ϕA|ϕB⟩| = |⟨ϕA|ϕB⟩|2, yielding
the solutions |⟨ϕA|ϕB⟩| = 0, 1. This result implies that the two states must
belong to the same orthonormal basis set, i.e., either |ϕA⟩ ⊥ |ϕB⟩ or |ϕA⟩ =
|ϕB⟩. Consequently, it is not possible to clone a general state onto another
state. However, if the classical operational regime is considered, where qubits
function as bits without superposition, then |0⟩ and |1⟩ belong to the same
orthonormal basis set, and cloning of the information onto the state ket0 can
be performed using the CNOT gate.

5 Measurement Theory and Readout

5.1 Dispersive Regime

For optimal performance, a quantum computer must have the ability to per-
form a fast and accurate readout of its qubits, as this is crucial for extracting
meaningful information from quantum computations and ensuring the reliabil-
ity of the results obtained. Consequently, it is vital that the act of measuring
does not inadvertently and irreversibly alter the states of the output; as a
result, a quantum non-demolition (QND) readout is desired. The accuracy of
the readout is contingent upon the regime in which the resonator is driven, for
instance, when ∆s ≪ gs, the system coherently swaps excitations between the
qubits and the resonator system. These interactions alter qubit population,
and excitation of one qubit can uncontrollably be exchanged with the excita-
tion of another through the resonator as a mediator. Therefore, qubit readout
occurs in the regimes where the resonator is largely detuned from the qubits,
such that ∆s ≫ gs, and no energy is exchanged between the resonator and the
qubits. This is referred to as the dispersive regime, as interactions between the
transmon qubits and the resonator system are considered dispersive. Since gs
is low in comparison to the other frequencies, the interaction term can effec-
tively be regarded as a perturbation term. Starting from Eq (3.13), rewritten
in units of radiant frequencies, the non-perturbed and perturbed Hamiltonian
terms are provided by:

Ĥ0 = ωrâ
†â+

∑
s

ωs
σ̂
(s)
z

2
, (5.1)

Ĥint =
∑
s

gs

(
â†σ̂

(s)
− + âσ̂

(s)
+

)
, (5.2)

where evidently Ĥ = ℏĤ0 + ℏĤint. To analyze the behavior of the disper-
sive regime, the Hamiltonian is simplified, by changing reference frame into a
basis which eliminates the first order interaction term. This change of basis
is achieved by applying the Schrieffer-Wolff transformation to diagonalize the
Hamiltonian, rotating it with an unitary operator U = exp(η̂). The frame
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which accomplishes this, is a choice for η̂, such that [η̂, Ĥ0] = −Ĥint, eliminat-
ing Ĥint in the series expansion. The correct choice of η̂, satisfying the stated
condition, is given by; η̂ =

∑
s

gs
∆s

(â†σ̂
(s)
− − âσ̂

(s)
+ ). To demonstrate this, it is

useful to find the commutation relations of these intermediate terms,[
η̂, â†â

]
= −

∑
s

gs
∆s

(
â†σ̂

(s)
− + âσ̂

(s)
+

)
(5.3)

[
η̂, σ̂(s)

z

]
= −2

∑
s

gs
∆s

(
â†σ̂

(s)
− + âσ̂

(s)
+

)
, (5.4)

where the commutation relations of the equations, (2.14), (3.11) and (3.12)
were applied. The spin matrices of each distinct qubit commutes, so the two
summations in both expressions of η̂ and Ĥ0, is reduced to a single sum. The
commutation of η̂ and Ĥ0 is therefore shown by substitution, to satisfy the
desired condition:

[η̂, Ĥ0] =
[
η̂, ωrâ

†â
]
−
[
η̂, ωs

σ̂
(s)
z

2

]
= −

∑
s

gs
∆s

(
â†σ̂

(s)
− + âσ̂

(s)
+

)
(ωr − ωs) = −Ĥint

(5.5)

The Hamiltonian Ĥ is diagonalized by the unitary operator exp(η̂). The new
Hamiltonian gets Taylor expanded, Ĥdisp = eη̂Ĥe−η̂, around η̂, such that first

orders in Ĥint cancel out, while higher-order terms persist:

Ĥdisp = eη̂Ĥe−η̂ = Ĥ +
[
η̂, Ĥ

]
+

1

2

[
η̂,
[
η̂, Ĥ

]]
+O(η̂3)

= Ĥ0 +
1

2

[
η̂, Ĥint

]
+O(Ĥ3

int).
(5.6)

In this basis, it is said that the qubit becomes dressed by the field. When
disregarding terms of Ĥ3

int and higher orders, the dispersive Hamiltonian be-
comes approximately determined by the non-perturbed Hamiltonian, Ĥ0, in
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addition to the commutator term,
[
η̂, Ĥint

]
, which is derived to be:

[
η̂, Ĥint

]
=

[∑
s

gs
∆s

(â†σ̂
(s)
− − âσ̂

(s)
+ ),

∑
q

gq(â
†σ̂

(q)
− + âσ̂

(q)
+ )

]

=

[∑
s

gs
∆s

â†σ̂
(s)
− ,
∑
q

gqâ
†σ̂

(q)
−

]
+

[∑
s

gs
∆s

â†σ̂
(s)
− ,
∑
q

gqâσ̂
(q)
+

]

−
[∑

s

gs
∆s

âσ̂
(s)
+ ,
∑
q

gqâ
†σ̂

(q)
−

]
−
[∑

s

gs
∆s

âσ̂
(s)
+ ,
∑
q

gqâσ̂
(q)
+

]
= â†â

∑
s

∑
q

gsgq
∆s

σ̂
(s)
− σ̂

(q)
+ − ââ†

∑
q

∑
s

gqgs
∆s

σ̂
(q)
+ σ̂

(s)
−

− ââ†
∑
s

∑
q

gsgq
∆s

σ̂
(s)
+ σ̂

(q)
− + â†â

∑
q

∑
s

gqgs
∆s

σ̂
(q)
− σ̂

(s)
+

= −â†â
(∑

s

∑
q

gsgq
∆s

σ̂
(s)
+ σ̂

(q)
− −

∑
q

∑
s

gqgs
∆s

σ̂
(q)
− σ̂

(s)
+

+
∑
q

∑
s

gqgs
∆s

σ̂
(q)
+ σ̂

(s)
− −

∑
s

∑
q

gsgq
∆s

σ̂
(s)
− σ̂

(q)
+

)
−
∑
s

∑
q

gsgq
∆s

σ̂
(s)
+ σ̂

(q)
− −

∑
q

∑
s

gqgs
∆s

σ̂
(q)
+ σ̂

(s)
−

= −â†â
([∑

s

gs
∆s

σ̂
(s)
+ ,
∑
q

gqσ̂
(q)
−

]
+

[∑
q

gqσ̂
(q)
+ ,
∑
s

gs
∆s

σ̂
(s)
−

])

−
∑
s

g2s
∆s

(
σ̂(s)
z + I

)
−
∑
s

∑
q ̸=s

gsgq
∆s

σ̂
(s)
+ σ̂

(q)
− −

∑
q

∑
s ̸=q

gqgs
∆s

σ̂
(q)
+ σ̂

(s)
−

=
∑
s

(
2χsσ̂

(s)
z â†â+ χs

(
σ̂(s)
z + I

)
+
∑
q ̸=s

(
χsgq
gs

+
χqgs
gq

)
σ̂
(s)
+ σ̂

(q)
−

)
(5.7)

Alternatively, the expression can be repackaged in a more simplified form:[
η̂, Ĥint

]
=
∑
s

(
2χsσ̂

(s)
z â†â+ χs

(
σ̂(s)
z + I

)
+ 2S (χs, gs)

)
(5.8)

where χs = −g2s/∆s denotes the dispersive shift, which depends on the state
of the qubit. Meanwhile, S (χs, gs) represents a flip-flop term, exchanging
population between different qubits, and is given by:

S (χs, gs) =
∑
q ̸=s

(
χsgq
2gs

+
χqgs
2gq

)
σ̂
(s)
+ σ̂

(q)
− =

∑
q ̸=s

Jsqσ̂
(s)
+ σ̂

(q)
− . (5.9)
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Injecting (5.8) into (5.6) gives the system’s Hamiltonian in the dispersive
regime:

Ĥdisp = ωrâ
†â+

∑
s

(
ω̃s
σ̂
(s)
z

2
+ χsâ

†âσ̂(s)
z + S (χs, gs)

)
, (5.10)

where ω̃s = χs−ωs is called the Lamb shifted qubit frequency. Equation (5.10)
also demonstrates, that the qubits picks up a state dependent frequency shift,
that is proportional to the number of photons in the cavity, called the ac-Stark
shift, originating from oscillating external fields causes slight dephasing of the
qubit.

It is important to emphasize that the Hamiltonian presented in Eq. (5.10),
is derived from the constraint of considering only the lowest two energy levels
of the transmon circuit. While outside the scope of this thesis, these higher
energy levels can be exploited, e.g. as a mechanism for creating two gates, as
discussed in Sec. 4.3.2, or to implement shelving schemes, effectively increase
readout time for logical |1⟩ states[29]. In the case where these higher levels
are not ignored, the dispersive shift gets modified to:

χs = − g2s
∆s

(
1

1 + ∆s/(ω2→1
s − ω1→0

s )

)
, (5.11)

where ωi→j represents the transition frequency between states |i⟩ and |j⟩[30].
This indicates that the dispersive shift for Eq. (4.45) corresponds to the dis-
persive shift when considering the three levels of the transmon circuit.

5.2 I-Q mixing

In the previous section, it was demonstrated that, in the dispersive regime,
as described by the Hamiltonian in Eq. (5.10), the resonator undergoes a

qubit state-dependent frequency shift, χqâ
†âσ̂

(q)
z . The phase is determined

by probing the resonator with a field, β(t). After the field interacts with
the resonator, the signal is mixed with a classical coherent field, known as
the local oscillator. The mixing of the two signals occurs on a microwave I-Q
mixer, which employs square-law-type diodes to multiply the signals together.
By utilizing demodulation strategies, it becomes possible to identify the two
components of the voltage.

At the end of Sec. 2.3 the transmon qubit, capacitively coupled to a res-
onator was compared to a spinor inside a microwave cavity. To help gain
intuition, this chapter shall similarly adopt an optical analogous representa-
tion to the I-Q mixing. The first step is to consider the classical version of the
outgoing electrical field. Such an electrical signal moving through a vacuum,
is a classical wave electromagnetic wave form, and is expressed as:

Eout(t) = E0 cos(ωoutt+ θ) = Re(E0e
iωoutteiθ)). (5.12)
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ωout is the frequency of the electrical wave, e.i. the carrier frequency. The field
is here presented using complex analysis and has a time independent phase
component. The global phase of the electrical field is not what is important.
This is because that in addition to the qubit state induced phase shift, the
signal also picks up a propogation phase, θr = −k · r which is independent
of the qubit state. Everything of interest for the readout of the qubit, is the
ac-Stark shift, so ignoring the oscillating part of the field, the static phasor
component is defined as:

cout = E0e
iθ = I + iQ. (5.13)

As with the phase components for the implementation of single qubit gates in
Sec. 4.2.4, the two components of the phasor consist of the in-phase component
I, representing the real part, and the out-of-phase component Q, representing
the imaginary part. By utilizing the complex conjugate, the two components
can be separated into their separate parts:

I =
1

2
(cout + c∗out) , (5.14)

Q =
1

2i
(cout − c∗out) . (5.15)

By shifting from the classical case to the quantum case, implying that the
phasor component must be expressed as a quantum operator ĉout. In the
general case, the quadrature operators for the single mode of ĉout, is defined
as

X̂ϕ =
1

2

(
ĉoute

−iϕ + ĉ†oute
iϕ
)

(5.16)

X̂ϕ+π/2 =
1

2i

(
ĉoute

−iϕ − ĉ†oute
iϕ
)
. (5.17)

Since the out-coupled field originates from the probing of the cavity, it suggests
that ĉout ∝ â. Consequently, the commutation relations of the quadratures,
[X̂ϕ, X̂ϕ+ π/2] ∝ 1

4
[(â + â†),−i(â− â†)] = i/2, lead to uncertainty relations

equivalent to those found in Heisenberg’s uncertainty between position and
momentum. Besides some prefactors, one is free to interpret the two quadra-
tures as a position, X̂ϕ = x̂ and momentum X̂ϕ+π/2 = p̂ operators. The
probability distribution of the vacuum state with respect to the quadrature
operators is therefore just the probability distribution of the vacuum state of
a harmonic osccilator, i.e. a Gaussian destribution[31, p. 44]:

|⟨x|0⟩|2 =
√

2

π
e−2x(t)2 , (5.18)

|⟨p|0⟩|2 =
√

2

π
e−2p(t)2 . (5.19)
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The derivation of Eq.(5.19) is directly achieved through the application of
a Fourier transformation to Eq.(5.18). As the transformation of a Gaussian
is itself a Gaussian, it is observed that both quadratures possess analogous
distributions.

5.2.1 Homodyne detection

The weak single mode output signal is mixed on the beamsplitter, with the
strong coherent state of the local oscillator denoted as:

αLO(t) = |αLO| exp(i(ωLOt+ ϕ− π/2)), (5.20)

where the −π/2 is chosen to simplify the expression. After entering the port
of the mixer, the two signals are either transmitted or reflected. The mixed
signal reaching the the photoreceiver incident to the local oscillator, â+ and
the signal measured on the second one, â− is given by:

â+ = T ĉout(t) +Rα(t), (5.21) â− = Rĉout(t) + Tα(t) (5.22)

where R and T is the reflection and transmission coefficients of the beamsplit-
ter. In the case of a balanced beamsplitter, the reflection and transmission
coefficients are given: R = 1/

√
2 and T = i/

√
2 respectively. Utilizing the ap-

propriate phases, it is possible to factorize out i for the transmitted coefficient,
simplifying the expressions for the two fields as:

â±(t) =
1√
2

(
ĉout(t)± αLO(t)e

iϕ
)

(5.23)

The photocurrents measured is proportional to the mean detection rate in the
two photoreceivers, and is given by ηâ†+(t)â+(t) and η(−iâ−(t))†(−iâ−(t)) =
â†−(t)â−(t), where η denotes the detector efficiency. A method to obtain the
value of the quadratures, is by setting ωLO = ωout. Recall that ĉout(t) ∝
exp(iωoutt), and αLO(t) = |αLO| exp(iωLOt), therefore in the case of Homodyne
detection, the time dependence of the phase drops out. When the photocur-
rent difference of the two detectors is taken, the strong local oscillator term
drops out, and only left cross terms of the photon detections gets measured:

ix(t) ∝
〈
â†+â+ − â†−â−

〉
= 2|αLO| ⟨x⟩ (5.24)

This allows for the measurement or the x quadrature, also called the in-phase
I. To measure the p̂ quadrature, Q component, by homodyne detection, the
signal is separated equally in two, then mixed on a microwave mixer. Fig. 8b
depicts an equivalent setup for measuring both quadratures in a quantum
optic analog to the I-Q mixir. The non-phase shifted fields entering the ports
for the upper right detector, acts equivalently to the scenario just outlined,
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except the signal field strength is halved. The fields coherent field at the
southern beamsplitter, has had a π/2 phase shift while the carrier signal has
not. This means that the field operators for the field reaching the two southern
photo receivers in the figure, is described by:

ây± =
1

2
(ĉout(t)± iαLO(t)) (5.25)

Therefore, the act of subtracting one photocurrent from the other equates to
the measurement of the p̂ quadrature, or in other words, the Q component of
the field.

iy(t) ∝
〈
â†y+ây+ − â†y−ây−

〉
= |αLO ⟨p⟩|. (5.26)

In microwave mixers, this is equivalent to integrating the signal over the two
signals,

I + iQ =
1

2πk

∫ 2πk

0

Eout(t)α
∗(t)/4dt, (5.27)

where the factor 1/4 comes from splitting the two signals into different mixers.

ĉout(t)

αLO(t)e
i(ϕ−π

2 )

â+(t)

−iâ−(t)

(a) I-Q mixing setup

ĉout(t)

αLO(t)e
i(ϕ−π

2 )

âI,+(t)

−iâI,−(t)

âQ,+(t)

−iâQ,−(t)

−π
2 shift

(b) Optical analog for measuring
both quadratures in homodyne
detection scheme.

Figure 8: (a) The schematic represents quantum optics analogue of an IQ-
mixer setup with square law diodes. The outgoing frequency from cryostat is
mixed with the frequency of the local oscillator. In typical setup, the two are
mixed on a balanced mixer, then the detected photocurrent is demodulated
into the two quadrature. (b) The homodyne setup for measurements of both
quadratures is depicted. A balanced beamsplitter is employed to mix half
the output signal and half the signal of the local oscillator. A relative pi/2-
radian phase shift is experienced by the local oscillator field reaching the two
mixer ports due to the reflection. Conversely, no relative phase difference is
experienced between the outgoing field reaching either of the mixer ports.
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5.2.2 Heterodyne detection

While homodyne detection provides a straightforward method for understand-
ing the readout process of the qubit, in reality it has some significant draw-
backs. The cancellation of the oscillating phase in the demodulating process,
lowers the signal to noise ratio. Additionally, with the homodyne detection it
is not possible to probe a large set of resonators with different frequencies[24].

In the case of heterodyne detection, both the quadratures can be readout
using only the setup shown in Fig. 8a. The time dependent phase of the cross
terms leads to an intermediate frequency, ∆ω = |ωout − ωLO|, which alters
Eq. (5.24) into:〈

â†+â+ − â†−â−

〉
= 2|αLO|

〈
ĉoute

i∆ωte−iϕ + ĉ†oute
−i∆ωteiϕ

〉
. (5.28)

Thus, in the context of heterodyne detection, the demodulation of the two
signals, I and Q, results in the following proportionality, when written as a
complex number:

I + iQ ∝ ei(∆ωt+θ) (5.29)

By selecting a phase for ωLO that renders ∆ω sufficiently small to facilitate
the reasonable digitization of the signal, it becomes feasible to compute the
oscillatory exponential and extract the static phasor component of Eq. (5.29).
This extraction enables the measurement of the phase and the accurate read-
out of the qubit state.

6 Master equation of the density matrix

In instances where the qubit system is subjected to measurement or dampen-
ing processes, the elementary wave function description, although effective for
closed quantum systems, fails to encapsulate the intricate nature of the open
quantum system. In the face of such complexity, it becomes evident that a
more sophisticated approach is necessary. This requirement gives rise to the
need to construct a master equation for the density operator.

This master equation serves a dual purpose. On one hand, it mirrors the
functionality of Schrödinger’s equation in scenarios where the influence of the
environment is negligible, thus allowing for a faithful description of the quan-
tum system’s evolution in isolation. On the other hand, it accommodates the
effects of decay processes and the non-unitary collapse of quantum superpo-
sitions that occur upon measurement, phenomena that are not accounted for
within the realm of Schrödinger’s equation.

The upcoming section of this paper is committed to the derivation of
such a master equation. The master equation will describe a qubit that is
coupled to a resonator, and measured using a heterodyne detection scheme.
Because of this, a stochastic contribution, arising from the probabilistic nature
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of quantum mechanics, will be encompassed in the dynamics of the master
equation.

6.1 Markovian Master Equation

When the qubit constitutes a closed system and is not subjected to any
measurement, its evolution adheres to Schrödinger’s wave equation, ˙|ψk⟩ =
−iĤ |ψk⟩. Hence, for small time steps, dt, the state evolves approximately
with the unitary operator Û = I− iĤdt. This evolution, described in the lan-
guage of the density matrix, leads to a master equation of the system, derived
using the conjugation of Û on ρ:

ρ(t+ dt) = Ûρ(t)Û † =
(
I − iĤdt

)
ρ(t)

(
I + iĤdt

)
(6.1)

= ρ(t)− i
[
Ĥ, ρ(t)

]
, (6.2)

where terms of higher ordered terms, O(dt2), were intentionally removed.
The state dynamics, in the Schrödinger picture, of the idealized pure-state
evolution given by Eq. (6.2), represent a system that never interacts with its
environment and, consequently, does not experience decoherence.

To properly model a physically realistic qubit, the system must first be
considered coupled to the environment, also referred to as a ”bath”. The
Hamiltonian of the total system, constituting both the qubit system, and the
bath, is most generally expressed by the Hamiltonian Ĥtot = ĤS+ĤB+Ĥint(t).
Here, ĤS is the Hamiltonian of the qubits’ system, i.e. the Jaynes-Cummings
system under readout, or the Hamiltonian of a gate operation, ĤB is the
Hamiltonian of the bath, and Ĥint(t) is the interaction between the two.

The pure state density matrix describing this system, ρtot(t), evolves in
accordance to the master equation ρ̇tot(t) = −i[Ĥtot, ρtot(t)]. It can be assumed
that after initial preparation of the qubit states, call it time t = 0, the state
of the qubit is not entangled with the bath, and therefore total state is the
product of the two sub components, ρtot(0) = ρS(0)⊗ρB(0). Upon converting
this into the interaction frame, the resulting interacting Hamiltonian is split
into two terms, Ĥint(t) = Ĥint,S(t) + Ĥint,SB(t), where Ĥint,S(t) acts only on
the Hilbert space of the qubit. It is posssible to show, using the appropriate
approximations, that the dynamics of ρS is described by the Markov-Born
master equation[32]:

ρ̇S(t) =− i
[
Ĥint,S(t), ρS(t)

]
−
∫ t

−∞
TrB

([
Ĥint(t),

[
Ĥint(τ), ρS(τ)⊗ ρB(0)

]])
dτ,

(6.3)

where TrB denotes the partial trace over the bath. The generators for the
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Markov master equation, takes the general Lindblad form:

ρ̇S(t) = −i
[
ĤS, ρ

]
+
∑
j

D [ĉj] ρS(t). (6.4)

In this context, the influence of the entire system on the dynamics of the qubit
system, which is the only one of the two systems accessible to measurements,
has been encapsulated in the dissipative Lindblad term. In order to simplify
the notation, the subscript S will be omitted from this point forward. The
superoperator D[ĉ]ρ is defined as follows:

D [ĉ] ρ = ĉρĉ† − 1

2

{
ĉ†ĉ, ρ

}
, (6.5)

where ĉ is an arbitrary jump operator. The Lindbladian, as expressed in
Eq. (6.4), is of a form that ensures the state remains normalized, which is ev-
ident from its trace-preserving behavior, Tr(ρ̇) = 0, as is proven in Sec.6.4.1.
The Lindbladian master equation does not model the wave function collapse
that occurs upon successful measurement of the qubit. Therefore, to compre-
hend an observer’s understanding of the state, the master equation must be
replaced by a stochastic master equation (SME).

6.2 Quantum jump and measurement collapse

To model the wave function collapse, the qubit state is considered entangled
to the measurement apparatus, and its average dynamics must be described
by Lindbladian as well. Considering the two possible branch scenarios. After
a very short time, ∆t, the qubit can ”exists” in two distinct realities. One
scenario where no photons had been detected, or one with a single photon
detection. The change in the number of photons detected, ∆N , is given by
the discrete sampling of ∆N ∈ {0, 1}. In addition, the expectation number
must reflect the probability of detecting the photon. For ∆t → 0, these
conditions are expressed mathematically as:

dN(t)2 = dN(t), , (6.6)

⟨dN(t)⟩ = ⟨ψ(t)|ĉ†ĉ|ψ(t)⟩ dt, (6.7)

where ĉ is another jump operator, signaling the emission of photon by the
qubit upon decay. When no photon is detected, the qubit should evolve with-
out jumps, and its dynamics can be described by the non-Hermitian Hamil-
tonian of the form:

Ĥ0 = Ĥ − i

2
ĉ†ĉ. (6.8)

The jump formalism doesn’t guarantee normalization, as measurement opera-
tor, M̂0, generated by the non-Hermitian Hamiltonian is a non-unitary matrix,
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M̂ †
0M̂0 ≈ (I+iĤ†

0dt)(I−iĤ0dt) = I+i(Ĥ†
0−Ĥ0)dt ̸= I. To properly compute

the evolution in the case of no detection, the state vector is first evolved with
the non hermitian Hamiltonian, and then afterwards renormalize,

|ψ0(t+ dt)⟩ = Û0(dt) |ψ(t)⟩∥∥∥Û0(dt) |ψ(t)⟩
∥∥∥ . (6.9)

The probability ⟨ĉ†ĉ⟩dt of a detection occurring during an infinitesimal time
interval is proportional to that same time interval, resulting in an almost
zero probability of a measurement taking place during each dt. Nonetheless,
at random instances and with a rate of ⟨ĉ†outĉout⟩, a detection does indeed
register a click. These detection corresponds to an instantaneous update in
an observers knowledge about the system. While it may not describe physical
leaps, as Bohr envisioned it, this sudden change in the qubit state after the
wave function collapse, is typically referred to as a quantum jump, similar
in nature to Bohr’s jump mechanism in his 1913 description of the atom.
Following the quantum jump, the qubit’s excitation has been transferred to
the detected photon. Consequently, the projection of ĉ is employed to refine
the state of knowledge concerning the system, and to re-normalize the state:

|ψ1(t+ dt)⟩ = ĉ |ψ(t)⟩
∥ĉ |ψ(t)⟩∥ . (6.10)

Combining the two possible ”branches” with the detection condition (6.6), it is
discovered that the dynamic of the state vector, is described by the stochastic
Schrodinger equation (SSE) of the form:

|ψ(t+ dt)⟩ = dN(t) |ψ1(t+ dt)⟩+ (1− dN(t)) |ψ0(t+ dt)⟩ . (6.11)

Expanding (6.9) to the first order in dt yields a non-linear term proportional
to dt. Ignoring the terms of order dN(t)dt, and explicitly writing out the
terms of Eq. (6.11), gives a non-linear SSE of the form:

d |ψ(t)⟩ =
[
dN(t)

(
ĉ√
⟨ĉ†ĉ⟩

− 1

)
+

(〈
ĉ†ĉ
〉

2
− ĉ†ĉ

2
− iĤ

)
dt

]
|ψ(t)⟩ . (6.12)

The SSE describing the jump formalism is useful when the detections are
made directly on the qubits themselves, but fails to consider scenario where
measurements of individual photons does not directly project the state onto
the computational states, e.g. when dealing with the reflected signal of the
resonator cavity, as discussed in Sec. 5.2. Luckily, using the density matrix, it
is possible model the dynamics of continuous measurement in homodyne and
heterodyne detection schemes.
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6.2.1 Homodyne Detection

Readout of the signal during homodyne detection does not count individual
photon detections, but rather the photocurrent is measured, after mixture
with a strong local oscillator that amplifies the readout signal of the microwave
field. Defining the average photocurrent as the photon detection rate, then
the photocurrents exiting the mixers are given by:

⟨i+(t)⟩ =
d ⟨n+(t)⟩

dt
, (6.13)

⟨i−(t)⟩ =
d ⟨n−(t)⟩

dt
. (6.14)

In the interest of also simulating the mixed state dynamics, it becomes nec-
essary to shift from the state vector picture to a density matrix picture. This
means using the projector ρ = |ψ(t)⟩⟨ψ(t)|, and apply Eq. (6.12) to repackage
the dynamics of a stochastic Schrodinger equation, as that of a stochastic
master equation (SME):

dρ(t) = |dψ(t)⟩⟨ψ(t)|+ |ψ(t)⟩⟨dψ(t)|+ |dψ(t)⟩⟨dψ(t)|

= −i
[
Ĥ, ρ(t)

]
− 1

2
H
[
ηĉ†ĉ

]
ρ(t)dt+ G[√ηĉ]ρ(t)dN(t).

(6.15)

HereH[ĉ†ĉ]ρ(t) and G[ĉ]ρ(t) are superoperators, and are given, for an arbitrary
input operator, as:

H [â] ρ(t) = âρ(t) + ρ(t)â† −
〈
â+ â†

〉
ρ(t), (6.16)

G [â] ρ(t) =
âρ(t)â†

⟨â†â⟩ − ρ(t). (6.17)

Note that since Tr(ρ) = 1, both these super operators are trace preserving as
proven in Sec. 6.4.1. The average dynamics of Eq. (6.15), is master equation
of the general Lindblad form.

The mixed signal incident to the outgoing field, â+, and the mixed signal
incident to the other port of the local oscillator, â− gets detected on the
two photoreceivers, as illustrated in Fig. 8a. If the two photoreceivers are
imperfect detectors, with an efficiency of η, then the SME of the system is
written as:

dρ(t) =− i
[
Ĥ, ρ(t)

]
dt− 1

2
H
[
ηâ+â

†
+

]
ρ(t)dt+ G [

√
ηâ+] ρ(t)dn+

− 1

2
H
[
ηâ−â

†
−

]
ρ(t)dt+ G [

√
ηâ−] ρ(t)dn− + (1− η)D[ĉout]ρ(t)

(6.18)

Here, the term (1 − η)D[ĉout]ρ(t) represents decay due to the outgoing field
that is not measured by the receivers. To simplify the derivation, a simple case
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is considered in which, instead of using balanced detection, the beamsplitter
perfectly transmits the outgoing field such that:

â+ → ĉout + αLO, (6.19)

â− → 0. (6.20)

In practical applications, the 50/50 beamsplitter proves to be more advan-
tageous, as the squared terms of the strong local oscillator are canceled out,
better signal to noise ratio. In the theoretical derivation of the idealized limit,
these two cases yield equivalent master equations. Under homodyne detection,
the Hamiltonian transforms into a Hamiltonian of the form:

Ĥ → Ĥ − i
1

2

(
α∗
LOĉout − αLOĉ

†
out

)
. (6.21)

The master equation of the general Lindblad form, Eq. (6.4), is left invariant
under the transformations in equations (6.19) and (6.21). This also ensures
that the expectation value of the SME, Eq. (6.15), is a Lindbladian master
equation as well, such that the effects of adding the local oscillator doesn’t
change the expected readout values of the qubits.

The detector incident to the outgoing field, has a detection rate:

d ⟨n+⟩
dt

=
〈
ηâ†+â+

〉
= η

〈
ĉ†outĉout + |αLO|2 + αLOĉ

†
out + α∗

LOĉout

〉
= η

〈
ĉ†outĉout + |αLO|2 + 2|αLO|x̂

〉
.

(6.22)

In the limit where |αLO| is significantly larger than ⟨ĉ†outĉout⟩, the photocur-
rent is dominated by the field amplitude of the local oscillator, with a smaller
contribution from the term 2|αLO| ⟨x⟩. In the ideal limit of continuous mea-
surement, corresponding mathematically to the case where |αLO| → ∞, the
number of photons detected at any finite time interval ∆t approaches infinity,
while the impact of each detection on the system diminishes.

Letting αLO be real, such that ϕ = 0, and ĉout+ ĉ
†
out = 2x̂. A measurement

of the x̂ has Gaussian noise fluctuation, as noted in (5.18). In the ideal limit
for α2

LO ≫ ĉ†outĉout, the photon number of the weak microwave field is neglected
on the time scales of ∆t, and so the number of detections thus written as:

∆n+ = ηα2
LO∆t

[
1 +

2 ⟨x⟩
αLO

]
+
√
ηαLO∆W (t). (6.23)

Here, ∆W (t) represents the Wiener increment, which causes the distribution
of ∆N to be Gaussian. The Wiener increment is a number sampled from a
normal distribution, ∆W (t) ∝ N (0, t), with a mean of ⟨∆W (t)⟩ = 0 and a
variance of ⟨∆W (t)2⟩ = ∆t. These Wiener increments can be considered a
random walk, therefore, in accordance with the central limit theorem, remains
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Gaussian. Eq. (6.15) under this transformation is given by:

dρ(t) =− i
[
Ĥ, ρ(t)

]
− η

1

2
H
[
ĉ†outĉout + 2αLOĉout

]
ρ(t)dt

+ G [
√
ηĉout +

√
ηαLO] ρ(t)dn+(t) + (1− η)D[ĉout]ρ(t)dt

(6.24)

The change in the system over this time interval is very small, even though
the number of detections are large. Expanding Eq. (6.24) in powers of α−1

LO,
yields the systematic change during this time:

∆ρ(t) =− i
[
Ĥ, ρ(t)

]
∆t− η

1

2
H
[
ĉ†outĉout + 2αLOĉout

]
ρ(t)∆t

+∆n+(t)

H[ĉout]

αLO

+

〈
ĉ†outĉout

〉
G[ĉout]− 2 ⟨x⟩H[ĉout]

α2
LO

 ρ(t)

+ (1− η)D[ĉout]ρ(t)∆t+O
(
α−3
LO

)
.

(6.25)

In the continuum limit, where ∆t → dt, and ignoring terms that are orders
smaller than α

−1/2
LO , the SME for the case of Homodyne detection is given by:

dρ(t) = −i
[
Ĥ, ρ(t)

]
dt+D[ĉout]ρ(t)dt+

√
ηH[ĉout]ρ(t)dW (t). (6.26)

Here the Wiener increment have become infinitesimal, but otherwise following
the same rules as previously, i.e. ⟨dW (t)⟩ = 0 and ⟨dW (t)2⟩ = dt. As
discussed previously, the SME is equivalent for a 50/50 beamsplitters.

Returning to a balanced homodyne detection scheme, the photon detec-
tions detections are made on both detectors, such that the detection made in
the time ∆t is given by:

∆n+ =
1

2

(
ηα2

LO∆t

[
1 +

2 ⟨x⟩
αLO

]
+
√
ηαLO∆W+(t)

)
(6.27)

∆n− =
1

2

(
ηα2

LO∆t

[
1− 2 ⟨x⟩

αLO

]
+
√
ηαLO∆W−(t)

)
. (6.28)

Such that the difference of the two currents are given by:

i(t) = lim
∆t→0

∆n+ −∆n−√
ηαLO∆t

= 2 ⟨x(t)⟩+ dW (t)

dt
(6.29)

Note, that the two independent Wiener increments with mean zero, has the
property that ⟨∆W+ ±∆W−⟩ = ⟨∆W ⟩ and ⟨(∆W+ ±∆W−)

2⟩ = 2 ⟨∆W 2⟩.

6.2.2 Heterodyne Detection

As discussed in Sec. 5.2, the schemes typically used in superconducting cir-
cuits, is one where the frequencies ωout and ωLO are detuned from one an-
other. To understand the dynamics of this problem, the first order of business
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is considering the crossterm ĉout(t)αLO(t) = ĉoutαLOe
i∆ωt, which now includes

a time dependent rotation, with the detuning of ∆ω = ωout − ωLO. In the
transformation of Eq. (6.15), any terms of ĉout would result in either complex
squared terms, or cross terms between ĉout and αLO. Hence, the Homodyne
SME (6.26) is transformed into a Heterodyne SME, by replacing terms of
ĉout with the remaining cross term contribution, ĉoute

i∆ωt, in the limit of very
strong coherence field, αLO → ∞, giving:

dρ(t) = −i
[
Ĥ, ρ(t)

]
dt+D[ĉout]ρ(t)dt

+
√
ηdW (t)

(
ei∆ωt [ĉoutρ(t)− ⟨ĉout⟩ ρ(t)] + e−i∆ωt

[
ρ(t)ĉ†out − ⟨ĉout⟩ ρ(t)

])
,

(6.30)

note the symmetry of the Lindblad operator, D[ĉoute
i∆ωt]ρ(t) = D[ĉout]ρ(t).

The rotation introduces noise of the p̂ quadrature, which is larger than the
speed at which rotations average to zero, and so a new set of Gaussian random
variables are defined. When averaging over a lot of detuning cycles, these vari-
ables becomes two independent Wiener increments for the two quadratures,
and the SME is given by:

dρ(t) = −i
[
Ĥ, ρ(t)

]
dt+D[ĉout]ρ(t)dt+H[dW ∗(t)ĉout]ρ(t), (6.31)

where the normalized complex Wiener process is defined by:

dW (t) =
1√
2
(dWx(t) + idWp(t)) . (6.32)

In this case, the two photoreceivers measure each their own photocurrent,
given by the stochastic equations:

ix(t) = 2 ⟨x(t)⟩+
√
2
dWx

dt
(6.33)

ip(t) = 2 ⟨p(t)⟩+
√
2
dWp

dt
(6.34)

The heterodyne detection thus allows for measurement of both quadratures,
using the simpler setup of Fig. 8a, rather than the more complicated setup
needed in case of homodyne detection, shown in Fig. 8b.

6.3 Cavity-field

Upon measurement, the cavity is subject to a coherent driving field, βin =
βe−iωdt. The effects of this field, is understood by writing the Hamiltonian in
a frame rotating with the driving field:

Ĥ = ∆drâ
†â+

∑
s

(
∆ds

σ̂
(s)
z

2
+ χsâ

†âσ̂(s)
z + S (χs, gs)

)
+ i

√
2κ1

(
βâ† − β∗â

)
(6.35)
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β ĉout
â

Qubits

2κL 2κ1

Figure 9: The cavity is driven externally by a coherent field, β. The field
decays with a loss of κL, and a transmission of κ1 through the cavity mirrors.
The outcoupled field ĉout is mixed with a strong local oscillator, before being
readout using a heterodyne scheme.

where ∆dr = ωr − ωd, is the detuning between the cavity, and driving field,
∆ds = ω̃s − ωd is the detuning between the spin and the driving field, and κ1
is the amplitude decay rate of the cavity field, which due to transmission to
the outgoing field, see Fig. 9.

The cavity leaks the photon field by a rate κ = κ1+κL, where κL represents
losses out of the cavity. The system is hence subjected to dampening processes,
yielding the following Jump operators:

ĉ1 =
√
2κâ, (6.36)

ĉ
(s)
2 =

√
γϕ
2
σ̂(z)
s , (6.37)

where ĉ1 represents the field losses out of the cavity, and ĉ2 is rate of dephasing
of the qubits, which can be understood as undetected spontaneous emission
of the qubits, as demonstrated in [33].

The transmitted outgoing field is described by the field leaving the cavity,
in the path of the beamsplitter:

ĉout =
√
2κ1(â+ β). (6.38)

At this stage, the relative phase between the outgoing field and the local
oscillator, as shown in equations (5.16) and (5.17), has not been considered.
To address this, the relative phase can be assigned to the operator through
the following transformation:

ĉout = ĉ3 → ĉoute
iϕ (6.39)

6.4 Adiabatic elimination of the cavity

When the interactions between the qubit and the cavity field mode are disper-
sive, causing the energy exchanges between the qubit and the cavity to freeze,
the cavity stabilizes. The implications of this can be examined by transition-
ing to the Heisenberg picture and observing the time evolution of the cavity
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operator â. By applying the Heisenberg equations of motion, the evolution of
the cavity is characterized by:

˙̂a = −i [â, H]− κâ+ F̂ . (6.40)

Here the operator F̂ describes the a Langevin noise originating from the
vacuum-field, and has vanishing expectation value. The damping term, −κa,
stems from a non-Hermitian term −iκâ†â to account for the leakage out of
the cavity[19]. The dynamics of the cavity, which is assumed to rapidly av-
erage to zero, is uninteresting for the readout of the qubits, and therefore is
adiabatically eliminated, setting ˙̂a = 0. It is assumed in this study that uti-
lizing the drive field’s reference frame leads to a decent approximation for the
elimination of the cavity in the dispersive regime. However, it must be recog-
nized that in practice, superior approximations could potentially be achieved
through the selection of alternative reference frames[34]. Isolating â on the
left hand side yields the equation for the constant cavity-field:

â =

√
2κ1β

i∆dr + κ+ i
∑

s χsσ̂
(s)
z

. (6.41)

Computation of the inverse matrix in the denominator is possible, but such
algorithms are typically laborious and more inefficient than merely comput-
ing the eigenvalues. Fortunately, when analyzing the qubit dynamics within
the Schrödinger picture, where the only parameter of relevance to the state’s
evolution are the eigenvalues of the operator, when applied to the state.

Getting the cavity field operator is straight forward, since for an eigenequa-
tion M̂ |m⟩ = λm |m⟩, if the operator gets mapped to a power, then the map-
ping obeys f(M̂) |m⟩ = f(λm) |m⟩. This allows for diagonalization the cavity
field operator:

â =
∑
m

√
2κ1β

i∆dr + κ+ iλm
|m⟩⟨m| , (6.42)

where |m⟩⟨m| represents the outer product of the basis state vectors. The

eigenvalue λm is the eigenvalue of
∑

s χsσ̂
(s)
z , applied to the eigenvectors of

the computational basis, |m⟩ =⊗q |mq⟩, for some mq = {0, 1}.
The eigenvalues of σ̂

(s)
z of course depends on the state of the s’th qubit. It

is 1 in case ms = 0 and −1, when ms = 1. The eigenvalue, λm, is then given
for any arbitrary basis state as:

λm =
∑
q

(−1)mqχq. (6.43)

6.4.1 Trace preservation

This purpose of this section is to prove the trace preserving properties of
the stochastic master equation. This can function as a sanity check since
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the trace preservation ensures the normalized evolution of the density matrix,
guaranteeing a physically realistic model. To accomplish this, the trace of
each term is separately examined.

dρ(t) = −i
[
Ĥ, ρ(t)

]
dt+

∑
j

D[ĉj]ρdt+H[dW ∗(t)ĉout]ρ(t) (6.44)

Trace preservation of the term: −i[H, ρ]
The proof begins by writing the commutator

Tr[−i[H, ρ]] = −iTr[Hρ− ρH]

= −i (Tr[Hρ]− Tr[ρH]) .
(6.45)

By utilizing the cyclic property of trace, the proof can be completed:

Tr[−i[H, ρ]] = −i (Tr[Hρ]− Tr[Hρ]) = 0. (6.46)

Consequently, it is deduced that this term preserves the trace.

Trace preservation of the term: D[ĉ]ρdt

By inserting the definition of the Lindblad operator as detailed in Eq. (6.5),
and computing its trace, the following result is obtained:

Tr[D[ĉ]ρdt] = Tr

[
ĉρĉ† − 1

2

{
ĉ†ĉ, ρ(t)

}]
dt

= Tr
[
ĉρĉ†

]
dt− 1

2
Tr
[{
ĉ†ĉ, ρ

}]
dt

(6.47)

The anti-commutator is then explicitly written out as:

Tr[D[ĉ]ρdt] = Tr
[
ĉρĉ†

]
dt− 1

2
Tr
[
ĉ†ĉρ+ ρĉ†ĉ

]
dt

= Tr
[
ĉρ(t)ĉ†

]
dt− 1

2
Tr
[
ĉ†ĉρ

]
dt− 1

2
Tr
[
ρĉ†ĉ

]
dt.

(6.48)

The cyclic property of the trace permits the rearrangement of its contents,
yielding:

Tr[D[ĉ]ρdt] = Tr
[
ĉ†ĉρ(t)

]
dt− 1

2
Tr
[
ĉ†ĉρ

]
dt− 1

2
Tr
[
ĉ†ĉρ

]
dt

= Tr
[
ĉ†ĉρ

]
dt− Tr

[
ĉ†ĉρ

]
dt = 0.

(6.49)

Therefore, it is deduced that this term is unconditionally trace-preserving.
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Trace preservation of the term: H[dW ∗(t)ĉout]ρ(t)

The definition of the super-operator is explicitly written out as defined in
equation (6.16),

Tr[H [dW ∗(t)ĉout] ρ] = Tr[dW ∗(t)ĉoutρ] + Tr
[
ρ(dW ∗(t)ĉout)

†
]

− Tr
[
Tr
(
dW ∗(t)ĉoutρ+ ρ(dW ∗(t)ĉout)

†
)
ρ
]
.

(6.50)

Computing the dagger is trivial,

(dW ∗(t)ĉout)
† = dW (t)ĉ†out. (6.51)

This, coupled with the understanding that the traces are composed of scalars,
enables the rearrangement of the factors.

Tr[H [dW ∗(t)ĉout] ρ] = Tr[dW ∗(t)ĉoutρ] + Tr
[
ρdW (t)ĉ†out

]
−
(
Tr[dW ∗(t)ĉoutρ] + Tr

[
ρdW (t)ĉ†out

])
Tr[ρ].

(6.52)

Assuming that Tr[ρ(t)] = 1, which it is defined to be, the rest becomes
trivial.

Tr[H [dW ∗(t)ĉout] ρ] = Tr[dW ∗(t)ĉoutρ] + Tr
[
ρdW (t)ĉ†out

]
−Tr[dW ∗(t)ĉoutρ]− Tr

[
ρdW (t)ĉ†out

]
.

(6.53)

Therefore,

Tr[H [dW ∗(t)ĉout] ρ] = 0. (6.54)

While this term is guaranteed to be trace preserving within the bounds of
the definition of the density matrix, it is important to note that within the
context of numerical precision, an assumption has been made, which is why
the word “assuming” was written in bold. This term is trace preserving if
and only if the condition Tr[ρ(t)] = 1 is satisfied. This condition will become
important in Sec. 7.7.

7 Implementation

All code written for the simulator and plotting, along with how to run it, can
be found here:
https://github.com/anas2660/MSc-quantum-trajectories-simulator
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7.1 Implementation Considerations

Numerous design considerations have been made in the course of implement-
ing the simulator, all aiming towards preserving high performance, thus fa-
cilitating the simulation of larger systems on the same hardware. This has
necessitated keeping scalability at the forefront of design decisions, which, in
essence, implies that the implementation should be able to efficiently leverage
hardware enhancements and the growing number of processing cores intro-
duced with each new generation. Ideally, the design should be such that it
could be effectively run on GPUs as well as CPUs, considering that GPUs
are typically engineered to yield significantly higher throughput for floating
point operations. In this thesis, a GPU implementation hasn’t been made,
only architecture considerations with respect to it.

To design an efficient system, one must first understand what tools are
available in the underlying platform. It is easy to forget that processors are
not complete blackboxes, but in fact physical machines with capabilities and
functions like any other machine. They just happen to be solid state. For
every generation the design of the chip changes slightly, however, to retain
backwards compatibility in software, such that the same software can be run
on newer generation processors, chips are designed to run the same instruc-
tion set architecture (ISA). This means that the encoding for the same core
instructions will remain the same through generations. As processors advance,
chip designers will add new instructions, for the sake of performance, in the
form of extensions.

In the context of this project, the prevalent desktop architecture, x86 64

(as of the time of writing), has been selected as the target. This architecture
has seen the addition of a multitude of extensions over the years, some of
which have gained widespread support across any recent generation of proces-
sors, while others have not. The design of our implementation is structured
around the vector instruction set extensions up to and including AVX2, as
well as the fused multiply-add (FMA3) extensions. This blend of instruction
set architecture and instruction set extensions ensures that the implementa-
tion will be widely supported on any desktop processor released over the past
decade. Nevertheless, this does not imply that the exact solution is completely
incompatible with older hardware, as discussed in Section 7.1.1.

7.1.1 Choosing the right tools

Results relevant to our objectives are primarily Monte Carlo-like composites
of multiple runs. Consequently, the entire system needs to be custom-built to
enable a configuration that is highly optimized for the specific requirements
of the simulation described in this thesis.

Firstly, a programming language, in which to write our implementation is
chosen. The natural choice would be to choose the most efficient language,
which is C, as can be seen in Table 3. However, Rust was chosen for the
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Language Energy

C 1.0
Rust 1.03
C++ 1.34
Ada 1.7
Java 1.98
...

...
Ruby 69.91
Python 75.88
Perl 79.58

Language Time

C 1.00
Rust 1.04
C++ 1.56
Ada 1.85
Java 1.89
...

...
Perl 65.79

Python 71.90
Lua 82.91

Table 3: Approximate normalized energy efficiency and execution time for
programming languages[35]. The list is shortened to only show the top and
bottom of the original table.

following reasons:

• Rust nearly matches the speed of C.

• It is a compiled language, and therefore giving access to machine in-
structions, such as the vector instructions in AVX2.

• Rust has higher level features such as operator overloading which in this
case can make the code more understandable.

No libraries or packages were used other than rand, which generates ran-
dom numbers, and rand distr, which is for sampling on the normal distri-
bution using the given random numbers. However, the implementation relies
on the portable simd module of the standard library, which is, as of writing,
in nightly only. This means that the interface to it is subject to change, and
therefore our implementation might need minor changes in order to run in
the future. It compiles and runs as of rustc 1.69.0-nightly (34e6673a0

2023-02-25). A benefit of using portable simd rather than using explicit
instructions for AVX2 and FMA3, is that the compiler can replace the code with
something more portable, if the target architecture does not support those
instructions.
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7.1.2 Eliminating common inefficiencies
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Figure 10: Simplified view of a Kabylake/Skylake processor[36, 37]. The blue
arrows represent a µOP1 transfer, and purple arrows represent data transfers.
Everything in this diagram runs in parallel every cycle, except for the individ-
ual operations within each execution unit, which represents the capabilities
of that specific execution unit. Each execution unit can only perform one
operation every cycle. For example, there are a maximum of 6 µOP transfers
from the front end to the execution engine per cycle. There are 8 execu-
tion units that execute with respect to their capabilities in parallel per cycle.
The relevant execution unit capabilities include: ALU, arithmetic-logic unit,
which does logical operations such as and and arithmetic. DIV, does division.
MUL, does multiplication. FMA, fused multiply-add, does vector floating point
multiplication and addition in a single µOP. Where V and Vect are short for
“vector”. INT is short for “integer”, and FP is short for “floating point”. For
example, INTV MUL means “integer vector multiplication”.
1A µOP is an instruction that can be executed in at least one of the execution units. A

normal instruction can expand to multiple µOPs when decoded in the front end.

The first common inefficiency, which has been addressed, is the execution of
redundant instructions. For instance, consider the instructions required for
running the Python interpreter. More specifically, the ones for interpreting
types in expressions, by reading metadata, to compute what necessary instruc-
tions to execute. This inefficiency has been simply been addressed by using
a statically typed language which compiles to native machine code, such that
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all reasoning about which specific instructions to execute has been done at
compile time by the compiler.

The second common inefficiency, is branch misprediction. Modern proces-
sors are highly parallel machines, even within each core. This can be observed
in Fig. 10, wherein every component executes in parallel per cycle, except
for the capabilities listed within each execution unit, which represent said
capabilities of each respective execution unit. The reason this is important,
is that instructions cannot be executed in parallel if there are dependencies
between them, such as conditional jumps introduced by an if-statement in
the programming language. The solution to this is partially embedded in the
CPU in the form of a branch predictor, as can be seen in the front end in
Fig. 10. The job of the branch predictor is to choose a code-path before get-
ting a definitive answer to the jump condition. If it predicts correctly, this lets
instructions be executed as if it was linear unconditional code. However, there
is also a chance of it predicting incorrectly, in which case it has to undo the
instructions that were wrongfully executed. This, of course, has a cost. For
our target processor, the cost is approximately 16 to 20 cycles[38], depend-
ing on if the relevant instructions are still contained within the L1i cache,
which can also be seen in Fig. 10. The most effective strategy to minimize
this cost is to reduce code branching to the greatest extent possible, particu-
larly in performance-critical code. However, branching is sometimes required,
and regarding these branches, they should be as predictable as possible. This
could be having a much higher probability of going down one of the code
paths. Some compilers let the programmer specify approximate probability of
expressions evaluating to true, and the compiled code layout will then be ap-
propriately optimized, such that the branch predictor is more likely to choose
the most likely branch[39]. However, this feature is, as of writing, unstable in
Rust, and therefore has not been used.

At first glance, the cost of a wasted cycle, might not seem significant. Af-
ter all, a cycle is only 238 picoseconds for a 4.2 GHz processor. However,
calculating the computational potential for each cycle can be a more effective
means of communicating its value. This can be done by counting the number
of execution units, which have the FP FMA capability. For our target proces-
sor, two execution units have such a capability as can be observed in Fig. 10.
A single FMA instruction can perform 8 multiplications and 8 additions simul-
taneously, for single precision floating point numbers. This means, there is a
potential of,

2 · (8 FLOP + 8 FLOP)/cycle = 32 FLOP/cycle (7.1)

wasted for a single unused cycle. Therefore, the potential computational value
wasted by a branch misprediction could be up to,

20 cycle · 32 FLOP/cycle = 640 FLOP. (7.2)

The last, and by far the worst within the domain of compiled languages, is
cache misses. This occurs when data required for computation is not within
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any of the levels of cache and has to be transferred from the system RAM.
The cost of this happening is approximately 256 wasted cycles for a 4.2 GHz
Skylake processor[38]. This means the approximate maximum computational
value lost is,

256 cycle · 32 FLOP/cycle = 8192 FLOP. (7.3)

To avoid this happening for every data load, modern processors employ tech-
niques such as having multi-level memory caches, and prefetching.

Multi-level memory caches are memory storage, built into the processor
itself, and is much faster to access than system RAM. The capacity of these
caches are, however, much lower than system RAM, and the faster the cache,
the lower the capacity. A data transfer from one these caches is done 64 bytes
at a time[38], in what is called a cache line. So to efficiently use these caches,
it would be optimal to keep the amount of actively used data low, and keep
it as densely packed as possible. Ideally all 64 bytes of a cache line should be
relevant to the computation.

Prefetching is the ability to fetch data before it needs to be accessed,
by analyzing data access patterns. An example of this would be sequential
constantly strided data accesses, which means that there is a constant offset
between the locations of consecutive data accesses. The prefetcher would
recognize this access pattern and subsequently prefetch the data at the next
location in the series. Hence, it is considered ideal to maximize the ordering
and predictability of data accesses as much as possible.

Another option is to employ manual prefetching using prefetch intrinsics.
However, it should be noted that this approach can potentially impact per-
formance negatively, as excessive prefetching can displace valuable data from
the cache.

7.2 Number Representation and Vectorization

As everything is implemented from the ground up, it gives opportunity to
make assumptions for the sake of performance. The processor is capable of
doing computation on vectors, and one should therefore design their system
to fully leverage this fact. If the system would be written purely using scalar
mathematics, it might look like the sketch drawn in figure 11. It is drawn to
illustrate that vector math potential goes unused, as element, two, three, and
four remain empty.
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In a more traditional sense, it is common to optimize the slow parts, such
as matrix multiplication or even addition. However, sometimes scalar values
are needed, and in such a case, no gain can be had from manually optimizing
operations using vectors. In other cases, horizontal operations are needed,
where the elements of a single vector should be added or multiplied together.
This cannot be done in a single instruction. This approach should produce
something akin to the sketch in figure 12. Note that there is increased vector
utilization, and the total time of a run is shorter than the purely scalar case.
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Figure 12

In this case, the knowledge of the total system can be applied to design a
more efficient architecture. It is known that there needs to be simulations of
trajectories happening multiple times. Additionally, no trajectory can inter-
act with, or require the results of another trajectory. This Monte Carlo-like
configuration is known as embarrassingly parallel [40]. It is established that
there is no branching code when simulating a single trajectory1. Consequently,
the definition of a number can be reformulated such that every element rep-
resents a scalar value for an separate trajectory. This redefinition has been
accomplished as follows,

pub2 type Real = std::simd::f64x4;

The rest of the mathematical constructs will then look standard on the surface.
For example,

1Branching does not necessarily exclude vectorization. It would, however, reduce the
potential efficiency gains[41].

2The Rust keyword pub means public, which implies that whatever it is applied to can
be used outside of the file in which it is defined.
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pub struct Complex {

pub real: Real,

pub imag: Real

}

This means that in reality every element of our operator is in itself a vector.
When an operator, vector, or scalar is referred to in the code, it is referring to it
for multiple trajectories. Therefore, any operation between any mathematical
constructs, will be using vector instructions. The goal is that it would produce
results similar to the sketch in Fig. 13. In reality it will not be as perfect as
in the sketch for a variety of reasons, such as stack management, histogram
computations, and random number calculations.
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Figure 13

Note that the overall time of a run is longer than even the scalar case, as
there is higher execution latency associated with vector instructions. However,
due to the chaining of vector instructions, and instruction pipelining, the cost
of high instruction latency should be dramatically reduced. Although the
time of a run is longer, it is more efficient as it is simultaneously completing
four separate trajectories instead of one. The downside of this approach, is
that the system would be incapable of simulating a single trajectory, or any
number that is not a multiple of the vector size in the definition of Real.

7.3 Fused Multiply Add

An important optimization to consider is utilizing the FMA instructions. These
instructions allow for both vector multiplication and addition to be performed
simultaneously within a single instruction, without any increase in latency
compared to a single vector multiplication[42]. This means that the vec-
tor additions become effectively free if both operations are required. These
instructions also have the same throughput as normal vector additions. In
figure 10, it can be observed that a floating point fused multiply-add (FP
FMA) can be performed by the same number of execution units as those ca-
pable of performing floating point multiplications. However, this capability
is not listed separately because the multiplications are decoded to FMA µOPs,
wherein zero is added.
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7.4 Theoretical Computation Limit of a Core

The theoretical computation limit of a core, at least for our purposes, can
be calculated almost purely by looking at the processor block diagram in fig-
ure 10. As there are multiple execution units able to perform computation per
core, the ones that can execute the required instructions are simply counted.
The instructions that this implementation has been based is the FMA exten-
sion. There are two execution units able to perform those instructions, port
0 and port 1. Now, simply multiplying by the clock speed, which is 4.2 GHz
in our case, as well as the number of floating point numbers within a vector,
yields:

perff32 = 2 · 4.2GHz · (2 · 8) FLOP = 134.4 GFLOP/s. (7.4)

Note that the extra 2 within the FLOP number is because there are 2 floating
point operations done per FMA instruction, a multiply and add3. Another thing
to note is that this calculation was done with 32 bit floating point numbers
in mind. Doing the same for 64 bit floating point numbers would yield half
the throughput,

perff64 = 2 · 4.2GHz · (2 · 4) FLOP = 67.2 GFLOP/s. (7.5)

To get the total computation limit of the whole processor would just be to
multiply by the number of cores in the same processor.

However, this limit can never be hit in reality, as useful programs do
other things, such as stack management, data loading, data writing, logic,
and branching.

7.5 Stochastic Numerical Solutions

The noise term of Eq. (6.30), represents a challenge for computing a solutions
to the density matrix. A stochastic equation, in its differential form, written
as:

dY (t) = a(t, Y (t))dt+ b(t, Y (t))dW (t), (7.6)

is known as an Itô process. Itô calculus is more tricky than regular calculus, as
key ideas of regular calculus cannot be assumed to hold with a stochastic pro-
cess. In addition, the Wiener process is stationary, such that the distribution
of W (t) is not dependent on the time. The Wiener increment at time t = t1,
is also completely independent of the Wiener increment at time t = t2, for any
t1 ̸= t2. Given the inherent randomness of the process, it is understood that
providing an exact singular solution to Eq. (7.6) is not feasible. Instead, the
best that can be hoped for, is the probability distribution of the solutions.

3This can also be a subtract.
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The noise is independent of the system, and therefore the expectation value
of the system, is simply the evolution of the non-stochastic term:

⟨Y (t)⟩ =
∫ τ

0

a(t, Y (t))dτ (7.7)

This aligns with the anticipated physical interpretation of the density matrix
evolution, as expressed in Eq. (6.30), which expected density evolution is then
described by the Lindbladian master equation:

⟨dρ⟩ = −i
[
Ĥ, ρ(t)

]
dt+D[ĉout]dt. (7.8)

It suggests that irrespective of whether the system divulges its information to
a measurement apparatus, the system continues to release that information
into its environment. This implies that an observer doesn’t need to be sentient.

Modifications to conventional numerical integration schemes are necessary
for their application to Itô processes. This requirement primarily arises due
to certain characteristics, such as the chain rule, not being compatible with
Itô calculus. A viable approach could be to operate directly on the Euler-
Maruyama method, which is the stochastic differential equivalence (SDE) of
the Euler numerical integration method.

At a cursory glance, one might naively assume that the numerical error
of this method is of the order O(∆t), an ordering referred to as strong order
convergence. However, this assumption holds true only for the diffusive non-
stochastic term. Another scaling of interest is introduced by the noise term,
which contributes an additional error to the solution. In the context of the
Euler-Maruyama method, this is a weak order convergence of O(

√
∆t). In the

interest of performance, it is ideal to avoid the selection of step sizes orders
of magnitude smaller just to offset the poor scaling of the numerical method.
Opting for a more robust numerical scheme with improved weak-scaling helps.
However, it is important to underline that conventional Runge-Kutta schemes
do not yield solutions for Itô diffusion; rather, they converge to what is referred
to as a Stratonovich integral, which typically yields a different result[43].

A few different numerical schemes have been identified. Simpler schemes
tend only to work when the functions commute[44], a trait that is generally
untrue for the heterodyne SME, or is complicated when applied to matrices.
The method used in this thesis, is a Runge-Kutta scheme which has strong and
weak ordering ofO(∆t). The numerical solution for finding Y (tk+∆t) = Yk+1,
where tk+1 − tk = ∆t, is given by the algorithm:

k1 = ∆t a(tk, Yk) +
(
∆Wk − Sk

√
∆t
)
b(tk, Yk), (7.9)

k2 = ∆t a(tk+1, Yk + k1) +
(
∆Wk + Sk

√
∆t
)
b(tk+1, Yk + k1), (7.10)

Yk+1 = Yk +
1

2
(k1 + k2) . (7.11)

Here Sk = ±1, sampled with equal probability. A more comprehensive anal-
ysis of the numerical scheme has been done in previous works[45].
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7.6 Multi-core parallelism

As explained in an earlier section, the computational task of simulating quan-
tum trajectories is almost entirely parallel, as no trajectory may interact with
another. This means, that as well as being able to accelerate the task using
vector instructions, it is also trivial to accelerate the task by running it on
multiple cores in parallel. The number of cores in a system, is of course easier
to scale than the individual core efficiency. In fact, in many-core systems, such
as super computers, it can be observed that the processor core clock speed is
lower than that of an ordinary desktop processor[46]. Therefore, the ability to
scale well to multiple cores is tremendously important, if the goal, apart from
simulating correctly, is maximum performance. If the raw data of all trajec-
tories was the only thing to be saved, the simulation could be implemented as
entirely parallel. However, it quickly becomes unfeasible, from a data storage
perspective, to run simulations for multiple different cavity and qubit config-
urations. For example, the data storage requirements of a single simulation
of 105 trajectories with 104 steps, for a two qubit system, computed at 32-bit
precision, would be,

105 · 104 · 4B · 4 = 16GB (7.12)

The extra 4 is for the probabilities of each of the possible computational states
for a 2 qubit system, 00, 01, 10, and 11.

A more natural approach is to reduce the data to only the needed parts
before writing to disk. For example, to get an overview over all trajectories
simulated, a 2D histogram is compiled from them, with steps in time being
horizontal, and measurement probability being vertical, with labeled rows
dedicated for each possible computational state. Meaning the bottom of a
row would represent zero probability of measuring the labeled computational
state, and the top of the same row would represent a probability of one for the
same measurement. An example of this histogram can be seen in figure 14.
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Figure 14: Example histogram of 106 trajectories.
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This data reduction process is not parallel when combining data from
multiple threads. Therefore, the simulator simply keeps a separate histogram
for each thread, and simply combines only the histograms at the end. As
a consequence, a reduction in the total amount of data that needs to be
communicated between threads is facilitated, thereby resulting in increased
parallelism, albeit at the expense of higher memory usage.

It may seem inconsequential optimizing small tasks, such as histogram
generation, for parallelism, however, small gains in parallelism can provide
exponential gains in maximum parallel performance. This is what can be
inferred from Amdahl’s law, which relates the speedup of a fixed workload to
the number of cores and parallel proportion of the task, as follows[47],

S =
1

1− p+ pn−1
, (7.13)

where S is the speedup, p is parallel proportion and n is the number of cores.
This is plotted in figure 15 to visually demonstrate the scaling.
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Figure 15: Amdahl’s law plotted as a function of (p, n). The core count,
n, as well as the speedup, S, are plotted with logarithmic scaling. In the
speedup-core count plane are contour lines with interval of 0.1 parallelizable
proportion.

7.7 Numerical Error

When computation is done on a processor with non-integer values, it is usually
done with floating point numbers. Floating point works as scientific notation
in binary, consisting of an exponent for an order of magnitude, a sign, and
a fraction. As computation is done in radix two, the order of magnitude
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is specified as a power of two. The floating point implementation of our
target architecture is based on the IEEE 754 standard[48], giving us 52 bits
of fraction, which is approximately 16 decimal digits of precision, and 11 bits
of exponent for the order of magnitude. This is number of bits should keep
numerical errors low, relative to our needs. However, as results of previous
computations get reused for next operations, this error has the ability to add
up as the number of chained computations increases. This error should not
completely overwhelm the desired result for our purposes.

As demonstrated in subsection 6.4.1, the error induced by the floating
point computations could render the system unstable. This is due to the
inability to guarantee that the trace of the density matrix is one. Only an
approximation can be asserted, Tr[ρ] ≈ 1.

The term amplifying our error is,

Term3(dρ(t)) = H[dW ∗(t)ĉout]ρ(t). (7.14)

The floating point error is first introduced into the density matrix factor, ρ(t).
Therefore, correcting our error locally here should introduce the least amount
of side-effects in our system,

H[dW ∗(t)ĉout]ρ(t) → H[dW ∗(t)ĉout]
ρ(t)

Tr[ρ(t)]
(7.15)

In the implementation, a less precise method of normalizing the density ma-
trix between integration steps was opted for. This decision was based on the
employed numerical integration scheme, which would necessitate the compu-
tation of the trace and division twice for each step, rather than once.

ρ(t) → ρ(t)

Tr[ρ(t)]
(7.16)

This adds error to the coherence elements of the density matrix as the error
of those elements do not necessarily have the same sign as the errors of the
diagonal. It was determined that this additional minor error was qualitatively
acceptable, as the stability of the system was regained with less computation
needed.

7.7.1 Rapid oscillations and high ∆t

In our stochastic master equation, the term,

Term1(dρ(t)) = −i
[
Ĥ, ρ(t)

]
dt, (7.17)

induces a frequency which can potentially be multiple orders of magnitude
higher than the rest of the terms. This means that ∆t has to be set to
a number which is much lower than the length of a period, such that the
oscillations of this term can be captured properly in our results.
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Ideally the ∆t should be set as high as possible while still giving accurate
results. To increase the maximum ∆t value the error of this term alone, had
to be removed. This has been done by solving that term analytically. By
ansatz the solution is found,

ρ(t) = e−iHtρ(0)eiHt. (7.18)

Using the analytical solution for this term alone, allows ∆t to be orders of
magnitude higher in some more extreme cases while maintaining identical
results.

7.8 Potential improvements

As with any system, there are flaws and imperfections. Here are some potential
improvements that have not been implemented.

• When writing computation results to memory there is an opportunity
to use stream intrinsics, which would let us write to memory without
loading that memory into cache. This would make it less likely that
a cache miss happens when loading data which is actually needed for
computation.

• When computing histogram data there is an opportunity to use gather
and scatter intrinsics rather than have reading and writing of memory
be with scalar instructions. However, scatter intrinsics are in the AVX512
family of instruction set extensions, which is beyond the capabilities of
our target hardware.

• In our system the results of all threads are waited for and then combined
in a single thread. This could be improved by combining the result data
on multiple threads. This would improve scalability when increasing
core count.

• The plotting is done using a separate plotting program written in python
which loads the result files from the simulation, and plots it using
matplotlib. This could be improved by using a Rust-native plotting
library, as the simulation data would already be in memory. This would
also give the option to not write the data to disk at all.

• There could be a graphical user interface, making it faster to iterate
through different system configurations, including changing the quan-
tum circuit which is applied to the qubits.

• When scaling up to more qubits, it becomes less likely that it will fit
in cache, and it could therefore be beneficial to manually place prefetch
intrinsics, when it is known that memory accesses might not be contigu-
ous, such as in operator/matrix multiplication.
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Some performance metrics of our final implementation can be found in ap-
pendix A.

8 Results

The subsequent section is dedicated to the presentation and analysis of exam-
ples of data extracted from the simulation. Natural units of ℏ = 1, are used
throughout the simulations, to simplify expressions, and because the proba-
bility densities, remains unaltered. The simulation model provides a powerful
framework to quickly and efficiently obtain new data, due to the optimization
considerations detailed in Sec. 7.

8.1 First simulations

Unless indicated otherwise, the simulation is run on a default set of values,
selected to mirror physically realistic values employed in experimental setups.
It is assumed that the entirety of cavity decay transpires to the measured
signal, thereby setting κL = 0, and κ1 = κ. This premise ensures that the
detection losses can be solely attributed to detector inefficiencies, which are
assumed minimal, setting the detector efficiency at η = 0.96. The relative
phase is chosen such that ϕ = 0, allowing for the integrated current to be
symmetrically separated about the x̂ quadrature. If the complex part of β,
is incorporated into the phase ϕ, then without loss of generality, β is as-
sumed to be real, with the default value chosen as β = 4

√
MHz. To am-

plify the strength of the outgoing field, the cavity is probed in proximity to
the resonator frequency, with ∆dr = 50MHz ≈ 0. Furthermore, to validate
the dispersive regime, χ0 = 0.6MHz = 0.06g is chosen, corresponding to
∆dq −∆dr = ωq − ωr = g2/χ0 ≫ g.

Depictions of measurements for a two-qubit system across 4000 trajectories
can be found in Figures 16 and 17. The initial state subject to measurement
is an entangled state, defined as follows:

|ψ⟩ = 1

2

(
|00⟩+

√
3

2
|01⟩+ 1√

2
|10⟩+ |11⟩

)
. (8.1)

The dispersive shifts of the two qubits are specified as χ1 = χ0 + 0.1MHz
and χ2 = χ0 − 0.1MHz. The separation between χ1 and χ2 is necessary to
distinguish between the two states of |01⟩ and |10⟩ in the integrated signal.
The simulation illustrates that an extension of the measurement duration is
instrumental in projecting a larger number of trajectories onto the classical
computational basis states. This observation is further corroborated by the
integrated currents, seen from the difference between the figures 16a-16d and
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17a-17d. The separation between the qubit state distributions expands lin-
early with time, while their standard deviation increases as

√
t, in accordance

with the Wiener increments.

8.2 Effects of the dispersive shift

Envision a scenario involving the measurement of a single qubit undergoing
a gate operation. The readout procedure will project the qubit onto its basis
state, thereby introducing error of the gate operation. To circumvent this, the
qubit could be significantly detuned from the cavity, resulting in a decrease
in χ which causes the ac-Stark term, χââ†, to reduce. The utility of such
an operation might lie in the potential for parallelization of the computation,
allowing for computation to be performed on one subsystem while simultane-
ously enabling the readout of another. This can be achieved by driving the
qubit with a square pulse, implementing the following Hamiltonian:

Ĥ = Ωσ̂x. (8.2)

When the Hamiltonian is run for a time t = π/(2Ω), the qubit, assuming
no decay, has successfully completed an X̂ gate operation. Adding Eq. (8.2)
to the dispersive Hamiltonian, gives a description for the dynamics of the
measured qubit under rotations about x. When the detuning between the
qubit frequency, and the resonator frequency, ∆ = ωs − ωr, decreases, then
the measurement of the qubit increases. Fig. 18a illustrates the fidelity of the
gate, as a function of the dispersive shift, χ, performed on a single qubit. It is
evident from the figure, that the fidelity doesn’t tend towards zero at higher
values of χ. The dispersive shift works as a sort of detuning, and therefore
at large values of χ de-excites the cavity away from the resonance, reducing
the strength of the measurement. When adding another qubit into the cavity,
while still performing a X̂ gate on the first, the interaction term destroys the
fidelity of the gate, as dipicted in Fig. 18b.

To then properly run gates on one qubit, both qubits will have to be mea-
sured only weakly, which makes the parallelization of the readout on one qubit,
and computation on other qubits difficult. Additionally, this scheme does not
allow gate operation between two qubits, which are required for achieving
quantum supremacy. One can circumvent this issue, by coupling qubits to
multiple resonators, such that measurement can be performed independently
on a subset of qubits[49].
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Figure 16: 4000 trajectory simulations and their simulated integrated currents,
on a time duration of 0.125µs. The colors in the current plots represent the
probability of measuring the respective computational state.
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Figure 17: 4000 trajectory simulations and their simulated integrated currents,
on a time duration of 0.625µs. The colors in the current plots represent the
probability of measuring the respective computational state.
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Figure 18: (a) and (b) depicts the mean fidelity and standard deviation of the
X̂ gate from 12 800 trajectories, when varying χ for 200 samples. The inserted
subfigure in (a) is a zoomed in version, with the 0.99 fidelity market by the
blue line. The two figures are plotted with a β = 21

√
MHz, in a rotating

frame moving with the frequency of the qubit under gate operation. (c) and
(d) illustrates the fidelity while varying both χ and β with 4 000 and 400
samples for (c) and (d) respectively. Note in (d), that the fidelity dips when
the qubits are at resonance to each other. (a) and (c) represents the fidelity
of a single qubit in the cavity, while (b) and (d) represents two qubits, with
the second qubits χ held constant. The Ω frequency of the gate operation is
1 GHz.
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If the state of a system is completely unknown, i.e. the state is described
by a completely mixed state density matrix, then measurement should update
an observer’s knowledge about the state. To quantify this ignorance, consider
the purity of the state, defined by P = Tr(ρ2). For a completely mixed state
density matrix, with k qubits, and 2k distinct basis states, the purity at the
time when measurement commences is:

P = Tr
(
ρ2
)
= Tr

(
1

22k
I

)
=

1

2k
. (8.3)

Measurement by heterodyne detection, has a limit to the information that
can be extracted for a set of qubits placed within the same resonator cavity,
with the same frequency of each of the qubits. The qubits are distinguished
by the ac-Stark shift, χsââ

†σ̂
(s)
z . If the value of χ is the same for each qubit,

then two computational basis states, |a⟩ and |b⟩, are mutually indistinguish-
able (degenerate), if the binary representation of one is a permutation of the
other’s digits. In this case they will experience the same state dependent
shift, contributing to the current equally and providing no distinguishing in-
formation. An example to this are the indistinguishable states |01⟩ and |10⟩,
because their corresponding eigenvalue when operating on the ac-Stark shift
is the same: ∑

s

χââ†σ̂(s)
z |01⟩ ⊗ |n⟩ = λ |01⟩ ⊗ |n⟩ , (8.4)∑

s

χââ†σ̂(s)
z |10⟩ ⊗ |n⟩ = λ |10⟩ ⊗ |n⟩ , (8.5)

where λ = (χ − χ)n = 0. That means that the mixed state density matrix

ρ =
∑2k

m |m⟩⟨m| will half the time evolve to a pure state density matrix, where
p00 → 1, or p11 → 1, and the other half the time, will evolve into a mixed
state density matrix, where p01 = p10 = 1/2, due to the degeneracy of the
two states, where k is the number of qubits. Therefore the average purity
can at most be determined to be ⟨Pmax⟩ < 2−k(k + 1). This is illustrated
in Fig. 19, for 1, 2, 3 and 4 qubits in the cavity. When the χ’s are varied
it becomes possible to properly distinguish between every qubit state, with
greater variation, leading to faster distinction between the states. Note that
the standard deviation does not capture the idea, that some trajectories, no
matter the number of qubits in the resonator, will obtain a maximum purity
of one. This is demonstrated in Fig. 20, where the two χ± = χ0 ± ∆χ/2 is
varied. To properly distinguish between the two states over a measurement
time of 0.625µs, the difference has to be about ∆χ = 0.04MHz.
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(d) Four Qubits

Figure 19: The average purity and standard deviation from 4 480 trajectories
of a cavity with one (a), two (b), three (c), and four (d) qubits.
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Figure 20: The maximum purity after a time of 0.625µs from 12 800 sim-
ulated trajectories, over 60 samples of ∆χ, with the probing strength of
β = 15

√
MHz. With number of qubits, k = 2. The shaded area corresponds

to one standard deviation from the mean, and the initial state of the system
was prepared in a completely mixed state, ρinitial = 2−kI.

8.3 The Zeno effect

An interesting property of the simulation, is seen when the system is sub-
ject to strong measurements, while also under the operation of a gate. The
application is not what is strongly considered here, which has been analyzed
in previous works[50]. The measurements during gate operation collapses the
state, before the desired unitary operation can be executed. This exercise is to
gain insight into the behavior of a driven qubit, under the influence of strong
measurements. The expectation is, that the time evolution of the system, will
experience quantum Zeno effect. To comprehend how, consider a qubit under
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the influence of R̂y rotations, with the Hamiltonian:

Ĥ = Ωσ̂x (8.6)

The state evolution of the system given by:

|ψ(t)⟩ = e−iĤt |ψ(0)⟩ = (cos(Ωt)I − i sin(Ωt)σ̂x) |ψ(0)⟩ (8.7)

Or in terms of the state coefficients:

a(t) = cos(Ωt)a0 − i sin(Ωt)b0, (8.8)

b(t) = cos(Ωt)b0 − i sin(Ωt)a0. (8.9)

Suppose the state is initialized to a(t = 0) = a0 = 1, and instead of heterodyne
detection, the qubit was measured directly such that a measurement resulted
in a projection onto the basis-states, in accordance with the quantum jump
formalism. If n measurements are made, equally spaced during the time T ,
then the probability of each measurement collapsing the state into |0⟩, after
time T , is given by P (m = 0) = |cos(ΩT/n)|2n. In the limit for large n this
probability will approach unity, and the constant measurement would have
frozen the evolution of the system.

P (x = 0) = lim
n→∞

|cos(ΩT/n)|2n = lim
n→∞

∣∣∣1− 1
2

(
ΩT
n

)2∣∣∣2n
= lim

n→∞

∣∣∣(1− 1√
2
ΩT
n

)n (
1 + 1√

2
ΩT
n

)n∣∣∣2 = e
1√
2

Ω
n e

− 1√
2

Ω
n = 1

(8.10)

Under regular measurements, the time that the system is expected to be in
the ground state is proportional to τ ∝ n/Ω. In the case of heterodyne
detection, where each measurement isn’t a direct projection, the Zeno regime
is reached when the cavity is strongly probed and the time it takes to project
the trajectory onto its computational basis states, is much faster than the
rabi oscillation. Similarly, the time that the system is expected to remain
primarily in a specific state, is proportional to τ ∝ β/Ω. This is illustrated in
Fig. 21a and Fig. 21b, where the strong probing disturbs the Rabi oscillations.
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Figure 21: A single trajectory in the Zeno regime, under different probing
strengths. The qubit is subject to Rabi oscillations, of the frequency Ω =
10GHz, and are prepared in an initial state |ψ⟩ = |0⟩.

8.4 State prediction from measurement records

Another use of the stochastic master equation, given that the physical con-
stants of the system are known, is to feed it a measurement record from the
physical system. The simulator implements the SME, allowing it to be used
as an analytical tool for experimental data. It can be used to compute the
probabilities for the physical system being in certain computational states.
This can simply be done, by solving for the random values within the current
calculation,

dIx = ⟨x⟩+
√
2

dt
dWx → dWx =

dt√
2
(dIx − ⟨x⟩) (8.11)

dIy = ⟨y⟩+
√
2

dt
dWy → dWy =

dt√
2
(dIy − ⟨y⟩). (8.12)
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This is built into the simulator as an option. For each trajectory simulated
in Fig. 22, a corresponding measurement record has been generated. The
simulations here are done with β = 50

√
MHz, and 3 · 104 steps.
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Figure 22: Four example trajectories, which could have physically occurred in
the lab, with which current measurement records are generated.

As for the initial state when simulating with specific measurement records,
it can simply be set to the completely mixed density matrix, i.e. the normal-
ized identity matrix, ρinitial = 2−kI, where k is the number of qubits. This
indicates that the observer has no knowledge of the system as it could equally
be in any state. Feeding the measurement records from the trajectories gen-
erated in Fig. 22, generates new trajectories as can be observed in Fig. 23.
These new trajectories represent the knowledge of the original system, given
that only information in the form of current measurement records had been
extracted, which is the case for real physical systems.
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Figure 23: Four recreated trajectories from the current measurement records
which were generated from the trajectories in figure 22.
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A notable feature is that, while the states |00⟩ and |11⟩ are recreated
nearly perfectly, the states |01⟩ and |10⟩ look identical. This is again is again
due to identical values of χ, which means that they are indistinguishable in
the measurement record, as described at the end of section 8.2. So both
indistinguishable states in the reconstructed trajectory would in this case be
an average of the two states.

9 Conclusion

This thesis presented a simulator for the stochastic evolution of a qubit system
coupled to a resonator. Designed with scalability in mind, the simulator can
efficiently simulate a large number of quantum trajectories. It does this by
leveraging parallel computing through vector instructions and multi-core pro-
cessing, facilitating the exploration of higher state dynamics. The simulation
conditions include continuous heterodyne detection when tuning frequencies
to the dispersive regime.

An analysis of the effects of the dispersive shift and the strength of the
resonator probing was carried out using the simulator. It highlighted the
degeneracy between certain computational states and proposed a method to
assess the impact of varying the separation between qubit frequencies (i.e.,
changing χ). Furthermore, the simulation demonstrated the manifestation of
the quantum Zeno effect when the cavity is strongly probed and the system
is subjected to a rotation about x.

The simulator, can be seamlessly integrated with experimental data in the
form of current measurement records. As it implements the stochastic master
equation presented in this thesis, it has the capacity to solve the stochastic
components utilizing the provided experimental data. This integration allows
for the extraction of all possible information from the signal, thereby providing
insightful predictions of quantum states. This conjunction of simulated and
experimental data can significantly enhance our understanding of quantum
systems.

The simulator’s capability can be extended to incorporate two-qubit gates
into the simulation, such as the CZ gate, due to its inherent flexibility in
modifying the Hamiltonian and including additional states. This adaptability
positions the simulator as a valuable tool for advancing understanding and
exploration in quantum computing. Furthermore, it can implement entire
quantum circuits and used for the the analysis of error correcting schemes
upon such circuits.
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Appendix

A Performance metrics of the simulator

A.1 Performance analysis of 4x4 operator multiply

The disassembly of a matrix multiplication for 4x4 operators in our simulator
can be seen in figure 24. Note that every instruction is a vector instruction.
Normally 8 matrix multiplications for 4x4 matrices take 896 floating point
operations including both multiplications and additions. Analyzing the disas-
sembly using uiCA[51], we learn that this code can be executed in 56 cycles.
Which means this code is effectively doing 16 floating point operations per
cycle.
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Figure 24: Disassembly of the matrix multiplication for 4x4 operators.
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A.2 Performance analysis with perf

Here we use the Linux perf tool to get access to performance counters. Simu-
lations were done with 5000 steps, 1000 simulations per thread and 10 threads,
unless indicated otherwise. The perf command was,

perf stat -e \

branches,branch-misses,cycles,instructions,LLC-loads,LLC-load-misses,fp_arith_inst_retired.256b_packed_single\

./target/release/qubitsim

This command counts overall branches, branch misses, cycles, instructions,
last level cache loads/misses, and single precision floating point vector opera-
tions. It counts both the multiplication and addition in fused multiply adds
as separate operations.

A.2.1 Single qubit
Performance: 111868993767 × 8FLOP / 4.397132270s = 203.5 GFLOP/s

Performance counter stats for ’./target/release/qubitsim’:

7.962.269.467 branches:u (71,44%)

49.860.839 branch-misses:u # 0,63% of all branches (57,15%)

135.674.857.659 cycles:u (57,15%)

214.607.258.766 instructions:u # 1,58 insn per cycle (71,43%)

5.385.218 LLC-loads:u (71,42%)

182.576 LLC-load-misses:u # 3,39% of all LL-cache accesses (71,43%)

111.868.993.767 fp_arith_inst_retired.256b_packed_single:u (71,44%)

4,397132270 seconds time elapsed

30,860163000 seconds user

1,476724000 seconds sys

A.2.2 Two qubits
Performance: 1029197324501 × 8 FLOP / 35.470138850s = 232.1 GFLOP/s

Performance counter stats for ’./target/release/qubitsim’:

67.767.103.208 branches:u (71,43%)

50.711.879 branch-misses:u # 0,07% of all branches (57,14%)

1.202.705.654.435 cycles:u (57,14%)

1.688.824.450.844 instructions:u # 1,40 insn per cycle (71,43%)

655.345.926 LLC-loads:u (71,43%)

2.037.097 LLC-load-misses:u # 0,31% of all LL-cache accesses (71,43%)

1.029.197.324.501 fp_arith_inst_retired.256b_packed_single:u (71,43%)

35,470138850 seconds time elapsed

273,480074000 seconds user

1,469019000 seconds sys

A.2.3 Three qubits

The step count was reduced to 500 per simulation.

Performance: 963926014784 × 8 FLOP / 30.906494601s = 249.5 GFLOP/s

Performance counter stats for ’./target/release/qubitsim’:

52.548.454.254 branches:u (71,43%)

274.843.662 branch-misses:u # 0,52% of all branches (57,14%)

1.066.665.206.701 cycles:u (57,14%)

1.674.511.074.114 instructions:u # 1,57 insn per cycle (71,43%)

2.428.971.578 LLC-loads:u (71,43%)

1.571.487 LLC-load-misses:u # 0,06% of all LL-cache accesses (71,43%)

963.926.014.784 fp_arith_inst_retired.256b_packed_single:u (71,43%)

30,906494601 seconds time elapsed

242,588937000 seconds user

0,196753000 seconds sys
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A.2.4 Four qubits

Step count was reduced to 50 per simulation.

Performance: 893369806941 × 8 FLOP / 31.831373848s = 224.5 GFLOP/s

9.034.729.100 branches:u (71,43%)

61.799.305 branch-misses:u # 0,68% of all branches (57,14%)

1.092.345.298.672 cycles:u (57,14%)

1.170.691.913.142 instructions:u # 1,07 insn per cycle (71,43%)

4.100.359.905 LLC-loads:u (71,42%)

34.912.509 LLC-load-misses:u # 0,85% of all LL-cache accesses (71,43%)

893.369.806.941 fp_arith_inst_retired.256b_packed_single:u (71,43%)

31,831373848 seconds time elapsed

248,381686000 seconds user

0,090720000 seconds sys
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