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Abstract

Cotunneling through a spin-orbit coupled quantum dot

Starting from the Anderson model for a quantum dot, with Rashba type spin-
orbit (SO) interactions, coupled to two metallic electrodes, we derive an effective
low-energy Hamiltonian describing the dynamical spin-fluctuations, i.e. the co-
tunneling processes, which remain in the Coulomb blockade regime. This pro-
jection to the low-energy states of the Hilbert space is performed by means of
two consequtive unitary transformations. First we eliminate the spin-orbit cou-
pling to second order in the SO-coupling, which results in an Anderson model
with different spin-quantization axis on the dot and in the metallic electrodes.
Subsequently, we eliminate all but second order charge-fluctuations, leaving the
quantum dot with a single electron, i.e. a single spin-1/2, which can be flipped
by the cotunneling conduction electrons traversing the dot. Due to the spin-
dependent tunneling amplitude deriving from the SO-coupling, we end up with
an effective Kondo-model having a very low spin rotational symmetry in a finite
magnetic field. We show that this can give rise to a nonlinear conductance which
is asymmetric under reversal of the applied bias-voltage.
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Chapter 1

Introduction

1.1 Experimental motivation

Consider a device structure where a scattering region (quantum dot) is connected
to the outside world by coupling to two metal leads labeled by index α = L,R
for left and right. The leads have voltages VL and VR and are assumed to be
described by non-interacting electrons. By applying a bias-voltage across the
device, it is possible to controle the amount of current running through. This
device is described by an Anderson-type model[4] where the quantum dot plays
the role of a magnetic impurity with which the conduction electrons can interact.

The low-temperature transport through such quantum dots is mainly re-
stricted to the socalled charge-degeneracy points at which the number of electrons
on the dot becomes uncertain. Away from these points, transport is strongly sup-
pressed by a Coulomb blockade, reflecting the fact that the capacitive charging
energy of the dot is too large for electrons to freely tunnel onto and off the dot.

Meanwhile, virtual quantum processes in which an electron visits the dot only
in a sufficiently short time, are allowed by the uncertainty principle and these
gives rise to a small cotunneling conductance. In the case where the dot holds
an effective magnetic moment, repeated cotunneling involving spin-flip processes
will accumulate logarithmic singularities and instigate a manner of correlated
transport across the dot. Lowering the temperature, this socalled Kondo effect
lifts the Coulomb blockade completely and results in perfect transmission through
the correlated junction.

Experiments by T. Jespersen et al. in 2006 [12] have demonstrated the pres-
ence of Kondo-effect in quantum dot devices based on InAs quantum wires. This
material has substantial spin-orbit coupling, with a g-factor close to 8-10.

Also traditional GaAs quantum dots have strong SO-coupling and still exhibit
Kondo effect[8][26]. One might wonder why Kondo-effect is observed in such
materials where spin is no longer a good quantum number.

If an external magnetic field is applied, the Kondo peak is Zeeman split into

1
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Figure 1.1: Kondo
conductance peak
at zero bias-voltage
in an InAs quan-
tum dot, building
up when lowering
temperature [12].

two peaks. Experiments have showed an asymmetry in these peaks [5][12]. This
asymmetry can not be explained by the Kondo model for a quantum dot where
SO interactions are not present.

1.2 Spin Orbit interaction

The spin-orbit coupling is a relativistic effect which follows directly from the
Dirac equation. Consider an electron moving with velocity v in an electric field
E. In its rest frame, the electron will experience a magnetic field1

BRF = γ (v × E) /c2

where γ is the Lorentz factor γ = (1 − v2/c2)
−1/2

. In the following we shall
restrict ourselves to the case where this can be set to one. The magnetic moment
of the electron couples to the magnetic field, leading to an energy that we would
expect to be −(e�/2mc)σ ·BRF. It has been showed by L.H. Thomas that a more
careful treatment which would take into account the energy associated with the
precession of the electron spin would result in a reduction in this energy of a
factor of two[21]. While Thomas showed this within the framework of classical
electrodynamics, the same result is achived in the nonrelativistic solutions to the

1This follows directly from the transformation properties of electric and magnetic field in
special relativity. Performing a Lorentz transformation and assuming the magnetic field in the
laboratory frame to be zero yields the magnetic field BRF �= 0 in the rest frame of the electron.
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Figure 1.2: (Color onlines) Left: Differential conductance, dI/dV , as a func-
tion of bias voltage, V , for an InAs-wire based quantum dot at T = 0.3K. The
data were taken at magnetic fields perpendicular to the wire. B⊥ = 0 (thick),
0.1 (dotted),..., 0.9 T (red), and the curves were offset by 0.008e2/h for clarity.
The data were taken for an odd occupied Coulomb diamond at gate voltage
Vg = −2.35V.[12] Right: dI/dV as a function of V for a carbon nanotube
quantum dot at T = 0.08K. B⊥ = 0 (thick), 0.1 (dotted), 1 (thin), 2, 3,..., 9,
10 T (red), and the curves were offset by 0.008e2/h for clarity. The data were
taken for an odd occupied Coulomb diamond at gate voltage Vg = −4.96V.[23]
(Note that at finite magnetic fields features are broadened due to noise induced
by the magnet power supply).

Dirac equation. The energy is

HSO = − e�

4m2c2
σ · [E × p]

where v = p/m is the electron velocity. An electric field E can be described
as a gradient of a potential and the time derivative of a vector potential using
the Maxwell equation E = −∇V − ∂A/∂t, where the magnetic field generating
the electric field is B = ∇× A. Assuming the field to be constant in time gives
E = −∇V . Writing out HSO in terms of σ and E gives the Rashba terms

HSO = − e�

4m2c2
[−Ey(σzpx − σxpz) −Ez(σxpy − σypx) − Ex(σypz − σzpy)]

=
�

m

eEz

4mc2
(σxpy − σypx) +

�

m

eEy

4mc2
(σzpx − σxpz)

�

m

eEx

4mc2
(σypz − σzpy)

=
�

m
αz(σxpy − σypx) +

�

m
αy(σzpx − σxpz) +

�

m
αx(σypz − σzpy)

= HRz +HRy +HRx

where the Rashba spin-orbit interaction constant is defined by

αi =
eEi

4mc2
(1.1)
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This is a coupling constant defining the strength of the coupling between the spin
and momentum. It has the unit of 1/length and the inverse

λi
SO = 1/αi

is the Rashba spin-orbit length.
For a particle confined in the x-direction (px = p, py = pz = 0) the Hamilto-

nian describing the particle with Rashba and Zeeman interaction is given by

H = H0 +HSO +HZeeman

=
p2

x

2m
− �αz

m
σypx +

�αy

m
σzpx − 1

2
gμBσ ·B

The last term is the Zeeman energy which depends on the external magnetic field
B not to confuse with the magnetic field responsible for the spin-orbit interaction.
As shown in the next chapter, an external magnetic field (and hence a Zeeman
interaction) is necessary in order to have energy bands with non-fixed spin quan-
tization axes (meaning that the spin polarization of the electron is wavevector
dependent).

In addition to the Rashba effect, owing to the lack of inversion symmetry
in bulk materials, there exists the so-called bulk inversion asymmetry (BIA) or
Dresselhaus spin-orbit interaction:

HDr =
�

m
βz(σxpx − σypy)

In a photocurrent measurement on n-type InAs quantum wells[7], Ganichev et.
al have deduced the ratio of the relevant Rashba and Dresselhaus coefficients to

α/β = 2.15

1.2.1 Origin of the electric field

What has not been addressed here is the origin of the electric field that is expe-
rienced by the electron through BRF. Consider a surface of a n ≤ 3-dimensional
crystal. From the point of view of an electron, the surface is established and
maintained due to a confining potential V perpendicular to the surface. No mat-
ter what kind of complicated structure of atoms the crystal has, an ’electronic’
surface must be due to a potential perpendicular to this. Electrons moving in
the corrosponding electric field E⊥ = e⊥dV/dr⊥ will have their degeneracy lifted
by a Rashba spin-orbit coupling with an interaction constant α⊥ proportional to
E⊥.

3D crystal measures of the surface state on Au(111) has been done in a high-
resolution photoemission experiment by LaShell et al.[14] showing a splitting of
the parabolic dispersion into two branches. The authors have ruled out other
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possible explanations and have argued that the splitting should be interpreted
as the effect of a spin-orbit interaction. At the Fermi momentum the splitting is
observed to be ΔELaShell ∼ −0.1eV.

Assuming the surface electrons in Au(111) to be quasi-2D free electron (con-
fined by a potential V⊥) and including a Rashba spin-orbit coupling, L. Petersen
and P. Hedeg̊ard[20] have estimated the splitting using calculations on jellium
By Lang[13]. For a solid, the work function Φ is the minimum energy needed to
remove an electron from a solid to a point immediately outside the solid surface
(or energy needed to move an electron from the Fermi energy into vacuum). The
work function corresponds to a gradient potential ∇V ≈ Φ/λF where λF is the
Fermi wavelength. Petersen and Hedeg̊ard have calculated the splitting caused by
this gradient potential to be ΔE ∼ 10−6eV - five orders of magnitude smaller than
the splitting experimantally observed by LaShell. They conclude that in Au(111)
the potential corresponding to the work function cannot explain the magnitude
of the SO-coupling. Hence the electric field must come from somewhere else: the
atom cores. Starting from the Intra-atomic SO-coupling

HSOC = αL · S =
α

2

(
L+σ− + L−σ+ + Lzσz

)
Petersen and Hedeg̊ard formulate a tight-band model for the surface states that
includes the SO-interaction. The Hamiltonian for pz bands with only virtual
transitions to px, py bands is to second order in α,γ and k is

Heff =

( −6δ +
(

3
2
δ + 9γ2/w

)
k2 −i (kx − iky)αR

+i (kx + iky)αR −6δ +
(

3
2
δ + 9γ2/w

)
k2

)

with αR := 6αγ/w. Here w and γ are coefficients in the overlap matrix elements in
the tight-binding Hamiltonian while α is the intra-atomic SO-coupling constant.
The effective Hamiltonian is exactly the Matix form of a Hamiltonian consisting
of a free electron part and a Rashba-term. The SO coupling constant αR is of
order of the atomic splitting, and hence the model is able to explain the energy
splitting observed by LaShell.





Chapter 2

Eigenstates and eigenvalues of
the Rashba Hamiltonian

In this chapter we examine how the quantum dot eigenenergies are modified
in the presence of a Rashba spin-orbit interaction. Expressing the appropriate
Hamiltonian in matrix representation and diagonalizing the matrix yields the
eigenenergies and eigenstates of the dot.

Consider a free particle. The eigenstates are given by the solutions to the
Schrödinger equation. In real space representation the wave functions are

ϕkσ(r) = 〈r|kσ〉 = ϕk (r)χσ = Aeik·rχσ

with corresponding eigenenergies �
2k2/2m. Here χσ are the two-component

spinors defined as the following eigenstates of the z component of the spin op-
erator: Ŝzχ↑/↓ = +/− (�/2)χ↑/↓. To each eigenenergy corresponds four linearly
independent wave functions, that is

�
2k2/2m = E(k, ↑) = E(k, ↓) = E(−k, ↑) = E(−k, ↓)

and hence the eigenenergies are four-fold degenerate: two-fold degenerate in mo-
mentum and two-fold degenerate in spin.

2.1 Spin-orbit coupling and symmetries

For more complicated systems, solving the Schrödinger equation can be quite a
task. It is then fruitful to consider symmetries in the physical problem as they
can lead to restrictions on the energy dispersion relation.

2.1.1 Time reversal symmetry

Time reversal symmetry (T-symmetry) is the symmetry of physical laws under the
time transformation T : t→ −t. The T-symmetry of a system is very dependent

7
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of 1) what is considered a part of the system and what is considered external and
2) at which level the system is described (microscopic or macroscopic). See [21]
p. 281.

Consider an electron experiencing a Rashba spin-orbit coupling

HSO = − e�

4m2c2
σ · [E × p]

due to an external potential −∇V = E. Both the spin and the momentum
are antisymmetric under time reversal1. The electric and magnetic field have
different transformations under TR: E → E and B → −B. Hence the Rashba
SO-coupling is invariant under TR. Similarly, the Zeeman term ∝ σ · B as well
as the free energy term ∝ p2 is also invariant under TR. So the Hamiltonian
describing a spinning electron in an external magnetic field and with a Rashba
SO-coupling is invariant under TR.

Generel restrictions on the eigenenergies can be derived from the assumption
of T-symmetry. In quantum mechanics time reversal must be represented as a
anti-unitary operator. Anti-unitary means that for arbitraty states ϕ′,ϕ, T fulfils
〈ϕ|T †T |ϕ′〉 = 〈ϕ′|ϕ〉. Furthermore, it has to have a two-dimensional represen-
tation with the property T 2 = −1. Following the convention of Sakurai Eq.
(4.4.79)[22], a valid representation for a spin 1/2 particles is

T = e−i(π/2)σyK

where K denotes complex conjugation. Let H be a T-symmetric Hamiltonian
with eigenstate and corresponding eigenenergy given by Hψ = Eψ. Then Tψ is
also an eigenstate with the same eigenenergy, since

H (Tψ) = ([H, T ] + TH)ψ = [H, T ]ψ + E (Tψ) = E (Tψ)

These eigenstates are orthogonal since

〈Tψ|ψ〉 = −〈Tψ|T (Tψ)〉 = −〈Tψ|ψ〉
1According to the standard account an active time transformation must be of such character

that the spatial velocity v and current j flip under active time reversal, while the charge density
ρ is invariant. The standard procedure is then to assume that the Maxwell equations and
the Lorentz force law q (E + v × B) = ma are invariants under TR. This toghether with the
tranformation properties of v, j and ρ leads to the transformation properties

(v, j,E,B, ρ,∇, t) T→ (−v,−j,E,−B, ρ,∇,−t)

However, in Time and Chance[1] (2000) David Albert has argued that the magnetic field is TR
invariant and hence the classical EM theory is not TR invariant. This controversial claim has
started an ongoing debate among researchers in the philosophy of physics. Notable papers are
[15] and [3]. For practical purposes the standard point of view and application gives the right
results. The mentioning of the controversy should be considered an information for the reader
particularly interested in this topic.
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where first step follows from the fact that for half-integer spin T 2 = 1 and last
step follows from anti-unitarity. This result goes by the name of Kramers’ The-
orem. So to each eigenvalue E corresponds (at least) two linearly independent
eigenstates. All eigenstates have a two-fold degeneracy. Labeling the eigenstates
with the index λ ∈ {+,−}, the eigenstates are ψλ with corresponding eigenvalue
E.

Consider a crystal. The crystal structure is defined by a periodic lattice. The
Bloch Theorem states that each eigenenergy is characterized by a Bloch wave
vector k and Bloch wave state

ψkλ(r) = eik·rukλ(r) = eik·r
(
u↑kλ(r)

u↓kλ(r)

)
where u is periodic. Acting on this Bloch wave state with the time reversal
operator yields

Tψkλ(r) = ei(−k)·r
( −u↓∗kλ(r)

u↑∗kλ(r)

)
= ψ−k−λ(r)

where the last identification can be made since the expression is a Bloch wave
state with wave vector −k and since we know that T maps an eigenstate with
index λ into its time reversed eigenstate, having index −λ. Letting H act on each
side and using that a state and its time inverted have same eigenenergy gives

E(k, λ) = E(−k,−λ)

2.1.2 Spatial inversion symmetry

Parity is represented as a unitary operator P acting on a state function as
Pψ(r) = ψ(−r). If ψkλ(r) is an eigenstate of P with eigenvalue κ, then P 2ψkλ(r) =
κ2ψkλ(r) = ψkλ(r). The eigenvalue is thus a phase κ = eiϕ. For a crystal that
is invariant under P, that is [H,P ] = 0, then if ψkλ is an eigenstate of H corre-
sponding to eigenenergy Ekλ, so is the transformed:

H (Pψkλ) =
(
[H,P ] + PEkλ

)
(ψkλ) = Ekλ (Pψkλ)

Explicitely applying P to ψkλ(r) gives a Block state with Bloch vector −k. Since
there is double degeneracy in λ (and since this is the only degeneracy), this vector
must be in span {ψ−kλ(r), ψ−k−λ(r)} and hence be a linear combination of these:

Pψkλ(r) = e−ik·r
(
u↑kλ(−r)

u↓kλ(−r)

)
= aψ−kλ(r) + bψ−k−λ(r)

This leads to E(k, λ) = E(−k, λ) and together with the restriction from T-
symmetry, we have that

E(k, λ) = E(k,−λ)
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The conclusion is that for time reversal invariant systems, spin splitting E(k, λ) �=
E(k,−λ) can only occur if the parity is broken, that is if [H,P ] �= 0.

Bulk Au have fcc lattice structure and since the fcc lattice has (3D) inversion
symmetry, bulk Au cannot have a spin-orbit split band structure. However, the
surface of any crystal, there is no inversion symmetry in the direction perpendic-
ular to the surface. This means that we are not able to rule out the possibility
of spin splitting.

2.2 Simple Rashba-term and B-field along x

Single-particle Hamiltonian for translational invariant wire along the x-axis, in-
cluding a Rashba term due to E-field along z-axis and an external magnetic field
along the x-axis

H =
p2

x

2m
− �αz

m
σypx − 1

2
gμBσxBx + V (x)

2.3 The splitting of the electron band

For B = 0 the effect of the S-O coupling σypx is to split the band ε(k) = (k2 + V )
into two distinct bands

ε1(k) =
(
k2 + V

)
+ 2αzk = (k + αz)

2 − α2
z + V

ε2(k) =
(
k2 + V

) − 2αzk = (k − αz)
2 − α2

z + V

crossing at (0, V (0)). The spin expectation values are

(〈σx〉1, 〈σy〉1, 〈σz〉1) = (0,+1/2, 0)

(〈σx〉2, 〈σy〉2, 〈σz〉2) = (0,−1/2, 0)

and hence the branch ε1(k) (ε2(k)) is characterized by spin pointing parallel to
+y (−y). By relabeling the branches (εs=↑, εs=↓) := (ε1, ε2) the splitting of the
energy band into two distinct bands of different spin is emphasized.
As a external magnetic field B = (Bx, 0, 0) is applied, the Zeeman term will
cause a splitting of the energy band. In the absence of spin-orbit interactions the
energy bands are given by εa = k2 +Bx and εb = k2 − Bx.

In the presence of both a spin-orbit interaction −σypx and a Zeeman term
−σxBx will result in a mixing of the Rashba-split subbands. The splitting is
shown in fig. ??. By forming a local gap at k = 0 the energy branches avoid
crossing. For large |k| values the spin will be orientated approx. as it was before
applying the external B-field. The spin rotates in a small region around the gap
at k = 0. It is no longer possible to associate a fixed spin direction with each
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Figure 2.1: Schematic representation of a conduction band structure where
the spin-degeneracy is broken a) by a spin-orbit interaction as described by
the Rashba Hamiltonian and b) by a Zeeman interaction of the spin with an
external magnetic field [17]

Figure 2.2: Schematic
representation of a
conduction band struc-
ture where the spin-
degeneracy is broken
by both a Rashba SO
interaction and a Zeeman
interaction. The spin ex-
pectation value is plotted
on the branches. Note
that each branch is no
longer associated with a
single spin. Fig. from [25]

band. Due to the Rashba SO coupling together with the Zeeman splitting, spin
and momentum do not constitute a set of good quantum numbers. Instead we
must label the bands with an index η = ± that is not associated with a single
spin. We may think of η as a pseudo-spin and denote the ± values as ⇑ / ⇓.

The question now arises as to what effect this mixing of the spin degree of
freedom with the orbital motion will have on electrons tunneling through the
quantum dot. An electron from lead α = L,R in an energy eigenstate |αkσ〉
given by momentum and spin (the lead label α is only written for bookkeeping
purposes) can tunnel into the dot region, where the energy eigenstates are |kη〉.
This process can be described by a tunneling Hamiltonian in an Anderson-type
model for the electron transport through the junction.





Chapter 3

Anderson Model with SO
interaction

3.1 Second quantization formulation

In the following, both k and p will be used as names for particle de Broglie
wavenumber. When dealing with the tunneling Hamiltonian, k will be associ-
ated with states on the quantum dot and p with lead states. A scattering region
(quantum dot) is coupled to two metal leads (α = L,R) as well as a gate electode
used to shift the chemical potential on the dot. The lead electrons are assumed
to be free noninteracting electrons while the dot electrons are described by a
Hamiltonian containing a Rashba SO interaction, a Zeeman splitting, a charg-
ing energy and a confining harmonic oscillator potential. The second-quantized
Hamiltonian reads

H = HLR +HD +HT (3.1)

where

HLR = HL +HR =
∑
pσ

ξLpc
†
LpσcLpσ +

∑
pσ

ξRpc
†
RpσcRpσ

HD = HD0 +HS−O +HZeeman

HT =
∑
αpkσ

(
tαpkc

†
αpσdkσ + t∗αpkd

†
ασcαpσ

)

3.2 Cotunneling and Kondo effect in the

absence of SO interaction

Fig 3.1 shows the potential landscape of a quantum dot along the transport
direction. The states in the leads are filled up to the electrochemical potentials
μL and μR which are connected via the externally applied bias-voltage V =

13
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(μL − μRL) /e. This energy window is called the bias window. For energies within
the bias window, the electron states in one reservoir is filled whereas states in the
other are empty. At zero temperature sequential tunneling occurs only if there is
an appropriate electrochemical potential level on the dot within the bias window.
Electron tunneling through the dot thus depends critically on the alignment of
the electrochemical potential on the dot with those of the leads.

Figure 3.1: Quantum dot in the regime of low bias. (a) Coulomb
blockade. Sequential tunneling through the dot is not possible. (b) A
charge-degenerate point at which the number of electrons can fluctu-
ate and thus permitting electrons to tunnel through the junction. (c)
The oscillatory dependence of current on gate-voltage [11]

The electrochemical potential for the transition between the N-electron ground
state and the (N-1)-electron ground state on the dot is

μ(N) = E(N) − E(N − 1)

All electrochemical potentials have the same linear dependence on the gate volt-
age Vg. Therefore shifting Vg will move the whole ’ladder’ of electrochemical
potentials without altering the distance between them.

We shall here assume that the temperature is very low compared to the energy-
level spacing. In the low-bias regime the bias window is very narrow. Sweeping
the gate-voltage will give an almost discrete dependense of current as function
of gate-voltage as shown in fig 3.1. At a charge-degenerate point there is a level
μD in the bias window so the number of electrons on the dot can alternate, thus
current can flow. Away from these points, transport is strongly suppressed by a
Coulomb blockade, reflecting the fact that the capacitive changing energy of the
dot is too large for electrons fo freely tunnel onto and off the dot. The sequential
tunneling rate is given by Fermi’s golden rule to lowest order in the tunneling,
HT .
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(a)

.....
.....

Virtual(b)

.....

(c)

(d)

.....V sd
Vg

Vsd

(e)

N-1 N N+1

Figure 3.2: (a)-(c) Cotunneling. The intermediate state can occur as
long as the system only exist in the virtual state for a time sufficiently
short not to violate the Heisenberg uncertainty principle. (d) For
larger bias, inelastic cotunneling becomes available. (3) Cotunneling
is possible in the dark area of the Coulomb diamond. Fig from ref.
Fig. from [12]

For strong couplings to the lead, this is not a correct description as there are
higher order contributions to the tunneling. Transitions in which the intermediate
state has an engergy larger than the initial energy can occur as a virtual process
due to the uncertainty principle. This happens in cotunneling which is of second
order in the tunneling. The process is illustrated in fig 3.2. An expression for
the transition rates is obtained by using the generalized Fermi’s golden rule [4,
p. 88].

In the case where the quantum dot holds an effective magnetic moment, the
dot and the metallic electrodes constitute a system similar to a metal with a
single magnetic impurity. The Hamiltonian (3.1) can be brought on a form that
includes a spin-spin interaction term expressing scattering on the dot due to
virtual scattering in and out of the dot. This causes a correlated transport across
the dot. Contrary to the case of metals, this scattering on the dot increases
the conductance through the dot. Lowering the temperature this Kondo-effect
lifts the Coulomb blockade completely. As an example of a Kondo-peak, see the
measurement by Wiel in fig 3.4.

In order to determine how this picture is modified by the presence of a Rashba
spin-orbit interaction we have a two step plan: First we shall transform away
the SO interaction by means of a unitary transformation. Then we shal follow
Schrieffer-Wolff and transform away the charge fluctuations, bringing the Hamil-
tonian on the form of a spin-spin interaction.
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(a) Virtual (c)

(d)

Vg

Vsd

(e)

(b)

TK

Γ

DOS

N
Even

N+1

N+2

Figure 3.3: The process leading to the Kondo effect in a odd-N quan-
tum dot. Being a quantum particle, the spin-down electron may tun-
nel out of the dot to briefly occupy a classically forbidden ’virtual
state’ outside the dot, and then be replaced by an electron from the
lead. This can effectively flip the spin of the quantum dot. (d) Many
such events combine to produce the Kondo effect, which leads to the
appearance of an extra resonance at the Fermi energy. Since transport
properties, such as conductance, are determined by electrons with en-
ergies close to the Fermi level, the extra resonance can dramatically
change the conductance. (e) The enhanced conductance takes place
only at low bias (black area). Fig. from [12]

3.3 Transforming away the SO interaction

3.3.1 Simple Rashba-term

We first consider the simplest Hamiltonian covering a Rashba spin-orbit interac-
tion

H =
p2

2m
+

�α

m
σyp+ V (x) , p = px.

If there exist a unitary operator U , such that UHU † = p2

2m
+V (x), then the eigen-

values and eigenfunctions of H can be found by solving the eigenvalue problem
for the rotated Hamiltonian. Let ψ′ denote an eigenstate of UHU † with eigenen-
ergy E ′. Then U †ψ′ is an eigenstate of H with eigenenergy E ′, as can be seen
from

(
UHU †)ψ′ = E ′ψ′ ⇔ H(U †ψ′) = E ′(U−1ψ′) = E ′(U †ψ′).

Let U = eiS for an operator S, that we will specify in the following. UHU †
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Figure 3.4: Measurements on a semiconductor quantum dot. dI/dV as function
of bias V for for T = 15 mK (thick black trace) up to 900 mK (thick red trace).
The left inset shows that the width of the zero-bias peak, measured from the
full-width-at-half-maximum (FWHM) increases linearly with T. The red line
indicates a slope of 1.7 kB/e, where kB is the Boltzmann constant. At 15 mK
the FWHM = 64 ı̀V and it starts to saturate around 300 mK. [26]

can be evaluated using the the Baker-Campbell-Hausdorff formula

eτABe−τA =
∞∑

m=0

τm

m!
Bm (3.2)

where

Bm = [A,B]m =
[
A, [A,B]m−1

]
, B0 = B

The goal is to find a suitable operator S, such that the Rashba term is cancelled
out when performing the unitary transformation. First we examine UHU † to
linear order in S

UHU † = eiS

(
p2

2m
+ V (X) +

�α

m
σyp

)
e−iS

≈ p2

2m
+ V (X) +

�α

m
σyp+ i

[
S,

p2

2m
+ V (X)

]
+ i

[
S,

�α

m
σyp

]
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The Rashba term can be cancelled out with the first commutator if we let S =
αxσy such that eiS = eiαxσy :

i

[
S,

p2

2m
+ V (X)

]
=

αi

2m
x[σy, p

2] +
αi

2m
[x, p2]σy

+ αix[σy, V (x)] + αi[x, V (x)]σy

= −�α

m
σyp

The second commutator is just a constant

i

[
S,

�α

m
σyp

]
=
iα2

�

m
[xσy, σyp] =

iα2
�

m
σy [x, p] σy = −α

2
�

2

m
σ2

y = −(�2/m)α2

Here we have used the basic identities[
pxi
, x2

j

]
= (−2i�) xiδij[

xi, p
2
xj

]
= 2i�pxi

δij

as well as the commutator between Pauli matrices

[σa, σb] = 2i
∑

c

εabcσc

Note that this term is quadratic in the Rashba spin-orbit interaction constant α.
To linear order in α, the Hamiltonian has thereby been diagonalized: UHU † =
P 2

2m
+ V (x) +O(α2).

To second order in S, UHU † is given by

UHU † ≈ p2

2m
+ V (X) + i

[
S,

�α

m
σyp

]

− 1

2

[
S, [S,

p2

2m
+ V (X)]

]
− 1

2

[
S, [S,

�α

m
σyp]

]

=
p2

2m
+ V (X) + i

[
S,

�α

m
σyp

]
− i

2

[
S,

�α

m
σyp

]
− 0

=
p2

2m
+ V (X) − 1

2

�
2α2

m

Since H2 = [S,H ]2 = [S, [S,H ]] = −α2�2

2m
is a constant, it is clear that all higher

order contributions are zero: B3 = [S, [S,H ]2] = 0 and Bm>3 =
[
S, [S,H ]m−1

]
=

[S, 0] = 0. We arrive at the exact relation

UHU † =
p2

2m
+ V (X) − �

2α2

2m
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The transformation is nothing more than a momentum shift p → p + �ασy , as
can be seen from

H =
p2

2m
+

�α

m
σyp+ V (x) =

(p+ �ασy)
2

2m
− �

2α2

2m
+ V (x)

This is also clear since S = αxσy is a generator of momentum translation.
If the confining potential is an harmonic oscillator potential

V (x) =
1

2
mω2

0x
2

then H ′ = UHU † is the Hamiltonian for a harmonic oscillator with eigenfunctions
ψ′

n and corresponding eigenenergies E ′
n given by

ψ′
n = Hn(x/a)

(
n!2naπ1/2

)−1/2
e−x2/2a2

E ′
n =

(
n+

1

2

)
�ω0 − α2

�
2

2m

The oscillator length a is given by

a = (�/mω0)
1/2

and Hn(x) is the Hermite polynomials defined by the recursive relation

Hn+1(y) = 2yHn(y) − 2nHn−1(y)

H0(y) = 1

H1(y) = 2y

The ground state of the harmonic oscillator is ψ′
0 =

(
aπ1/2

)−1/2
e−x2/2a2

and
d
dx
ψ′

0 = − x
a2ψ

′
0. Since UHU †ψ′ = E ′ψ′ ⇔ H(U †ψ′) = E ′(U †ψ′), the eigenfunc-

tions and eigenenergies of H are

ψn = U †ψ′
n =

Hn(x/a)

(n!2naπ1/2)
1/2
e−iαxσye−x2/2a2

, En =

(
n+

1

2

)
�ω0 − α2

�
2

2m

By finding a unitary transformation between the Hamiltonian concerned and a
Hamiltonian with known solutions, the problem is solved. All one has to do is
to apply the hermitian conjugate transformation (for a unitary transformation,
this is the inverse transformation) to the set of known solutions. This is often
much easier than to solve the problem from scratch. Using the Baker-Campbell-
Hausdorff expansion to write out the transformed Hamiltonian in terms of the
operator S makes it a bit easier to find an S that does the job.

Using a unitary operator on the form eiS and using the Baker-Campbell-
Hausdorff formula to calculate the transformed Hamiltonian is a neat way of
making perturbation theory. The BCH-formula is a series expansion in the orig-
inal Hamiltonian. Since the Rashba spin-orbit coupling α enters linearly in both
S and H , the element Bm in (3.2) will contain terms up to order O(αm+1).
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3.3.2 Rashba-term and an external magnetic field

In this section we shall use the techniques of above to find eigenstates of the
two-dimensional Hamiltonian

HD = Hd +HRa +HZ

=
p2

2m
+

1

2
mω2

0

(
x2 + y2

)
+

�α

m
(σxpy − σypx) − 1

2
gμBσ ·B

following Golovach[9]. The Hamiltonian describes a particle in a 2-D harmonic
oscillator potential, subject to a Rashba spin-orbit interaction and a magnetic
field. The eigenstates are then used to calculate the tunneling coefficients in the
tunneling Hamiltonian that describe tunneling between the leads and the dot.

We want a unitary operator U = eS, such that UHU † = Hd + HZ . That is,
such that the Rashba spin-orbit interaction is transformed out. As in the previous
section, the strategy is to find an operator S, such that the part [S,Hd +HZ ] of
the first commutator in the Baker-Campbell-Hausdorff expansion cancels out the
spin-orbit term. On order to identify S, we first rewrite −HRa as:

−�α

m
(σxpy − σypx) = −�α

m

(
1

2i�

[
y, p2

y

]
σx +

1

2i�

[−x, p2
x

]
σy

)

= iα

([
y,
p2

x + p2
y

2m

]
σx +

[
−x, p

2
x + p2

y

2m

]
σy

)
= i

∑
i

[ξi, Hd +HZ ] σi

=

[
i
∑

i

ξiσi, Hd +HZ

]
︸ ︷︷ ︸

[S1,Hd+HZ ]

−i
∑

i

ξi [σi, Hd +HZ ]

where we have defined ξ = (αy,−αx, 0) =
(

y
λSO

, −x
λSO

, 0
)

with λSO = 1/α being

the spin-orbit length. In order to bring −HRa on the right commutator form, we
got an additional term, that is not immediately on the right form. It can however
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be brought into the commutator form

−i
∑

i

ξi [σi, Hd +HZ ] = −gμBBα (ynyσz − ynzσy − xnzσx + xnxσz)

= −gμBBα
(
(−nz) [py, V (x, y)]σy + (−nz) [px, V (x, y)]σx

+ ny [py, V (x, y)]σz + nx [px, V (x, y)]σz

) i

2�

1
1
2
mω2

0

= −gμBBα
(

[−nz∂y, Hd +HZ ] σy + [−nz∂x, Hd +HZ ]σx

[ny∂y + nx∂x, Hd +HZ ]σz

) i

2�

1
1
2
mω2

0

(−i�)

= −gμBBα

mω2
0

[ − nz∂xσx − nz∂yσy

+ (ny∂y + nx∂x)σz, Hd +HZ

]
+O(B2)

=

[
−gμBB

mω2
0

[n × ζ] · σ, Hd +HZ

]
+O(B2)

where ζ = (−α∂y, α∂x, 0) =
(
− 1

λSO
∂y,

1
λSO

∂x, 0
)

and n = B/B. We thus have

[S,Hd +HZ ] = −HRa +O(B2)

with

S = S1 + S2 = iξ · σ − gμBB

�ω0
a2 [n × ζ] · σ

and to linear order in B, the rotated Hamiltonian is given by

H̃D = UHDU
† ≈ Hd +HZ +

1

2
[S,HRa] (3.3)

Note that 1
2
[S,HRa] has terms up to quadratic order in the coupling since S is

linear in α. Restricting ourselves to one dimension, the quadratic contribution
to the rotated Hamiltonian is

1

2
[S,HRa] =

α2
�

2

m
+

1

m

(
a

λSO

)2
gμBB

�ω0

· (σx, 0, σz) p
2
x

The second term is an anisotropic correction to the g-factor which is negligible if
the dot is much smaller than the Rashba spin orbit length

a� λSO

and if the Zeeman splitting is much smaller than the level splitting

gμBB � �ω0
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. In the following we shall assume this to be the case and thus

H̃D = Hd +HZ

Acting with U on the harmonic oscillator eigenfunctions gives eigenfunctions
of H . In the following, we shall consider a quantum dot where transitions to
exited states can only happen as virtual processes allowed by the uncertainty
principle. Our hope is that this is sufficient to describe the characteristics of the
spin-orbit effect on the tunneling through a quantum dot.

The ground state wave functions of the two-dimensional harmonic oscillator
are

ϕ00(x, y)|σ〉 = ϕ0(x)ϕ0(y)|σ〉 =
(
aπ1/2

)−1
e−(x2+y2)/2a2 |σ〉

for spins σ =↑, ↓. We choose the quantization axis along the z-axis. That is, |σ〉 is
an eigenstate of Sz and S2. The spin-orbit interaction gives rise to a new branch
index η = ±1, that we will here symbolize as a pseudo-spin η ∈ {+1,−1} = {⇑
,⇓}. Multiplying with the identity operator and using

(σx, σy, σz) | ↑〉 = (| ↓〉, i| ↓〉, | ↑〉)
(σx, σy, σz) | ↓〉 = (| ↑〉,−i| ↑〉,−| ↓〉)

the ground states of H are given by

|0 ⇑〉 = (1 − S) |00〉| ↑〉
= |00〉| ↑〉 − iα (yσx − xσy) | ↑〉|00〉

+ gμBB
α

mω2
0

[(−nz∂x) σx + (−nz∂y)σy + (nx∂x + ny∂y) σz] | ↑〉|00〉

=

(
1 + gμBB

α

mω2
0

(nx∂x + ny∂y)

)
|00〉| ↑〉

+

(
i2αx− iαy − gμBB

α

mω2
0

nz (∂x + i∂y)

)
|00〉| ↓〉

and

|0 ⇓〉 =

(
−i2αx− iαy − gμBB

α

mω2
0

nz (∂x − i∂y)

)
|00〉| ↑〉

+

(
1 − gμBB

α

mω2
0

(nx∂x + ny∂y)

)
|00〉| ↓〉

Comparing the spin-up part of ψ⇑ to the spin-down part of ψ⇓, there is a lack of
symmetry regarding signs. This is due to σz having different eigenvalues associ-
ated with | ↑〉 and | ↓〉. Similarly, the difference between the spin-down part of
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ψ⇑ and the spin-up part of ψ⇓ is due to different eigenvalues of σy.

We now restrict our attention to one dimension. We denote by Ci the ratio
between the Zeeman splitting and the level spacing

Ci = gμBB
ni

mω2
0a

2
=
gμBBi

�ω0

� 1 (3.4)

which we assume to be much smaller than one. The energy eigenstates are

|0 ⇑〉 =

(
1 + gμBB

α

mω2
0

nx∂x

)
|0〉| ↑〉 +

(
i2αx− gμBB

α

mω2
0

nz
∂

∂x

)
|0〉| ↓〉

= (1 − Cxαx) |0〉| ↑〉 +
(
i2αx+ Czαx

) |0〉| ↓〉
|0 ⇓〉 =

(
−i2αx− gμBB

α

mω2
0

nz∂x

)
|0〉| ↑〉 +

(
1 − gμBB

α

mω2
0

nx∂x

)
|0〉| ↓〉

=
(−i2αx+ Czαx

) |0〉| ↑〉 + (1 + Cxαx) |0〉| ↓〉

A general dot state |n ⇑〉 (|n ⇓〉) is likewise given by applying the inverse trans-
formation (1 − S) to the oscillator eigenstate |n〉| ↑〉 (|n〉| ↓〉):

|n, η = ±1〉 =
∑

n′σ′=↑,↓
|n′σ′〉〈n′σ′| (1 − S) |n〉|σ = ±1〉

Here the notation gets a bit tricky. It is important to stress that |n, η = ±1〉 =
|n, η =⇑ / ⇓〉 is a dot state determined by n and pseudo-spin, whereas |σ = ±1〉 =
|σ =↑ / ↓〉 is a normal spin state. In order to keep track of where which spin
σ came from and to be able to write a general expression, we use an alternative
notation, namely

ση =

{
↑ for η =⇑
↓ for η =⇓

3.4 Tunneling coefficients

A conduction electron in the lead α ∈ {L,R} is initially in the state |αkσ〉
determined by its momentom and spin. The alpha in the ket is only written for
bookkeeping purposes. The Hybridization Hamiltonian that describes tunneling
of electrons between the leads and the dot is

HT =
∑

α=L,R k
σ=↑,↓ η=⇑,⇓

tση
αknc

†
αkσdnη + tση ∗

αknd
†
nηcαkσ
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where the tunneling coefficients are given by the overlap

tση
αkn = 〈αkσ|HT |nη〉

=
∑
n′σ′

〈αkσ|HT |n′σ′〉〈n′σ′|nη〉

=
∑
n′σ′

tσσ′
αkn′m

σ′η
n′n

In this expression tσσ′
αkn′ := 〈αkσ|HT |n′σ′〉 is the tunneling coefficient between

a metallic lead and a dot with oscillator eigenstates where no SO-interaction
is present. This problem is well known, so in this thesis the tunneling co-
efficient tσσ′

αkn′ is taken as model parameter. In order to find the coefficients

mσ′η
n′n = 〈n′σ′|nη〉 we first find the kets to multiply:

|nη〉 = (1 − S) |n〉|ση〉
= |n〉|ση〉 + iαxσy|ση〉|n〉 + gμB

α

mω2
0

[−nz∂xσx + nx∂xσz] |ση〉|n〉

=
(
1 + Cxa

2α|ση|∂x

)
|n〉|ση〉 +

(
i2αx|ση| − Cza

2α∂x

)
|n〉|ση〉

By |ση| we just mean +1 for η =⇑ and −1 for η =⇓. The m coefficients are given
by

mσ′η
n′n = δn′nδσ′ση + |ση|Cxa

2αδσ′ση〈n′|∂x|n〉
− α|ση|δσ′ση〈n′|x|n〉 − Cza

2αδσ′ση〈n′|∂x|n〉

The inner products concerning x are[16]

〈n′|x|n〉 =
a√
2

[√
n′ δn,n′−1 +

√
n′ + 1 δn,n′+1

]
The differential operator acting on a harmonic oscillator state |n〉 is

∂x|n〉 = − x

a2
|n〉 + θ1 (n)

√
2
√
n

a
|n− 1〉

where θ1 (n) is the Heaviside step function with θ1 (0) = 0 and θ1 (n > 0) =
1. Sandwiching the operator between harmonic oscillator states gives the inner
product:

〈n′|∂x|n〉 = −a−2〈n′|x|n〉 + θ1 (n) 21/2a−1
√
n〈n′|n− 1〉

= −a−12−1/2
[√

n′ δn,n′−1 +
√
n′ + 1 δn,n′+1

]
+ θ1 (n) 21/2a−1

√
nδn′n−1
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and hence the m-coefficients are

mσ′η
n′n = δn′nδσ′ση − α|ση|δσ′σηa2

−1/2
[√

n′ δn,n′−1 +
√
n′ + 1 δn,n′+1

]
+ |ση|Cxa

2αδσ′ση

(
− a−12−1/2

[√
n′ δn,n′−1 +

√
n′ + 1 δn,n′+1

]
+ θ1 (n) 21/2a−1

√
nδn′n−1

)
− Cza

2αδσ′ση

(
− a−12−1/2

[√
n′ δn,n′−1 +

√
n′ + 1 δn,n′+1

]
+ θ1 (n) 21/2a−1

√
nδn′n−1

)
mσ′η

00 and mσ′η
10 are

m↑⇑
00 = 〈0 ↑ |0 ⇑〉 = 1 m↑⇓

00 = 〈0 ↑ |0 ⇓〉 = 0

m↓⇑
00 = 〈0 ↓ |0 ⇑〉 = 0 m↓⇓

00 = 〈0 ↓ |0 ⇓〉 = 1

m↑⇑
10 = 〈1 ↑ |0 ⇑〉 = −2−1/2Cxaα m↑⇓

10 = 〈1 ↑ |0 ⇓〉 = 2−1/2aα [1 + Cz]

m↓⇑
10 = 〈1 ↓ |0 ⇑〉 = 2−1/2aα [−1 + Cz] m↓⇓

10 = 〈1 ↓ |0 ⇓〉 = 2−1/2Cxaα

The tunneling coefficients between n = n′ = 0 states are

t↑⇑αk0 = 〈αk ↑ |HT |0 ⇑〉 =
∑
n′σ′

t↑σ
′

αkn′m
σ′⇑
n′0

= t↑↓αk0m
↓⇑
00 + t↑↑αk0m

↑⇑
00 + t↑↑αk1m

↑⇑
10 + t↑↓αk1m

↓⇑
10

= t↑↑αk0 − t↑↑αk12
−1/2Cxaα + t↑↓αk1

[−aα2−1/2 + Czaα2−1/2
]

t↓⇓αk0 = 〈αk ↓ |HT |0 ⇓〉 =
∑
n′σ′

t↓σ
′

αkn′m
σ′⇓
n′0

= t↓↑αk0m
↑⇓
00 + t↓↓αk0m

↓⇓
00 + t↓↓αk1m

↓⇓
10 + t↓↑αk1m

↑⇓
10

= t↓↓αk0 + t↓↓αk12
−1/2Cxaα + t↓↑αk1

[
aα2−1/2 + Czaα2−1/2

]
t↑⇓αk0 = 〈αk ↑ |HT |0 ⇓〉 =

∑
n′σ′

t↑σ
′

αkn′m
σ′⇓
n′0

= t↑↓αk0m
↓⇓
00 + t↑↑αk0m

↑⇓
00 + t↑↑αk1m

↑⇓
10 + t↑↓αk1m

↓⇓
10

= t↑↓αk0 + t↑↑αk1

[
aα2−1/2 + Czaα2−1/2

]
+ t↑↓αk12

−1/2Cxaα

t↓⇑αk0 = 〈αk ↓ |HT |0 ⇑〉 =
∑
n′σ′

t↓σ
′

αkn′m
σ′⇑
n′0

= t↓↑αk0m
↑⇑
00 + t↓↓αk0m

↓⇑
00 + t↓↓αk1m

↓⇑
10 + t↓↑αk1m

↑⇑
10

= t↓↑αk0 + t↓↓αk1

[−aα2−1/2 + Czaα2−1/2
] − t↓↑αk12

−1/2Cxaα
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If tσσ′
αkn′ is independent of k, proportional to δσσ′ and also spin independent, then

tση
αkn =

∑
n′
tαn′mση

n′n

The tunneling matrix between n = 0 states is thus

tαk0 =

(
t↑⇑αk0 t↑⇓αk0

t↓⇑αk0 t↓⇓αk0

)
=

(
tα0 − Cxaα√

2
tα1

aα√
2
[1 + Cz] tα1

aα√
2
[−1 + Cz] tα1 tα0 + Cxaα√

2
tα1

)
(3.5)

Notice again that
aα � 1 and Ci � 1

If we consider a quantum dot with only one n-level, namely n = 0 with
pseudo-spin η ∈ {⇑,⇓}, then the transition is determined by these overlaps.

3.5 Rotating the lead operators

We now focus on a single orbital, for simplicity take n = 0. Only virtual tran-
sitions are allowed to the other orbitals. The tunneling in and out of the n = 0
orbial from lead α is now described by the following tunneling term in the Hamil-
tonian:∑

kση

tση
αk0c

†
αkσd0η =

∑
k

[(
t↑⇑αk0d0⇑ + t↑⇓αk0d0⇓

)
c†αk↑ +

(
t↓⇑αk0d0⇑ + t↓⇓αk0d0⇓

)
c†αk↓

]
=

∑
k

[(
t↑⇑αk0c

†
αk↑ + t↓⇑αk0c

†
αk↓

)
d0⇑ +

(
t↓⇓αk0c

†
αk↓ + t↑⇓αk0c

†
αk↑

)
d0⇓

]
(3.6)

Note that in the tunneling process any dot pseudo-spin electron (i.e. both ⇑
and ⇓) can become a left lead electron with any spin (↑ and ↓). This differs
from the trivial spin conserving form. A first attempt to deal with the tunneling
Hamiltonian would be trying to rotate the operators in a way that brings the
Hamiltonian on the trivial form. If it is possible to define a new set of creation
and annihilation operators obeying fermion statistics that brings the Hamiltonian
on the right form, then we are done. With the first line of (3.6) in mind, one
could define the two brackets as some new operators and check whether they
are fermion operators or not. Provided they fulfil fermion statistics, the problem
is solved by expressing the Hamiltonian in terms of the new (rotated) set of
operators. In this way the problem is solved by means of a rotation of the lead
spin quantization axes.

The left tunneling coefficient tση
L k0 will in general be different from the right

tunneling coefficient tση
R k0. Thus if the dot creation and annihilation operators are

rotated, there will be two distinct rotations, one associated with the left tunneling
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coefficient and one with the right. Instead we want to rotate the two set of lead
operators. These are destinct anyway. The result is∑

kση

tση
α,k0c

†
αkσd0η =

∑
k

[
c†αk0⇑d0⇑ + c†αk0⇓d0⇓

]

where a new operator c†Lk0η has been defined as

c†αk0⇑ =

(
tα0 − Cxaα√

2
tα1

)
c†αk↑ +

(
aα√

2
[−1 + Cz] tα1

)
c†αk↓

c†αk0⇓ =

(
aα√

2
[1 + Cz] tα1

)
c†αk↑ +

(
tα0 +

Cxaα√
2
tα1

)
c†αk↓

(3.7)

with tunneling coefficients from (3.5). This can be interpreted as an operator cre-
ating a fermion with momentum k and pseudospin η only if the anti-commutator
relations are fulfilled.{
cαk0⇑, c

†
αk0⇑

}
=

(
tα0 − Cxaα√

2
tα1

)2 {
cαk↑, c

†
αk↑

}
+

(
aα√

2
[−1 + Cz] tα1

)2 {
cαk↓, c

†
αk↓

}
= t2α0 −

Cxaα√
2
tα0tα1 +O(α2, B2)

{
cαk0⇓, c

†
αk0⇓

}
= t2α0 +

Cxaα√
2
tα0tα1 +O(α2, B2){

cαk0⇓, c
†
αk0⇑

}
=

√
2aαCztα0tα1 +O(α2, B2){

c†αk0η, c
†
αk0η′

}
= {cαkη, cαkη′} = 0

For B = 0, this is
{
cαk0η, c

†
αk0η′

}
= δηη′t2α0+O(α2) ≈ δηη′t2α0 and

{
c†αk0η, c

†
αk0η′

}
=

0. If t2α0 is absorbed into the creation and annihilation operator, then the
anti-commutator relations are fulfilled to linear order in α and B. For B =
(Bx, 0, Bz) �= (0, 0, 0) and a non-zero SO coupling, the anti-commutation rela-
tions are not fulfilled. The anti-commutation relations hold only in the trivial
case with a magnetic field along the y-axis, B = (0, B, 0). In that case

c†αk0⇑ = tα0c
†
αk↑ −

aα√
2
tα1c

†
αk↓

c†αk0⇓ =
aα√

2
tα1c

†
αk↑ + tα0c

†
αk↓

(3.8)

Expressing the tunneling Hamiltonian in these fermion operators brings it on
the form of a trivial, spin conserving tunneling Hamiltonian. For Bx �= 0 �= Bz

it is not possible to solve the problem by means of such a rotation. Therefore we
have to deal with the tunneling Hamiltonian (3.6).





Chapter 4

Kondo model

We consider a dot Hamiltonian given by

H̃D := Hd +HZ + Un⇑n⇓

The Hamiltonian describing the system constituted by the leads and the dot is
thus

H̃ = H̃D +HLR +HT

4.1 Transforming away the charge fluctuations

(Schrieffer-Wolff transformation)

Following Schrieffer-Wolff[24] we want to perform a canonical transformation
of the Hamiltonian that eliminates the high-energy states. The transformation
should project the Hamiltonian onto a subspace with only one electron on the
dot, and where excursions to the double- or single-occupied states can occur
only virtually. A such transformation can be represented by means of a unitary
transformation eiS acting on the Hamiltonian

HS = eiSH̃e−iS

such that the tunneling part is transformed away:

i
[
S, H̃D +HLR

]
= −HT +O

(
(tση

α0)
2
)

To second order in the tunneling, the rotated Hamiltonian is given by

HS = eiSH̃e−iS ≈ H̃D +HLR +
i

2
[S,HT ]

Such a transformation exist. Let S be given by

S = S− +
(
S−)†

29



30 CHAPTER 4. KONDO MODEL

with

S− = −i
∑
αkση

(
tση
α0

εk −E2 + E1

nηc
†
αkσdη +

tση
α0

εk + E0 − E1

(1 − nη) c
†
αkσdη

)
= S−

1 +S−
2

Then the first part of the commutator is[
S−

1 , HD +HLR

]
= i

∑
αkση

tση
α0nηc

†
αkσdη

where we have used that n2
η = nη and E2−E1 = U+εη. Similarly

[
S−

2 , HD +HLR

]
=

i
∑

αkση t
ση
α0 (1 − nη) c

†
αkσdη and hence

[
S−, HD +HLR

]
= i

∑
αkση

tση
α0c

†
αkσdη

Using [S−, HD +HLR]+[S+, HD +HLR] = [S−, HD +HLR]−[S,HD +HLR]†,
we see that the first commutator in the Baker-Campbell-Hausdorff expansion
cancels out the tunneling hamiltonian:

i [S,HD +HLR] = −
(∑

αkση

tση
α0c

†
αkσdη +

∑
αkση

tση∗
α0 cαkσd

†
ηcαkσ

)
= −HT

Calculation of H
(2)
S = i

2
[S,HT ]:

[S,HT ] =
[
S−, H+

T

]
+

[
S+, H−

T

]
+

[
S−, H−

T

]
+

[
S+, H+

T

]
≈ [

S−, H+
T

]
+

[
S+, H−

T

]
=

[
S−, H+

T

]
+

[(
S−)†

,
(
H+

T

)†]
=

[
S−, H+

T

] − [
S−, H+

T

]†
= 2i Im

([
S−, H+

T

])
(4.1)

[
S−

1 , H
+
T

]
= −i

∑
αkση

α′k′σ′η′

tση
α0t

σ′η′∗
α′0

ξαk − E2 + E1

[
nηc

†
αkσdη, d

†
η′cα′k′σ′

]

= −i
∑
αkση

α′k′σ′η′

tση
α0t

σ′η′∗
α′0

ξαk − E2 + E1

c†αkσcα′k′σ′dηd
†
η′

where we have used that nηdη = 0 and nηdηd
†
η′ = dηd

†
η′ when acting on a dot

occupied by one electron (in ⇑ or ⇓ state).
[
S−

2 , H
+
T

]
is calculated similarly.
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If ξαk � E2 −E1, E0 −E1, the dependence on ξαk in the denominator can be
neglected[4]. Using the relation dηd

†
η′ = δηη′ − d†η′dη, the commutator reads

[
S−, H+

T

] ≈ −i
∑
αkση

α′k′σ′η′

tση
α0t

σ′η′∗
α′0

{ (
1

E2 −E1

+
1

E0 − E1

)
c†αkσcα′k′σ′d†η′dη

−
(

1

E2 − E1

)
δηη′c†αkσcα′k′σ′

−
(

1

E0 − E1

)
δαkσ,α′k′σ′d†η′dη

} (4.2)

Letting s (S) denote the spin on the lead (dot), one can define spin operators
by[4, p. 172]

sα′k′αk =
∑
σσ′

1

2
c†α′k′σ′τσ′σcαkσ

S =
∑
ηη′

1

2
d†η′τη′ηdη

where τσ′σ = 〈σ′|τx, τ y, τ z|σ〉. In addition we define

s0
α′k′αk = c†αk↑cα′k′↑ + c†αk↓cα′k′↓

S0 = d†⇑d⇑ + d†⇓d⇓ = I

Note that since we are in the Kondo regime where the quantum dot is populated
by exactly one electron in either the ⇑ or the ⇓ state, S0 is simply the identity
operator. The creation and annihilation operators expressed in terms of spin
operators are given by

c†αk↑cα′k′↑ =
1

2

(
c†αk↑cα′k′↑ + c†αk↓cα′k′↓

)
+

1

2

(
c†αk↑cα′k′↑ − c†αk↓cα′k′↓

)
=

1

2
s0

αkα′k′ + sz
αkα′k′

c†αk↓cα′k′↓ =
1

2
s0

αkα′k′ − sz
αkα′k′

c†αk↑cα′k′↓ = s+
αkα′k′ = sx

αkα′k′ + isy
αkα′k′

c†αk↓cα′k′↑ = s−αkα′k′ = sx
αkα′k′ − isy

αkα′k′

for the lead operators α ∈ {L,R} and for the dot:

d†⇑d⇑ =
1

2

(
d†⇑d⇑ + d†⇓d⇓

)
+

1

2

(
d†⇑d⇑ − d†⇓d⇓

)
=

1

2
S0 + Sz

d†⇓d⇓ =
1

2
S0 − Sz

d†⇑d⇓ = S+ = Sx + iSy

d†⇓d⇑ = S− = Sx − iSy
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Expressing (4.2) in components of the spin operators gives

[
S−, H+

T

] ≈ −i
∑

αkα′k′

{ (
1

E2 −E1

+
1

E0 −E1

)

×
[
t11α0t

11∗
α′0

(
1
4
s0

αkα′k′S0 + 1
2
sz

αkα′k′S0 + 1
2
s0

αkα′k′Sz + sz
αkα′k′Sz

)
+ t22α0t

22∗
α′0

(
1
4
s0

αkα′k′S0 − 1
2
sz

αkα′k′S0 − 1
2
s0

αkα′k′Sz + sz
αkα′k′Sz

)
+ t12α0t

12∗
α′0

(
1
4
s0

αkα′k′S0 + 1
2
sz

αkα′k′S0 − 1
2
s0

αkα′k′Sz − sz
αkα′k′Sz

)
+ t21α0t

21∗
α′0

(
1
4
s0

αkα′k′S0 − 1
2
sz

αkα′k′S0 + 1
2
s0

αkα′k′Sz − sz
αkα′k′Sz

)
+ t11α0t

21∗
α′0s

+
αkα′k′

(
1
2
S0 + Sz

)
+ t12α0t

11∗
α′0

(
1
2
s0

αkα′k′ + sz
αkα′k′

)
S+

+ t12α0t
22∗
α′0s

+
αkα′k′

(
1
2
S0 − Sz

)
+ t22α0t

21∗
α′0

(
1
2
s0

αkα′k′ − sz
αkα′k′

)
S+

+ t21α0t
11∗
α′0s

−
αkα′k′

(
1
2
S0 + Sz

)
+ t11α0t

12∗
α′0

(
1
2
s0

αkα′k′ + sz
αkα′k′

)
S−

+ t22α0t
12∗
α′0s

−
αkα′k′

(
1
2
S0 − Sz

)
+ t21α0t

22∗
α′0

(
1
2
s0

αkα′k′ − sz
αkα′k′

)
S−

+ t11α0t
22∗
α′0s

+
αkα′k′S

− + t12α0t
21∗
α′0s

+
αkα′k′S

+

+ t22α0t
11∗
α′0s

−
αkα′k′S

+ + t21α0t
12∗
α′0s

−
αkα′k′S

−
]

−
(

1

E2 − E1

)[ (
t11α0t

11∗
α′0 + t12α0t

12∗
α′0

) (
1
2
s0

αkα′k′ + sz
αkα′k′

)
+

(
t21α0t

21∗
α′0 + t22α0t

22∗
α′0

) (
1
2
s0

αkα′k′ − sz
αkα′k′

)
+

(
t11α0t

21∗
α′0 + t12α0t

22∗
α′0

)
s+

αkα′k′

+
(
t21α0t

11∗
α′0 + t22α0t

12∗
α′0

)
s−αkα′k′

]
−

(
1

E0 − E1

)[ (
t11α0t

11∗
α′0 + t21α0t

21∗
α′0

) (
1
2
S0 + Sz

)
+

(
t12α0t

12∗
α′0 + t22α0t

22∗
α′0

) (
1
2
S0 − Sz

)
+

(
t12α0t

11∗
α′0 + t22α0t

21∗
α′0

)
S+

+
(
t11α0t

12∗
α′0 + t21α0t

11∗
α′0

)
S−

]

(4.3)

where again S0 is really the unit operator, just kept here to remind ourselves
where it came from.

The types of terms in (4.3) are si
αkα′k′, Si, sj

αkα′k′Si, si
αkα′k′S0, s0

αkα′k′Si and
s0

αkα′k′S0 for ij ∈ {x, y, z}. Subtracting the hermitian conjugate in (4.1) gives a
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Hamiltonian on the general form:

H
(2)
S =

∑
αα′kk′

∑
ij∈{x,y,z}

J ij
αα′s

j
αkα′k′S

i +
∑

αα′kk′

(
vαα′s0

αkα′k′ + Vαα′S0
)

+
∑

αα′kk′
ωαα′s0

αkα′k′S0 +
∑

αα′kk′

∑
i∈{x,y,z}

(
wi

αα′si
αkα′k′S0 +W i

αα′s0
αkα′k′Si

)
+

∑
αα′kk′

∑
i∈{x,y,z}

(
Li

αα′si
αkα′k′ +M i

αα′Si
)

or inserting that S0 = I:

H
(2)
S =

∑
αα′kk′

∑
ij∈{x,y,z}

J ij
αα′s

j
αkα′k′S

i +
∑

αα′kk′

∑
i∈{x,y,z}

Ki
αα′s0

αkα′k′Si

+
∑

αα′kk′

∑
i∈{x,y,z}

(
Li

αα′si
αkα′k′ +M i

αα′Si
)

+
∑

αα′kk′
Nαα′s0

αkα′k′ +
∑

αα′kk′
Oαα′

(4.4)

All of the energies J,K,L...,O contain an energy prefactor, e.g.
(

1
E2−E1

+ 1
E0−E1

)
.

In the following j,k,l,...,o shall denote the energies J,K,L,...,O without these pref-
actors.

4.2 The Kondo Hamiltonian

We shall now focus on the exchange-like term

[
S−, H+

T

]
K

= −2i
∑

αα′kk′

(
1

E2 − E1
+

1

E0 − E1

) ∑
ij

jij
αα′s

j
αkα′k′S

i

with the complex matrix given by (4.6). In order to find

H
(2)
K =

i

2
[S,HT ]K ≈ i

2

([
S−, H+

T

]
K
− [

S−, H+
T

]†
K

)
one needs the hermitian conjugate of the products jijsj

αk′RkS
i. The matrix el-

ement jij is a complex number (and not an operator or a pseudoscalar), hence

jij† = jij∗. By writing the spin operators in terms of the creation and annihi-
lation operators and using the fact that dot operators anti-commutes with lead

operators, one finds that
(
sj

αkα′k′Si
)†

= sj
α′k′αkS

i for all i, j ∈ {x, y, z}. The term
to subtract is thus

[
S−, H+

T

]†
K

= +2i
∑

αα′kk′

(
1

E2 −E1
+

1

E0 −E1

) ∑
ij

jij
αα′

∗
sj

α′k′αkS
i
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and since jij
α′α = jij

αα′
∗

the ”sum” is

H
(2)
K =

∑
αα′kk′

(
1

E2 −E1

+
1

E0 −E1

) ∑
ij

(
jij
αα′s

j
αkα′k′ + jij

α′αs
j
α′k′αk

)
Si

The Kondo Hamiltonian is

H
(2)
K =

∑
αα′kk′

2

(
1

E2 − E1

+
1

E0 − E1

) ∑
ij

jij
αα′s

j
αkα′k′S

i
(4.5)

with

jαα =

⎛
⎝ t2α0 0 −2γtα0tα1

0 t2α0 0
2γtα0tα1 0 t2α0

⎞
⎠

ij

jαα′ =

⎛
⎝ tα0tα′0 iCxγ (tα1tα′0 − tα′1tα0) −γ (tα1tα′0 + tα′1tα0)

−iCxγ (tα1tα′0 − tα′1tα0) tα0tα′0 −iCzγ (tα1tα′0 − tα′1tα0)
γ (tα1tα′0 + tα′1tα0) iCzγ (tα1tα′0 − tα′1tα0) tα0tα′0

⎞
⎠

ij

(4.6)

where
γ = −2−1/2aα

Note that the alpha in γ is the SO coupling strength unlike the labels on M
that numbers the leads. The Rashba Hamiltonian was transformed away only
to linear order in the coupling (see (3.3)). The Shrieffer-Wolff transformation
is valid only to linear order in the tunneling coefficients. Therefore we have
neglected higher-order terms in the the above.

In the absence of spin-orbit interaction the Kondo Hamiltonian is isotropic:

Jαα′
∑

i

si
αkα′k′Si

An anisotrpic form would be∑
i

J i
αα′si

αkα′k′Si =
∑

i

J⊥
(
s+

αkα′k′S
− + s−αkα′k′S

+
)

+ J‖sz
αkα′k′Sz

In the case of a Rashba SO interaction, the Kondo Hamiltonian is even more
complex. The Kondo Hamiltonian thus has very low symmetry. For magnetic
field, B = (0, By, 0), the αα-contribution to the Kondo Hamiltonian is

∑
ij

(
jij
ααs

j
αα

)
Si = t2α0

⎛
⎝ 1 0 θα

0 1 0
−θα 0 1

⎞
⎠

︸ ︷︷ ︸
Ry(θα)+O(θ2

α)

sα · S ≈ t2α0 (Ry(θα)sα) · S

where θα =
√

2 (tα1/tα0) aα. These terms are on the form of a dot product
between a rotation of sαα and S. The anisotropicy can be understood as a
rotation of an isotropic system.
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4.3 Current

In a system described by the Kondo Hamiltonian, a transition from left to right
is due to

jij
RLc

†
Rk̃′σ̃′τ

j
σ̃′σ̃cLk̃σ̃S

i

The transition rate ΓRk′σ′Lkσ
η′η is between an initial state |i〉 = |iL〉|iR〉|η〉 fulfilling

c†LkσcLkσ|iL〉 = |iL〉
c†Rk′σ′cRk′σ′ |iR〉 = 0

and a final state

|f〉 = c†R,k′,σ′d
†
η′dηcL,kσ|i〉 = c†R,k′,σ′cL,kσ|iL〉|iR〉|η′〉

Here the lead eigenstates |iα〉 are N-particle basis states in the occupation number
representation.

If one is only interested in what happens on the dot, one can define a tran-
sition ΓRL

η′η as the sum over all possible initial and final states of the transition,
each weighted by a thermal distribution function W . Going a step further and
summing over all directions of currents gives Γη′η, the transition for the process
of the dot spin changing from η to η′ ∈ {η, η}. In generel this is[4]

Γα′k′σ′αkσ
η′η =

2π

�
|〈f |HT |i〉|2 δ (Ef −Ei)

Γα′α
η′η =

∑
kk′σσ′

∑
i

Γα′k′σ′αkσ
η′η W iα′W iα

Γη′η =
∑
αα′

Γα′α
η′η

The transition ΓRL
η′η is between an initial state |i〉 = |iL〉|iR〉|η〉 and a final state

|f〉 = c†R,k′,σ′d
†
η′dηcL,kσ|i〉 = c†R,k′,σ′cL,kσ|iL〉|iR〉|η′〉

The transition rate from |i〉 to |f〉 is given by Fermi’s Golden Rule:

ΓRL
η′η = 2π

∑
fL,fR

∑
iL,iR

∣∣∣∣〈η′|〈fR|〈fL|HT |iL〉|iR〉|η〉
∣∣∣∣2WiLWiR

× δ[EfL
+ EfR

+ Eη′ − EiL − EiR − Eη]
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Neglecting everything but the first term in H
(2)
K , the transition rate from |i〉 to

|f〉 is given by

ΓRL
η′η = 2π

∑
kσk′σ′

∑
iL,iR

∣∣∣∣〈i|c†L,kσd
†
ηdη′cR,k′σ′

4

U/2

∑
ijk̃′k̃

(
jij
RLs

j

Rk̃′,Lk̃

)
Si|i〉

∣∣∣∣2
×WiLWiRδ[ξRk′σ′ + ξη′ − (ξLkσ + ξη)]

=
∑

kσk′σ′

128π

U2

∣∣∣∣∣∑
ij

jij
RL

4
τ j
σ′στ

i
η′η

∣∣∣∣∣
2 (∑

iL

WiL〈iL|c†LkσcLkσ|iL〉
)

×
(∑

iR

WiR〈iR|cRk′σ′c†Rk′σ′ |iR〉
)(∑

η̃η̃′
〈η′|d†η̃dη̃′ |η〉

)

× δ[ξk′σ′ + ξη′ − (ξkσ + ξη)]

=
∑
σσ′

8π

U2

∣∣∣∣∣∑
ij

jij
RLτ

j
σ′στ

i
η′η

∣∣∣∣∣
2 ∑

kk′
nF (ξLkσ − μL) [1 − nF (ξRk′σ′ − μR)]

× δ[ξk′σ′ + ξη′ − (ξkσ + ξη)]

with nF (ξLkσ − μL) being the Fermi-Dirac distribution function

nF (ξLkσ − μL) =
1

exp [(ξLkσ − μL) /kBT ] + 1

Here we have used that 〈iL|c†LkσcLk̃σ̃|iL〉 ∝ δkk̃δσσ̃ and likewise for the inner prod-
ucts conserning the right lead and the dot. Assuming that the lead energies are
independent of spin, that is ξαkσ = ξαk, the Fermi distribution functions and the
delta function can be taken outside the spin sum. In an isotropic Kondo model
(jij

RL ∝ δij), the product of Pauli matrices is simply

∑
σσ′

∣∣∣∣∣∑
ij

jij
RLδijτ

j
σ′στ

i
η′η

∣∣∣∣∣
2

=
∑
kj

jjj
RLj

kk
RL

∗ ∑
σσ′

τ j
σ′στ

k
σ′σ

†
τ j
η′ητ

k
η′η

†

=
∑
kj

jjj
RLj

kk
RL

∗
Tr

[
τ jτk

]︸ ︷︷ ︸
2δjk

τ j
η′ητ

k
ηη′ = 2θRL

η′η

where theta has been defined as

θRL
η′η :=

∑
j

(
jjj
RL

)2
τ j
η′ητ

j
ηη′

Here hermiticity of the Pauli matrices (τ i† = τ i) have been used to find τ i
σ′σ

∗
=

〈σ′|τ i|σ〉∗ = 〈σ|τ i|σ′〉 = τ i
σσ′ . In the anisotropic case the product of Pauli matrices
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is

∑
σσ′

∣∣∣∣∣∑
ij

jij
RLτ

j
σ′στ

i
η′η

∣∣∣∣∣
2

=
∑
σσ′

∑
ij

jij
RLτ

j
σ′στ

i
η′η

∑
kl

τk
η′η

∗
τ l
σ′σ

∗
jkl
RL

∗

=
∑
ijkl

jij
RLj

kl
RL

∗
(∑

σσ′
τ j
σ′στ

l
σσ′

)
τ i
η′ητ

k
ηη′

= 2
∑
ijk

jij
RLj

kj
RL

∗
τ i
η′ητ

k
ηη′

= 2
∑
ik

τ i
η′ηA

RL
ik τ

k
ηη′ := 2θRL

η′η

with ARL
ik =

∑
j j

ij
RLj

kj
RL

∗
. Because of the continuous density of states, we replace

sums by integrals: ∑
αk

→
∫ ∞

−∞
dξαkg(ξαk)

for α = L,R. Assuming that g(ξLk)g(ξRk′) is constant in the relevant energy range
and hence can be taken outside the energy integrals, we obtain the transition rate

ΓRL
η′η =

16π

U2
θRL

η′ηgLgR

∫ ∞

−∞
dξRk′

∫ ∞

−∞
dξLknF (ξLk − μL)

× [1 − nF (ξRk′ − μR)] δ[ξRk′ + ξη′ − (ξLk + ξη)]

=
16π (tRtL)2

U2
θRL

η′ηgLgR

∫ ∞

−∞
dξRk′nF (ξRk′ + ξη′ − ξη − μL) [1 − nF (ξRk′ − μR)]

=
16π

U2
θRL

η′ηgLgRnB (ξη′ − ξη − μL + μR)

×
∫ ∞

−∞
dξRk′ [nF (ξRk′ − μR) − nF (ξRk′ + ξη′ − ξη − μL)]

= 16πU−2gLgRθ
RL
η′η (ξη′ − ξη − μL + μR)nB (ξη′ − ξη − μL + μR)

A transition from right to left, ΓLR
η′η , is given by initial and final states |f〉 =

c†Lkσd
†
η′dηcRk′σ′ |i〉 and the Kondo Hamiltonian jij

LRc
†
Lk̃σ̃

τ j
σ̃σ̃′cRk̃′σ̃′Si. With the sub-

stitutions (R,L, σ, σ′) � (L,R, σ′, σ), the calculation runs like the above.

ΓLR
η′η =

∑
σσ′

8π

U2

∣∣∣∣∣∑
ij

jij
LRτ

j
σσ′τ

i
η′η

∣∣∣∣∣
2 ∑

kk′
nF (ξRL′σ′ − μR) [1 − nF (ξLkσ − μL)] δ [...]

= 16πU−2gLgRθ
LR
η′η (ξη′ − ξη − μR + μL)nB (ξη′ − ξη − μR + μL)

with
θLR

η′η =
∑
ijk

jij
LRj

kj
LR

∗
τ i
η′ητ

k
ηη′
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Note that the relation jij
αα′

∗
= jij

α′α (α �= α′) is not sufficient to ensure identical
thetas:

θLR
η′η :=

∑
ijk

jij
LRj

kj
LR

∗
τ i
η′ητ

k
ηη′ =

∑
ijk

jij
RL

∗
jkj
RLτ

i
η′ητ

k
ηη′ �=

∑
ijk

jij
RLj

kj
RL

∗
τ i
η′ητ

k
ηη′ = θRL

η′η

Similar calculations leads to Γαα
η′η, α ∈ {L,R}. In these cases the transition

is described by initial and final states |f〉 = c†αkσd
†
η′dηcαk′σ′ |i〉 and the Kondo

Hamiltonian jij
ααc

†
αk̃σ̃

τ j
σ̃σ̃′cαk̃′σ̃′Si.

Γαα
η′η = 2π

∑
kσk′σ′

∑
iα

∣∣∣∣〈i|c†α,kσd
†
ηdη′cα,k′σ′

4

U/2

∑
ijk̃′k̃

(
jij
ααs

j

αk̃′,αk̃

)
Si|i〉

∣∣∣∣2
×Wiαδ[ξαk′σ′ + ξη′ − (ξαkσ + ξη)]

Since only one lead is involved, the initial state |iα〉 is sandwiched between not
only one anihilation and one creation operator, but between two of each, all with
different momenta and spins. The inner product is∑

k̃k̃′σ̃σ̃′

〈iα|c†αk′σ′cαkσc
†
αk̃σ̃

cαk̃′σ̃′ |iα〉 =
∑

k̃k̃′σ̃σ̃′

〈iα|c†αk′σ′cαkσc
†
αk̃σ̃

cαk̃′σ̃′ |iα〉δkk̃δk′k̃′δσσ̃δσ′σ̃′

= 〈iα|c†αk′σ′cαkσc
†
αkσcαk′σ′ |iα〉

= 〈iα|c†αk′σ′cαkσ

(
δkk′δσσ′ − cαk′σ′c†αkσ

)
|iα〉

= 〈iα|c†αk′σ′cαk′σ′cαkσc
†
αkσ|iα〉

=
∑
jα

〈iα|c†αk′σ′cαk′σ′ |jα〉〈jα|cαkσc
†
αkσ|iα〉

= 〈iα|c†αk′σ′cαk′σ′ |iα〉〈iα|cαkσc
†
αkσ|iα〉

Each of these inner products equals zero or one. Therefore∑
kk′

∑
iα

|〈iα|...|iα〉|2Wiα =
∑
kk′

∑
iα

〈iα|c†αk′σ′cαk′σ′ |iα〉〈iα|cαkσc
†
αkσ|iα〉Wiα

=
∑
kk′

nF (ξαk′σ′ − μα) [1 − nF (ξαkσ − μα)]

The transition rate is

Γαα
η′η = 16πU−2g2

αθ
αα
η′η (ξη′ − ξη)nB (ξη′ − ξη)

with θαα
η′η =

∑
ijk j

ij
ααj

kj
αατ

i
η′ητ

k
ηη′ . All transition rates α′, α ∈ {L,R} are on the

same form:

Γα′α
η′η = 16πU−2gα′gαθ

α′α
η′η (ξη′ − ξη − μα + μα′)nB (ξη′ − ξη − μα + μα′) (4.7)
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with
θα′α

η′η =
∑
ijk

jij
α′αj

kj
α′α

∗
τ i
η′ητ

k
ηη′ =

∑
ijk

jij
α′αj

kj
αα′τ

i
η′ητ

k
ηη′

A transition between dot states η and η′ can happen in a process where an
electron tunnels from lead α ∈ {L,R} to lead α′ ∈ {L,R}. In other words, if one
is only interested in the net process on the dot, a transition rate Γη′η is defined
by

Γη′η = ΓRL
η′η + ΓLR

η′η + ΓLL
η′η + ΓRR

η′η

We can now determine the nonequilibrium occupation numbers P (η). This is
done by solving the following master equations:

dP (⇑)

dt
= −Γ⇓⇑P (⇑) + Γ⇑⇓P (⇓)

dP (⇓)

dt
= −Γ⇑⇓P (⇓) + Γ⇓⇑P (⇑)

with the constraint that P (⇑) + P (⇓) = 1. In a steady state (dP (η)/dt = 0),
the master equations give

0 = −Γ⇑⇓P (⇓) + Γ⇓⇑P (⇑) = −Γ⇑⇓ + (Γ⇑⇓ + Γ⇓⇑)P (⇑)

and hence

P (⇑) =
Γ⇑⇓

Γ⇑⇓ + Γ⇓⇑
, P (⇓) =

Γ⇓⇑
Γ⇑⇓ + Γ⇓⇑

(4.8)

Inserting the transitions rates in the above relations yields P (η). To calculate the
current through the junction, one needs the transition between all states within
the Kondo regime:

I = (−e)
∑
ηη′

(
ΓRL

η′η − ΓLR
η′η

)
P (η)

= (−e) 16πU−2gRgL

∑
ηη′

[
(ξη′ − ξη − V )nB (ξη′ − ξη − V ) θRL

η′η

− (ξη′ − ξη + V )nB (ξη′ − ξη + V ) θLR
η′η

]
P (η)

(4.9)

where the potential V has been defined as V := μL − μR. Note that also P (η)
depends on ξη′ ,ξη and V through the transitions Γη′η.

A mathematica-calculation of the differential conductance as function of bias-
voltage is displayed in fig. 4.1. See the code in Appendix. A similar mathematica-
calculation of the conductance in the case of a vanishing magnetic field do not
show a Kondo peak. This is due to the fact that higher order contributions have
been neglected. These become increasingly important as the magnetic field is
decreased.
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Figure 4.1: Differential Conductance dI/dV plottet against V
for the values: Cx = 0.4, Cz = 0.1,γ = −2−1/2aα = 0.1,
tL0 = 1,tR0 = 1,tR1 = −1, T = 0.4, B = 1.0. Notice the strong
asymmetry in the peaks at V = ±1.2. By zooming out it is pos-
sible to see that dI/dV converges to the same value in V = ±∞

4.3.1 Differential conductance for |V | >> |B|
The energy of state |0,⇑ / ⇓〉 is to linear order in B given by

ξη = ηgμBB/2

Then (ξη′ − ξη) ∝ B so the condition |V | >> |ξη′−ξη| is equivalent to |V | >> |B|.
The probability P (η) is a rather complicated expression of the energies and the
bias-voltage. The transition rate Γηη that enters P (η) contains terms linear in V
and terms linear in B. Neglecting all terms linear in B yields the transition rate
in the case of |V | >> |B|:

Γηη ≈ I0
[
θRL

ηη (−V )nB (−V ) + θLR
ηη V nB (V )

]
with I0 := (−e) 16πU−2gRgL, so

P (η) ≈ θRL
ηη (−V )nB (−V ) + θLR

ηη V nB (V )[
θRL

ηη (−V )nB (−V ) + θLR
ηη V nB (V )

]
+

[
θRL

ηη (−V )nB (−V ) + θLR
ηη V nB (V )

]
In this case the only difference between P (⇑) and P (⇓) are the thetas in the
numerator. For a bias-voltage much larger than the temperature, that is V >>
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kBT , the product of the bias-voltage with the Bose-Einstein distribution function
is approximately linear in V. Introducing a step function θ(x), the product is

(±V )nB (±V ) =
±V

e±V/kBT − 1
≈ |V |θ (∓V )

For V >> kBT (and still for |V | >> |B|) the occupation is

P (η) ≈
{
θRL

ηη /
(
θRL

ηη + θRL
ηη

)
for V > 0

θLR
ηη /

(
θLR

ηη + θLR
ηη

)
for V < 0

The differential conductance is given by

dI/dV ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I0

∑
ηη′

θRL
η′ηθ

RL
ηη /

(
θRL

ηη + θRL
ηη

)
for V > 0

I0
∑
ηη′

θLR
η′ηθ

LR
ηη /

(
θLR

ηη + θLR
ηη

)
for V < 0

(4.10)

If there is no spin-orbit coupling, then jij
α′α = δij for all α′, α ∈ {L,R}, hence

θα′α
η′η =

∑
i τ

i
η′ητ

i
ηη′ = θαα′

η′η . In this case (4.10) shows that the differential conduc-
tance will be equal in ±V (for |V | >> τ). In other words, there is a symmetry in
left and right, such that by flipping a large bias-voltage V the current will main-
tain its magnitude and shift direction. With a finite Rashba-coupling θαα′

η′η �= θα′α
η′η ,

e.g.

θLR
⇑⇓ − θRL

⇑⇓ = 4Cx(tL1tR0 − tL0tR1)γ(−2tL0tR0 + tL1tR0γ + tL0tR1γ) (4.11)

which in general is non-zero. Here γ = −2−1/2aα and we shall remember that
the expression is only valid up to linear order in the gammas and magnetic field,
hence we shall only look at the terms linear in these:

θLR
⇑⇓ − θRL

⇑⇓ = −8Cx(tL1tR0 − tL0tR1)tL0tR0

(−2−1/2aα
)

(4.12)

By expressing all thetas in terms of gammas and C’s, one finds that

θRL
η′ηθ

RL
ηη /

(
θRL

ηη + θRL
ηη

)
= θLR

η′ηθ
LR
ηη /

(
θLR

ηη + θLR
ηη

)
and the differential conductance (4.10) is thus equal in ±V (for |V | >> τ).

4.3.2 Differential conductance for V = ±B
For a bias-voltage V in the neighbourhood of ±B, there is a difference in diff.
conductance for ±V . For −B < V < B only the ground state (⇓) can be
occupied, hence the only transition allowed is the spin-preserving one Γ⇓⇓. For
|V | > B, spin-flip processes Γ⇑⇓ and Γ⇓⇑ are possible since the potential difference
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”delivers the energy needed to flip the spin”. By turning up the bias-voltage from
|V | < B to V = ±B there must be a step in dI/dV where the first spin flips, that
is where the transition Γ⇑⇓ becomes possible. Here, the current is given by

I = I0

[
(ξ⇑ − ξ⇓ − V )nB (ξ⇑ − ξ⇓ − V ) θRL

⇑⇓

− (ξ⇑ − ξ⇓ + V )nB (ξ⇑ − ξ⇓ + V ) θLR
⇑⇓

+ (−V )nB (−V ) θRL
⇓⇓ − (+V )nB (+V ) θLR

⇓⇓

]
P (⇓)

For B = (ξ⇑ − ξ⇓) = −V the differential conductance is:

dI

dV −
≈ −I0 d

dV

[
(B + V )nB (B + V )

]∣∣∣∣
B=−V

θLR
⇑⇓

and for B = V :

dI

dV +
≈ I0

d

dV

[
(B − V )nB (B − V )

]∣∣∣∣
B=V

θRL
⇑⇓

and hence

dI/dV+

dI/dV−
≈ θRL

⇑⇓
θLR
⇑⇓

(4.13)

The difference (4.12) is to linear order in the Rashba coupling given by(
θLR
⇑⇓ − θRL

⇑⇓
)

= 4
√

2Cx(tL1tR0 − tL0tR1)tL0tR0aα

Taylor expanding (4.13) as a function of the Rashba spin-orbit coupling α around
α = 0 gives (to linear order in α)

dI/dV+

dI/dV−
=

θRL
⇑⇓

θRL
⇑⇓ +

(
θLR
⇑⇓ − θRL

⇑⇓
) ≈ 1 −

(
θLR
⇑⇓ − θRL

⇑⇓
)

θRL
⇑⇓

∣∣
α=0

Using
θLR
⇑⇓ = t2L0t

2
R0 − 2

√
2
(
t2L0tR0tR1 − t2R0tL0tL1

)
aCxα

yields the result

dI/dV+

dI/dV−
= 1 − 4

√
2

(
tL1

tL0
− tR1

tR0

)
gμBBx

�ω0

a

λSO
(4.14)

where λSO = α−1 is the Rashba spin-orbit length. Hence the peaks in differential
conductance at V = ±B are equal only if

tL1

tL0
=
tR1

tR0
(4.15)
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or if either the spin-orbit coupling or the x-component of the magnetic field is zero.
The tunneling coefficient tαn = tσσ′

αkn := 〈αkσ|HT |nσ′〉 which we have assumed in-
dependent of spins and momentum is the tunneling coefficient between a metallic
lead and a dot described by oscillator eigenstates (without SO-interaction) with
harmonic oscillator length a. If the tunneling coefficients fulfill tL1/tL0 �= tR1/tR0

and if a Rashba spin-orbit interaction is present, then the the magnetic field B
is a handle for controlling the asymmetry of the differential conductance.

In the g-factor g enters in its original form. This is due to the neglection
of higher order terms in the transformation (3.3). The quadratic term 1

2
[S,HRa]

contains an anisotropic correction to g. Carrying out the transformation to higher
order (infinitely high order) will thus lead to a renormalization of the g-factor.

A recent measurement by Csonka et al. have shown an asymmetry in the
Zeeman-split Kondo zero bias anomaly [5](see fig. 4.2). Other experiments such
as the one by Park [19](see fig 4.3) have showed a slight asymmetry. This

Figure 4.2: Magnetic field splitting of the Kondo zero bias anomaly. (main
panel): Differential conductance vs. source drain voltage at different perpen-
dicular magnetic field values B = 0, 5, 10, ..., 240mT (back to front). Measured
at Vbg = -2.64V and Vtg = 0.08V. The curves are shifted for clarity. The two
side peaks (gray arrows) are superconducting features induced by the Ti/Al
electrodes. (inset): The position of the inflection points of the Gd(Vsd) curves
from the main panel (orange dot and green triangle) as a function of the mag-
netic field. Linear fit (line) with the extracted |g|-factor. [5]

asymmetry cannot be explained by a Kondo model that does not take into account
spin-orbit interactions. The model examined in this thesis offers an explanation,
namely that for a given a,α and B the asymmetry is determined by the tunneling
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Figure 4.3: Right: Magnetic-field dependence of the Kondo peak.
The peak splitting varies linearly with magnetic field. Notice the
slight asymmetry. [19]

coefficients tL1, tL0, tR1, tR0. The result will be modified by contributions of
higher order in the coupling and in the magnetic field. However, this simple
approach is sufficient to describe the characteristics of the asymmetry.

4.3.3 The spin-orbit coupling constant α

The relation (4.3.2) can be used to determine the coupling α. Say that we have
a mesoscopic quantum dot that can be described by a harmonic potential with
a certain oscillator (or frequency) length a (ω0) that is known. We apply a fixed
external magnetic field Bx and measure the current throught the junction as a
function of applied voltage. In order to determine α one has to find a way to
evaluate the fractions (tL1/tL0) and (tR1/tR0).

Typical values of the the spin-orbit length λSO = 1/α are 50− 200nm. Fasth
et al. have measured the spin-orbit length in an InAs nanowire quantum dot of
length 46nm and width 18nm to be λSO ≈ 127nm[6]. For unconfined electrons
in similar InAs wires, Hansen et al. have found a spin-orbit length of λSO ≈
200nm[10]. In a recent experiment P.D. Nissen have estimated the spin-orbit
length in InAs nanowire quantum dots of length 220-250nm and width 75-90nm
to λSO ≈ 80 ± 20nm[18].

4.4 Potential Scattering Terms

The other contributions in (4.4) are calculated similarly to the Kondo Hamilto-
nian. Collecting terms of the same type in (4.2) and using that
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• (si
αkα′k′)

†
= si

α′k′αk , (Si)
†
= Si and [si

αkα′k′, Sj] = 0 for i, j ∈ {0, x, y, z}
• the prefactor p ∈ {k, l, ..., o} multiplying the concerning term fulfills

(pi
αα′)

∗
= pi

α′α

• H
(2)
S = i

2
[S,HT ] ≈ i

2

([
S−, H+

T

] − [
S−, H+

T

]†)
yields

H
(2)
S =

∑
αα′kk′

∑
ij∈{x,y,z}

J ij
αα′s

j
αkα′k′S
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∑
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+
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αkα′k′ +M i

αα′Si
)

+
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Oαα′

with the energies

Kαα′ =
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E2 − E1
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1

E0 − E1

)
aα√
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(4.16)

In the particle-hole symmetric point Lαα′ = Nαα′ = 0. In the absence of spin-orbit
interactions the only terms beside the Kondo term are the constant term Oαα′ and
the potential scattering contribution Nαα′ . For a nonvanishing SO coupling there
are two additional contributions (again in the particle-hole symmetric point),
Kαα′ and Mαα′ . This is not potential scattering in its traditional sense. However,
it is fundamentally different from the Kondo term in that it is not an exchange
scattering. The Kondo Hamiltonian describes that the spin of the lead electrons
can change if, at the same time, the spin of the dot changes. The terms Kαα′ and
Mαα′ do not have a such exchange. It is the still Kondo term that is responsible
for the interesting physics.





Chapter 5

Summary and Outlook

Starting from the Anderson model for a quantum dot, with Rashba type spin-orbit
interactions, coupled to two metallic electrodes, we have derived a Kondo-model.
The model has a very low symmetry and the the resulting Zeeman-split Kondo
peak in the conductance has an asymmetry controlled by the coupling to the
leads. In a quantum dot where the coupling to one lead is different from the
coupling to the other, the Zeeman split Kondo peak will be asymmetric. This
model offers an explanation of why a Kondo-effect is observed in materials that
has substantial spin-orbit coupling. Moreover, it can explain the asymmetry in
the Zeeman-split Kondo peak that has been observed by Csonka [5].

Solving the Kondo problem for this Kondo-model is outside the scope of this
thesis. An approach could be to make a ’poor man’s scaling’, inspired by Ander-
son’s solution of the original Kondo problem[2].

47





Appendix A

Mathematica code

See the next page.
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