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1 Introduction

The quantum transport in systems of quantum-dots (QD) connected to reservoirs in the supercon-

ducting state (S) is of great interest in condensed matter physics. For example, in [1] they measure

the spectrum of a segment of InAs nanowire, con�ned between two superconducting leads. One would

like to understand the fundamental principles of the transport properties of those S-QD-S systems

to derive potential applications for nanoelectronics. Thereby, the quantum-dot is a con�ned region

of atomic size, that can be used to control the current through the system. This combination of

nanostructures with objects of µm-size are also called mesoscopic systems.

The systems of interest can be of di�erent structure and properties. There are a lot of consider-

ations especially for the properties of the dot. There have been studies, e.g., on multilevel quantum

dots [2, 3], where they consider spin-orbit coupling between the levels among other things. Fur-

thermore, one considers dots with local Coulomb repulsion or level splitting caused by the Zeeman

e�ect [4]. There are as well studies on S-QD systems that are additionally coupled to a normal

metal (N).

As superconductors are very sensitive to magnetic impurities, one is also interested in dots that

describe single quantum-spin impurities [1]. The exchange interaction with the quasiparticles of the

superconductor give rise to the so-called Yu-Shiba-Rusinov sup-gap states [5].

If one talks about the current in S-QD-S systems, one is often interested in the so-called super-

current, which is a current that exists without any bias voltage. It is caused by the phase di�erence

between weakly coupled superconductors, whereby the phases in the superconductors are caused by

an external magnetic �eld.

We would like to understand the transport principles for those superconductor/quantum-dot sys-

tems. Therefore, we are going to consider the special case of a noninteracting one-level dot coupled

to a superconducting lead on each side. This is probably the most simple system we can think of,

but all other systems can be built up on the basis of this resonant level system.

We introduce the BCS-theory of superconductivity and the theory of Green functions �rst. Then

we derive the Green functions and the supercurrent. We �nd general formulas for a non-interacting

multi-level dot coupled to an arbitrary number of leads. We then do numerical calculations for the

special case of only one dot level (spin-degenerate) coupled to two leads, where we calculate the

supercurrent and the bound state current. We compare this to the work of [6]. Furthermore, we

study the in�uence of an additional normal lead and Zeeman splitting on the supercurrent and the

spectral function.
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2 Superconductivity

Below a critical temperature Tc some metals go over into the superconducting phase. Thereby, the

electrical resistance vanishes and magnetic �elds below a critical value are expelled completely. The

quasiparticles in superconductors behave di�erently than in normal metals.

Here, we will introduce the microscopic theory of superconductivity, which is explained by the

Bardeen-Cooper-Schrie�er (BCS) theory. We will explicitly have a look at interfaces of superconduc-

tors and normal metals. This section is based on the explanations in [7�9].

2.1 The BCS ground state

To get to the superconducting ground state, let us start from a homogeneous non-interacting electron

gas, where low-energy electronic excitations are determined by the momentum k and mass m of

the electron as well as the chemical potential µ, as they are of energy k2/2m − µ. When we turn

on the electron-electron interaction, these electronic excitations turn into the so-called quasiparticle

excitations of equal momenta but di�erent energy ξk. At last, we get the in�uence of phonons, which

mediate an attractive interaction between pairs of quasiparticles. These are known as Cooper-pairs.

The e�ective phonon-mediated interaction is attractive as long as for the quasiparticle energy it is

|ξk| < ωD. Otherwise, the interaction is zero. Here, ωD is the Debye-energy, which is the maximum

phonon energy in the Debye model. Since the Debye-energy is much smaller than the Fermi-energy εF ,

it must be |ξk| � εF . Note that ξk is measured from the Fermi surface. Conclusively, the formation

of Cooper-pairs is close to the Fermi surface. The superposition of states built up of Cooper-pairs

gives the superconducting ground state.

The BCS-Hamiltonian describes the interaction of the electrons in the superconductor,

HBCS =
∑
kσ

ξkc
†
kσckσ +

∑
kk′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑, (2.1)

with the attractive coupling strength

Vkk′ =

−V < 0, for |ξk|, |ξk′ | < ωD,

0, otherwise.
(2.2)

The quasiparticle operators c†kσ, ckσ create or annihilate fermionic particles with momentum k and

spin σ =↑, ↓. They obey the anti-commutation relations,

{ckσ, ck′σ′} = 0, {c†kσ, c
†
k′σ′} = 0, {ckσ, c†k′σ′} = δkk′δσσ′ , (2.3)

where the anti-commutator of two operators A and B is de�ned as {A,B} = AB −BA.
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2.2 The BCS mean-�eld Hamiltonian

In many-body problems it is often convenient to do approximations that lead to an e�ective single par-

ticle problem. The motion of interacting particles is usually correlated and therefore too complicated

to be treated independently.

In the mean-�eld theory a single particle interacts with the average �eld of the other particles. In

this theory one usually makes the assumption that the density operator deviates only little from its

average value. In the BCS theory they assume the average value of the pair operator 〈c†k↑c
†
−k↓〉 to be

non-zero for temperatures below Tc. The �uctuations of the pair operator around its average value

is assumed to be small. Here, we de�ne the deviation operators,

δ†k = c†k↑c
†
−k↓ − 〈c

†
k↑c
†
−k↓〉, δk = c−k↓ck↑ − 〈c−k↓ck↑〉. (2.4)

Thus, it is

c†k↑c
†
−k↓ = δ†k + 〈c†k↑c

†
−k↓〉, c−k↓ck↑ = δk + 〈c−k↓ck↑〉. (2.5)

Now, we can rewrite the Hamiltonian, Eq. (2.1), in terms of the deviation operators,

HBCS =
∑
kσ

ξkc
†
kσckσ +

∑
kk′

Vkk′

[
δ†kδk′ + δk′〈c†k↑c

†
−k↓〉+ δ†k〈c−k′↓ck′↑〉+ 〈c†k↑c

†
−k↓〉〈c−k′↓ck′↑〉

]
.

(2.6)

As the deviations are small, the term
∑

kk′ Vkk′δ†kδk′ can be neglected. Then we plug the de�ni-

tions for the deviation operators back in the Hamiltonian. Thus, we obtain the mean-�eld BCS

Hamiltonian,

HMF
BCS =

∑
kσ

ξkc
†
kσckσ −

∑
k

∆kc
†
k↑c
†
−k↓ −

∑
k

∆∗kc−k↓ck↑. (2.7)

Here, we used that Vkk′ = V ∗k′k and introduced the mean-�eld parameter,

∆k = −
∑
k′

Vkk′〈c−k′↓ck′↑〉. (2.8)

The constant term, −
∑

kk′ Vkk′〈c†k↑c
†
−k↓〉〈c−k′↓ck′↑〉, has been absorbed into the chemical potential.

The quasiparticle excitation spectrum for the BCS superconductor is found in terms of the so-

called Bogoliubov transformation, which we will not get into here, but it is found as

Ek =
√
ξ2
k + |∆k|2. (2.9)

It is the energy, that is required to create a quasiparticle of momentum k in the superconducting

state. The energy Ek di�ers from the excitation spectrum of a quasiparticle in a normal metal in the

vicinity of the Fermi surface, Fig. 1. There, an energy gap opens up due to the mean-�eld parameter

∆k, which is therefore also called the energy-gap parameter. The quasiparticles in the superconductor

thus have a minimum energy of |∆kF | = |∆0|.
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Figure 1: Quasiparticle spectrum of the superconductor (solid line) compared to that of a normal metal

(dashed line) close to the Fermi surface. Remember that ξk is measured from the Fermi level. A

quasiparticle excitation in a superconductor has a minimum energy of ∆0.

2.3 Superconductor�normal-metal interfaces

Since this thesis is about superconductor-dot junctions, we will have a closer look at the properties

of an interface of a superconductor (S) and a normal metal (N), see Fig. 2. The electrons in N are

assumed to be noninteracting. An electron with energy Ek ≥ ∆0 can freely propagate from N to S,

where it will be converted into a quasiparticle of di�erent momentum, but same energy. Since there

are no excitations in S with energies smaller than ∆0, an electron coming from N with an energy

below ∆0 will be re�ected. In some cases it is re�ected as a hole, which almost moves into opposite

direction of the incident electron. This results in a charge de�cit of 2e in N. The missing charge

is explained by the addition of a Cooper-pair of charge 2e to the superconductor. This scattering

process is called Andreev re�ection. It can run backwards as well, which means a hole in N is re�ected

back from S as an electron, which causes the removal of a Cooper-pair from S. We note, electrons

with energies below ∆0 can only be absorbed or emitted in pairs by the superconductor.

Consider N being a nanostructure, i.e., an object of nm-size which gives rise to discrete energy

levels. Then we put N between two superconductors SL and SR of di�erent phases, without any bias

voltage, see Fig. 3. An electron in the nanostructure with energy lower than ∆0 can be Andreev

re�ected several times between the interfaces of the two superconductors. This means, the electron

is re�ected back as a hole from one of the superconductors, then the hole moves towards the other

superconductor and is re�ected back as an electron again, and so on. Conclusively, the electron/hole

in N must perform a �nite motion, which gives rise to discrete energy levels. These are the so-called

Andreev bound states. There is an Andreev bound state for each level in the nanostructure. The

bound states depend on the phase di�erence between SL and SR and the level energy in N.

Every time an electron is re�ected back as a hole, a Cooper pair has been added to the super-

conductor. If the hole then moves towards the other superconductor it will be re�ected back as an

electron and thereby remove a Cooper pair. Then the electron moves again towards the �rst super-

conductor, and so on, which causes a supercurrent. Andreev bound states can thus be used to explain

the Josephson supercurrent microscopically.

The so-called Josephson e�ect is on the one hand the phenomenon of supercurrent through a
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Figure 2: S-N junctions. There are di�erent transport possibilities for electrons in a normal metal that

is coupled to a superconductor. Electrons with energies larger than ∆0 can tunnel into the

superconductor. For energies smaller than ∆0 electrons are either Andreev re�ected or normal

re�ected.

N

2Δ02Δ0

SL

electron

hole

SR

phase difference

Figure 3: A normal metal con�ned between two superconductors. Andreev scattering can lead to bound

states, if N is a nanostructure and there is a non-zero phase-di�erence between the superconduc-

tors.

device of two superconductors that are separated by a tunnel junction. The supercurrent occurs

when there is a phase di�erence between the two superconductors, which can be produced by an

external magnetic �eld. On the other hand, for a constant bias voltage the system also responses

with an ac current, i.e., the phase di�erence changes with time.
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3 Green functions

We study the transport of superconductor-dot junctions by means of Green functions. We are going

to introduce the theory of Green functions based on the explanations in [7].

The Green function method is classically an important mathematical tool for solving inhomoge-

neous linear di�erential equations. This method has been adopted to solve di�erent physical problems.

Green functions are especially useful for systems treated by perturbation theory. To �nd, e.g., the

solution to the time-dependent Schrödinger equation1

[i∂t −H0(r)− V (r)]Ψ(r, t) = 0, (3.1)

one de�nes the corresponding Green functions by the di�erential equations

[i∂t −H0(r)]G0(rt, r′t′) = δ(r− r′)δ(t− t′), (3.2)

[i∂t −H0(r)− V (r)]G(rt, r′t′) = δ(r− r′)δ(t− t′), (3.3)

and identi�es the inverses of the Green functions as

G−1
0 (rt, r′t′) = [i∂t −H0(r)] δ(r− r′)δ(t− t′), (3.4)

G−1(rt, r′t′) = [i∂t −H0(r)− V (r)] δ(r− r′)δ(t− t′). (3.5)

The solution for the Schrödinger equation is found as

Ψ(r, t) = Ψ0(r, t) +

∫
dr′
∫
dt′G0(rt, r′t′)V (r′)Ψ(r′, t′), (3.6)

or Ψ(r, t) = Ψ0(r, t) +

∫
dr′
∫
dt′G(rt, r′t′)V (r′)Ψ0(r′, t′), (3.7)

where Ψ0(r, t) is the solution of the unperturbed Schrödinger equation. We can iterate the solution

in Eq. (3.6),

Ψ = Ψ0 +G0VΨ0 +G0V G0VΨ0 +G0V G0V G0VΨ0 + . . .

= Ψ0 + (G0 +G0V G0 +G0V G0V G0 + . . .)VΨ0, (3.8)

where we suppressed the integration variables for simpli�cation. If we compare this with Eq. (3.7),

we can identify the full Green function,

G = G0 +G0V G0 +G0V G0V G0 + . . .

= G0 +G0V (G0 +G0V G0 + . . .) (3.9)

The expression in parentheses can again be identi�ed as G. Thus, we end up with the so-called Dyson

equation,

G = G0 +G0V G. (3.10)

We can also write Eq. (3.9) as follows,

G = G0 +G0(V + V G0V + . . .)G0

= G0 +G0TG0. (3.11)

1Note that we put ~ = 1 for any further calculations.

10



Here we de�ned the so-called T -matrix, which gives another possibility to determine the full Green

function.

Green functions are often called propagators, because the wavefunction can be expressed in terms

of the Green function as

Ψ(r, t) =

∫
dr′G(rt, r′t′)Ψ(r′, t′), (3.12)

i.e., G(rt, r′t′) propagates the wavefunction from an initial time t′ to a time t.

3.1 Green functions for many-body systems

We are looking here in particular at the single-particle Green functions of many-body systems, which

are expressed in second quantization. We will derive certain physical observables with the help of the

Green functions, i.e., the spectral function or the current.

The Green functions are de�ned by a particle's initial and �nal space-time point r′t′ and rt, as

well as its initial and �nal spin σ′ and σ. They give the probability for a particle to propagate from

r′t′ to rt.

The time-ordered Green function is of the most general form and is de�ned as

Gtσσ′(rt, r′t′) = −i〈T Ψσ(rt)Ψ†σ′(r
′t′)〉, (3.13)

where 〈. . .〉 denotes the thermal average, T is the time-ordering operator and Ψσ(rt) is the bosonic

or fermionic �eld operator, which are second quantized objects.

We are working here in the Heisenberg picture, that means that the operators carry the time-

dependence. An operator in the Heisenberg picture a(t) is de�ned via the operator in the Schrödinger

picture a,

a(t) = eiHtae−iHt, (3.14)

a†(t) = eiHta†e−iHt, (3.15)

where H is the system's full Hamiltonian.

The thermal average of a quantum operator A is

〈A〉 =
1

Z
Tr[ρA], (3.16)

where Tr[. . .] denotes the trace, ρ = e−βH the density matrix and Z = Tr[ρ] is the partition function.

For two time-dependent operators A(t) and B(t′) the time-ordering operator behaves as follows

T A(t)B(t′) =

A(t)B(t′), if t > t′

±B(t′)A(t), if t′ > t,
(3.17)

where in the second line it is "+" or "−" depending whether the operators are bosonic or fermionic.

The quantum �eld operators are given by the single-particle basis set in the occupation number

representation {|ψν〉} = {|ν〉} as well as the creation and annihilation operators a†ν and aν ,

Ψ†(rt) ≡
∑
ν

〈r|ψν〉∗a†ν(t) =
∑
ν

ψ∗ν(r)a†ν(t), Ψ(rt) ≡
∑
ν

〈r|ψν〉aν(t) =
∑
ν

ψν(r)aν(t), (3.18)
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where ψν(r) is the ordinary �rst quantized wavefunction. The fundamental operators aν and a†ν
behave di�erently for bosons and fermions. We call the bosonic creation and annihilation operators

b†ν and bν . The time dependent operators obey the commutation relations

[bνj (t1), bνk(t2)] = 0, [b†νj (t1), b†νk(t2)] = 0, [bνj (t1), b†νk(t2)] = δνjνkδ(t1 − t2). (3.19)

The time dependent fermionic creation and annihilation operators, c†ν(t) and cν(t), obey the anti-

commutation relations

{cνj (t1), cνk(t2)} = 0, {c†νj (t1), c†νk(t2)} = 0, {cνj (t1), c†νk(t2)} = δνjνkδ(t1 − t2). (3.20)

This leads to the (anti-)commutation relations for the �eld operators,

[Ψ(r1t1),Ψ(r2t2)]B,F = 0, (3.21)

[Ψ†(r1t1),Ψ†(r2t2)]B,F = 0, (3.22)

[Ψ(r1t1),Ψ†(r2t2)]B,F = δ(r1 − r2)δ(t1 − t2), (3.23)

where the (anti-)commutator [. . . , . . .]B,F is de�ned as

[A,B]B = [A,B] = AB −BA, (3.24)

[A,B]F = {A,B} = AB +BA. (3.25)

There are more types of Green functions that are derived from the time-ordered one and that turned

out to be particularly useful.

� The greater Green function

G>σσ′(rt, r′t′) = −i〈Ψσ(rt)Ψ†σ′(r
′t′)〉. (3.26)

� The lesser Green function

G<σσ′(rt, r′t′) = −i(±)〈Ψ†σ′(r
′t′)Ψσ(rt)〉, (3.27)

where it is "+" for bosons and "−" for fermions.

� The retarded Green function

GRσσ′(rt, r′t′) = −iθ(t− t′)〈[Ψσ(rt),Ψ†σ′(r
′t′)]B,F 〉, (3.28)

collects all contributions that happen after t′ and therefore describes how the presence of a

particle at r at time t depends on its position r′ at an earlier time t′.

� The advanced Green function

GAσσ′(rt, r′t′) = iθ(t′ − t)〈[Ψσ(rt),Ψ†σ′(r
′t′)]B,F 〉, (3.29)

collects all contributions that happened before t′ and therefore describes how the presence of a

particle at r at time t depends on its position r′ at a future time t′.
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The retarded and advanced Green functions are related to the lesser and greater Green functions via

GRσσ′(rt, r′t′) = θ(t− t′)[G>σσ′(rt, r′t′)−G<σσ′(rt, r′t′)], (3.30)

GAσσ′(rt, r′t′) = θ(t′ − t)[G<σσ′(rt, r′t′)−G>σσ′(rt, r′t′)]. (3.31)

This further gives

GRσσ′(rt, r′t′)−GAσσ′(rt, r′t′) = G>σσ′(rt, r′t′)−G<σσ′(rt, r′t′). (3.32)

The following useful relations can be obtained from the de�nition of the corresponding Green func-

tions,

GRσσ′(rt, r′t′)
∗

= GAσ′σ(r′t′, rt), (3.33)

G<σσ′(rt, r′t′)
∗

= −G<σ′σ(r′t′, rt). (3.34)

We can also write Green functions in a general |ν〉-basis, where ν stands for all the relevant quantum

numbers,

Gtνσ,ν′σ′(t, t′) = −i〈T aνσ(t)a†ν′σ′(t
′)〉, (3.35)

which is related to the real space time-ordered Green function via

Gtσσ′(rt, r′t′) =
∑
νν′

ψνσ(r)Gtνσ,ν′σ′(t, t′)ψ∗ν′σ′(r′). (3.36)

The notation in Eq. (3.35) is more convenient and therefore used more often. We can of course write

the greater, lesser, retarded and advanced Green functions in this basis as well,

G>νσ,ν′σ′(t, t′) = −i〈aνσ(t)a†ν′σ′(t
′)〉, (3.37)

G<νσ,ν′σ′(t, t′) = −i(±)〈a†ν′σ′(t
′)aνσ(t)〉, (3.38)

GRνσ,ν′σ′(t, t′) = −iθ(t− t′)〈[aνσ(t), a†ν′σ′(t
′)]B,F 〉, (3.39)

GAνσ,ν′σ′(t, t′) = iθ(t′ − t)〈[aνσ(t), a†ν′σ′(t
′)]B,F 〉. (3.40)

3.2 Equation of motion theory

When we are going to derive the spectral function or the current, we will have to calculate the time

dependence of the Green functions. One way of doing that would be to use the equation of motion

technique. The idea is here, that one di�erentiates the de�nition of the Green function with respect

to the time. Then one uses the Heisenberg equation of motion to calculate the time derivative of the

operators. Then one obtains a di�erential equation, which one has to solve.

The idea is to di�erentiate the Green function a couple of times to get a closed set of equations

that solve the problem.

Let us for example consider the time-ordered Green function in a general |ν〉-basis,

Gtνσ,ν′σ′(t, t′) = −i〈T aνσ(t)a†ν′σ′(t
′)〉 (3.41)

= −i
[
θ(t− t′)〈aνσ(t)a†ν′σ′(t

′)〉 ± θ(t′ − t)〈a†ν′σ′(t
′)aνσ(t)〉

]
. (3.42)
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Here we rewrote the time-ordering operator T in terms of the step function. Then the di�erentiation

with respect to t gives

∂tG
t
νσ,ν′σ′(t, t′) = −iδ(t− t′)〈[aνσ(t), a†ν′σ′(t

′)]B,F 〉 − i〈T ∂taνσ(t)a†ν′σ′(t
′)〉 (3.43)

= −iδνν′δσσ′δ(t− t′) + 〈T [H, aνσ(t)]a†ν′σ′(t
′)〉, (3.44)

where we used the fact, that the time derivative of the step function gives the delta function. Fur-

thermore, we used that the time derivative of an operator in the Heisenberg picture is given by the

commutator with the Hamiltonian, ∂taνσ(t) = i[H, aνσ(t)]. The next step would be to calculate the

commutator. Then we might be able to identify further Green functions in the equation.

In the next section we will see, that the Green functions only depend on the time di�erence t− t′.
This is because the Hamiltonian does not depend explicitly on time. Therefore, it will be useful to

work with the Fourier transforms of the Green functions.

3.3 The Lehmann representation

We are now going to write the Green functions in the Lehmann representation, i.e, we use the set

of eigenstates, {|n〉}, of the full Hamiltonian, H, as a basis set to spectrally decompose the Green

functions. We will be able to express the Fourier transformed lesser or greater Green function in

terms of the spectral function.

From now on we look at fermionic Green functions. Calculations for bosons go equivalently.

3.3.1 Lesser and greater Green function

First, let us have a look at the lesser Green function in the |ν〉-basis,

G<νν′(t, t′) = i〈c†ν′(t
′)cν(t)〉. (3.45)

The fermion creation and annihilation operators are given in the Heisenberg picture,

c†ν(t) = eiHtc†νe
−iHt, (3.46)

cν(t) = eiHtcνe
−iHt. (3.47)

We now insert 1 =
∑
n |n〉〈n| into Eq. (3.45) and use the thermal average of an operator (3.16),

G<νν′(t, t′) =
i

Z

∑
nn′

e−βEn〈n|c†ν′(t
′)|n′〉〈n′|cν(t)|n〉 (3.48)

=
i

Z

∑
nn′

e−βEn〈n|c†ν′ |n′〉〈n′|cν |n〉ei(En′−En)(t−t′) (3.49)

= G<νν′(t− t′), (3.50)

where the partition function Z = Tr[ρ] =
∑
n〈n|e−βH |n〉 is a real number. We see that the Green

function does only depend on the time di�erence t − t′. Shifting the time argument t − t′ → t and

Fourier transforming this equation gives

G<νν′(ω) =
2πi

Z

∑
nn′

e−βEn〈n|c†ν′ |n′〉〈n′|cν |n〉δ(En′ − En + ω). (3.51)
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Here we used that the Fourier transformation of eiωt gives∫ ∞
−∞

dt eiωt = 2πδ(ω). (3.52)

We do the same for the greater Green function,

G>νν′(t, t′) = −i〈cν(t)c†ν′(t
′)〉 (3.53)

= − i

Z

∑
nn′

e−βEn〈n|cν |n′〉〈n′|c†ν′ |n〉ei(En−En′ )(t−t′) (3.54)

= G>νν′(t− t′). (3.55)

Using again Eq. (3.52) we obtain in the frequency domain

G>νν′(ω) = −2πi

Z

∑
nn′

e−βEn〈n|cν |n′〉〈n′|c†ν′ |n〉δ(En − En′ + ω) (3.56)

= −2πi

Z

∑
nn′

e−βEn′ 〈n′|cν |n〉〈n|c†ν′ |n′〉δ(En′ − En + ω) (3.57)

= −2πi

Z

∑
nn′

e−β(En−ω)〈n|c†ν′ |n′〉〈n′|cν |n〉δ(En′ − En + ω), (3.58)

where we used the fact that, because of the delta function, this equation is only non-zero where

En′ = En − ω. Thus, we found the following relation between lesser and greater Green function,

G>νν′(ω) = −eβωG<νν′(ω). (3.59)

3.3.2 Retarded and advanced Green function

In the Lehmann representation the retarded Green function turns to

GRνν′(t, t′) = −iθ(t− t′)〈{cν(t), c†ν′(t
′)}〉 (3.60)

= −iθ(t− t′)〈cν(t)c†ν′(t
′)〉 − iθ(t− t′)〈c†ν′(t

′)cν(t)〉 (3.61)

= −iθ(t− t′) 1

Z

∑
nn′

e−βEn
(
〈n|cν |n′〉〈n′|c†ν′ |n〉ei(En−En′ )(t−t′)

+ 〈n|c†ν′ |n′〉〈n′|cν |n〉e−i(En−En′ )(t−t′)
)

(3.62)

= GRνν′(t− t′). (3.63)

When Fourier transforming the retarded Green function we set again t− t′ → t. Because of the step

function, we get an integral of the form
∫∞

0
dt eiωt, i.e., we cannot use the relation from Eq. (3.52)

here. To ensure that the integrand decays for t → ∞ we subtract ηt from iωt, where η → 0+ is a

positive in�nitesimal. This corresponds to making the frequency complex, ω → ω + iη.

For the Fourier transformation of the advanced Green function we have to put ω → ω − iη, since
there we have the integration limit t→ −∞.

Thus, we are able to perform the integral, as the following relation holds for η > 0,∫ ∞
−∞

dtθ(±t)ei(ω±iη)t =
±i

ω ± iη
. (3.64)
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Hence, the Fourier transformation of the retarded Green function is

GRνν′(ω) = −i
∫ ∞
−∞

dtθ(t)ei(ω+iη)t 1

Z

∑
nn′

e−βEn
(
〈n|cν |n′〉〈n′|c†ν′ |n〉ei(En−En′ )t

+ 〈n|c†ν′ |n′〉〈n′|cν |n〉e−i(En−En′ )t
)

(3.65)

=
1

Z

∑
nn′

e−βEn

(
〈n|cν |n′〉〈n′|c†ν′ |n〉
ω + En − En′ + iη

+
〈n|c†ν′ |n′〉〈n′|cν |n〉
ω − En + En′ + iη

)
(3.66)

=
1

Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν′ |n〉
ω + En − En′ + iη

(
e−βEn + e−βEn′

)
. (3.67)

The same procedure holds for the advanced Green function,

GAνν′(t, t′) = iθ(t′ − t)〈{cν(t), c†ν′(t
′)}〉. (3.68)

We do the same steps as before, i.e., write explicitly the thermal average and the Heisenberg rep-

resentation of the operators. For the Fourier transformation we put ω → ω − iη, then we use the

relation Eq. (3.64) to perform the integral. This results in

GAνν′(ω) =
1

Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν′ |n〉
ω + En − En′ − iη

(
e−βEn + e−βEn′

)
. (3.69)

As we see the retarded and advanced Green functions only di�er in the sign in front of the positive

in�nitesimal. We can �nd a relation between the advanced and retarded Green function here, too.

We complex conjugate GAνν′(ω) and compare it to the retarded Green function,

GA∗νν′(ω) =
1

Z

∑
nn′

〈n′|c†ν |n〉〈n|cν′ |n′〉
ω + En − En′ + iη

(
e−βEn + e−βEn′

)
(3.70)

= GRν′ν(ω). (3.71)

3.3.3 Spectral function

We now want to treat the spectral function. In the Lehmann representation, it reveals further relations

between the di�erent types of Green functions.

The spectral function gives the energy resolution for a given quantum state. It is de�ned as

Aνν′(ω) = i[GRνν′(ω)−GAνν′(ω)]. (3.72)

It indicates the distribution of excitations, when a particle with certain quantum numbers ν, ν′ is

added to a given system. For normal metals, the spectral function is usually diagonal Aνν′ = δνν′Aν ,

because an electron can only be in either |ν〉 or |ν′〉. When we treat superconductors, we have pairs of

electrons, which are of di�erent quantum states. Recall, a Cooper pair consists of a pair of electrons

with the states |k ↑〉 and | − k ↓〉. This will give as well o�-diagonal terms for the spectral function.

As we will see later, the spectral function for a system of non-interacting free particles is propor-

tional to the delta function δ(ω − ξν). This means, that there can only be an excitation with energy

ω, when a particle with energy ξν is added, as we would have expected.

For systems with interacting particles, the spectral function broadens. Remember, that in a

superconductor we have electron-electron as well as electron-phonon interaction, which means energy
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exchange. Conclusively, the spectrum for the superconductor should broaden. As we only do mean-

�eld theory here, we will not encounter a broadened spectrum, except for η, which can be interpreted

as an arti�cial broadening.

Let us now have a closer look at the de�nition of the spectral function, Eq. (3.72). The di�erence

between retarded and advanced Green function in Lehmann representation is from what we found in

Eq. (3.67) and Eq. (3.69),

GRνν′(ω)−GAνν′(ω) =
1

Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν′ |n〉
(
e−βEn + e−βEn′

)
×
(

1

ω + En − En′ + iη
− 1

ω + En − En′ − iη

)
. (3.73)

To further simplify this expression, we bene�t from the following relation,

1

x± iη
= P

(
1

x

)
∓ iπδ(x), (3.74)

where P denotes the principal value and for our case it is x = ω + En − En′ . This is also known by

the name Sokhotski�Plemelj theorem and is valid, if η is a positive in�nitesimal. The expression in

parentheses in Eq. (3.73) then simpli�es to

1

ω + En − En′ + iη
− 1

ω + En − En′ − iη
= −2πiδ(ω + En − En′). (3.75)

If we plug this back into Eq. (3.73), we get

GRνν′(ω)−GAνν′(ω) =
−2πi

Z

∑
nn′

〈n|cν |n′〉〈n′|c†ν′ |n〉
(
e−βEn + e−βEn′

)
δ(ω + En − En′). (3.76)

If we compare this to the the lesser and greater Green functions, Eqs. (3.51) and (3.56), we see that

this gives the equality

GRνν′(ω)−GAνν′(ω) = G>νν′(ω)−G<νν′(ω) (3.77)

= −(1 + eβω)G<νν′(ω), (3.78)

where we used the relation between lesser and greater Green function Eq. (3.59). Here, we can

identify the Fermi distribution nF (ω) = (1+eβω)−1. We further rewrite this by means of the spectral

function, Eq. (3.72). We end up with an expression for the lesser Green function in terms of the Fermi

function and the spectral function,

G<νν′(ω) = inF (ω)Aνν′(ω). (3.79)

Of course, there is also a similar expression for the greater Green function,

G>νν′(ω) = −i[1− nF (ω)]Aνν′(ω). (3.80)

These relations for the lesser and greater Green functions are also known as the �uctuation-dissipation

theorem.
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3.4 Imaginary-time Green functions

Replacing the time argument by an imaginary quantity t→ −iτ , where τ is real and of time dimension,

is a mathematical method to work out the retarded Green function. The imaginary-time Green

function is also known by the name Matsubara Green function. The single particle Matsubara Green

function for either bosons or fermions is de�ned as follows,

Gνν′(τ, τ ′) ≡ −〈Tτ aν(τ)a†ν′(τ
′)〉. (3.81)

Here we introduced the time-ordering operator in imaginary time,

Tτ A(τ)B(τ ′) = θ(τ − τ ′)A(τ)B(τ ′)± θ(τ ′ − τ)B(τ ′)A(τ), (3.82)

where it is "+" for bosons or "−" for fermions. We also de�ned the imaginary-time Heisenberg picture

by substituting it by τ . Therefore, an operator in the Heisenberg picture is de�ned via an operator

A in the Schrödinger picture as

A(τ) = eτHAe−τH , (3.83)

where H is the time-independent Hamiltonian.

It can be shown by means of the thermal average, that the Matsubara Green function depends

only on the time di�erence, since for τ > τ ′,

Gνν′(τ, τ ′) = − 1

Z
Tr
[
e−βHeτHaνe

−τHeτ
′Ha†ν′e

−τ ′H
]

= − 1

Z
Tr
[
e−βHe−τ

′HeτHaνe
−τHeτ

′Ha†ν′

]
= − 1

Z
Tr
[
e−βHe(τ−τ ′)Haνe

−(τ−τ ′)Ha†ν′

]
= Gνν′(τ − τ ′), (3.84)

where we used the cyclic property of the trace. For the case τ < τ ′ it is Gνν′(τ, τ ′) = Gνν′(τ ′ − τ).

Therefore, the Matsubara Green function in Eq. (3.81) can be written as well as

Gνν′(τ) = −〈Tτ aν(τ)a†ν′(0)〉. (3.85)

If we use the Lehmann representation of Eq. (3.84), we �nd that the time argument is constrained

to −β < τ − τ ′ < β. This is to guarantee convergence of the Green function.

From the cyclic property of the trace, we further �nd the symmetry properties of the Matsubara

Green function,

Gνν′(τ) = ±

Gνν′(τ + β) for − β < τ < 0,

Gνν′(τ − β) for 0 < τ < β,
(3.86)

where it is "+" for bosons and "−" for fermions.

3.4.1 Fourier transform of Matsubara Green functions

We would like to Fourier transform the Matsubara Green function with respect to the imaginary

time. Since we got the Matsubara Green function Gνν′(τ) de�ned in the interval −β < τ < β, it can
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be expanded in a Fourier series,

Gνν′(τ) =
1

β

∑
ω̃n

e−iω̃nτGνν′(iω̃n), (3.87)

Gνν′(iω̃n) =
1

2

∫ β

−β
dτeiω̃nτGνν′(τ), (3.88)

with the frequencies2 ω̃n = 2πn/2β = πn/β, where n ∈ Z. Using the symmetry property (3.86) we

can rewrite Eq. (3.88),

Gνν′(iω̃n) =
1

2

∫ 0

−β
dτeiω̃nτGνν′(τ) +

1

2

∫ β

0

dτeiω̃nτGνν′(τ) (3.89)

=
1

2

∫ β

0

dτeiω̃n(τ−β)Gνν′(τ − β) +
1

2

∫ β

0

dτeiω̃nτGνν′(τ) (3.90)

=
1

2

(
1± e−iπn

) ∫ β

0

dτeiω̃nτGνν′(τ). (3.91)

The prefactor of Eq. (3.91) depends on whether we are looking at bosons or fermions as well as on

the integer n. For the di�erent types of particles it depends on whether n is an even or odd number,

bosons :
1

2

(
1 + e−iπn

)
=

1, n even

0, n odd,
fermions :

1

2

(
1− e−iπn

)
=

1, n odd

0, n even.
(3.92)

Hence, we can write the Fourier transformation of the Matsubara Green function by means of the

Matsubara frequency ωn with n ∈ Z as follows,

Gνν′(iωn) =

∫ β

0

dτeiωnτGνν′(τ),

ωn = 2nπ
β , for bosons

ωn = (2n+1)π
β , for fermions.

(3.93)

3.4.2 Equation of motion for Matsubara Green functions

The equation of motion technique goes slightly di�erent here, since we replaced the time argument t

by the imaginary time −iτ when we introduced the Matsubara Green function. We di�erentiate here

the Matsubara Green function in Eq. (3.85) with respect to τ , which gives

∂τGνν′(τ) = −δ(τ)〈[aν(τ), a†ν′(0)]B,F 〉 − 〈Tτ ∂τaν(τ)a†ν′(0)〉

= −δνν′δ(τ)− 〈Tτ [H, aν ](τ)a†ν′(0)〉. (3.94)

Here we used, that in the imaginary time formalism the time derivative of an operator in the Heisen-

berg picture is

∂τA(τ) = ∂τ
(
eτHAe−τH

)
= HeτHAe−τH − eτHAHe−τH

= eτH [H,A]e−τH

= [H,A](τ). (3.95)

Note that the Hamiltonian H commutes with eτH .
2Note that we denoted the frequency here with a tilde, since we will de�ne a slightly di�erent frequency in a moment,

which we want to call ωn.
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3.4.3 Connection between Matsubara and retarded Green function

We would like to show how the retarded Green function can be obtained from the Matsubara Green

function, which is also why we introduced the Matsubara Green function in the �rst place. We can

again use the Lehmann representation to rewrite the Matsubara Green function in Eq. (3.85). For

τ > 0 it is,

Gνν′(τ) = −〈aν(τ)a†ν′(0)〉 (3.96)

= − 1

Z

∑
nn′

e−βEn〈n|aν |n′〉〈n′|a†ν′ |n〉eτ(En−En′ ). (3.97)

The Fourier transformation of this gives according to Eq. (3.93),

Gνν′(iωl) =
1

Z

∑
nn′

〈n|aν |n′〉〈n′|a†ν′ |n〉
iωl + En − En′

[
e−βEn − (±)e−βEn′

]
. (3.98)

Here, we wrote the Matsubara frequency with index l ∈ Z to not to get confused with the eigenstates.

The "±" is again for either bosons or fermions. If we look at the Fourier transform of the retarded

Green function in Lehmann representation, Eq. (3.67), but now general for bosons or fermions, we

have a similar expression,

GRνν′(ω) =
1

Z

∑
nn′

〈n|aν |n′〉〈n′|a†ν′ |n〉
ω + En − En′ + iη

(
e−βEn − (±)e−βEn′

)
. (3.99)

We �nd, that we can obtain the retarded Green function by doing the analytic continuation of the

Matsubara Green function on the upper half of the complex plane and then approaching the real

axis, iωl → z → ω + iη. To get the advanced Green function we do the continuation on the lower

half plane, iωl → z → ω− iη. Thus, in short notation, the retarded and advanced Green function are

obtain from the Matsubara Green function via

GRνν′(ω) = Gνν′(iωl → ω + iη), (3.100)

GAνν′(ω) = Gνν′(iωl → ω − iη). (3.101)

3.5 Contour ordered Green functions

If one does perturbation theory for Green functions, one encounters the contour ordered Green func-

tions [10, 11]. They are de�ned as follows, where the time arguments of the contour are called τ, τ ′

here,

GCνν′(τ, τ ′) = −i〈TC cν(τ)c†ν′(τ
′)〉. (3.102)

The contour C runs in�nitely close to the real time axis. It starts and ends at some initial time

t0, that one often puts to t0 → −∞. It thus consists of two parts, where the �rst one is from −∞
to ∞ and the second one runs from ∞ to −∞. TC is the contour ordering operator, i.e., operators

with time arguments that come later on the contour stand left from operators with times that come

earlier. Consider now the following contour integral,

GC1 (τ, τ ′) =

∫
C

dτ1G
C
2 (τ, τ1)GC3 (τ1, τ

′), (3.103)
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Figure 4: The contour ordered Green function is de�ned on C = C1 + C2, where C1 goes from −∞ to +∞
and C2 from +∞ to −∞. Lower picture: to obtain the lesser Green function one deforms the

contour so that the usually later time comes before the earlier time.

where the integration runs over the contour
∫
C

=
∫
C1

+
∫
C2
, where C1 goes from −∞ to ∞ and C2

from ∞ back to −∞. It is also shown in Fig. 4. Those contour integrals occur for nonequilibrium

Green functions.

If we are interested in G<1 (t, t′), we deform the contour in Eq. (3.103), so that t lies on C1 and

t′ on C2, Fig. 4. Therefore, t
′ is a later time than t on the contour, even though it might be t′ < t.

Thus, the contour ordered Green function turns into the lesser Green function.

Let us have a look at the �rst part of the integral of G<1 (t, t′),∫
C1

dτ1G
C1
2 (t, τ1)GC1

3 (τ1, t
′) =

∫ ∞
−∞

dτ1G
t
2(t, τ1)G<3 (τ1, t

′). (3.104)

Since τ1 and t are both times that occur on C1, the �rst Green function turns into the normal time

ordered Green function. Since t′ is a time of C2, τ1 is always earlier, whereby the other function turns

into the lesser Green function. Same principles for the second half of the contour integral gives∫
C2

dτ1G
C2
2 (t, τ1)GC2

3 (τ1, t
′) =

∫ −∞
∞

dτ1G
<
2 (t, τ1)Gt̃3(τ1, t

′). (3.105)

Since we go backwards in time, we obtain the anti-time ordered Green function Gt̃3(τ1, t
′) here, which

is de�ned through the anti-time-ordering operator T̃ , i.e., operators with later time arguments go

right from those with earlier times.

We now use some relations, that one can �nd directly from the de�nitions of the Green functions,

Eq. (3.35) - (3.40),

Gt(t, τ1) = GR(t, τ1) +G<(t, τ1), (3.106)

Gt̃(τ1, t
′) = G<(τ1, t

′)−GA(τ1, t
′). (3.107)

If we use these relations for the C1- and C2-integral of Eq. (3.103), we obtain the following expression

for the lesser Green function,

G<1 (t, t′) =

∫ ∞
−∞

dτ1
[
GR2 (t, τ1)G<3 (τ1, t

′) +G<2 (t, τ1)GA3 (τ1, t
′)
]
. (3.108)
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This is one of the so-called Langreth rules. We can derive the relations for the other Green functions

from Eq. (3.103) as well. We just have to deform the contour accordingly. The other Langreth rules

are then,

G>1 (t, t′) =

∫ ∞
−∞

dτ1
[
GR2 (t, τ1)G>3 (τ1, t

′) +G>2 (t, τ1)GA3 (τ1, t
′)
]
, (3.109)

GR1 (t, t′) =

∫ ∞
−∞

dτ1G
R
2 (t, τ1)GR3 (τ1, t

′), (3.110)

GA1 (t, t′) =

∫ ∞
−∞

dτ1G
A
2 (t, τ1)GA3 (τ1, t

′). (3.111)
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Figure 5: The superconductor/quantum-dot/superconductor system. The dot consists of N levels with

energies ξdnσ. For non-interacting electrons those level energies are spin-independent. A gate

voltage can shift the dot levels. The left and right lead are coupled with the dot via the terms

tαn, where each level is coupled individually. The superconducting leads are determined by their

gap energies ∆α. There is a phase di�erence between the leads, which causes the supercurrent.

4 Transport in superconductor �quantum-dot junctions

We study the quantum transport of a system of a quantum dot con�ned between two superconducting

leads, as illustrated in Fig. 5.

The superconductors are described by the BCS mean-�eld theory as it was introduced in Section 2.

They are determined by their gap parameters. Furthermore, there is a phase di�erence between the

superconducting leads, that causes a supercurrent.

The quantum dot is a con�ned region between the superconductors and couples to each of them

on both sides. The dot has a total of N energy levels, which we will specify later. Due to the Pauli

principle there can be a total of 2 electrons with opposite spin on each level. Even though interactions

play an important role for the transport through nanostructures (especially Coulomb interactions),

the electrons in the dot of our model are assumed to be noninteracting. The dot levels can be shifted

by applying a gate voltage.

We aim to �nd the spectral function for the dot to �nd the Andreev bound states and to see how

they depend on other parameters. Furthermore, we are going to calculate the supercurrent that runs

through the system. Therefore, we will have to calculate the system's Green functions �rst.

4.1 Model Hamiltonian

The Hamiltonian for our system is given by

H = Hd +HMF
BCS +Hhyb. (4.1)

The Hamiltonian of the dot is

Hd =
∑
nσ

ξdnσd
†
nσdnσ, (4.2)

where the summation runs over all dot levels, which are of the energy ξdnσ. The level energies are

labeled with the electron spin σ =↑, ↓. For non-interacting electrons, the levels are independent of

spin, but we will keep the label for a later discussion. Here, we also introduced the operators for the

dot, d†nσ and dnσ, which create or annihilate an electron with spin σ on the n-th dot level.
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The Hamiltonian for the superconducting leads is given by the mean-�eld BCS Hamiltonian, which

was introduced in Eq. (2.7),

HMF
BCS =

∑
kασ

ξkαc
†
kασckασ −

∑
kα

∆αc
†
kα↑c

†
−kα↓ −

∑
kα

∆∗αc−kα↓ckα↑, (4.3)

Recall, how the gap energy was de�ned in Eq. (2.8) with the constant coupling strength, Eq. (2.2).

Therefore, the gap energy ∆α is k independent and only carries the lead index here, where α denotes

the left (l) or right (r) lead. Note that we could easily add more leads to the system just by extending

the sum. For a normal lead the gap energy would then be zero.

The third part of the Hamiltonian for our system is the hybridization term,

Hhyb =
∑
kαnσ

(
tαnc

†
kασdnσ + t∗αnd

†
nσckασ

)
=
∑
kαnσ

tαnc
†
kασdnσ + h.c., (4.4)

The terms tαn describe the mixing of the dot and lead particles. Each dot level is coupled individually

with the superconducting leads. The �rst term of the Hamiltonian gives the transfer of a dot electron

to one of the leads. The hermitian conjugate describes the opposite direction.

4.1.1 Nambu representation

We would like to rewrite the Hamiltonian by working in Nambu space. Therefore, we introduce the

so-called Nambu spinors for the lead and dot particles,

αkα :=

(
ckα↑

c†−kα↓

)
, αdn :=

(
dn↑

d†n↓

)
. (4.5)

We can rewrite the Hamiltonian with the help of these spinors. We thus include particle-hole sym-

metry in our Hamiltonian. Rewriting then gives a matrix structure for H, where the three parts look

as follows,

Hd =
∑
n

(
d†n↑ dn↓

)(ξdn↑ 0

0 −ξdn↓

)(
dn↑

d†n↓

)
+ const., (4.6)

HMF
BCS =

∑
kα

(
c†kα↑ c−kα↓

)( ξkα −∆α

−∆∗α −ξkα

)(
ckα↑

c†−kα↓

)
+ const., (4.7)

Hhyb =
∑
kαn

(
c†kα↑ c−kα↓

)(tαn 0

0 −t∗αn

)(
dn↑

d†n↓

)
+ h.c.. (4.8)

The constant terms can be neglected as they do not give any contribution to the spectrum. The

matrices in the Hamiltonians for the dot, the superconducting leads and the hybridization region are

renamed as follows,

M
(n)
d =

(
ξdn↑ 0

0 −ξdn↓

)
, (4.9)

M (kα)
sc =

(
ξkα −∆α

−∆∗α −ξkα

)
= ξkαm

3 −∆′αm
1 + ∆′′αm

2, (4.10)

M
(αn)
hyb =

(
tαn 0

0 −t∗αn

)
= t′αnm

3 + it′′αnm
0. (4.11)
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The matrices have been further expressed in terms of the identity matrix m0 =

(
1 0

0 1

)
as well as

the Pauli matrices,

m1 =

(
0 1

1 0

)
, m2 =

(
0 −i
i 0

)
, m3 =

(
1 0

0 −1

)
. (4.12)

The gap energy is written with its real and imaginary part, ∆α = ∆′α+i∆′′α, where ∆′α is the real part

and ∆′′α is the imaginary part of ∆α. The same we do for the coupling term tαn = t′αn+it′′αn. Thus, we

can write our Hamiltonian in terms of the Nambu spinors and the newly introduced (2× 2)-matrices,

which gives a more compact form,

H =
∑
n

α†dn M
(n)
d αdn +

∑
kα

α†kα M
(kα)
sc αkα +

∑
kαn

(
α†kα M

(αn)
hyb αdn + h.c.

)
. (4.13)

The Hamiltonian in terms of the matrix components looks as follows,

H =
∑
ηη′

∑
n

α†dn,η M
(n)
d,ηη′ αdn,η′ +

∑
ηη′

∑
kα

α†kα,η M
(kα)
sc,ηη′ αkα,η′

+
∑
ηη′

∑
kαn

(α†kα,η M
(αn)
hyb,ηη′ αdn,η′ + α†dn,η M

(αn) ∗
hyb,η′η αkα,η′), (4.14)

with the Nambu indices η, η′ = 1, 2.
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4.2 The system's Green functions

We want to derive the single-particle Green functions for our system, which we introduced in Section

3.1. We �rst calculate the Matsubara Green functions with the help of the equation of motion

technique. We can de�ne Green functions for the three di�erent parts of our system, i.e., the dot, the

leads and the coupling region. The Green functions will be de�ned in terms of the Nambu spinors,

which gives (2 × 2)-matrix Green functions. Therefore, the Green functions will reveal particle-hole

symmetry for our system.

Let us �rst write down the time derivatives for the Nambu spinors in the imaginary time formalism.

Remember how the time derivative of operators in the Heisenberg picture for imaginary times looks

like, Eq. (3.95). So we have to build the commutators with the Hamiltonian and �nd the derivative

of the Nambu spinors for lead and dot particles is as follows,

∂ταkα,η(τ) = −
∑
η′′

M
(kα)
sc,ηη′′ αkα,η′′(τ)−

∑
mη′′

M
(αm)
hyb,ηη′′ αdm,η′′(τ), (4.15)

∂τα
†
kα,η(τ) =

∑
η′′

M
(kα)
sc,η′′η α

†
kα,η′′(τ) +

∑
mη′′

M
(αm) ∗
hyb,ηη′′ α

†
dm,η′′(τ), (4.16)

∂ταdm,η(τ) = −
∑
η′′

M
(m)
d,ηη′′ αdm,η′′(τ)−

∑
kα

∑
η′′

M
(αm) ∗
hyb,η′′η αkα,η′′(τ), (4.17)

∂τα
†
dm,η(τ) =

∑
η′′

M
(m)
d,η′′η α

†
dm,η′′(τ) +

∑
kα

∑
η′′

M
(αm)
hyb,η′′η α

†
kα,η′′(τ). (4.18)

The notation is here chosen componentwise in terms of the Nambu indices. For the commutators

with the Hamiltonian, we used the anti-commutation relations for the Nambu spinors,

{αkα,η(τ), αk′α′,η′(τ
′)} = 0,

{
α†kα,η(τ), α†k′α′,η′(τ

′)
}

= 0,{
αkα,η(τ), α†k′α′,η′(τ

′)
}

= δ(τ − τ ′)δkk′δαα′δηη′ , (4.19)

{αdm,η(τ), αdn,η′(τ
′)} = 0,

{
α†dm,η(τ), α†dn,η′(τ

′)
}

= 0,{
αdm,η(τ), α†dn,η′(τ

′)
}

= δ(τ − τ ′)δmnδηη′ . (4.20)

Furthermore, operators for lead and dot particles always anti-commute with each other.

4.2.1 Matsubara Green function for the leads

The Matsubara Green function for the superconducting leads is de�ned according Eq. (3.85),

Gkα,k′α′;ηη′(τ) = −〈Tτ αkα,η(τ)α†k′α′,η′(0)〉. (4.21)

Its derivative with respect to τ is as in Eq. (3.94),

∂τGkα,k′α′;ηη′(τ) = −δ(τ)〈{αkα,η(τ), α†k′α′,η′(0)}〉 − 〈Tτ ∂ταkα,η(τ)α†k′α′,η′(0)〉. (4.22)

Using the anti-commutation relations as well as the time derivative of the lead particle Nambu

operator from Eq. (4.15) gives,

∂τGkα,k′α′;ηη′(τ) = − δ(τ)δkk′δαα′δηη′ +
∑
η′′

M
(kα)
sc,ηη′′〈Tτ αkα,η′′(τ)α†k′α′,η′(0)〉

+
∑
mη′′

M
(αm)
hyb,ηη′′〈Tτ αdm,η′′(τ)α†k′α′,η′(0)〉. (4.23)
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We can identify one term from this expression as the leads Green function. Another term represents

the Matsubara Green function for the hybridization of lead and dot. For the coupling of lead α with

the m-th dot level, it is de�ned as follows,

Gdm,k′α′;ηη′(τ) = −〈Tτ αdm,η(τ)α†k′α′,η′(0)〉. (4.24)

Consequently, we can write Eq. (4.23) in terms of the Green functions,

∂τGkα,k′α′;ηη′(τ) = − δ(τ)δkk′δαα′δηη′ +
∑
η′′

M
(kα)
sc,ηη′′Gkα,k′α′;η′′η′(τ)

+
∑
mη′′

M
(αm)
hyb,ηη′′Gdm,k′α′;η′′η′(τ). (4.25)

It is now nice to write this equation in matrix form in Nambu space,

∂τGkα,k′α′(τ) = −δ(τ)δkk′δαα′m0 −M (kα)
sc Gkα,k′α′(τ)−

∑
m

M
(αm)
hyb Gdm,k′α′(τ). (4.26)

Fourier transformation yields,

−iωlGkα,k′α′(iωl) = −δkk′δαα′m0 −M (kα)
sc Gkα,k′α′(iωl)−

∑
m

M
(αm)
hyb Gdm,k′α′(iωl), (4.27)

where we denoted the index of the Matsubara frequencies with an l to not to get confused with the

dot level numbers. Reordering gives

δkk′δαα′m0 =
(
iωlm

0 −M (kα)
sc

)
Gkα,k′α′(iωl)−

∑
m

M
(αm)
hyb Gdm,k′α′(iωl). (4.28)

We can identify the Matsubara lead Green function for the unperturbed system as

gkα(iωl) =
(
iωlm

0 −M (kα)
sc

)−1

=
iωlm

0 + ξkαm
3 −∆′αm

1 + ∆′′αm
2

(iωl)2 − (ξ2
kα + |∆α|2)

, (4.29)

which is exactly the case when the leads are not coupled to the dot, i.e., if for all m it is M
(αm)
hyb = 0.

Thus, we obtain the Matsubara Green function for the leads of our system,

Gkα,k′α′(iωl) = δkk′δαα′gkα(iωl) + gkα(iωl)
∑
m

M
(αm)
hyb Gdm,k′α′(iωl). (4.30)

4.2.2 Hybridization Matsubara Green function

We would like to determine the Green function for the coupling region of our system now. There are

two Green functions of that kind. The �rst one has been de�ned in Eq. (4.24). We would like to do a

small adjustment here, from which we will bene�t in a later consideration. In Eq. (3.84) we showed

that the Green functions only depend on the time di�erence. Thus we can shift the times, such that

we can write Eq. (4.24) as

Gdm,kα;ηη′(τ) = −〈Tτ αdm,η(0)α†kα,η′(−τ)〉. (4.31)
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Di�erentiation with respect to τ gives

∂τGdm,kα;ηη′(τ) = − 〈Tτ αdm,η(0)∂τα
†
kα,η′(−τ)〉 (4.32)

=
∑
η′′

M
(kα)
sc,η′′η′〈Tτ αdm,η(0)α†kα,η′′(−τ)〉

+
∑
nη′′

M
(αn) ∗
hyb,η′η′′〈Tτ αdm,η(0)α†dn,η′′(−τ)〉 (4.33)

= −
∑
η′′

Gdm,kα;ηη′′(τ)M
(kα)
sc,η′′η′ −

∑
nη′′

Gd,mn;ηη′′(τ)M
(αn) ∗
hyb,η′η′′ . (4.34)

Here, we shifted back the times, then we identi�ed again the hybridization Green function as well as

the Green function for the dot, Gd,mn(τ), which will be de�ned in the next section. The matrix form

of Eq. (4.34) looks as follows,

∂τGdm,kα(τ) = − Gdm,kα(τ)M (kα)
sc −

∑
n

Gd,mn(τ)M
(αn)
hyb

†
. (4.35)

After Fourier transformation we �nd the hybridization Green function,

Gdm,kα(iωl) =
∑
n

Gd,mn(iωl)M
(αn)
hyb

†
gkα(iωl). (4.36)

The second Matsubara Green function we can de�ne for the coupled region is

Gkα,dm;ηη′(τ) = −〈Tταkα,η(τ)α†dm,η′(0)〉. (4.37)

In principle, it describes the transport from lead α to the dot level m, thus the opposite direction of

Gdm,kα. The equation of motion technique and Fourier transformation yields in matrix structure,

Gkα,dm(iωl) =
∑
n

gkα(iωl)M
(αn)
hyb Gd,nm(iωl). (4.38)

4.2.3 Matsubara Green function for the dot

The Matsubara Green function for the dot is de�ned as follows,

Gd,mn;ηη′(τ) = −〈Tταdm,η(τ)α†dn,η′(0)〉. (4.39)

The derivative with respect to τ gives

∂τGd,mn;ηη′(τ) = −δ(τ)〈{αdm,η(τ), α†dn,η′(0)}〉 − 〈Tτ∂ταdm,η(τ)α†dn,η′(0)〉. (4.40)

Next we insert the time derivative for the Nambu operator of the dot electrons, Eq. (4.17), thus

∂τGd,mn;ηη′(τ) = − δ(τ)δmnδηη′ +
∑
η′′

M
(m)
d,ηη′′ 〈Tταdm,η′′(τ)α†dn,η′(0)〉

+
∑
kα

∑
η′′

M
(αm)∗
hyb,η′′η 〈Tταkα,η′′(τ)α†dn,η′(0)〉. (4.41)

We �nd again the dot Green function and the hybridization Green function in this equation. In

matrix form we obtain

∂τGd,mn(τ) = −δ(τ)δmnm
0 −M (m)

d Gd,mn(τ)−
∑
kα

M
(αm)
hyb

†
Gkα,dn(τ). (4.42)

28



The Fourier transformation of this is

−iωlGd,mn(iωl) = −δmnm0 −M (m)
d Gd,mn(iωl)−

∑
kα

M
(αm)
hyb

†
Gkα,dn(iωl). (4.43)

A little rearrangement gives

δmnm
0 = (iωlm

0 −M (m)
d )Gd,mn(iωl)−

∑
kα

M
(αm)
hyb

†
Gkα,dn(iωl). (4.44)

For the case thatM
(αm)
hyb

†
= 0 for all m, we get the Matsubara dot Green function for the unperturbed

system,

gd,mm(iωl) =
(
iωlm

0 −M (m)
d

)−1

=

(
1

iωl−ξdm↑
0

0 1
iωl+ξdm↓

)
. (4.45)

This can be used together with the hybridization Green function we found in Eq. (4.38), then Eq.

(4.44) yields

δmnm
0 = g−1

d,mm(iωl)Gd,mn(iωl)−
∑
kαp

M
(αm)
hyb

†
gkα(iωl)M

(αp)
hyb Gd,pn(iωl), (4.46)

where p is just another dot level index. Let us do one further identi�cation. In Eq. (4.46) we �nd

the so-called self-energy in the imaginary time formalism as

Σ̃d,mp(iωl) =
∑
α

Σ̃
(α)
d,mp(iωl)

=
∑
kα

M
(αm)
hyb

†
gkα(iωl)M

(αp)
hyb . (4.47)

We then rewrite Eq. (4.46) in terms of the self-energy,

δmnm
0 = g−1

d,mm(iωl)Gd,mn(iωl)−
∑
p

Σ̃d,mp(iωl)Gd,pn(iωl). (4.48)

Since g−1
d,mm(iωl) is diagonal, this gives another matrix equation in the basis of the dot levels. This

means, if we have an N -level dot, the dot Green functions and the self energy for the dot are in fact

(2N×2N)-matrices, or (N×N)-matrices where each entry is a (2×2)-matrix in Nambu space. Thus,

the Green functions in the space of the dot levels look as follows for an N -level dot,

Gd =


Gd,11 Gd,12 . . . Gd,1N

Gd,21 Gd,22

...
...

. . .

Gd,N1 . . . Gd,NN

 , (4.49)

where each matrix element can be written as a (2× 2)-Nambu matrix,

Gd,mn =

(
Gd,mn;11 Gd,mn;12

Gd,mn;21 Gd,mn;22

)
. (4.50)

29



To not to get confused with the indices, we will separate the dot level indices from the Nambu indices

with a semicolon as shown here.

In this notation, Eq. (4.48) turns to

1 = g−1
d (iωl)Gd(iωl)−

∑
p

Σ̃d(iωl)Gd(iωl), (4.51)

which we can solve for the Matsubara dot Green function,

G−1
d (iωl) = g−1

d (iωl)− Σ̃d(iωl). (4.52)

With Eq. (4.52) we are now able to calculate the dot Green function for any number of levels. We

just have to think of the unperturbed Green function as a diagonal matrix, for which every entry is

de�ned as

gd,mn(iωl) = δmn

(
1

iωl−ξdm↑
0

0 1
iωl+ξdm↓

)
. (4.53)

The entries of the self-energy were de�ned in Eq. (4.47). We can perform the sum over the un-

perturbed Green function for lead α, Eq. (4.29), by changing momentum summation to energy

integration,
∑

k ⇒
∫
dξkαν

α
F , with the constant density of states ναF ,∑

k

gkα(iωl) = ναF

∫
dξkαgkα(iωl)

= ναF

∫
dξkα

−iωlm0 − ξkαm3 + ∆′αm
1 −∆′′αm

2

−(iωl)2 + ξ2
kα + |∆α|2

= − πναF
Eα(iωl)

(iωlm
0 −∆′αm

1 + ∆′′αm
2), (4.54)

where we de�ned Eα(iωl) =
√
|∆α|2 − (iωl)2. To perform the integral we used the following relations,∫ b

−b

dx

a2 + x2
=

2

a
arctan (

b

a
)

=
π

a
, for b→∞, (4.55)∫ b

−b

xdx

a2 + x2
= 0. (4.56)

This gives the following expression for the self-energy,

Σ̃d,mn(iωl) =
∑
α

Σ̃
(α)
d,mn(iωl) =

∑
kα

M
(αm)
hyb

†
gkα(iωl)M

(αn)
hyb

= −
∑
α

πναF
Eα(iωl)

(
t∗αmtαniωl t∗αmt

∗
αn∆α

tαmtαn∆∗α tαmt
∗
αniωl

)
. (4.57)

Recall, how the M
(αn)
hyb -matrices were de�ned for the Hamiltonian, Eq. (4.11).

4.2.4 Retarded and advanced Green functions

Having found the Matsubara Green functions, we are now able to determine the retarded and advanced

Green functions via analytic continuation, according to Eqs. (3.100) and (3.101). Thereby, the self-

energy we found for the dot must be analytic continued likewise. The retarded and advanced functions
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are denoted for the dot as follows,

G
R/A
d,mn(ω) = Gd,mn(iωl → ω ± iη), (4.58)

g
R/A
d,mn(ω) = δmngd,mm(iωl → ω ± iη), (4.59)

Σ
R/A
d,mn(ω) = Σ̃d,mn(iωl → ω ± iη). (4.60)

For the leads they are

g
R/A
kα (ω) = gkα(iωl → ω ± iη), (4.61)

G
R/A
kα,k′α′(ω) = Gkα,k′α′(iωl → ω ± iη), (4.62)

and the retarded and advanced hybridization Green functions are

G
R/A
kα,dm(ω) = Gkα,dm(iωl → ω ± iη), (4.63)

G
R/A
dm,kα(ω) = Gdm,kα(iωl → ω ± iη). (4.64)
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4.3 Derivation of the current

We would like to calculate the current for our system now. The calculations are according to [10,11],

where they calculate the current in a N-QD-N system by means of the nonequilibrium Green function

technique. There, one encounters the contour-ordered Green functions, that have been introduced in

Section 3.5.

The current in lead α is given by the time evolution of the average occupation number operator

for α. The time evolution is then given by the time derivative for Heisenberg operators, i.e., by

commutation with the Hamiltonian,

Jα = −e〈Ṅα〉

= − ie
~
〈[H,Nα]〉, (4.65)

The occupation number operator is given by

Nα =
∑
kσ

c†kασckασ. (4.66)

This can also be expressed in Nambu space,

Nα =
∑
k

α†kαm
3αkα (4.67)

=
∑
k,νν′

α†kα,νm
3
νν′αkα,ν′ , (4.68)

where ν, ν′ are Nambu indices and m3 is a Pauli matrix, Eq. (4.12). The commutator of Nα and the

Hamiltonian as it is given in Eq. (4.14), yields

Jα = − ie

~
∑
kn

∑
ηη′

m3
ηη2M

(α)
∆,η′η〈α

†
kα,η′αkα,η〉

+
ie

~
∑
kn

∑
η

m3
ηη

[
M

(αn)
hyb,ηη〈α

†
kα,ηαdn,η〉 −M

(αn)∗
hyb,ηη〈α

†
dn,ηαkα,η〉

]
, (4.69)

where M
(α)
∆ = −∆′αm

1 + ∆′′αm
2. Here we used the fact that M

(αn)
hyb and m3 are diagonal, as well as

the anti-commutation relations, Eqs. (4.19) and (4.20).

We notice here, that the �rst term of the current in Eq. (4.69) is an artifact due to the BCS

mean-�eld approximation. Because of particle conservation, the commutator with the original BCS

Hamiltonian, Eq. (2.1), should give zero in fact, i.e., [HBCS, Nα] = 0. Therefore, we will drop this

term. The current thus is

Jα =
e

~
∑
kn

∑
η

m3
ηη

[
iM

(αn)
hyb,ηη〈α

†
kα,ηαdn,η〉 − iM

(αn)∗
hyb,ηη〈α

†
dn,ηαkα,η〉

]
=
e

~
∑
kn

∑
η

[
iM

(αn)
hyb,ηηm

3
ηη〈α

†
kα,η(t)αdn,η(t)〉+ h.c.

]
. (4.70)

We identify the following lesser hybridization Green function in our current formula,

G<dn,kα;ηη′(t− t
′) = i〈α†kα,η′(t

′)αdn,η(t)〉. (4.71)
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Therefore, it is

Jα =
e

~
∑
kn

∑
η

[
M

(αn)
hyb,ηηm

3
ηηG

<
dn,kα;ηη(t, t) + h.c.

]
(4.72)

=
e

~
∑
kn

Tr
{
M

(αn)
hyb m3G<dn,kα(t, t) + h.c.

}
, (4.73)

=
2e

~
∑
kn

Tr
{

Re
[
M

(αn)
hyb m3G<dn,kα(t, t)

]}
. (4.74)

Here we used again that M
(αn)
hyb and m3 are diagonal matrices. Thus, the summation over the Nambu

indices gives the trace of the matrix product. We further used that Tr{A+A†} = 2Tr{Re[A]}.
Since the Green function does only depend on the time di�erence, Fourier transformation gives,

Jα =
2e

~

∫
dω

2π

∑
kn

Tr
{

Re
[
M

(αn)
hyb m3G<dn,kα(ω)

]}
. (4.75)

We now want to calculate the lesser Green function for the hybridization of dot and lead, G<dn,kα(ω).

To obtain a more general relationship between the Green function we use nonequilibrium Green

function techniques here.

According to Haug and Jauho, we start from the (real) time-ordered Green function in equilibrium,

Gtdn,kα;ηη′(t− t′) = −i〈Tαdn,η(t)α†kα,η′(t
′)〉. (4.76)

Now we use the equation of motion technique and di�erentiate with respect to t′,

∂t′G
t
dn,kα;ηη′(t− t′) = −i〈Tαdn,η(t)∂t′α

†
kα,η′(t

′)〉. (4.77)

The time derivative of the operator is given via the commutator with the Hamiltonian, Eq. (4.14),

∂t′α
†
kα,η′(t

′) = i[H,α†kα,η′ ](t
′)

= i
∑
η′′

M
(kα)
sc,η′′η′α

†
kα,η′′(t

′) + i
∑
mη′′

M
(αm)∗
hyb,η′η′′α

†
dm,η′′(t

′). (4.78)

This gives

∂t′G
t
dn,kα;ηη′(t− t′) =

∑
η′′

M
(kα)
sc,η′′η′〈Tαdn,η(t)α†kα,η′′(t

′)〉+
∑
mη′′

M
(αm)∗
hyb,η′η′′〈Tαdn,η(t)α†dm,η′′(t

′)〉.

(4.79)

In this expression, we can identify the time ordered hybridization Green function as well as the time

ordered dot Green function,

Gtd,nm;ηη′(t− t′) = −i〈Tαdn,η(t)α†dm,η′(t
′)〉. (4.80)

Therefore, we get

−i∂t′Gtdn,kα;ηη′(t− t′) =
∑
η′′

Gtdn,kα;ηη′′(t− t′)M
(kα)
sc,η′′η′ +

∑
mη′′

Gtd,nm;ηη′′(t− t′)M
(αm)∗
hyb,η′η′′ , (4.81)

or in matrix notation in Nambu space,

−i∂t′Gtdn,kα(t− t′) = Gtdn,kα(t− t′)M (kα)
sc +

∑
m

Gtd,nm(t− t′)M (αm)
hyb

†
. (4.82)
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Fourier transformation of this equation gives

ωGtdn,kα(ω) = Gtdn,kα(ω)M (kα)
sc +

∑
m

Gtd,nm(ω)M
(αm)
hyb

†
. (4.83)

If we solve this for the hybridization Green function, we get

Gtdn,kα(ω) =
∑
m

Gtd,nm(ω)M
(αm)
hyb

† (
ωm0 −M (kα)

sc

)−1

(4.84)

=
∑
m

Gtd,nm(ω)M
(αm)
hyb

†
gtkα(ω). (4.85)

Here, we could identify the time-ordered Green function for the uncoupled lead α, which looks similar

to the result we found for the Matsubara Green function in Eq. (4.29). We shortly want to show that

this is true.

gtkα;ηη′(t− t′) = −i〈T αkα,η(t)α†kα,η′(t
′)〉

∂tg
t
kα;ηη′(t− t′) = −iδ(t− t′)δηη′ − i〈T ∂tαkα,η(t)α†kα,η′(t

′)〉
∂tαkα,η(t) = i[HMF

BCS, αkα,η](t)

= −i
∑
η′′ M

(kα)
sc,ηη′′αkα,η′′(t)

⇒ i∂tg
t
kα;ηη′(t− t′) = δ(t− t′)δηη′ − i

∑
η′′ M

(kα)
sc,ηη′′〈T αkα,η′′(t)α

†
kα,η′(t

′)〉
= δ(t− t′)δηη′ +

∑
η′′ M

(kα)
sc;ηη′′g

t
kα;η′′η′(t− t′)

⇒ ωgtkα(ω) = m0 +M
(kα)
sc gtkα(ω)

⇒ gtkα(ω) =
(
ωm0 −M (kα)

sc

)−1

(4.86)

We Fourier transform once again Eq. (4.85), therefore we use the relation shown in Eq. (A.5), so we

obtain

Gtdn,kα(t− t′) =
∑
m

∫
dt1G

t
d,nm(t− t1)M

(αm)
hyb

†
gtkα(t1 − t′). (4.87)

In the nonequilibrium case, this equation has the same form, except that the integration runs on the

contour and the time ordered functions are now contour ordered Green functions,

GCdn,kα(τ, τ ′) =
∑
m

∫
C

dτ1G
C
d,nm(τ, τ1)M

(αm)
hyb

†
gCkα(τ1, τ

′), (4.88)

where we denoted τ as times on the contour. To obtain from this the lesser Green function, we can

use the Langreth rules, see Eq. (3.108). Thus, we get

G<dn,kα(t− t′) =
∑
m

∫
dt1

[
GRd,nm(t− t1)M

(αm)
hyb

†
g<kα(t1 − t′) +G<d,nm(t− t1)M

(αm)
hyb

†
gAkα(t1 − t′)

]
.

(4.89)

We Fourier transform one more time using again relation (A.5), which gives

G<dn,kα(ω) =
∑
m

[
GRd,nm(ω)M

(αm)
hyb

†
g<kα(ω) +G<d,nm(ω)M

(αm)
hyb

†
gAkα(ω)

]
. (4.90)
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This result is still valid for general systems. We now specialize on equilibrium systems, i.e., we can

use the �uctuation-dissipation theorem, Eq. (3.79), to determine the lesser Green functions,

g<kα(ω) = inF (ω)Akα(ω)

= −nF (ω)[gRkα(ω)− gAkα(ω)], (4.91)

G<d,nm(ω) = inF (ω)Ad,nm(ω)

= −nF (ω)[GRd,nm(ω)−GAd,nm(ω)], (4.92)

where the spectral function has been de�ned in Eq. (3.72) as the di�erence of retarded and advanced

Green function. If we plug this back into Eq. (4.90), we obtain

G<dn,kα(ω) = −nF (ω)
∑
m

[
GRd,nm(ω)M

(αm)
hyb

†
gRkα(ω)−GAd,nm(ω)M

(αm)
hyb

†
gAkα(ω)

]
. (4.93)

Thus, we have found the lesser Green function for the hybridization region. We already determined

the retarded and advanced Matsubara Green functions for dot and lead and the real time Green

function can be obtained by analytic continuation, as we showed in Eqs. (4.58)-(4.64).

The lesser Green function we just found can now be plugged into the current expression we had

in Eq. (4.75), so that we get

Jα = −2e

~

∫
dω

2π
nF (ω)

∑
knm

Tr

{
Re

[
M

(αn)
hyb m3GRd,nm(ω)M

(αm)
hyb

†
gRkα(ω)−M (αn)

hyb m3GAd,nm(ω)M
(αm)
hyb

†
gAkα(ω)

]}
(4.94)

= −2e

~

∫
dω

2π
nF (ω)

∑
knm

Tr

{
Re

[
m3GRd,nm(ω)M

(αm)
hyb

†
gRkα(ω)M

(αn)
hyb −m

3GAd,nm(ω)M
(αm)
hyb

†
gAkα(ω)M

(αn)
hyb

]}
.

(4.95)

Here, we used the cyclic property of the trace. Thus, we can identify the self-energy for lead α here,

which is for the retarded or advanced functions

Σ
R/A(α)
d,mn (ω) = M

(αm)
hyb

†
g
R/A
kα (ω)M

(αn)
hyb . (4.96)

We already found these for the imaginary time formalism, Eq. (4.57), and they can be obtained for

real times via analytic continuation. The current thus becomes

Jα = −2e

~

∫
dω

2π
nF (ω)

∑
nm

Tr
{

Re
[
m3GRd,nm(ω)Σ

R(α)
d,mn(ω)−m3GAd,nm(ω)Σ

A(α)
d,mn(ω)

]}
= −2e

~

∫
dω

2π
nF (ω)Tr

{
Re
[
m3Trd

{
GRd (ω)Σ

R(α)
d (ω)−GAd (ω)Σ

A(α)
d (ω)

}]}
. (4.97)

In the second line we expressed the Green function and self-energy as matrices in the dot level space,

where the trace Trd runs now over the dot levels and Tr is still the trace in the Nambu space.
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4.4 The one-level dot system

We will now consider a special case of our system, i.e., the dot consists of only one energy level which

couples to a left and right superconducting lead. We will determine the spectral function as de�ned

in Eq. (3.72), �rst for the uncoupled parts, then for the total system. Thus, we can �nd the Andreev

bound states. We will also investigate how the bound states depend on other parameters such as the

phase di�erence or the coupling strength. Then we would like to see what happens when we add a

third, normal lead, which we can do in principle, since the Green functions we determined have been

independent of the number of leads so far. After that we will determine the current.

We measure energies in units of our gap ∆ and assume a low temperature of the order of 10−3∆.

This corresponds to cryostat temperatures for gap sizes of standard materials like aluminum or

lead [12].

4.4.1 Spectral function and Andreev bound states

Let us have a look at �rst at the spectral function for the unperturbed (uncoupled) lead α. The

spectral function is here calculated as

A0
α(ω) =

∑
k

i
(
gRkα(ω)− gAkα(ω)

)
. (4.98)

The Green functions for the free leads have already been determined in the imaginary time formalism

in Eq. (4.29). Thus, the retarded and advanced functions can be determined by analytic continuation.

We sum here over k, because we want to determine the spectral function independent of k. This sum

has been done already in Eq. (4.54). Since the spectral function is of a (2×2)-matrix form, we plotted

the diagonal terms for di�erent gap energies in Fig. 6, and the o�-diagonal terms are shown in Fig.

7. Thereby, it is A0
α;11(ω) = A0

α;22(ω) and A0
α;12(ω) = A0

α;21(ω). We see for the diagonal elements

the typical spectral density for a superconductor with an energy gap between −∆α and +∆α. The

o�-diagonal elements have negative parts, which is atypical for the spectral function.

Next, we would like to determine the spectral function for the uncoupled dot,

A0
d,11(ω) = i

(
gRd,11(ω)− gAd,11(ω)

)
, (4.99)

which we wrote here with the dot indices.

The free dot Matsubara Green function for the m-th level for noninteracting electrons has been

determined in Eq. (4.45). After analytic continuation we can use the theorem Eq. (3.74). Thus, in

the limit of η → 0+, we obtain as expected a diagonal spectral function that contains delta functions,

A0
d,11(ω) = 2π

(
δ(ω − ξd1) 0

0 δ(ω + ξd1)

)
. (4.100)

Fig. 8 shows the spectral function for �nite broadening, i.e., �nite η. The diagonal elements of the

spectral function are symmetric due to particle-hole symmetry. Now we are going to show how the

spectral function for the dot changes when we couple it with the leads. The spectral function for the

coupled dot is,

Ad,11(ω) = i
(
GRd,11(ω)−GAd,11(ω)

)
. (4.101)
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Figure 6: Diagonal elements of the spectral function for lead α for di�erent gap energies, with the constant

density of states ναF = 0.1, and �nite η = 10−4. The diagonal elements are equal, that is why there

is only one plot for each gap energy. The spectral function shows the typical energy resolution

of a superconductor, with an energy gap between −∆α and +∆α. It also shows the particle-hole

symmetry that we implied with the Nambu representation.

In Eq. (4.52) we found the Matsubara dot Green function for the total system. For the case of one

level, this is now a (2 × 2)-matrix. Let us have a look at the retarded dot Green function at �rst,

that we get from analytic continuation of the inversion of Eq. (4.52),

GRd,11(ω) =
(
gRd,11(ω)

−1 − ΣRd,11(ω)
)−1

. (4.102)

In Eq. (4.53) we obtained the (mn)-matrix element of the Matsubara dot Green function of the

unperturbed system. After analytic continuation we get for the one level retarded dot Green function,

gRd,11(ω) =

(
1

ω+iη−ξd1↑ 0

0 1
ω+iη+ξd1↓

)
. (4.103)

The corresponding self-energy is obtained through analytic continuation of Eq. (4.57). It follows

then,

ΣRd,11(ω) =
∑
α

Σ
R(α)
d,11 (ω) (4.104)

= −
∑
α

πναF
Eα(ω + iη)

(
|tα1|2(ω + iη) (t2α1)∗∆α

t2α1∆∗α |tα1|2(ω + iη)

)
. (4.105)

Therefore, we obtain

GRd,11(ω) =
1

D11(ω + iη)

[(
ω + iη + ξd1↓ 0

0 ω + iη − ξd1↑

)

+
∑
α

πναF
Eα(ω + iη)

(
|tα1|2(ω + iη) −(t2α1)∗∆α

−t2α1∆∗α |tα1|2(ω + iη)

)]
, (4.106)
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Figure 7: O�-diagonal elements of the spectral function for lead α for di�erent gap energies, with ναF = 0.1,

η = 10−4. The o�-diagonal matrix entries are equal for each gap energy. Here, the o�-diagonal

elements of the spectral function become negative on the positive axis, which is atypical for spectral

functions.

where we de�ned the determinant of the Green function

D11(ω + iη) = det
[
GRd,11(ω)−1

]
(4.107)

=

[
ω + iη − ξd1↑ + π(ω + iη)

∑
α

ναF |tα1|2

Eα(ω + iη)

]
×
[
ω + iη + ξd1↓ + π(ω + iη)

∑
α

ναF |tα1|2

Eα(ω + iη)

]

−
∑
αα′

π2ναF ν
α′

F (tα1t
∗
α′1)2∆α′∆∗α

Eα(ω + iη)Eα′(ω + iη)
. (4.108)

We are going to do some simpli�cations here. The gap energies of the leads shall have the same

amplitude, but di�erent phases, i.e., ∆α = |∆|eiφα . Therefore, it is Eα(ω + iη) = E(ω + iη) =√
|∆|2 − (ω + iη)2. We can introduce a phase for the coupling terms as well, tαm = |tαm|eiθαm .

Furthermore, we would like to use the de�nition of a quantity that gives the transition rate between

lead α and dot,

Γα1 = 2πναF |tα1|2, (4.109)

where the total transition rate is then Γ = Γl1 + Γr1. Thus Eq. (4.106) modi�es to

GRd,11(ω) =
1

D11(ω + iη)

[(
ω + iη + ξd1↓ 0

0 ω + iη − ξd1↑

)

+
1

2

∑
α

Γα1

E(ω + iη)

(
ω + iη −|∆|eiϕα
−|∆|e−iϕα ω + iη

)]
, (4.110)

where we put ϕα = φα − 2θα1. Furthermore, the self-energy becomes

ΣRd,11(ω) = −1

2

∑
α

Γα1

E(ω + iη)

(
ω + iη |∆|eiϕα
|∆|e−iϕα ω + iη

)
. (4.111)
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Figure 8: The free dot spectral function for noninteracting electrons for �nite η = 10−4. The dot level is

at ξd1 = 0.5. The diagonal elements are symmetric due to particle-hole symmetry. O�-diagonal

elements are zero.

For the determinant we get

D11(ω + iη) =

[
ω + iη − ξd1↑ +

(ω + iη)Γ

2E(ω + iη)

][
ω + iη + ξd1↓ +

(ω + iη)Γ

2E(ω + iη)

]
− |∆|2

4E(ω + iη)2
[Γ2
l1 + Γ2

r1 + 2Γl1Γr1 cos (δφ)︸ ︷︷ ︸
Γ2−4Γl1Γr1 sin2 ( δφ2 )

], (4.112)

where δφ = ϕr − ϕl = φr − φl − 2(θr1 − θl1) is the phase di�erence that contains the phases for the

leads as well as the coupling terms. Those phases are adjusted by application of a bias voltage or

magnetic �elds. Thereby, only the phase di�erence is really measurable.

The advanced Green function can simply be found by the hermitian conjugate of the retarded

Green function. Thus, we are now able to calculate the spectral function for the dot,

Ad,11(ω) = i
(
GRd,11(ω)−GR

†

d,11(ω)
)
. (4.113)

Fig. 9 shows the four matrix elements of the spectral function, where energies like the dot level or

the coupling strength are in units of |∆| which we just write as ∆. Thereby, the o�-diagonal elements

become negative again and they further have an imaginary part. For a low dot level, compared to

∆, we �nd two clear peaks in the superconducting gap in a) - c), which can be interpreted as the

particle-hole symmetric Andreev bound states. They are to be found at a di�erent energy than the

dot level, i.e., the bound states are ωb ≈ 0.28∆ for a dot level of ξd1 = 0.1∆ with the gap parameter

|∆| = 1. In d) we show the spectral function for the case we move the dot level much higher than the

gap energy. Thereby, the bound state approaches the gap energy and additionally there appears a

peak in the continuum part of the spectral function at the dot energy, which is in accordance with [13].

Another way of �nding the bound states is to check where the determinant Eq. (4.112) becomes

zero, since it is in the denominator of the Green function Eq. (4.110). Therefore, the spectral function

blows up, where the determinant is zero, which happens exactly at the bound states. Fig. 10 shows

the zeros of the determinant for di�erent parameter dependencies. We �nd the bound states vs. dot

level relations to be in accordance with [14].
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We can �nd an analytic expression for the bound states in terms of an asymptotic approach.

Therefore we set the determinant, Eq. (4.112), zero. Then we multiply the equation with the energy

E(ω + iη)2 = |∆|2 − (ω + iη) and take as well the limit η → 0+. This gives,

0 = (|∆|2 − ω2
b )(ω2

b − ξ2
d1 −

1

4
Γ2) + Γl1Γr1|∆|2 sin2

(
δφ

2

)
+ Γω2

b

√
|∆|2 − ω2

b . (4.114)

We would like to express this in terms of the Breit-Wigner transmission probability at the Fermi

level [6],

TBW =
Γl1Γr1

ξ2
d1 + 1

4Γ2
. (4.115)

Thus, we obtain

ω2
b = |∆|2

ξ2
d1 + 1

4Γ2

ξ2
d1 +

(√
|∆|2 − ω2

b + 1
2Γ
)2

[
1− TBW sin2

(
δφ

2

)]
. (4.116)

In the limit of |∆2 − ω2
b | � Γ2/4, we get

ω2
b = |∆|2

[
1− TBW sin2

(
δφ

2

)]
. (4.117)

This is found as well in [15], where they study the short-junction limit of a Josephson junction, i.e.,

the junction between two superconductors is assumed to be small compared to the superconducting

coherence length, which corresponds to our case as well.

We would like to see how the spectral function changes when we add an additional, normal lead to

our system. We can simply include the third lead in the Green function, Eq. (4.110), respectively the

determinant, Eq. (4.112), as they are still of the form for a general number of leads. The normal lead

is then coupled with the strength ΓN1 and the energy gap for this lead is zero, of course. Fig. 11 shows

the (11)-component of the spectral function for this system. We �nd, that the spectrum between the

gap energies broadens, which is consistent with [16]. Thereby, the broadening is more pronounced

the stronger the normal lead is coupled.
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Figure 9: Spectral function for the dot coupled to the two superconducting reservoirs. The plots a) - c)

show diagonal and o�-diagonal elements separately. Thereby, the o�-diagonal elements have an

imaginary part as well. The dot level energy is marked in the plots with a red line. For a) -c)

it is at ξd1 = 0.1∆. Further parameters are |∆| = 1, Γl1 = Γr1 = 0.6∆, ϕr = π/2, ϕl = 0,

η = 10−4. The bound states are to be found at ωb ≈ 0.28∆. In d) we show the (11)-component

of the spectral function for the same parameters but for a dot level at ξd1 = 3∆.
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Figure 10: The plots show how the bound states depend on several parameters. They are made as a contour

plot by showing only those parts where the determinant becomes zero, which happens exactly at

the bound states called ωb. Plot a) shows the bound states with respect to the dot level energy

for di�erent coupling strengths Γ = Γleft + Γright. If dot and leads are decoupled, Γ = 0, we get

the linear relation we already found for the spectrum of the free dot. For high coupling strengths

the bound states become independent of the dot level. In b) we vary the coupling strength on the

right side while keeping the left one constant. For Γright = 0 we show the case for the dot being

coupled to only one lead. If we increase Γright the bound states become again independent of

the dot level energy. c) shows the bound states with respect to the dot level energy for di�erent

phase di�erences. At δφ = π the relation between bound states and dot level approaches a linear

behavior, like in a) for Γ = 0, which suggests a decoupling of dot and leads. In d) we show the

bound states with respect to the phase di�erence for di�erent dot levels. All plots show that if

we increase the dot level energies, the bound states approach the gap energies.
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Figure 11: Spectral function for the addition of a normal lead. The plot shows the energy gap region of the

(11)-component of the spectral function, where |∆| = 1 again. The dot level is at ξd1 = 0.1∆

(dashed lines). Further parameters are Γl1 = Γr1 = 0.6∆, ϕr = π/2, ϕl = 0. The normal

lead causes a broadening of the sub-gap spectrum. Thereby, the broadening is more pronounced

for higher coupling parameters, ΓN1 = 0.1∆ (blue), 0.2∆ (red), 0.6∆ (green). The broadening

caused by η is negligible here.
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4.4.2 The current

We would like to determine the current for our 1-level dot system. The current formula has been

derived for a general number of level in Eq. (4.97) and looks in our case now as follows,

J (1)
α = −2e

~

∫
dω

2π
nF (ω)Tr

{
Re
[
m3GRd,11(ω)Σ

R(α)
d,11 (ω)−m3GAd,11(ω)Σ

A(α)
d,11 (ω)

]}
= −2e

~

∫
dω

2π
nF (ω)Tr

{
Re
[
m3GRd,11(ω)Σ

R(α)
d,11 (ω)−m3GR

†

d,11(ω)Σ
R(α)†

d,11 (ω)
]}

, (4.118)

where we used the fact that the self-energy of the advanced Green function can also be obtained by

hermitian conjugation of the self-energy for the retarded Green function.

If we take the trace over the Nambu space and take the real part, we get another real part,

J (1)
α = −2e

~

∫
dω

2π
nF (ω)2Re

[
GRd,11;12(ω)Σ

R(α)
d,11;21(ω)−GRd,11;21(ω)Σ

R(α)
d,11;12(ω)

]
, (4.119)

which we wrote with Nambu indices now. Now, we use the fact, that we can write the Green function

in terms of the self energy. Compare Eqs. (4.110) and (4.111), then we can write

GRd,11;12(ω) =
1

D11(ω + iη)
ΣRd,11;12(ω) =

1

D11(ω + iη)

[
Σ
R(α)
d,11;12(ω) + Σ

R(α)
d,11;12(ω)

]
, (4.120)

GRd,11;21(ω) =
1

D11(ω + iη)
ΣRd,11;21(ω) =

1

D11(ω + iη)

[
Σ
R(α)
d,11;21(ω) + Σ

R(α)
d,11;21(ω)

]
, (4.121)

where α = r if α = l or the other way around. The labels l and r stand for the left and right lead.

Accordingly, the current formula reduces to

J (1)
α = −2e

~

∫
dω

2π
nF (ω)2Re

{
1

D11(ω + iη)

[
Σ
R(α)
d,11;12(ω)Σ

R(α)
d,11;21(ω)− Σ

R(α)
d,11;21(ω)Σ

R(α)
d,11;12(ω)

]}
.

(4.122)

As we see, J
(1)
α = −J (1)

α . That means, if we calculate the total current as J (1) = 1
2 (J

(1)
l − J (1)

r ), it is

J (1) = J
(1)
l = −J (1)

r . Therefore, we obtain for the total current

J (1) = −2e

~

∫
dω

2π
nF (ω)2Re

{
1

D11(ω + iη)

[
Σ
R(r)
d,11;12(ω)Σ

R(l)
d,11;21(ω)− Σ

R(r)
d,11;21(ω)Σ

R(l)
d,11;12(ω)

]}
.

(4.123)

The self-energies can be taken from Eq. (4.111),

Σ
R(α)
d,11;12(ω) = −|∆|Γα1e

iϕα

2E(ω + iη)
, (4.124)

Σ
R(α)
d,11;21(ω) = −|∆|Γα1e

−iϕα

2E(ω + iη)
. (4.125)

This gives

J (1) =
2e

~
Γl1Γr1|∆|2 sin (δφ)

∫
dω

2π
nF (ω)Im

[
1

D11(ω + iη)E(ω + iη)
2

]
, (4.126)

where we used, that for a complex number z it is Re[iz] = −Im[z].
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Figure 12: Supercurrent vs. dot level energy for di�erent gap energies. The current has its maximum at

ξd1 = 0 and decays towards zero if the dot level is shifted up or down. The maximum depends

on the coupling strength. Here we show the cases Γ = 0.2∆ (blue), 0.4∆ (red), 1∆ (green).

The expression in the integrand, which is the product of the determinant, Eq. (4.112), and the

square of the energy we de�ned as E(ω + iη) =
√
|∆|2 − (ω + iη)2, looks as follows,

D11(ω + iη)E(ω + iη)
2

=
[
(ω + iη − ξd1↑)

√
|∆|2 − (ω + iη)2 +

1

2
(ω + iη)Γ

]
×
[
(ω + iη + ξd1↓)

√
|∆|2 − (ω + iη)2 +

1

2
(ω + iη)Γ

]
− 1

4
|∆|2

[
Γ2 − 4Γl1Γr1 sin2

(
δφ

2

)]
. (4.127)

We are now able to calculate the current numerically. For the following plots we had to choose �nite

η, otherwise numerical errors occurred, but we tried to make them as small as possible. Since the

electrons in the dot are noninteracting, it is ξd1↑ = ξd1↓ = ξd1. Furthermore, we assume equal coupling

strengths on both sides, i.e., Γl1 = Γr1 = Γ/2.

In Fig. 12 we show the supercurrent vs. the dot level energy for di�erent coupling strengths.

Thereby, we show the current in units of J0 = e∆/~. We �nd it to be in accordance with [14]. We

see that the current is maximal for ξd1 = 0, whereas stronger coupling means higher maxima. If we

shift the level up or down, the current decreases towards zero.

In Fig. 13 we compare the supercurrent to the coupling strength Γ = Γl1 + Γr1 for di�erent dot

level. The current is zero for Γ = 0 for all dot level, which is exactly the case when dot and lead

are decoupled. For Γ 6= 0, the current is higher the closer the dot level is to zero. If the coupling is

further increased, the current approaches an asymptotic value independent of the dot level.

Fig. 14 shows the dependence of the supercurrent on the phase di�erence for di�erent coupling

strengths. The current is 2π-periodic as the result of the current, Eq. (4.126), suggests. We have

already found that lead and dot decouple for a phase di�erence of δφ = π, Fig. 10 c). This means

that the current must vanish in this case, which we found here as well. The maximum current is

found at di�erent δφ for di�erent Γ.
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Figure 13: Supercurrent vs. coupling strength for di�erent dot levels. From the solid blue to the dashed red

curve it is ξd1 = 0, 1, 2, 5, 10, 15∆. It is Γ = Γl1 + Γr1. The current starts at zero for Γ = 0 for

all level energies. For an increasing coupling strength the current increases and approaches an

asymptote. In the beginning, the current is strongest for the dot level at zero energy, whereas

the asymptotic value is independent of the dot level.
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Comparison to Beenakker and van Houten

We would like to compare our result for the current to the one in [6], where the system is treated by

means of a scattering formalism.

First of all we rewrite the expression Eq. (4.127) with ξd1↑ = ξd1↓ = ξd1 and rename it as follows,

B(ω + iη) = D11(ω + iη)E(ω + iη)
2

=
(
|∆|2 − (ω + iη)2

)(
(ω + iη)2 − ξ2

d1 −
1

4
Γ2
)

+ |∆|2Γl1Γr1 sin2

(
δφ

2

)
+ Γ(ω + iη)2

(
|∆|2 − (ω + iη)2

)1/2

, (4.128)

with Γ = Γl1 + Γr1. The current is then

J (1) =
2e

~
Γl1Γr1|∆|2 sin (δφ)

∫
dω

2π
nF (ω)Im

[
1

B(ω + iη)

]
. (4.129)

We split the current into two parts,

J (1) = J
(1)
∆ + J (1)

∞ , (4.130)

where J
(1)
∆ contains the integral part with frequencies between the gaps and J

(1)
∞ is for the continuous

spectrum outside the gap.

Let us calculate J
(1)
∆ �rst,

J
(1)
∆ =

2e

~
Γl1Γr1|∆|2 sin (δφ)

∫ ∆

−∆

dω

2π
nF (ω)Im

[
1

B(ω + iη)

]
. (4.131)

We can expand B(ω + iη) around ω, which gives B(ω + iη) ' B(ω) + iηB′(ω). We will use the fact

that B(ω) and B′(ω) are real numbers, because for J
(1)
∆ we have only the contribution for ω2 < |∆|2.

Then, we get for the imaginary part in the integral

Im

[
1

B(ω + iη)

]
= Im

[
1

B(ω) + iηB′(ω)

]
=

1

B′(ω)
Im

[
1

B(ω)B′(ω)−1 + iη

]
, use Eq. (3.74)

= − π

B′(ω)
δ
(
B(ω)B′(ω)−1

)
= − π

B′(ω)

∑
i

δ(ω − εi)
|h′(εi)|

. (4.132)

Here, we de�ned h(ω) = B(ω)B′(ω)−1. Then we used the fact, that if the delta function has another

function f(x) as an argument, it can be expressed the following way,

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (4.133)

where the sum is over all roots of f(x). The roots of h(ω) are called εi here, and moreover they

correspond to the Andreev bound states. Furthermore, it is h(εi) = 0 as B(εi)
!
= 0, therefore it turns

out that h′(εi) = 1. Thus, we obtain

Im

[
1

B(ω + iη)

]
= −π

∑
i

δ(ω − εi)
B′(ω)

(4.134)

= −π
∑
i

δ(ω − εi)
B′(εi)

, (4.135)
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where we could replace the argument in B′(ω) by εi, because of the delta function. We now use the

fact, that the bound states are a function of the phase di�erence, εi = εi(δφ). We have seen that in

the discussion above, see also Fig. 10 d). Therefore, it is B(εi) = B(εi(δφ), δφ) = 0 and thus

d

dδφ
B(εi(δφ), δφ) =

∂B

∂εi

∂εi
∂δφ

+
∂B

∂δφ
= 0. (4.136)

So we obtain an expression for B′(εi) = ∂B/∂εi,

B′(εi) = − ∂B
∂δφ

(
∂εi
∂δφ

)−1

= −1

2
Γl1Γr1|∆|2 sin (δφ)

(
∂εi
∂δφ

)−1

, (4.137)

where we calculated the derivative with respect to δφ by using the de�nition of B(ω), Eq. (4.128).

The result for B′(εi) can be plugged into Eq. (4.135), and this can be used for the current in Eq.

(4.131). Thus, we obtain

J
(1)
∆ =

2e

~
∑
i

∫ ∆

−∆

dωnF (ω)δ(ω − εi)
∂εi
∂δφ

=
2e

~
∑
i

nF (εi)
∂εi
∂δφ

=
2e

~
∑
εi>0

[nF (εi)− nF (−εi)]
∂εi
∂δφ

= −2e

~
∑
εi>0

tanh

(
εi

2kBT

)
∂εi
∂δφ

. (4.138)

Because of the particle-hole symmetry, the bound states always come in pairs of ±εi. We used this

fact to rewrite the sum. Then we can identify the hyperbolic tangent from the di�erence of the Fermi

functions.

We would like to calculate the rest of the current now, i.e., the part with the contributions from

the continuous spectrum,

J (1)
∞ =

2e

~
Γl1Γr1|∆|2 sin (δφ)

{∫ −∆

−∞

dω

2π
nF (ω)Im

[
1

B(ω + iη)

]
+

∫ ∞
∆

dω

2π
nF (ω)Im

[
1

B(ω + iη)

]}
.

(4.139)

Here, we rewrite B(ω + iη) the following way,

B(ω + iη) = Ω(ω + iη) + Γ(ω + iη)2
√
|∆|2 − (ω + iη)2, (4.140)

with Ω(ω + iη) =
(
|∆|2 − (ω + iη)2

)(
(ω + iη)2 − ξ2

d1 −
1

4
Γ2

)
+ |∆|2Γl1Γr1 sin2

(
δφ

2

)
. (4.141)

Let us have a look at the square root in Eq. (4.140) up to linear order in η,√
|∆|2 − (ω + iη)2 '

√
|∆|2 − ω2 − 2iηω (4.142)

= −isgn(ω)
√
ω2 − |∆|2. (4.143)

We put the branch cut on the negative real axis here. The number under the square root is slightly

imaginary. Since it is now ω2 > |∆|2, we are slightly above or below the branch cut, which depends
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on the sign of ω. Therefore, when we take the square root, the sign in front of the square root depends

on ω. In the end, we drop any terms with η, because compared to the expression in Eq. (4.143), they

give only small contributions to the imaginary part. Therefore, we expand B(ω + iη) ' B(ω), which

gives

B(ω) = Ω(ω)− iΓω2sgn(ω)
√
ω2 − |∆|2, (4.144)

where Ω(ω) is a real number. It follows for the current,

J (1)
∞ =

2e

~
Γl1Γr1|∆|2 sin (δφ)

{∫ −∆

−∞

dω

2π
nF (ω)Im

[
1

Ω(ω)− iΓω2sgn(ω)
√
ω2 − |∆|2

]

+

∫ ∞
∆

dω

2π
nF (ω)Im

[
1

Ω(ω)− iΓω2sgn(ω)
√
ω2 − |∆|2

]}
. (4.145)

For the integral over the negative spectrum, we put ω → −ε, with ε > 0. Then we �ip the limits

for integration and we use the fact that Ω(−ε) = Ω(ε), since it is an even function. After that we

simplify put ε → ω. For the integral over the positive spectrum we use the relation that for any

complex number it is Im[z] = −Im[z∗]. Thus, the current reduces to

J (1)
∞ =

2e

~
Γl1Γr1|∆|2 sin (δφ)

∫ ∞
∆

dω

2π
[nF (−ω)− nF (ω)]Im

[
1

Ω(ω) + iΓω2
√
ω2 − |∆|2

]

=
2e

~
Γl1Γr1|∆|2 sin (δφ)

∫ ∞
∆

dω

2π
tanh

(
ω

2kBT

)
Im

[
1

Ω(ω) + iΓω2
√
ω2 − |∆|2

]
. (4.146)

Let us rewrite the current in the following way,

J (1)
∞ =

∫ ∞
∆

dωf(ω)g(ω), (4.147)

with

f(ω) = tanh

(
ω

2kBT

)
, (4.148)

g(ω) =
1

2π

2e

~
Γl1Γr1|∆|2 sin (δφ)Im

[
1

Ω(ω) + iΓω2
√
ω2 − |∆|2

]
. (4.149)

It is then

J (1)
∞ =

[
F (ω)g(ω)

]∞
∆
−
∫ ∞

∆

dωF (ω)g′(ω), (4.150)

where F (ω) is the antiderivative of f(ω),

F (ω) =

∫
dωf(ω)

= 2kBT ln cosh

(
ω

2kBT

)
+ const. (4.151)

We choose the constant to be 2kBT ln(2), which gives a factor 2 in front of the hyperbolic cosine. We

do that to be consistent with the result of Beenakker and van Houten. We see that the �rst term of
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the current in Eq. (4.150) vanishes, as g(ω) is zero at ∆ and vanishes at ∞. Remember that Ω(ω) is

real. So, we are left with

J (1)
∞ =− 2kBT

∫ ∞
∆

dω ln

[
2 cosh

(
ω

2kBT

)]
∂ωg(ω). (4.152)

We would like to �nd a relation between ∂ωg(ω) and the derivative of the density of states with

respect to the phase di�erence. In [6] they use a relation for the density of states that depends on the

scattering matrix. We will use an expression from [17], which is de�ned as the change in density of

states due to the addition of an impurity to the host conduction electrons. They derive the following

equation,

∆ρ(ω) =
1

π
Im

∂

∂ω
ln (detTR(ω)), (4.153)

where TR(ω) is the T -matrix which we get from the equation of motion for the retarded Green

function of the leads. Equation of motion gives for our one-level system

GRkα,k′α′(ω) = δkk′δαα′gRkα(ω) + gRkα(ω)M
(α1)
hyb G

R
d,11(ω)M

(α′1)
hyb

†
gRk′α′(ω). (4.154)

Here we combined the relation for the Green function for the leads we found in Eq. (4.30) with the

relation for the hybridization Green function in Eq. (4.36). We compare this to Eq. (3.11), so one

can identify the T -matrix as follows,

TR(ω) = TRαα′(ω) = M
(α1)
hyb G

R
d,11(ω)M

(α′1)
hyb

†
. (4.155)

Next, the determinant of the T -matrix is calculated as

detTRαα′(ω) = det

[
M

(α1)
hyb G

R
d,11(ω)M

(α′1)
hyb

†
]

(4.156)

= det

[
M

(α1)
hyb M

(α′1)
hyb

†
]

det
[
GRd,11(ω)

]
(4.157)

=
|tα1|2|tα′1|2

D11(ω + iη)
, (4.158)

where we used that for the determinant of a matrix it is det [G]
−1

= det [G−1]. Then we just inserted

our de�nition for the determinant of the dot Green function from Eq. (4.107) and M
(αn)
hyb was de�ned

for the Hamiltonian in Eq. (4.11).

Let us go back to the density of states, Eq. (4.153). We can rewrite the imaginary part as follows,

∆ρ(ω) =
1

2πi

∂

∂ω

[
ln (detTR(ω))− ln (detTR

∗
(ω))

]
(4.159)

=
1

2πi

∂

∂ω
ln

(
detTR(ω)

detTR
∗
(ω)

)
(4.160)

=
1

2πi

∂

∂ω
ln

(
D∗11(ω + iη)

D11(ω + iη)

)
. (4.161)

If we use again the de�nition from above B(ω + iη) = D11(ω + iη)E(ω + iη)2 and the fact that we

can approximate B(ω + iη) ' B(ω) as in Eq. (4.144), we get D11(ω + iη) ' D11(ω) = B(ω)/E(ω)2,
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as well as D∗11(ω + iη) ' D∗11(ω) = B∗(ω)/E(ω)2. This gives

∆ρ(ω) =
1

2πi

∂

∂ω
ln

(
D∗11(ω + iη)

D11(ω + iη)

)
(4.162)

=
1

2πi

∂

∂ω
ln

(
B∗11(ω)

B11(ω)

)
(4.163)

=
1

2πi

∂

∂ω
ln

(
Ω(ω) + iΓω2

√
ω2 − |∆|2

Ω(ω)− iΓω2
√
ω2 − |∆|2

)
. (4.164)

Remember that Ω(ω), Eq. (4.141), is also a function of δφ. If we put a = Γω2
√
ω2 − |∆|2 and

di�erentiate ∆ρ with respect to δφ we obtain

d∆ρ

dδφ
=

1

2πi

∂

∂ω

d

dδφ
ln

(
Ω + ia

Ω− ia

)
=

1

π

∂

∂ω

(
dΩ

dδφ

−a
Ω2 + a2

)
(4.165)

=
∂

∂ω

(
1

2π
Γl1Γr1|∆|2 sin (δφ)Im

[
1

Ω(ω) + ia

])
(4.166)

=
~
2e

∂

∂ω
g(ω). (4.167)

Here, we identi�ed our result with g(ω), which we de�ned in Eq. (4.149). Now, we can plug ∂g/∂ω =

(2e/~)(d∆ρ
dδφ ) into Eq. (4.152), which gives the contribution for the current from the continuous

spectrum,

J (1)
∞ =− 2e

~
2kBT

∫ ∞
∆

dω ln

[
2 cosh

(
ω

2kBT

)]
d∆ρ

dδφ
. (4.168)

Together with J
(1)
∆ , Eq. (4.138), which contains the contributions from the discrete spectrum, we get

the total current

J (1) = −2e

~
∑
εi>0

tanh

(
εi

2kBT

)
∂εi
∂δφ

− 2e

~
2kBT

∫ ∞
∆

dω ln

[
2 cosh

(
ω

2kBT

)]
d∆ρ

dδφ
, (4.169)

which corresponds exactly to the result they found in [6].
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4.4.3 Zeeman-split dot levels

When we introduced the system's Hamiltonian, we kept the dot level energies di�erently for spin

up and down. So far we considered only noninteracting dot electrons, for which the energies are

spin-independent. Here, we would like to investigate the case of a Zeeman-split dot level. For a small

enough magnetic �eld B, the dot level splits into the two levels, where the higher level is occupied

by the spin up electron and the lower level by the spin down electron. The corresponding Zeeman

Hamiltonian looks as follows,

HZeem. = −µBgS ·B, (4.170)

where µB is the Bohr magneton, the Landé g-factor is closely 2 and S is the second-quantized spin

operator with the components,

Si =
1

2

∑
σσ′

d†σσ
i
σσ′dσ′ . (4.171)

Here, we sum over spin σ =↑, ↓ and the Pauli matrices σi with i = x, y, z were de�ned in Eq. (4.12)

as mi with i = 1, 2, 3. The z-component then is Sz = 1
2 (d†↑d↑ − d

†
↓d↓). Thus, if we apply a B-�eld in

z-direction, the Hamiltonian turns to

HZeem. = −µBgBz
2

(n↑ − n↓), (4.172)

where nσ = d†σdσ. Thus, the Hamiltonian of a single dot level with noninteracting electrons Hd =

ξd(n↑ + n↓) becomes under the in�uence of a Zeeman �eld,

HZeem.
d = Hd +HZeem.

=

(
ξd +

B

2

)
n↑ +

(
ξd −

B

2

)
n↓, (4.173)

where we de�ned the Zeeman energy as B = −µBgBz. As we see, the spin-up and spin-down energies

are now di�erent in the case of Zeeman splitting. It is thus in our notation for the one-level dot,

ξd1↑ = ξd1 + B
2 and ξd1↓ = ξd1− B

2 , which we can simply plug in the equations for the Green function,

Eq. (4.110), to obtain the spectral function, Eq. (4.113). Further, we can determine the current,

Eqs. (4.126) and (4.127).

In Fig. 15 we show the bound states with respect to the dot energy ξd1 for a �nite Zeeman �eld

and compare it to the case of zero Zeeman splitting. Thereby, the number of bound states doubles,

as the contribution from the spin-up and spin-down level is di�erent. For zero Zeeman �elds, this

contribution is equal as the spin-up and spin-down level are the same.

Fig. 16 shows the current for di�erent Zeeman energies. The current is the same for ±B. If

the Zeeman energy is strong enough, there occurs a dip in the current around ξd1 = 0. If B is

further increased, the current can even become negative, where it is �at with respect to the dot

energy. If we have a look at Fig. 17, we see that for big enough Zeeman energy, the Andreev bound

state excitation spectrum changes qualitatively. Our results show a connection between the dip in

the current and the change in the bound states excitation. This is consistent with the relationship

between the supercurrent and the phase dependence of the bound state energies. For small �elds,

the excitation spectrum is slightly shifted and no dip occurs yet. If we increase the Zeeman �eld

the Andreev bound state excitation spectrum changes qualitatively and there is a dip in the current
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Figure 15: Bound states vs. dot level for �nite Zeeman �eld. We compare the case of zero �eld (blue) to

B = +0.3∆ (red) and B = −0.3∆ (green). For a �nite Zeeman �eld the bound states split into

a spin-up and spin-down contribution.

around zero level energies. For big enough Zeeman energies, the spectrum moves away from zero

energy, thus if we change the dot level energy only slightly the spectrum will not change qualitatively.

Therefore, we obtain a �at region for small enough dot level in this case.
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Figure 16: Current vs. dot level for �nite Zeeman �eld. The �gure shows plots for di�erent Zeeman energies,

B = 0 (blue), B = 0.6∆ (red), B = 0.9∆ (green), B = 2∆ (dashed). The current for up- and

down-spin are equal. For strong enough Zeeman energy, a dip in the current occurs around

ξd1 = 0 and it can become even negative.
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Figure 17: Bound states vs. phase di�erence for �nite Zeeman �eld. Left: We show the case of B = 0

(blue), B = +0.9∆ (red), B = −0.9∆ (green). For �nite Zeeman energy the bound states split

into a spin-up and spin-down contribution. Right: Excitation spectrum (only positive energies)

of Andreev bound states for �nite Zeeman splitting. In the top panel the Zeeman splitting just

causes a shift of the energy levels. In the middle panel the Zeeman splitting causes a qualitative

change in the Andreev bound state excitation spectrum. In the lowest panel, the Zeeman energy

is so strong that the one excitation line has completely been mirrored.
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5 Summary & Outlook

We studied the quantum transport of a system containing a noninteracting single-level quantum dot

con�ned between two BCS-superconductors.

First, we introduced the BCS-theory of superconductivity. We saw how the transport between two

superconducting leads connected by a nanostructure can be explained by Andreev scattering and the

corresponding bound states. Then we introduced the Green function theory for real and imaginary

times, as well as times on the contour. The Hamiltonian has been introduced for a general number

of dot-levels as well as a general number of leads. It has been rewritten in terms of the Nambu

representation to include the particle-hole symmetry. We could derive a general expression for the

system's Green functions and supercurrent still for a general number of levels and leads. We did

explicit numerical calculations for the case of a one-level dot connected to two superconducting leads.

From this we found the Andreev bound states. We saw that they depend on the phase di�erence as

well as the dot level energy and the coupling strength between dot and lead. We found a broadening of

the sup-gap states when we added a third, normal lead. The current is a function of phase di�erence,

dot level energy and coupling strength as well. Therefore, one could try to �nd a relation between

current and bound states as well. Furthermore, we could identify our result for the current with the

one in [6].

In the end we introduce the Zeeman splitting of the dot level and we explained the relation between

the Andreev bound state excitation spectrum and the supercurrent in connection with the strength

of the Zeeman �eld. In future work this could be used to do self-consistent Hartree-Fock calculations

for an on-site electron-electron interaction U by replacing the dot energies by ξdσ → ξd + U〈ndσ̄〉, as
suggested in [14].
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A Fourier transformation

The time and frequency Fourier transforms we are using here are de�ned as follows,

f(t) =

∫ ∞
−∞

dω

2π
fω e

−iωt, (A.1)

fω =

∫ ∞
−∞

dt f(t) eiωt. (A.2)

From this we �nd the special cases, ∫ ∞
−∞

dω

2π
e−iωt = δ(t), (A.3)∫ ∞

−∞
dt eiωt = 2π δ(ω). (A.4)

We show here the following relation, which we use in the calculations,

A(ω) = B(ω)C(ω)⇔ A(t− t′) =

∫
dt1B(t− t1)C(t1 − t′). (A.5)

We start from the Fourier

A(ω) = B(ω)C(ω)

⇔
∫
dω

2π
e−iω(t−t′)A(ω) =

∫
dω

2π
e−iω(t−t′)B(ω)C(ω)

=

∫
dω

2π
e−iωtB(ω)

∫
dω′eiω

′t′C(ω′)δ(ω − ω′)

=

∫
dω

2π
e−iωtB(ω)

∫
dω′eiω

′t′C(ω′)

∫
dt1
2π

ei(ω−ω
′)t1

=

∫
dt1

∫
dω

2π
e−iω(t−t1)B(ω)

∫
dω′

2π
e−iω

′(t1−t′)C(ω′)

⇔ A(t− t′) =

∫
dt1B(t− t1)C(t1 − t′).
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