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Abstract

We briefly introduce the reader to the formalism of Majorana fermions and a specific realiza-
tion of them: the topological nanowire. We study tunnelling through topological nanowires
with large charging energy via Fermi’s Golden Rule and an effective Hamiltonian approach.
Tunnelling experiments probe the parity operator of the wire, P = iγ1γ2, where γ1, γ2 are
the Majorana fermions hosted on the wire. We show how interference setups can be used to
measure this parity. We introduce the Majorana-Cooper box which is effectively a spin-1/2
system built from Majorana fermions.

The decoherence time in conductance experiments, which yields a way to estimate the
minimum time needed to perform a parity measurement, is calculated.

Next we find that adiabatically pumping a single electron through a pair of Majoranas
effectively applies the operator iγ1γ2 to the state of the system.

Finally, we introduce the concept of stabilizer coding and a specific realization of a sur-
face code that uses the Majorana-Cooper box and the above effects as its building blocks.
Implementation of a complete set of logical operators is discussed.
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Chapter 1

Introduction

1.1 Spukhafte Fernwirkung

In quantum physics, systems exhibit superposition. The state of the system may be described
by |1〉+ |2〉 where |1〉 , |2〉 refer to classical configurations. This implies a range of interesting
results, for example, an electron passing through a double slit may interfere with itself which
changes the probability for the electron to be observed at any given point.

An endlessly more fascinating phenomenon happens when multiple particles or systems
are considered: entanglement.

The full state of a two-particle system is now of the form |12〉+ |11〉 where the first index
refers to the state of the first particle and the second refers to the second particle. Certain
states, called product states, can be written as

|ψ〉 |φ〉 ,

where ψ is some state of the first particle and φ is some state of the second particle. It
may be that ψ and φ are not definite states in the classcial sense but we can still talk about
the probability distributions of either particle independently of the other particle. The state
mentioned above is a product state |12〉+ |11〉 = |1〉 (|2〉+ |1〉).

When the state is not a product state it is said to be entangled. One can no longer speak
of the probability of measuring the first particle in (classical) state 1. It becomes necessary
to consider the state of both particles; only statements like “The probability of measuring
the first particle in state 1 given that the second particle is in state 2 is p” have any meaning.
In some sense the two particles do not have separate existences when they are entangled.
Until entanglement is broken there are not “two particles” but merely “a quantum system”.
This fusion is non-local in some sense. Even if the two parts of the system are entangled and
then spacelike separated the two particles will always “affect” each other. It can be shown
that no information can be sent via entanglement but measurements of the two particles are
always correlated.

An example of an entangled state is |12〉+ |21〉. No matter what, measurements on this
system will always yield one particle in the state |1〉 and the other in the state |2〉, even if
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one particle is in the Large Magellanic Cloud and the other is in Dyrehaven in Copenhagen
and both are measured at 2 pm. Quite mysterious.

Entanglement in many-body systems give rise to different topological orders, where non-
trivial order can be associated with long-range entanglement [1, 2]. When every subsys-
tem/particle in the system is entangled with every other, quite interesting effects occur.

From entangled systems, particles may emerge. These emergent particles are not fun-
damental because they are really a particular state of many quantum particles, but for the
low-energy physics they may be viewed as proper particles. The most prominent example in
current research is that of Majorana fermions [3]. They are associated with self-adjoint de-
grees of freedom that anti-commute with each other and square to one. A regular fermionic
degree of freedom, f , is formed from two Majoranas γ1, γ2: f = γ1 + iγ2; Majorana fermions
are sometimes called “half a fermion”.

This thesis deals with some of the physics of Majorana fermions and how they may be
applied to quantum computing.

Other types of particles can also emerge. From systems where the “fundamental particle”
is an n-state system, so-called Zn(= Z/nZ) parafermions can emerge. Such particles exhibit
exotic braiding properties and can be used for quantum computation. Refs. [4, 5] provide
excellent introductions. The idea of general parafermions corresponding to finite groups, e.g.
Dn, the symmetry group of an n-sided regular polygon; or the Platonic groups, occurred to
me via another route, and I spent a few months attempting this, in the end to no avail.

Interestingly, even fermions and gauge bosons can emerge from bosonic systems [6, 7].
One starts to wonder whether there really is only one fundamental particle!

Entanglement might even be able to do even weirder stuff. There has been work, both
theoretical and experimental [8], suggesting that time may be a phenomenon that emerges
from quantum entanglement!

The above discussion should convince the reader that entanglement is one of the most
interesting phenomena in physics (if not already so convinced!). In this thesis we deal with
a specific type of system in which Majorana fermions emerge. We will explore the physics of
these odd particles that live in strangely entangled systems and not talk alot about general
characterizations of entanglement.

The rest of this chapter is devoted to an introduction to Majorana fermions and some
general methods that we apply in the following chapters.

In the second chapter we investigate tunnelling experiments with Majorana fermions and
see how the tunnelling amplitude depends on the parity of the entangled ground state of
the system. Here we also get an idea of why the so-called Majorana-Cooper box might be
interesting for applications.

Because the tunnelling amplitude depends on parity one can use tunnelling experiments
to measure the parity. We explore the decoherence time for such experiments in chapter 3,
thus showing a way to estimate the time required for a parity measurement.

The fourth chapter shows how adiabatic electron pumping across a pair of Majoranas,
γ1, γ2 effectively applies the operator iγ1γ2 to the system. An interesting effect that is useful
in the last chapter.
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The last chapter deals with applications of Majorana physics to quantum computation.
Specifically, we investigate a surface code that utilizes the Majorana-Cooper box as its fun-
damental building block. We discuss quantum informational aspects and the implementation
of a complete set of operations.

1.2 Majorana Fermions

This section serves as an introduction to Majorana fermions. I have decided to start with
purely formal considerations, postponing the physics until the formalism is familiar. See also
refs. [3, 9] for excellent introductions that are more focused on the physics.

1.2.1 Majorana Formalism

Regular fermionic operators, ci, i = 1, 2, ..., obey the anti-commutation relations

{ci, cj} = 0, (1.2.1)

{ci, c†j} = δij. (1.2.2)

It follows from these relations that c2
i = 0. If we have any state |ψ〉 it will either be an

eigenstate of ci with eigenvalue zero, or we can make one, |φ〉 = ci |ψ〉. With such a state
|0〉i; ci |0〉i = 0, then |1〉i := c†i |0〉i is an eigenstate of c†ici: c

†
icic

†
i |0〉i = c†i |0〉i.

If we identify c†ici as the number operator, c†ici ≡ ni, then the above observations amount
to “for fermionic operators, states always occur in pairs: one with no fermion and one with
one fermion.”

Majorana operators, γi, i = 1, 2, ..., obey

{γi, γ†j} = 2δij, (1.2.3)

just like the regular fermions (the factor of two can be seen as just a rescaling of the operators;
the formalism will turn out to be prettier with this choice of scale). What differentiates
Majorana fermions from regular ones is that

γi = γ†i . (1.2.4)

There is therefore no relation analogous to eq. (1.2.1). In elementary particle physics,
this hermiticity condition expresses that Majorana fermions are their own antiparticles, like
photons. In condensed matter physics, Majorana fermions generally arise as excitations in a
mean-field Hamiltonian, schematically: γ = αc+βc†. If α = β∗, the excitation is a Majorana
fermion.

We can write these relations in a different way

{γi, γj} = 0, i 6= j, (1.2.5)

γ2
i = 1. (1.2.6)
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(If we hadn’t chosen the factor of 2 in eq. (1.2.3) this last expression would have equaled 1
2
.)

One peculiar thing about Majorana “fermions” is that no state is annihilated by them
γi |ψ〉 = 0 ⇒ 0 = γ2

i |ψ〉 = |ψ〉. There is no notion of the occupancy of a Majorana
state. Asking whether a Majorana fermion is occupied is akin to asking whether the dog has
Buddha-nature.

What would a Hamiltonian with Majorana fermions look like? Any term should of course
be hermitian.

The simplest conceivable term is just a single Majorana H1 = γi, but we cannot say much
in general. However, as we shall see, a lonely Majorana fermion is unphysical.

The next-simplest term consists of a Majorana bilinear: iγjγk where j 6= k. A term with
j = k would just be proportional to the identity operator, and we have included the factor
i to make the expression Hermitian. Using the Majorana relations eqs. (1.2.5) and (1.2.6)
one can show that

(iγjγk)
2 = 1. (1.2.7)

iγjγk is a non-trivial operator that squares to one. This means that its eigenvalues are either
+1 or −1 and that at least one is −1. In fact, the eigenvalues always comes in pairs: for a
state, |ψ〉, that is not an eigenstate of iγjγk we can construct two eigenstates

|±〉 = |ψ〉 ± iγjγk |ψ〉 . (1.2.8)

This construction is simply applying the operators 1± P , for parity P , that projects to the
± eigenspaces of P .

On the other hand if we have an eigenstate |+〉 then, from (1.2.5) it has a partner
|−〉 = γj |+〉.

It is worth comparing these two expressions for, say, |−〉. If we apply γj to |+〉 from eq.
(1.2.8) then the result is

|−〉 = γj |ψ〉+ iγk |ψ〉 , (1.2.9)

while for |+〉 we get

|+〉 = γj |ψ〉 − iγk |ψ〉 . (1.2.10)

γj ∓ iγk and 1± iγjγk are distinct operators but they both yield eigenstates |±〉. We know
that the latter two are projection operators so we think of (1.2.9) and (1.2.10) as respectively
telling us what the raising and lowering operators are.

With this identification of the creation and annihilation operators we have defined a
regular fermion from our Majorana fermions. Let us verify this statement. We would like
that the number operator satisfies

f †f =
1

2
(1− σz) =

1

2
(1− iγjγk). (1.2.11)
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Based on eq. (1.2.10) we guess that we can write

f = γj − iγk.

And this works!

f †f = (γj + iγk)(γj − iγk) = 1 + 1− 2iγjγk = 2(1− iγjγk). (1.2.12)

To match eq. (1.2.11) our fermion operator is defined as

f =
1

2
(γj − iγk). (1.2.13)

The final thing to show is the anticommutator

{f, f †} =
1

4
({γj, γj}+ {γj, iγk} − {iγk, γj}+ {γk, γk}) = 1, (1.2.14)

as required. This mapping also shows that it is probably unrealistic for a single Majorana
fermion to occur as a term in the Hamiltonian because γ = f + f † which means that such a
term does not conserve particle number.

We now see that the simplest Majorana billinear is just equivalent to a fermion number
operator. In this sense Majorana fermions occur in all condensed matter systems, but they
are merely artifacts and are not physical. Interesting things can happen when we can probe
the Majorana fermion itself. Thus we want to look at when Majorana fermions occur at
separated locations.

The last thing we want to consider before moving on to actual physics is what happens
when we have systems with many Majoranas. From the above discussion of the Majorana
↔ fermion correspondence we expect that in physical systems Majoranas always occur in
pairs.

Let us set many = 4, i.e. we have Majoranas γj, j = 1, 2, 3, 4. To define the fermionic
operators we can choose, say, the pairings (12) and (34) or the pairings (13) and (24). Which
pairing we pick is merely convention so the two choices should be related by a basis change.

The two pairings give the following fermion operators

f1 =
1

2
(γ1 − iγ2), f2 =

1

2
(γ3 − iγ4) , (1.2.15)

d1 =
1

2
(γ1 − iγ3), f2 =

1

2
(γ2 − iγ4) . (1.2.16)

We of course also have their conjugates.
Given the states |00〉f , |01〉f := f †2 |00〉f , |10〉f = f †1 |00〉f , |11〉f := f †1f

†
2 |00〉f , the prob-

lem is to find the corresponding states |00〉d and so on. Now, the vacuum is defined through
d1 |00〉d = d2 |00〉d = 0, and from this we can get the other states. If we start with an
arbitrary combination of f -states we can find the d-vacuum. We start by expressing the
d-operators in terms of the f -operators and then act with, say, d1, on the state:

0 =d1 |00〉d =
1

2

(
f1 + f †1 − i(f2 + f †2)

)(
a |00〉f + b |01〉f + c |10〉f + d |11〉f

)
⇒a+ id = 0 and b+ ic = 0. (1.2.17)
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Of course we find two states corresponding to |00〉d and |01〉d. Which one is the vacuum is
found by considering d2 by the same procedure:

0 =d2 |00〉d =
1

2

(
i(f1 − f †1) + f2 − f †2

)(
a |00〉f + b |01〉f + c |10〉f + d |11〉f

)
⇒ic+ b = 0, and ia+ d = 0. (1.2.18)

So the d-vacuum is

|00〉d = |01〉f + i |10〉f . (1.2.19)

From eqs. (1.2.17) and (1.2.18) we must then have

|01〉d = |00〉f + i |11〉f , (1.2.20)

|10〉d = |00〉f − i |11〉f . (1.2.21)

The fully occupied state can be found by a variety of methods, it is

|11〉d = |01〉f − i |10〉f . (1.2.22)

When parity is fixed, the 4 Majorana system becomes a two-level system, essentially a
spin-1/2 degree of freedom. This is the case for an object we will study in great detail later
in the thesis. To connect to the spin description we note that the parity operator of either
pair can be thought of as σz

P = iγ1γ2 ≡ σz. (1.2.23)

σx should flip both pairs to preserve overall parity, so by a proper choice of basis we can
make the identification

iγ1γ3 ≡ σx. (1.2.24)

Note that {σz, σx} = 0 as required. The idenfication of σy is found by

iσxσz = σy ≡ iγ3γ2. (1.2.25)

1.2.2 Majorana Physics

We are now in search of physical systems that harbor isolated Majorana fermions. There
are several systems that have isolated Majoranas. The simplest and most relevant to this
thesis is that of special type of nanowire, called a topological nanowire. This system was
first considered by Kitaev [9].

A nanowire is an effectively one dimensional system and “special” refers to superconduc-
tivity and spinlessness. In a lattice model the Hamiltonian for N sites is

H = −
N∑
i=1

µic
†
ici −

N−1∑
i=1

(
tc†ici+1 + ∆cici+1 + h.c.

)
. (1.2.26)
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To achieve this structure one needs strong spin-orbit coupling and a strong Zeeman effect as
well as superconductivity [3].

We then introduce two Majorana operators per site:

γ+
i = ci + c†i , (1.2.27)

γ−i = i(ci − c†i ). (1.2.28)

In terms of these the Hamiltonian is

H =−
N∑
i=1

µ
1

2
(1− iγ+

i γ
−
i )−

N−1∑
i=1

(
t
1

2
(γ+
i + iγ−i )

1

2
(γ+
i+1 − iγ−i+1)

+ ∆
1

2
(γ+
i − iγ−i )

1

2
(γ+
i+1 − iγ−i+1) + h.c.

)
=

1

2

∑
i

µγ+
i γ
−
i −

∑
i

(
t

4

(
γ+
i γ

+
i+1 + γ−i γ

−
i+1 − iγ+

i γ
−
i+1 + iγ−i γ

+
i+1

)
+

∆

4

(
γ+
i γ

+
i+1 − γ−i γ−i+1 − iγ+

i γ
−
i+1 − iγ−i γ+

i+1

)
+ h.c.

)
+ const.

=
1

2

∑
i

µiγ+
i γ
−
i −

(∑
i

t+ ∆

4

(
γ+
i γ

+
i+1 − iγ+

i γ
−
i+1

)
−
∑
i

t−∆

4

(
γ−i γ

−
i+1 + iγ−i γ

+
i+1

)
+ h.c.

)
(1.2.29)

Upon adding the hermitian conjugate the terms without an i drop out as they are anti-
hermitian. We end up with

H = µ
∑
i

iγ+
i γ
−
i +

t+ ∆

2

∑
i

iγ+
i γ
−
i+1 +

∆− t
2

∑
i

iγ−i γ
+
i+1. (1.2.30)

We consider a special point in parameter space: µ = 0 and ∆ = t. The Hamiltonian is
then

H = t
N−1∑
i=1

iγ+
i γ
−
i+1. (1.2.31)

γ−1 and γ+
N do not enter the Hamiltonian! A ground state of H has negative parity for

all the operators iγ+
i γ
−
i+1 but the parity of iγ−i γ

+
N is unconstrained. We therefore have two

degenerate ground states (in fact, the whole spectrum is doubled). Because the ground states
are specified by the parity of two separate Majoranas it does make sense to talk about the
Majoranas as having individual (because they are separated), physical (because they are
related to the parity of the ground state) existences.

7



The degeneracy can only be removed if a term iγ−1 γ
+
N enters the Hamiltonian. In terms

of the physical electrons this is

iγ−1 γ
+
N = i(i(c1 − c†1)(cN + c†N) = −1(c1cN + c1c

†
N − c

†
1cN − c

†
1c
†
N). (1.2.32)

Such a term evidently couples electrons at either end of the wire. If the wire is long enough
this cannot happen; real Hamiltonians are local.

The Hamiltonian (1.2.31) couples electrons and electrons and holes on different sites
in such a way as to produce two ground states with long-range entanglement but where
the two states are entangled differently. Far from being accidental the entanglement and
degeneracy is related to the superconductivity. The entanglement comes from the p-wave
superconductivty and the coupling between different sites. The two-fold degeneracy is related
to the symmetry-breaking U(1) → Z2 of superconductivity; parity but not particle number
is conserved by the Hamiltonian and we get a parity degree of freedom. For a more detailed
discussion start with refs. [9, 10].

If we tune away from the ideal parameters the above results still hold when 2|t| < |µ|.
The ground states will no longer be exactly degenerate but the splitting is proportional to
e−L/`0 where L is the length of the nanowire and the “free” Majorana states are smeared out
across the wire rather than localized at the ends[9].

The topological nanowire will be used in all the setups we consider in this thesis.

1.3 Low-energy Approximation Scheme

We will be interested only in the low-energy physics. This implies a number of useful ap-
proximations can be employed, and we describe these in this section. Excitations above the
gap are inactive and that we can therefore usually replace c1 → γ−1 to use the notation from
the previous section. The systems we consider will have a strong charging energy, which
locks the charge to a specific value in the low-energy sector. However, for the processes we
consider it is necessary to take fluctuations to higher or lower charge values into account.

We begin by addressing the latter from a general point of view following, more or less,
ref. [11].

1.3.1 Effective Hamiltonians

We need a systematic way to formulate a theory for the low-energy sector that still takes
the higher-energy sectors into account to some low order. Without the high-energy sectors
the Hamiltonian would just be HLow, and the idea is essentially to modify this Hamiltonian
HLow → HLow + HFluctuations so that we have described processes that jump into the high-
energy sector, hang around for a bit, and then jump back to the low-energy sector.

For this purpose it is clever to separate the state of the system |ψ〉 = |ψL〉+ |ψH〉, where
|ψL〉 and |ψH〉 are the low-energy (active) degrees of freedom and the high-energy (passive)
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degrees of freedom respectively. Introducing

HLL = |ψL〉 〈ψL|H |ψL〉 〈ψL| , (1.3.1)

HHH = |ψH〉 〈ψH |H |ψH〉 〈ψH | , (1.3.2)

HLH = |ψL〉 〈ψL|H |ψH〉 〈ψH | , (1.3.3)

HHL = |ψH〉 〈ψH |H |ψL〉 〈ψL| = H†LH , (1.3.4)

we can then write the Schrödinger equation as(
HLL HLH

HHL HHH

)(
|ψL〉
|ψH〉

)
= E

(
|ψL〉
|ψH〉

)
. (1.3.5)

Because 〈ψH |ψL〉 = 0 this way of writing the Schrödinger equation is still exact.
The second equation reads

E |ψH〉 = HHH |ψH〉+HHL |ψL〉
⇒ |ψH〉 = (E −HHH)−1HHL |ψL〉 . (1.3.6)

Inserting this into the first equation yields an exact, effective Hamiltonian for |ψL〉

E |ψL〉 = HLL |ψL〉+HLH |ψH〉 = HLL |ψL〉+HLH(E −HHH)−1HHL |ψL〉 . (1.3.7)

The effective Hamiltonian, Heff , deserves its own equation:

Heff = HLL +HLH(E −HHH)−1HHL. (1.3.8)

This result holds for any system where you can separate your degrees of freedom into in-
teresting and less-interesting sectors. How exactly one would express the different sub-
Hamiltonians or solve the Schrödinger equation varies from problem to problem.

In this thesis the high-energy sector will be interpreted as a charging of the system away
from some energetically ideal charge number, N0. The high-energy sector is then all states
with charge numbers N0 ± 1, N0 ± 2, N0 ± 3, ..., and HHH will couple these different sectors,
which greatly complicates the calculation of (E−HHH)−1. However, a sector with charge N
has weight ∼ 1

HC(N)
where HC is the charging energy. We will set the charging energy to be

very large so that we can safely neglect all other sectors than N0 ± 1. Thus HHH becomes a
number and we write

HL = HL +H+
LH

−1

U−
H−HL +H−LH

−1

U+

H+
HL. (1.3.9)

U± = HHH;(N0±1) −E and H±HL is the term in HHL that increases/lowers the charge by one.
This approximation is used throughout the thesis.
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1.3.2 Majorana Tunnelling

We now address the first point mentioned in the introductory paragraph.
We will look at systems that have a lead or a dot tunnel-coupled to one end of a topological

nanowire and another lead/dot tunnel-coupled to the other end. The somethings need not
be the same thing. Such a coupling will introduce a term in the Hamiltonian:

HT = t1f
†c1 + tNd

†cN + h.c.. (1.3.10)

f, d refer to the electrons in the somethings. The states corresponding to c1, cN are not energy
eigenstates and it is convenient to express the operators in terms of energy eigenstates. Such
an expansion looks like

c1 = a−0 γ
−
1 P− + a+

0 γ
+
NP− + a1λ1 + a2λ2 + ... (1.3.11)

and similarly for cN . The states λn are the (non-zero) energy eigenstates of the Hamiltonian
(1.2.26), and P− is an operator that lowers the charge on the nanowire by one. The states
kn have energy ∼ ∆ and if the gap is very large these terms will contribute very little to
the effective Hamiltonian (1.3.8). Furthermore since the Majoranas γ−1 , γ

+
N are localized at

opposite end of the wire a+
0 is essentially zero. A similar statement holds for cN . Based on

this we can replace (see also ref. [12])

c1 → γ−1 P−, (1.3.12)

cN → γ+
NP−. (1.3.13)

In the rest of the thesis we will always be working with the low-energy physics and the charge
raising and lowering operators are omitted, because in any amplitude they will always cancel,
cf. sec. 1.3.1.

1.3.3 Approximations

Above we have referred to“a large charging energy”and a“large gap”. Throughout the thesis
we will assume that

V, T � EC ,∆, (1.3.14)

where V is the voltage across the wire, T is the temperature, EC is the energy associated
with charging, and ∆ is the gap induced by the superconductivity.
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Chapter 2

Topological Nanowires with Charging
Energy

We will now begin our study of physical systems.
A schematic setup for a system that is technically feasible today is shown in figure 2.1.

The grey cylinder indicates the nanowire which is assume to have a strong Zeeman effect
and strong spin-orbit coupling. The nanowire is placed on top of a superconductor which
is indicated by the maroon box. This superconductor induces superconductivity in the
nanowire via the proximity effect. The spin-orbit coupling, Zeeman effect and proximity
effect is assumed to realize the model discussed in section 1.2.2, which means the nanowire
hosts free Majorana fermions at the ends of the wire which is shown as red dots.

The superconductor and nanowire are floating and assumed to possess a large charging
energy. Physically, the electrons in this subsystem interact via the Coulomb interaction and
one can typically describe this effect by a term in the Hamiltonian HC = ECN

2 where N is
the number of particles in the subsystem and EC is the effective strength of the interaction.
The nanowire is contacted by a gate which is shown as an inverted T. This gate can tune
the local electrostatic potential and therefore adds a term in the Hamiltonian qNV , with q
the charge of the particles, N the number of particles, and V the potential. We can include
this as a modifcation of the Coulomb charging:

HC = ECN
2 + qV N = EC

(
N +

qV

2EC

)2

+ const. ≡ EC (N − ng)2 . (2.0.1)

The final things in the system are the two leads. These are assumed to be metallic, i.e.
to possess a continuum of states with energy εk = k2

2m
, where k is the quantum number for

the leads. These are weakly coupled to the ends of the nanowire which we describe by a
tunnel-coupling, HT =

∑
α=L,R;k tα;kc

†
α;kcwire;α + h.c., where L/R denotes the left/right side

and we have labelled the fermions on the wire by their location. Insituting the low-energy
approximations in section 1.3.2 the leads and tunnel couplings add terms

H = HL +HR +HT =
∑
α;k

εkc
†
α;kcα;k +

∑
α;k

(tα;kcα;kγα + h.c.) . (2.0.2)
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Figure 2.1: A single nanowire (grey cylinder) tunnel-coupled (dashed lines) to leads (orange blobs).
A gate for tuning the local electrostatic potential (black inverted T) is shown. The
nanowire sits on top of a superconductor (maroon box) which induces superconductivity
in the nanowire. The nanowire is topological and therefore hosts Majorana fermions
(red dots).

In fact, eqs. (2.0.1) and (2.0.2) are all there is to the Hamiltonian. Because we only con-
sider low-energy physics the gapped nanowire effectively only contributes the two Majorana
fermions to the system and because of the large charging energy the number of electrons is
locked to N0 = bngc , or N0 = dnge depending on which yields the lower energy.

The setup in figure 2.1 is the basic element of everything in this thesis. Sometimes
there will be multiple nanowires on the superconductor and sometimes there will be multiple
boxes, but understanding the physics of the single nanowire, single box system is essential
to understanding the rest.

The motivation for this configuration is as follows. The fact that the superconductor is
floating means that a low-energy electron cannot stay in the wire. The electron must always
tunnel out again. Therefore only Majorana billinears are probed, e.g. γ2

L or γLγR. When
the system has a high charging energy and two wires are placed on the superconductor it
essentially becomes a spin-1/2 degree of freedom (see also the discussion in sec. 1.2.1). We
need a gate because certain effects will depend on the parity, and using the gate we can
control this.

In this chapter we do not need the machinery of section 1.3. Rather we will look at the
conductance through the system for low voltage over the leads from the point of view of
Fermi’s Golden Rule.

In this chapter we will start by investigating the setup with one nanowire (sec. 2.1).
Then we will add an interference link to explore the interesting effect that the tunnelling
amplitude depends on the parity of the ground state (sec. 2.2). Finally we will arrive at the
main system of interest in this thesis: we replace the tunnelling link with another nanowire
(sec. 2.2.2).
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2.1 Tunnelling through a single Nanowire

We begin with the setup in figure 2.1 and calculate the current via Fermi’s Golden Rule.
There are two processes to consider: the rate of electrons moving from left to right and the
reverse. Obviously the two are related by appropriate transformations of the problem so we
need only explicitly calculate one, say the rate left to right, Γ→. The final state will then
correspond to removing an electron from the left lead and adding it to the right lead. At
finite temperature the state of the system will in a mixed state, so we also need to sum over
initial states weighted with the corresponding thermal probabilities, Wi.

The Hamiltonian is

H = HL +HR +HC +HT , (2.1.1)

as discussed, and we take HT as the perturbation. Fermi’s Golden Rule must then be applied
to second order:

Γ→ =2π
∑
qk;i

∣∣∣∣〈f |HT
1

E −H0

HT |i〉
∣∣∣∣2Wiδ(Ef − Ei)

=2π
∑
qk;i

∣∣∣∣〈i| c†LqcRkHT
1

E −H0

HT |i〉
∣∣∣∣2Wiδ(Ef − Ei)

=2π
∑
qk;i

∣∣∣∣∣〈i| c†LqcRk ∑
α=L,R;r

(
tα;rc

†
α;rγα + h.c.

) 1

E −H0

∑
α=L,R;w

(
tα;wc

†
α;wγα + h.c.

)
|i〉

∣∣∣∣∣
2

×Wiδ(Ef − Ei);

by particle conservation the c†-term in the first parentheses pairs up with the c-term in the
second and vice versa and we therefore find

=2π
∑
qk;i

∣∣∣∣∣〈i| c†LqcRk
(∑
αβ;rw

t∗α;rtβ;w

γαcα;rc
†
β;wγβ

−U− − εw
+ tα;rt

∗
β;w

c†α;rγαγβcβ;w

−U+ + εw

)
|i〉

∣∣∣∣∣
2

Wiδ(Ef − Ei).

(2.1.2)
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Here we invoke the assumption that the charging energy is large: U± ∓ ε ≈ U±. Certain
requirement arise for the expectation value to be non-zero. We have, for example, r = q, w =
k, α = L, β = R in the first term. The net effect is to cancel the inner sum, and we are left
with

=2π
∑
qk;i

∣∣∣∣∣〈i| c†LqcRk
(
t∗L;qtR;k

γLcL;qc
†
R;kγR

U−
+ tR;kt

∗
L;q

c†R;kγRγLcL;q

U+

)
|i〉

∣∣∣∣∣
2

Wiδ(Ef − Ei)

=2π
∑
qk;i

∣∣∣∣∣〈i| γRγL
(
t∗L;qtR;k

c†LqcL;qcR;kc
†
R;k

U−
+ tR;kt

∗
L;q

c†L;qcL;qcR;kc
†
R;k

U+

)
|i〉

∣∣∣∣∣
2

Wiδ(Ef − Ei)

=2π
∑
qk;i

∣∣∣∣∣〈i| γRγLt∗L;qtR;k

c†LqcL;qcR;kc
†
R;k

U−
|i〉

∣∣∣∣∣
2

+

∣∣∣∣∣〈i| γRγLtR;kt
∗
L;q

c†L;qcL;qcR;kc
†
R;k

U+

|i〉

∣∣∣∣∣
2

+2Re〈i| γRγLt∗L;qtR;k

c†LqcL;qcR;kc
†
R;k

U−
|i〉 〈i| γRγLtR;kt

∗
L;q

c†L;qcL;qcR;kc
†
R;k

U+

|i〉∗
)
Wiδ(Ef − Ei).

Because 〈i| c†L;qcL;qcR;kc
†
R;k |i〉 is either one or zero depending on the occupancy, nq,k(i), of

the corresponding levels in the state |i〉, we can remove the absolute value squared and write

=2π
∑
qk;i

(
|〈i| γRγL |i〉|2 |tL;q|2|tR;k|2

(
1

U−
+

1

U+

)2

nq,k(i)

)
Wiδ(Ef − Ei)

By definition
∑

i nq,k(i)Wi = nF (ξL;k)(1 − nF (ξR;k)) where nF (ε) is the Fermi distribution.
Furthermore, remembering that the Majorana parity operator is P = iγRγL we can replace
γRγL by P under the absolute value. Hence

=2π
∑
qk

|〈i|P |i〉|2 |tL;q|2|tR;k|2
(

1

U−
+

1

U+

)2

nF (ξL;q)(1− nF (ξR;k))δ(Ef − Ei)

The delta function fixes q = k. To perform the sum over q we use that nF (ε)(1− nF (ε′)) =
nB(ε − ε′)(nF (ε′) − nF (ε)) and introduce a density of states d assumed to be constant, and
for simplicity we also take the tunnelling amplitudes to be independent of k, q:

=2π |〈i|P |i〉|2 |tL|2|tR|2
(

1

U−
+

1

U+

)2

d2nB(−eV )

∫
dε (nF (ε)− nF (ε− eV ))

=2π |〈i|P |i〉|2 |tL|2|tR|2
(

1

U−
+

1

U+

)2

d2nB(−eV )(−eV ). (2.1.3)

The opposite rate Γ← is found by R↔ L, V → −V . This is particularly simple in the T → 0
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limit. Assume −eV < 0 then

Γ→ = 2π |〈i|P |i〉|2 |tL|2|tR|2
(

1

U−
+

1

U+

)2

d2eV, (2.1.4)

Γ← = 0; (2.1.5)

G = 2π |〈i|P |i〉|2 |tL|2|tR|2
(

1

U−
+

1

U+

)2

d2e2, (2.1.6)

where we have introduced the linear conductance G = e d
dV

(Γ→ − Γ←).
I have deliberately kept |〈i|P |i〉 |2 even though it is always equal to one. This is to

emphasize an effect which may otherwise have been lost in the algebra: the tunnelling
amplitude depends on parity. Referring back to eq. (2.1.2) this may be more apparent.
The extension we now suggest is to add an interference link so that the total conductance
depends on the parity P .

2.2 Tunnelling with an interference link

Figure 2.2: We have modified the previous setup by adding an interference link shown as the dashed
curved line connected the two leads. The gate and superconductor are not shown.

We will now explore the extension suggested at the end of the previous section. We start with
describing the physics for a regular interference, which we model as a direct coupling between
the leads, and then move on to the case where the interference link is another topological
nanowire. We will again calculate the conductance using Fermi’s Golden Rule and much will
mirror our efforts in the previous section.

What we mean by an interference link setup is shown schematically in figure 2.2. The
superconductor and gate from figure 2.1 are still there but they are not shown. If the
interference link is another topological nanowire then both nanowires can be connected to
the same superconductor and gate which will have special consequences to be investigated
below.
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2.2.1 Regular interference link

We model the interference link setup by the Hamiltonian

H =HL +HR +HC +HT

=
∑
α;k

εkc
†
α;kcα;k + +EC(N − ng)2 +

∑
α;k

(tα;kcα;kγα + h.c.) +
∑
k,u

(
Tk,uc†L;kcR,u + h.c.

)
.

(2.2.1)

This is identical to the Hamiltonian (2.1.1) except that the last term has been added to the
tunnelling to describe the interference link.

The direct tunnelling term contributes to the amplitude at first order but not at second
order. Therefore using Fermi’s Golden Rule we get

Γ→ =2π
∑
qk;i

∣∣∣∣〈f |HT
1

E −H0

HT |i〉
∣∣∣∣2Wiδ(Ef − Ei)

=2π
∑
qk;i

∣∣∣∣∣〈i| c†LqcRk ∑
α=L,R;r

(
tα;rc

†
α;rγα + h.c.

) 1

E −H0

∑
α=L,R;w

(
tα;wc

†
α;wγα + h.c.

)
|i〉

+〈i| c†LqcRk
∑
k,u

(
Tk,uc†L;kcR,u + h.c.

)
|i〉

∣∣∣∣∣
2

×Wiδ(Ef − Ei). (2.2.2)

The new tunnelling term just adds another term to the rate. If we again assume that the
tunnelling amplitudes, t, T , are independent of k, u we find a zero temperature conductance

G =2πd2e2

∣∣∣∣∣T ∗ − it∗LtR
(

1

U−
+

1

U+

)2

Pi

∣∣∣∣∣
2

, (2.2.3)

where we have defined Pi := 〈i|P |i〉. The conductance is boosted or suppressed depend-

ing on whether T ∗ and −it∗LtR
(

1
U−

+ 1
U+

)2

Pi interfere constructively or destructively. The

parity-dependent conductance can be observed by tuning from constructive to destructive
interference by changing the occupancy of the nanowire via the gate.

This effect is maximized when RT ∗ = −it∗LtR
(

1
U−

+ 1
U+

)2

Pi with R ∈ R. Whether this

is satisfied depends on the phases of T , tL, tR which are in general uncontrollable, but one
can imagine tuning the overall phase by putting a magnetic flux through the sample and
adjusting the field to yield maximum conductance.

2.2.2 Two nanowires

We now take the inteference link in figure 2.2 to be a second nanowire. This modifies the
tunnelling and the charging.
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The tunnelling Hamiltonian becomes

HT =
∑
j;α;k

(tj;α;kcα;kγj;α + h.c.) , (2.2.4)

where j = 1, 2 labels the two nanowires.
For the charging energy there are two choices.
If we place the nanowires on the same superconductor and contact them with the same

gate there are two types of contributions to the rate Γ→. The first type is“parallel”tunnelling,
i.e. electron transfer into one nanowire and out of the same one. This obviously returns us
to the low-energy sector as required. The other, new, type is “crossed” tunnelling, where
the electron tunnels into one nanowire and out of the other. Because the nanowires share
charging energy this also returns us to the low-energy sector. For this situation the charging
Hamiltonian is

HC = EC(N − ng)2, (2.2.5)

where N is the total number of electrons in the system.
We can place the nanowires on different superconductors and contact different gates to

each nanowire. In that case we get just the first type of tunnelling. In this case the charging
Hamiltonian becomes

HC = EC;1 (N1 − ng;1)2 + EC;2 (N2 − ng;2)2 , (2.2.6)

where Ni is the charge on the ith nanowire-superconductor system and ng;i is the general-
ization of ng.

In the following we will refer to the first case as “One island” and the latter as “Two
islands”.

Two Islands The calculation of the conductance in the two islands setup is analogous the
calculation is section 2.2.1, so we will not go through it in detail. There are two amplitudes
that contribute:

G = 2πe2d2 |T1P1 + T2P2|2 , (2.2.7)

where Ti is an effective tunnelling coupling for the ith nanowire, Ti = −it∗i;Lti;R
(

1
Ui;−

+ 1
Ui;+

)2

and Pi is the parity of the ith nanowire.
Compare this to the situation in section 2.2.1. We see again that the conductance sup-

pressed or enhanced depending on the relative phase between the different paths. This is
of course quite standard; the interesting effect is that the phase of the effective tunnelling
depends on which ground state the nanowire is in.
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One Island In this case there is an interplay between the two types of tunnelling. Therefore
we will go through the calculation in more detail.

The island is essentially a spin-1/2 system. The initial states can be written as one of
the two

|i〉 = (α |00〉+ β |11〉)⊗ |ψ〉 , (2.2.8)

|i〉 = (α |10〉+ β |01〉)⊗ |ψ〉 , (2.2.9)

where |ψ〉 is some state of the leads. If N0 is even, the first will be the initial state, and if N0

is odd the second will be the initial state. For any N0 > 0 the island is a two state system.
There are two types of final states corresponding to the two tunnelling types discussed

above: one in which an electron has tunnelled into a given nanowire and out of the same, and
one in which an electron has tunnelled into a nanowire and another electron has tunnelled
out of the other. The second process changes the parity of both NWs. Thus we can describe
the final states as |fs〉 = q†sc

†
RkcLq |i〉 where

q†s =

{
1 s = 0,

γ1Lγ2L s = 1,
(2.2.10)

where s = 0 labels the parallel tunnelling and s = 1 labels the crossed tunnelling.
We then apply Fermi’s Golden Rule

Γ→ =2π
∑
qk,s;i

∣∣∣∣〈i| c†LqcRkqsHT
1

E −H0

HT |i〉
∣∣∣∣2Wiδ(Ef − Ei);

inserting the expression for the tunnelling Hamiltonian and requiring that there is an equal
number of cs and c†s yields

=2π
∑
qk,s;i

∣∣∣∣∣∣∣∣∣〈i| c
†
LqcRkqs

∑
α,β
l,j
w,u

t∗l;α;wtj;β;u

cα;kγl;αγj;βc
†
βu

−U−
+ tl;α;wt

∗
j;β;u

γj;βc
†
β;ucα;wγl;α

−U+

 |i〉
∣∣∣∣∣∣∣∣∣
2

×Wiδ(Ef − Ei)

=2π
∑
qk,s;i

∣∣∣∣∣∣∣∣∣
∑
α,β
l,j
w,u

t∗l;α;wtj;β;u

〈i| c†LqcRkcα;wc
†
β;uqsγj;βγl;α |i〉

U−
+ tl;α;wt

∗
j;β;u

〈i| c†LqcRkc†α,wcβ;uqsγj;βγl;α |i〉
U+

∣∣∣∣∣∣∣∣∣
2

×Wiδ(Ef − Ei). (2.2.11)

Again we enforce α = L, β = R,w = q, u = k and α = R, β = L,w = k, u = q in the first
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and second terms respectively. Introducing 1
U := 1

U+
+ 1

U−
we can then write

Γ→ =2π
∑
qk,s;i

∣∣∣∣∣∑
l,j

t∗l;L;qtj;R;k

〈i| c†LqcRkcL;qc
†
R;kqsγj;Rγl;L |i〉
U−

+ tl;R;kt
∗
j;L;q

〈i| c†LqcRkc
†
R,kcL;qqsγj;Lγl;R |i〉
U+

∣∣∣∣∣
2

×Wiδ(Ef − Ei)

=2π
∑
qk,s;i

∣∣∣∣∣∑
l,j

t∗l;L;qtj;R;k

〈i| c†LqcRkcL;qc
†
R;kqsγj;Rγl;L |i〉
U

∣∣∣∣∣
2

Wiδ(Ef − Ei). (2.2.12)

The problem is now to calculate the expectation values of qsγj;Rγl;L. There are eight operators
to consider:

γ1;Rγ1;L,

γ2;Rγ2;L,

γ1;Rγ2;L,

γ2;Rγ1;L,

γ1;Lγ2;Lγ1;Rγ1;L,

γ1;Lγ2;Lγ2;Rγ2;L,

γ1;Lγ2;Lγ1;Rγ2;L,

γ1;Lγ2;Lγ2;Rγ1;L.

Suppose we have the initial state (2.2.8) corresponding to even N0. Then

〈i| γ1;Rγ1;L |i〉 = −i(|α|2 − |β|2), (2.2.13)

〈i| γ2;Rγ2;L |i〉 = −i(|α|2 − |β|2), (2.2.14)

〈i| γ1;Rγ2;L |i〉 = −i(αβ∗ − βα∗), (2.2.15)

〈i| γ2;Rγ1;L |i〉 = i(αβ∗ − βα∗), (2.2.16)

〈i| γ1;Lγ2;Lγ1;Rγ1;L |i〉 = i(αβ∗ − βα∗), (2.2.17)

〈i| γ1;Lγ2;Lγ2;Rγ2;L |i〉 = i(αβ∗ − βα∗), (2.2.18)

〈i| γ1;Lγ2;Lγ1;Rγ2;L |i〉 = −i(|α|2 − |β|2), (2.2.19)

〈i| γ1;Lγ2;Lγ2;Rγ1;L |i〉 = i(|α|2 − |β|2). (2.2.20)

An interesting effect occurs: the crossed terms tend to cancel each other whereas the parallel
terms amplify each other. When the other initial state is (2.2.9) this tendency is reversed.

With these relations the rate becomes, with Γ→ = Γ|| + Γ× where Γ||,Γ× are the terms
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with s = 0 and s = 1 respectively.

Γ|| =2π
∑
qk;i

∣∣[(t∗1;L;qt1;R;k + t∗2;L;qt2;R;k)i(|β|2 − |α|2) + (t∗1;L;qt2;R;k − t∗2;L;qt1;R;k)(−i)(αβ∗ − βα∗)
]

×
〈i| c†LqcRkcLqc

†
Rk |i〉

U

∣∣∣∣∣
2

Wiδ(Ef − Ei). (2.2.21)

Γ× =2π
∑
qk;i

∣∣[(t∗1;L;qt1;R;k + t∗2;L;qt2;R;k)(−i)(αβ∗ − βα∗) + (t∗1;L;qt2;R;k − t∗2;L;qt1;R;k)i(|β|2 − |α|2)
]

×
〈i| c†LqcRkcLqc

†
Rk |i〉

U

∣∣∣∣∣
2

Wiδ(Ef − Ei). (2.2.22)

Assume now for simplicity that the tunnelling is the same for each nanowire. Then we find

G = 2πe2d2 1

U2

[
4|t∗LtR(|β|2 − |α|2)|2 + 4|t∗LtR(−i)(αβ∗ − βα∗)|2

]
. (2.2.23)

This result is independent of whether the system was in the initial state (2.2.8) or (2.2.9),
which is remarkable. Even when the parities of the wires are different the tunnelling is not
suppressed due to the additional tunnelling paths corresponding to the crossed process.

2.3 Low-energy Hamiltonian

We will now apply the methods of section 1.3 to get a clearer picture of the effects described
above. We want to take a general approach that is applicable for the following chapters as
well as here. The most interesting system is the “one-island” system described above, but
this time we only connect each lead to one of the Majorana fermions. As mentioned in the
introduction to this chapter this system is essentially a spin-1/2 system which, as we shall
see, has some nice properties related to surface coding. This system is also typically called
a Majorana-Cooper box.

The Hamiltonian for the system is, in the low-energy approximation of the tunnelling,
given by

H = HL +HR +
(
tLd
†
LγL + tRd

†
RγR + h.c.

)
+ EC(N − ng)2. (2.3.1)

We now just work with general systems on the left and right and dL, dR are the electron
annihilation operators of the left and right systems respectively.

We want to write an effective Hamiltonian that does not involve the sectors where the
island is charged. The Hamiltonian that connects the low-energy sector N = N0 to the high-
energy sector N = N0 ± 1 is given by the tunnelling Hamiltonian appropriately projected:

HHL = PN0+1 (t∗LγLdL + t∗RγRdR)PN0 + PN0−1

(
tLd
†
LγL + tRd

†
RγR

)
PN0 . (2.3.2)
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PN projects to the sector with charge N on the island. We then find

Heff −HLL =HLH(E −HHH)−1HHL

=PN0

(
tLd
†
LγL + tRd

†
RγR

)
PN0+1(E − EN0+1)−1PN0+1

(
t∗LγLdL + t∗RγRdR

)
PN0

+PN0

(
t∗LγLdL + t∗RγRdR

)
PN0−1(E − EN0−1)−1PN0−1

(
tLd
†
LγL + tRd

†
RγR

)
PN0 .

(2.3.3)

We have replaced the high-energy Hamiltonian by just the energy of the N0 ± 1 sector as
explained in sec. 1.3.

In each of the two lines of eq. (2.3.3) there are two types of terms. The first type involves
the product of dL/R and d†L/R and the other type involves the product of dL/R and d†R/L. The
first type renormalizes the dot levels, while the second term is an effective tunnel-coupling
between the dots.

The renormalization terms are, with U± = EN0±1 − E,

−1

U+

(
|tL|2d†LγLγLdL + |tR|2d†RγRγRdR

)
+
−1

U−

(
|tL|2γLdLd†LγL + |tR|2γRdRd†RγR

)
.

We have ignored the projection operators, because they act trivially. The Majorana operators
can be commuted to cancel via γ2 = 1. In the second term we write dd† = 1 − d†d and we
find

=−
(

1

U+

− 1

U−

)(
|tL|2d†LdL + |tR|2d†RdR

)
+ const. (2.3.4)

When ng ∈ Z this term is zero.
Turning to the effective tunnelling we find

−1

U+

(
tLd
†
LγLt

∗
RγRdR + tRd

†
RγRt

∗
LγLdL

)
+
−1

U−

(
t∗LγLdLtRd

†
RγR + t∗RγRdRtLd

†
LγL

)
=

(
1

U+

+
1

U−

)(
tLt
∗
Rd
†
LdRγRγL + h.c.

)
. (2.3.5)

With this we can write the effective Hamiltonian as

H = HL +HR +
(
Tσzd

†
LdR + h.c.

)
(2.3.6)

Here we have introduced σz = iγRγL and introduced

T = −i
(

1

U+

+
1

U−

)
tLt
∗
R. (2.3.7)
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We see how, if we imagine connecting the leads in more complicated ways, the low-
energy approximation in general leads to tunnelling terms for each path through the system.
Moreover, if a path “touches” a pair of Majoranas, the tunnelling is ∼ tiγ1γ2. With the
Hamiltonian (2.3.6) it is also considerably easier to see how the effects calculated above
occur, but it is important to have a notion of the validity of this Hamiltonian; it essentially
accounts for only co-tunnelling and assumes that the high-charge sectors have no dynamics.

2.4 Measurements

We will now discuss a general question: When can I use a current measurement to project
the island to a certain state?

A general tunnelling setup consists of leads or dots that are connected to the Majorana
Island in an arbitrary way and possibly have an interference link. Each path yields an
effective tunnelling of Tiγiγj, if the path starts at γi and ends at γj, as we saw above. T is a
complex tunnelling amplitude which can, in principle, take any value. Therefore the general
tunnelling Hamiltonian is

H = HL +HR +
∑
k,u

λc†LkcRu + h.c., (2.4.1)

λ = Aσx +Bσy + Cσz +D, A,B,C,D ∈ C. (2.4.2)

Here k, u label the states in the left and right subsystems. One or both may be the trivial
sum, as when one subsystem is a single level. We have assumed for simplicity that the
tunnelling amplitudes do not depend on k, u.

As we know from the fundamental principles of quantum mechanics a measurement of
the observable O projects to an eigenstate of O. The current operator J = ∂tNL = i[H,NL]
is

J =i
∑
k,u

λc†LkcRu − λ
†c†RucLk = iλψ†LψR − iλ

†ψ†RψL

=
(
ψ†L ψ†R

)
i

(
0 λ
−λ† 0

)(
ψL
ψR

)
. (2.4.3)

For a general operator λ we do not have that [λ, λ†] = 0. This is rather unfortunate because
it means that the eigenstates of J are typically entangled states.

So when [λ, λ†] 6= 0 we cannot view the current measurement as projecting the island to
a definite state. In chapter 5 we will discuss how to prepare specific states of the Majorana
island and we will therefore have to consider the requirement [λ, λ†] = 0.

We will also see this fact mirrored in the discussion in sec. 4.2. There [λ, λ†] 6= 0 means
that the adiabatic tunnelling procedure (to be described) does not correspond to a ‘good’
transformation on the Majorana island.
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2.5 Concluding Remarks

In this chapter we have investigated some sample systems with Majorana fermions from the
point of view of conductance (or current) measurements.

We have started with some “first principle” calculations based on Fermi’s Golden Rule.
It became apparent that the parity of state of the wire could have a significant influence on
the conductance; a rather peculiar effect.

These calculations served as a sort of introduction to the physics of electrons tunnelling
through Majorana states. We then developed a useful picture based on a low-energy effective
model where each tunnelling path has an amplitude that depends on the Majorana operator
of the path.

The effect of this becomes most pronounced when we consider a one-island, two-nanowires
setup. This setup, which is termed a Majorana-Cooper Box in the literature, is essentially a
two-level system because one can redistribute electrons between the wires and superconductor
without changing the charge number. When this becomes possible the tunnelling amplitudes
∼ Tσz become dynamical variables, or, in an equivalent picture, tunnelling processes affect
the dynamical variables of the system. This is particularly attractive in the context of surface
coding to be discussed in chapter 5.
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Chapter 3

Decoherence Effects

We have discussed measurements on Majorana systems, but a question of considerable in-
terest in applications is the time-scale associated with a measurement. There are two things
to consider: the physical timescale and the instrumental timescale. By physical timescale we
mean the amount of time it takes for collapse to occur. By instrumental timescale we mean
the amount of time it takes for the instruments to get a definite reading. In this chapter we
deal with the physical timescale, but one should of course consider the instrumental time-
scale as well for any specific setup. We saw in chapter 2 how tunnelling through a pair of
Majorana fermions on the Majorana island has an amplitude T = Tσz that depends on the
parity operator of the two Majoranas.

We expect that a conductance measurement in the interference setup of figure 2.2 would
collapse the state to a definite parity.

In chapter 4 we will see how an adiabatic tunnelling process is equivalent to applying
σz to the state of the island. This offers a different picture of the collapse: A conductance
experiment sends a macroscopic number of electrons through the sample in order to measure
a current. Although this is not adiabatic at all, if we suspend disbelief and imagine that it
is, a conductance experiment produces a random phase flip of the state of the island:

|0〉+ |1〉 → |0〉+ (−1)n |1〉 , (3.0.1)

Figure 3.1: Two leads (orange blobs) are connected to the Majorana island. The island consists of
a superconductor (magenta box) on top of which sits two topological nanowires (grey
cylinder). The nanowires host Majorana fermions (red circles).
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where n is the number of electrons that passed through the island in the course of the
experiment, a number which is obviously uncontrollable. At the very least we can assume
that the probability that n is even is equal to the probability that n is odd. In that case, the
probabilities P(σz = 1) = 1

2
,P(σz = −1) = 1

2
are unchanged, but P(σx = 1) = P(n even) =

1
2

and P(σx = −1) = P(n odd) = 1
2
. In total, this heuristic argument tells us that the

density matrix of the system undergoes the following transformation due to the conductance
experiment

ρ =
1

2

(
1 1
1 1

)
→ ρ =

1

2

(
1 0
0 1

)
. (3.0.2)

This is again ‘collapse’ but in the decoherence language.
The system we will study here is shown in figure 3.1. Two leads are connected to Majorana

fermions on the Majorana-Cooper box.
We start with a brief introduction of the decoherence formalism and then turn to the

decoherence effect itself. We study a simplified model where there is no interference link.
This is because the calculation in the simplified system is already quite involved. One can
show (it is also quite intuitive) that adding an interference link will not affect the decoherence
time, as should be clear to the reader after studying the calculations.

3.1 Decoherence

If we have a system that can be separated into two subsystems, A and B, where perhaps
only one is of interest, a natural question is “What is the state of subsystem A after a time
t?” When we speak of the state of subsystem A we refer to the reduced density matrix

ρA(t) = TrBρ(t) = TrBU(t)ρ(t = 0)U †(t). (3.1.1)

The results of experiments that only probe subsystem A are fully described by ρA, since any
moment of the distribution of results can be found as

〈On〉 = TrAOnρA, (3.1.2)

where O is the observable measured in the experiment. Of course, this does not hold if O
involves operators in subsystem B.

If ρA(t) is initially in some pure state and as t → ∞ evolves to a mixed state then
decoherence is said to occur. One can view this as a model for measurement within quantum
mechanics that does not invoke the semi-mystical collapse phenomenon.

3.1.1 The Model

In the setup figure 3.1 the natural division is A = the Majorana Island and B = the leads.
The name of the game is therefore to calculate

ρI(t) = TrleadsU(t)ρ(t = 0)U †(t), (3.1.3)
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The derivation of the low-energy Hamiltonian mirrors the derivation in section 2.3 so we will
not repeat it here, except schematically. There will also be a renormalization of the energies
in the leads, i.e. a term T1ψ

†
LψL + T1ψ

†
RψR. We also have tunnelling through the Majorana

island which yields a term T2σzψ
†
RψL + h.c.. The effective Hamiltonian is

H = HL +HR + σz
∑
k,u

(
T2c
†
LkcRu + h.c.

)
+

∑
k,u,a=L,R

(
T̃1c
†
akcau + h.c.

)
. (3.1.4)

For simplicity we have assumed that the renormalization is the same in each lead.
Since the last term only involves operators from the same lead we may write the Hamil-

tonian in the slightly simpler form:

H = HL +HR + σz
∑
k,u

(
T2c
†
LkcRu + h.c.

)
+

∑
k,u,a=L,R

T1c
†
akcau, (3.1.5)

where T1 = 2Re(T̃1).

3.1.2 The Decoherence

We assume the full system is initially described by the density matrix

ρ(t = 0) =
∑
i,j=0,1

cij |i〉 〈j| ⊗ ρL(t = 0)⊗ ρR(t = 0), (3.1.6)

where |i〉 is the eigenstate of σz with eigenvalue i and the leads are thermally distributed:
ρa(t = 0) = 1

Za
e−βHa . With a voltage applied across the leads the Hamiltonian (3.1.5)

becomes

H =
∑
k,u

(
c†Lk, c

†
Rk

)((ξk + V )δuk + T1 σzT2

σzT
∗
2 (ξk − V )δuk + T1

)(
cLu
cRu

)
. (3.1.7)

Our approach is to take the tunnelling as the perturbation, perform the time-evolution of
reduced density matrix and expand the resulting expression to second order.

We are in the interaction picture:

H0 =
∑
k

(
c†Lk, c

†
Rk

)(ξk 0
0 ξk

)(
cLk
cRk

)
, (3.1.8)

V (s) =
∑
k,u
α,β

c†αk [T1τ0 + σz(Re(T2)τx − Im(T2)τy)]αβ cβu exp (i(ξk − ξu)s) , (3.1.9)

where α, β take values L,R and we include the voltage only in the distribution functions

nF (ξk) =
〈
c†kck

〉
to capture the out-of-equilibrium physics. The time-evolution operator
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depends on σz but since we have written the density matrix in the eigenbasis of σz we can
write

ρA(t) =TrL
∑
i,j

cijU |i〉 〈j| ⊗ ρL(t = 0)U † = TrL
∑
i,j

cij |i〉 〈j| ⊗ UiρLU †j

=
∑
ij

cij |i〉 〈j|
〈
U †j (t)Ui(t)

〉
0
. (3.1.10)

Here Ui is the time-evolution operator with σz replaced by its eigenvalue, ηi.
To reiterate: We are interested in whether |cij| → 0 when t → ∞ as this signifies

decoherence.
To calculate this expectation value we then perform a cumulant expansion, with time-

ordering Tt and anti-time-ordering T t:〈
U †j (t)Ui(t)

〉
0
≈(1 + i

∫
Vj(s)−

1

2
T t

∫ ∫
Vj(s)Vj(s

′))(1− i
∫
Vi(s)−

1

2
Tt

∫ ∫
Vi(s)Vi(s

′))

≈ exp

(
i

∫
〈Vj〉 − i

∫
〈Vi〉 −

1

2

(∫ ∫
〈TtVi(s)Vi(s′)〉 − (

∫
〈Vi〉)2

)
−1

2

(∫ ∫ 〈
T tVj(s)Vj(s

′)
〉
− (

∫
〈Vj〉)2

)
+

(∫ ∫
〈Vj(s)Vi(s′)〉 −

∫ ∫
〈Vj(s)〉 〈Vi(s′)〉

))
. (3.1.11)

We have kept only terms of second order. The first two terms in the exponent are phases
and do not contribute to decoherence; we ignore them.

To simplify the notation we introduce

hkui;αβ(s) ≡ [T1τ0 + ηi(Re(T2)τx − Im(T2)τy)]αβ exp (i(ξk − ξu)s) . (3.1.12)

Now we dare to tackle the cumulants. Because we have always the structure 〈V V 〉 − 〈V 〉2
only the connected diagrams in the Wick expansion of 〈V V 〉 contribute. We find∫ ∫

〈Vj(s)Vi(s′)〉c,0 =

∫ ∫ ∑
k,u,α,β
k′,u′,α′,β′

hkuj;αβ(s)hk
′u′

i;α′β′(s
′)
〈
c†αkcβuc

†
α′k′cβ′u′

〉
c,0

=

∫ ∫ ∑
hkuj;αβ(s)hk

′u′

i;α′β′(s
′)nF (ξαk)δku′δαβ′(1− nF (ξα′k′))δuk′δβα′

=

∫ ∫ ∑
k,k′

α,α′

nF (ξαk)h
kk′

j;αα′(s)(1− nF (ξα′k′))h
k′k
i;α′α(s′). (3.1.13)

We have now introduced ξαk = ξk ± V in the distribution functions to account for the
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difference in chemical potential. Performing the sum over the α/α′ indices yields∑
α,α′

nF (ξαk)h
kk′

j;αα′(s)(1− nF (ξα′k′))h
k′k
i;α′α(s′)

=
(
nF (ξLk)(1− nF (ξLk′))e

i(ξk−ξk′ )(s−s′) + nF (ξRk)(1− nF (ξRk′))e
i(ξk−ξk′ )(s−s′)

)
T 2

1

+
(
nF (ξLk)(1− nF (ξRk′))e

i(ξk−ξk′ )(s−s′) + nF (ξRk)(1− nF (ξLk′))e
i(ξk−ξk′ )(s−s′)

)
ηjηi|T2|2

(3.1.14)

Doing the time integrals yields∫ t

0

ds

∫ t

0

ds′eiω(s−s′) =
[eiωt − 1] [e−iωt − 1]

ω2

= 2
1− cos(ωt)

ω2
. (3.1.15)

With this, we have∫ ∫ ∑
α,α′

nF (ξαk)h
kk′

j;αα′(s)(1− nF (ξα′k′))h
k′k
i;α′α(s′)

= (nF (ξLk)(1− nF (ξLk′)) + nF (ξRk)(1− nF (ξRk′)))
2

ω2
kk′

(1− cos(ωkk′t)T
2
1

+

(
nF (ξLk)(1− nF (ξRk′))

2

ω2
kk′

(1− cos((ωkk′)t)

+nF (ξRk)(1− nF (ξLk′))
2

ω2
kk′

(1− cos((ωkk′)t)

)
ηiηj|T2|2, (3.1.16)

where we introduced ωkk′ = ξk − ξ′k.
To evaluate the remaining sums over k, k′ we again make use of the identity (nF (ε)(1 −

nF (ε′)) = nB(ε− ε′)(nF (ε′)− nF (ε)) and go to a continuum picture, thus:∫ ∫ ∑
k,k′

α,α′

nF (ξαk)h
kk′

j;αα′(s)(1− nF (ξα′k′))h
k′k
i;α′α(s′)

= d2

∫
dω

∫
dε (2nB(ω)(nF (ε)− nF (ε+ ω)))

2

ω2
(1− cosωt)T 2

1

+ d2

∫
dω

∫
dε nB(ω + 2V )(nF (ε)− nF (ε+ ω + 2V ))

2

ω2
(1− cos(ω)t)ηiηj|T2|2

+ d2

∫
dω

∫
dε nB(ω − 2V )(nF (ε)− nF (ε+ ω − 2V ))

2

ω2
(1− cos(ω)t)ηiηj|T2|2. (3.1.17)

The calculation of the terms with 〈ViVi〉c,0 and 〈VjVj〉c,0 is very similar. Together they
yield the same as eq. (3.1.17) but without the factor of ηiηj and with an extra minus.
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Integrating over ε in each term produces a factor of ω + 2V or ω − 2V depending on the
second Fermi function. In total we get

|cij(t)| =|cij(0)| exp

(
−(1− ηiηj)2d2|T2|2

∫
dω

[
nB(ω + 2V )

ω + 2V

ω2
(1− cos(ωt))

+nB(ω − 2V )
ω − 2V

ω2
(1− cos(ωt))

])
. (3.1.18)

To determine the timescale for decoherence we then need to calculate∫
dω nB(ω ± 2V )

ω ± 2V

ω2
(1− cos(ωt)). (3.1.19)

We assume that we have small temperatures so that we can set nB(ω±2V ) = −Θ(−ω∓2V ).
With a bandwidth D, we may then write for the integral above

−
∫ ∓2V

−D
dω

ω ± 2V

ω2
(1− cosωt). (3.1.20)

If we are in the very short time limit, i.e. ωt � 1 for all ω, |ω| < D we can Taylor-expand
the cosine-term and we find

−
∫ ∓2V

−D
dω (ω ± 2V )t2 =

1

2
(D ∓ 2V )2t2. (3.1.21)

In the intermediate time limit ωt ∼ 1 for a sizeable region of energies and 1/t > 2V . In
this case we do a rough estimate of the integral as follows. We again assume low tempera-
ture so that the Bose function provides a cutoff for small energies and only allows negative
energies. We then separate the integral into two parts: |ω| < 1/t and |ω| > 1/t. For the first
part we let ωt→ 0 (the rough part of the estimate). The integrand is in this limit equal to
±2V t2

2
. For the part of the integral with |ω| > 1/t we assume that the contribution from

the term proportional to cosωt average out (another rough estimate). In total the integral
becomes

−
∫ ∓2V

−1/t

dω (±2V )
t2

2
−
∫ −1/t

−D
dω

ω ± 2V

ω2
= (±2V )

t2

2
(∓2V +

1

t
) +

∫ D

1/t

dω
ω ∓ 2V

ω2

= 2V 2t2 ± V t+ ln(Dt)± 2V (
1

D
− t) = ln(Dt)± V t+ 2V 2t2 ± 2V

D
. (3.1.22)

In the long time limit (Dt � 1; 1/t < 2V ) we have the following expression in the
exponent:

−
∫ −2V

−D
(1− cosωt)

ω + 2V

ω2
−
∫ 2V

−D
(1− cosωt)

ω − 2V

ω2

= 2V

∫ 2V

−2V

1− cosωt

ω2
−
∫ 2V

0

1− cosωt

ω
+

∫ 0

−2V

1− cosωt

ω
− 2

∫ 0

−D

1− cosωt

ω

= 4V

∫ 2V

0

1− cosωt

ω2
− 2

∫ 2V

0

1− cosωt

ω
− 2

∫ 0

−D

1− cosωt

ω
. (3.1.23)
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In the last two terms the integrand is zero for |ω| < 1/t. For the first term the integrand is
t2

2
for ω < 1/t. For larger |ω| we assume that the cosine averages to zero. We get

= 4V

∫ 1/t

0

t2

2
dω + 4V

∫ 2V

1/t

dω

ω2
− 2

∫ 2V

1/t

dω

ω
− 2

∫ −1/t

−D

dω

ω

= 2V t− 4V (
1

2V
− t)− 2 ln(2V t) + 2 ln(Dt). (3.1.24)

3.1.3 Summary of results

For small times the evolution of the density matrix is described by

|cij(t)| = |cij(0)| exp
(
−(1− ηiηj)d2|T2|2

[
D2 + 4V 2

]
t2
)
. (3.1.25)

For intermediate times we found

|cij(t)| = |cij(0)| exp
(
−(1− ηiηj)4d2|T2|2

(
ln(Dt) + 2V t2

))
. (3.1.26)

This result also holds for large times when V = 0.
For large times with voltage

|cij(t)| = |cij(0)| exp

(
−(1− ηiηj)d2|T2|2(6V t− 2 + 2 ln

D

2V
)

)
. (3.1.27)

In these expressions d is the density of states, D is the bandwidth, V is the voltage across
the system, T2 is the effective tunnelling amplitude between the leads and ηi indicates the
parity corresponding to |i〉.

These results apply for both V 6= 0 and V = 0 so it is easy to compare the two regimes.
For V = 0 the decay is initially Gaussian and then becomes like a power-law. For V 6= 0

the decay is initially Gaussian, undergoes a modified power-law phase, and finally becomes
exponential.

We see that the off-diagonal elements, which satisfy ηiηj = −1, go to zero as t→∞. In
agreement with the discussion in the introduction see that tunnelling through σz effectively
collapses the state onto an eigenstate of σz.

3.2 Concluding Remarks

From the results of this chapter the time-scale of collapse can be calculated but it depends
on the density of states, the tunnelling amplitudes and the bandwidth which can vary from
system to system.

This chapter is not only useful in the context of experimental procedure; it also highlights
the decoherence effect itself, which will occur when we connect a continuum to a finite system.
For surface code applications this effect may be harmful or completely destructive, on the
other hand we might need to perform a measurement to prepare the system or manipulate
it.
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Chapter 4

Adiabatic Tunnelling

In the previous chapter we were lead somewhat naturally from considering conductance
experiments for topological nanowires to considering the double nanowire setup. This setup
has a great deal more interesting physics than just peculiar conductance effects.

In this chapter (and the next) we will explore the single island setup. We will find out
what happens when an electron is adiabatically transferred across a Majorana pair. The
system we work with is shown schematically in figure 4.1. We again have two topological
nanowires (grey cylinders) hosting Majorana fermions (red circles). The nanowires sit on a
superconducting island (magenta box). In this setup two of the Majoranas are connected
to ‘dots’ (orange circles). The dots are modelled as single levels where the level energy is
tunable by a gate (not shown). The island is also contacted to a gate (not shown) to control
the optimal number of electrons N0.

In ref. [13] it was shown that a single dot connected to a Majorana (which was hosted
in a non-floating topological nanowire) could be used to flip the parity of the ground state
by adiabatically tunnelling an electron from the dot to the nanowire. The tunnelling was
described by d†γ + h.c., where d is the electron operator on the dot, and it turned out that
the adiabatic tunnelling essentially amounted to applying the operator γd to the state of the
system, thus flipping the parity.

Based on this idea we expect that tunnelling adiabatically from, say, left to right in the

Figure 4.1: The setup for this chapter. Two topological nanowires (grey cylinders) sit on a floating
superconductor (magenta box). The nanowires host Majorana fermions (red circles).
Two Majoranas are connected to single level dots (orange circles).
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setup in figure 4.1, essentially amounts to applying γLdLd
†
RγR to the state of the system.

This will turn out to be right but it takes some amount of work to show it. As discussed in
section 1.2.1 the island is essentially a spin-1/2 system and the different Majorana billinears
correspond to different Pauli operators. Using adiabatic tunnelling we can rotate the spin in
different ways.

4.1 Billinear Tunnelling

We again want an effective description of the system, as in section 2.3. The calculation is
very similar, so we only highlight some details. Only two Majoranas will be involved, hence
the term “billinear tunnelling”.

The Hamiltonian for the system is, in the low-energy approximation of the tunnelling,
given by

H = εd†LdL − εd
†
RdR +

(
tLd
†
LγL + tRd

†
RγR + h.c.

)
+ EC(N − ng)2. (4.1.1)

Here ±ε is the energy of the left/right dot (only the difference between the levels will turn
out to matter), dL, dR are the electron annihilation operators of the left and right dots
respectively. The Hilbert space is 16-dimensional: two states of either dot, and four states
of the island. To apply the adiabatic principle we will need to find the eigenvectors of a 16
by 16 matrix, which, while in principle doable, leads to very unwieldy expressions. A better
approach is to use the method outlined in section 1.3 to find an effective 4 by 4 Hamiltonian.
It will turn out that we have two 2-dimensional sectors that do not couple! That is a real
improvement.

After performing the low-energy projection the effective Hilbert space has basis vectors

|00+〉 ,
|00−〉 ,
|01+〉 ,
|01−〉 ,
|10+〉 ,
|10−〉 ,
|11+〉 ,
|11−〉 .

However, if we notice that the Hamiltonian (4.1.1) preserves particle number, we see that the
first pair and the last pair do not couple to each other or to the middle four states. Thus if
we start with one electron in the left dot the only active states are |10±〉 and |01±〉. Since we
want to tunnel an electron across the system we would like to operate in this subspace. The
Hilbert space is effectively two spin-1/2 systems: H1/2⊗H1/2 = Island⊗Dots. Furthermore,
if we choose a good basis, i.e. if ± in the states above refer to the eigenvalues of iγRγL, there
is no coupling between the different parities.
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With

iγRγL = σz, (4.1.2)

T = −i
(

1

U+

+
1

U−

)
tLt
∗
R (4.1.3)

δεL/R = −
(

1

U+

− 1

U−

)
|tL/R|2, (4.1.4)

the effective Hamiltonian becomes

Heff =

(
ε+ δεL Tσz
T ∗σz −ε+ δεR

)
. (4.1.5)

Written out

Heff =


ε+ δεL T 0 0
T ∗ −ε+ δεR 0 0
0 0 ε+ δεL −T
0 0 −T ∗ −ε+ δεR

 . (4.1.6)

Thus we have shown the assertion in the beginning of the section: we have two decoupled
2 by 2 systems. As we also claimed we see that only (ε+ δεL)− (−ε+ δεR) has an effect on
the dynamics, so we can absorb δεL − δεR into the definition of ε. The final result is worth
writing out

Heff =


ε T 0 0
T ∗ −ε 0 0
0 0 ε −T
0 0 −T ∗ −ε

 . (4.1.7)

A remarkably simple description of a seemingly complicated system.
The idea is to adiabatically tune ε from ε = −∞ (an electron on the left dot) to ε = ∞

(an electron on the right dot), and to determine if this induces a transformation on the state
of the island. To find out, we invoke the adiabatic principle, and we therefore need to solve
the Schrödinger problem for the Hamiltonian (4.1.7).

It is easy; thanks to our work on finding a proper low-energy description we have a system
that is equivalent to an electron in a magnetic field. The field is B = (±ReT,∓ImT, ε), where
the upper sign is chosen for the σz = 1 sector and the lower sign is chosen for the σz = −1
sector. The energies are

E± = ±|B| = ±
√
ε2 + |Tσz|2. (4.1.8)

It is essential that the energies do not depend on the parity; we can apply the adiabatic
theorem to each sector separately. This also tells us that the process should happen on a
timescale t that satisfies 2E+(ε = 0) � 1

t
, i.e. the energy splitting should be very large

compared to the adiabatic timescale.
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The ground state is given by B · S |ψ〉 = −1
2
B |ψ〉. This a standard problem in quantum

mechanics and they are (in spin-1/2 notation)

|ψ〉 =

(
sin(θ/2)

−eiφ cos(θ/2)

)
, (4.1.9)

where θ, φ are the spherical angles of the magnetic field

θ = arctan
|T |
ε
, (4.1.10)

φ = arctan
−ImT

ReT
=: φ0, σz = 1, (4.1.11)

φ = arctan
−ImT

ReT
+ π, σz = −1. (4.1.12)

As ε is tuned from −∞ to ∞, θ runs from π to 0. If the initial state of the system is
(α |+〉+ β |−〉)⊗ |10〉, then the state at a given θ is

|ψ〉 = e−i
∫ t(θ) E(t)dt

α


sin(θ/2)
−eiφ0 cos(θ/2)

0
0

+ β


0
0

sin(θ/2)
eiφ0 cos(θ/2)


 . (4.1.13)

Let now ε→∞. Then

|ψ〉 = eiϕ

α


0
−1
0
0

+ β


0
0
0
1


 , (4.1.14)

or

|ψ〉 = eiϕ+iπ (α |+〉 − β |−〉)⊗ |01〉 . (4.1.15)

Here ϕ is the (generally uncontrollable) dynamical phase plus φ0.
We see that as far as the island goes, the adiabatic tunnelling process is equivalent to the

operation

|ψ〉 → σz |ψ〉 , (4.1.16)

up to a random phase.

4.2 Other Kinds of Tunnelling

It should be clear that if we had coupled the dots to a different pair of Majoranas in figure
4.1, a result similar to the one above would hold. That is, in general, tunnelling through a
pair of Majoranas, γj, γk is equivalent to the operation

|ψ〉 → iγjγk |ψ〉 , (4.2.1)
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up to a phase. We can therefore perform the operations σx, σy, σz on the state.
Can we perform an arbitrary operation? We can imagine connecting the dots to multiple

Majoranas and perhaps adding a direct coupling. This leads to a low-energy Hamiltonian
that contains a tunnelling term

(Aσx +Bσy + Cσz +D) c†LcR + h.c. (4.2.2)

In general

λ = (Aσx +Bσy + Cσz +D) , (4.2.3)

λ† = (A∗σx +B∗σy + C∗σz +D∗) , (4.2.4)

can not be diagonlized simultaneously. Only when AB∗, AC∗, BC∗ are real can both λ
and λ† be diagonalized, but this requires careful tuning of the tunnelling parameters and is
unrealistic. Therefore the problem no longer separates to two independent sectors. Instead
we need to consider the full Hamiltonian

H =

(
εσ0 λ
λ† −εσ0

)
. (4.2.5)

For general A,B,C,D the eigenvalues and vectors are uninformative. It is not worthwhile
to consider the general expression. We can, however, say that the clean result found in the
previous section only holds when a single tunnelling path is active.

One case that does not require tuning is when two of A,B,C are zero. Without loss of
generality assume A = B = 0 and C,D non-zero. The eigenvalues of λ and λ† are D ± C
and D∗ ± C∗ respectively. The problem now is that this leads to effective magnetic fields of
different magnitude for the two sectors. Therefore the dynamical phases of the sectors are
different, and the effect of such an operation is to randomly scramble the state of the island,
which is rarely useful.

Although it is probably difficult to fine-tune, let us consider what happens when we do
get a nice operation. When D = 0 and A,B,C are ‘parallel’, i.e. have the same phase, we
get two equal-energy sectors and we can write

λ = T (σx + ασy + βσz) , T ∈ C, α, β ∈ R. (4.2.6)

The adiabatic transfer is equivalent to the operation σx + ασy + βσz.

4.3 Concluding Remarks

We have discussed the remarkable effect that pumping an electron adiabatically across a
Majorana pair, γ1, γ2 amounts to applying the operator iγ1γ2 to the system.

We saw that other, more complicated operations were in general possible only if we had
some fine-tuning in the system. However, in spite of these limitations we will make use of
this effect time and again in chapter 5; even having just σx, σy, σz and the results of chapters
2 and 3 at our disposal gives us a nice set of tools.
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Chapter 5

Majorana Surface Code

The Holy Grail in condensed matter physics is at present applications towards quantum
computing. The formalism of quantum computing is quite developed and we will not attempt
to cover it in depth here; there are many good references to be found for instance ref. [14].

Suffice it to say, a keystone of quantum computing is encoding information into a quantum
system. This information might be encoded as simply the coefficients of the state in some
basis, e.g. one could encode the ‘information’ (α, β) into a spin-1/2 system by forming a state
|ψ〉 = α |0〉+ β |1〉. In typical systems, such a spin-1/2 system, this kind of state is not very
stable and this type of encoding would be quite bad. One could improve this by using more
states to encode the information |ψ〉 =

∑
n cn(α, β) |n〉 and thus distribute the information

in a clever way that reduces corruption of the information. One could for example form the
state α |→〉+β |←〉 where |→〉 , |←〉 are degenerate states that have a different value of some
non-local observable; the two ground states of a Majorana-Cooper box come to mind.

One approach is called stabilizer coding. In stabilizer coding the Hilbert space is reduced
to a certain subspace by measuring or otherwise fixing a number of observables, On, to
some value, say On = 1. Information can be encoded into the system by using the non-fixed
degrees of freedom and stabilizer coding has the nice property that some errors are detectable
by measuring On 6= 1.

In this chapter we will first introduce the stabilizer coding formalism, then discuss how
logical operators that act on the encoded information should be defined in terms of phys-
ical operators and how they should be updated when operations (measurements, electron-
pumping, etc.) are performed on the system. We then turn to a specific application namely
a stabilizer code that utilizes the Majorana-Cooper box as its fundamental building block.
This type of system is termed a Majorana surface code. To build a quantum computer one
needs a certain set of generating operations to be able to perform an arbitrary computation
and we will discuss how to implement these generating operations.

5.1 Stabilizer Coding

In this section we give a brief discussion of the concept of stabilizer coding.
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We wish to encode k logical qubits into n physical qubits. The physical Hilbert space
is H =

⊗nH1/2 and a typical error process is 1 ⊗ 1 ⊗ ... ⊗ σi ⊗ 1 ⊗ ..., a single-bit error.
Naturally, multiple-bit errors can also occur, but as the number of bits involved in the error
increases, the probability of the error goes down.

Loosely speaking, we would like to be able to measure when errors happen without
measuring the state of the system. So we cannot simply encode the bits in a state(

α1

β1

)
⊗ ...⊗

(
αk
βk

)
⊗ arbitrary ⊗ ...,

because, e.g. the error σx⊗ 1⊗ ... is only visible if we measure the state of the first physical
qubit.

This problem can be remedied if the error can be associated with a change of an operator
O that acts trivially on all the encoded bit-states. More precisely, all code states should
be eigenstates with the same eigenvalue of the observable O, and when an error occurs this
eigenvalue should change. For such an operator we can measure O without affecting the
encoded information and thus the error can be detected.

This is the central idea of stabilizer coding: we want to project to a code subspace, C,
defined by

C = {|ψ〉 | Oj |ψ〉 = |ψ〉 , j = 1, 2, ...}, (5.1.1)

where Oj are some operators usually termed stabilizers. What errors can be detected, how
many errors that can be detected and how the information is encoded physically depends on
the Oj.

Let us take a specific example of a code subspace: Shor’s code [15]. We will just state
what the code subspace is. There are two states∣∣0〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉), (5.1.2)∣∣1〉 = (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉). (5.1.3)

We have encoded 1 qubit in 9 qubits. If a bit-flip error, σ1
x, happens on the first physical qubit

this will be observable by measuring σ1
zσ

2
z . Notice that the code states both have eigenvalue

1 for this operator, but the bit-flipped have eigenvalue -1. This does not in itself give enough
information to correct the error because we can only conclude that either physical bit 1 or
2 has flipped. We also need to measure e.g. σ1

zσ
3
z , which will tell us that it was bit 1 that

flipped, unless, of course, a multiple-bit error happened. Phase-flips, σz, are treated similarly.
To detect a phase-error we have to measure σ1

xσ
2
xσ

3
xσ

4
xσ

5
xσ

6
x and σ1

xσ
2
xσ

3
xσ

7
xσ

8
xσ

9
x.

The mathematical properties of stabilizer codes, how they correct errors, the structure
of the code space C and how to construct the stabilizer operators is an interesting story in
its own right. I refer the reader to refs. [15, 16, 17] for further inquiries into the stabilizer
code formalism.
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5.2 Logical Operators

In the surface code setup to be discussed below we will have a set of stabilizers and once
these are fixed to On = 1, we encode one or more logical qubits into the physical qubits.
To perform computations we need a set of logical operators to manipulate or measure the
logical bits. In this section we deal first with the definition of these.

To perform certain operations it will be necessary to dynamically, but step-wise, change
the set of stabilizers. This process should not destroy the encoded information but it changes
the code subspace and consequently how the information is encoded. The logical operators
therefore have to be updated correspondingly.

A logical qubit is an ordered pair of numbers (α, β), |α|2 + |β|2 = 1, α, β ∈ C and to
encode a qubit means to prepare a physical state

(α, β)→ |ψ(α, β)〉 (5.2.1)

in such a way that |ψ(α, β)〉 is in one-to-one correspondence with (α, β). For two logical
qubits an encoding is

(α1, β1, α2, β2)→ |ψ(α1, β1, α2, β2)〉 , (5.2.2)

and so on for multiple qubits. We will use linear encodings that satisfy

|ψ(α, β)〉 = α |ψ(1, 0)〉+ β |ψ(0, 1)〉 , (5.2.3)

with the obvious generalization to more logical qubits.
We also assume that

〈ψ(1, 0)|ψ(0, 1)〉 = 0. (5.2.4)

A logical operation is a linear operator L acting on the logical state (α, β)

L(α, β) = (α′, β′), (5.2.5)

and the question is how to represent a given logical operator L in terms of physical operators.
If we denote the representation of L by LL we should have

LL |ψ(α, β)〉 = |ψ(α′, β′)〉 (5.2.6)

for all possible values of α and β. This tells us that LL should have matrix elements

〈ψ(1, 0)| LL |ψ(1, 0)〉 = α

when

L(1, 0) = (α, 0) (5.2.7)
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and similarly for the other matrix elements.
We will call this a good representation of L.
Such a representation is not unique; because we are in the subspace C the stabilizer oper-

ators act trivially, On = 1, and if we have a representation LL, then we have an equivalence
class of representations with equivalence given by

L′L ∼ LL, if L′L = OLL, (5.2.8)

where O is some product of stabilizers and other trivial operators if such exist. It should
be noted that it is not necessarily true that all good representations of L are in the same
equivalence class.

When we have multiple encoded qubits the definitions (5.2.7) and (5.2.8) are extended
in the obvious way.

A fact we will often use is that for logical operators L,M,N

[L,M ]± = N ⇒ [LL,LM ]± = LN , (5.2.9)

which can be seen by comparing matrix elements on either side.
We now deal with operations on the physical Hilbert space that do not leave the code

subspace invariant. In practice, we will deal with ceasing a stabilizer fixation; measuring an
operator; and adding a new operator to the stabilizer set.

If a stabilizer is no longer fixed the only thing that is affected is the equivalence classes of
representations, eq. (5.2.8). Barring error processes that entangle the encoded information
with the new degree of freedom the encoding and thus all operators are unchanged.

When measuring any operator, A, we randomly project to an eigenstate of A. This
procedure is described by applying a projection operator Pj to the state. This, at the very
least, changes the encoding and could possibly completely destroy the information. A non-
destructive measurement is quite special. A non-destructive measurement should satisfy

Pj |ψ(α, β)〉 = |ψ′(α, β)〉 , ∀α, β ∈ C,∀j (5.2.10)

where ψ′ is another encoding. Then, since the projector is linear

αPj |ψ(1, 0)〉+ βPj |ψ(0, 1)〉 = α |ψ′(1, 0)〉+ β |ψ′(0, 1)〉 , ∀α, β ∈ C, (5.2.11)

⇒
Pj |ψ(1, 0)〉 = |ψ′(1, 0)〉 , (5.2.12)

Pj |ψ(0, 1)〉 = |ψ′(0, 1)〉 . (5.2.13)

Suppose now we have a good representation, LL, of the logical operator L, with [LL, Pj] = 0.
When L(1, 0) = (α, β)

〈ψ′(1, 0)| LL |ψ′(1, 0)〉 = 〈ψ′(1, 0)|PjLL |ψ(1, 0)〉
= 〈ψ′(1, 0)|Pj (α |ψ(1, 0)〉+ β |ψ(0, 1)〉) = α. (5.2.14)
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Hence the representation remains good after the projection. Below we will find a good
representation with [LL, Pj] = 0 to find a class of good representations after measurement of
A.

Finally, we deal with adding a new stabilizer. Any kind of fixation of an operator is
essentially applying an operator Pj to the state of the physical system. Therefore the above
discussion about measurements apply equally well here. In fact, we will stabilize exactly by
measuring the stabilizers.

Finally, we will introduce some notation. We will need the logical operators σz, σx. To
distinguish logical operators from physical operators we write the logical Pauli operators as
Z,X, Y and keep the usual notation for the physical operators.

5.3 Surface Code Setup

We now discuss a specific setup proposed in ref. [18]. The surface code is a large number of
Majorana-Cooper boxes connected by tunnelling link in the manner shown in figure 5.1. To
describe the physics in this system it is instructive to consider the low-energy Hamiltonian.
By the methods of sec. 1.3 we can find the Hamiltonian to lowest order in EC as follows. Any
electron that tunnels away from a starting island should always return there, in order that the
system returns to the low-energy sector. For each tunnelling path there is a corresponding
term in the Hamiltonian. Imagine, for example, an electron tunnelling along some path
and then back along the same path. Such a process involves every Majorana fermion along
the path twice, and therefore it is trivial. We should therefore look for the shortest non-
contractible closed loop. This is given by tunnelling once around one of the ‘holes’ between
the Majorana-Cooper boxes in figure 5.1. The corresponding term in the Hamiltonian is

Hloop =
5Re(t4)

16E3
C

γ1γ2γ3γ4γ5γ6γ7γ8. (5.3.1)

Here γ1 through γ8 are the operators along the loop. The point is that low-energy degrees
of freedom are given by plaquette operators

O =
8∏

k=1

γk. (5.3.2)

Plaquette operators square to one

O2 = 1, (5.3.3)

and different plaquettes commute with each because they always share two or zero Majorana
fermions. We note that a number of different boundary conditions are possible depending
on how the network is terminated.

For each Majorana-Cooper box we associate a Majorana billinear with σz and another
billinear with σx and this leads to x-type plaquettes and z-type plaquettes. For example in
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Figure 5.1: The surface code setup. A number of Majorana-Cooper boxes (magenta, with grey
cylinders, with red dots) are tunnel-coupled in a ‘zig-zag’ pattern.

the inset of figure 5.1 we define σz and σx in terms of Majorana billinears on box 1. With
this definition the plaquette bounded by boxes 1, 4, 5, 6 is a z-type plaquette. The plaquette
bounded by boxes 1, 3 and 4 is of x-type, and so on. This choice on box 1 fixes the bases
on all the other boxes in such a way that a z-type plaquette is written as a product of σz,
Oz = σ1

zσ
2
zσ

3
zσ

4
z and similarly for x-type plaquettes. This leads to the staggered pattern

shown in the figure.
The plaquette operators will act as both stabilizers and as a way to encode information.

Plaquette stabilizers are fixed by measuring them.
The simplest qubit is a non-stabilized plaquette. Compound qubits can be form by joining

together more plaquettes.
To perform computations we need a set of logical operators. A complete set of logical,

single-qubit operators are X, Y, Z [19]. To perform general computations we also need a few
other single-qubit operations and a so-called CNOT-operation which entangles two qubits.
In this section we stick to the single-bit Pauli-operators.

In figure 5.2 we have encoded a qubit into the plaquette operator shown in grey; this is
called a single-cut qubit because we have ‘cut away’ one stabilizer. The state of the system
is (ignoring all the stabilized plaquettes)

α |0〉+ β |1〉 ,

where |0〉 , |1〉 refer to the two eigenstates of the plaquette operator. The plaquette itself
acts as the Z operator. To construct a representation of X we need an operator that anti-
commutes with the plaquette and commutes with all stabilizers and other logical operators
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Figure 5.2: Pauli-operators for plaquette qubits. The grey area indicates the plaquette, ∼ Z. The
operator corresponding to the black line anticommutes with the plaquette and is a
representation of X. A different representation is shown as the blue line.

present in the system. Therefore the X should share an odd number of Majoranas with the
logical qubit and an even number with all others. A choice is the ‘string’ operator shown as
a black line in figure 5.2. This string should go to the edge of the sample so that it ends on
a Majorana that is not stabilized.

By multiplying this specific choice with plaquette operators we move around in the equiv-
alence class. For example, by multiplying by the stabilizer to the right of the qubit plaquette
we get the string operator shown as a blue line, using the property of Majorana fermions
that γ2 = 1. With both of X,Z we also have Y = iXZ.

This setup has the disadvantage that to access the X-operator we have to involve a very
large number of Majorana fermions. To remedy this problem we can form double cut qubits.
These are qubits formed by an entangled state of two non-stabilized plaquettes. A double
cut qubit is shown schematically in figure 5.3. The X-operator must now be a simultaneous
flip of both plaquettes and is shown as the black string in the figure. For the Z-operator we
can choose either of the grey plaquettes. We will mainly be dealing with double-cut qubits
as these are the most attractive in a practical setting.

To actually access or apply any of these operators we can use the results from chapter 4.
To apply the X operator we connect a dot to the ends of the string, see figure 5.4. A large
number of paths contribute to the tunnelling operator, for example there is the direct path
and the path that goes around the turquoise plaquettes. The effective tunnelling term for
a given path scale as tNEN−1

C where N is the number of Majorana-Cooper boxes involved
in the path. Insofar as this allows to approximate the tunnelling Hamiltonian as the direct
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Figure 5.3: A schematic double-cut qubit. The grey squares symbolize the plaquettes, compare
figure 5.2. The black line between the plaquettes is string of Majorana operators that
act as X.

path we get

HT = Tσxd
†
1d2 + h.c. (5.3.4)

Here σx is the string operator joining the two plaquettes, which is a representation of X.
Using the results of chapter 4 the effect of pumping a single electron is to apply the X
operator1.

To apply the Z operator consider connecting dots as in figure 5.5. There are three main
paths to consider: the direct path, the red path, and the blue path. When ng ∈ Z for both
Majorana-Cooper boxes, one can show that the direct tunnelling is zero [18]. The red and
blue paths lead to a tunnelling term

HT = (T1σz + T2O2)d†1d2 + h.c., (5.3.5)

where O2 is the stabilizer encircled by the blue path and σz is the plaquette operator. This
is effectively 1. Generically this fact does not allow us to apply Z using adiabatic transport
as we saw in chapter 4. However, if we suppress a tunnelling link (which does not destroy
or alter the state of the system) anywhere along the blue path, T2 → 0 and the adiabatic
operation becomes well-defined.

There is an alternative to this ‘hardware-based’ approach. When considering a general
algorithm in the surface code, all applications of say Z can be commuted through the other
operators until it hits another Z at which point we use Z2 = 1. If there is no other Z to
‘annihilate’ with we apply the Z to the eventual measurement needed to do readout, i.e. we
flip the sign of a X measurement, but do nothing to a Z-measurement. See also ref. [19].

To measure or fix these operators the discussion above applies but instead of adiabatically
tunnelling we measure a current. By measuring the current from lead to lead in figure 5.4
we will project to an eigenstate of X. We need an interference link to know which eigenstate
X we project to.

Similarly, the setup in figure 5.5 can be used to measure Z. We again need an interference
link, this time both for readout but also so the measurement does not simply project to a
definite relative parity. The tunnelling with intereference is ∼ T + T1O1 + T2O2.

With these basic ingredients we are ready to discuss the more complicated operations
needed for completeness.

1It is only the algebra of the operators Z,X that matter for the results of chapter 4 to hold. Therefore
we can apply those results even though that was done for σx = iγ1γ2 and not the long strings considered
here.
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Figure 5.4: To apply the σx operator we connect dots to the ends of the string. The effective
tunnelling is ∼ Tσx.

Figure 5.5: To apply the σx operator we connect dots to the ends of the string. The effective
tunnelling is ∼ Tσx.

5.4 Surface Code Operation

To perform universal quantum computation we need the operators: Hadamard; S-gate; T-
gate; CNOT [20]. The first three are single-bit operations while the last is a two-bit operation.

The Hadamard operation, H, is

H =
1√
2

(
1 1
1 −1

)
, (5.4.1)

which satisfies

HσzH = σx, (5.4.2)

HσxH = σz. (5.4.3)

It is a basis change.
The S- and T-gates are

S =

(
1 0
0 i

)
, (5.4.4)

T =

(
1 0
0 eiπ/4

)
. (5.4.5)
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The CNOT or Controlled-not is

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5.4.6)

When applying the CNOT gate to a two-qubit system we define the control bit and the
target bit. In the above representation of CNOT the first tensor factor is the control while
the second factor is the target.

As we will see below, if we can perform a “qubit move” we can implement CNOT. With
CNOT we can do Hadamard. With special ancilla states, CNOT and Hadamard, we can
apply the S- and T -gates [19].

5.4.1 Qubit move

A qubit move is moving an encoded qubit to an adjacent plaquette. This is done by first
ceasing stabilization of the target plaquette, then measuring a Majorana billinear joining the
two plaquettes and finally measuring the original plaquette. In figure 5.6 the information is
originally encoded in the right plaquette, which is in the state

|ψ〉 = α |0〉+ β |1〉 . (5.4.7)

The left plaquette is stabilized to begin with and the first step is to stop stabilization.
Next we measure the Majorana billinear indicated by the black line joining two Majorana

fermions. This operator is equal to the X string of the left box times the X string of the
right box

iγ1γ2 = XLXR. (5.4.8)

Measuring this operator entangles the two plaquettes. There are two things worth consid-
ering: what happens to the state of the system and how the representations of the logical
operators are updated. The update of the logical operators can be handled by the discussion
of section 5.2 and the evolution of the state will provide a less abstract counterpoint. A
measurement of, say, iγ1γ2 = 1, puts the plaquettes in the state

|0〉 ⊗ (α |0〉+ β |1〉)→ (α + β) |++〉+ (α− β) |−−〉 , (5.4.9)

where ± refer to the eigenstates of X and the first tensor factor is the left plaquette and the
second factor is the right plaquette.

Notice that XR commutes with the measurement operator and hence this is still a good
representation of X. Z is no longer represented by just the right plaquette but now has to
be represented by the right plaquette times the left plaquette Z = σLz σ

R
z , which was also a

good representation before the measurement since the left plaquette was stabilized before
initiating the move.
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Figure 5.6: Moving a qubit from the right to the left plaqeutte is done via measurement of the
Majorana billinear indicated with a black line in the figure. To complete the move the
right plaquette is measurement.

That these operators work as advertised can also be verified by direct inspection of the
state.

The final step is measuring the right plaquette. For example, if we measure σRz = 1, then

(α + β) |++〉+ (α− β) |−−〉 → (α |0〉+ β |1〉)⊗ |0〉 . (5.4.10)

σLz σ
R
z commutes with the measurement so this is still a good representation of Z. Because

effectively σRz = 1 after the measurement, we can use σLz as Z. However, to find a good
representation of X we notice that before the σRz measurement we could have used either
σRx or σLx = iγ1γ2σ

R
x since iγ1γ2 is trivial on the projected subspace. σLx commutes with the

measurement and is therefore a good representation.
Again we can verify this result by directly inspecting the state.
It is worth noting that if the results of measurements were not (1, 1) but (1,−1) or any

other combination, the final state would have not be α |0〉+β |1〉 but rather (σx)
nx(σz)

nz(α |0〉+
β |1〉) where nz = 0, 1 when the first measurement yields 1,−1 respectively and similarly for
nx with respect to the second measurement. However, this does not affect the logical oper-
ators.

Thus, when moving a qubit from plaquette 1 to adjacent plaquette 2 the representations
of X,Z moves from

(σ1
x, σ

1
z)→ (σ2

x, σ
2
z), (5.4.11)

up to equivalence.
In a more pictorial way of speaking, as we move the qubit, it drags its string operator

along with it.

5.4.2 CNOT

Now that the qubit move can be completed we can perform a CNOT on a two-qubit system
consisting of a z-type plaquette and an x-type plaquette. This is done by “braiding” the
z-type plaquette around the x-type plaquette.

The first part of the braiding is shown in figure 5.7. We start with a z-type and an x-
type plaquette shown as red and blue boxes with solid outlines respectively. The blue string
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Figure 5.7: The first part of the CNOT operation is shown. A z-plaquette (red box, solid outline)
is moved stepwise until it reaches the end of the first part of the braid (red box, dashed
outline). The string operator (blue line) is updated by dragging it along the plaquette
(dashed, blue line). Also shown are the x-type plaquette (blue box, solid outline) and
its string (red line).

attached to the z-plaquette is the x-string operator for this bit and the red string attached
to the x-plaquette is the z-string operator for the x-bit.

The z-type is moved stepwise along the plaquettes with dashed outlines until it reaches
the red plaquette with a dashed outline. As we saw in section 5.6 the string operator merely
follows along, here shown as a blue dashed line.

For the last part of the CNOT-operation we want to move the z-plaquette across the
z-string of the x-plaquette. We cannot keep the representations of the logical operators as
they are because the operator shown as a red string in figure 5.7 will not commute with the
operator shown as a blue string once they cross each other; they will share one Majorana
and thus will anti-commute where-as logical operators belonging to different qubits should
commute.

This indicates that we must choose a different representation, namely one where the z-
string will crosses the x-string an even number of times. Before we move across the red string
consider the representation Z ′2 = Z2O, where Z ′2 is the new representation of logical σz, Z2

is the old and O is the stabilized plaquette directly above the red string. This operator
commutes with the qubit move and does not cross either the old or updated x-string and
will therefore remain a good representation after the move. Continuing this process until the
braid is completed we have the following.

Z1 = O1, (5.4.12)

X1 = S1O2 × stabilized plaquettes, (5.4.13)

Z2 = S2O1 × stabilized plaquettes, (5.4.14)

X2 = O2. (5.4.15)
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Here Oi is the plaquette-operator where the ith bit is encoded (red and blue boxes in figure
5.7) and Si is the corresponding string-operator (blue and red lines in figure 5.7). The
red string is updated to the red, dashed string, and the blue string and the plaquettes are
updated as before.

The result is that the string operators S1 and S2 are no longer representations of logical
σx, σz but rather

S1 = X1X2, (5.4.16)

S2 = Z1Z2, (5.4.17)

and nothing happens to the operators that represent Z1, X2.
These statements show that the qubit braid is a CNOT operation as follows. The braid

is equivalent to an operation LC on the state of the system |ψ〉 → LC |ψ〉. This physical
operation is a representation of a logical operation, and we can find C by finding the trans-
formations of the representations of a basis set of logical operators. In fact, LC is the trivial
operator because the qubit move does not alter the state of the system, it merely moves it
from one tensor factor to another. Thus,

L†CS1LC = S1, (5.4.18)

and so on. However, we saw that S1 is no longer a representation of X1 so we must have
C†X1C = X1X2. Using the same line of reasoning for all the above operators we can write

C†Z1C = Z1, (5.4.19)

C†X1C = X1X2, (5.4.20)

C†Z2C = Z1Z2, (5.4.21)

C†X2C = X2. (5.4.22)

This is enough to determine C because all other operators can be written as products of
these, e.g. C†X1Z2C = C†X1CC

†Z2C.
These relations are exactly the action of CNOT (5.4.6) on the basis operators. Therefore

the braiding is equivalent to CNOT. See also ref. [19].

5.4.3 Hadamard

In ref. [19] there is an algorithm for implementing the Hadamard transform, but in this
section we present an alternative based on ref. [21]. The Hadamard is essentially an operation
where we move stored information from a z-type qubit to an x-type qubit.

The setup for the Hadamard protocol is shown in figure 5.9. The information is initially
stored in the green z-type bit and is to be moved to the blue x-type bit. For the z-type bit
we identify Z1 with the leftmost green plaquette, O1, and X1 with the Majorana billinear
shown as a blue string, b1. The x-type is initially stabilized, then stabilization is ceased and
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Figure 5.8: The final part of the braid is completed. The z-string has to be updated to the red
dashed line so that it does not intersect the x-string to preserve the commutator.

it becomes a bit with X2 identified as the leftmost blue plaquette, O2, and Z2 identified as
the Majorana billinear shown as a red string, b2.

Two leads are connected to a pair of Majoranas as shown. The leads also have an
interference link between them (not shown) so that the conductance between them is

G ∼ |Td + Tb1b2|2, (5.4.23)

thus allowing us to measure b1b2.
Since X2 was initially stabilized we are still in the subspace where it acts trivially. Hence a

good representation of Z1 is O1O2. With X1 identified as the blue string both representations
commute with the measurement of b1, which we now perform.

Since b1b2 = 1 we can identify X1 = b1b1b2 = b2 = Z2. We then measure both green
plaquettes. The final step is to identify Z1 with O1O2O1 = O2 = X2. Thus

Z1 → X2, (5.4.24)

X1 → Z2, (5.4.25)

which is exactly the Hadamard-gate (5.4.1).

5.4.4 S- and T-gates

Ref. [19] has an algorithm for the S- and T-gates but it relies on the preparation of the
ancilla states

|AS〉 =
1√
2

(|0〉+ i |1〉) , (5.4.26)

|AT 〉 =
1√
2

(
|0〉+

1 + i√
2
|1〉
)
. (5.4.27)
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Z1 Z2

X1X2

Figure 5.9: The setup for the Hadamard gate. The information is initially stored in the green z-
type qubit and is to be moved to the blue x-type qubit. Leads are connected to two
Majoranas (red circles) as shown, so we can measure X1Z2 where X1 is the (represen-
tation of) the logical X on the z-bit and Z2 is (the representation of) the logical Z on
the x-bit. The orange blobs are leads tunnel-coupled (dashed lines) to Majoranas.

Here we discuss only how to prepare these states.
The basic idea is to measure the operators

|AS〉 〈AS| , (5.4.28)

|AT 〉 〈AT | . (5.4.29)

Obviously they have eigenstates
∣∣AS/T〉 and if we were lucky enough to project to this state

the preparation is complete. The final check we then need to perform is whether the other
eigenstates can be transformed to

∣∣AS/T〉 or if we have to do repeated measurements to get
the right state.

S-gate ancilla We deal with the S-gate first.

|AS〉 〈AS| =
1

2

(
1 −i
i 1

)
=
1+ σy

2
. (5.4.30)

We see that by measuring σy we can prepare the ancilla state we want. Of course, this is
obvious from eq. (5.4.28), but this way of constructing the required measurement is helpful
when we consider the T-gate ancilla.

It is easiest to the preparation at the edge of the code, see figure 5.10. A number of
Majorana-Cooper boxes are shown. On the active boxes Majorana fermions are shown as
red circles.

Operating on the edge allows us to make measurements and transformations on the boxes
at the edge withouth affecting more than one plaquette.

We assume the active plaquette is a z-type. The active plaquette is stabilized before
preparation begins so the state is

α1 |0000〉+ α2 |0011〉+ α3 |1001〉+ ... (5.4.31)
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Figure 5.10: We prepare the ancilla states at the boundary by measuring Majorana billinears (Ma-
joranas indicated by red dots, billinears by the solid and dotted lines) in the manner
described in the text.

We cease stabilization and measure the σz operator, i.e. the billinear indicated by the solid
line in the figure. Assuming we get σz = 1 the state of the plaquette becomes

α1 |0000〉+ α2 |0110〉+ α3 |1010〉+ ... = |0〉Rest |0〉Box . (5.4.32)

Here we have separated the degrees of freedom into “box” degrees of freedom and “the rest”,
where the box refers to the box on which we are doing measurements.

After σz measurement we measure the σy-operator, i.e. the billinear indicated by the
dashed line in the figure. This projects the state to

|0〉Rest

1√
2

(|0〉 ± i |1〉) = |0〉Plaquette ± i |1〉Plaquette . (5.4.33)

If the upper sign is found we are done. If the lower sign is found we can perform σz on the
box and we are done.

If the intermediate measurement was σz = −1 we can e.g. correct by performing σx on
the box.

T-gate ancilla We need to measure the operator

|AT 〉 〈AT | =
1

2

(
1 e−iπ/4

eiπ/4 1

)
=

1

2

(
1+

σx + σy√
2

)
(5.4.34)

Essentially we have to measure σx + σy. As we know from chapter 2 this can be done if we
can construct a tunnelling Hamiltonian HT = T (σx +σy), so it will require some fine-tuning.

We will go into somewhat more detail than previously because there are some technical
points that we need to consider.

Consider the setup in figure 5.11. Two leads are tunnel-coupled the Majorana-Cooper
box. One of the leads is only coupled to one Majorana fermion while the other is connected
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to two Majorana fermions. This creates two tunnelling paths: one in the σx-’channel’ and
one in the σy-channel. The Hamiltonian for this system is

H = Hlead1 +Hlead2 + EC(N −Ng)
2 + [t1ψ1γ1 + t2ψ2γ2 + t3ψ2γ3 + h.c.]. (5.4.35)

Referring again to figure 5.11 the σx-operator for the MCB is σx = iγ1γ2 while σy = iγ3γ1.
With the methods of section 1.3 we can then go to the effective Hamiltonian

H =Hlead1 +Hlead2 + [(Txσx + Tyσy)ψ
†
1ψ2 + h.c.]

− T1ψ
†
1ψ1 − T2ψ

†
2ψ2 − T3ψ

†
2ψ2 + T⊥σzψ†2ψ2. (5.4.36)

We have introduced

Tx = −it1t∗2
(

1

U+

+
1

U−

)
, (5.4.37)

Ty = −it1t∗3
(

1

U+

+
1

U−

)
, (5.4.38)

Ti = |ti|2
(

1

U+

− 1

U−

)
, (5.4.39)

T⊥ = 2Re

[
−i(t2t∗3

(
1

U+

+
1

U−

)]
. (5.4.40)

For the conductance measurement to yield a product state we need t2 = t3, whence Tx =
Ty =: T , so G ∼ |T |2|σx + σy|2. A measurement of the conductance between the leads with
an interference link will then project to an eigenstate of σx + σy.

One might worry about whether the T⊥-term produces decoherence in the σz-basis, but
if t2 = t3 then T⊥ = 0 so we need not worry about this.

If the measurement of σx + σy yields +1 we have the desired ancilla state. If the mea-
surement yields -1 we can perform the following operation on the box to get a better state:

|↓〉 → σyσx |↓〉 =
1√
2

(|0〉+ e−iπ/4 |1〉). (5.4.41)

While this is not the desired ancilla state, the algorithm of ref. [19] still works.
Again we start by measuring σz on the box. Assume we get +1. Then the state of the

plaquette is |0〉Rest |0〉Box. Measuring σx + σy as above projects to a “good” state regardless
of the measurement outcome, so after measurement

|0〉Rest |0〉Box → |0〉Rest |Good〉Box . (5.4.42)

This ends our discussion of ancilla preparation and surface code operation in general.
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Figure 5.11

5.5 Concluding Remarks

In this section we have introduced the concept of stabilizer coding and surface codes [14, 15,
16, 17, 18, 19].

I have presented what I think is the cleanest way (at least in this context) to think about
the idea of encoding information into physical states and how physical operations correspond
to informational operations.

A certain set of operations are required for universal quantum computation to be achiev-
able [20], and we have discussed how to implement these operations partly based on ref. [19]
and partly based on some simple suggestions inspired by the discussions of the preceeding
chapters.

Needless to say we have merely scratched the surface. There are many more things that
may be worth investigating when considering a specific problem and the setup presented
here is by no means the only way to implement a surface code. For a general introduction
see ref. [19].
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Chapter 6

Conclusion

We have covered alot of ground and it is useful to take a moment to look back at the way we
came. Majorana fermions emerge in certain systems and they have peculiar properties. We
explored how Majorana fermions behave in tunnelling experiments and how the Majorana-
Cooper box is affected by adiabatic electron pumping.

It turned out that the tunnelling across a pair of Majorana fermions has amplitude Tiγ1γ2,
so flipping the parity of the state flips the sign of the amplitude, an effect which among other
things allows us to project to definite parity states via current measurements (chapter 2.

Pumping an electron across a pair of Majoranas yields a rotation iγ1γ2 of the state of the
system. This is probably what one would expect, but we also saw how this expectation fails
in more general setups.

These studies yielded a set of tools that allowed us to implement a surface code setup in
the final chapter. Here some basic quantum informational aspects were discussed as well as
implementation and operation of the surface code.

A lot of work may still be put into the surface code. Some of the gates we have suggested
may not be optimal and perhaps a different fundamental building block will turn out to be
preferable to the Majorana-Cooper box. For example, one can consider modified Majorana-
Cooper boxes where a larger number of topological nanowires are on the box. The simplest
extension is similar to spin-1 for three nanowires and ng = 1; you can go as high-dimensional
as you please by simply adding more wires. Parafermionic systems, if we can think of a
clever physical realization, may also turn out to be useful.

One should also not forget that implementing the setup experimentally will be a huge
challenge and perhaps this effort will reveal questions we have not yet thought to address.

From a more general point of view, I hope this thesis has provided some idea of the
interesting things that topological order can do. A lot of interesting questions came to mind
while doing this work and I doubt that the fascination of entanglement will be extinguished
any time soon.
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