
University of Copenhagen

Master Thesis
30ECTS

Majorana fermion representations of
magnetic impurity problems

Author:

Bingdong Chang

Supervisor:

Jens Paaske

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

September 2013

http://www.ku.dk




Contents

List of Figures v

1 Introduction 1

2 Majorana Representation 3

2.1 Pauli spin matrices and Majorana fermions . . . . . . . . . . . . . . . . . 3

2.2 Copy-swithcing operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Another access to construct the copy-switching operator . . . . . . 7

2.3 Reduction of spin-spin correlators . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Gauge-invariance considerations . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Interpretation of τα operators . . . . . . . . . . . . . . . . . . . . . 11

2.5 Wick’s theorem for spin operators . . . . . . . . . . . . . . . . . . . . . . 12

3 Application in dissipative spin dynamics 15

3.1 Majorana representation with Keldysh technique . . . . . . . . . . . . . . 16

3.2 spin-spin correlators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Application in Kondo effect in quantum dots 31

4.1 Apply Majorana representation in B=0 field . . . . . . . . . . . . . . . . . 32

4.2 Apply Majorana representation in finite magnetic field . . . . . . . . . . . 39

5 Summary 47

6 Acknowledgement 49

iii





List of Figures

1.1 Feynman diagram for 2-spin correlator in pseudo fermion representation. . 2

3.1 Keldysh contour cK , two branches represent normal time ordering contour
1 and reversed time ordering contour 2, thus any time point t2 on contour
2 is always larger than t1 on contour 1 . . . . . . . . . . . . . . . . . . . 16

3.2 The lowest order nonvanishing contribution to the self-energy Σ̂Ψ and
Ση, curly lines for propagator of the bosonic bath X, dashed lines for fΨ
spinors, dotted lines for Majorana fermions η. . . . . . . . . . . . . . . . . 22

3.3 Self-energy Σf , curly lines for propagator of the bosonic bath X, solid
lines for the ordinary fermion. . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Feynman rules in Keldysh space for boson fermion interaction vertices. . . 23

3.5 Two diagrams are equivalent, with Ψ propagator in upper one represent
11 component of G>Ψ, while the lower one represent 22 component of G>Ψ. 24

4.1 (left) Interaction vertex of Kondo Hamiltonian by Majorana representa-
tion as in (4.8), dashed lines for Majorana fermions and solid lines for
conduction electrons. (right) Kondo Hamiltonian in pseudo fermion rep-
resentation, dash lines represent pseudo fermions for impurity spin and
solid lines for conduction electrons. . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Second order spin flip term T
(2)
↑ can be written as interaction of con-

duction electrons (solid lines) and impurity Majorana fermions (dashed
lines), which in RPA is expanded as series of polarized bubbles. . . . . . . 35

4.3 Two different n-th order interaction processes with coefficient an and bn,
α = 1, 2, 3 stand for Majorana fermion indice ηα. Blue color stands for
Majorana fermion with same index coming in and going out, red color
means Majorana fermions change index after the process. . . . . . . . . . 37

4.4 T-matrix −πνFT (2)′′
↑ (ω) for ω > TK in low temperature, there is a diver-

gence point at ω = TK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 T-matrix −πνFT (2)′′
↑ (ω) in finite temperature, when T increases, the left

part when ω < TK is lifted and divergence point disappears eventually. . . 39

4.6 T-matrix −πρ0T
(2)′′
↑ (ω) with different calculation methods, blue line for

numerical renormalization group (NRG), green dotted line for one loop
renormalization group, and black dashed line for RPA series using Ma-
jorna representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 RPA for different interaction processes in Majorana representation (4.31)
under a finite B field, dashed line for Majorana fermion η3 and ordinary
fermion f , solid line for conduction electrons. Blue bordered box stands
for same kind of fermion on both sides, red bordered box stands for η and
f fermion on each side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



List of Figures vi

4.8 Different combination choices in four processes of RPA series in FIGURE
4.7. Blue color stands for same kind of fermion on both sides, while red
color stands for η and f fermion on each side. . . . . . . . . . . . . . . . . 42

4.9 Second order T-matrix −πνFT (2)′′
↑ (ω) calculated by RPA in Majorana

representation,with a finite magnetic field B = 5000TK . Kondo peak at
ω = B and asymptote at ω → ±∞ (4.45) can be observed. . . . . . . . . . 44

4.10 When B increases, B = 5000TK , 10000TK and 30000TK , the spurious

peak of −πνFT (2)′′
↑ (ω = 0) in FIGURE 4.9 is flattened. . . . . . . . . . . . 45

4.11 Solid blue line is for spectrum calculated by RPA in Majorana language,
dashed red line is the result by perturbative renormalization group method [17].
Two curves agree with each other in large frequencies. . . . . . . . . . . . 45



Chapter 1

Introduction

In many body physics, we use Green’s functions to study the time evolution of an

n-particle system, which is of great significance in condensed matter theory and particle

physics, from which we can construct more convenient diagrammatic techniques. For

n-particle Green’s functions, Wick’s theorem could be used to reduce into products of

single particle Green’s functions.

Sometimes we need to calculate spin correlators, e.g. in spin susceptibility problems

or Kondo model, and since spin operators are not bosons nor fermions, we cannot use

Wick’s theorem to simplify an n-spin correlator. Historically there are various attempts

to solve this problem [1–3], the method which is most often used is pseudo fermion

representation for spin operators, in which spin operator is written as ~S = 1
2cσ~τσσ′c

†
σ′

and constraints are added to the Hilbert space to remove unphysical states [1].

However, pseudo fermion representation can bring some calculation difficulties some-

times. Consider a simple case of two spin correlator in pseudo fermion language

G (Sx (τ) , Sx (0)) =
1

4

〈
Tτ

[
c†σ1 (τ) τxσ1σ′1

(τ) cσ′1 (τ) c†σ2τ
x
σ2σ′2

cσ′2

]〉
(1.1)

which is a four fermion correlator, if we draw the Feynman diagram of (1.1) as in

FIGURE 1.1, there will be 4 dash lines representing pseudo fermion propagators and

two four-leg vertices, thus vertex corrections make the problem complicated.

So we come to ask ourselves if there is a proper representation method for spin opera-

tors, by which Wick’s theorem still holds and tedious vertex correction could be avoided

in spin correlator calculations. It turns out that Majorana representation can solve these

two problems, which is the main topic of this thesis.
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Chapter 1. Introduction 2

Figure 1.1: Feynman diagram for 2-spin correlator in pseudo fermion representation.

Majorana representation for spin operators was firstly suggested by Martin in 1959 [4]

and later rediscovered in high energy physics, recently it was applied to condensed matter

physics in various topics [5–8, 13].

In this thesis, spin operators and spin correlators in Majorana language are firstly

constructed in chapter 2, then I will follow A Shnirman, et al (2003) [5] to show its

application in spin boson interaction in Chapter 3. Another application example in

Kondo model is given in Chapter 4, which I will follow M C Cano, et al (2011) [13].

Finally a brief summary would be given in Chapter 5.



Chapter 2

Majorana Representation

2.1 Pauli spin matrices and Majorana fermions

For spin 1
2 systems, we have Pauli spin matrices as

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (2.1)

which satisfiy the anticommutation relation and commutation relation for single spin as:

{σa, σb} = 2δab,

[σa, σb] = 2iεabcσc,
(2.2)

in which lower indices a, b, c are x, y, z respectively.

Now introduce Majorana fermions as ηi (i = x, y, z), they are real thus η†i = ηi, mean-

ing Majorana fermion is its own antiparticle. Majorana fermions are also fermions just

as ordinary fermions, thus satisfy anticommutation relation as:

{ηα, ηβ} = 2δαβ (2.3)

here α, β, γ = x, y, z. Normal spin matrices can be expressed as cross products of

Majorana fermions as ~σ = − i
2~η × ~η, or more transparently as:

σx = −iηyηz, σy = −iηzηx, σz = −iηxηy (2.4)

3



Chapter 1. Majorana representation 4

It can be checked easily that the commutation and anticommutation relations of spin

matrices can be reproduced by expression (2.4), for example

[σx, σy] = − [ηyηz, ηzηx] = −ηyηx + ηzηxηyηz = 2ηxηy = 2iσz,

{σx, σy} = 0
(2.5)

here we use the anticommutation relation (2.4).

Now if we introduce another Majorana fermion τx which is in a different Hilbert space

(some authors name as “copy-switching” operator, which we shall see),

τx = −iηxηyηz (2.6)

since τx is also Majorana fermion, τ2
x = 1 and τx = τ †x hold which can be checked. Then

using anticommutation relations of Majorana fermions, we can decompose spin operator

into product of τx and Majorana fermions as,

σα = τxηα (2.7)

This is a useful result, since τx commutes with Majorana fermions ηα, and as we will

verify later, τx is free of time evolution, then the spin-spin correlator can be reduced to

correlators of two Majorana fermions.

2.2 Copy-swithcing operator

Majorana fermions are real, thus we can construct by ordinary fermions as ηα =

c†α + cα. In fact it can be proved that the anticommutation relations of Majorana

fermions can be preserved in this bilinear construction:

ηαηβ =
(
cα + c†α

)(
cβ + c†β

)
= −

(
cβ + c†β

)(
cα + c†α

)
= −ηβηα, (α 6= β)

η2
α = cαcα + c†αc

†
α +

{
c†α, cα

}
= 1

(2.8)

Since each Majorana fermion can be expressed by ordinary fermions with different

indices, the whole Hilbert space is then expanded from 2 dimension to 23 = 8 dimension.
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However, we could reduce the dimension from 8 to 22 = 4 by define:

ηx = f † + f,

ηy = i
(
f † − f

)
,

ηz = g† + g

(2.9)

here f, f †, g, g† are ordinary fermions (these two ordinary fermions can be regarded as

two replicas of original spin, which doubles the dimension of the original Hilbert space).

According to (2.4), the Majorana fermions can be written as:

σx =
(
f † − f

)(
g† + g

)
;

σy =− i
(
g† + g

)(
f † + f

)
;

σz =
(
f † + f

)(
f † − f

)
= 1− 2f †f.

(2.10)

or by introducing σ+ = 1
2 (σx + iσy) and σ− = 1

2 (σx − iσy), we have:

σ+ = ηzf, σ− = f †ηz (2.11)

We may also investigate this construction in a more direct way by defining 4 states

as:

|↑a〉 ≡ |00〉

|↓a〉 ≡ |11〉 ≡ f †g† |00〉

|↑b〉 ≡ |01〉 ≡ g† |00〉

|↓b〉 ≡ |10〉 ≡ f † |00〉

(2.12)

in this notation, |sn〉 represents a single state, s =↑ / ↓ denotes the spin component and

n = a/b denotes the spin copies. The states in (2.12) can make up the basis of the 4

dimensional Hilbert space.

Now introduce the “copy-switching” operator τx by defining τx |sa〉 = |sb〉 and τx |sb〉 =

|sa〉 so that τ2
x = 1. Thus we can find following relations:

f = σ+τx, f † = σ−τx, ηz = σzτx. (2.13)
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which are proved as below:

f † |↑a〉 = |↓b〉 = f †g |↑b〉 = f †gτx |↑a〉 = f †
(
g + g†

)
τx |↑a〉 = σ−τx |↑a〉 ,

f † |↓a〉 = σ−τx |↓a〉 , f † |↑b〉 = σ−τx |↑b〉 , f † |↓b〉 = σ−τx |↓b〉
(2.14)

thus f † = σ−τx.

f |↓a〉 = |↑b〉 = g†f |↓b〉 = g†fτx |↓a〉 =
(
g + g†

)
fτx |↓a〉 = σ+τx |↓a〉 ,

f |↑a〉 = σ+τx |↑a〉 , f |↑b〉 = σ+τx |↑b〉 , f |↓b〉 = σ+τx |↓b〉
(2.15)

thus f = σ+τx.

ηz |↑a〉 = |↑b〉 = τx |↑a〉 =
(

1− 2f †f
)
τx |↑a〉 ,

ηz |↑b〉 = |↑a〉 = τx |↑b〉 =
(

1− 2f †f
)
τx |↑b〉 ,

ηz |↓a〉 =
(
g + g†

)
f †g† |00〉 = −f †

(
g + g†

)
g† |00〉 = − |↓b〉 =

(
1− 2f †f

)
τx |↓a〉 ,

ηz |↓b〉 =
(
g + g†

)
f † |00〉 = −f †

(
g + g†

)
|00〉 = − |↓a〉 =

(
1− 2f †f

)
τx |↓b〉

(2.16)

thus ηz = σzτx.

From above relations, we can find that,

ηx =f + f † = (σ+ + σ−) τx = σxτx,

ηy =i
(
f † − f

)
= i (σ+ − σ−) τx = σyτx

(2.17)

or write more compactly,

ηα = σατx, (α = x, y, z) (2.18)

Another important feature is that τx commutes nicely with “all the other” operators:

ηx,y,z, σx,y,z and f ,f † (but doesn’t commute with g and g†). This conclusion is proved

as below:

f † |↑a〉 = |↓b〉 = τx |↓a〉 = τxf
†g† |↑a〉 = τxf

†
(
g† + g

)
|↑a〉 = τxσ− |↑a〉 (2.19)

it is true for other states, thus f † = τxσ−, compare with (2.14), we can get

[τx, σ−] = 0,
[
τx, f

†
]

= [τx, σ−τx] = 0 (2.20)
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similarly,

[τx, σ+] = 0, [τx, f ] = 0;

[τx, σz] =
[
τx, 1− 2f †f

]
= 0, [τx, ηz] = [τx, σzτx] = 0.

(2.21)

and from (2.21), (2.22), it comes naturally that

[τx, σx,y] = 0,

[τx, ηx,y] = 0
(2.22)

From (2.4) and (2.18) it also follows that:

τx = σzηz = −iηxηyηz. (2.23)

The procedure above can be reproduced when interchanging f and g fermions and

the result is still the same, which suggests that two spin copies in (2.12) construction

are equivalent, and τx is the operator that transform one subspace into another, we can

restrict the 4 dimensional Hilbert space back to 2 dimension to get original spin.

2.2.1 Another access to construct the copy-switching operator

We have seen how copy-switching operator τx is constructed from writing Majorana

fermions by ordinary fermions. This result can also be achieved starting from the basis.

If we denote the states in (2.12) first, then we can construct spin operators using f and

g ordinary fermions as:

S+
a = gf, S−a = f †g†, Sza =

1

2

[
S+
a , S

−
a

]
=

1

2

(
gg† − f †f

)
;

S+
b = g†f, S−b = f †g, Szb =

1

2

[
S+
b , S

−
b

]
=

1

2

(
g†g − f †f

)
.

(2.24)

We should always be careful about the order of f, f † and g, g†, since they are fermionic

number operators, obeying ci |· · ·ni−1nini+1 · · · 〉 = (−1)Σi |· · ·ni−1 (ni − 1)ni+1 · · · 〉, in

which Σi =
∑i

j=1 nj . Thus we have

σ+ = S+
a + S+

b =
(
g + g†

)
f,

σ− = S−a + S−b = f †
(
g + g†

)
,

σz = 2 (Sza + Szb ) = 1− 2f †f

(2.25)
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using relations (2.4),

σx = σ+ + σ− =
(
g + g†

)(
f − f †

)
= −iηyηz,

σy = −i (σ+ − σ−) = −i
(
g + g†

)(
f + f †

)
= −iηzηx,

σz = 1− 2f †f = −iηxηy

(2.26)

thus we can easily solve for ηα which has the same result as in (2.9):

ηx = f + f †, ηy = i
(
f † − f

)
, ηz = g + g† (2.27)

In this part we reverse the procedure, but still construct the same Majorana fermions

and get the “copy-switching” operator τx = −iηxηyηz similarly. We may also find that

even though we change the position of a,b spins in (2.12) and repeat procedure in this

part, the result is still the same, which implies again that there is a symmetry on the

two spin sites (or f and g ordinary fermions).

2.3 Reduction of spin-spin correlators

In this part we shall see how the “copy-switching” operator τx could help in calculating

spin correlation functions, but before that we should specify the expectation value of

spin operator in Majorana language.

Consider a simple case in which a single spin interacts with an external B field, the

Hamiltonian is thus,

H = −BSz = −1

2
Bσz (2.28)

the expectation value 〈Sz〉 is

〈Sz〉 =
1

2
〈σz〉 =

1

2Z
Tr
[
σze

1
2
βBσz

]
=

1

2

∑
i,j 〈ni|σ

ij
z e−βHij |nj〉∑

i,j e
−βHij

=
1

2

e
βB
2 − e

−βB
2

e
βB
2 + e

−βB
2

=
1

2
tanh

(
βB

2

) (2.29)

here |ni〉 / |nj〉 = |↑〉 or |↓〉. If we write (2.28) in Majorana language, then

H =
i

2
Bηxηy =

i

2
B(f + f †)(f − f †) = Bf †f − B

2
(2.30)

we can observe the eigenenergies in Majorana language are still ±B
2 not surprisingly,

since ordinary fermion f is just a copy of the original spin. Then we can calculate
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expectation value of Sz as

〈Sz〉 =
1

2
〈σz〉 =

1

2

e
βB
2 − e

−βB
2

e
βB
2 + e

−βB
2

=
1

2
tanh

(
βB

2

)
(2.31)

which is the same as in (2.30), verifying Majorana representation in another way.

Now consider a general Hamiltonian of a spin system which depends on the spin

operators, e.g. a Zeeman Hamiltonian or Kondo Hamiltonian, since τx commutes with

them, it is then time independent dτx/dt = 0 based on the Heisenberg equation. For

a two spin correlator, we can decompose each spin into product of τx and a Majorana

fermion and obtain:

〈
σα (t)σβ

(
t′
)〉

=
〈
ηα (t) τx (t) ηβ

(
t′
)
τx
(
t′
)〉

=
〈
ηα (t) τxηβ

(
t′
)
τx
〉

=
〈
ηα (t) ηβ

(
t′
)〉

(2.32)

This is also true in multi-spin situation, for instance, a four spin correlator:

〈σα (t1)σβ (t2)σγ (t3)σδ (t4)〉 = 〈ηα (t1) ηβ (t2) ηγ (t3) ηδ (t4)〉 (2.33)

Thus the normal spin-spin correlators transform into the correlators of corresponding

Majorana fermions. If we write (2.32) one step further with α, β = x,

〈
σx (t)σx

(
t′
)〉

=
〈
ηx (t) ηx

(
t′
)〉

=
〈(
f (t) + f † (t)

)(
f
(
t′
)

+ f †
(
t′
))〉

(2.34)

We can clearly see that instead of 4-fermion correlator in pseudo fermion representa-

tion that gives a pair bubble diagram, the spin correlator is now reduced to a 2 fermion

correlator, when we draw the Feynman diagram, we just need to calculate self energy

in a lower order without vertex correction. Later we will testify the simplicity of this

method through calculations.

2.4 Gauge-invariance considerations

From relation (2.4), it is clear that the normal spin operators are invariant under a

gauge transformation of ηα → −ηα, in other words, this representation has a discrete

Z2 symmetry.
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Such gauge transformations can be realized by introducing the fourth Majorana

fermion τy as

τy = i
(
g† − g

)
(2.35)

then ηz → τyηzτ
−1
y = −ηz holds (this is because of the anticommutation relationship of

Majorana fermions, {ηz, τy} = 0). From this, it can be seen that when the dimension of

Hilbert space reduces from 8 to 4, we actually perform a symmetry transformation,or

23 → 22 = 8/2, which is guaranteed by the fact that Majorana fermion is bilinear

combination of ordinary operators.

Using τx and τy obtained above, we can also construct a third τ -operator τz as iτz =

τxτy, which follows

τz =
(

1− 2f †f
)(

1− 2g†g
)

(2.36)

we could easily verify that τz |sa〉 = |sa〉, τz |sb〉 = − |sb〉, so τz only changes the sign of

wavefunction on b site. After some algebra, we have the anticommutation relations as

{τz, ηα} = 0 and {τz, τx,y} = 0. So we have a gauge transformation as: ηα → τzηατz
−1 =

−ηα, and τx → τzτxτz
−1 = −τx. Now consider a time dependent gauge transformation:

|Ψ〉 → U |Ψ〉 in which,

U = e
i
2
πτyφ(t), φ (t) = 0, 1. (2.37)

which we can expand as below,using the fact that τ2
y = 1:

U =1 +
iπ

2
τyφ (t) +

1

2!

(
iπ

2
τyφ (t)

)2

+
1

3!

(
iπ

2
τyφ (t)

)3

+ . . .

=

(
1− 1

2!

(π
2
φ (t)

)2
+

1

4!

(π
2
φ (t)

)4
− . . .

)
+ i

(
π

2
τyφ (t)− 1

3!

(π
2
φ (t)

)3
) + . . .

)
= cos

(
πφ (t)

2

)
+ iτy sin

(
πφ (t)

2

)

=

1 if φ (t) = 0

iτy if φ (t) = 1

(2.38)
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then we have the transformed operators as:

ηα → UηαU
−1 =

{
ηα if φ (t) = 0

τyηατy
−1 = −ηα if φ (t) = 1

}
= (−1)φ(t)ηα

τx → UτxU
−1 =

{
τx if φ (t) = 0

τyτxτy
−1 = −τx if φ (t) = 1

}
= (−1)φ(t)τx

(2.39)

here anticommutation relations {τy, ηα} = 0 and {τy, τx} = 0 are used. So τx is no

longer time-independent under the gauge transformation of U .

Or in another way of thinking, the transformed state
∣∣∣Ψ̃〉 is:

∣∣∣Ψ̃〉 = U |Ψ〉 = e
i
2
πτyφ(t) |Ψ〉 (2.40)

thus the transformed Hamiltonian H̃ can be calculated as below

H̃
∣∣∣Ψ̃〉 = i∂t

∣∣∣Ψ̃〉 = (iU̇ + Ui∂t) |Ψ〉 = (iU̇U−1 + UHU−1)
∣∣∣Ψ̃〉

H → H̃ = iU̇U−1 + UHU−1 = H − π

2
τyφ̇ (t)

(2.41)

thus τ̇x = i
[
H̃, τx

]
6= 0 since [τy, τx] 6= 0, then the Majorana fermion correlator is no

longer gauge invariant according to (2.32):

〈
ηα (t) ηα

(
t′
)〉
→ (−1)φ(t)−φ(t′) 〈ηα (t) ηα

(
t′
)〉

(2.42)

So in order to make the Majorana spin correlator gauge invariant, we need to add a

phase factor of (−1)φ(t)−φ(t′) to fix the gauge, meanwhile the ordinary spin correlator is

still gauge invariant:

〈
σα (t)σβ

(
t′
)〉
→ (−1)φ(t)+φ(t)−φ(t′)−φ(t′) 〈ηα (t) τx (t) ηβ

(
t′
)
τx
(
t′
)〉

=
〈
σα (t)σβ

(
t′
)〉

(2.43)

2.4.1 Interpretation of τα operators

The τα operators can be interpreted in another way, which may be more transparent.

Consider about the construction in (2.12), the original space is expanded yielding two

spin copies f and g as |fg〉 = |f〉 ⊗ |g〉, state on each position could be either |0〉 or |1〉,
then we have |↑a〉 as |0〉f ⊗ |0〉g, and so on. By definition of “copy-switching” operator,
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we have:

τx : τx |00〉 = |01〉 , τx |11〉 = |10〉 , τx |01〉 = |00〉 , τx |10〉 = |11〉 ;

τy : τy |00〉 = i |01〉 , τy |11〉 = i |10〉 , τy |01〉 = −i |00〉 , τy |10〉 = −i |11〉 ;

τz : τz |00〉 = |00〉 , τz |11〉 = |11〉 , τz |01〉 = − |01〉 , τz |10〉 = − |10〉

(2.44)

We could easily find that τα operators can be written as tensorial products of two

spin matrices:

τx = 1⊗ σx, τy = σz ⊗ σy, τz = σz ⊗ σz (2.45)

giving properties analogous to Majorana fermions, not surprisingly: τα
2 = 1, τατβ =

iεαβγτγ , τ †α = τα.

2.5 Wick’s theorem for spin operators

We have mentioned in chapter 1 that Wick’s theorem cannot be applied directly for

spin operators, we shall see that with Majorana representation, spin operator correlators

can be transformed into familiar ordinary fermion correlators, in which case Wick’s

theorem still holds. First start with a simple example: an imaginary time Green’s

function of two spins 1 and 2 both in x-direction,

G
(
Sx,1 (τ1)Sx,2 (τ2) , Sx,1′

(
τ ′1
)
Sx,2′

(
τ ′2
))

=
〈
Tτ
[
Sx,1 (τ1)Sx,2 (τ2)Sx,2′

(
τ ′2
)
Sx,1′

(
τ ′1
)]〉

(2.46)

use Majorana representation for spin operators Sα = 1
2τxηα, remember τx is time inde-

pendent, we have

Eq(2.46) =

(
1

2

)4 〈
Tτ
[
τx,1ηx,1 (τ1) τx,2ηx,2 (τ2) τx,2′ηx,2′

(
τ ′2
)
τx,1′ηx,1′

(
τ ′1
)]〉

=

(
1

2

)4 〈
Tτ
[
ηx,1 (τ1) ηx,2 (τ2) ηx,2′

(
τ ′2
)
ηx,1′

(
τ ′1
)]〉

=

(
1

2

)4 〈
Tτ
[ (
f1 (τ1) + f †1 (τ1)

)(
f2 (τ2) + f †2 (τ2)

)
(
f ′2
(
τ ′2
)

+ f †2′
(
τ ′2
))(

f ′1
(
τ ′1
)

+ f †1′
(
τ ′1
)) ]〉

(2.47)



Chapter 1. Majorana representation 13

now expand the result and write in a compact manner,

Eq(2.47) =

(
1

2

)4 (
G

(2)
0

(
12, 1′2′

)
+G

(2)
0

(
1′2, 12′

)
−G(2)

0

(
12′, 1′2

)
+G

(2)
0

(
1′2′, 12

) )
=

(
1

2

)4 ( ∣∣∣∣∣G0 (1, 1′) G0 (1, 2′)

G0 (2, 1′) G0 (2, 2′)

∣∣∣∣∣+

∣∣∣∣∣G0 (1′, 1) G0 (1′, 2′)

G0 (2, 1) G0 (2, 2′)

∣∣∣∣∣
−

∣∣∣∣∣G0 (1, 1′) G0 (1, 2)

G0 (2′, 1′) G0 (2′, 2)

∣∣∣∣∣+

∣∣∣∣∣G0 (1′, 1) G0 (1′, 2)

G0 (2′, 1) G0 (2′, 2)

∣∣∣∣∣ )
(2.48)

In first line we have used the Wick’s theorem for fermions on each of the 2-fermion

Green’s functions. The results is somehow understandable since Majorana fermion has

no “arrow” diagrammatically, meaning the fermions can travel both forwards and back-

wards. We can imagine that for n-spin situation, we will get 2n Green’s function of

n-fermions, each of them can be decomposed into single particle Green’s functions using

Wick’s theorem, which will give (2n · n!) terms in total. Using the above routine, we can

thus use Wick’s theorem to simplify Green’s functions of spin operators.





Chapter 3

Application in dissipative spin

dynamics

By using Majorana representation, we have realized in chapter 2 that the relation

〈σα (t)σβ (t′)〉 = 〈ηα (t) ηβ (t′)〉 can be used to simplify spin correlation calculation some-

times, since 〈σα (t)σβ (t′)〉 =
〈
c†1′(t)τ

α
1′1(t)c1(t)c†2′(t

′)τβ2′2(t′)c2(t′)
〉

in pseudo fermion lan-

guage is of higher order and vertex correction is thus necessary (here c†1′ ,c1,c†2′ and c2

are Dirac fermions, τα1′1 and τβ2′2 are spin matrices respectively). While 〈ηα (t) ηβ (t′)〉 is

a single fermion Green function, we need to calculate the self energy only. In this part

we shall see how this method works in dissipative spin dynamics.

Spin relaxation in magnetic field can be described macroscopically by Bloch equation,

d

dt
~M = − ~B × ~M − 1

T1
(Mz −M0)~z − 1

T2
(Mx~x+My~y) (3.1)

in which ~M = (Mx,My,Mz) = (〈Sx〉 , 〈Sy〉 , 〈Sz〉) is the magnetization, 1/T1 and 1/T2

are relaxation rate and dephasing rate respectively. The three components of Bloch

equation are thus:

dMx

dt
= γ (MyBz −MzBy)−

Mx

T2

dMy

dt
= γ (MzBx −MxBz)−

My

T2

dMz

dt
= γ (MxBy −MyBx)− Mz −M0

T1

(3.2)

in which γ is gyromagnetic ratio for electron, M0 is the magnetization in steady state.

Consider an electron interacts with a bosonic bath [5], the Hamiltonian can be written

15
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Figure 3.1: Keldysh contour cK , two branches represent normal time ordering contour
1 and reversed time ordering contour 2, thus any time point t2 on contour 2 is always

larger than t1 on contour 1

as:

H = −1

2
Bσz −

1

2
Xσx +Hbath (3.3)

first term on the right hand side is Zeeman Hamiltonian, X is a fluctuating bosonic ob-

servable of the bath coupled to σx, Hbath determines the statistics of fluctuation of boson

field. We want to perform a calculation with −1
2Xσx as a perturbation using Majorana

representation, we shall see that the dissipation process of spin can be described by T1

and T2 just as Bloch equation suggests.

3.1 Majorana representation with Keldysh technique

Now we will use Keldysh technique as introduced in [10]. Consider the Green func-

tion of the bosonic bath on a Keldysh contour cK which is illustrated in FIGURE 3.1,

ĜX(t, t′) ≡ −i 〈TKX (t)X (t′)〉, here ĜX with a hat represents a matrix in Keldysh

space, TK is time ordering on Keldysh contour. The four components of GX can be

written out as below:

ĜX(t, t′) ≡

(
G11(t, t′) G12(t, t′)

G21(t, t′) G22(t, t′)

)
=

−i 〈TX (t)X (t′)〉 −i 〈X (t′)X (t)〉
−i 〈X (t)X (t′)〉 −i

〈
T̃X (t)X (t′)

〉
=

−i 〈TX (t)X (t′)〉 G<X

G>X −i
〈
T̃X (t)X (t′)

〉
=θ
(
t− t′

)−i 〈TX (t)X (t′)〉 G<X

G>X −i
〈
T̃X (t)X (t′)

〉+ θ
(
t′ − t

)−i 〈TX (t)X (t′)〉 G<X

G>X −i
〈
T̃X (t)X (t′)

〉
=θ
(
t− t′

)(G>X G<X

G>X G<X

)
+ θ

(
t′ − t

)(G<X G<X

G>X G>X

)
(3.4)
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here Gij component represents t and t′ on i, j contour respectively as in FIGURE 3.1,

thusG12 andG21 will give lesser and greater Greens function respectively, T is the normal

time order and T̃ is like a reversed time order. If we perform a linear transformation on

ĜX with a rotation of L = I + 1
2 (−σx + iσy), then

ĜX(t, t′)→L†ĜX(t, t′)L

=θ
(
t− t′

)( 0 0

G>X(t, t′)−G<X(t, t′) G<X(t, t′)

)
+ θ

(
t′ − t

)(0 G<X(t, t′)−G>X(t, t′)

0 G>X(t, t′)

)

=

(
0 θ (t′ − t)

(
G<X(t, t′)−G>X(t, t′)

)
θ (t− t′)

(
G>X(t, t′)−G<X(t, t′)

)
G<X(t, t′) +G>X(t, t′)

)

=

(
0 GAX(t, t′)

GRX(t, t′) GKX(t, t′)

)
(3.5)

here GAX , GRX are advanced and retarded Green’s functions that we are familiar with,

from which the spectrum of states can be calculated, while Keldysh component GKX is

a combination of greater and lesser Green’s functions, which contain information about

occupation of the states. Here different Green’s functions for boson are listed below for

convenience:

G>X(t, t′) =− i
〈
X (t)X

(
t′
)〉
,

G<X(t, t′) =− i
〈
X
(
t′
)
X (t)

〉
,

GAX(t, t′) =θ
(
t′ − t

) (
G<X(t, t′)−G>X(t, t′)

)
= iθ

(
t′ − t

) 〈[
X (t) , X

(
t′
)]〉

,

GRX(t, t′) =θ
(
t− t′

) (
G>X(t, t′)−G<X(t, t′)

)
= −iθ

(
t− t′

) 〈[
X (t) , X

(
t′
)]〉

,

GKX(t, t′) =G<X(t, t′) +G>X(t, t′) = −i
〈{
X (t) , X

(
t′
)}〉

(3.6)

from relations above, it is easy to observe that GKX correlation is symmetric for t ↔ t′,

while G>X − G<X is antisymmetric for t ↔ t′. Thus we can write the symmetric and

antisymmetric components SX and AX using Green’s functions in (3.6) as:

GKX =G<X +G>X = −2iSX

GRX −GAX =G<X −G
>
X = −2iAX

(3.7)

set t′ = 0, we can write SX and AX as function of time t as:

SX (t) =
1

2
〈{X (t) , X (0)}〉 ,

AX (t) =
1

2
〈[X (t) , X (0)]〉

(3.8)
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from which we can easily observe that 〈X (t)X (0)〉 = SX (t) + AX (t), with SX (t) and

AX (t) as symmetric and antisymmetric functions of time not surprisingly: SX (t) =

SX (−t), AX (t) = −AX (−t).

Now we have constructed Green functions of bosonic environment in Keldysh space

above. For the single spin, it can be represented using Majorana fermions which can be

further written as bi-combination of Dirac fermions, we will call these Dirac fermions

in expanded Hilbert space as f fermions, since Majorana fermions have no direction in

Feynman diagram, it would be convenient to use Bogolubov-Nambu spinor notations

as Ψ ≡
(
f, f †

)T
and Ψ† ≡

(
f †, f

)
. Like we did in the boson part, we can also define

Green’s function in Keldysh contour for spinor Ψ as
ˆ̂
GΨ = −i

〈
TKΨ (t) Ψ† (t′)

〉
, here

two hats in
ˆ̂
GΨ is used to indicate this is a 4 × 4 matrix, which is a tensorial product

of Keldysh and Nambu space which would be shown later. Using the definition of Ψ

spinor, we have the greater and lesser Green functions as:

Ĝ>Ψ(t, t′) =− i

〈(
f (t) f † (t′) f (t) f (t′)

f † (t) f † (t′) f † (t) f (t′)

)〉
,

Ĝ<Ψ(t, t′) =i

〈(
f † (t′) f (t) f (t′) f (t)

f † (t′) f † (t) f (t′) f † (t)

)〉 (3.9)

which are 2× 2 matrices, with these relations we can construct Green’s function
ˆ̂
GΨ in

Keldysh space in 4× 4 matrix form as below:

ˆ̂
GΨ(t, t′) =

(
Ĝ11

Ψ (t, t′) Ĝ<Ψ(t, t′)

Ĝ>Ψ(t, t′) Ĝ22
Ψ (t, t′)

)

=


−i

〈
T

(
f (t) f † (t′) f (t) f (t′)

f † (t) f † (t′) f † (t) f (t′)

)〉
i

〈(
f † (t′) f (t) f (t′) f (t)

f † (t′) f † (t) f (t′) f † (t)

)〉

−i

〈(
f (t) f † (t′) f (t) f (t′)

f † (t) f † (t′) f † (t) f (t′)

)〉
−i

〈
T̃

(
f (t) f † (t′) f (t) f (t′)

f † (t) f † (t′) f † (t) f (t′)

)〉


(3.10)
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perform a rotation analogously with
ˆ̂
L =

(
1̂ 0

−1̂ 1̂

)
, which is also a 4×4 matrix, we have

ˆ̂
GΨ(t, t′)→ ˆ̂

L†
ˆ̂
GΨ(t, t′)

ˆ̂
L =

 0̂ θ (t′ − t)
(
Ĝ<Ψ(t, t′)− Ĝ>Ψ(t, t′)

)
θ (t− t′)

(
Ĝ>Ψ(t, t′)− Ĝ<Ψ(t, t′)

)
ĜKΨ (t, t′)



=

〈
0̂ iθ (t′ − t)

({
f (t) , f † (t′)

}
{f (t) , f (t′)}{

f † (t) , f † (t′)
} {

f † (t) , f (t′)
})

−iθ (t− t′)

({
f (t) , f † (t′)

}
{f (t) , f (t′)}{

f † (t) , f † (t′)
} {

f † (t) , f (t′)
}) −i

( [
f (t) , f † (t′)

]
[f (t) , f (t′)][

f † (t) , f † (t′)
] [

f † (t) , f (t′)
])


〉

=


0̂

(
GAf (t, t′) 0

0 −GRf (t′, t)

)
(
GRf (t, t′) 0

0 −GAf (t′, t)

) (
−GKf (t, t′) 0

0 GKf (t′, t)

)


(3.11)

Now perform another rotation with
ˆ̂
L1 =

(
1̂

1̂

)
on

ˆ̂
L†

ˆ̂
GΨ

ˆ̂
L in last step,

ˆ̂
L†

ˆ̂
GΨ(t, t′)

ˆ̂
L→ ˆ̂

GΨ(t, t′) =
ˆ̂
L1

ˆ̂
L†

ˆ̂
GΨ(t, t′)

ˆ̂
L

=


(
GRf (t, t′) 0

0 −GAf (t′, t)

) (
−GKf (t, t′) 0

0 GKf (t′, t)

)

0̂

(
GAf (t, t′) 0

0 −GRf (t′, t)

)


(3.12)

we can observe that the diagonal terms in (3.12), which are retarded and advanced

Green’s functions, characterize the states, while the two off-diagonal terms are Keldysh

components containing information about occupation of fermionic states. Since
ˆ̂
GΨ has

such good structures, later we will use
ˆ̂
GΨ instead of

ˆ̂
GΨ.

We can construct the right handed and conjugate left handed Dyson equations in

Keldysh-Nambu space as below:(
ˆ̂
G
−1

Ψ,0(t, t′)− ˆ̂
ΣΨ(t, t′)

)
⊗ ˆ̂
GΨ(t, t′) =δ

(
t− t′

)
· ˆ̂1

ˆ̂
GΨ(t, t′)⊗

(
ˆ̂
G
−1

Ψ,0(t, t′)− ˆ̂
ΣΨ(t, t′)

)
=δ
(
t− t′

)
· ˆ̂1

(3.13)
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with
ˆ̂
GΨ,0 and

ˆ̂
ΣΨ as bare Green’s function and self energy, or in another form,

ˆ̂
G
−1

Ψ =
ˆ̂
G
−1

Ψ,0 −
ˆ̂
ΣΨ (3.14)

It should be noticed that we can perform other rotations to get the same
ˆ̂
GΨ, for ex-

ample, we can follow the fashion of Keldysh rotation [9], given that
ˆ̂
Gψ =

(
Ĝ11
ψ Ĝ12

ψ

Ĝ21
ψ Ĝ22

ψ

)
,

making use of the relations as below, which are easy to proof,

ĜRψ =Ĝ11
ψ − Ĝ12

ψ = Ĝ21
ψ − Ĝ22

ψ ,

ĜAψ =Ĝ11
ψ − Ĝ21

ψ = Ĝ12
ψ − Ĝ22

ψ ,

ĜKψ =Ĝ11
ψ + Ĝ22

ψ = Ĝ21
ψ + Ĝ12

ψ .

(3.15)

first we make a transformation from
ˆ̂
GΨ to ĞΨ as ĞΨ =

(
1̂

−1̂

)
ˆ̂
GΨ, define

ˆ̂
L2 as

ˆ̂
L2 = 1√

2

(
1̂ −1̂

1̂ 1̂

)
, which is like a 4×4 matrix form of Keldysh rotation, then we apply

ˆ̂
L2 on ĞΨ to get

ˆ̂
GΨ

Ğψ → ˆ̂
GΨ =

ˆ̂
L2Ğψ

ˆ̂
L†2 (3.16)

which can be checked is the same as in (3.12).

Now write Hamiltonian unperturbed from spin-boson interaction in (3.3) with relation

(2.10), we have a Hamiltonian that contains a quadratic term of f fermion with free

energy of B,

H = −1

2
Bσz + V = −1

2
B
(

1− 2f †f
)

+ V = Bf †f − 1

2
B + V (3.17)

remember components in (3.12) are:

G>f (t, t′) =− i
〈
f (t) f †

(
t′
)〉

G<f (t, t′) =i
〈
f †
(
t′
)
f (t)

〉
GRf (t, t′) =θ

(
t− t′

) (
G>X(t, t′)−G<X(t, t′)

)
= −iθ

(
t− t′

) 〈{
f (t) , f †

(
t′
)}〉

GAf (t, t′) =θ
(
t′ − t

) (
G<X(t, t′)−G>X(t, t′)

)
= iθ

(
t′ − t

) 〈{
f (t) , f †

(
t′
)}〉

GKf (t, t′) =G>X(t, t′) +G<X(t, t′) = i
〈[
f (t) , f †

(
t′
)]〉

(3.18)
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using the equation of motion theory on
ˆ̂
GΨ in Keldysh space, we can easily get(

i∂t · ˆ̂1−B ˆ̂σz

)
ˆ̂
GΨ,0(t, t′) = δ

(
t− t′

)
· ˆ̂1 (3.19)

here we use (i∂t −B)G
R/A
f = δ (t− t′), i∂tGKf = GKf , and ˆ̂σz =

(
σz

σz

)
to take care

of different signs of diagonal terms in (3.12). We can transform (3.19) to frequency

domain as,

ˆ̂
G
−1

Ψ,0 = ω · ˆ̂1−B ˆ̂σz (3.20)

Now we have constructed Green’s function of bosonic field and f fermions using

Keldysh technique, and we still need to have Majorana fermions in frame. Define Ĝη ≡
−i 〈TKη (t) η (t′)〉 for Majorana fermion η ≡ ηz, and we can write,

Ĝη =

(
GRη GKη

0 GAη

)
=

(
−iθ (t− t′) 〈{η (t) , η (t′)}〉 i 〈[η (t) , η (t′)]〉

0 iθ (t′ − t) 〈{η (t) , η (t′)}〉

)
(3.21)

with Dyson equation as below, in which Σ̂η is the self energy for Majorana fermions:

Ĝ
−1
η = Ĝ

−1
η,0 − Σ̂η (3.22)

since GRη (t, t′) = iθ (t− t′) 〈{η (t) , η (t′)}〉, using equation of motion theory we can easily

get,

i∂tG
R
η,0

(
t, t′
)

= δ
(
t, t′
) 〈{

η (t) , η
(
t′
)}〉

+ θ
(
t− t′

) 〈{
η̇ (t) , η

(
t′
)}〉

= 2δ
(
t, t′
)

(3.23)

similarly for advanced term GAη,0, and i∂tG
K
η,0 = 0, for η (t) is independent of time

according to Heisenberg equation. In the frequency domain, we have

Ĝ
−1
η,0 =

1

2
ω · 1̂ (3.24)

for simplicity we will write (3.20) and (3.24) in the following way without hats and define

τNambuz = ˆ̂σz, but keep in mind that Green functions in Keldysh space for Ψ spinors and

η fermions are 4× 4 and 2× 2 matrices respectively:

G−1
Ψ,0 = ω · 1−BτNambuz , G−1

η,0 =
1

2
ω · 1 (3.25)

Next we will evaluate self energy ΣΨ and Ση, the Feynman diagrams are illustrated

in FIGURE 3.2. First we can calculate a simple case Σf in FIGURE 3.3, in which
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Figure 3.2: The lowest order nonvanishing contribution to the self-energy Σ̂Ψ and Ση,
curly lines for propagator of the bosonic bath X, dashed lines for fΨ spinors, dotted

lines for Majorana fermions η.

Figure 3.3: Self-energy Σf , curly lines for propagator of the bosonic bath X, solid
lines for the ordinary fermion.

an ordinary fermion f interacts with boson field. Using Feynman rules in Keldysh

space [10], the ij component of self energy Σf can be written as:

Σij
f =

i

2
γnimγ̃

k
ljG

nk
X G

ml
f (3.26)

in which γnim and γ̃klj represent absorption and emission vertices in FIGURE 3.4, they

are third rank tensors, satisfying:

γ1
ij = γ̃2

ij =
1√
2
δij ;

γ2
ij = γ̃1

ij =
1√
2
σ1
ij .

(3.27)

summing up Keldysh indices in (3.26) we can calculate,
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Figure 3.4: Feynman rules in Keldysh space for boson fermion interaction vertices.

ΣR
f =Σ11

f =
i

2

(
γ1

11G
1k
XG

1l
f γ̃

k
l1 + γ1

12G
2k
XG

2l
f γ̃

k
l2

)
=
i

2

(
γ1

11G
11
XG

12
f γ̃

1
21 + γ1

11G
12
XG

11
f γ̃

2
11 + γ1

11G
21
XG

22
f γ̃

1
21 + γ1

11G
22
XG

21
f γ̃

2
11

)
=
i

4

(
G11
XG

12
f +G12

XG
11
f

)
=
i

4

(
GRXG

K
f +GKXG

R
f

) (3.28)

here we used the fact that 21 component Green’s functions G21
X and G21

f in Keldysh

space are zero. By a same procedure, the advanced and Keldysh components of the self

energy can also be calculated as below:

ΣA
f =Σ22

f =
i

2

(
γ1

22G
1k
XG

2l
f γ̃

k
l2 + γ2

21G
2k
XG

1l
f γ̃

k
l2

)
=
i

2

(
γ1

22G
11
XG

21
f γ̃

1
12 + γ1

22G
12
XG

22
f γ̃

2
22 + γ2

21G
21
XG

11
f γ̃

1
12 + γ2

21G
22
XG

12
f γ̃

2
22

)
=
i

4

(
G12
XG

22
f +G22

XG
12
f

)
=
i

4

(
GAXG

K
f +GKXG

A
f

) (3.29)

ΣK
f =Σ12

f =
i

2

(
γ1

11G
1k
XG

1l
f γ̃

k
l2 + γ2

12G
2k
XG

2l
f γ̃

k
l2

)
=
i

2

(
γ1

11G
11
XG

11
f γ̃

1
12 + γ1

11G
12
XG

12
f γ̃

2
22 + γ2

12G
21
XG

21
f γ̃

1
12 + γ2

12G
22
XG

22
f γ̃

2
22

)
=
i

4

(
G11
XG

11
f +G12

XG
12
f +G12

XG
22
f

)
=
i

4

(
GRXG

R
f +GKXG

K
f +GAXG

A
f

) (3.30)

since Σ<
f = 1

2

(
ΣK
f − ΣR

f + ΣA
f

)
, using results in (3.28), (3.29) and (3.30), we have

Σ<
f =

i

4

((
GRX −GRX +GAX

)
GKf +

(
GAX − 2G<X

)
GRf +

(
GRX + 2G<X

)
GAf
)

=
i

4

(
2G<X

(
GKf −GRf +GAf

)
+GRXG

A
f +GAXG

R
f

)
=
i

2
G<XG

<
f

(3.31)

the last two terms GRXG
A
f +GAXG

R
f in second line of (3.31) vanish when we integrate the

energy ε of G
R/A
X (ε) and G

A/R
f (ω − ε) on complex plane. Similarly we can derive Σ>

f =
i
2G

>
XG

>
f . The above analytic continuation results are similar to Langreth theorem [15].
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Figure 3.5: Two diagrams are equivalent, with Ψ propagator in upper one represent
11 component of G>Ψ, while the lower one represent 22 component of G>Ψ.

Now we want to calculate Ση and ΣΨ in FIGURE 3.2, if we remind ourselves of

the form of GΨ as in relation (3.9), and notice that two diagrams in FIGURE 3.5 are

equivalent,we can write

Σ>
η =

i

2
G>X

1

2
(1 − 1)G>Ψ

(
1

−1

)
=
i

4
G>X (1 − 1)G>Ψ

(
1

−1

)
(3.32)

Σ<
η =

i

2
G<X

1

2
(1 − 1)G<Ψ

(
1

−1

)
=
i

4
G<X (1 − 1)G<Ψ

(
1

−1

)
(3.33)

while ΣΨ should be a 2× 2 matrix as:

Σ>
Ψ =

i

4
λ̂G>XG

>
η , Σ<

Ψ =
i

4
λ̂G<XG

<
η (3.34)

in which λ̂ =

(
1 −1

−1 1

)
. Now using relations (3.28), (3.29) and (3.34), we have:

ΣR
Ψ(ε)− ΣA

Ψ(ε) =
i

4
λ̂

∫
dω

2π

((
GRX(ε+ ω)−GAX(ε+ ω)

)
GKη (ω) +GKX(ε+ ω)

(
GRη (ω)−GAη (ω)

))
=
i

4
λ̂

∫
dω

2π

((
GRX(ε+ ω)−GAX(ε+ ω)

)
hη (ω) +GKX(ε+ ω)

) (
GRη (ω)−GAη (ω)

)
=

1

4
λ̂

∫
dω

2π
Γη (ω)

((
GRX(ε+ ω)−GAX(ε+ ω)

)
hη (ω) +GKX(ε+ ω)

)
(3.35)

in which Γη (ω) = −2ImGRη (ω) = i
(
GRη (ω)−GAη (ω)

)
is the energy spectrum function

which is a δ-function. Here we used the relation GKη (ω) = hη (ω)
(
GRη (ω)−GAη (ω)

)
as-

suming the system in thermal equilibrium (fluctuation-dissspation theorem [11]), which

is easy to derive and hη (ω) = tanh
(
βω
2

)
. In this situation, the Keldysh Green’s function

contains no more information than the retarded ones, thus could be written in a compact

manner. Now if we only consider the range near ω = 0, since hη (ω) = −hη (−ω), we
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have hη (ω) = 0, (3.35) becomes:

ΣR
Ψ − ΣA

Ψ =
1

4
λ̂GKX = − i

2
λ̂SX (3.36)

similarly we can derive ΣK
Ψ as below,

ΣK
Ψ (ε) =

i

4
λ̂

∫
dω

2π

(
GRX(ε+ ω)GRη (ω) +GKX(ε+ ω)GKη (ω) +GRXG

A
η (ω)

)
=
i

4
λ̂

∫
dω

2π

(
GRX(ε+ ω)

(
GRη (ω)−GAη (ω)

)
+GAX(ε+ ω)

(
GAη (ω)−GRη (ω)

)
+GKX(ε+ ω)GKη (ω)

)
=
i

4
λ̂

∫
dω

2π
2iImGRη (ω)

(
GRX(ε+ ω)−GAX(ε+ ω) +GKX(ε+ ω)hη (ω)

)
→1

4
λ̂
(
GRX(ε)−GAX(ε)

)
, (ω → 0)

=− i

2
AX(ε)

(3.37)

since we have ΣR
Ψ and ΣA

Ψ analogous to (3.28) and (3.29),

ΣR
Ψ =

i

4
λ̂
(
GRXG

K
Ψ +GKXG

R
Ψ

)
ΣA

Ψ =
i

4
λ̂
(
GAXG

K
Ψ +GKXG

A
Ψ

) (3.38)

which will yield opposite sign for ΣR
Ψ and ΣA

Ψ, Using relation (3.36), we easily get:

ΣR
Ψ = − i

4
λ̂SX = −iλΓ, ΣA

Ψ =
i

4
λ̂SX = iλΓ (3.39)

in which Γ ≡ 1
4SX . Now we have written self energy components of Ψ spinors ΣR

Ψ,

ΣA
Ψ and ΣK

Ψ by bosonic Green’s functions AX and SX only, where Σ
R/A
Ψ related to the

symmetric one SX , while ΣK
Ψ related to antisymmetric AX .

Substitute (3.39) into Dyson’s equation (3.25), we get

G−1
Ψ =ω · 1−BτNambuz − ΣΨ

=


ω −B + iΓ −iΓ i

2AX − i
2AX

−iΓ ω +B + iΓ − i
2AX

i
2AX

0 0 ω −B − iΓ iΓ

0 0 iΓ ω +B − iΓ


(3.40)
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from which we have
∣∣G−1

Ψ

∣∣ =
(
ω2 −B2

)2
+ 4ω2Γ2, some simple algebra will give the

components of GΨ as

GKΨ =
1∣∣G−1
Ψ

∣∣
(
− i

2AX (ω +B)2 i
2AX

(
ω2 −B2

)
i
2AX

(
ω2 −B2

)
− i

2AX (ω −B)2

)

=

iAX

(
− (ω +B)2 ω2 −B2

ω2 −B2 − (ω −B)2

)
2
(

(ω2 −B2)2 + 4ω2Γ2
)

GRΨ =
1∣∣G−1
Ψ

∣∣
(

(ω +B + iΓ)
(
ω2 −B2 − 2iωΓ

)
iΓ
(
ω2 −B2 − 2iωΓ

)
iΓ
(
ω2 −B2 − 2iωΓ

)
(ω −B + iΓ)

(
ω2 −B2 − 2iωΓ

))

=
1

ω2 −B2 + 2iωΓ

(
ω +B + iΓ iΓ

iΓ ω −B + iΓ

)
(3.41)

similarly for GAΨ, and in total we have:

G
R/A
Ψ =

(
ω +B ± iΓ ±iΓ
±iΓ ω −B ± iΓ

)
ω2 −B2 ± 2iωΓ

GKΨ =

iAX

(
− (ω +B)2 ω2 −B2

ω2 −B2 − (ω −B)2

)
2
(

(ω2 −B2)2 + 4ω2Γ2
)

(3.42)

substitute (3.42) into the thermal equilibrium equationGKΨ (ω) = hΨ (ω)
(
GRΨ (ω)−GAΨ (ω)

)
,

we have

hΨ (ω) =
iAX

2
· 1

2iΓ
=
AX (ω)

SX (ω)
=

ΣK
Ψ (ω)

ΣR
Ψ (ω)− ΣA

Ψ (ω)
(3.43)

Using these results we are thus able to find Ση in FIGURE 3.2. Since

ΣK
η (ε) =

1

4

(
GRX(ε+ ω)−GAX(ε+ ω) + hΨ (ω)GKX(ε+ ω)

)
ΣR
η (ε)− ΣA

η (ε) =
1

4

(
GKX(ε+ ω) + hΨ (ω)

(
GRX(ε+ ω)−GAX(ε+ ω)

)) (3.44)

which are analogous to (3.35) and (3.37). Consider a narrow range near ω = 0, for

short-correlated noise ΣK
η = 0, using hΨ (ω) obtained in (3.43),

ΣR
η − ΣA

η =
1

4

(
−2iSX +

AX
SX

(−2iAX)

)
= −2i · SX

4

(
1 +

A2
X

S2
X

)
= −2iΓ̃ (3.45)
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Γ̃ depends on B when ω in narrow range near 0, which is defined as

Γ̃ ≡ SX (B)

4

(
1 +

A2
X (B)

S2
X (B)

)
(3.46)

similarly, we can solve Green’s functions of Majorana fermion η in Keldysh space. Firstly

from (3.44) we have

ΣK
η = 0, ΣR

η = −iΓ̃, ΣA
η = iΓ̃ (3.47)

substitute into Dyson’s equation (3.25),

G−1
η =

1

2
ω · 1− Ση =

(
1
2ω + iΓ̃ 0

0 1
2ω − iΓ̃

)
(3.48)

it’s easy to derive,

GR/Aη =
2

ω ± 2iΓ̃
, GKη = 0 (3.49)

thus by performing Keldysh technique, using thermal equilibrium equation, we can cal-

culate the components of self energy ΣΨ and Σf (FIGURE 3.2) in Keldysh space, which

are functions of symmetric and antisymmetric components of bosonic field SX and AX .

Then by kinetic equations, Green’s functions for Ψ spinor and η fermion in Keldysh

space can be derived, we will see in section 3.2 that transversal and longitudinal spin

susceptibilities can be calculated using above results.

3.2 spin-spin correlators

Now we can evaluate spin-spin correlators with knowledge of single-fermion Green’s

functions obtained in section 3.1. First consider a two fermion correlator in Keldysh

contour: Πxx ≡ −i 〈TKσx (t)σx (t′)〉. We know from (2.32) that it can be reduced to

Majorana fermion correlators, for example, the greater one Π>
xx as:

Π>
xx =− i

〈
σx (t)σx

(
t′
)〉

= −i
〈
ηx (t) ηx

(
t′
)〉

=− i
〈
f † (t) f

(
t′
)

+ f (t) f
(
t′
)

+ f † (t) f †
(
t′
)

+ f (t) f
(
t′
)〉

= (1 1)G>Ψ

(
1

1

) (3.50)
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since G>Ψ = 1
2

(
GKΨ +GRΨ −GAΨ

)
, use G

R/A
Ψ and GKΨ from (3.42),

Π>
xx =

i

4

AX + SX

(ω2 −B2)2 + 4ω2Γ2
(1 1)

(
− (ω +B)2 ω2 −B2

ω2 −B2 − (ω −B)2

)(
1

1

)

=
−iB2 (SX +AX)

(ω2 −B2)2 + 4ω2Γ2

(3.51)

similarly we can derive Π<
xx as

Π<
xx =

−iB2 (AX − SX)

(ω2 −B2)2 + 4ω2Γ2
(3.52)

Now consider iΠ>
xx,

(1) In the limit of weak noise or magnetic field dominates: Γ (B) � B, there are two

peaks ω = ±B in the spectrum, with dephasing rate as T−1
2 = Γ (B) = SX(B)

4 ∝〈
X2 (ω = ±B)

〉
, which is equivalent to the dephasing rate described in Bloch equation

in (3.1);

(2) In the opposite limit Γ (ω)� B in which bosonic bath dominates,

iΠ>
xx →

B2 (AX + 4Γ)

ω2 (ω2 + 4Γ2)
=
B2 (AX + 2ΓZ)

ω2
(
ω2 + 2Γ2

Z

) (3.53)

here ΓZ = 2Γ, near ω = 0 the antisymmetric component AX → 0, thus develops a single

peak at 2ΓZB
2/
(
ω2 + Γ2

Z

)
, the width of this peak as 2B2/ΓZ = B2/Γ (0).

Similarly, using results in (3.49) the longitudinal spin-spin correlator Πzz is directly

Π>
zz =− i

〈
σz (t)σz

(
t′
)〉

= −i
〈
ηz (t) ηz

(
t′
)〉

= G>η

=
1

2

(
GKη +GRη −GAη

)
=
−4iΓ̃

ω2 + 4Γ̃2

(3.54)

consider expectation value of σz

〈σz〉 =
〈

1− 2f †f
〉

= 1− 2nF (ω) =
eβω − 1

eβω + 1
= tanh

(
βω

2

)
= hη (ω)

hη (ω) =
AX (ω)

SX (ω)

(3.55)

then we can write Γ̃ as

Γ̃ ≡ SX (B)

4

(
1−

A2
X (B)

S2
X (B)

)
= T−1

2

(
1− 〈σz〉2

)
(3.56)
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from (3.54), (3.56), we have:

iΠ>
zz =

4T−1
2

(
1− 〈σz〉2

)
ω2 + 4T−2

2

(
1− 〈σz〉2

) (3.57)

introduce T−1
1 = 2T−1

2 , which is like the relaxation rate in Bloch equation. Consider a

narrow range near ω = 0, notice that when ω = 0, 〈σz〉 = 1, (3.57) could be rewritten

as below:

iΠ>
zz = 〈σz〉2 2πδ (ω) +

(
1− 〈σz〉2

) 2T−1
1

ω2 + T−2
1

(3.58)

It should be noticed that in the article [5], they have the form in (3.58), which seems

right in physical intuition, since the integral over energy ω will give an identity. However,

in my calculation, the (3.56) should be

Γ̃ ≡ SX (B)

4

(
1 +

A2
X (B)

S2
X (B)

)
= T−1

2

(
1 + 〈σz〉2

)
(3.59)

which results in

iΠ>
zz = 〈σz〉2 2πδ (ω) +

(
1 + 〈σz〉2

) 2T−1
1

ω2 + T−2
1

(3.60)

which is apparently different from the authors’ result (3.58), thus a clear explanation

still needs further investigation.

Now we are able to see that in a spin-boson perturbative regime, by using Majorana

representation, we can evaluate the dissipation of spin dynamics, which is characterized

by dephasing rate T−1
2 and relaxation rate T−a1 just as Bloch equation. In this process,

only first-order self energy are calculated diagrammatically without higher order terms

and vertex corrections [12], which simplifies calculation to a large extent.





Chapter 4

Application in Kondo effect in

quantum dots

In previous chapter, we have seen how Majorana representation could bring calculation

simplicity for spin-spin correlators, it’s natural to apply this method to Kondo model as

well, in which spin correlators are involved [13].

Kondo effect is a temperature dependent conductance phenomena in which a novel

electron scattering mechanism is involved - a spin flip interaction between the impurity

spin and conduction electrons.

Kondo effect is characterized with Kondo temperature TK , in which a divergence

happens and Kondo effect dominates. In low temperature limit T < TK (strong coupling

regime), the conductance is temperature scaling by renormalization group theory, when

two leads are symmetric, it reads,

G (T ) = G0

(
1− c1

(
T

TK

)2
)

(4.1)

in which c1 is a constant, G0 = 2e2/~ is conductance unit. When T > TK (weak coupling

regime), the conductance is

G (T ) = G0
c2

log2
(
T
TK

)
(4.2)

The total Hamiltonian in Kondo model is H = H0 +HK , with

H0 =
∑
k,σ,α

εkc
†
α,k,σcα,k,σ (4.3)

31
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is free Hamiltonian for electrons in the lead, α = left/right represents leads on different

side, thus it is symmetric with the same free energy εk on either side of the dot. The

Kondo Hamiltonian, which describes interaction of conduction electrons with magnetic

impurity in the dot, can be written as below:

HK =
1

4
J
∑
α

∑
σ,σ′,σ1,σ2

∑
k1,k2

(~σd · ~σσ1σ2)
(
c†dσcdσ′c

†
αk1σ1

cαk2σ2

)
(4.4)

in which σd and σσ1σ2 are spin operators for impurity and electron respectively. J is the

exchange interaction, in ferromagnetic case J < 0, the conductance will keep on increas-

ing when temperature decreases, while J > 0 for antiferromagnetic in which conductance

decreases when temperature T → 0. We will consider about antiferromagnetic situation.

For simplicity, define c0σ =
∑

k,α cαkσ/
√

2 summing over leads and momentum, and we

can rewrite (4.4) as:

HK =
1

4
J
∑
σ,σ′

∑
σ1,σ2

(~σd · ~σσ1σ2)
(
c†dσcdσ′c

†
0σ1
c0σ2

)
(4.5)

in order to calculate the conductance we need to calculate T-matrix, which can be

derived using equation of motion theory, and gives

T (τ) = −J
2
〈Sz〉 −

J2

4

∑
σ1,σ2

〈
Tτ

(
c0σ1 (τ)~σσσ1 · ~S (τ) c0σ2 (τ)† ~σσ2σ · ~S (0)

)〉
(4.6)

in which second term describes the spin flip process.

In this chapter, we shall see how Majorana representation could be used in Kondo

model, both in B = 0 and a finite Zeeman field.

4.1 Apply Majorana representation in B=0 field

When there is no external magnetic field, the total Hamiltonian is still H = H0 +HK .

From chapter 2 we know that spin operator can be written out by Majorna fermions

as ~σ = − i
2~η × ~η, as we shall see later that in Kondo model, a Majorna fermion cannot

scatter into itself, thus we choose to use the identity as η2 = 1
2 , thus we have relations

as,

~S = − i
2
~η × ~η

~S = τxη, with τx = −2iη1η2η3

(4.7)
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substitute into Kondo Hamiltonian, we have,

HK =J ~Sd
∑
σ1,σ2

c†0σ1
~σσ1σ2

2
c0σ2

=− iJ

2
η1η2

(
c†0↑c0↑ − c†0↓c0↓

)
− iJ

2
η2η3

(
c†0↑c0↓ + c†0↓c0↑

)
+
iJ

2
η3η1

(
c†0↑c0↓ − c†0↓c0↑

)
=− iJ0

2

(
c†0↑c0↑ − c†0↓c0↓

)
η†1η2 −

iJ

2

(
c†0↑c0↓ + c†0↓c0↑

)
η†2η3 −

iJ

2

(
c†0↑c0↓ − c†0↓c0↑

)
η†1η3

(4.8)

in the last step, we make use of the property of ηα = η†α. We may see that the inter-

action of conduction electron and impurity is rewritten as electron-Majoarana fermion

interactions, this will give a four-leg vertex diagrammatically as in FIGURE 4.1, instead

of 2 vertices by pseudo fermion representation, which is of a simpler form.

Now consider the T matrix in (4.6), which is a six fermion correlator in pseudo

fermion representation, we shall see in Majorana language it can be written as a four

fermion correlator. First remember that spin operators can be decomposed into products

of Majorana fermions and a “copy-switching” operator τx as σα = τxηα, with τx =

−iη1η2η3. Thus we can write spin correlation function as,

χ
(
~S (τ) , ~S (0)

)
=−

〈
Tτ

(
~S (τ) ~S (0)

)〉
= −〈Tτ (τx (τ) ~η (τ) τx (0) ~η (0))〉

=Gτx (τ)G~η (τ)
(4.9)

now the 4 fermion correlator χ
(
~S (τ) , ~S (0)

)
is written as product of a 2 fermion corre-

lator G~η (τ) = −〈Tτ~η (τ) ~η (0)〉 and Gτx , which is a sign function as

Gτx = −〈Tττx (τ) τx (0)〉 = −1

2
sgn (τ) (4.10)

where we used the identity τ2
x = 1

2 and anticommutation relation of τx as a Majorana

fermion. Then we could write the second order spin flip term in T-matrix (4.6) as:

T (2) (τ) =− J2

4

∑
σ1,σ2

〈
Tτ

(
c0σ1 (τ)~σσσ1 · ~S (τ) c0σ2 (τ)† ~σσ2σ · ~S (0)

)〉
=− J2

4
Gτx (τ)

∑
σ1σ2

∑
a,b

〈
Tτ

(
c0σ1 (τ)σaσσ1ηa (τ) c†0σ2 (0)σbσ2σηb (0)

)〉 (4.11)

from the second line in (4.11) we can easily see the spin flip term is now a 4 fermion

correlator. To be more specific, consider the second order component for spin up T
(2)
↑ (τ),
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Figure 4.1: (left) Interaction vertex of Kondo Hamiltonian by Majorana represen-
tation as in (4.8), dashed lines for Majorana fermions and solid lines for conduction
electrons. (right) Kondo Hamiltonian in pseudo fermion representation, dash lines rep-

resent pseudo fermions for impurity spin and solid lines for conduction electrons.

which can be written as below

T
(2)
↑ (τ) =− J2

4
Gτx (τ)

〈
Tτ

[
(c↓η1 − ic↓η2 + c↑η3) (τ)

(
c†↓η1 + ic†↓η2 + c†↑η3

)
(0)
]〉

=− J2

4
Gτx (τ)

(
1 1 1

)
M (τ)


1

1

1


(4.12)

the first line in (4.12) is because

〈0|
∑
a,σ1

c0σ1 (τ)σaσ1↑ηa (τ) = 〈0| (c↓η1 − ic↓η2 + c↑η3) (τ)

∑
b,σ2

c†0σ2 (0)σbσ2↑ηb (0) |0〉 =
∑
a,σ2

(
σbσ2↑

)T
ηb (0) c†0σ2 (0) |0〉 =

(
c†↓η1 + ic†↓η2 + c†↑η3

)
(0) |0〉

(4.13)

M (τ) is a matrix with 9 four-fermion correlator elements

M (τ) =


〈
c↓η1c

†
↓η1

〉
i
〈
c↓η1c

†
↓η2

〉 〈
c↓η1c

†
↑η3

〉
−i
〈
c↓η2c

†
↓η1

〉 〈
c↓η2c

†
↓η2

〉
−i
〈
c↓η2c

†
↑η3

〉〈
c↑η3c

†
↓η1

〉
i
〈
c↑η3c

†
↓η2

〉 〈
c↑η3c

†
↑η3

〉
 (4.14)

from which we can see the second order spin flip term can be written in terms of interac-

tion between impurity Majorana fermions and conduction electrons, if we draw Feynman

diagram as in FIGURE 4.2, the shaded box represents interaction part, e.g.the lowest

order contribution of perturbation would be a single bubble 〈σ1ηiσ2ηj〉 δ12δij (first term

on right hand side in FIGURE 4.2). If we take ramdom phase approximation (RPA),

total correlator can be expanded as a series of bubbles of all orders. For each bubble it

reads,

Π0η (τ) = G0c (τ)G0η (τ) (4.15)
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Figure 4.2: Second order spin flip term T
(2)
↑ can be written as interaction of conduc-

tion electrons (solid lines) and impurity Majorana fermions (dashed lines), which in
RPA is expanded as series of polarized bubbles.

since Majorana fermions are of zero free energy, while conduction electrons with εk free

energy, the propagators for conduction electron and Majorana fermion can be written

as below,

G0c (iω) =
1

iω
, G0η (iω) =

1

iω + εk
(4.16)

taking Matsubara sum of Π0η(τ), we can calculate,

Π0η(iωn) =
∑
k

∑
ikn

G0η(iωn − ikn)G0c(ikn − εk)

=
∑
k

∑
ikn

[nF (εk)Goη(iωn − εk)− nF (iωn)G0c(iωn − εk)]

=− 1

2

∑
k

1− 2nF (εk)

iωn − εk

=− 1

2

∑
k

tanh( εk2T )

iωn − εk
→ −1

2

∑
k

sgn(εk)

iωn − εk

(4.17)

here we used the fact that ωn is bosonic Matsubara frequency, in the last line tanh( εk2T )

tends to a sign function in low temperature limit. Consider a conduction band with half

bandwidth=D and density of states νF = 1/2D, we can write retarded part of (4.17) in
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real and imaginary parts as below,

ΠR
0η(ω) =− 1

2

∫ +D

−D
dεkνF (εk)Θ(D2 − ω2)sgn(εk)(

1

ω − εk
− iπδ(ω − εk))

=− νF
2

∫ +D

−D
dεkΘ(D2 − ε2k)

sgn(εk)

ω − εk
+
iπνF

2

∫ +D

−D
dεkΘ(D2 − ε2k)δ(ω − εk)

=− νF
2

(

∫ 0

−D
+

∫ ω−η

0
+

∫ D

ω+η
)dεk

sgn(εk)

ω − εk
+
iπνF

2

∫ +D

−D
dεkΘ(D2 − ε2k)sgn(εk)δ(ω − εk)

=
νF
2

log

∣∣∣∣ω2 −D2

ω2

∣∣∣∣+
iπνF

2
sgn(ω)Θ(D2 − ω2)

(4.18)

By observation from FIGURE 4.2 and equation (4.14), we may find 3 diagonal terms

in M (τ) are just single bubbles which can be expressed as Π0η, while 6 off-diagonal

terms are two bubbles connected by a four leg vertex with vertex strength as J/2.

J [Π0η ∗Π0η] (τ) = J

∫ β

0
dτ1Π0η (τ − τ1) Π0η (τ1) (4.19)

thus first two terms of RPA series for T
(2)
↑ (τ) would be

T
(2)
↑ (τ) = −J

2

4
Gτx (τ)

(
3Π0η + 6

J

2
Π0η ∗Π0η

)
(τ) (4.20)

Now we need to calculate the perturbation of all orders in RPA series. Since inter-

action process in off-diagonal terms has a coefficient 2 times larger than diagonal ones.

We may characterize n-th order interaction into 2 categories, in first kind of process,

Majorana fermions with same indices go in and out with a coefficient of an, while bn for

Majorana fermion changes its indice, as shown in FIGURE 4.3, from which we can find

the recursion rule as:

an = 2bn−1, bn = an−1 + bn−1 (4.21)

with initial value as a0 = 1, a1 = 0 and b0 = 0, b1 = 1, it’s not difficult to find

an + bn = 2n. Now T-matrix T
(2)
↑ can be written as below,

T
(2)
↑ (τ) = −J

2

4
Gτx (τ)

(
3Π0η +

J

4
6Π0η ∗Π0η + · · ·

)
(τ)

= −3J2

4
Gτx (τ)

∑
n=0

(an + 2bn)

(
J

2

)n
[Π0η ∗ · · · ∗Π0η]︸ ︷︷ ︸

(n+1)terms

(τ)

= −3J2

4
Gτx (τ) Πη (τ)

(4.22)
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Figure 4.3: Two different n-th order interaction processes with coefficient an and
bn, α = 1, 2, 3 stand for Majorana fermion indice ηα. Blue color stands for Majorana
fermion with same index coming in and going out, red color means Majorana fermions

change index after the process.

in which Πη(τ) is derived by the recursion relation as,

Πη(τ) =
Π0η

1− JΠ0η
(4.23)

Now we can summing up Matsubara frequencies for fermions to calculate second order

component of T matrix as below,

T
(2)
↑ (iωn) =− 3J2

16

1

β

∑
iν1

Gτx (iν1) Πη (iωn − iν1) eiν1τ

=− 3J2

4

1

2πi

∫
dτ

∮
C1+C2

dzΠη (iωn − z)nF (z) ezτ

=− 3J2

8

1

2πi

∫
dτ

∫ ∞
−∞

dε (Πη (iωn − ε+ iη)−Πη (iωn − ε− iη)) eετ

=− 3J2

8π

∫
dτ

∫ ∞
−∞

dε2Π′′η (iωn − ε)nF (ε) eετ

=− 3J2

8π

∫
dτ

∫ ∞
−∞

dω2Π′′η (ω2)nF (−ω2 + iωn) e(ω2−iωn)τ

=
3J2

8π

∫
dτ

∫ ∞
−∞

dω2Π′′η (ω2)nB (−ω2) e(ω2−iωn)τ

=
3J2

8π

∫ ∞
−∞

dω2Π′′η (ω2)

∫
dτnB (−ω2) e(ω2−iωn)τ

=
3J2

8π

∫ ∞
−∞

dω2Π′′η (ω2)
1 + 2nB (−ω2)

ω2 − iωn

(4.24)

in which ωn and νn are both fermionic Matsubara frequencies, Π′′η(ω2) stands for the

imaginary part of Πη(ω2). And it is easy to get the imaginary part of T-matrix T
(2)′′
↑ (ω)

from (4.24) as below

T
(2)′′
↑ (ω) =

3J2

8π

∫ ∞
−∞

dω2Π′′η (ω2) (−coth(
βω

2
))πδ(ω)

=− 3J2

8
Π′′η (ω) coth

(
βω

2

) (4.25)
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Still consider a conductance band with density of states (DOS) νF = 1/2D and half-

bandwidth as D, using (4.18) and (4.25), we can solve the final result for imaginary part

of second-order T-matrix as:

−πνFT (2)′′
↑ (ω) =− 3πνFJ

2

8
Π′′η (ω) coth(

βω

2
)

=
3π2ν2

FJ
2

8

tanh(βω2 )Θ(D2 − ω2)/2

(1− νF J
2 log(

∣∣∣ω2−D2

ω2

∣∣∣))2 +
π2ρ20J

2

4

[
tanh(βω2 )Θ(D2 − ω2)

]2 coth(
βω

2
)

=
3π2ν2

FJ
2

16

Θ(D2 − ω2)

(1− νF J
2 log(

∣∣∣ω2−D2

ω2

∣∣∣))2 +
[
πνF J

2 tanh(βω2 )
]2

(4.26)

if we consider a high cut-off ω � D, than the pole of equation (4.26) would be,

1− νFJ

2
log

D2

ω2
= 0 =⇒ ω = De

− 1
νF J ≡ TK (4.27)

in which TK is Kondo temperature, which is a scaling invariant for specified D and J

(in other words, the system posses universality). We can also write scaling equation in

order J2 as,

d(νFJ)

d(logD)
= −ν2

FJ
2 (4.28)

which is the same as the result by Anderson’s poor man’s approach [16]. Now consider

a situation when TK � ω, T � D, in this case, the energy spectrum in (4.26) can be

written as

−πρ0T
(2)′′
↑ (ω) =

3π2ν2
FJ

2

16

1

(1− νF J
2 logD

2

ω2 )2

=
3π2

16

1

(log D
TK
− log D√

ω2+T 2
)2

=
3π2

16

1

(log
√
ω2+T 2

TK
)2

(4.29)

in which we used the relation νFJ = 1/log D
TK

, we may find result in (4.29) leads to the

well known perturbative result for conductance G in (4.2).

The result for T-matrix when ω > TK is shown in FIGURE 4.4, when T is small,

there is a divergence point at ω/TK = 1. However, when T increases, the second term on

denominator of (4.26) starts to dominate and the divergence point moves left, as shown

in FIGURE 4.5, when T is finite, the divergence point will disappear finally.

We can also compare the above results with Numerical Renormalization Group method

and lowest order Renormalization Group method, as shown in FIGURE 4.6 [13]. we can
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Figure 4.4: T-matrix −πνFT (2)′′
↑ (ω) for ω > TK in low temperature, there is a

divergence point at ω = TK .

Figure 4.5: T-matrix −πνFT (2)′′
↑ (ω) in finite temperature, when T increases, the left

part when ω < TK is lifted and divergence point disappears eventually.

observe that when T > TK , Majorana representation technique has a better fit with

NRG result compared to lowest order renormalization group method.

4.2 Apply Majorana representation in finite magnetic field

In previous section we have discussed Kondo model without external magnetic field,

when a finite B field is present, we can study its effect on Kondo resonance. Introducing

Zeeman Hamiltonian HZ , remember that we can write Majorana fermions as η1 =
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Figure 4.6: T-matrix −πρ0T
(2)′′
↑ (ω) with different calculation methods, blue line for

numerical renormalization group (NRG), green dotted line for one loop renormalization
group, and black dashed line for RPA series using Majorna representation.

1√
2
(f + f †) and η2 = i√

2

(
f − f †

)
, then HZ is

HZ = BSz = −iBη1η2 = − i
2
B
(
f + f †

)
i
(
f − f †

)
= Bf †f − B

2
(4.30)

we can see Zeeman Hamiltonian is now related to the ordinary fermion f . Using same

method, Kondo Hamiltonian HK in (4.5) is now,

HK =
J

4

(
c†0↑c0↑ − c†0↓c0↓

)(
2f †f − 1

)
+
J

4

(
c†0↑c0↓ + c†0↓c0↑

)(
f − f †

)
η3

− J

4

(
c†0↑c0↓ − c†0↓c0↑

)(
f + f †

)
η3

=− J

2

(
c†0↑c0↓f

†η3 − c†0↓c0↑fη3

)
+
J

2

(
c†0↑c0↑ − c†0↓c0↓

)
f †f − J

4

(
c†0↑c0↑ − c†0↓c0↓

)
(4.31)

in which the last term describes the effect of magnetic field. We can also write second

order T matrix for spin up T
(2)
↑ in Majorana language, first consider M (τ) is now

M (τ) =


1
2

〈
c↓(f + f †)c†↓(f + f †)

〉
1
2

〈
c↓(f + f †)c†↓(f

† − f)
〉

1√
2

〈
c↓(f + f †)c†↑η3

〉
1
2

〈
c↓(f − f †)c†↓(f + f †)

〉
−1

2

〈
c↓(f − f †)c†↓(f − f

†)
〉

1√
2

〈
c↓(f − f †)c†↑η3

〉
1√
2

〈
c↑η3c

†
↓(f + f †)

〉
1√
2

〈
c↑η3c

†
↓(f
† − f)

〉 〈
c↑η3c

†
↑η3

〉


(4.32)
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substitute (4.32) into (4.12) and sum up nine elements in M (τ), we have

T
(2)
↑ (τ) = −J

2

4
Gτx (τ) (2

〈
c↓fc

†
↓f
†
〉

+
√

2
〈
c↓fc

†
↑η3

〉
+
√

2
〈
c↓η3c

†
↑f
†
〉

+
〈
c↑η3c

†
↑η3

〉
)

(4.33)

from which we can find there are 4 interaction mechanism, each can be expanded as

series of polarized bubble in RPA as in FIGURE 4.7, which is composed of two type of

pair bubbles, Π0η(ω) and Π0f (ω), since we have,

G0f (iωn) =
1

iωn −B
, G0c(iωn) =

1

iωn − εk
(4.34)

taking Matsubara sum, just as in (4.17),

Π0f (iωn) =
∑
k

∑
ipn

1

ipn − εk
1

iωn − ipn −B
= −

∑
k

(− nF (εk)

iωn −B − εk
+
nF (iωn −B)

iωn −B − εk
)

=−
∑
k

1− nF (B)− nF (εk)

iωn −B − εk
= −1

2

∑
k

tanhβB2 + tanhβεk2
iωn −B − εk

→
∑
k

1

iωn −B − εk
(sgn(B) + sgn(εk)) (T → 0)

(4.35)

in low temperature and finite magnetic field limit (ω,B � D), we can calculate the real

and imaginary parts of ΠR
0f (ω) as in (4.18),

ΠR
0f (ω) =− 1

2

∫ D

D
dεkνFΘ(D2 − ω2)(sgn(B) + sgn(εk))(

1

ω −B − εk
− iπδ(ω −B − εk))

=− νF
2

(

∫ 0

−D
+

∫ ω−B−η

0
+

∫ D

ω−B+η
)dεk(

sgn(B)

ω −B − εk
+

sgn(εk)

ω −B − εk
)

+
πνF

2
(sgn(B) + sgn(εk))δ(ω −B − εk)

=− νF (log |ω −B| − log |ω −B −D|) +
iπνF

2
(sgn(B) + sgn(ω −B))

=νF log

∣∣∣∣ω −D −Bω −B

∣∣∣∣+ iπνFΘ(ω −B)Θ(B)

(4.36)

Now denoting the process when f fermion (or η fermion) coming in and going out

with a coefficient An, the process when f fermion and η fermion on two ends with a

coefficient Bn, keep in mind that η cannot scatter into itself, we can write following



Chapter 3. Application in Kondo effect in quantum dots 42

Figure 4.7: RPA for different interaction processes in Majorana representation (4.31)
under a finite B field, dashed line for Majorana fermion η3 and ordinary fermion f ,
solid line for conduction electrons. Blue bordered box stands for same kind of fermion

on both sides, red bordered box stands for η and f fermion on each side.

Figure 4.8: Different combination choices in four processes of RPA series in FIGURE
4.7. Blue color stands for same kind of fermion on both sides, while red color stands

for η and f fermion on each side.

relations by observing RPA series in FIGURE 4.7.

〈
c↑ηc

†
↑η
〉

= Π0η + 2(
JΠ0η

2
)

+∞∑
n=0

An(
J

2
)n

〈
c↑ηc

†
↓f
†
〉

=

∞∑
n=0

Bn(
J

2
)n

〈
c↓fc

†
↑η
〉

=
∞∑
n=0

Bn(
J

2
)n

〈
c↓fc

†
↓f
†
〉

=

∞∑
n=0

An(
J

2
)n

(4.37)

now we need to calculate the coefficient An and Bn, from FIGURE 4.8 we have the

recursion rule as,

An = Π0f (An−1 +
√

2Bn−1)

Bn =
√

2Π0ηAn−1

(4.38)
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with A0 = Π0f and B0 = 0, write in a compact form as below

(
An

Bn

)
=

(
Π0f

√
2Π0f√

2Π0η 0

)(
An−1

Bn−1

)
=

(
Π0f

√
2Π0f√

2Π0η 0

)n(
Π0f

0

)
(4.39)

from which we can solve for An and Bn as,

An =
2−1−nΠ0f

(
−
√

Π0f +
√

Π0f + 8Π0η

) (
Π0f −

√
Π0f

√
Π0f + 8Π0η

)
n√

Π0f + 8Π0η

+
2−1−nΠ0f

(√
Π0f +

√
Π0f + 8Π0η

) (
Π0f +

√
Π0f

√
Π0f + 8Π0η

)
n√

Π0f + 8Π0η

Bn =−
2

1
2
−n√Π0fΠ0η

((
Π0f −

√
Π0f

√
Π0f + 8Π0η

)
n −

(
Π0f +

√
Π0f

√
Π0f + 8Π0η

)
n
)√

Π0f + 8Π0η

(4.40)

Although the results seem annoying, it turns out that when summing up contributions

of four processes in (4.37), the total perturbed bubble Π(ω), which is what we want to

investigate, has a relatively simple form as

Π(ω) =Π0η + 2
∞∑
n=0

(
J

2
)n
[(

1 + (
JΠ0η(ω)

2
)2

)
An +

√
2Bn

]
=

Π0η + 2Π0f + 3
2JΠ0fΠ0η

1− J
2 Π0f − J2

2 Π0fΠ0η

(4.41)

we should notice that from (4.18) and (4.36), when magnetic field goes to zero, with low

temperature and high bandwidth, Π0η ≈ Π0f , and (4.41) will be,

Π(ω) =
3Π0η + 3

2JΠ2
0η

1− J
2 Π0η − J2

2 Π2
η

=
3Π0η

1− JΠ0η
(4.42)

which is exactly the same as (4.23) that we have already calculated in zero magnetic

field case. Substitute (4.41) into (4.33), we finally have the second order T-matrix as,

−πνFT (2)′′
↑ (ω) =

πνFJ
2

8
sgn(ω)Im

(
Π0η + 2Π0f + 3

2JΠ0fΠ0η

1− J
2 Π0f − J2

2 Π0fΠ0η

)
(4.43)

from which we can plot the spectrum when B = 5000TK as in FIGURE 4.9. When

frequency ω goes to infinity, it was suggested in [17] that such asymptotes exist:

−πνFT (2)′′
↑ (ω) ≈ π2 3∓ 2σM

16log2
∣∣∣ ωTK ∣∣∣ , ω → ±∞ (4.44)
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Figure 4.9: Second order T-matrix −πνFT (2)′′
↑ (ω) calculated by RPA in Majorana

representation,with a finite magnetic field B = 5000TK . Kondo peak at ω = B and
asymptote at ω → ±∞ (4.45) can be observed.

in which M = 2 〈Sz〉 is the magnetization of impurity spin renormalized to 1. From

(4.44) we could easily get following limits:

− πνFT (2)′′
↑ (ω) ≈ π2 5

16log2
∣∣∣ ωTK ∣∣∣ , ω → +∞

− πνFT (2)′′
↑ (ω) ≈ π2 1

16log2
∣∣∣ ωTK ∣∣∣ , ω → −∞

(4.45)

these asymptotes can be easily verified in FIGURE 4.9. However we may also find a

peak when ω → 0, this divergence point is given by Π0η(ω) in (4.18), which is spurious

since when ω ≈ 0, there should be an asymptote [17] as,

−πνFT (2)′′
↑ (ω = 0) ≈ π2 1

16log2
∣∣∣ ωTK ∣∣∣ (4.46)

this spurious peak can be flattened when B increases, which is shown in FIGURE 4.10.

We may also compare the above spectral function with the result by perturbative

renormalization group scheme [17], in the limit of ω → ±∞, two curves agree with each

other perfectly according to the asymptotes (4.45), in low temperature limit, the RPA

result is not fully equivalent to perturbative RG scheme, which may be a consequence

of non-RPA contributions in the renormalization group method.

In this chapter, we followed the track of [13] and applied Majorana representation in

Kondel model. In the limit of |ω| � D, when magnetic field is zero, we could reproduce

pool man’s scaling result successfully. In finite magnetic field, the spectral function

calculated agrees with the result by perturbative renormalization group method in the
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Figure 4.10: When B increases, B = 5000TK , 10000TK and 30000TK , the spurious

peak of −πνFT (2)′′
↑ (ω = 0) in FIGURE 4.9 is flattened.

Figure 4.11: Solid blue line is for spectrum calculated by RPA in Majorana language,
dashed red line is the result by perturbative renormalization group method [17]. Two

curves agree with each other in large frequencies.

limit of B � ω � D and −D � ω � −B, however a spurious peak would occur on

ω → 0 limit.

It should be noticed that there are a few places of typos in the original article [13].

The last factor in (36) should be Im
ΠR0η(ω)

1−JΠR0η(ω)
; the second term in (37) should be

iπ ρ02 Sign(ω)Θ(D2 − ω2), which follows a (ρ0J)2Θ(D2 − ω2) term on the nominator in

(38). In (41), the third line should come with a minus sign. The final results are not

effected.





Chapter 5

Summary

In this thesis we discussed about Majorana representation for spin operators and its

application in spin correlator calculations.

Since there exist some difficulties in pseudo fermion representation, e.g. vertex cor-

rection and unavailability of Wick’s theorem, Majorana representation was constructed

for spin operators. By introducing a new “copy-switching” operator τx, we found that

the order of spin correlator can be lowered by a factor of 2 compared to pseudo fermion

representation, which can avoid cumbersome vertex corrections. It was also shown that

by writing correlator of spin operator in Majorana language, Wick’s theorem can still

be used.

Next we gave an example of how this technique can be used in spin-boson interaction

model. With Keldysh technique and thermal equilibrium condition, spin susceptibilities

Πxx and Πzz were calculated, which are just self energies in Majorana language instead

of pair bubbles, and the results suggested relaxation rate and dephasing rate as described

by classic Bloch equation.

Another example was given about Majorana representation in Kondo model. By

rewriting the Kondo Hamiltonian HK and spin flip T-matrix T
(2)
σ (τ), series of polarized

pair bubbles are drawn diagrammatically for T
(2)
σ (τ). The energy spectrum for conduc-

tion electrons was thus obtained by RPA both in zero magnetic field and a finite B field.

When B=0 and ω � D, we could reproduce pool man’s scaling result. When B 6= 0,

a Kondo peak appears at ω = B, and we have the asymptotes in large frequency limit,

which agrees with perturbative renormalization group method, however, in the limit of

ω → 0, a spurious point occurs which is related to RPA and needs further correction.
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We have examined Majorana representation is a useful tool to simplify our calcula-

tions, however, whether this technique can be successfully used in other perturbation

regimes and more complex spin systems still requires further investigations.
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