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English Abstract

The aim of this thesis was the examination of multiple parton interactions (MPI)
in Z → ll̄ + 2 jet processes at the hadron level. The determination of MPI in real
data samples taken by the ATLAS detector at the LHC in 2011 (

√
s = 7 TeV) was

the main focus of this study. Minimum bias data corresponding to an integrated lu-
minosity of 440.89 pb−1 and preselected muons data corresponding to an integrated
luminosity of 161.31 pb−1 were used to perform the analysis. Events passing sev-
eral selection criteria have been used to measure the fraction of MPI events fDP by
using the pT balance between pairs of jets. To do this different Monte Carlo (MC)
generators were used, namely Pythia and Sherpa. Eventually the amount of MPI in
the data samples was extracted by using a template method. Additionally, in order
to check the behaviour of the MC generators several properties were compared to
real data properties.
The result for the fraction of MPI obtained here can confirm an earlier study con-
ducted in 2012 on W → lν + 2 jet events. The main result for the fraction of MPI
obtained in this study is fDP = 0.062± 0.024 (stat.)± 0.009 (sys.).
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Dansk Resume

Formålet med denne afhandling er en undersøgelse af mange parton interaktioner
(MPI) i Z → ll̄ + 2 jet processer p̊a hadron niveau. I denne undersøgelse er der
hovedsageligt fokuseret p̊a bestemmelsen af MPI i data produceret af ATLAS detek-
toren ved LHC i 2011 (

√
s = 7 TeV). Minimum bias data svarende til en integreret

luminositet p̊a 440, 89 pb−1 og præselekteret muon data svarende til en integreret
luminositet p̊a 161, 31 pb−1 blev brugt til at udføre analysen. Begivenheder, som
opfylder bestemte udvælgelseskriterier, er blevet anvendt til at måle fraktionen af
MPI begivenheder fDP udfra forholdet i pT mellem par af jets. For at gøre dette blev
forskellige Monte Carlo (MC) generatorer anvendt, nemlig Pythia og Sherpa. Til
sidst blev mængden af MPI i dataen ekstraheret ved hjælp af en skabelon metode.
For at kontrollere adfærden af MC generatorerne blev adskillige af deres egensk-
aber sammenlignet med virkelige data. Resultatet opn̊aet for fraktion af MPI kan
bekræfte en tidligere undersøgelse gennemført i 2012 for W → lν + 2 jet begiven-
heder. Det vigtigste resultat for fraktion af MPI opn̊aet i denne undersøgelse er
fDP = 0.062± 0.024 (stat.)± 0.009 (sys.).
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Chapter 1

Introduction

High energy physics is the part of physics that aims at understanding and explaining
elementary particles and the interactions between them. Theoretically, particle
physics is described by the Standard Model, a model first introduced about 40 years
ago. It describes three of the four fundamental forces, namely the electromagnetic,
the weak and the strong force. The exchange particles of these forces are the
photon, the W± and the Z bosons and finally the gluon. The only force the
Standard Model does not describe is the gravitational force and so far no theory
was found that can describe the gravitational force and the phenomena described
by the Standard Model together. These phenomena are the outcomes of particle
physics experiments at particle colliders. However, in order to investigate particle
physics in ever greater detail, colliders with ever higher energies are required. The
most powerful particle accelerator to date is the Large Hardon Collider (LHC)
which is situated in Switzerland at the border to France and consists of two main
parts, the accelerator ring and the detector parts. The accelerator accelerates
particles to energies required to perform particle physics experiments while the
detectors record the outcomes of the particle collisions. In order to study particles
and their interactions in ever greater accuracy, higher and higher energies are vital.
At high energies the dominating force in particle processes is the strong force which
is also the reason why the LHC is sometimes referred to as a gluon collider. Gluons
are the strong force’s exchange particles and thus mediate it between strongly
charged particles. Most commonly when referring to particle collisions, a single
partonic interaction is meant. However, this does not always have to be the case.
There is also a considerable probability for more than one parton interaction per
proton-proton collision. Such an event is called a multiple parton interaction.
Earlier experiments like those conducted at the Tevatron have already indicated
that there is a non-negligible contribution from multiple parton interactions in
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8 CHAPTER 1. INTRODUCTION

proton-proton collisions. However, they are still not very well understood and this
makes further studies in this area necessary.

The main aim in this thesis is to gain a better understanding of multiple
parton interactions in proton-proton collisions. Furthermore, I will attempt to
determine how well Monte Carlo generators reproduce experimentally recorded
data. Whether the results from different generators confirm each other and which
variables are especially useful for the investigation of multiparton processes. The
obtained Monte Carlo simulations will be compared to real data which was recorded
in 2011 by the ATLAS detector. Finally the simulations will be used as so called
templates in order to determine the fraction of multiple parton interactions in real
data.

The first part of this study will serve as an overview over particle physics,
the standard model and other theoretical and phenomenological properties that
are important to know about for this study. The second part (Chapter three) will
introduce the ATLAS detector which is used to record experimental results and
some of the methods that are used to reconstruct specific properties. Chapter four
covers Monte Carlo generators; the programs that are to simulate real particle
collisions as accurately as possible. The final part, chapter five, will then present
the results obtained in this study. Processed experimental data will be shown as
well as results from Monte Carlo generators. The used generators will be compared
with each other as well as generator results with the real data. Finally, the fraction
of multiple parton interactions in the recorded data will be determined.



Chapter 2

Theoretical Background

This chapter will provide an overview over the theoretical background of particle
physics. First the Standard Model will be introduced and all the particles and in-
teractions associated with it. The succeeding sections about Quantum Field Theory
(QFT) and Quantum Chromodynamics (QCD) will introduce the strong force from
a more theoretical perspective. The chapter will close with a detailed description
of proton-proton collisions and the phenomena connected with them. In particu-
lar the last section of the chapter describes multiple parton interactions (MPI), a
phenomenon that is of major interest in this study.

2.1 The Standard Model

The Standard Model of particle physics [1, 2, 3] is a theory that describes all the
known elementary particles and the interactions between them. The interactions
between particles are mediated by exchange particles called gauge bosons. From
a mathematical point of view it is based on a SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge
theory. The current version of the Standard Model describes three of the four el-
ementary forces namely, the electromagnetic, the weak and the strong force. The
gravitational force, however, is missing and cannot be described by the Standard
Model. The search for a unification of all four forces into a single theory of every-
thing (TOE) (see Figure 2.1) is one of the main aims of particle physics research.
So far however it has not been possible to develop such a theory but there are many
promising approaches and much research is conducted on it. Additionally, there are
also theories like Supersymmetry (SUSY) [4] or additional extra dimensions [5, 6]
that aim at describing hypothetical particles or additional symmetries.
Theoretically the Standard Model is based on quantum field theory. It provides a
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10 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Unification of the fundamental forces [7]; A Theory of Everything would
be a Super Unification

superstructure for the single theories it incorporates. These theories describe die
aforementioned forces (electromagnetic, weak and strong) and the Higgs mecha-
nism. The theory describing the strong force is called quantum chromodynamics
and describes the interactions between elementary particles with colour charge. It
will formally be introduced in Chapter 2.3 since it is of large interest in this thesis.
Another pillar of the Standard Model is the electroweak interaction. It is a quan-
tum field theoretic gauge theory that unifies the electromagnetic and the weak force.
Finally the Higgs mechanism is the part of the Standard Model that describes the
origin of the masses of the particles.

2.1.1 Particles and Their Interactions

The particles contained in the Standard Model can be separated into two groups.
One representing fermions, those are the particles with half integer spin, the other
representing bosons, which are the particles with integer spin.
The first group, the fermions (see Table 2.1), can further be divided into two
groups - quarks and leptons. These two particle classes can, again, be divided into
three groups, often referenced to as generations. Every generation consists of four
fermions - two quarks and two leptons. Higher generations are considered to be
heavier copies of the lowest generation since the particles in higher generations
have exactly the same quantum numbers as the members of the lowest generation
with one difference, their mass. A muon for example acts in its interactions very
similar to an electron. Differences appear only due to the larger mass of the muon.
The fermionic constituents of the Standard Model, quarks and leptons, are both
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elementary particles, meaning, according to current knowledge they do not contain
a substructure. Aside from apparent differences between quarks and leptons, like
different masses or electric charges, only quarks interact strongly. In principal
there could be even more generations but to this day there has been no evidence
for further generations. On the contrary, a recent study [8] conducted in 2012
presented a very strong indication that, given a Standard Model Higgs boson at
mH ≈ 126 GeV, there are exactly three generations.
Almost all the matter in the Universe contains quarks of the first generation which
is due to the fact that, as aforementioned, larger generations are just heavier copies
of the lightest generation. Members of higher generations are not stable and thus
decay into members of a lighter generation. Quarks may be the constituents of all
the matter in the Universe however, they only appear in very certain combinations.
Single quarks for example do not represent stable matter particles. Even most
combinations of quarks do not represent stable particles. This is due to one of the
quantum numbers all quarks posses, colour. More on colour and the associated
interaction in Chapter 2.3.
Another property that makes the situation even more complex is the fact that
every fermion has an antiparticle. An antiparticle is an exact copy of the ’normal’
particle in terms of mass, spin and magnetic moment except for two differences.
The electric charge and the particle’s parity are the opposite of the ’normal’ particle.

Quarks
Particle Generation Mass [ MeV ] Electric charge [e] Interaction
up (u)

I
1.8− 3.0 2/3 strong, weak, EM

down (d) 4.5− 5.5 -1/3 strong, weak, EM
charm (c)

II
1, 275± 25 2/3 strong, weak, EM

strange (s) 95± 5 -1/3 strong, weak, EM
top (t)

III
173, 500± 0.6± 0.8 2/3 strong, weak, EM

bottom (b) 4, 180± 30 -1/3 strong, weak, EM

Leptons
electron e

I
0.511 −1 weak, EM

electron neutrino νe < 2 · 10−6 0 weak
muon µ

II
105.66 −1 weak, EM

muon neutrino νµ < 0.17 0 weak
tau τ

III
1, 776.82 ± 0.16 −1 weak, EM

tau neutrino ντ < 15.5 0 weak

Table 2.1: Fermions in the Standard Model [3], EM stands for electromagnetic; The
mass unit is given in natural units, meaning c = 1. Where no uncertainties on the
mass measurements are given they were omitted due to them being very small (in
the order of 10−6 or smaller) and to maintain a better overall view
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Gauge Boson(s) N Charge Range RS Interaction IP Gauge Group
Gluons (g) 8 Colour 10−15 1 Strong Q SU(3)
W±, Z boson 2 Weak 10−18 10−6 Weak Q, L SU(2)
Photon (γ) 1 Electric ∞ 10−2 EM EL U(1)
Graviton (hypo.) 1 - ∞ 10−40 Gravity Q, L, DM(?) ?

Table 2.2: Bosonic constituents of the Standard Model [3]; EM = electromagnetic;
N = Number of bosons; The range is measured in meters; RS = relative strength;
IP = interaction partners; hypo. = hypothetical; Q = Quarks; L = Leptons; DM =
Dark Matter; EL = electrically charged particles

The other group of particles, the bosons, contains the gauge particles. These are
the particles that mediate the elementary forces. In total the elementary forces
provide 12 gauge particles, or 13 with the hypothetical graviton, the gauge particle
of gravitation. Details on the gauge bosons can be seen in Table 2.2.

The exchange particle of the electromagnetic force is the massless photon. It only
couples to particles with an electric charge while not having an electric charge itself.
The force carriers of the weak force are the neutral Z (mZ ≈ 91.187 GeV) and the
charged W± bosons (mW ≈ 80.385 GeV) which account to three in total.
The strong force is mediated by a massless exchange particle called gluon. Just as
the particles they interact with, gluons carry a colour charge themselves. Colour is
a characteristic property of the strong force and all strongly interacting particles
(quarks and gluons) have a colour charge. However, where quarks only possess a
single colour, gluons have two colours, a colour and a, not necessarily corresponding,
anticolour. Considering that there are three colours (red, green, blue) and the same
number of anticolours (antired, antigreen, antiblue) the total number of colour
combinations gluons can take should be nine, however there are only eight different
states gluons can hold. One of the nine possible states would make the gluon a
colour singlet which could only interact with other colour singlet states. However at
very close distances particles like quarks have a colour and thus would not interact
with a colour singlet gluon. At very large distances on the other hand there is no
strong interaction any more (see Chapter 2.3.1). An illustration of the couplings
between quarks, leptons and the exchange particles can be seen in Figure 2.2. The,
so far only theoretical, exchange particle of gravitation is called graviton. If it exists
it will be a massless, spin 2 particle. It has not yet been discovered and it does not
seem as if it will be detected in the near future due to its very small cross-section.
Finally, there is one more boson predicted in the Standard Model, the Higgs
boson [10]. On the contrary to the other twelve bosons (eight gluons, three weak
bosons and one photon) the Higgs boson is not the result of gauge symmetry
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Figure 2.2: Feynman diagram of the interactions between the particles of the Stan-
dard Model [9]; The name originates from their inventor, Richard Feynman

and is thus not a force carrier. Nevertheless, it is a very important particle. It
is needed to break the electroweak SU(2) ⊗ U(1) symmetry which then assigns
mass to the Z and W bosons. With the introduction of Yukawa couplings it is
also explainable how fermions get their mass by interacting with the Higgs field.
The discovery of the Higgs boson is one of the main aims of the LHC. On the
4th of July 2012 the discovery of a new boson was announced. The new particle
shows all the properties of the sought after Higgs boson. The new boson was
found in a mass range the Standard Model Higgs boson was expected in and it
decayed, with about the correct frequency, through channels (e.g. H → W+W−)
that were predicted by theoretical calculations. However, it has not (yet) been
declared the discovery of the Higgs boson as the measured precision was not (yet)
high enough. The newly detected boson has, according to the results obtained
by the ATLAS detector, a mass of m ≈ 126.5 GeV [11] while CMS arrived at
m = 125.3 ± 0.4 (stat.) ± 0.5 (sys.) GeV [12]. Later in July, on the 31st of July
2012 both collaborations published updated results from additional data. The
ATLAS (CMS) collaboration was able to increase the significance to 5.9σ (5σ) and
update the mass measurement to m = 126.0 ± 0.4 (stat.) ± 0.4 (sys.) GeV [13]
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(m = 125.3± 0.4 (stat.)± 0.5 (sys.) GeV [14]). However, has not yet been declared
the sought after Standard Model Higgs boson since the two experiments (CMS and
ATLAS) reached a local significance of 5σ; however, a significance of 6σ is needed
for a new discovery.

2.2 Quantum Field Theory

The Standard Model describing our current knowledge of particle physics is math-
ematically founded on a theory called quantum field theory (QFT) [2, 15]. Quan-
tum field theories were first developed in the early twentieth century. They are
combinations of classical field theories, like electromagnetism, with quantum the-
ory (i.e. quantum mechanics) into a quantum field theory, in this case quantum
electrodynamics. Merging these two theories became necessary since quantum me-
chanics alone could not deliver satisfying answers to some of the questions posed at
the time, like how to describe physical systems with a varying number of particles.
Today, there exist two different kinds of quantum field theories; relativistic and non-
relativistic quantum field theories. The latter ones are of great importance in solid
state physics while the former are the ones that are important for particle physics.
The term relativistic means that the quantum field theory has been combined with
the special theory of relativity (STR).
There are a number of things in quantum field theories that are fundamentally dif-
ferent from classical physics. For one thing, in QFT particles and fields are described
by the same formalism; the Lagrange formalism. This is possible since QFT is a fur-
ther development of quantum mechanics. Another feature distinguishing QFT from
classical physics is the way the equation of motion is treated. In classical physics
a method called the principle of least action is used to determine the equation of
motion. However, to determine the equation of motion one first has to establish a
function describing the dynamics of a physical system [16, 17] called the Lagrangian
L. It is given by

L = T − V , (2.1)

where T and V are the kinetic and the potential energy of the system. If a particle,
described by the Lagrangian L, moves from a start- to an endpoint there are in
principle various possible paths. In order to determine the path actually taken by
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the particle it is useful to define a new function called action. It is defined by

S =

∫
dtL(t, x(t), ẋ(t)) . (2.2)

The action takes the dynamics of the system, represented by L, and allocates it with
a real number. The path can now be determined by minimising the action δS = 0.
This leads to the equation of motion

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 . (2.3)

If, instead of a single particle, a field is considered the Lagrange function must be
replaced by the Lagrangian density [18] in a volume element since the field fills
the volume element. The relation between the Lagrange density and the Lagrange
function is given by

L =

∫
d4xL(φ, ∂µφ) . (2.4)

The lagrange density depends on the quantum field φ(x, y, z, t) filling the space and
its first derivatives. Performing the same steps analogously to the classical case, the
equation of motion for quantum fields is obtained,

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0. (2.5)

However, as opposed to classical physics in quantum field theory there might be
several paths minimising the action. All these paths would be valid solutions and
thus would have to be taken into account in order to determine the correct equation
of motion. This is done by summing over all valid solutions by using a procedure
called the Feynman path integral formalism.

2.3 Quantum Chromodynamics

Quantum chromodynamics (QCD) [2, 19, 20] is the quantum field theory describing
the strong interactions of gluons and quarks. It is based on a non-abelian SU(3)c
gauge theory and thus comes with 32 − 1 = 8 exchange particles called gluons. The
strong interaction is one of the four fundamental forces in nature and since its first



16 CHAPTER 2. THEORETICAL BACKGROUND

introduction there has been much affirming evidence [21].
It was introduced to describe the binding of the quarks within protons and neutrons.
Initially quarks were considered as free particles which means that classically they
would have had to repel and move apart from each other, thus dissolving as a
composed particle. This is clearly not the case. Even worse, quarks, which were
explained as free particles, were never observed as free particles but only as part of
some larger particle consisting of several quarks. These composed particles came
in two categories, baryons and mesons. Baryons are particles consisting of three
quarks (or three antiquarks) while mesons contain a quark and an anti-quark.
However, there were also other indicators hinting that something with the existing
description of particle physics was not in order. Over time several new hadrons were
discovered. Some of those new particles however led to problems. The observed
∆++ = (u ↑, u ↑, u ↑) (the arrows denoting the spin) for example would have been
forbidden according to the Pauli exclusion principle. It states that fermions, like
quarks, which occupy the same space cannot match in all quantum numbers. The
fact that the ∆++ baryon was in fact observed resulted in the introduction of a new
degree of freedom called colour charge. There are three QCD colours named after
ordinary colours - red, green, blue - although they do not have anything in common
with them. The fact that there are exactly three might seem arbitrary but has been
confirmed experimentally by the measurement of the fraction Rhad [1, 19].

From a theoretical point of view QCD is represented by the following Lagrangian
density:

LQCD(q, A) = q̄(iγµDµ −m)q − 1

4
F a
µνF

µν
a . (2.6)

Inserting the covariant derivative

Dµ = ∂µ + igTaA
a
µ , (2.7)

the Lagrangian density can be rewritten as

L = q̄(iγµ∂µ −m)q − gq̄γµTagAaµ −
1

4
F a
µνF

µν
a . (2.8)

In more detail the Lagrangian is defined by the fermionic quark field q with q̄ being
the adjoint quark field. The γµs are the usual four Dirac matrices and the factor g
is the coupling constant of the strong interaction. Ta stands for the generator of the
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SU(3) gauge group. Aaµ are the bosonic gluon field of which there are eight. The
last factor, F a

µν , is the field strength tensor

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (2.9)

The terms defining F a
µν are the same as already described above expect fabc which is a

term called structure constant of the gauge group. The field strength tensor describes
a field in gauge theories and is also the term that causes the main difference between
quantum electrodynamics (QED) and QCD. QED is an abelian gauge theory for
which the commutator of the fields vanishes by definition. In non-abelian gauge
theories, like QCD, on the other side the commutator does not vanish and thus
leads to terms which indicate a self interaction of QCD’s exchange particles [22].

2.3.1 Asymptotic Freedom and Confinement

In quantum field theories like quantum chromodynamics, it is possible to express
physical observables by using perturbation theory. This means expressing the quan-
tity as a series; in the case here in powers of the coupling parameter αs. However,
this approach can only be used if the coupling constant is very small (� 1) so that
the series converges quickly enough. Depending on whether perturbation theory can
be used QCD is split into to regimes - perturbative (pQCD) and non-perturbative
QCD. While for pQCD calculations can be performed to obtain results, this is not
the case for non-perturbative QCD. Thus one has to fall back on phenomenologi-
cal models, like in the case of hadronisation. When calculating physical quantities
renormalisation requires the introduction of an arbitrary energy scale to remove ul-
traviolet divergences. Ultraviolet divergence refers to cases where an integral has
contributions that cause it to become infinite. In all these cases the infinite contri-
butions make any result meaningless because infinite, thus a cutoff scale is required
which removes these distorting contributions and allows a useful result. This leads to
the conclusion that the strong coupling parameter depends on this energy scale (see
Figure 2.3). Unlike in the case of the weak interaction where the energy dependence
is almost negligible it does have a large effect on the strong coupling parameter. The
large effect is caused by gluons which carry colour charge themselves and thus inter-
act with each other. In first order perturbation theory the strong coupling constant
is given by

αs(Q
2) =

12π

(33− 2Nf) · ln(Q2/Λ2)
. (2.10)
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Figure 2.3: Results from the HERA experiment directly confirming asymptotic free-
dom [23]

In this expression Nf is the number of participating quark flavours which is usually
between 3 and 6. Due to their large mass, heavy quarks are usually only very
rarely produced. Λ is the only free parameter in QCD. It has to be determined by
comparing experimental results with theoretical predictions.

The arbitrary energy scale Q2 also has a second meaning, it describes the distance
between interacting particles. The higher the energy of a parton the closer it can
approach another parton which might repel it. Thus for small distances, or large
values of Q2, the coupling between colour charged particles becomes weaker and
vanishes asymptotically. This means that in the limit Q2 →∞ quarks can be con-
sidered as free particles. For large distances however (small Q2 values) the coupling
becomes very strong, and increases further with growing distance. This phenomenon
of free quarks but only within bound composite particles, is called confinement. If
two strongly bound particles move too far apart from each other, the gluon holding
them together will split into two and produce a new qq̄ pair at the endpoints out of
the vacuum. The gluon splits into two because the energy stored between the two
connected partons increases with distance.
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2.4 Limitations and Open Questions

The Standard Model does a remarkably good job at describing particle physics. It
has frequently been confirmed by experimental results, however even though it does
already describe particle physics very well, there still remain open questions.
One of these open questions is whether the three forces of the Standard Model are
unified at high energies. So far the Standard Model unifies two of the three forces,
namely the weak and the electromagnetic forces, to the electroweak force. The
next step towards a grand unified theory (GUT) would be to include the strong
interaction. This could be done for example by using SU(5) or SO(10) symmetry
groups. This way it is also possible to unify the coupling constants for mass scales
higher than ΛGUT ∼ 1016 GeV to one single coupling constant. The GUT scale
ΛGUT is the energy scale above which all the four forces are believed to become
equally strong.
Of course, to fully describe all known forces, gravitation would have to be included
and even a GUT does not include gravitation. The problem with gravitation is
that at current energy scales it is too weak to have a discernible effect on physics
results. Only from the Planck scale (mp ∼ 1019 GeV) onwards does gravitation
play a considerable role. However, working at the Planck scale poses new problems
since general relativity which is the canonical theory of gravitation cannot be
expressed as a quantum field theory. This is due to the fact that gravitation is not
renormalisable. The great interest in the unification of all four forces comes from
the assumption that at the big bang all four forces were combined in one single
force.
Furthermore, the Standard Model is based on 18 free parameters and if massive
oscillating neutrinos are included on another 7 free parameters. This means 25
free parameters in total. The values of these parameters have to be determined in
experiments. This is at least considered as inelegant by many.
Neutrinos are an interesting topic by themselves. The Standard Model does predict
neutrino masses, however it cannot predict their exact values but only their mass
differences.
Another question arises from the asymmetry of matter and anti-matter. Astrophys-
ical experiments [24] have shown that 23% of the Universe consist of dark matter.
Another 72% consist of dark energy and only the remaining 5% of the Universe
consists of baryonic matter, which can be described by the Standard Model. This
asymmetry cannot be explained by CP violation alone.
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2.5 Proton-Proton Collisions

While at low energies colliding hadrons, like protons which are used at the LHC,
just scatter elastically the situation becomes much more complex at high energies,
like the ones achieved at the LHC (7 ≤

√
s ≤ 14 TeV). At these energies pro-

tons reveal a substructure which is made up of other (elementary) particles, namely
quarks and gluons. Gluons are the already mentioned exchange particles of the
strong force while quarks appear as two different types, as valence quarks and (vir-
tual) sea quarks. The valence quarks are the quarks that determine the particles
chemical properties while the sea quarks are the result of vacuum fluctuations. Par-
ticles arising from vacuum fluctuations are not permanent particles meaning that
they are created out of the vacuum and annihilate shortly after their creation. This
sort of behaviour is granted by Heisenberg’s uncertainty relation. Aside from the
valence quarks the sea quarks largely contribute to the physical properties (mass,
momentum, spin) of the proton.
Thus, in a pp collision at LHC energies the protons will interact with each other but
the actual physical processes will be carried out by the aforementioned constituents
of the proton, the partons. An illustration of a proton-proton collision and the ac-
companying processes can be seen in Figure 2.4. The figure shows that it is not a
hard interaction alone causing the particle spectrum recorded by particle detectors
but various different processes. The hard interaction is just the process defining the
collision since all hard processes are accompanied by secondary processes. These
secondary processes are radiative processes like initial state radiation (ISR) or final
state radiation (FSR). In ISR or FSR a parton emits a gluon or a photon prior or
after the hard interaction respectively. Additionally, QCD forbids the beam rem-
nant, the rest proton after the hard interaction, to remain in the colour charged
state it holds after the pp collision. In the following a more detailed description of
pp collisions will be presented. The processes defining an event is the hard scat-
tering processes. Two partons, one from each proton, annihilate into an exchange
particle which will decay again and thus producing final state particles. Such a hard
scattering process that is very likely at the LHC at the same time is for example
gluon-gluon fusion, or more specifically a process like gg → g → qq̄. However, such
a hard scattering process is always accompanied by secondary processes. These
accompanying processes are usually soft processes meaning that the transverse mo-
menta of the participating particles is comparatively small. Particles originating
from a hard interaction on the other side have rather high transverse momenta.
More specifically, the secondary processes comprise various different processes. For
one thing, the rest proton is no longer a colour neutral particle which it should be
according to QCD’s confinement property. In order to regain colour neutrality the
rest proton which is mostly called beam remnant will undergo a process called hadro-
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Figure 2.4: Schematic depiction of a single parton scattering in a proton-proton
collision [25].

nisation. However, hadronisation is not process only affecting the beam remanants
but all particles that participated or were created in the process. The coloured
particles recombine with other coloured particles in order to regain colourlessness.
These other coloured particles are either already existent through other processes or
created out of the vacuum, for example by splitting gluons. This process continues
until there are no more free coloured particles. Obviously the same has to happen
after the main process. After two partons annihilated into an exchange particle the
exchange particle again will decay into a permitted set of partons. Furthermore,
partons can emit gluons basically at any point of the process (of course only if ener-
getically permitted). The process of emitting a gluon prior to the hard interaction
is called initial state radiation while the emission afterwards is called final state
radiation. In real data the distinction between the two sorts of radiation is made
by determining roughly the pseudorapidity (see Chapter 3.1.1) of the resulting par-
ticles.
All these processes not directly associated with the hard interaction are often sum-
marised in the underlying event (UE). Even though there is no strict definition of it
’Everything but the hard interaction’ usually describes it very well.
From a theoretical point of view, the cross-section for a specific single parton scat-
tering process i, j → a, b in a pp collision can be described by

dσSPSij→ab =
∑
i,j

∫
dx1

∫
dx

′

1f
i
p(x1, µ)f jp (x

′

1, µ)dσ̂(ij→ab)(x1, x
′

1, µ) . (2.11)
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Figure 2.5: a) Single Parton Scattering (SPS): A single hard collision, b) Multiple
Parton Interactions (MPI): A hard collision accompanied by a second hard collision

More specifically such a specific process can be something like qq̄ → ll̄. The cross-
section is an expression for the likelihood of an interaction to occur. The single
terms are the two parton distribution functions (see Chapter 4.2) for the two par-
ticipating partons f ip(x1, µ) and f jp (x

′
1, µ). Here x1 and x

′
1 stand for the fraction of

the protons momentum that is being carried by the parton, while µ is the partonic
renormalisation scale. Often there is more than one possibility for the production of
a specific particle (e.g. production of a Z boson by different quark flavours), in this
case one has to sum over all those possibilities to calculate the total cross-section.
All the so far presented properties regarding pp collisions have only concerned sin-
gle parton scatterings (SPS). At LHC energies however, there is also a considerable
amount of events where the hard scattering process is accompanied by a second
parton-parton interaction. Figure 2.5 depicts both situations. In part a) a single
parton scattering is shown. It depicts the hard interaction (see ’hard scattering’
box in Figure 2.5) and the accompanying processes. The proton rests are the green
arrows, the blue spirals are ISR and FSR. Part b) of Figure 2.5 on the other hand
depicts a multiple parton interaction. It can be seen that in this case there are to
parton-parton interactions, one with the dark red arrows and the other with the
pink arrows. Multiple parton interactions are of great importance in this thesis and
will be introduced more thoroughly in the following chapter (see Chapter 2.6).
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Figure 2.6: Theoretical perception of a multiple parton interaction [27]. A multi-
ple parton interaction is considered as a hard scattering process accompanied by a
second parton-parton interaction. The figure shows a first primary hard interaction
(qq̄ → W+ → l̄ν) which is accompanied by second interaction (gg → gg)

2.6 Multiple Parton Interactions

Multiple parton interactions (MPI) as introduced in [26, 27, 28] are, together with
beam remnant interactions, the least understood part of proton-proton collisions.
A schematic depiction of a multiple parton process can be seen in Figure 2.6. MPI
describe the phenomenon when a hard primary interaction is accompanied by a sec-
ond scattering process. They are often split into two groups, soft and hard MPI.
Just as for jets, there is no fixed cut-off value separating soft and hard interactions
but the general rule is; if the resulting particles have a rather high transverse mo-
mentum (see Chapter 3.1.1) it is called hard MPI otherwise it is called soft MPI.
While hard MPI occur rather rarely, soft MPI are very frequent phenomenons. In
principal there can be even higher numbers of additional subprocesses which would
lead to triple or even higher parton interactions. The probability for these processes
is small and therefore the focus is usually on double parton scatterings (DPS)1.

For several reasons multiple parton interactions are an important field of study. A

1Often also called double parton interactions (DPI) or double parton scattering (DPS). In this
study MPI, DPS and DPI will be used interchangeably.
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short answer to the question why MPI are important to study is because the LHC is
basically a gluon collider. This is because the gluonic parton distribution function
is, by far, the most dominant at high energies and small longitudinal momentum
fractions (see Figure 4.2), thus the name gluon-gluon collider. More details on
parton distribution functions can be found in Chapter 4.2. At the same time as
the energies in particle colliders increase, so do the parton densities in the protons
and with higher parton densities the probability for MPI increases. However, this is
not the only reason for interest in this topic. MPI are also important for precision
measurements and pose as backgrounds in other areas, like the Higgs search as
well as in SUSY studies. Finally, the fact that they are theoretically not yet fully
understood makes studies in this area even more important in order to support
theorists in their development of new approaches.
Turning now to the more technical features of the description of MPI. The leading
order partonic cross-section of a hard scattering process above some pT is given by

σhard(pT ) =

∫ s/4

p2T

dσ

dp2
T

dp2
T . (2.12)

At zero momentum pTmin
→ 0 the differential cross-section diverges due to the

exchange of virtual massless gluons. To counter the problem of divergence, a lower
bound, a minimum momentum transfer pTmin

, is introduced. For reasonable pTmin

values however, the integrated gluon-gluon cross-section for example becomes very
large. In fact so large that it supersedes the total cross-section for the pp collision.
This might seem like a contradiction but it really is not, it only means that the
average number of gg-interactions in a single pp collision is larger than one. This
alone already indicates that MPI are not rare and this remark is only for gg processes.
Taking subprocesses including quarks into account even increases the probability for
MPI. As a result of the above the cross-section of the hard process alone and the
total cross-section is used to determine the expected number of partonic collisions
per event,

NMPI =
σhard

σtot
. (2.13)

The starting point for the theoretical description of MPI are single parton scatters
(SPS) (as depicted in Figure 2.7). A single parton scatter can be a usual QCD 2→ 2
process. The differential cross-section for such a process is given by:

dσSPSij→ab =
∑
i,j

∫
dx1

∫
dx

′

1f
i
p(x1, µ)f jp (x

′

1, µ)dσ̂(ij→ab)(x1, x
′

1, µ) . (2.14)
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Figure 2.7: Illustration of a Single Parton Scattering [27]. This figure shows the
no-MPI process generating the same final state as MPI in Figure 2.6.

This equation is based on the assumption that there are no parton correlations, also
called factorisation assumption. This is a very important assumption as it is applied
to single interactions where it is assumed that there is no correlation between the
two process participants; as well as to the case with MPI where it is assumed that
the two interactions are uncorrelated. The sum’s indices i, j run over the different
parton types in each of the colliding hadrons. The dσ̂(ij→ab)(x1, x

′
1, µ) term is a

subprocess cross-section which depends on the longitudinal momentum fractions
of the two incoming partons x1 and x

′
1 and the partonic renormalisation scale µ.

In order to calculate the cross-section of a specific process one must also take the
probability of merely finding such a parton into consideration. This is done by the
f(x, µ) terms. They are parton density functions and represent the probability of
finding the parton in question with a given longitudinal momentum x in a proton.
Following a rather phenomenological approach for the description of DPS one now
needs the joint probability for finding two partons in a proton H i,k(x1, x2, µA, µB).
Analogously to before, H i,k represents the probability of finding two partons with
specific momenta x1 and x2 in a proton while µ1 and µ2 are the hard scales of the
two hard subprocesses. Only little is known about the joint probability H i,k so
assumptions are required in order to proceed. The most common assumption is to
assume that the probability function factorises, i.e. assuming the partons are not
correlated,

H i,k
p (x1, x2, µA, µB) = f ip(x1, µA)fkp (x2, µB) . (2.15)
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The partons are now considered as (seemingly) independent, therefore one has to
introduce a constraint on the momentum fraction x. Obviously the sum of the
momenta of the two partons cannot be larger than the total proton momentum,
thus: x1 +x2 ≤ 1. This requirement can be added into the expression for H i,k

p using
the Heaviside step function Θ(x):

H i,k
p (x1, x2, µA, µB) = f ip(x1, µA)fkp (x2, µB)(1− x− y)Θ(1− x− y) . (2.16)

The Heaviside step function is defined by

Θ(x) =

{
0 x < 0
1 x ≥ 1 ,

(2.17)

and thus automatically takes care of the momentum constraint. Quite obviously
this means that this ansatz only works for small momenta fractions x1 and x2 which
is fortunately what is expected.
Finally, assuming that the two subprocesses are uncorrelated, the differential DPS
cross-section can be expressed as:

dσDPSY+Z =
m

2σeff

∑
i,j,k,l

∫
dx1

∫
dx2

∫
dx

′

1

∫
dx

′

2 H
i,k
p (x1, x2, µA, µB) (2.18)

×Hj,l
p (x

′

1, x
′

2, µA, µB)dσ̂Ai,j(x1, x
′

1, µA)dσ̂Bk,l(x2, x
′

2, µB) (2.19)

The additional factor m is a symmetry factor and equals one if the two subprocesses
are the same and two otherwise. The indices Y and Z represent the two different
systems undergoing the two 2 → 2 processes. In this thesis Y stands for the dijet
creating process and Z for leptonic process.
The total differential cross-section for a process like the one considered in this study
(Z → ll̄ + 2 jets) is of course the sum of the two possible processes creating such an
outcome,

dσ̂
(tot)
Y+Z(s) = dσ̂

(SPS)
Y+Z (s) + dσ̂

(DPS)
Y+Z (s) . (2.20)

This means the outcome can either originate from DPS or from a single parton scat-
ter accompanied by radiation processes like ISR or FSR. Using the same assumption
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used throughout this section, the total cross-section factorises to:

dσ̂
(tot)
Y+Z(s) = dσ̂

(dir)
Y+Z(s) +

dσ̂Y (s)× dσ̂Z(s)

σ̂eff (s)
. (2.21)

Rewriting this in a form more suitable for this analysis, the integrated cross section
is given by

∫
cuts

dσ̂
(tot)
Y+Z(s) =

∫
cuts

dσ̂
(dir)
Y+Z(s)+

1

σ̂eff (s)

(∫
cutsY

dσ̂Y (s)×
∫
cutsZ

dσ̂Z(s)

)
. (2.22)

In the case of MC simulations there are further aspects to be considered. The so
called impact parameter is one of these important aspects. It represents the degree
to which the transverse planes (in the order of 1 fm2) of the two collision partners
overlap. Obviously the transverse planes are the important areas since they are the
colliding areas. If the impact parameter is large it means the two transverse areas
do not overlap much and thus that the probability for MPI is rather small. If, on the
other hand, the impact parameter is small it indicates that there is a considerable
overlap of the two particles and thus there is a higher probability to observe MPI.
There are however some points that remain a concern. Using the factorisation
approach introduced earlier one is ignoring (very) possible strong correlations in the
longitudinal momenta of partons in the same proton. In recent time it has become an
increasing concern if this assumption should remain in use. There have been several
studies [28, 29] which argue that it is in fact a false assumption. If future results
support this view a new approach or rather a modified approach to the theoretical
description of MPI must be found.
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Chapter 3

The LHC and the ATLAS
Detector

The Large Hadron Collider (LHC) is the world’s largest particle accelerator and is
situated in Geneva, Switzerland at the border to France as seen in Figure 3.1. It
is operated by CERN1 and houses four major particle detectors, namely ATLAS2,
CMS3, LHCb4 and ALICE5. The LHC [30] is a ring collider with a circumference of
27 km and is situated about 100 m below the surface in the tunnel formerly used
for the Large Electron-Positron Collider (LEP). As of 2012 the LHC runs with a
beam energy of Ebeam = 4 TeV which sums up to a centre of mass (CM) energy of√
s = 8 TeV. In 2011 the LHC was still running with a center of mass energy of

ECMS = 7 TeV, thus Ebeam = 3.5 TeV per beam. On their way to the detectors the
particle beams are transported through the ring in beam pipes (see Figure 3.2). The
beam pipes are contained within a cryodipole. The cryodipole is a magnet system
that keeps the particle bunches on track on their way around the ring. The particle
beams that are eventually brought to collision do not consist of single protons but
of so called bunches. Bunches are groups of protons travelling along the beam pipe.
By design the distance between the bunches is approximately 7.5 cm. The proton
bunches are to consist of about 1.15 · 1011 protons [31] that travel approximately at
the speed of light (v ≈ c) and follow each other in about 25 ns. On average there
are about 25 particle interactions per bunch crossing. The values presented here are
design values and can differ during operation. In 2011 [31], the year the data used

1CERN = Conseil Européen pour la Recherche Nucléaire
2ATLAS = A Toroidal LHC Apparatus
3CMS = Compact Muon Solenoid
4LHCb = Large Hadron Collider beauty
5ALICE = A Large Ion Collider Experiment

29
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Figure 3.1: Geographical view of the LHC [32] and the participating experiments

in this thesis was recorded, the LHC operated with 1.5 ·1011 protons per bunch that
were separated by 50 ns.

Unfortunately, single protons travelling almost at the speed of light are not readily
obtainable. It takes several complicated steps and complex machines to accelerate
protons to these velocities (see Figure 3.3). The acceleration process begins with a
gas tank filled with H2 molecules. These molecules are split into single hydrogen
atoms and cleared of their electron using an electric field. The electron strapped
H2 molecules (protons) now have to be accelerated almost to the speed of light,
unfortunately, it is not possible to do this using a single accelerator, or rather, it
is possible but very inconvenient and uneconomical. A linear accelerator, would
require an enormously large apparatus which is not very convenient to build. A
cyclic accelerator called synchrotron on the other hand keeps the particles on their
tracks by inducing a magnetic field and accelerates the particles through an electric
field. However, a synchrotron can only operate in a specific range of particle ener-
gies, due to the limitations imposed by the magnets and the geometry of the ring.
The magnets are limited by the maximum field strength they can exert, while the
geometric constraint comes from the curvature of the ring. The solution is to use
several different synchrotrons of different size and accelerate the particles gradually.
The protons are first accelerated to 50 MeV using the LINAC2. This is a linear
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Figure 3.2: The LHC cryodipole [33] carrying the two beam pipes. The cryodipole
keeps the protons (yellow beams in the figure) on track on their way around the
ring.

accelerator which at the same time bunches the protons into packages. Afterwards
they are fed into the PS booster (Proton Synchrotron booster) to further accelerate
the bunches to 1.4 GeV whereupon the particles are accelerated to 26 GeV using
the PS. Before finally injecting the bunches into the LHC ring the bunches get their
final boost to 450 GeV by the Super Proton Synchrotron (SPS). The LHC then
does the final job of accelerating the bunches to their designated energy. That was√
s = 7 TeV in 2011,

√
s = 8 TeV in 2012 and, expectedly,

√
s = 14 TeV in 2014.

In order to estimate the number of particle interactions the detector luminos-
ity is calculated. The LHC is, by design, expected to achieve a luminosity of
L = 1034 1

cm2s
[31]. In 2011 an instantaneous luminosity of L = 3.6 · 1033 1

cm2s
[31]

was reached. It is calculated by

L = nb
n1n2

Aeff
f (3.1)

and describes as such the number of particle, or rather bunch interactions per time
and area. Hence, the higher the number of interactions per bunch crossing the larger
the luminosity. The luminosity is thus a product of the number of bunches nb with
the number of protons in bunch one n1 and two n2. f is the collision frequency and
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Aeff the effective interaction area, which is given by:

Aeff = 4πσxσy . (3.2)

The σ factors are the standard deviation of the transverse distributions of the in-
teracting beams. In addition, the luminosity can be used to determine the number
of expected events in a collider experiment by:

dN

dt
= L(t) · σp (3.3)

The above introduced luminosity L is not to be confused with the integrated lumi-
nosity L, defined by:

L =

∫ t1

t0

dt L(t) (3.4)

The integrated luminosity is a measure for the number of interactions happening in
a specific time range. High integrated luminosities are eagerly sought after, since it
means many interactions were observed and thus, much data was recorded. Since
the integrated luminosity L is obtained by integrating the luminosity L

[
1

cm2s

]
over

time the unit of the integrated luminosity is obviously an inverse area
[

1
cm2

]
called

(inverse) barn. The beams are collided inside the different detectors along the ring.
As mentioned at the beginning of this chapter, there are four major experiments
and two smaller ones. The aims of the different experiments are:

• ALICE: In this detector heavy ions are collided at up to
√
s = 2.76 TeV. The

aim of the examination of these pb-pb collisions is a deeper understanding of
a quark gluon plasma (QGP) [35].

• LHCb: Through the analysis of bottom quark events, CP violation is mea-
sured. This is done to gain a further understanding of the matter-antimatter-
asymmetry in the Universe [36].

• LHCf1: This LHC experiment uses particles generated in the ’forward’ (see
Chapter 3.1.1) direction to gain a deeper understanding of cosmic radia-
tion [37]. It is also used to gain experience in calibrating particle detectors
and the hard interaction models that are used to study cosmic radiation.

1LHCf = Large Hadron Collider forward
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Figure 3.3: Schematic view of CERN’s accelerator complex [34]

• TOTEM1: ’Forward’ (see Chapter 3.1.1) particles properties are studied to
gain further knowledge about cosmic events. The knowledge gained here is
used for the improvement of detector calibrations. Another aim is a precise
measurement of the total cross-section in pp collisions [38].

• MoEDAL2: First deployed in January 2011, the aim of this detector is the
search for magnetic monopoles, dyons or other highly ionising stable massive
particles (SMP) [39].

• CMS: CMS is one of the two general detectors. Its aim is to confirm prevailing
physical knowledge as well as exploring new physics [40].

The ATLAS detector is the other universal detector and has been left out here due
to its importance for this thesis. It will be introduced in more detail in the following
chapter.

1TOTEM = TOTal Elastic and diffractive cross-section Measurement
2MoEDAL = Monopole and Exotics Detector At the LHC
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Figure 3.4: Schematic view of the ATLAS Detector [43]

3.1 The ATLAS Detector

The ATLAS detector, as depicted in Figure 3.4, is the largest detector at CERN [41,
42]. It is 44 m long, has a diameter of 22 m and weighs about 7, 000 t. The detector
consists of a number of sub-detectors performing different jobs.

Moving radially outwards from the collision point (see Figure 3.5), particles first
pass the inner detector which is used for particle tracking. Thereafter particles pass
the calorimeters. There are two different types of calorimeters - electromagnetic
(E-CAL) and hadronic calorimeters (H-CAL). The difference between the two is
their aim and therefore their structure. The E-CAL focuses on measuring electro-
magnetically interacting particles while the H-CAL is aimed at strongly interacting
particles. Light particles, like electrons, will thus already get stopped in the E-CAL
by depositing all their energy in the calorimeter. Heavier particles, like hadrons, will
pass through the electromagnetic calorimeter as they do not deposit much of their
energy in the E-CAL. They will however get stopped in the hadronic calorimeter.
The last detector is the muon spectrometer. As the name already indicates its task
is the identification of muons which are the only identifiable particles that make it
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Figure 3.5: Depiction of different particles passing the ATLAS detector outwards in
the transverse plane [44]

this far because they hardly interact at all with the detector material in the E-CAL
and H-CAL. Nonetheless, there is one group of particles that cannot be detected
at all - neutrinos. These particles hardly interact with the detectors due to their
physical properties.
The ATLAS detector is constructed as a so called 4π detector which means it covers
almost the entire region around the collision point. However, there are limitations
preventing the otherwise complete coverage of the region around the interaction
point. The coverage region of the inner detector, for example, is already limited by
the beam pipe to pseudorapidities |η| < 2.5.

3.1.1 Detector Specific Definitions

Particle physics uses a very specific coordinate system in order to simplify working
in such an environment. The z-axis is aligned along the beam axis while the x-axis
points towards the centre of the accelerator ring. Consequently the y-axis points
upwards. The x − y-plane which is perpendicular to the beam axis stretches out
an area called transverse plane. The angle between a vector in the transverse plane
and the x-axis is called azimuthal angle φ. The x-axis is oriented towards the centre
of the LHC ring, thus a vector pointing parallel to the x-axis towards the centre of
the LHC ring would have an azimuthal angle φ = 0 with the x-axis. The angle a
particle has with the beam axis (z-axis) is called polar angle θ. A plot of the ATLAS
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Figure 3.6: Depiction of the ATLAS coordinate system [45]

coordinate system can be seen in Figure 3.6.
In particle physics the polar angle is almost always replaced by a different, more
suitable, variable called pseudorapidity η.

η = −ln tan

(
θ

2

)
(3.5)

Replacing the polar angle with pseudorapidity is motivated by the pseudorapidity
being invariant under Lorentz boosts. The definition of a so called ’forward’ particle
is closely connected to the pseudorapidity. ’Forward’ particles are particles travelling
very close to the beam axis, thus with high pseudorapidites. Using φ and η it is
possible to define a new variable R which determines the angular separation between
two particles.

R =
√

(φ1 − φ2)2 + (η1 − η2)2 (3.6)

The indices indicate the two particles that are considered. The transverse plane is
of considerable significance in particle physics which is why it is useful to define the
transverse momentum of particles.

pT =
√
p2
x + p2

y (3.7)
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Figure 3.7: Illustration of primary and secondary vertices.

The objects particle detectors are to measure have to originate from a particle
physics process, may this be a hard interaction or a radiative process. The point
where a particle originates from is called a vertex [46]. There are two different
types of vertices - primary and secondary ones (see Figure 3.7). A primary vertex
is a vertex created by a hard interaction, thus the charged tracks originating from
this vertex will have a high total pT . Charged Tracks are the trails particles leave
in the detectors when traversing them. In principle and especially in cases with a
large contribution from multiple proton interactions there can be various primary
vertices. In this study however, the primary vertex is considered as the one with
the maximal sum of transverse momenta of the charged tracks associated with it. A
secondary vertex on the other hand is created by particles decaying in the detector
after having already moved some distance (see Figure 3.7).

3.1.2 Inner Detector

The inner detector is the innermost part of the ATLAS detector and has as such a
relatively small dimension. Only 7 m long and 2.3 m in diameter does it still provide
a vital part of the detection process. Its task is the reconstruction of tracks and
vertices, primary and secondary (explained in Chapter 2.5). To gain information as
detailed as possible it is important that the inner detector has a high resolution. This
is achieved by dividing the inner detector into three components. A pixel detector,
a semi-conductor detector (SCT) and finally a transition radiation tracker (TRT)
(see Figure 3.8). These three parts composing the inner detector will be explained
in more detail in the following subsections. The momentum of the particles passing
the inner detector is measured by their bending in the applied 2 T magnetic field
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Figure 3.8: Construction view of the inner detector [48]

which is aligned parallel to the beam axis. The magnetic field is exerted by a
superconducting solenoid. Per definition the three different sub-detectors together
produce 43 space points for each track, 3 from the pixel detector, 4 from the SCT
and the remaining 36 from the TRT [47].

The Pixel Detector

The pixel detector is the innermost part of the inner detector and has the highest
resolution of the entire detector set-up. It can provide a resolution of (50× 400) µm
and can be seen as the white part at the very centre of the detector in Figure 3.4
and in Figure 3.8. It consists of three cylindrical layers around the beam axis and
two end caps which again consist of three disks. The different layers carry modules
which are arrays of pixels. In total there are 1, 744 modules (1, 456 in the three
barrels and 288 modules in the end-caps), each of which has a size of approximately
2× 6 cm. These modules further consist of 46, 080 pixels which are read out by 16
readout chips. Each read out chip covers an array of 18× 160 pixels [49]. The inner
detector’s read out channels accout for approximately 50% of the entire experiment’s
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read out channels. The information gained from the pixel detector is mainly used
to determine the positions of vertices.

The Semi-Conductor Detector (SCT)

The SCT [42], which can be seen in Figure 3.4 and Figure 3.8, consists of four
coaxial cylindrical layers and two end caps which cover a region of |η| < 2.5 and
1.4 < |η| < 2.5 respectively. Within this region the SCT provides a space resolution
of (R− φ)× z = (17× 580) µm. It measures charged particles using 15, 912 sensors
which are spread out over 4, 088 modules which provide about 6 million readout
channels. The working method of the SCT is similar to the pixel detector but
uses long, narrow semi-conducting silicon strips instead of pixels. Each silicon strip
measures 80µm× 12cm.

The Transition Radiation Tracker (TRT)

This is the last and outermost component of the inner detector as can be seen in
Figure 3.4 and Figure 3.8. As the other sub-detectors it consists of a cylindrical
barrel component and two end-caps. The TRT consists of 370, 000 drift straw tubes
which are aligned parallel to the beam axis. Each of these tubes is 1.44 m long
and 4 mm in diameter [42]. They are filled with a mixture of gases. The main
component being Xenon which makes up for 70% of the gas mixture. The other
30% are CO2 with 27% and O2 with 3%. If particles traverse a drift tube they will
ionise the gas. Since the drift tubes are kept on a potential difference of −1, 500 V
the electrons, which are the results of the ionisation process, will drift towards the
wire. Measuring the time it takes the electrons to reach the wire makes it possible
to determine their initial distance from the wire, called drift radius. Since there are
several layers of drift tubes it is possible to reconstruct the track of a particle using
measurements from all the tubes a particle traversed. In total, this detector has
about 400, 000 readout channels and covers a region of |η| < 2.0.

3.1.3 The ATLAS Calorimeters

The calorimeters of the ATLAS detector [50] measure deposited energy. Fur-
thermore, using the measured energy the missing transverse energy /ET can be
calculated. The calorimeters are situated around the inner detector and the
solenoid magnets. At the ATLAS detector the calorimeter is split into two parts, an
electromagnetic and a hadronic calorimeter. It makes sense to split the calorimeter
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Figure 3.9: A computer generated image of the ATLAS calorimeter [51]

into different components since the various objects created in particle collisions
interact differently with the detector material. However, the underlying working
principle is in both cases the same. Particles traversing a calorimeter will interact
with it and produce a shower of secondary particles which can be measured. In
general a calorimeter consists of two alternating parts, an active and and a passive
part. This construction method is also called sampling method. It is the active
part’s task to record all incoming particles and measure their energy while the
passive part has to produce the showering process. Therefore the passive part is
built of a very dense material like lead in order to provide the best possible shower
(development) while the active material is made out of liquid Argon (LAr). Liquid
Argon was used as active material due its resistance to radiation.

The Electromagnetic Calorimeter

The electromagnetic calorimeter [42] which is situated closer to the beam line than
its hadronic counterpart has the task of identifying and measuring electrons and
photons. It does this by stopping traversing particles which is already the motivation
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for the thickness of this detector part. Particles that are to be measured in the E-
CAL should not pass through the E-CAL but stay contained within it. Thus the
thickness of the E-CAL is chosen to be 24 radiation lengths (X0) for the central E-
CAL and X0 = 22 for the end caps. The E-CAL system consists of two main parts.
A barrel part which is situated around the inner detector and covers a region of
|η| < 1.475 (LAr el.mag. barrel in Figure 3.9) and two endcap calorimeters covering
1.375 < |η| < 3.2 (EMEC in Figure 3.9). The endcaps and the barrel part are both
constructed of alternating layers of active and passive material which are combined
into an accordion like shape. This construction method allows a full φ detector
coverage independent of a particle’s angle of incidence.
The central E-CAL region is split into three parts. For physical and technical
reasons the layers are built up of smaller cells (∆η ×∆φ) with different granularity
in the different layers. The first layer has a very fine segmentation (∆η × ∆φ =
0.0031× 0.098) which also makes it possible to distinguish between prompt photons
and photons produced in pion decay processes (π0 → γγ). The second layer has a
granularity of ∆η ×∆φ = 0.025 × 0.025 and a depth of 10 radiation lengths. It is
this second layer where the particles that are to be measured in the E-CAL deposit
most of their energy. The third and last layer part is to collect the remaining tails
of the electromagnetic shower. It is the least segmented detector part (∆η ×∆φ =
0.05× 0.025) with a thickness of only X0 = 2. Before particles enter the calorimeter
however they pass a presampler covering |η| < 1.8. It corrects particle properties
for energy losses they experienced when passing through the inner detector, the
cryostats and the solenoid before reaching the calorimeter.
Electrons entering the E-CAL interact with the electric field of the nuclei in the
passive material. They become diverted from their incoming direction and emit a
photon as a result of this (e− → e− + γ). Since this could also be interpreted as
slowing down electrons the process is called Bremsstrahlung. This process repeats
itself until there is not enough energy left for further bremsstrahlung processes.
Photons on the other hand are dominated by pair production processes (γ → e−e+).

The Hadronic Calorimeter

It is the hadronic calorimeter’s (H-CAL) task to measure and identify particles that
interact through the strong force. The particles of concern for the H-CAL, hadrons
(jets), are measured by stopping them, which is the same way particle properties are
measured in the E-CAL. The H-CAL can cover a total region of |η| < 4.9 but is split
into smaller sub-detectors. One of these sub-detectors covers the central barrel re-
gion |η| < 1.7 however, this sub-detector is itself again split into three components, a
central tile calorimeter covering |η| < 1.0 and an extended tile barrel on each side of
the central tile calorimeter covering 0.8 < |η| < 1.7 (see Figure 3.9). As mentioned
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earlier the working principle of the H-CAL is similar to the E-CAL however, it does
use some different materials. The main barrel tile calorimeter uses steel as absorber
material instead of lead as in the E-CAL. These (passive) absorbers alternate with
the active parts which are scintillator tiles. Aside from the barrel calorimeter there
are also two end-cap calorimeters called LAr hadronic end-cap (HEC) and LAr for-
ward (FCal) (HEC and FCal in Figure 3.9) which cover the region 1.5 < |η| < 3.2.
Both of them are constructed of alternating active and passive layers. Furthermore,
both of them also use liquid Argon as sampling material. They do however differ
in their choice of the passive material. In case of the HEC copper is used while the
FCal uses copper and tungsten. The HEC covers a region of 1.5 < |η| < 3.2 but
shows different granularities within this range. In the region of 1.5 < |η| < 2.5,
∆η ×∆φ = 0.1× 0.1 while between 2.5 < |η| < 3.1 a lower granularity is sufficient
∆η×∆φ = 0.2× 0.2. The forward calorimeter covers 3.1 < |η| < 4.9. It covers such
a large region because the H-CAL is also used in the determination of missing en-
ergy /ET . For such a measurement no (measurable) energy must escape the detector
undetected, thus the large range.
The processes generating the particle shower are not, as in the case of the E-CAL,
produced by the electromagnetic force but the strong force. Particles interact di-
rectly with the nuclei of the detector material via inelastic scattering. The working
principle of the H-CAL is more complicated than the E-CAL due to the higher
number of possibly occurring processes.

3.1.4 Muon Spectrometer

The outermost and largest part of the ATLAS detector is the muon spectrometer [42]
(see Figure 3.10). Its sole task is the identification and precise measurement of
muons. Muons are minimal ionising particles and as such they hardly interact with
the calorimeters. That is the reason why an entire sub-detector is required for them.
The muon spectrometer is situated in a toroidal magnetic field with a strength of
2 T. The magnetic field is used to bend the muon trajectories as they pass through
the spectrometer. The recorded trajectories are then used for the measurement of
the muon’s momentum in a region up to |η| < 2.7.
The spectrometer consists of four parts: Monitored drift tubes (MDT), cathode strip
chambers (CSC), resistive plate chambers (RPC) and thin gap chambers (TGC).
MDTs and CSCs are mainly used for precision measurements while the RPCs and
the TGCs are part of the Level1 muon trigger system. A trigger is used to make
rapid decisions about which events are to be recorded and which not. However, the
RPCs and TGCs are also used to measure the muon momentum perpendicular to
the transverse momentum measured by the MDTs and CSCs.
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Figure 3.10: Schematic view of the ATLAS muon spectrometer [52]

3.2 Object Reconstruction

Particle detectors cannot record pure physical processes. For one thing because
many of the occurring processes happen so fast that they cannot be recorded tech-
nically but what the detector can record are final state particles like hadrons and
leptons (see Figure 3.5). Of course the real data by itself cannot identify particles.
This is why object reconstruction algorithms are necessary in particle physics ex-
periments to interpret the raw data. Each particle interacts differently with the
different detector components. In the end the gathered data of each sub-detector
are taken and put together with the data from the other sub-detectors. Different
algorithms are used to combine and interpret (in terms of reconstruct objects) the
collected data.
In this section some important algorithms will be presented. Since reconstruction
and identification algorithms are by no means trivial procedures there exist several
different approaches. The focus here will be on the algorithms used in this study.
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Figure 3.11: Schematic depiction of a jet; The jet being the content of the black
cone [53]

3.2.1 Jets

Jets are not elementary particles, like leptons for example, but artificial products.
Electrons for example have lifetime that is long enough to detect them directly
while this is not possible in the case of quarks due to their colour confinement. If
partons are produced after a hard interaction (e.g. gg → g → qq̄) they will move
away from the interaction point and hadronise on their way. The particles created
in this process will be boosted roughly in the direction of the parent parton, so that
in end a group of particles moves in (roughly) the same direction. These particles
can be summarised into a single object called jet (see Figure 3.11).
In principle, jet algorithms come in two different types. There are cone and cluster

algorithms. Cone algorithms are rather simple algorithms following the idea that a
jet ideally looks and evolves like a cone (see Figure 3.11). To find jets they usually
begin by creating a list of proto-jets which usually are objects with a transverse
momentum pT above some threshold (seed) energy. Starting from the highest pT
proto-jet, a cone with a predefined opening radius R is constructed around it to
create the first jet. It is very probable that the highest pT proto-jet does not define
the centre of the jet, the constructed jet could thus neglect important objects that
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Figure 3.12: Depiction of cone and kT-jet algorithm. It shows a situation where
a cone algorithm constructs a jet but misses some relevant information due to the
fixed opening radius of the cone. The kT algorithm’s approach is more complex and
introduced in Chapter 3.2.1.

contribute to the jet. To avoid this, after the first version of the jet was created
an ET weighted centre is calculated and a new cone around the new centre is
constructed. This step is repeated until the jet centre is stable and does not change
any more. These jet creation steps are then repeated for all other proto-jets as well.
At the end, after all proto-jets have been transformed into real jets, it can happen
that jets are overlapping. There is no built-in method to avoid this, therefore in
a last step overlapping jets either have to be merged together or split into two
separate jets.
Cone algorithms do however have some weak spots. For one thing, cone algorithms
are purely driven by geometry. This can lead to the situation where the algorithm
creates a jet that neglects some of the information that actually belongs to the
jet (see Figure 3.12). Furthermore, in the basic version cone algorithms are not
infrared safe, which means that the emission of an infinitely soft parton changes the
number of detected jet (see Figure 3.13 (left)). Another cause of concern, which
can be seen on the right in Figure 3.13, is called collinear safety. The absence of
it describes the case when the splitting of a proto-jet into two collinear jets causes
the algorithm to ignore it because neither of the two new proto-jets surpasses the
threshold.

There are methods to improve several of the mentioned drawbacks (e.g. SIS-cone
algorithm), but since cluster algorithms were used in this study an in depth descrip-
tion of these algorithms will be omitted.
Cluster algorithms like the kT algorithm work by pairwise grouping nearby objects
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Figure 3.13: Left: Infrared safety; Right: Collinear safety [53]

first. Alternatively the grouping can also be done by grouping highest pT objects
first [54]. Pre-grouping objects to potential jets has some distinct advantages. Ob-
jects are now uniquely associated to their jet. This means that there is no need to
take care of splitting or merging jets since there are no overlapping jets.
The Anti-kT jet algorithm is the one used in this study, therefore an overview of the
working principles of the algorithm will follow. The algorithm is a further develop-
ment of the kT jet algorithm and the Cambridge/Aachen algorithm. The algorithm
begins by calculating the distances between all reconstructed tracks dij and the
distances between track i and beam B, diB [54]

dij = min(k2p
ti , k

2p
tj )

∆2
ij

R2
,

diB = k2p
ti .

(3.8)

where ∆2
ij = ∆φ2 + ∆y2. The factors kti and ktj are the transverse momenta of

the two particles and R is the radius parameter. The algorithm repeatedly calls
the above equations and minimises the distances. If dij is the minimum the two
objects are considered very close to each other and are thus merged together. If the
minimum is diB, i is turned into a jet and removed from the list of particles and
pseudojets because it means there are no more particles nearby that could sensibly
be merged together with this object. These steps are repeated until all objects are
contained within one of the resulting jets.
The parameter p in equation 3.8 is equal to minus one in the case of the Anti-kT
algorithm. When p = 0 or p > 1 the equations describe the Cambridge/Aachen and
the usual kT algorithm respectively.

3.2.2 Electrons

Electrons are identified by a method that uses information from the inner detector
(ID) and the electromagnetic calorimeter (E-Cal). The method is called Calorimeter-
seeded reconstruction [55]. As the name already indicates, at the beginning E-Cal
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Muon type
Standalone muons Combined muons Tagged muons

Staco family Muonboy Staco MuTag
MuID family Moore MuID MuGirl

Table 3.1: Muon reconstruction algorithms with respect to their family [57]

clusters with an energy of approximately 3 GeV are identified as potential electrons.
Secondly a potential cluster is matched with tracks in the inner detector. Since there
are always several different tracks the track that minimises ∆R =

√
∆φ2 + ∆η2 is

chosen to be the correct match. At a ET > 20 GeV and within the coverage region
of the inner detector (|η| < 2.5), approximately 93% of true electrons are selected
as electron candidates.
Since only E-Cal clusters and ID-tracks are used for the reconstruction, it can also
happen that other particles (e.g. jets) are falsely identified as electrons because
their signatures in the detectors are similar. Misidentification can be avoided or
at least reduced by using a cut-based method. Depending on how stringent the
selection should be there are three methods provided. These methods apply loose,
medium or tight cuts, which mainly concern the shape of the cluster and the quality
of the ID-track. The reason for the different methods is that the cuts will of course
also remove real electrons which might reduce the identification efficiency to an
intolerable level.

3.2.3 Muons

Muons can be identified in three different ways [56]. Either as standalone, combined
or tagged muons. The first type only uses the information from the muon spec-
trometer which is then extrapolated back to the beamline. In the case of tagged
muons the inner detector tracks the muons leave are matched with calorimeter in-
formation. The method used in this study is the one for combined muons. In this
case, the signatures the muons leave in the muon spectrometer are combined with
the tracks that are left in the inner detector. For the reconstruction of the different
types of muons there exist two main groups of algorithms. They are called Staco
and MuID (Muon identification). Each of them provides a separate algorithm for
each muon type (see Table 3.1).

Both algorithm groups show very similar performance in terms of reconstructing
efficiency. There are however some small differences. Both algorithms show a drop
in reconstruction efficiency for combined muons as compared to standalone muons
while the fake rate also decreases. The fake rate is the rate at which other par-
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ticles are falsely identified as muons. While both algorithms behave similarly for
low transverse momenta, MuID does perform better than Staco for high transverse
momenta in terms of fake rate reduction. At the same time MuID’s efficiency is
worse than Staco’s in tt̄ events. In this thesis MuID and thus combined muons are
chosen since the algorithm for combined muons shows the best performance. MuID
works much better than Moore for transverse momenta pT < 15 GeV and better
than MuGirl. MuGirl provides a lower efficiency and higher fake rates than MuID.
MuID was preferred over Staco since it provides a slightly better performance (in
terms of fake rate reduction). Of course, it is at the same time worse than Staco in
tt̄ events but this is acceptable since this study is not concerned with top quarks.
The MuID algorithm works by first reconstructing potential muons in the inner
detector using a method called Moore. These tracks are then combined with the
muon’s hits in the muon spectrometer using a full track refit. This combination
improves the transverse momentum resolution of the muons so that they fulfill all
of ATLAS’ physics requirements. At common muon energies, between 10 GeV and
100 GeV (at least in hard scatterings), the algorithm works with a precision of
2− 3%. However, because of the coverage area of the inner detector, which is used
by MuID, the algorithm can only work in a pseudorapidity range of |η| < 2.5.



Chapter 4

Monte Carlo Simulations

Monte Carlo simulations take a vital role in particle physics. They make it possi-
ble to compare experimental results with theoretical predictions in particle physics
experiments. In general most Monte Carlo generators take a similar approach to de-
scribing particle collisions and the subsequent processes. There are four important
aspects in the simulation of particle physics processes using Monte Carlo models. A
schematic view of a particle collision and subsequent processes can be seen in Fig-
ure 4.1. Moving outwards from the collision point, the first thing that matters is the
hard scattering process. The partons participating in the hard scattering process
are, in the case of a pp collision, constituents of the proton. Parton distribution
functions (pdf) describe the probability of finding a specific parton with a given
longitudinal momentum in a proton. Thus, the pdfs describe the probability for a
parton to participate in the hard scattering process. They are introduced in Chap-
ter 4.2 and are illustrated as fi,p(x, µ

2) in Figure 4.1. The hard scatter is a clearly
perturbative process with an energy scale of usually several GeV. It is described
by the matrix element corresponding to the hard process (see ’ME’ in Figure 4.1).
Since the matrix element can only describe the hard scattering, the succeeding pro-
cesses are described by a parton shower (see ’PS’ in Figure 4.1). The parton shower
consists of processes like final state radiation where particles emit further particles
(e.g. a quark emitting a gluon). To be precise, this order is not entirely correct.
Even before the hard scatter radiation processes like initial state radiation can oc-
cur. They are as well described by the showering model. However, this order -
hard scattering before showering model - was chosen as the hard scattering process
can be considered as the starting point of the main process. Following the parton
shower many particles exist as forbidden, coloured states. Real physics takes care of
this by turning those particles into colour neutral composite states. The simulation
of this process part is done by fragmentation models (see ’HADRONIZATION’ in

49
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Figure 4.1) which are briefly described in Chapter 4.4. Many of the newly formed
hadrons will be instable. Thus, the final step is called hadron decay. It decays insta-
ble hadrons until all hadrons are stable. The hadron decay process is not depicted
in Figure 4.1 but would succeed the hadronisation.
It has been outlined above that several different steps are required to simulate a par-
ticle collision. A single method describing the entire particle collision is not available
since a particle collision includes various physical processes, some being perturba-
tively calculable while other processes cannot be described perturbatively. This is
why a combination of perturbative calculations and phenomenological models has
to be used to describe an entire particle collision. The innermost part - the collision
process - can be described by perturbation theory due to the prevailing very high
energy scales [58]. As distances increase after the hard interaction and thus moving
to different energy scales, the occurring processes cannot simply be described by
perturbtive QCD (pQCD) any longer. The finite divergences at the hard scale now
become finite and thus have to be accounted for. These finite remainders enter every
term of the perturbative series and thus prevent it from converging. Previously this
was guaranteed due to the very small nature of the coupling constant. In order to
recover convergence the higher orders in the perturbative series must be resummed.
An easy and convenient way to perform the resummation is to use a numerical
method called parton shower (see ’PS’ in Figure 4.1). This method is widely used in
Monte Carlo generators. However, for the sake of completeness it should be added
that the resummation can also be done analytically. As described earlier, the par-
ton shower is followed by the hadronisation process which can be connected to the
parton shower. However, moving from the energy scale of the parton shower to the
hadronisation scale, pQCD breaks down. Therefore completely phenomenological
models have to be used to describe this part of the collision process. Two of these
models will be described in Chapter 4.4. Finally, the hadron decays are usually
simulated by effective theories and simple symmetry arguments.
In the following some crucial parts of the simulation process will be outlined.

4.1 Monte Carlo Generators

MC generators [59, 60] (also called event generators) are computer programs writ-
ten to simulate high energy physics experiments. They are needed to compare real
physics data as recorded by particle detectors with theoretical predictions, which
are implemented in the MC generators. Furthermore, MC simulations are also used
to design the particle detectors and to determine a suitable approach to conducting
physics analysis with real data. Event generators exist for various different pro-
cesses, like heavy ion events or neutrino events. In this thesis however, the focus is
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Figure 4.1: Depiction of a particle collision with indications of the corresponding
simulation processes. The function fi,p(x, µ

2) is the parton distribution function, ME
= Matrix element; PS = Parton shower; fi,p standing for the parton distribution
function (see Chapter 2.5)

on hadron scattering processes, i.e. the simulation of pp collisions. The aim of these
event generators is to simulate a proton-proton collision and all subsequent processes
as accurately as possible. To do this the generators use a mixture of perturbation
theory calculations and phenomenological models. These were already introduced
in Chapter 4.
In order to make the output generated be the simulations intelligible, reconstruction
algorithms have to be applied. These algorithms identify and determine the proper-
ties of objects created in the simulation. The tools used for reconstructing objects
is the same as used in the reconstruction of objects in real data.
Monte Carlo simulations alone produce the real physics particle spectrum, i.e. the
spectrum a perfect detector would record. At this point detector influences have
not been accounted for. Detector simulations are available, however, they require
very much time (in the order of one hour per event). The most notable detector
simulation program is arguably Geant4 [61]. Nevertheless, it must be kept in mind
that these MC generators are not only influenced by physical effects but also by
technical effects, like computing related limitations.
Over time several different event generators have been developed. Two of them,
Pythia and Sherpa, will be used in this thesis to perform the necessary simula-
tions. These two generators will briefly be introduced in the following two subsec-
tions.
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4.1.1 Pythia

Pythia is arguably the most prominent MC generator. The first version, version
6 [62], was still written in FORTRAN, while the most recent version, version 8 [63],
is now written in C++. Pythia8 is the version used in this thesis. It is a general
purpose generator that simulate pp, pp̄-collisions as well as ep and e+e−-collisions.
The hard interaction is calculated by using leading order (LO) matrix element calcu-
lations. Hard parton-parton interaction are simulated down to a scale of Q = 2 GeV.
Below this scale perturbative calculations are not possible any more due to colour
screening effects. The subsequent parton showering process is called dipole show-
ering as opposed to the formerly used virtuality ordered showering process. It is
also responsible for initial and final state radiation. Pythia8 uses CKKW-L merg-
ing to connect the matrix element with the parton shower. The working method
of CKKW-L matching will be explained in Chapter 4.3. The hadronisation model
implemented in Pythia8 is called the Lund String model and will be discussed in
the corresponding section of Chapter 4.4. The underlying event is simulated by
separate 2 → 2 scattering processes in LO matrix elements. Pythia8 provides a
large variety of switches to adjust the parameters required and used in the process
simulation. Several groups and people work on describing real physics data as ac-
curately as possible by adjusting those switches. Notable contributors are in this
respect Rick Fields [64] or Peter Z. Skands developing the Perugia tunes [65].

4.1.2 Sherpa

In the long list of MC generators, Sherpa [66] is the most recent one and was
written, from scratch, in C++. It can simulate 2 → 2 as well as 2 → N events in
lepton-lepton collisions and hadron-hadron collisions by using inclusive calculations
of matrix elements. It also provides methods for describing the parton shower and
the hadronisation process. The parton shower and the hadronisation are merged
together by CKKW merging (introduced in Chapter 4.3). The hadronisation itself
is simulated by cluster fragmentation (see Chapter 4.4). The description of multiple
parton interactions is based on Pythia’s implementation, does however show some
differences.

4.2 Parton Distribution Functions (PDFs)

To describe proton-proton collisions accurately it is of vital importance for physics
analysis to know which particles actually do interact with each other. To determine
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their nature on a statistical level parton distribution functions (pdf) are used. They
represent the probability to find a specific parton in the proton with a given longi-
tudinal momentum fraction |x| (see Figure 4.2). The pdfs cannot be calculated per-
turbatively since they include long-distance factors which are not perturbatively cal-
culable. Several different collaborations, like CTEQ [67], MSTW [68], NNPDF [69]
or HERAPDF [70], work on determining pdfs by using experimental results which
are recorded by different experiments and different experiments (like DESY, CERN,
Fermilab). Figure 4.2 depicts the pdfs for various different quark types and the
gluons. The plot shows the probability density of finding a specific parton, like a
quark or a gluon, with a specific longitudinal momentum fraction x at some energy
scale Q2 (in Figure 4.2 for example 10 GeV). It can clearly be seen that at small
longitudinal momenta the gluon contribution dominates; while at larger x values
especially the valence quark contribution grows, even dominates. Partons in a pro-
ton usually do not have large longitudinal momentum fractions x. Especially when
going to higher energies x decreases. This also explains why the LHC is sometimes
referred to as a gluon collider. The higher the energy gets the smaller x becomes
or expressed differently at LHC energies of 7 TeV an x = 0.01 would require the
parton in the proton to have a longitudinal momentum of 0.01 · 7 TeV = 700 GeV.
From this point on, the proton’s valence quarks would become dominant however,
requiring these quarks to have even higher longitudinal momenta.
In order to compare the data recorded by the ATLAS detector with theoretical pre-
dictions, event generators (also called Monte Carlo generators) are used. These are
computer programs aiming at simulating particle collisions based on theoretical and
phenomenological knowledge of particle physics. PDFs are thus a very important
part of all event generators since they influence the process to be simulated.
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Figure 4.2: Illustration of the parton density functions generated by the MSTW
collaboration; MSTW2008NLO [71]; The property on the x-axis x is the longitudinal
momentum of a parton. The y-axis shows the probability density of finding one of
the partons in the figure.

4.3 Merging Algorithms

As described at the beginning of Chapter 4, the primary 2 → N hard collision is
described by using matrix elements. They are good at describing high-pT processes.
Unfortunately, matrix element calculations become very complex at high particle
multiplicites. For the parton showers (see ’PS’ in Figure 4.1) on the other hand the
complexity does not increase as much with the particle multiplicity as for the matrix
element. This is because the branching probability is evaluated separately for every
particle. Additionally, due to the leading-log approximation of the parton shower,
does it deliver good results for smaller transverse momenta. It can thus be seen that
the matrix elements and the parton shower complement each other very well. To
achieve a good overall description of collision processes and their evolution both are
merged together. These algorithms that connect the ME and the PS are therefore
called merging algorithms. It is their task to take the results the ME produces and
hand them over to the PS. However, overlapping phase space regions where both the
ME and the PS return results complicate the merging procedure. A major problem of
overlapping phase space regions is that particles can potentially be double counted
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(double counting problem). To avoid the problem of double counting the matrix
elements are reweighed by the running of the coupling constants and Sudakov form
factors. The general approach to jet merging can be summarised in the following
four steps [72]:

1. A matching scale Q0 and a jet algorithm (for example the kT algorithm) is
defined. Then all relevant cross-sections including jets are calculated using
matrix elements. For example, for a process with a specific final state X
this would mean that all cross-sections for pp → X + n jets are calculated
(n = 0, 1, 2, . . .).

2. A hard parton configuration is produced based on the contribution of the X+n
jets to the total cross-section. The corresponding kinematic configuration is
calculated from the matrix element.

3. The selected parton configuration is accepted or rejected with a certain prob-
ability. The probability is based on the running of the coupling constant and
Sudakov-type suppressions. In case the particle configuration is rejected step
two is repeated and a different parton configuration, probably with a different
number of jets, is selected.

4. Finally, starting from the chosen parton configuration, the parton shower using
suitable initial conditions is performed. This is done separately for each leg.
In all cases the parton shower must not produce any additional jets. Any
configuration that would have to be calculated with matrix elements due to
different number of jets is forbidden, meaning emissions above the matching
scale Q0 are forbidden.

Several methods are available to avoid this, however in the following only two meth-
ods will be introduced, namely those important in the generators used in this study.
That is, CKKW matching in Sherpa [66] and a CKKW-L approach in Pythia [73].
Both algorithms have been extensively checked at the LEP [74, 75], the Tevatron
and the LHC [74, 76]. Evaluations and comparisons of CKKW, CKKW-L and
others (like MLM matching) have shown that CKKW-L shows the best performance.

4.3.1 CKKW Matching

In principle CKKW matching [72, 76, 77, 78] uses the matrix element and the
parton shower exactly for what they are good at. It uses the matrix element for
large transverse momenta and angles and the parton shower for small transverse
momenta and small angles. The phase space separation between the PS and the
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ME is done by introducing a new scale, the resolution scale. The CKKW merging
algorithm in particular has initially been used for e+e− collisions and has been
proven to be correct to a precision of next-to-leading-logarithms(NLL). Since then
it has been extended to describe hadron-hadron collisions as well.
The merging algorithm begins by separating the phase spaces of the ME and the
PS for different multijet processes by using a kT measure. However, first different
emission scales Qi for different numbers of jets (i) are defined. In the case of hadron-
hadron collisions, two final state particles belong to two different jets if their relative
transverse momentum is larger than some cut-off value k2

T,0 given by [72]

k2
T,ij = 2 ·min

(
p2
T,i, p

2
T,j

)2
[cosh(ηi − ηj)− cos(φi − φj)] . (4.1)

The transverse momenta pT,i and pT,j, the pseudorapidities ηi and ηj and the az-
imuthal angles φi and φj are the properties of particle one and two respectively.
Hence a reconstruction of the shower history is created by clustering all initial and
final state particles of a configuration given by a matrix element together by using
the kT jet algorithm. As can be seen by comparing with the table above, this is
an extension of step three. Additionally, the pT of each of the two jets has to be
larger than kT,0. After this step the matrix elements are reweighed by coupling
weights and Sudakov form factors. The reason for weights on the matrix elements is
to take effects into account that would appear in the corresponding parton shower
evolution.The weights on the coupling constants are given by

wcoupling =
n∏
i=1

α(Q2
i )

α(Q2
0)
. (4.2)

The reweighing with NLL Sudakov form factors [72] is also done by calculating a
weight factor, given by

wsudakov =
∆(Q2

i , Q
2
0)

∆(Q2
j , Q

2
0)
. (4.3)

The ∆(Q2
k, Q

2
0) factors in equation 4.3 are defined by

∆(Qi, Q0) := exp

[
−
∫ Qi

Q0

dqΓq,g(Qi, q)

]
. (4.4)

The Γq,g term is the integrated splitting function and contains the coupling constant
and the two logarithmically enhanced terms in the limit Q0 � Qi. The coupling
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constant entering Γq,g is itself also subject to reweighing. The αs terms are the
strong coupling constants depending on different scales Qi and were defined earlier.
The Sudakov form factors represent the probability of no branching happening at
Q0 between the scales Qi and Qj.
After the matrix elements have been reweighed, the matrix elements and the parton
shower are properly connected. The only thing left is a suitable choice of initial
parameters.

4.3.2 CKKW-L Matching

As the name already indicates, CKKW-L matching [74, 79, 80] is based on CKKW
matching, however, there are some differences. For one thing, while CKKW merging
uses Sudakov weights for the reweighing and the kT jet algorithm for the reconstruc-
tion of the jet history, the CKKW-L algorithm relies solely on the parton shower.
As in the case of CKKW merging, the merging process begins by producing a parton
configuration at a specific initial energy scale Q2

0, but as opposed to CKKW, the
succeeding generation of the shower history is not performed by a jet algorithm.
Instead it is created by the dipole cascade and the parton configuration that corre-
sponds to the initial situation is chosen. The shower history contains intermediate
states S0, . . . , Sn and the corresponding emission scales Q2

1 > . . . > Q2
n. In the

CKKW-L algorithm the PDF’s, the coupling constant and the Sudakov form fac-
tors become reweighed. To begin with the PDF’s, events are reweighed with the
PDF ratios so that all parton configurations have the same starting point S0. The
weighing parameter is given by

wpdf =
x

′
+fq(x

′
+,m

2) · x′
−fq̄(x

′
−,m

2)

x+fi(x+, Q2
0) · x−fq̄(x−, Q2

0)
. (4.5)

This is then followed by another reweighing with PDF’s for each dipole splitting

wpdf =
n∏
i=1

RPDF
i . (4.6)

Thirdly, the reweighing for the coupling constant has the same form as in CKKW
merging, namely

wcoupling =
n∏
i=1

αs(Q
2
i )

αs(Q2
0)
. (4.7)
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Finally, the reweighing from Sudakov form factors is done by a vetoing algorithm.
The form factors ∆Si

(Q2
i , Q

2
i+1) correspond to the probability of not having emissions

from a state Si between the scales Q2
i and Q2

i+1. The veto algorithm reproduces all
these probabilities for all intermediate states Si by performing trial emissions with
the dipole cascade. The algorithm begins with a certain state Si at the corresponding
scale Q2

i . If the trial emission the veto algorithm produces is above Q2
i+1 the state

Si is rejected.
For the initial state S0 the starting scale is given by Q2 = m2

inv/4, where minv is the
total invariant mass of the hadronic interaction. For a specific final state Sn with
n < N , events are accepted as long as none of the parton pairs is larger than a
merging scale Q2

merge. N is the maximum number of partons. For the case of n = N
all events are accepted.

4.4 Fragmentation

Fragmentation [81] is an important part in the simulation of particle physics pro-
cesses. After a particle collision and the subsequent parton shower many coloured
particles exist. These particles must undergo further processes to achieve coulour
neutrality as they cannot exist on their own due to colour confinement (see Chap-
ter 2.3.1). Hadronization and fragmentation aim at simulating these processes.
There are three models describing the hadronisation process; the ’Lund-String
model’, the ’Cluster fragmentation’, and ’Independent fragmentation’. However,
only the ’Lund String model’ and ’Cluster fragmentation’ are used at the ATLAS
detector. These two models will be described more thoroughly in the following
sections due to their importance for the generators used in this thesis. Cluster
fragmentation is the model used by Sherpa while Pythia uses the Lund String
model.

4.4.1 Cluster Fragmentation

Cluster fragmentation models are based on a property called pre-confinement [82].
It implies that the particles resulting from the parton shower can be grouped into
colourless quark antiquark (qq̄) pairs called clusters (see blue blobs in Figure 4.3).
If gluons are among the objects resulting the shower, these are split into qq̄ pair and
then also included into the clusters (see the objects entering the blobs in Figure 4.3).
However, these clusters are not yet real hadrons and are therefore called proto-
hadrons. As a result of this the clusters are required to decay independent of each
other into real hadrons. Most of the clusters decay into two hadrons which are only
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Figure 4.3: Schematic hadron collision depicting cluster fragmentation [84]. The
blue blobs being the distinguishing property for this fragmentation model.

subject to flavour conservation.
There are two special cases that can occur in cluster fragmentation and have to be
treated separately [83]. On the one hand clusters can be too light, i.e. not have
enough energy, to decay into hadrons. In these cases the whole cluster, consisting
of a qq̄ pair is transformed into a single hadron and the remaining momentum is
transfered to a neighbouring cluster. On the other hand clusters can also be too
heavy meaning that the resulting hadrons would have unrealistically high momenta.
To counter this issue new qq̄ pairs are introduced and the original (high-energy)
cluster is forced to split into two new clusters. Obviously each of the clusters receives
only a fragment of the total momentum.

4.4.2 The Lund String Model

The Lund string model is probably the most sophisticated fragmentation model but
also more complex than the independent or the cluster fragmentation model. It
describes the evolution of particles after the parton shower. At very short distances
the strong force between two quarks becoms negligible due to asymptotic freedom
while the electromagnetic force becomes dominant. However, in the aftermath of a
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Figure 4.4: Illustration of the working method of the Lund String Model [85]. From
bottom to top; particle connected by the string get moved apart until the energy
stored in the string between them is large enough to break and create to new particles
at the endpoint where the string broke. This creates two new particle pairs connected
by a string meaning the process begins again, indicated by the arrow on the left
pointing from the top of the figure to the bottom.

particle collision particles move apart from each other and QCD dictates that this
increases the strong force between the particles. At some point the force between
a colour connected qq̄ pair will be large enough to create a new quark anti-quark
pair out of the vacuum (see Figure 4.4). To simulate this, the Lund String Model
reduces the colour field between the qq̄ pair to a colour flux tube, which is again
approximated by a relativistic massless string. The energy stored in the string
between the two particles is proportional to the distance between them and is given
by

V (r) ∝ kr . (4.8)

The factor k in the formula represents the tension of the string and given by
k ≈ 1 GeV/fm. A connected qq̄ pair moving apart from each other transforms the
kinetic energy of their translation into potential (string) energy. Once the string’s
potential energy becomes large enough, the string ’rips’ apart and creates a new qq̄
pair out of the vacuum (see Figure 4.4).

If the string’s potential energy does not become large enough to create a qq̄ pair
out of the vacuum, the two end quarks turn around and move towards each other
again. This happens when all the kinetic energy has been transformed into potential
energy. Due to the particles repeatedly moving towards and apart from each other
this kind of behaviour is called yo-yo effect (see Figure 4.5 and Figure 4.6). Particles
entering the yo-yo mode can be considered as hadrons as no further string splitting
can happen.
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All the treatment so far has been for colour connected qq̄ pairs. The other strongly

Figure 4.5: Schematic depiction of the
yoyo-mode [83].

Figure 4.6: Depiction of yoyo-modes
in the context of a fragmentation evo-
lution [86]

interacting particles, the gluons, are in contrast to the quarks not described as an
end point but as a kink in one of the strings [83]. As in the case of qq̄ pairs, a gluon
will stretch a string until there is enough energy stored in the string to produce a new
qq̄ pair out of the vacuum. The resulting hadron will then continue moving into the
direction of the initial gluon. Conveniently this property automatically makes the
string model IR-safe since soft gluons do not have enough energy to break strings.
At the same time, the string model is also collinear safe. Collinear safe means that,
splitting a proto-jet into two separate jet should not have an effect on the jet finding
(see Chapter 3.2.1 and Figure 3.13). To be concerned with collinear safety the gluon
has to be close to one of the string ends. As can be seen in equation 4.8 the potential
energy stored in the string is proportional to the distance, meaning that once the
string rips into two it will be on the side with the larger distance to the end quark.
The proto-jet with the close gluon is therefore not split into two and thus collinear
safe.
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Chapter 5

Analysis

The aim of this analysis was to study multiple parton interactions in pp collisions.
The focus will be on the determination of the frequency of MPI in collisions recorded
by the ATLAS detector in 2011. However, since this thesis relies largely on MC gen-
erators several variables are compared between data and MC simulations in order
to assess the reliability of the MC generators.
The MC generators used in this study were Pythia v8 [63] and Sherpa v1.4.2 [66].
Initially Jimmy + Herwig + AlpGen was also included in this study, however,
during the study it turned out that the simulations using AlpGen required too
much CPU time, thus rendering it impossible to obtain a meaningful amount of
data in the given time. Even without AlpGen the time required to perform all
the necessary simulations was unexpectedly long. The first step in this study was
the accumulation of enough data, simulated and real. The gathering of centrally
produced data also included large parts of data processing, meaning the application
of measures like slimming, skimming, data quality considerations and finally the
production of information relevant to this study. Slimming refers to the process of
reducing the amount of data by applying data quality cuts and keeping only useful
information while skimming means the reduction of data by applying physically mo-
tivated cuts. The Monte Carlo simulation part consisted of producing all the data
sets necessary in this analysis. This means, an MC sample requiring two jets (dijets)
and another sample focused on pp→ Z → ll̄+jj+X events where l = {µ±, e±} that
were produced in a single bunch crossing but where the jets did not come from MPI.
These are the datasets required for the main aim of this work. Finally another data
set was created where MPI were specifically simulated using methods provided by
the different MC generators. This was done in order to determine the functionality
of the different generators regarding MPI. The accumulation of data, real and MC,
is outlined in Chapter 5.1.

63
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This study was conducted at the hadron level which was due to the very long time
a full detector simulation would have taken. In order to compare real data with MC
simulations the real data had to be corrected back to the hadron level which was
done by using a method called unfolding (see Chapter 5.2).
After the real data samples have been unfolded they can be compared with the re-
sults from the hadron level Monte Carlo simulations. Various properties providing
useful information about the simulated processes are compared in Chapter 5.3 in
order to determine whether the simulations have produced expected results. Ad-
ditionally, these results are also compared with the distributions produced by real
data.
Finally moving on to the main aim of this study, variables suitable for the evalua-
tion of multiple parton interactions are introduced in Chapter 5.4 and using these
variables the amount of MPI was calculated in Chapter 5.5.
As this is a study relying on simulated as well as real data uncertainties due to
systematic as well as statistical effects distort the distributions. These effects are
discussed in Chapter 5.6.

5.1 Data Sets and Monte Carlo Simulations

The goal of this work was an evaluation of multiple parton interactions. As already
mentioned earlier, this requires real data samples as well as simulated data. Two
different MC generators were used in this study to extract information about MPI
in proton-proton collisions. However, real data comes in a raw format which makes
additional steps necessary to obtain a usable data sample. For the case of MC gen-
erators the situation is different. The generators provide various different switches
and levers to customise the process one is looking for. In the following I will explain
the requirements and switches I set to obtain data sets, real and MC, that contain
only information relevant for this study.

5.1.1 Event Selection

Minimum bias data is used in this analysis in order to compare the results obtained
by the simulations with the results from a different study where the MPI contribu-
tion was determined in W → lν + jj events [27]. In that study minimum bias data
was used as well to extract the fraction of multiple parton interactions. Minimum
bias events are triggered by a signal in one of the MBTS scintillator counters which
works at a very high efficiency (almost 100%) for non-diffractive inelastic proton-
proton collisions [87]. In diffractive pp scatterings most final states do not leave
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Run number Period #Events (before) #Events (after) P (%) Type
178044 B2 2,139,509 1,631,999 76.27 Min. bias
178109 B2 2,517,368 2,356,523 93.61 Min. bias
180164 D4 493,977 481,212 97.42 Min. bias
180400 D6 588,514 515,726 87.63 Min. bias
183780 H2 659,067 659,067 100.00 Min. bias
186923 K1 815,394 802,476 98.41 Min. bias
186877 K1 728,590 534,199 73.32 Min. bias
186934 K1 705,498 292,081 41.40 Min. bias
186965 K2 877,890 872,269 99.35 Min. bias
189822 L6 474,341 460,999 97.18 Min. bias
190934 M4 1,256,123 2,985 0.23 Min. bias
178109 B2 1,436,534 1,386,637 96.53 Muons
179044 B2 1,032,381 898,623 87.04 Muons
191635 M10 2,391,862 2,391,862 100.00 Muons
191676 M10 621,972 532,547 85.62 Muons
191715 M10 3,600,586 3,600,586 100.00 Muons
191920 M10 1,795,015 1,728,001 96.27 Muons
191933 M10 3,004,542 2,948,984 98.15 Muons

Table 5.1: List of data sets used in this study; ’Before’ and ’After’ in columns two
and three stand for before applying all the data processing measures and after; P =
percentage of events passing the applied measures; Min. bias = minimum bias

any tracks in the acceptance range (2.09 < |η| < 3.84) of the MBTS counters but
diffractive processes are not interest here.
After gathering a large amount of minimum bias data and performing all slimming,
skimming, data quality and analysis steps only rather few events remained. To
increase the amount of useful statistics another dataset was used which was specifi-
cally triggered for muons. The used data sets are presented in Table 5.1.
After the datasets were fetched, first slimming jobs were applied, where only events
passing data quality requirements were kept. In the same step all information (vari-
ables, branches ...) not useful to this analysis were removed. In a second step called
skimming, measures were applied directly to the remaining variables. The cuts ap-
plied at this level were early preselection cuts aimed at reducing the amount of data
to less data but with a higher fraction of events passing the selection criteria. Thus
also reducing the file size. The cuts were chosen in a way that events outside of
areas interesting in this study were abandoned. The applied data cuts can be seen
in Table 5.2.
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Variable name Cut value Variable name in dataset
Jets

Number of jets Nj > 1 jet AntiKt4TopoEM n
Jet vertex fraction jvtxf > 0.75 jet AntiKt4TopoEM jvtxf
Pseudorapidity η |η| ≤ 2.8 jet AntiKt4TopoEM eta

Transverse momentum pT > 15 GeV jet AntiKt4TopoEM pt
Number of primary vertices Nvxp ≥ 1 vxp n

Leptons (e±, µ±)
Number of leptons Ne,µ > 1 mu muid n or el n

Pseudorapidity η (µ± only) |η| < 2.4 mu muid eta
Pseudorapidity η (e± only) |η| < 2.47 el eta

1.37 < |η| < 1.52
Transverse momentum pT > 15 GeV mu muid pt or el pt

Number of primary vertices Nvxp ≥ 1 vxp n
Distance to primary vxp [mm] d0pv > 10 track z0pv

Table 5.2: Applied requirements for data; Natural units were used (h̄ = 1, c = 1);
vxp = primary vertex; Pseudorapidity η = −ln

(
tan
(
θ
2

))

Jet cuts

Jets were reconstructed from clusters of connected energetic calorimeter cells, so
called topological clusters, using the Anti-kT jet algorithm introduced in Chap-
ter 3.2.1 with a radius parameter of R = 0.4. Requiring more than one jet with a
pT higher than 15 GeV is motivated by the process considered here. Initially the pT
cut was set to pT ≥ 20 GeV however, this cut proved to vastly reduce the amount
of usable data. A similar situation was observed in the MC simulations where a pT
as high as this reduced the amount of useful events coming from the simulations.
Considering both, the low data statistics and the time it would have taken to sim-
ulate enough data using a pT ≥ 20 GeV cut it was decided to decrease the cut to
15 GeV. For the sake of enough statistics it was even considered to lower the cut to
pT ≥ 10 GeV. Eventually the idea was rejected since in these energy regions there
are also other processes contributing which might obscure the measured results.
Finally jets were required to have a jet vertex fraction larger than 0.75. The reason
for applying this cut is explained in Chapter 5.1.1. In short, it is applied to ensure
that the jets come from the primary vertex.
A very important cut was the requirement for ∆R > 0.5. In the case here
∆R stands for the separation between leptons and jets and is defined as ∆R =√

∆φ2(jm, ln) + ∆η2(jm, ln). As already mentioned, jets are not single objects but
clusters of smaller objects moving in the same direction. Directly after a collision
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many of the objects within a jet are colour charged. They will thus undergo a series
of processes turning coloured partons into colourless hadrons. This is called frag-
mentation and was introduced in Chapter 4.4. Jets can also contain heavy quarks
like bottom quarks, especially if they have a large momenta. One of the decay chan-
nels of the bottom quark is leptonic: b→ c+W ∗− → c+ e−+ ν̄e. The semileptonic
decay of heavy quarks could, accidentally, be misidentified as leptons coming from a
separate process. Requiring this cut reduces the possibility for leptons arising from
semileptonic quark decay within a jet.

Lepton cuts

After ensuring that there are potentially enough leptons in the data sample (N > 1),
further requirements were applied. Both categories of leptons, electrons and muons,
had to fulfill the same pT requirements, namely pT ≥ 15 GeV. Initially this threshold
was set to 20 GeV however, this reduced the number of usable events very much,
which is why the pT threshold was loosened. Furthermore the detected leptons were
required to lay within specific, yet different pseudorapidity regions. The difference in
these cuts comes from the different detector layers in which electrons and muons are
measured. Electrons leave a track in the inner tracking system of the detector and
finally deposit all their energy in the electromagnetic calorimeter. Thus electrons
must have an |η| < 2.47 in order to lie within the coverage region of the inner
detector. Due to the design of the electromagnetic calorimeter the region between
the barrel component of the E-Cal and the end-caps cannot detect particles. In
order to avoid this region an additional η cut had to be implemented, all electrons
with 1.37 < |η| < 1.52 were excluded from the analysis. This last cut was not
necessary for muons, since they hardly interact at all with the detector material and
do not deposit considerable amounts of energy in any of these detector parts. Lastly,
leptons were required to pass the beam line within 10 mm from the primary vertex.
This cut was implemented to increase the probability that the lepton came from the
primary vertex. For the identification of muons, the Muid algorithm, as introduced
in Chapter 3.2.3, was used while for the reconstruction of the electrons the standard
ATLAS reconstruction algorithm was used. The electron reconstruction algorithm
was introduced in Chapter 3.2.2.

Data Quality

The data sets used in this analysis were recorded by the ATLAS detector in
2011. The ATLAS detector works at a very high efficiency, however, it still is a
technical machine, which means that it will not work properly at all time. Aside
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from technical drawbacks, sometimes detector parts might be switched off due to
maintenance or might not be working on full scale because of earlier calibrations.
It is not always obvious from just looking at the data whether the detector was
running properly. Therefore so called good runs lists (GRL) are used. These point
out which luminosity blocks of a data set can be used (detector running properly)
for physics analyses and which blocks should not be used due to problems with the
detector or maintenance. A luminosity block is defined as a collection of events that
succeeded each other in time. A further collection of luminosity blocks is called a
run. In this analysis information from all parts of the detector were used so that
only blocks with a fully functioning detector were used. The luminosities of the
different data samples before and after applying the GRLs can be seen in Table 5.3.

Run number Period Del. Luminosity [pb−1] Int. Luminosity [pb−1]
178044 B2 5.027 4.907
178109 B2 6.880 6.749
180164 D4 21.704 20.959
180400 D6 16.649 16.015
183780 H2 46.972 46.078
186923 K1 78.353 76.097
186877 K1 68.999 67.802
186934 K1 35.062 34.090
186965 K2 83.805 82.162
189822 L6 87.853 86.528
190934 M4 0.512 0.496
178109 B2 6.880 6.749
178044 B2 5.027 4.907
191635 M10 31.540 31.001
191676 M10 7.575 7.272
191715 M10 48.062 47.323
191920 M10 24.759 23.767
191933 M10 41.429 40.290

Table 5.3: Integrated Luminosity of the used data samples; Del. Luminosity =
Delivered Luminosity; Int. Luminosity = Integrated Luminosity

Jet Vertex Fraction

After 2010, with increasing collision energy and luminosity, pile-up events con-
tributed in ever larger numbers to pp collisions events. This turned into a serious
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Figure 5.1: Jet vertex fraction; JVF[jeti, vtxj] stands for the fraction of tracks in jeti

coming from vertex j.

concern which is why methods to reduce the pile-up contribution were introduced.
Remembering that at the LHC bunches of 1013 protons are collided rather than
single protons (see Chapter 3) it is plausible to assume that more than one pp
collision can occur in a bunch crossing. These additional pp collisions are called
pile-up events.
Jets are nothing more than tracks concentrated within a certain structure. This
structure can be a cone, as in the case of a cone algorithm, or more sophisticated
structures like in the case of the kT jet algorithm (these algorithms have been
introduced in Chapter 3.2.1). In Figure 5.1 the definition of a jet is shown. In
principle the radius parameter comprising the tracks is variable, however usually
only two settings are used (R = 0.4 and R = 0.6). In a single pp collision all the
tracks come from the only primary vertex. If bunches of protons are collided several
pp collisions can occur, thus producing several primary vertices. In such a case a
jet can have contributions from tracks originating from a different primary vertex
as can be seen in Figure 5.1. Of course contributions from other primary vertices
limit the information a jet can provide about a specific pp collision. Therefore, the
JVF makes a statement about the fraction of charged tracks originating from a
primary vertex [88].

The jet vertex fraction is formally defined as:

JVF(jeti, vtxj) =

∑
k pT (trk

jeti
k , vtxj)∑

n

∑
l pT (trk

jeti
l , vtxn)

(5.1)
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In cases where there is no pile-up at all the situation is fairly simple. The JVF can
be either one or minus one. If the jet is measured and all the tracks are coming from
the primary vertex, the JVF = 1. If, on the other hand, the jet is very soft and falls
outside of the tracking region, or, is not matched to any charged tracks, then the
JVF is minus one. An example for a case with no pile-up can be seen in part a) of
Figure 5.2.
In a collision with pile-up the situation becomes more complex. As can be seen in
Figure 5.1 it is possible that some of the tracks that are concentrated within a jet
originated from a different vertex. The JVF can thus take any value between 0 and
1, indicating the fraction of tracks from the primary vertex. Part b) of Figure 5.2
illustrates such a case.
The cut set in the event selection is thus used to ensure or at least increase the
probability that the interactions happened in the same pp collision. However, even
if a jet is reconstructed and passes the selection cut its measured energy might
still be affected by pile-up events. This can be seen later on in the analysis (see
Chapter 5.6) where the uncertainty due to pile up events almost contributes the
largest overall uncertainty.

Figure 5.2: Jet vertex fraction plots with (b) and without pile-up (a). No pile-up
means there are no other vertices and thus no contributions from other vertices; in
a case with several vertices a jet can have track contributions from other vertices.

The value of the jet vertex fraction was chosen to be 0.75 because jets with a jet
vertex fraction equal or larger than this are likely to be correctly reconstructed with
a probability larger than 90%. Monte Carlo data was used to determine this fraction.
The idea is that if a jet is reconstructed within a cone with ∆R(reco,MC) ≤ 0.3
around the truth jet than the measured jet is correctly reconstructed. For the MC
data set used this corresponded to a correct identification rate of 90.04% which can
be seen in Figure 5.3.
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Figure 5.3: Jet vertex fraction selection efficiency for reconstructed jets with
JVF ≥ 0.75 matched within ∆R(reco, MC) ≤ 0.3 to hard-scatter truth jets. The
total integrated efficiency above preco

T = 15 GeV is 90.04%.

5.1.2 Event Simulation

The simulation of the required datasets was done on the CERN computer cluster
(called Lxplus) and on the local university computer cluster called Steno by using
the Athena framework. The used ATLAS releases were 16.6.2 and 17.2.4. The
simulations and the immediate analysis were done using a package called HepM-
CAnalysis. Using release 16.6.2 this was version HepMCAnalysis i-00-00-27 and
in release 17.2.4 it was version HepMCAnalysis i-00-00-62. The simulations were
conducted using the Monte Carlo generators Pythia v8.145 and Sherpa v1.4.0.
Initially the idea was also to include AlpGen + Jimmy + Herwig into the study
however, after it was found out that simulations with AlpGen required very much
time and had a very low efficiency in terms of useful events it was decided to drop
AlpGen. For 9, 000, 000 simulated events about 2, 000 survived a necessary process
called unweighting. This part of the simulation procedure alone took many hours.
After these two steps (simulation and unweighting) the resulting files had to be
copied to HepMCAnalysis to perform the actual simulations and the analysis. After
running with HepMCAnalysis on average one event was left of the initial 2, 000. To
create meaningful data samples with AlpGen more resources and faster machines
would have been needed.
The simulations in Pythia and Sherpa on the other side worked faster. They
were repeated until a significant amount of data was generated; in this case set to
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at least 100, 000 events per data set. Each of the event generators comes with a
specific set of switches which can be used to specify the process one wants to simu-
late. Table 5.4 and Table 5.5 depict the chosen settings for several of the switches
in the different generators. If not stated otherwise, the remaining parameters were
left with their default values. This study requires three Monte Carlo data sets per
generator, thus six in total. This is, per generator, one with and one without mul-
tiple parton interactions switched on and another data sample simply simulating
dijets. The MC generators provide switches and parameters to specify the process
that is to be simulated. In the first MC data sample, the one containing multiple
parton interactions, the reconstruction of an e± or µ± pair passing all the require-
ments in addition to two jets has been required while MPI was switched on. In the
second MC data sample (without MPI) the same objects have been required as in
the first data sample but with the difference that here MPI had been switched off.
An alternative approach to the simulation of MPI events is the motivation for the
dijet data sample. The assumption is that the two interactions in the case of MPI
are not correlated and can thus be considered as independent interactions. If the
two interactions (here Z → ll̄ and the two jets) are independent then each of them
should behave like single parton interaction. Thus a data sample containing only
dijet events should be enough to pose as an MPI data set.

Value
Parameter MPI no-MPI dijets Explanation
Beams:eCM 7,000 7,000 7,000 CM energy of the beams
PhaseSpace:p̂Tmin

15. 15. 15. Minimum invariant pT
PhaseSpace:m̂min 80 80 - Minimum invariant mass
PhaseSpace:m̂max 100 100 - Maximum invariant mass
PDF:pSet 8 8 8 pdf for p beams; 8 = CTEQ6L1
SecondHard:Generate On Off Off Main switch for second hard scatter
SecondHard:TwoJets On Off Off Second hard = QCD 2→ 2 process

Table 5.4: Switches used in Pythia (see [73] for details)

For Sherpa the situation was slightly different as it uses so called ’run cards’ as
input files. The run cards already allow a sort of pre-analysis during the simulation
process.
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Value
Parameter MPI no-MPI dijets
BEAM 1 2212 2212 2212
BEAM ENERGY 1 3,500 3,500 3,500
BEAM 2 2212 2212 2212
BEAM ENERGY 2 3,500 3,500 3,500

CKKW
√

(30/ECMS)
√

(30/ECMS)
√

(30/ECMS)
Order EW 2 2 0
Mass selector mµ ∈ [80, 100] mµ ∈ [80, 100] -
NJetFinder 2 15 0 1 − 1 2 15 0 1 − 1 2 15 0 1 − 1
ME SIGNAL GENERATOR Comix Comix Comix
FRAGMENTATION Ahadic Ahadic Ahadic
DECAYMODEL Hadrons Hadrons Hadrons
MI HANDLER Amisic None None
SCALE MIN 10. - -

Table 5.5: Switches used in Sherpa; explanations for the parameters can be found
in Table 5.6 (see [66] for details)

BEAM 1 ID: beam part. 1 (2212 = p)
BEAM ENERGY 1 CM energy of beam 1
BEAM 2 ID: beam part. 2 (2212 = p)
BEAM ENERGY 2 CM energy of beam 2
CKKW Sets up multijet merging
Order EW Process specific electroweak order
Mass selector mµ requirement
NJetFinder Anti-kT type algorithm to select #jets
NJetFinder # jets - pTmin

- ETmin
- D para. - Algorithm

ME SIGNAL GENERATOR Used matrix element generator
FRAGMENTATION Used fragmentation model
DECAYMODEL Module responsible for hadron and τ decays
MI HANDLER Central switch for MPI
SCALE MIN Minimum pT for MPI

Table 5.6: Explanations on the switches set in Sherpa [66]
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Following the event simulation an analysis program was used to pick only useful
events. The explanations for the following cuts are more or less the same as for the
objects in the real data samples. Therefore, only a short explanation for the cuts
will be given here. Objects had to pass the following requirements:

• Electrons: Candidates were required to have a pT > 15 GeV and to be within
a suitable pseudorapidity region |η| < 2.47. To take care of the region between
the barrel region and the end-cap region of the electromagnetic calorimeters,
electrons falling into this region were excluded (1.37 < |η| < 1.52).

• Muons: A pT > 15 GeV as well as a pseudorapidity of |η| < 2.4 were required.
Muons were also required to be close to the primary vertex, requiring a distance
to the primary vertex of z0 < 10 mm.

• Z boson: To increase the probability of the two leptons originating from a Z
boson an invariant mass between 80 GeV and 100 GeV was required.

• Jets: Jets were reconstructed from generated stable particles using the Anti-
kT algorithm with a distance parameter of R = 0.4. Stable particles
meaning in this case particles with a lifetime greater than 10−10 s. Fur-
thermore, a pT > 15 GeV was required as well as an |η| < 2.8. An-
other very important requirement was ∆R =

√
∆φ2(jm, ln) + ∆η2(jm, ln) >

0.5. This means that there must be a minimum separation between recon-
structed jets and reconstructed leptons. The importance of this cut comes
from the possibility of heavy quarks within jets to decay semi-leptonically
(e.g. b→ c+W ∗− → c+ µ− + ν̄µ). Without this last cut these semi-leptonic
decay products can be misidentified as leptons coming from a hard primary
interaction, even though they originate from a secondary vertex.
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5.2 Unfolding

In every experiment the main interest is always on the undistorted underlying sci-
entific processes. Nevertheless, experiments always require a setup, for example an
apparatus, to measure and record the results. What all experimental setups have in
common is that they are not perfect. The setup used here is the ATLAS detector
which might reconstruct a particle or jet in the wrong calorimeter cell or produce
an error when determining the deposited energy. If the focus is now on pure undis-
torted physical processes one has to undo (unsmear) the detector influence.
There are several methods called unfolding methods that provide functions to do
this. The most common method is presumably bin-by-bin unfolding. It is a rather
simplistic method with some inconvenient drawbacks. It requires, for example, the
inversion of the migration matrix which can lead to problems if some bins are only
sparsely populated, it could even be singular meaning an inverse matrix would not
even exist. To overcome the shortcomings of the bin-by-bin method a new method
called ’regularised unfolding’ [89] was invented. Unfortunately this method is only
applicable to one dimensional problems and has never been used very widely. The
method used here is called Bayesian unfolding [90] and is considered to be the best
working unfolding method, since it overcomes several of the other method’s prob-
lems.

5.2.1 Bayesian Unfolding

This unfolding method is based on Bayes’ theorem and is widely approved by statis-
ticians as the most powerful tool for unfolding. It was developed in order to include
migration effects and has several additional advantages over the other aforemen-
tioned methods. The main advantages are that it is theoretically well grounded, can
be applied to multidimensional problems and does not require a matrix inversion.
However, the most important advantage is probably the fact that this method pro-
duces the best results in terms of seeking a true unsmeared distribution. From a
theoretical point of view this method provides, in a sense, a way to reverse conclu-
sions.
In short, Bayes’ theorem makes a statement about an event A happening given that
another event B has already happened (P (B) > 0). It states:

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) (5.2)

In words this means that the probability that event A and B will happen (P (A∩B))
is equal to multiplying the probability for event B given that event A has already
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occurred with the probability for event A alone. Of course, it works the same way
the other way round, exchanging event A and B. Thus Equation 5.2 can be rewritten
to obtain the most common form of Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
. (5.3)

At the LHC the ATLAS detector records huge amounts of detector influenced data.
The following method can be used to reverse the influence of the detector.
The data the detector records are effects Ei (i = 1, 2, . . . , nE), that can be an energy
or a track variable or many others more. After Nobs experimental observations the
result of the recording will often be a histogram filled with the number of times
a specific effect Ei was measured n(E) = (n(E1), n(E2), n(E3), . . . , n(EnE

)). The
histogram n(E) is of course influenced by detector effects. The effects measured
by the detector are thus the outcomes of a set of causes Cj (j = 1, 2, . . . , nC) that
would produce a different histogram n(C) = (n(C1), n(C2), n(C3), . . . , n(CnC

)).
The aim is now to correct the distribution of measured effects back to the cause
level, which is, without detector effects. Using Bayes’ theorem the probability that
a given effect Ej was produced by cause Ci can be stated as:

P (Ci|Ej) =
P (Ej|Ci)P0(Ci)∑nc

l=1 P (Ej|Cl)P0(Cl)
. (5.4)

The probabilities P (Ej|Ci) are the properties where the detector effects are taken
into account and are usually determined from Monte Carlo simulations. The P0(Ci)s
are the initial probabilities of the causes Ci to occur and are usually taken from the
best knowledge of the physical process involved. If however, no information about
the process is available a uniform distribution, given by P0(C) = 1/nC , must be
used instead. Using the initial probability P0(C) the initial number of true events
can be calculated by

n0(Ci) = P0(Ci)Nobs (5.5)

and by taking the detector inefficiencies via P (Ci|Ej) into account the expected
number of true events can be calculated as,

n̂(Ci) =
1

εi

nE∑
j=1

n(Ej)P (Ci|Ej) εi 6= 0 . (5.6)
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The εi factors stand for the efficiency which is the probability that a given cause
will evoke any effect at all and is thus given by

εi ≡
nE∑
j=1

P (Ej|Ci) (5.7)

The efficiency can be 0 ≤ εi ≤ 1 which means there is no certainty that a cause will
create any effect. An εi = 0 for example would mean that there is no possibility for
a measurement. In other word, it means that the experiment is not sensitive to the
cause Ci.
Using equations 5.4 and 5.7, equation 5.6 can be rewritten as:

n̂(Ci) =
1∑nE

l=1 P (El|Ci)

nE∑
j=1

P (Ci|Ej)n(Ej) =

nE∑
j=1

Mijn(Ej) (5.8)

where Mij are the elements of the unfolding matrix M and given by:

Mij =
P (Ej|Ci)Pp(Ci)

[
∑nE

l=1 P (El|Ci)][
∑nc

l=1 P (Ej|Cl)P0(Cl)]
(5.9)

Using this the true total number of causes can be calculated as

N̂true =

nC∑
i=1

n̂(Ci) , (5.10)

and the probabilities for these causes to occur as

P̂ (Ci) ≡ P (Ci|n(E)) =
n̂(Ci)

N̂true

. (5.11)

To gain a satisfying result some of these calculation steps have to applied repeatedly.
The first step, however is always to calculate P0(Ci) and n0(Ci). The following three
steps are the steps that have to be applied repeatedly until the χ2 value between
the old number of causes and the new number of causes (see step 2) becomes small
enough.

1. Calculate n̂(C) and P̂ (C)

2. Perform a χ2 comparison between n̂(C) and n0(C)
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3. Replace P0(C) by P̂ (C), and n0(C) by n̂(C)

The program used in this study to perform the unfolding is called RooUnfold [91].
To perform the unfolding the program requires a response matrix Rij which maps
the true distribution Tj on the measured distribution Mi. To generate the response
matrix a full MC simulation is necessary. That is, with truth and reconstructed
data. In the first step, which is also called training, the matrix is generated. In
a second, optional, step a ’closure’ test can be performed. By using for example
only parts of the MC simulation for the training, the generated response matrix can
be applied to the remaining simulation data in order to determine how good the
response matrix works. Alternatively, a different (MC) dataset could be used for
the closure test. Finally after the closure test has produced satisfying results the
response matrix can be applied to a real data set in order to gain distributions a
perfect detector would produce. In this context satisfying means a minimised χ2.
In this study the response matrix was created by using MC truth and measured MC
information. The response matrices for ∆Jets and ∆n

Jets can be seen in Figure 5.4
and Figure 5.5 respectively. Since the response matrix for ∆n

Jets has a high amount
of entries in high bins (∆n

Jets > 0.9 or higher) Figure 5.6 shows the distribution for
∆n

Jets ≤ 0.9. The MC data set used was a full simulation meaning that it consisted
of two parts, truth and reconstructed (reco) information. The truth information is
what a perfect detector would have recorded. The plot obtained from reconstructed
information, also called measured information, is the distribution the ATLAS de-
tector, which is influenced by technical effects, would have recorded. These two
parts are required to predict the detector behaviour. Before applying the obtained
response matrix to a real data set it is reasonable to apply it to MC data again.
Just this time not training the response matrix but applying it to the reconstructed
data and afterwards comparing the obtained distribution with the corresponding
MC truth distribution. This is done to confirm that the unfolding works correctly.
Therefore the unfolded distribution should resemble the distribution using truth
data very well. This is called a closure test. The result of the closure test can be
seen in Figure 5.8. It can be seen that the detector only has a very small influence
on ∆n

Jets, furthermore that the unfolding works correctly. Only at high ∆n
Jets ≈ 1

does the detector have a significant effect. However this did not pose any problems
as, in the fit performed in Chapter 5.5, bins accounting for high ∆n

Jets values were
ignored for physical reasons. Finally applying the response matrix to the real data
distribution of ∆n

Jets produces Figure 5.10 and Figure 5.9, for the muons and the
minimum bias data sets. It can be observed that, using the response matrix created
from MC data the real data distribution was not influenced largely by the detector.
This is especially true for the muons data sample. The situation was not as clear for
the minimum bias data set, however this was rather due to limited statistics than
problems with the unfolding.
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Figure 5.4: Monte Carlo response matrix generated from MC data. For each event
∆Jets was calculated from truth and reconstructed information. The results were
then fill into this matrix.

In Chapter 5.5 two different distinguishing variable will be introduced, ∆Jets and
∆n

Jets. ∆n
Jets was selected as the variable of choice for the further proceedings of

this study as it showed a higher resilience to detector effects. This can be seen, by
comparing Figure 5.7 and Figure 5.8.
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Figure 5.5: Monte Carlo response matrix
generated from MC data. For each event
∆n

Jets was calculated from truth and re-
constructed information. The results were
then filled into this matrix.
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used data sample: Muons

5.3 Comparison of Monte Carlo Data with Real

Data

The theoretical physical knowledge acting as the foundation of Monte Carlo simula-
tions is the same for all generators. There are however differences in their approach
to simulating particle physics processes. Often there are processes (e.g. MPI) that
are not yet fully understood or aspects that cannot easily be modeled. In these cases
assumptions had to be made in the simulation software. There are working groups
working solely on tuning these parameters so that they better resemble real data.
Furthermore, various processes of the Standard Model can only be calculated in
the limit where perturbation theory is valid. For processes in the non-perturbative
regime, such as hadronisation of partons that have been scattered or radiated, phe-
nomenological models must be used. These phenomenological models are usually
different for the various generators, although often based on each other. Finally, the
input syntax, which controls the program is different for the various generators as
well. Some generators might have settings that enable the user to specify param-
eters that cannot be adjusted in other generators. All this makes it very possible
that the generators produce different results, even if not by much. It is therefore
worthwhile to compare the output the generators produce with each other. In the
following subsections the results obtained by two different MC generators, Pythia
and Sherpa, are compared with each other. The focus will, however, be on vari-
ables of interest in this study.
Ideally Pythia and Sherpa would produce the same results, however, the different
assumptions made and technical restrictions (machine precision etc.) render this
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unlikely. As already described in Chapter 4, the two generators differ in some cru-
cial points (e.g. hadronisation). Nevertheless as the generators are to simulate the
same processes similar results were expected. The following subsections will how-
ever show that this was not always the case. In some cases the differences could be
explained by physical reasons while in other cases the differences are not likely to
come from physical effects but from technical issues during the simulation process.

Leading Jet pT

The obtained distributions for the transverse momentum of the leading jet pTlead ,
can partly confirm theoretical expectations. It was expected that the leading jet pT
peaks much more sharply at comparatively small values for jets coming from MPI.
This type of behaviour was expected from earlier studies like [26] and can be seen
confirmed in the Pythia results. Figure 5.11 shows the leading jet pT for Pythia
and Sherpa with a simulation of MPI while Figure 5.12 shows the same properties
just this time for events with no MPI contribution. The Sherpa results do not show
a significant increase in the transverse momentum of the leading jet when moving
from MPI (see Figure 5.11) to no-MPI (see Figure 5.12). In fact both distributions
look very much alike which is most likely due to technical problems experienced
during the simulations.
Since, theoretically, the transverse momenta of events with and without MPI demon-
strate different behaviour for the leading jet pT , it could be used as an early discrim-
inator between the two interaction types. There are however other, more suitable,
variables that will eventually be preferred.

In the case of simulated dijets the situation is clearer. In these simulations only
two jets passing all cuts were required. Both simulations confirm each other very
well which can be seen very well by comparing the Pythia and Sherpa simulation,
shown in Figure 5.13. Finally considering the real data samples it can be seen that
the minimum bias data sample (see Figure 5.14) is much better described by the
simulations with no-MPI (generated by Pythia). Thus indicating, that, if the real
data distribution consists of different fractions of events with and without MPI the
fraction of events with MPI must be rather small. For the muons data sample (see
Figure 5.14) the situation looks different. The transverse momentum of the leading
jet peaks at smaller pT values than the minimum bias data sample and falls off much
faster when moving to higher pT values.
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Figure 5.11: Leading jet transverse
momentum distribution for Pythia and
Sherpa. Simulation with MPI
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Figure 5.12: Leading jet transverse
momentum distribution for Pythia and
Sherpa. Simulation without MPI
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Figure 5.13: Leading jet transverse
momentum distribution for Pythia and
Sherpa simulating dijet events
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Angular separations ∆φ

In this study, three different situations were of interest. In the simulations switches
could be used to specify the process of interest thus obtaining three different dis-
tributions. One with a full MPI simulation, another without MPI and finally a
simulation of dijets.
The two jets generated in the dijet simulation must show a distinct peak at ∆φ ≈ π.
In the simulation there is only the signal process without any influences. The jets
should thus balance each other very well. Of course there can be minor distortions
from soft radiative processes or non-negligible initial transverse momenta eventually
causing slightly boosted jets.
In the simulation without MPI the Z → ll̄ process was considered the signal process.
In this case the two jets originate from radiative processes of the signal process, like
initial state radiation, where one of the collision partners emits a boosted (usually
soft) gluon. The gluon decay products will thus be affected by the boost, resulting
in the two jets not being as balanced as in the dijet production case. Of course,
since one of the collision partners emitted a particle the emitting particle must recoil
against it, thus introducing a non-negligible transverse momentum on the leptons.
As a result of this, the leptons, the results of the signal process, should not balance
each other perfectly either.
One of the main assumptions in the simulation of MPI is that the two processes,
here Z → ll̄ and the jet producing process, are not correlated and should thus not
influence each other. Each of the processes should thus produce a distribution that
resembles a single parton interaction. The following plots show the angular differ-
ence ∆φ(j1, j2) between the two jets for different generators and data samples; first
for the MC generators followed by the real data plots.
Figure 5.15 depicts the angular difference for a full MPI simulation generated by
Pythia. It can be seen that Pythia reproduces this expectation very well while
Sherpa (see Figure 5.15) shows a similar distribution but has significant contri-
butions in lower bins meaning lower angular differences. This behaviour can be
checked by comparing with the angular difference between the two jets in the dijet
samples. Figure 5.17 depicts ∆φ(j1, j2) for the case of dijet simulations performed
by Pythia or Sherpa respectively. Dijets are two jets originating from a single
hard interaction (see part a) in Figure 2.5). Momentum conservation dictates that
the outgoing particles must roughly balance each other. Only roughly because ef-
fects like final state radiation or effects introduced earlier in this section can divert
particles. Further inaccuracies can originate from the particle reconstruction and
the jet algorithms.
Pythia simulations of MPI (see Figure 5.15) and dijets (see Figure 5.17) look alike
thus suggesting that, at least from this point of view, a full simulation of MPI can
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be replaced by dijet simulations. Sherpa on the other hand shows significant dif-
ferences (see Figure 5.15 and Figure 5.17). In both cases a peak at high angular
differences can be observed, however the distribution for MPI does show large con-
tributions in lower ∆φ(j1, j2) bins. Sherpa thus suggests that a simulation of MPI
cannot simply be replaced by a dijet simulation. However, there were some techni-
cal problems during the simulation process, in some respect, unexpected behaviour.
The Sherpa results must thus be considered with caution.
For a simulation without MPI a much flatter distribution without a distinct peak
was expected. The jets in events without MPI are the result of radiation processes
like ISR. The objects, for example gluons, emitted by processes like this do not
favour certain angular differences. In contrast these objects would be emitted with
a boost meaning that balanced jets are very rare. The corresponding distributions
generated by Pythia and Sherpa can be seen in Figure 5.16. The Pythia plot
shows a much flatter distribution than in the case of MPI or dijets. This means that
the produced jets do not balance each other very well, thus confirming the expec-
tation. The distributions do however also show a small peak at ∆φ(j1, j2) ≈ π/4.
There are two possible explanations for this peak. It can either come from gluon
splitting or a real physics process. In case of the gluon splitting, the jet algorithm
recognises a gluon and (falsely) splits it into two separate objects. This usually
produces two almost collinear jets. The peak at π/4 ≈ 0.8 comes from the radius
parameter of the jet algorithm, ∆R = 0.4. Two almost collinear jets would thus
produce the minimum ∆φ difference possible: 2 ·∆R = 0.8. This peak comes from
gluon splitting processes like g → gg or g → qq̄. After the hard scattering process all
scattered partons are permitted to emit final state radiation. However, because of
the jet algorithm’s radius parameter R = 0.4 the additional jets are prone to appear
at ∆φ ≈ 0.4. Thus the angular difference between the two jets would be ∆φ ≈ 0.8.
The jet algorithm recognises a gluon and splits it into two separate objects which
usually produces two almost collinear jets.
Real data distributions were expected to be a combination of events with and with-
out MPI. Therefore the distribution of the angular difference between the jets should
look like a combination of events with and without MPI. The domination of one or
the other effect depends on the amount of the corresponding event type (MPI or
no-MPI) in the data set. Figure 5.18 shows the distribution obtained from the real
data samples. Both data distributions show a peak at ∆φ(j1, j2) ≈ π/4. It is the
same peak that can be observed in the MC simulation plots and comes, as in the
MC case, from gluon splitting. The only difference being a larger contribution at
large ∆φ(j1, j2) values in the minimum bias data set which is not observed in the
muons data sample. This suggests that the jet pair in the minimum bias data set
has a higher contribution from well balanced jets than the muons data sample.
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Figure 5.15: Angular separation between
jet one and jet two generated by Pythia
and Sherpa simulating MPI.
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Z Boson Mass

The two leptons produced in the signal process are required to originate from a
Z boson, thus the invariant mass of the two reconstructed leptons must be in a
range around the correct Z boson mass (mZ ≈ 91.186 GeV). The reasons why
a clear peak at the correct mass was not expected were distorting processes like
radiative processes and the limited measurement accuracy. It can for example be
seen that the distributions produced by the MC simulations are much more narrow
than those from real data. All the MC simulations produce distributions with peaks
at the correct Z boson mass. Especially the Pythia simulations produce very clean
distributions. This can be seen in Figure 5.19 for the case with a simulation of MPI
and in Figure 5.20 for the case without MPI. Sherpa on the other hand suggests
a significant contribution from invariant masses larger than the correct Z boson
mass (see Figure 5.19 and Figure 5.20). There is no physical explanation for this
kind of behaviour. During the simulations with Sherpa several technical problems
occurred, thus it is imaginable that the excess at high Z boson masses comes from
these technical problems during the simulations.
The real data samples also show distinct peaks at the correct Z boson mass and
can be seen in Figure 5.21. The real data distributions are however broader than
those obtained from MC simulations. This was expected and is most likely caused
by detector effects since the plots presented in this section are not unfolded.
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Figure 5.19: Z boson mass generated with
Pythia and Sherpa simulating MPI
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Figure 5.20: Z boson mass generated with
Pythia and Sherpa simulating events
without MPI
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Figure 5.21: Z boson mass generated with the real data samples
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Z Boson pT

The transverse momentum of the Z boson is the result of the transverse momenta of
the constituents of the signal process. Therefore, in the case of MPI, where the two
interactions are considered as independent of each other the transverse momentum
of the Z boson should be small, while it should be significantly larger in the case of
no-MPI. Due to the emission of the jet producing particle the collision participants
will receive a non-negligible transverse momentum thus generating a Z boson with
a larger pT than in the case of MPI.
This type of behaviour is confirmed in the Pythia simulations, as can be seen in
Figure 5.22 and Figure 5.23. For the simulation with MPI (see Figure 5.22) the
distribution peaks at very low transverse momentum values. A peak at exactly zero
was not be expected since there are always diverting effects like non-negligible initial
transverse momenta of the collision partners and radiative processes.
For no-MPI higher pT values were expected since the two jets required in the process
will most likely have originated from radiative processes. Since the requirement on
the jet pT is large (15 GeV), the recoil, one of the collision partners experiences must
also be comparatively large, thus introducing a larger Z boson pT than in the case of
MPI. This sort of behaviour can be seen confirmed in Figure 5.23. The differences
between the MPI and the no-MPI simulations in Pythia are very distinct and
thus indicate that the transverse momentum of the Z boson could be used as a
distinguishing variable in ll̄ + 2 jet events. In this study however, the Z boson pT
was not used as the aim was slightly different and because the results produced by
Sherpa would not make such an approach sensible.
While Pythia produces very reasonable plots, Sherpa produces distributions that
were not expected. The Z pT is depicted in Figure 5.22 for simulations with MPI
and in Figure 5.23 for a simulation without MPI. This type of behaviour is confirmed
by neither the Pythia MC simulations nor by real data. It is therefore likely that
technical issues experienced during the simulations caused these wrong distributions.
The distributions for real data are depicted in Figure 5.24. It can be seen that in
the case of the minimum bias data sample the Z boson has, on average, a smaller
transverse momentum than in the muons data sample. The reason for this kind of
behaviour comes most likely from triggers that were used in the muons data sample.
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Figure 5.22: Z boson pT generated with
Pythia and Sherpa simulating events
with MPI
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Figure 5.23: Z boson pT generated with
Pythia and Sherpa simulating events
without MPI
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Figure 5.24: Z boson pT generated with the real data samples
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5.4 Distinguishing Variables

One of the main aims of this study was the separation of events with and without
MPI. To do this a suitable property was required. The transverse momentum of the
leading jet, for example, can act as an early indicator. However, it is not a suitable
variable providing a clear separation. To obtain such a property a slightly different
approach was chosen.
An important assumption made in the theoretical description of multiple parton
interactions is the independence of the two occurring interactions. This also means
that the two interactions must behave like two separate interactions. For single
parton scattering processes momentum conservation dictates that the two particles
that were created in the hard interaction roughly balance each other in the transverse
plane. For events without MPI the created objects should not balance each other
very well due to effects already explained in Chapter 5.3.
Nonetheless, the angular separation alone is not directly used as a distinguishing
variable since there are effects like pile-up or radiation processes that influence it
too much. The distinguishing variables used in this study are based on the transverse
momentum of the final state objects. There are different implementations of such
a property, two of which [27] were used in this study, but the underlying principle
was in most cases the same. The first distinguishing variable is by,

∆jets = |~pT,1 + ~pT,2| . (5.12)

Regardless of the jets balancing each other, in most cases the vector sum of the jet
pT s will not be zero. For events without MPI this was expected since in this case
the jets originate from a boosted object. Of course there are additional phenomena
diverting the jets or just the information about them. These can be technical effects,
like limited detector precision, or physical effects like radiation processes. However,
in contrast to events without MPI, in the case of MPI it is only these processes
causing the diversion. As a result the pT vector sum of the two jets is expected
to be different from zero in both cases. Nevertheless, it is possible to distinguish,
to some extent, between MPI and no-MPI by using ∆Jets. The major difference
is, that in cases without MPI the jets are boosted. Therefore, the jets originating
from events with no-MPI should produce a high ∆Jets. In events with MPI where
the diversion is rather accidental, a small ∆Jets was expected. ∆Jets can be seen
in Figure 5.25 using Pythia as generator and in Figure 5.26 using Sherpa. The
corresponding distribution using the real data samples can be seen in Figure 5.27.

The MC simulations indicate that, while there clearly is a difference between the
different simulations (see e.g. Figure 5.25), there is also a large area influenced by
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Figure 5.25: Distribution of ∆Jets gen-
erated with Pythia results. The two
graphs show a simulation with no-MPI
and a dijet simulation, respectively
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Figure 5.26: Distribution of ∆Jets gen-
erated with Sherpa results. The two
graphs show a simulation with no-MPI
and a dijet simulation, respectively
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Figure 5.27: Distribution of ∆Jets generated from real data.

both, events with and without MPI. This would make it hard to distinguish between
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Figure 5.29: Normalised ∆n
jets distribution

generated by Pythia simulating No-MPI

the two cases. Therefore it is reasonable to consider the normalised version of ∆Jets

∆n
jets =

|~pT,1 + ~pT,2|
|~pT,1|+ |~pT,2|

. (5.13)

The two indices identify the two jets. This way the magnitude of the single mo-
menta does not distort the results. The new variable ∆n

Jets allows a clearer separation
between cases with MPI and cases with no-MPI, basically, by normalising the jet
momenta, it is the direction of the jets producing the ∆n

jets distribution. Due to the
better distinguishing ability of ∆n

Jets, it was chosen in the following section (Chap-
ter 5.5) to extract the fraction of MPI in a data sample containing data recorded by
the ATLAS detector.
The MC simulations confirm the expectation that no single effect alone can re-
produce the real data distribution but a combination of both. Therefore the real
data distribution must be a combination of both, DPS and SPS. In this respect,
the Pythia simulations, which can be seen in Figure 5.28 and Figure 5.29, show
very reasonable results however, the distributions produced by Sherpa (see Fig-
ure 5.30 and Figure 5.31), especially for no-MPI, look incorrect. The corresponding,
unfolded, distributions created from real data can be seen in Figure 5.32 for the
minimum bias data set and in Figure 5.33 for the muons data sample.
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jets distribution generated

by Sherpa simulating diets
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5.5 Determination of the Contribution of MPI

To determine the fraction of DPI events fDP in a real data set a method called
template method is used. In this study this means, two templates are created. One
from dijet data (or the data sample containing MPI) and the other from the SPS
(no-MPI) data set. These two templates are then fitted on top of the real data
with the aim to minimise the deviation between the templates and the real data
distribution. This is done by first establishing a fit function that depends on the
two templates. This function is then used to minimise the difference between the
function and the (bin) entries in the real data distribution. The method used to do
this minimisation is called χ2 minimisation.

5.5.1 χ2 Minimisation Fit

A χ2-fit [92] is a way to determine how well a fit describes the underlying distribution.
It is arguably the most important test of this kind. Given a data set with real data,
the question is which sort of distribution the real data can be described by. The
χ2-test provides an answer to the question how good a fit describes the data. It sums
up all deviations between the real data measurement and the value the fit-function
calculated and weights it with the error on the fit function’s value.

χ2 =
n∑
i=1

(yi − f(xi))
2

σ2
i

(5.14)

The yi and f(xi) terms are the number of entries in bin i. As the minimisation will
be performed on the ∆n

Jets distribution the bins i correspond to ∆n
Jets values. The

variance σ2
i is the statistical error on bin i in the data sample. Assuming each bin

content is distributed according to a Poisson distribution the error on each bin is
given by σ2

i = ni. A good fit should produce a χ2 ≈ ndf where ndf is the number
of degrees of freedom. This is because for a good fit the deviation between exact
value and fit value should be within the boundaries of the error σi. Therefore, on
average each term is expected to contribute ’one’ to the χ2-value. It might seem
as if a χ2 = 0 could be achieved or, stated differently, every fit value exactly fits
the measured value. However, a fit this good is usually not doable in a realistic
scenario. Even very small χ2 values are usually flawed or at least dubious since it
would almost indicate a too good fit. A very small χ2 usually indicates overstated
errors or a handling of specifically selected data. Obviously, too large values are
bad as well. It means that the obtained fit is not a particularly useful fit. Finally
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however, there is no general rule what a good χ2/ndf is. In principle it is left to the
user to decide on limits. As a rule of thumb, a χ2/ndf ≈ 1 is usually considered as a
good fit. For the fits performed here, ndf is number of bins in the ∆n

Jets histogram.
The fit-function used in this study is:

f(A,B) = (1− fR
DP) · A+ fR

DP ·B . (5.15)

The factor fDP is the fraction of DPS contributing to the data set while
fSP = (1− fDP) represents the amount of SPS in the data set. A and B are the
templates that are created using the MC simulations. A is the template from the
data set without MPI while B is the MPI template created by using MC dijet or
full MC MPI simulations. The data sets the fits were performed to were the real
data sets introduced in Chapter 5.1, namely the minimum bias and the muons data
set.
Instead of ∆Jets the fit was performed to the ∆n

Jets distribution since it showed a
higher resilience to detector effects. For the fit the last seven bins, that is, all bins
with ∆n

Jets > 0.93 have been excluded. Events with a higher ∆n
Jets represent situ-

ations where the two are almost parallel and are thus rather a test of the shower
model.
The fractions extracted by using the χ2 minimisation fit are presented in Table 5.7.
Plots of the resulting fits can be seen in Figure 5.34 and Figure 5.35. These plots
were obtained by using Pythia MC simulations for the templates (the simulation
with no-MPI for template A and the dijet simulation for template B) and performing
the fit to the unfolded minimum bias data set.

The results obtained by fitting the MC simulations to real data suggest that Pythia
reproduces the real data distribution better than Sherpa. The best fits are obtained
when using dijet events instead of a simulation with multiple parton interactions.
Not only are the fits obtained by using dijet events much better, e.g χ2/ndf = 1.17
using dijets against χ2/ndf = 1.71 with a full MPI simulation, they also reproduce
results from earlier studies better [27]. This earlier study determined the amount
of MPI in W → lν + 2jets events (from hereon called W study), however, applied
slightly different cuts and used different data sets. Some of the cuts applied in
the earlier study were different from cuts applied in this study. However, these
differing cuts were process specific (e.g. /ET cuts). The only different common cut
was on the transverse momentum pT of the particles, while this study required a
pT > 15 GeV, the W study required a pT > 20 GeV. Furthermore, their study used
data recorded in 2010, while in this study 2011 data is used, which means that their
data set most likely had a much lower pile-up contribution. Additionally did they
use dijet events exclusively as a replacement for MPI. They determined the fraction
of DPS events to be f

(D)
DP = 0.080 at detector level or f

(H)
DP = 0.064 at the hadron
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Generator Data set Fractions fDP and fSP χ2/ndf

Pythia (MPI) Muons
fSP = 9.68 · 10−1 ± 5.80 · 10−3

χ2/ndf = 2.57
fDP = 3.16 · 10−2 ± 2.35 · 10−3

Pythia (MPI) Min. bias
fSP = 9.46 · 10−1 ± 9.49 · 10−3

χ2/ndf = 1.71
fDP = 5.37 · 10−2 ± 5.67 · 10−3

Pythia (dijets) Muons
fSP = 9.52 · 10−1 ± 6.23 · 10−3

χ2/ndf = 2.54
fDP = 4.78 · 10−2 ± 3.45 · 10−3

Pythia (dijets) Min. bias
fSP = 9.22 · 10−1 ± 1.03 · 10−2

χ2/ndf = 1.17
fDP = 7.78 · 10−2 ± 5.94 · 10−3

Sherpa (MPI) Muons Did not converge

Sherpa (MPI) Min. bias
fSP = 8.74 · 10−1 ± 3.55 · 10−2

χ2/ndf = 3.29
fDP = 1.26 · 10−1 ± 3.51 · 10−3

Sherpa (dijets) Muons Did not converge

Sherpa (dijets) Min. bias
fSP = 9.89 · 10−1 ± 1.11 · 10−2

χ2/ndf = 3.22
fDP = 1.31 · 10−2 ± 5.54 · 10−3

Table 5.7: Extracted fractions by the minimisation fit; fSP = fraction of single
parton scattering events; fDP = fraction of double parton scattering events; The
number of degrees of freedom ndf = 91, in all cases
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level. This result can be confirmed in this study with fDP = 0.078. This result
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is obtained by using the same approach as the W study, meaning the fraction was
extracted from a minimum bias data sample using a dijet simulation instead of a
full MPI simulation. However, the fraction is of course influenced by uncertainties.
In Chapter 5.6 the uncertainties influencing fDP are discussed. Special attention
is hereby on the uncertainty due to pile-up events. In the subsection on pile-up
(see Section 5.6.2) events an alternative approach to the determination of fDP is
presented. The result obtained with this new method is fDP = 0.062 which matches
very well the hadron level fraction determined in the aforementioned paper [27]. As
before, this fraction is extracted by using similar data and MC simulation as in the
case of the earlier study. For template A and B Pythia simulations without MPI
and dijets were used respectively. As in the earlier study the fit was finally performed
to minimum bias data. The results obtained in this study show a remarkably good
consistency with the results obtained by the earlier study. The results obtained with
Sherpa on the other do not show a good consistency with the W study. However,
this does not mean that the approach is wrong since there were technical issues in
the simulation process. This can clearly be seen in some of the distributions (e.g.
see Figure 5.23 or Figure 5.15) generated by Sherpa.
If a simulation of MPI is used instead of dijet events the determined fraction for
MPI decreases by about 30%, from fDP = 0.0778 to fDP = 0.054. This result
suggests that the implementation of MPI in Pythia cannot simply be replaced
with dijet events and thus implys further that there are parameters which are part
of the implementation of MPI that reduce the determined fraction of MPI. It is
furthermore interesting to see that the amount of MPI in minimum bias data is
larger than in a specifically preselected muons data sample.
The fractions found using Sherpa do not agree with the corresponding Pythia data
samples. In the case of the full MPI simulation the fraction determined by Sherpa
is approximately twice the fraction determined with Pythia while in the case of the
dijet simulation the fraction determined with Pythia is about six times larger than
the one determined with Sherpa. The plots the Sherpa simulations produced show
qualitatively correct behaviour in may parts (see e.g. Figure 5.13), other properties
however show very unexpected behaviour (see e.g. Figure 5.16 or Figure 5.22), finally
resulting in insensible results for the fraction of the contribution from MPI. The
reason for this behaviour is not fully understood. All results obtained with Sherpa
are thus to be considered with caution. HepMCAnalysis does not yet include an
implementation of Sherpa. However, I assumed that, since Sherpa is available on
ther CERN servers it should be possible to use it in the simulation programs just as
the other MC generators. The simulations with Sherpa did however cause many
non-analysis related technical problems. Eventually several of these issues could be
solved and all simulations were conducted but considering the quality of many of
the properties and the fit it is most likely that there still were technical issues.
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5.6 Uncertainties

Every study is influenced by uncertainties of some kind, may they be statistical or
systematic. The uncertainties distorting the results of this study will be discussed
in the following section. After determining all the uncertainties, the statistical and
systematic uncertainties will separately be added in quadrature.

5.6.1 Theoretical Uncertainty

The simulations run using MC generators can only achieve limited accuracy. From
a technical point of view limitations arise, for example, from the limited machine
precision. The implementation of physics knowledge into computer code creates
problems. Problems that often have to be worked around thus introducing uncer-
tainties. Furthermore, several parameters are set as constants with limited precision
in the generators even though they might not be exactly constant. Each of these
issues introduce an uncertainty on the results obtained from MC generators and
thus also on the results of this study (fDP).
To determine the uncertainty due to the generator the fraction is calculated again
using the same dijet sample but using both MC simulations with no-MPI, Pythia
and Sherpa. Since the production of dijets is a very basic process, Pythia and
Sherpa should not produce significantly different results. However, the creation of
a Z boson and 2 jets can generate different results for different generators. To take
this into account the dijet sample generated by Pythia was used and the fractions
were calculated using the Pythia no-MPI sample and the Sherpa no-MPI sample.
The resulting fractions are:

fDP = 1.31 · 10−2 ± 5.54 · 10−3

using the Sherpa no-MPI sample. Using Pythia no-MPI the fraction is:

fDP = 7.10 · 10−2 ± 5.47 · 10−3

The difference between the two fractions is ∆fTheo.
DP = 0.0579 and is considered as the

systematic uncertainty on the generators. This uncertainty is very large, which is
probably rather due to technical problems experienced during the simulation process
than really different working principles within the generators.

5.6.2 Pile-Up

As of 2011 pile-up events became a non-negligible issue in experiments at the ATLAS
detector. Pile-up events are events where more than one pp collision occurs in a
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bunch crossing, thus, the recorded results consist of objects coming from different
pp collisions (see also Chapter 5.1.1). In order to take care of this effect one would
ideally only use those events with only one primary vertex. This would be the best
approach but drastically reduce statistics, hence this approach is not chosen here.
To remain with as much usable data as possible, the real data set is split up into two
separate data sets depending on the number of primary vertices. One containing
only those events with a higher than average number of primary vertices and another
containing only those events with fewer than the average number of vertices. To
estimate the influence of multiple proton collisions on the fraction of events with
MPI fDP in the total data sample the fraction will be calculated for each of the new
subsamples. This approach is applied to both, the minimum bias and the muons
data set.
The average number of primary vertices for the data sets was 5.67 for the minimum
bias data sample (see Figure 5.36) and 10.02 for the muons data (see Figure 5.37)
sample. Table 5.8 and Table 5.9 show the fractions calculated for the two data
subsets.
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The average systematic uncertainty due to multiple proton interactions is thus about
6.88% for the fraction calculated with the dijet simulation generated by Pythia and
the minimum bias data sample. In numbers the deviations are

∆fPile−up
DP =+5.2

−5.5 ·10−3 , (5.16)
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Generator Data set Fractions (small) fDP & fSP χ2/ndf

Pythia (MPI) Muons
fSP = 9.72 · 10−1 ± 7.03 · 10−3

χ2/ndf = 1.74
fDP = 2.77 · 10−2 ± 2.85 · 10−3

Pythia (MPI) Min. bias
fSP = 9.48 · 10−1 ± 1.48 · 10−2

χ2/ndf = 0.98
fDP = 5.21 · 10−2 ± 7.42 · 10−3

Pythia (dijets) Muons
fSP = 9.59 · 10−1 ± 7.55 · 10−2

χ2/ndf = 1.71
fDP = 4.06 · 10−2 ± 4.15 · 10−3

Pythia (dijets) Min. bias
fSP = 9.28 · 10−1 ± 1.43 · 10−2

χ2/ndf = 0.67
fDP = 7.23 · 10−2 ± 8.22 · 10−3

Sherpa (MPI) Min. bias
fSP = 8.79 · 10−1 ± 6.91 · 10−2

χ2/ndf = 1.78
fDP = 1.21 · 10−1 ± 6.69 · 10−2

Sherpa (dijets) Min. bias
fSP = 9.92 · 10−1 ± 1.50 · 10−2

χ2/ndf = 1.82
fDP = 8.56 · 10−3 ± 7.49 · 10−3

Table 5.8: Extracted fractions by the minimisation fit using the pile-up data sample
with fewer than average vertices; fSP = single parton scattering; fDP = double
parton scattering; The number of degrees of freedom ndf = 91, in all cases

Generator Data set Fractions (large) fDP & fSP χ2/ndf

Pythia (MPI) Muons
fSP = 9.62 · 10−1 ± 7.85 · 10−3

χ2/ndf = 1.73
fDP = 3.84 · 10−2 ± 3.44 · 10−3

Pythia (MPI) Min. bias
fSP = 9.41 · 10−1 ± 1.46 · 10−3

χ2/ndf = 1.12
fDP = 5.86 · 10−2 ± 7.55 · 10−3

Pythia (dijets) Muons
fSP = 9.42 · 10−1 ± 8.35 · 10−3

χ2/ndf = 1.58
fDP = 5.76 · 10−2 ± 4.71 · 10−3

Pythia (dijets) Min. bias
fSP = 9.17 · 10−1 ± 1.39 · 10−2

χ2/ndf = 0.66
fDP = 8.30 · 10−2 ± 8.16 · 10−3

Sherpa (MPI) Min. bias
fSP = 8.25 · 10−1 ± 4.77 · 10−2

χ2/ndf = 1.71
fDP = 1.75 · 10−1 ± 4.83 · 10−2

Sherpa (dijets) Min. bias
fSP = 9.82 · 10−1 ± 1.25 · 10−2

χ2/ndf = 1.75
fDP = 1.78 · 10−2 ± 7.04 · 10−3

Table 5.9: Extracted fractions by the minimisation fit using the pile-up sample with
more than average vertices; fSP = single parton scattering; fDP = double parton
scattering; The number of degrees of freedom ndf = 91, in all cases



102 CHAPTER 5. ANALYSIS

While the uncertainty is rather modest in the case of minimum bias data it becomes
considerable for the muons data sample (the generator is still Pythia simulating
dijets).

∆fPile−up
DP =+9.8

−7.2 ·10−3 , (5.17)

Turning now from the dijet simulations to the MPI simulations, the deviation in the
minimum bias data sample is given by

∆fPile−up
DP =+4.9

−1.6 ·10−3 , (5.18)

while the uncertainty in the muons sample is given by

∆fPile−up
DP =+6.8

−3.2 ·10−3 . (5.19)

For Sherpa the uncertainty due to pile-up events was only calculated for the mini-
mum bias data sample as it did not converge for the muons data sample. Using the
dijet simulation the uncertainty introduced by multiple proton interactions is large
but to a similar extent, 34.64% and 35.87% respectively.

∆fPile−up
DP =+4.7

−4.5 ·10−3 (5.20)

For the full MPI simulation the errors differ much more, 3.96% and 38.88% respec-
tively.

∆fPile−up
DP =+49.0

−5.0 ·10−3 (5.21)

The percentage deviation is not given for all the data samples here as these are not
the final results. The final results will be calculated in the following by applying
a method that attempts to approximate the results calculated in this section for
the different numbers of vertices back to only one vertex. This is a sensible ansatz
since the impact of the uncertainty due to pile-up events is large and thus important
in this study. The pile-up impact has already been calculated for both data sam-
ples. Assuming that there is a linear relationship between the two fractions at their
corresponding average number of vertices the following equations can be established:

y1 = f0 +mv1 y2 = f0 +mv2 . (5.22)
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In the equations y1 and y2 stand for the fractions calculated with the minimum bias
the muons data sample, while v1 and v2 are the average number of vertices. The
y-axis coordinate f0 can thus be calculated by

f0 =
y1 + y2

2
−mv1 + v2

2
⇒ ∆f0 =

√
∆y2

1 + ∆y2
2

4
+ ∆m2

(
v1 + v2

2

)2

. (5.23)

The slope and the uncertainty on it are given by

m =
y2 − y1

v2 − v1

⇒ ∆m =

√
∆y2

2 + ∆y2
1

v2 − v1

. (5.24)

Since the interest is actually on the fraction for one vertex on average it is not f0

but f1 that is sought after. It is given by

f1 = f0 +m (5.25)

For the uncertainty this means

∆f1 =
√

∆f 2
0 + ∆m2 (5.26)

The results for the fractions extrapolated back to one vertex on average are presented
in Table 5.10.

Generator Data set Fraction f1 ±∆f1

Pythia (MPI) Muons 0.014± 0.010
Pythia (MPI) Min. bias 0.046± 0.023
Pythia (dijets) Muons 0.020± 0.014
Pythia (dijets) Min. bias 0.062± 0.024

Sherpa (MPI) Min. bias 0.069± 0.170
Sherpa (dijets) Min. bias 0.000± 0.021

Table 5.10: Fractions of MPI that were extrapolated back to one vertex on average.
For the extrapolation the information gained from splitting the data sample in a
sample with larger than average vertices and a sample with fewer than average
vertices was used. The method is described in more detail above.
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5.6.3 Jet Energy Scale and Resolution

Jets reconstructed by the ATLAS detector and pure physics jets differ in that the
former are affected by detector and physics effects thus introducing a systematic
uncertainty. The ATLAS detector is a technical machine and thus has areas
it cannot cover. Furthermore are particles measured by different sub-detectors
consisting of components with limited resolution capability. On the other side,
the recorded (raw) objects have to be converted into interpretable data. This
is done using various algorithms like the reconstruction algorithms mentioned in
Chapter 3.2.1 and Chapter 3.2.3. These programs suffer from technical drawbacks
coming from limited machine precision as well as drawbacks from the working
method of the algorithm. Particles actually belonging to a jet can for example be
missed by the algorithm thus producing a jet that differs from the real physics jet.
To account for these effects a Jet energy scale (JES) is calculated. It is determined
by comparing events recorded by the ATLAS detector with Monte Carlo simulations.

The impact of the jet energy scale was determined by shifting the energy upwards
and downwards in the MC samples by the jet energy scale uncertainty. The jet en-
ergy scale uncertainty was taken from an earlier study conducted on this topic [93].
Using the Anti-kT algorithm with a R = 0.4 and low pT (pjetT = 20 GeV) jets the
uncertainty is 8.2% at maximum. This is measured in the pseudorapidity region
2.1 < |η| < 2.8. The uncertainty is smaller in all regions with a smaller pseudora-
pidity, namely 4.5%. Here the uncertainty was calculated for the worst case scenario,
meaning an uncertainty of 8.2%, which resulted in an uncertainty on the fraction
fDP of

∆JESfDP =+1.2
−1.9 ·10−3 . (5.27)

These values were obtained using the Pythia dijet simulation and the minimum
bias data sample to perform the fit.

The uncertainty due to the jet energy resolution is determined by degrading
the resolution in the MC sample by the jet energy resolution uncertainty. After-
wards the fit is performed again and the variation on the fraction is taken as the
uncertainty due to the jet energy resolution. This is a well established approach
and the jet energy resolution uncertainty has been determined very accurately
which is why it is considered safe to use the uncertainty determined in an earlier
similar study [27]. The uncertainty due to the jet energy resolution was determined
to be

∆JERfDP = −5 · 10−3 . (5.28)



Chapter 6

Conclusions and Outlook

The fraction of multiple parton interactions was measured in pp → Z + 2 jet +X
events. Various data samples and different event generators (Pythia and Sherpa)
were used to obtain information about multiple parton interactions. The fractions
obtained from the different data samples and MC generators can be seen in table 5.7.
Pythia produced very good results and the fractions calculated with these simula-
tions were in a range that they were able to confirm an earlier, similar study [27].
The output generated by Sherpa on the other hand was very unexpected. However,
it must be said that in simulations with Sherpa there were some serious technical
issues. It is therefore rather likely that the differing results Sherpa produced were
caused by technical rather than physical effects.
Using the results generated by Pythia and the minimum bias data sample, the cal-
culated fraction was determined as

fDP = 0.062± 0.024 (stat.)± 0.058 (sys.)

. This result is very close to the results obtained in an earlier study [27] where the
fraction of MPI was determined in W → lν+2 jet events. Sherpa on the other hand
suggested a much higher fraction of MPI in the same data sample, namely

fDP = 0.000± 0.021 (stat.)± 0.058 (sys.) .

This result is however influenced by technical difficulties and must thus be consid-
ered with caution.
Interestingly, the fractions obtained by calculating the fraction of MPI using a simu-
lation of MPI instead of dijet events posing as a replacement, the fractions decrease.
For Pythia for example to fraction decreases to

fDP = 0.046± 0.023 (stat.)± 0.058 (sys.) .

105
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using the same minimum bias data sample as before. The Sherpa simulations show
similar behaviour

fDP = 0.069± 0.170 (stat.)± 0.058 (sys.) .

For the muons data sample the fractions obtained with Pythia were lower than for
the minimum bias data sample. For the dijet simulations the fraction was

fDP = 0.020± 0.014 (stat.)± 0.058 (sys.) .

while the simulation with MPI suggested a fraction of

fDP = 0.014± 0.010 (stat.)± 0.058 (sys.) .

The systematic uncertainties presented on the these results were calculated with the
uncertainties that were determined in Chapter 5.6 by adding them in quadrature.
The theoretical systematic uncertainty is very large and thus has a large impact on
the total systematic uncertainty. Since it was calculated with the results from the
Sherpa simulations it can be expected that the uncertainty is overestimated due to
the quality of these simulations. In order to obtain a more realistic estimation of
the theoretical uncertainty the value calculated in [27] was used in Table 6.1.

Generator Data set Fraction fDP ±∆fDP
Pythia (MPI) Muons 0.014± 0.010 (stat.)± 0.009 (sys.)
Pythia (MPI) Min. bias 0.046± 0.023 (stat.)± 0.009 (sys.)
Pythia (dijets) Muons 0.020± 0.014 (stat.)± 0.009 (sys.)
Pythia (dijets) Min. bias 0.062± 0.024 (stat.)± 0.009 (sys.)

Sherpa (MPI) Min. bias 0.069± 0.170 (stat.)± 0.009 (sys.)
Sherpa (dijets) Min. bias 0.000± 0.021 (stat.)± 0.009 (sys.)

Table 6.1: Final results for the fraction of MPI in different data sets. The results in
this table are the ones obtained with the back extrapolation to one vertex on average
in order to take care of pile-up effects and the corrected theoretical uncertainty.

MPI are not yet fully understood and hence are MC generators, or rather their
implementation of MPI still exposed to unknown effects regarding MPI. It would
therefore be useful to gain a deeper understanding of MPI in order to improve the
theoretical knowledge of MPI and thus improve the MPI implementations in the
generators. A further reason for an interest in MPI, that does not have to do with
MC generators, is the fact that they are an important part of the Higgs search and
take a serious role in SUSY experiments. In order to improve the quality of the re-
sults from experiments concerning either, the Higgs or SUSY search, it is important
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to improve the current understanding of MPI. It is therefore also worthwhile to in-
vestigate MPI in different particle processes that have not yet been payed attention
to in research regarding MPI. It would be useful to find out how MPI contributes
to these, currently ignored, processes in order to determine whether some processes
or properties show interesting or unexpected behaviour in relation to MPI.
Another very interesting approach would be to doubt the validity of the factori-
sation theorem by assuming that the two interactions in double parton scattering
processes are in fact correlated. Hints that they are were already given in earlier
studies [94, 95]. If true, this would have a significant effect on the currect under-
standing of MPI.
It would also be very interesting to investigate the frequency and properties of triple
parton interactions (TPI). These processes are expected to occur much more seldom
than double parton interactions but it has been argued that they could be observable
at the LHC [29, 96]. It would be very exciting to determine how specific variables
and properties of TPI behave, especially in relation to SPS and DPS processes.
Finally, and on a rather technical note. It must be added that it cannot be under-
estimated how important time is in generator based studies like this one. Before
any (generator heavy) study is conducted an estimation on how long the simulations
will take and how efficient they are is crucial and must be done with all necessary
thoroughness.
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