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Abstract

Efficient, ultra-fast photon storage is one of the basic requirements for building a quantum

computer and process quantum information. Several schemes for a quantum memory have

been proposed, but none based on optomechanical systems. These systems are known to

have very long coherence times, and thus are a promising architecture. In this thesis, we

consider an optical cavity with an optomechanical membrane as a mirror, and study how

a single photon couples to the vibrational motion. We control this storage process by

means of a coherent light field, which we optimise in the adiabatic regime. We explore the

non adiabatic regime numerically and develop a mathematical framework that allows us

to study it analytically. Our mathematical method is not restricted to an optomechanical

cavity, and can easily be extended to other physical systems. With the analytical results

derived, we can give a recipe for a better optimisation of the non adiabatic storage of

photons. In particular, we find a class of single photon shapes that performs better than

all others, with which the adiabatic condition is fulfilled for shorter timescales.
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Chapter 1

Introduction

Physics is dead

-”There is nothing new to be discovered in physics now. All that remains is

more and more precise measurement.”- Lord Kelvin

-”It seems probable that most of the grand underlying principles have been

firmly established. An eminent physicist remarked that the future truths of

physical science are to be looked for in the sixth place of decimals.”- Albert

Michelson

These two sentences pronounced by Kelvin and Michelson at late 19th century are, proba-

bly, among the most famous in history of science. Yet the most unfortunate ones. By that

time, thermodynamics and electromagnetism had just been introduced and were expected

soon to be fully explored. Theoretical physics was dead, and it was time for experimen-

talists and engineers to rise and to take control of science.

More than ever before

-”This spooky action at a distance.”- Albert Einstein

-”I think I can safely say that nobody understands quantum mechanics.”-

Richard Feynman

Only few years later, Planck explained Black Body Radiation and founded quantum me-

chanics. Few years later Einstein used the same theory to explain the photoelectric ef-

fect. These two long-lasting problems, that had given many troubles during past decades,
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proved that there was a whole new theory to be developed. Quantum physics was officially

born, and more new possibilities, properties, answers and questions than ever before were

brought into the game.

During the last century, quantum theories have been further developed, and shown many

interesting phenomena that cannot be described within a classical framework. Nowadays,

there is no doubt: quantum mechanics is the future. From quantum computing and

teleportation to material science and nanoscale engineering, the quantum world offers us

unimaginable possibilities, yet to be explored and understood.

1.1 Quantum computers

In particular, two of the most spooky properties of quantum mechanics, namely entan-

glement and state superposition, have shown to exponentially speed up the computing

capacity, both in theory [20][21] and in experiment [22][23]. The quantum equivalent of

classical bits, (either 0 or 1), are qubits, which can be in a superposition of these two states,

|ψ〉 = α |0〉+ β |1〉 with ‖α‖2 + ‖β‖2 = 1. Fast parallel information processing is thus in-

cluded in the fundamental brick of a quantum computer. Photons are usually chosen for

carrying quantum states through optical fibers and nanophotonic structures, since they

weakly interact with the environment and have long coherence times [14]. Light-matter

interaction is thus a prime field of study nowadays.

We refer to a quantum computer as an experimental set-up that is able to exploit these

(and others) quantum mechanical properties to efficiently carry on computations and in-

formation processing over quantum states. In order to do so, a quantum computer must

satisfy the di Vincenzo criteria [1]:

1. Scalability: several qubits are needed to work together to run complex problems.

2. Initialisation: qubits need to be initialised into a known state.

3. Universal gate operations: it must be possible to perform single and 2-qubit gate

operations with a high fidelity.

4. Readout: qubits must be available for measurement.

5. Deoherence: qubits must have a coherence time much larger than the operation time.

6. Quantum interfaces for qubit interconversion: qubit interfaces must be possible for

storage and on-chip communication between qubit registers.
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7. Quantum interfaces to flying qubits for optical communication: qubit-photon inter-

faces must be available for long-distance transfer of quantum states and entangle-

ment.

Conditions 1-5 are needed for quantum computation tasks, whereas conditions 6 and 7 are

required for quantum communications.

There mainly exist two different approaches to the experimental implementation of quan-

tum computers: trapped ions and superconducting qubits. Ion traps have large coherence

times: most of current experiments achieve timescales larger than miliseconds [2] (about

two orders of magnitude above the time needed for carrying on a quantum computation),

while some groups demonstrate seconds [24] and even minutes [25]. However, trapped ion

quantum computers have traditionally had a very difficult scalability, even though a lot of

promising research in this direction is currently going on [14]. On the other hand, super-

conducting circuits are more easily scalable, with experiments demonstrating systems of

up to 7 [15] and even 9 qubits [18][19], but noise from the environment usually lead to bad

coherence times [3]. All other diVincenzo conditions for quantum computation (2,3,4) are

possible to achieve for both families of quantum computers.

Most promising (in a short term) architectures for universal quantum computers include,

therefore, hybrid platforms with components based on different experimental approaches.

1.2 Quantum memories

Lastly, in order to perform quantum communications, a quantum computer must be able

to store and transfer quantum states along long distances. This can be mostly achieved

by a system which is capable to store and retrieve photons on demand, ensuring that its

information is not altered in such process, by a strong coupling between different elemen-

tary excitations such as photons, phonons or spin waves.

In this thesis, we focus on the study of quantum memories for the efficient storage of

photons, in particular to an optomechanical scheme. Optomechanical membranes can be

cooled down to its ground state, thus achieving single phonon control [13] [16]. They can

also be engineered to have resonant frequencies in the GHz range and a strong coupling

between the light field and the mechanical motion. Therefore, they provide a promising

scheme for storage and retrieval of ultra short light pulses [17], allowing to achieve single

photon-single phonon state swap, which ensures a high-fidelity information transfer.
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1.3 Objectives and outline

The main objective of this thesis is the study and optimisation of an optomechanical

quantum memory for the storage of photons. The outline of this thesis is as follows.

• Chapter 1. Introduction. Introduces the reader to the field of study, objectives

and motivation of this thesis.

• Chatper 2. Theoretical basics of optomechanics. Introduces necessary con-

cepts of optomechanical quantum optics and presents the derivation of the basic

equations used in following chapters.

• Chapter 3. First approach: the dirty experiment. Presents a first approach

to the study of the dynamics of a membrane in an optomechanical quantum memory

scheme.

• Chapter 4. An optomechanical quantum memory. First, the adiabatic regime

of an optomechanical quantum memory is studied and optimised. Later, a numerical

exploration of the non adiabatic regime is carried on, and a mathematical framework

is developed to study it analytically. By means of this framework, several features

are identified and a recipe for an improved storage strategy is provided.

• Chapter 5. Conclusions and outlook. The results of the thesis are summarised,

and an outlook for further researches and potential improvements is given.
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Chapter 2

Theoretical basics of

optomechanics

The main goal of this work is to study an optomechanical quantum memory for photon

storage. In this chapter we present a compact optomechanical review for understanding

the thesis. In order to describe the system we are interested in, we study optical fields

inside a cavity (cavity optics), starting with the simplest possible case and adding to it,

step by step, more complex, interesting and realistic features. The equations derived in

this chapter will later be used in following ones, and will constitute the basis of this work.

In this order, we consider these systems:

1. A perfect cavity with completely reflective mirrors, from both a classical and a

quantum point of view.

2. A lossy cavity, in which one of the mirrors is not perfect, but partially transparent,

thus allowing the outside field to leak in and the inside field to leak out.

3. Finally, we attach only one of the mirrors to a spring in order to include the me-

chanical degree of freedom of the desired optomechanical system. The work done in

the following chapters of this thesis is based on this last system.

2.1 Perfect cavity

Consider an optical cavity along the z-axis with perfectly reflective mirrors that keep the

light inside the cavity. For simplicity, assume that we have a single-mode electromagnetic

field inside it. In order to satisfy Maxwell’s equations and the boundary conditions imposed

by the mirrors, such field must form standing waves that are described by the equations:

Ex = E0q (t) sin (kz) , (2.1)
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By = B0p (t) cos (kz) , (2.2)

with E0 =
(

2ω2

ε0V

) 1
2

and B0 = µ0ε0
k

(
2ω2

ε0V

) 1
2
. Here, V is the cavity volume, ω the frequency

of the mode inside the cavity, and k = ω
c the wave number (c = 1√

ε0µ0
is the speed of light

in vacuum, and ε0 and µ0 the vacuum electric permitivity and magnetic permeability).

We also assume, for sake of simplicity, that the electric field is polarised along the x-axis

and the magnetic field is polarised along the y-axis. All time dependence is encoded in the

functions q (t) and p (t), which represent canonical position and momentum, respectively

(p (t) = q̇ (t)).

The total energy (or the Hamiltonian of the system) of the electromagnetic field inside a

volume V is given by:

H =
1

2

∫
V

[
ε0‖E‖2 +

1

µ0
‖B‖2

]
dV. (2.3)

By writing this expression and substituting the electromagnetic field in a perfect cavity,

eq.2.1-2.2, we get:

H =
1

2

[
ω2q2 (t) + p2 (t)

]
. (2.4)

Noticeably, this is equal to the total energy of a harmonic oscillator with an effective uni-

tary mass and a frequency ω.

2.1.1 Quantisation of the electromagnetic field

Above we described an electromagnetic field inside a perfect cavity from a classical point

of view, eq.2.4. In order to quantise it, we need to generalise the canonical position and

momentum to operators. The Hamiltonian operator of the system is thus:

Ĥ =
1

2

[
ω2q̂2 (t) + p̂2 (t)

]
, (2.5)

where the operators p̂ (t) and q̂ (t) have canonical commutation relation [q̂ (t) , p̂ (t′)] =

i~δ (t− t′).

We introduce the creation and annihilation operators (or ladder operators) for the light

field:

â =
1√
2~ω

(ωq̂ + ip̂) , (2.6)

â† =
1√
2~ω

(ωq̂ − ip̂) , (2.7)

that act on a photonic number state |n〉 according to

â |n〉 =
√
n |n− 1〉 , (2.8)
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â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.9)

From the commutation relation between p̂ (t) and q̂ (t) and the definitions eq.2.6 and eq.2.7

it is possible to prove that [
â (t) , â†

(
t′
)]

= δ
(
t− t′

)
. (2.10)

The Hamiltonian of our system can be rewritten in terms of the ladder operators â and

â†:

Ĥ = ~ω
(
n̂+

1

2

)
, (2.11)

where we introduced the number operator n̂, with the number states as its eigenstates:

n̂ = â†â (2.12)

n̂ |n〉 = n |n〉 (2.13)

Eq.2.13 can be proven from eq.2.8 and eq.2.9, and the definition eq.2.12. These number

states are, therefore, the eigenstates of the Hamiltonian, Ĥ |n〉 = En |n〉, with eigenenergies

En = ~ω
(
n+ 1

2

)
. The quantised electromagnetic fields Ê and B̂ can thus be rewritten as

Ê = Eq

(
â+ â†

)
sin (kz) , (2.14)

B̂ = Bq

(
â− â†

)
cos (kz) , (2.15)

where Eq =
(
~ω
ε0V

) 1
2

and Bq = −iµ0

k

(
ε0~ω3

V

) 1
2
.

The time evolution of the electromagnetic field and, in general, of any operator Ô, is

given by the Heisenberg equation:

dÔ

dt
=
i

~

[
Ĥ, Ô

]
+
∂Ô

∂t
. (2.16)

2.2 Lossy cavity

Above we considered a perfectly reflecting cavity, treated as an independent system com-

pletely isolated from the outside world. A more realistic scenario is the one where the

mirrors are partially transparent, so that the field inside the cavity can interact with an

incoming light field (see fig.2.1). It is very useful to treat this system with a beamsplitter

model.
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Figure 2.1: Scheme of a cavity with a partially transparent mirror. E is the electric field

inside the cavity, Ein is the incident electric field and Eout is the output field. T and R

are the transmission and reflection coefficients, respectively.

2.2.1 Classical model

From a classical point of view, an incoming field Ein sent towards a partially reflecting

mirror has a probability T to enter the cavity and R to be reflected, where T and R are

the reflecting and transmitting coefficients, respectively. Therefore, the electric field inside

the cavity is described by the relation:

E (t+ ∆t) = TEin +RE (t) , (2.17)

where ∆t = 2L
c is the time of a roundtrip. In the limit ∆t → 0, we can use this last

equation eq.2.17 to find the time derivative of the electric field E (t), and thus its equation

of motion:
dE

dt
= (R− 1)

c

L
E (t) + T

c

L
Ein (t) . (2.18)

The cavity loss rate κ is defined as the inverse of the lifetime of the electric field in the

cavity, and can be found to be:
κ

2
= (1−R)

c

L
. (2.19)

If we assume our mirror to be perfect, in the sense that it does not absorb any energy,

R2 + T 2 = 1 and κ can be approximated, in the limit of high reflectivity, T � 1, to:

κ ≈ T 2 c

L
. (2.20)
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In terms of the cavity loss rate, the equation describing the classical evolution of the field

inside the cavity becomes:

dE (t)

dt
= −κ

2
E (t) +

√
κ

(
L

c

) 1
2

Ein (t) . (2.21)

To compute the field outside the cavity, we use the input-output relation that:

Eout (t) =

(
κ
L

2c
− 1

)
Ein (t) +

√
κ

(
L

c

) 1
2

E (t) , (2.22)

which, together with eq.2.21, gives a full description of the time evolution of the electric

field in our system.

2.2.2 Quantum model

As we did before in setion 2.1, we quantise the electric field by replacing the classical

variable E (t) with the creation (anihilation) operator â (t) (â† (t)). In order to quantise

eq.2.21 we introduce the operator F̂ : the quantum noise (and eventually drives) associated

with the external vacuum field leaking in. The equation of motion, eq.2.21 becomes:

˙̂a = −κ
2
â+ F̂ . (2.23)

To find the form of F̂ , we assume that the cavity field â interacts with a continuum of

modes, at different frequencies ωk. The action of this reservoir is modeled by the operator

R̂:

R̂† = −i~
∑
k

ckâ
†
ke
ωkt (2.24)

Where the coefficients ck define the coupling strengths between the modes k and the field

inside the cavity. The transmission properties of the mirrors completely determine all the

parameters ck. The interaction Hamiltonian can then be found as ĤI = −R̂†Ŝ − Ŝ†R̂
(where Ŝ = â is the operator describing the system and R̂ the reservoir), which yields:

ĤI = i~
∑
k

ckââ
†
ke
−i(ω−ωk)t + h.c. (2.25)

We moved to a frame rotating at the cavity field’s frequency ω.

Using the interaction Hamiltonian, eq.2.25 we can obtain the equations of motion for

both the field inside the cavity and the reservoir modes:

˙̂a = −
∑
k

c∗kâke
i(ω−ωk)t, (2.26)
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˙̂ak = ckâe
−i(ω−ωk)t. (2.27)

By formally integrating eq.2.27, the time evolution of the reservoir modes âk is found to

be:

âk (t) = âk (0) +

∫ t

0
dt′ckâ

(
t′
)
e−i(ω−ωk)t′ , (2.28)

that can be plugged into eq.2.26 to derive the equation of motion for the field inside the

cavity, â:

˙̂a (t) = −
∑
k

c∗ke
i(ω−ωk)tâk (0)−

∑
k

‖ck‖2
∫ t

0
dt′â

(
t′
)
ei(ω−ωk)(t−t′). (2.29)

Imposing the Wigner-Weisskopf approximation in the integral in eq.2.29, we can treat the

oscillating term as a delta function. Thus, comparing with eq.2.23, we get:

κ = 2π
∑
k

‖ck‖2δ (ω − ωk) = 2π‖ck‖2D (ν) (2.30)

where D (ν) is the density of states. Also, we can formally define the noise operator as:

F̂ = −
∑
k

c∗ke
i(ω−ωk)tâk (0) . (2.31)

With this derivation (so called microscopic noise model [4]), we see how the partially trans-

mitting mirror allows the cavity to interact with the external world: the inside field can

leak out at rate κ
2 , and the continuum of modes can leak in the from of a drive and/or a

noise term. Importantly, for the canonical commutation relation
[
â (t) , â† (t′)

]
= δ (t− t′)

to hold, quantum mechanics needs this noise term to exist (one can indeed check that,

setting F̂ = 0, eq.2.23 leads to a violation of the commutation relation).

As we did in the classical case, to have a full description of the dynamics of the light

field we derive an input-output relation in the quantum regime. Identifying the noise at

time t = 0 term as the input field

F̂in (t) = −
∑
k

c∗kâk (0) ei(ω−ωk)t, (2.32)

it makes sense to define the output field as the same term, but at any desired time t

F̂out (t) = −
∑
k

c∗kâk (t) ei(ω−ωk)t. (2.33)

Plugging eq.2.33 in the solution for the reservoir modes âk (t) found above eq.2.28, yields:

F̂out (t) = −
∑
k

c∗kâk (0) ei(ω−ωk)t −
∑
k

‖ck‖2
∫ t

0
dt′â

(
t′
)
ei(ω−ωk)(t−t′). (2.34)

Identifying the first term as the input field, and recalling the definition of κ, eq.2.30, we

finally get:

F̂out (t) = F̂ (t)− κâ (t) , (2.35)
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that is valid in the Wigner-Weisskopf approximation

Finally, we define the input and output fields:

âin,out =
F̂in,out√

κ
, (2.36)

to have them fulfilling the desired commutation relation eq.2.10. Plugging these definitions

in the previous equations, we derive the fundamental equations describing the light field

in a lossy cavity:

˙̂a = −κ
2
â+
√
κâin (2.37)

âout = âin −
√
κâ (2.38)

2.2.3 Strong coherent field as input

So far we described the input field as a quantum operator. Nevertheless, in many cases

it is practical to include, in addition to the quantum field, a coherent field described by a

classical function. In this new scenario, the interaction Hamiltonian is:

Ĥ
′
I = ĤI + i~

√
κ
[
sin (t) â† − s∗in (t) â

]
, (2.39)

where ĤI is defined in eq.2.25 and the classical light field is:

sin (t) = s̄ine
iωLt. (2.40)

Here, ωL is the frequency of the laser, and s̄in its amplitude. In a rotating frame at this

frequency, ωL, the full Hamiltonian reads:

Ĥ = −~∆â†â+ ĤI + i~
√
κ
[
s̄inâ

† − s̄∗inâ
]
, (2.41)

from which the equation of motion of the field inside the cavity can be derived to be:

˙̂a = −
(
i∆ +

κ

2

)
â+
√
κ (s̄in + âin) . (2.42)

The parameter ∆ = ω − ωL is the detuning between the incoming classical field and the

resonant frequency of the cavity.

Equation 2.42 generalises eq.2.37 to the case in which the input field is the sum of a

strong coherent field sin and a quantum noise âin. In this framework, we can also linearise
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the field inside the cavity. The large, classical incoming field creates another large, classi-

cal field inside the cavity, and the incoming quantum fluctuations create a quantum field.

Their equations of motion can be decoupled:

ā =

√
κ

i∆ + κ
2

s̄in, (2.43)

δ ˙̂a = −
(
i∆ +

κ

2

)
δâ+

√
κâin, (2.44)

where â = ā+ δâ. Analogously, the input-output relations can be generalised:

âout = âin −
√
κâ, (2.45)

sout = sin −
√
κā. (2.46)

This completes the quantum description of a cavity with a partially transparent mirror

and an input consisting of a large, classical state plus a quantum field.

2.3 Adding an optomechanical membrane

Consider now the system described in previous sections, and let the perfectly reflect-

ing mirror to move. The momentum carried by the light inside the cavity can thus be

transformed into mechanical motion (vibration of the membrane). Such a system can be

physically modeled by letting the membrane’s mirror be attached to a spring, such that it

has a mechanical degree of freedom, see fig.2.2.

The spring is described by a harmonic oscillator which Hamiltonian can be expressed,

in terms of the position and momentum operators, as:

ĤM =
mΩ2

m

2
x̂2 +

p̂2

2m
. (2.47)

Here, m is the mass of the membrane and Ωm its resonant frequency. The operator x̂

describes the position of the membrane with respect to its equilibrium.

The field inside the cavity interacts with the mechanical movement of the spring with

a factor G = ∂ω
∂x , the so called optomechanical coupling. G is the first order variation in

the characteristic frequency of the cavity and gives raise to the interaction:

ĤIM = ~Gx̂â†â. (2.48)

It follows that the cavity experiences a frequency shift due to the change in its length,

given by the coupling factor G and the membrane’s position:

˙̂a = −
[κ

2
+ i (∆−Gx̂)

]
â+ F̂in. (2.49)
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Figure 2.2: Scheme of an optomechanical cavity, where one of the mirrors is allowed to

move in the transverse direction. Here, â is the field inside the cavity and âin/out describe

the input/output fields. κ is the cavity loss rate and b̂ is the mechanical annihilation

operator.

In eq.2.49, a vacuum input has been assumed, but this could be extended to any incoming

field. Moreover, we can determine the force that the field inside the cavity exerts to

the membrane. We define this radiation force as the variation of momentum that the

membrane experiences due to the photon collisions, given by

F̂RP = ˙̂p = −~G â†â︸︷︷︸
n̂

(2.50)

The radiation pressure is directly proportional to the number of photons in the cavity,

each of them transferring a momentum to the optomechanical membrane.

Now we extend the quantum description of the cavity, including the mechanical degree

of freedom. In this work we are interested in the quantum mechanical description of the

elementary vibrational motion of the membrane: the phonon. Phonons can be defined in

a similar manner as we did for photons in eq.2.6 and eq.2.7.

Thus, as we did for the photon creation and annihilation operators, â† and â, we introduce

the mechanical ladder operators b̂† and b̂. These act over phonon number quantum states,

|nb〉, in the same way as the photon operators act over |n〉, eq.2.8-2.9. In terms of b̂ and

b̂†, the operators for the position and the momentum read, respectively:

x̂ =

(
~

2mΩm

) 1
2 (
b̂+ b̂†

)
, (2.51)

p̂ = i

(
~mΩm

2

) 1
2 (
b̂− b̂†

)
. (2.52)
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The standard commutation relation
[
b̂ (t) , b̂† (t′)

]
= δ (t− t′) holds.

If we rewrite the Hamiltonian in eq.2.47 in terms of b̂ and b̂†, we find it to be formally

identical to the optical system Hamiltonian:

ĤM = ~Ωm

 b̂†b̂︸︷︷︸
n̂b

+
1

2

 (2.53)

Here we can also identify the number of phonons operator, n̂b = b̂†b̂. For the interaction

Hamiltonian that couples the mechanical motion and the optical field, eq.2.48, we find:

ĤIM = ~Gxzpf
(
b̂+ b̂†

)
â†â, (2.54)

where xzpf =
√
〈0| x̂2 |0〉 =

(
~

2mΩm

) 1
2

is the zero point motion fluctuation of the operator

x̂.

As we did in previous sections for a cavity with a partially transparent mirror and no

membrane, consider now that the input field is the sum of a large, classical field plus a

small quantum fluctuation. Then, it is practical to linearise the field inside the cavity,

separating the two contributions â = ā + δâ. By doing so, the interaction Hamiltonian

can be rewritten as:

ĤIM = ~g
[
δâ†b̂† + δâb̂

]
︸ ︷︷ ︸

(1)

+~g
[
δâb̂† + δâ†b̂

]
︸ ︷︷ ︸

(2)

(2.55)

where we defined the field-enhanced coupling rate g = Gxzpf ā. From eq.2.55, we can see

that the large, classical field does not couple to the mechanical mode, as it does not create

any phonon in the membrane. Its only role is to enhance the optomechanical interaction

between the quantum fields δâ(†) and b̂(†). This will allow us to externally modulate the

coupling, to optimise the photon storage in the membrane.

In the interaction Hamiltonian eq.2.55, we can distinguish two characteristically different

processes that can be brought into resonance by appropriately choosing the laser detuning

∆: parametric-down conversion and state-swap, (1) and (2) in eq.2.55, respectively. Both

processes occur simultaneously, but for Ωm � κ one of them dominates, with the other

one being strongly suppressed [14].

Parametric-down conversion

We first look at to the left term (1) in the Hamiltonian eq.2.55, that becomes dominant

by setting ∆ = +Ωm. The interaction Hamiltonian can be rewritten to be:

ĤIM ≈ ~g
[
δâ†b̂† + δâb̂

]
(2.56)

20



This Hamiltonian describes a process where either a photon and a phonon are simultane-

ously created (~gδâ†b̂†), or annihilated (~gδâ†b̂†) with the help of the classical field.

Figure 2.3: Parametric-down conversion process in an optomechanical cavity with an input

consisting of strong field plus a quantum state.

This process is called blue-sideband operation, or parametric-down conversion.

State-swap

On the other hand, by setting ∆ = −Ωm the second term (2) in eq.2.55 dominates, and

the interaction Hamiltonian becomes:

ĤIM ≈ ~g
[
δâb̂† + δâ†b̂

]
(2.57)

In this case, we no longer have a photon and a phonon created or annihilated at a time.

On the contrary, in this regime we can either have a phonon created by annihilating a

photon, or the opposite process.

This process is called red-sideband operation, or state-swap. The storage and retrieval

of a photonic quantum state into a phononic state will be achieved through this process.
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Figure 2.4: State-swap process in an optomechanical cavity with an input consisting of

strong field plus a quantum state.
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Chapter 3

First approach: the dirty

experiment

For studying optomechanical quantum memories, we first analyse how does a membrane

inside a cavity behave. Our aim is to store a single photon in the membrane’s oscillating

movementby sending towards the cavity the single photon plus a strong, classical field.

This classical field effectively enhances the optomechanical coupling between the single

photon quantum field and the mechanical modes in the membrane, and thus it gives us a

way to tune the storage.

In this thesis, we stick to single photons, pumping classical fields and optomechanical

cavities. In this chapter, however, we restrict ourselves to the study of the membrane’s

momentum, without taking into account the quantum dynamics of the phononic excita-

tion. We consider some approximations, stated, justified and clarified in the following. In

this order, we will:

1. Linearise the light fields.

2. Adiabatically eliminate the field inside the cavity.

3. Assume the incoming field to be a short pulse, to stress the adiabatic condition.

Finally, we find the time evolution of the momentum of the membrane, to have a first idea

of what is happening in the mechanical part of our cavity, that constitutes the storage

unit of our quantum memory.
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3.1 Derivation of the expression for the membrane’s mo-

mentum

Consider the general description of an optomechanical cavity with a moving mirror or

membrane. Such a system is described by the Langevin equations of motion

dâ (t)

dt
= −

(κ
2

+ i∆
)
â (t) +

√
κâin (t)−Gâ (t) x̂ (t) , (3.1)

dp̂ (t)

dt
= −mΩ2

mx̂ (t)− γp̂ (t) +
mΩm

2
Gâ† (t) â (t) + F̂b (t) , (3.2)

dx̂ (t)

dt
=

1

m
p̂ (t) , (3.3)

where the constants m and Ωm are, respectively, the mass and the resonance frequency

of the membrane, and κ and γ are the leak out and decay rates. Eq.3.1 describes the

creation of photons inside the cavity, while eq.3.2 and eq.3.3 describe the momentum and

position of the membrane. The operator âin (t) is the input field sent in the cavity, and

F̂b (t) is the Langevin noise force.

3.1.1 Linearisation of the light fields

As stated earlier, we are interested in the case where we send a single photon (whose

information we want to be stored) plus a strong, coherent field (which we want to use

as control of the storage process in our memory). With this in mind, we linearise the

equations of motion presented above, eq.3.1-3.3. The field operators â (t) and âin (t) are

thus rewritten:

â (t) = 〈â (t)〉+ δâ (t) (3.4)

âin (t) = 〈âin (t)〉+ δâin (t) (3.5)

where ‖ 〈â (t)〉 ‖ � ‖δâ (t) ‖ and ‖ 〈âin (t)〉 ‖ � ‖δâin (t) ‖, so that the fields are assumed

to be its mean plus a small perturbation.

If we now look at the input field after the linearisation is considered, eq.3.5, we can

indeed see that this is a good description of the strong, classical field plus a single photon

that we have discussed above. This linearisation is then, in the case we are interested in,

the most convenient way to precisely describe our input field.
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From now on, let us now change the notation used here to a more convenient one, by

defining:

α (t) ≡ 〈âin (t)〉 (3.6)

âin (t) ≡ δâin (t) (3.7)

Regarding the field inside the cavity â (t), we can split its equation of motion, eq.3.1

in two contributions: the evolution of the mean field 〈â〉 and the evolution of the small

perturbation, δâ. According to this, and with the new notation stated above, the dynamics

of the field inside the cavity can be expressed as:

d 〈â〉
dt

= −
(κ

2
+ i∆

)
〈â〉+

√
κα (t)−Gx̂ (t) 〈â〉 (3.8)

d

dt
δâ (t) = −

(κ
2

+ i∆
)
δâ (t) +

√
κâin (t)−Gx̂ (t) δâ (t) (3.9)

3.1.2 Adiabaticity condition and solutions

Above we derived the equations of motion for the field inside the cavity, eq.3.8 and eq.3.9.

The momentum and position of the membrane are described in eq.3.2 and eq.3.3, respec-

tively. Since these equations are coupled, we first solve for the field inside the cavity, eq.3.8

and eq.3.9, and later consider the mechanics.

Being this chapter a first attempt for studying the system, we restrict ourselves to the

adiabatic regime only. The light field inside the cavity is assumed to change slowly with

respect to the characteristic time κ of the cavity. In other words, the decoherence and

leaking times need to be large enough to neglect the derivatives on the left hand side of

eq.3.8 and eq.3.9. This adiabaticty condition, then, reads:

T−1
ψ � κ, (3.10)

where Tψ is the characteristic time of the experiment. In this regime, the solutions to the

field inside the cavity are:

〈â (t)〉 =
√
κα (t)

(κ
2

+ i∆ +Gx̂ (t)
)−1

, (3.11)

δâ (t) =
√
κâin (t)

(κ
2

+ i∆ +Gx̂ (t)
)−1

. (3.12)
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3.1.3 Short pulse condition for the incoming field

When the incoming field enters the cavity, the membrane is kicked and its momentum and

position change according to eq.3.2 and eq.3.3.

If this process is smooth and slow, one would need to solve both these equations in order

to exactly know the time evolution of the membrane’s quadratures. On the other hand, if

one assumes that the light gives a fast kick to the membrane, this process is fast enough

to let us ignore the change in position of the membrane.

Relating the physical parameters of the light fields and the cavity, this translates into

the condition:

Tψ � Ω−1
m , γ−1, (3.13)

where Ωm is the characteristic frequency of the membrane and Tψ is the pulse duration.

In the regime identified by the condition eq.3.13, we can neglect the movement of the

membrane within the optical pulse and consider the mechanical system to be steady. To

derive easy expressions, we also ignore the decay and noise terms, γ and F̂b respectively.

Thus, we rewrite the equations of motion for the mechanical part of the system within an

optical pulse of duration Tψ as:

dp̂

dt
=
mΩm

2
G
(
‖ 〈â〉 ‖2 + 〈â〉 δâ† + 〈â〉∗ δâ

)
(3.14)

for the membrane’s momentum, and

dx̂

dt
= 0 (3.15)

for its position. It is important to emphasize that eq.3.15 is only valid within the pulse

duration.

Since eq.3.15 for the mechanical position is trivial, from now on we do not consider the

operator x̂ (t) , but a classical variable x (t) instead. The position x (t), as we have already

justified, is considered to be steady in the timescales of our experiment. Without any inter-

action from the mechanical reservoir, we can assume that the oscillator has a sinusoidal dy-

namics, so that at the initial time t0 the position of the membrane is x (t0) = Acos (Ωmt0).

From eq.3.14 we can see that the momentum dynamics is completely determined by the

light field inside the cavity. By plugging the solutions for the fields in the adiabatic regime

eq.3.11 and eq.3.12 into the equation of motion of the operator p̂ (t), eq.3.14, we find that
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the membrane’s momentum evolves according to:

dp̂ (t)

dt
=
mΩm

2

Gκ(
κ
2 + gx (t0)

)2
+ ∆2

[
‖α (t) ‖2 + α (t)

(
âin (t) + â†in (t)

)]
. (3.16)

We thus have an expression describing the momentum of the membrane as a function of

the incoming field (recall that α (t) is the large, classical, coherent field, and âin (t) the

single photon).

Let us now assume that the membrane is in its equilibrium position at t = t0, so that the

term x (t0) vanishes in the expression above, eq.3.16. Moreover, for sake of simplicity we

introduce the constant:

P =
mΩm

2

Gκ
κ2

4 + ∆2
. (3.17)

By solving the equation of motion eq.3.16, we finally get:

p̂ (t0 + ∆t) = P

∫ t0+∆t

t0

dt
[
‖α (t) ‖2 + α (t)

(
âin (t) + â†in (t)

)]
, (3.18)

with which we find the change of momentum of the membrane, given an input field. One

should be careful here and recall that, to reach this solution, we took some assumptions.

For this solution to be valid, ∆t has to fulfill the conditions of adiabaticity, eq.3.10, and

short pulse, eq.3.13. Namely, this last expression will only describe our system correctly

for times that can be comparable to the incoming pulse timescale:

∆t ∼ Tψ (3.19)

Eq.3.18 can be used to determine the momentum change at any instant during the pulse,

∆t < Tψ. With that, it is possible to find the new oscillatory motion of the membrane, at

least until the mechanical reservoir perturbs the dynamics (this is, for a timescale t such

that t� γ−1).

3.2 Computation of 〈p̂2〉

When studying mechanical systems, one of the most important and interesting properties

is the momentum, with which we can compute the kinetic energy. In quantum mechanics,

however, since the square of the expected value of an observable is not equal to the ex-

pected value of its square, we have to directly compute 〈p̂2〉. In this section, we will make

use of the equation for the momentum of the membrane derived above, eq.3.18, and study

how it changes when we send different pulses.
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In particular, we are interested in the net effect of the single photon on the membrane’s

momentum, computed as the difference in momentum that it experiences when we con-

sider two consecutive pulses. We first send the classical field plus the single photon. Later

on, after half a mechanical period, and always in a timescale fulfilling the conditions stated

earlier in order to the derived equation to be valid, we send a second, equally shaped clas-

sical pulse, without the single photon.

3.2.1 First pulse: classical field plus a single photon

As we have discussed above, we send towards the cavity a classical pulse plus a single

photon. Let us define more carefully how this fields look like. First, the classical field

carries a certain number of photons, distributed with a certain shape in time:

α (t) =
√
Nf (t) . (3.20)

Here N is the number of photons in the field, and f (t) is a normalisation function, such

that: ∫ +∞

−∞
dt‖α (t) ‖2 = N. (3.21)

On the other hand, the single photon will be described by a density matrix of the form:

ρ̂1 = (1− q) |0〉 〈0|+ qâ†ψ |0〉 〈0| âψ (3.22)

where a single photon is created with a probability q and a certain wave function, this is:

âψ =

∫ +∞

−∞
dtψ (t) â. (3.23)

The wave function ψ (t) is also normalised, as it describes an input pulse with a single

photon.

Since α (t) describes a classical field, it enters directly in the equation for the time evolution

of p̂ (t), eq.3.18, and our computation finally resumes to:

Tr{ρ̂1p̂
2} = (1− q) 〈0| p̂2 |0〉+ q 〈0| âψp̂2â†ψ |0〉 (3.24)

Let us compute the outcome of eq.3.24 by parts. For the first average, 〈0| p̂2 |0〉, we find:

〈0| p̂2 |0〉 =

= P 2

∫ t0+∆t

t0

dt′
∫ t0+∆t

t0

dt′′ 〈0|
[
‖α
(
t′
)
‖2 + α

(
t′
) (
âin
(
t′
)

+ â†in
(
t′
))]
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[
‖α
(
t′′
)
‖2 + α

(
t′′
) (
âin
(
t′′
)

+ â†in
(
t′′
))]
|0〉 =

= P 2

∫ t0+∆t

t0

dt′
∫ t0+∆t

t0

dt′′
[
N2‖f

(
t′
)
‖2‖f

(
t′′
)
‖2 +Nf

(
t′
)
f∗
(
t′′
)
〈0| â

(
t′
)
â†
(
t′′
)
|0〉︸ ︷︷ ︸

δ(t′−t′′)

]
=

= P 2
[
N2 +N

]
(3.25)

Recall that, according to the condition stated earlier in eq.3.19, we assumed that the

timescale of this process was comparable to the timescale of the incoming pulse. In this

last result, eq.3.25, we made this condition a bit more strict: we assume that, during ∆t,

the whole pulse enters the cavity and interacts with the membrane, this is, ∆t ≥ Tψ, so

that we make sure that all its energy is transferred to the mechanical system. Thus, the co-

herent pulse’s time distribution function, f (t), is normalised in the timespan [t0, t0 + ∆t].

Finally, for the second braket in eq.3.24, 〈0| âψp̂2â†ψ |0〉, we find:

〈0| âψp̂2â†ψ |0〉 =

= P 2

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′
∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2ψ

∗ (τ1)ψ (τ2)

〈0| â (τ1)

{
N2f

(
t′
)2
f
(
t′′
)2

+Nf
(
t′
)
f
(
t′′
)
â†
(
t′
)
â
(
t′′
)
+Nf

(
t′
)
f
(
t′′
)
â
(
t′
)
â†
(
t′′
)}

â† (τ2) |0〉 =

= P 2

∫ t+∆t

t
dt′
∫ t+∆t

t
dt′′
∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2ψ

∗ (τ1)ψ (τ2)

{
N2f

(
t′
)2
f
(
t′′
)2
δ (τ1 − τ2) +

+Nf
(
t′
)
f
(
t′′
)
δ
(
t′ − τ1

)
δ
(
t′′ − τ2

)
+Nf

(
t′
)
f
(
t′′
) [
δ
(
t′ − t′′

)
δ (τ1 − τ2)+δ

(
t′′ − τ1

)
δ
(
t′ − τ2

) ]}
=

= P 2

{
N2 +N (1 + 2Λ)

}
(3.26)
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where we defined Λ as the scalar product between the distribution function of the coherent

pulse, and the single photon’s wave function:

Λ =

∥∥∥∥∫ +∞

−∞
dtf∗ (t)ψ (t)

∥∥∥∥2

(3.27)

In chapter 4, we consider the fully quantum description of our system, and we will find

out that this overlap between the time distributions of the single photon and the coherent

pulse is crucial for the storage and retrieval optimisation of the information in our memory.

Gathering both results eq.3.25 and eq.3.26 together, we conclude that the expected value

of the squared momentum operator in the cavity’s membrane, at a time t = t0 + ∆t, with

∆t & Tψ, is:

〈p̂2〉 =

(
mΩm

2

)2 G2κ2

κ2

4 + ∆2

[
N2 +N (1 + 2qΛ)

]
. (3.28)

3.2.2 Second pulse: classical field alone and variations in 〈p̂2〉

Above we computed the membrane’s squared momentum due to the first pulse. After half

a mechanical period we send in the cavity a second pulse, consisting only in the classical

field, with the same time distribution f (t) used before. We are interested in the total

variation in 〈p̂2〉 after these two consecutive pulses. So, in the same way done above, we

now consider an incoming quantum field described by a vacuum density matrix:

ρ̂2 = |0〉 〈0| . (3.29)

We use the same technique for determining the change of amplitude due to the second,

classical pulse. Then, by summing these contributions together, we find the net effect of

the single photon to be:

∆ 〈p̂2〉 =

(
mΩm

2

)2 G2κ2(
κ2

4 + ∆2
)2N2qΛ. (3.30)

For experimental purposes, we are interested to express eq.3.30 with the physical param-

eters of the system. In particular, in experimental physics the losses in the cavity are

related to the finesse F . This is defined as the cavity’s free spectral range divided by the

(full width at half maximum) bandwith of its resonances. In general, if we define r as the

fraction of power left inside the cavity after one round trip (so that 1 − r is the fraction

lost) the finesse of a cavity is given by [6]:

F =
π

2 arcsin
(

1−
√
r

2 4√r

) ≈ 2
π

1− r
. (3.31)
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Importantly, the finesse is fully characterised by the cavity’s losses, and completely in-

dependent of its length. Additionally, we can relate the constants κ and G appearing in

eq.3.30 as [14]:

κ =
c

2L
(1− r) , (3.32)

G =
πc

L2
x2
ZPM , (3.33)

where c is the speed of light in vacuum. Recall that we considered a system with only

one moving mirror, and with only one mechanical degree of freedom. Other geometries

can, in general, present different linear optomechanical coupling rates, but we will restrict

ourselves to the study of systems fulfilling this description.

Finally, we put everything together and, for sake of simplicity, assume the system to

be in a near resonance regime, so that ∆ � κ. Moreover, we consider an ideal single

photon source, such that q = 1. Then, the variation in the expected squared momentum

of the membrane due to the single photon is:

∆ 〈p̂2〉 = 8

(
mΩmx

2
ZPM

L

)2

F2NΛ (3.34)

With this last expression, we understand how the strong classical field enhances the mo-

mentum transfer between the single photon and the cavity’s membrane. We summarise

the results of this chapter:

• From the definition of Λ in eq.3.27, and eq.3.34 we find that the transfer of momen-

tum is proportional to the scalar product between the two fields f (t) and ψ (t). This

transfer is thus maximised when their distributions match. For a certain number of

photons, the more similar the distributions are to each other, the better will be the

momentum transfer.

• If we want to increase the resolution of our experiment, we only need to use a larger

number of photons N in our classical field.

• To a higher finesse is associated a higher momentum transfer
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Chapter 4

An optomechanical quantum

memory

In chapter 3 we introduced the problem of an optomechanical quantum memory in which

we want to store a single photon with the help of a classical coherent field, by studying the

dynamics of the membrane from a classical point of view. In the following, we consider

the quantisation of both the electromagnetic field and the vibrational modes of the cavity.

Thus, we deal with the fully quantised hamiltonian, with the creation and anihilation

operators for phonons, b̂† and b̂. We assume the system to be red-detuned from the cavity

resonance frequency, so that the Hamiltonian, after linearising the optical field inside the

cavity, is:

Ĥ = ~∆â†â+ Ωmb̂
†b̂+ ~g

(
â†b̂α∗ + âb̂†α

)
. (4.1)

Here â describes the small perturbation in the light field inside the cavity, while α is the

large, classical field inside the cavity. From this Hamiltonian, we derive the equations of

motion for â and b̂:
˙̂
b = −igαâ, (4.2)

˙̂a = −
(κ

2
+ i∆

)
â− igα∗b̂+

√
κâin, (4.3)

where we switched to a rotating frame where ∆ is the detuning from the characteristic fre-

quency ωL−Ωm of the red sideband. It is important to state that in this work we restrict

ourselves to systems without decoherence in the mechanical modes. With this we mean

that the timescale of the dynamics we are interested in, is much shorter than the char-

acteristic mechanical lifetime. This fact allows us to exclude extra terms in the equation

of motion for the operator b̂ (t). We take it as a postulate, without any demonstrations.

Further work and discussions towards this direction might be interesting to explore.

Using the same notation introduced in previous chapters, âin describes the incoming single

photon.
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In order to completely describe the dynamics of the system, in addition to equations

4.2 and 4.3, we need the input-output relation for the optical field

âout = −
√
κâ+ âin. (4.4)

In this chapter, we make use of the Hamiltonian of eq.4.1 to study the storage of the

single photon in the mechanical mode. Our goal is to find the maximum achievable ef-

ficiency. In order to do so, we first solve the system numerically, to gain an insight of

what is happening. We compare our results with the ones obtained in [7]. Later on, in

order to understand why this is happening, we develop an analytical theory that pushes

the adiabatic elimination to higher orders. We compare our results with the numerics to

make a validity check. In the analytical study, we first consider the adiabatic regime, for

which the adiabatic approximation is valid. We optimise the shape of the large pulse to

achieve the maximum efficiency in the photon storage in this regime. Then, we study the

non-adiabatic regime starting with the same optimal pulse shape, and use our theory to

determine corrections to the efficiency.

4.1 Numerical approach

In this section we numerically investigate the exact solutions to the output field and the

phonon dynamics in the membrane, eq.4.4 and 4.2, respectively. This way, we determine

the excitations created in the membrane, which correspond to the number of photons

stored in our memory. Later on, we compute the storage efficiency by comparing this

number with the number of photons sent towards it (in our case, this last number will be

always one, but this numerics can be used for higher number of photons). In the following,

we describe the numerical method we use. All the numerical plots presented in this thesis

are derived with the method presented in this section.

To begin with, we write down the most general solutions for the operators describing

the phonon dynamics and the output field. Since both operators are described by linear

equations of motion, eq.4.4 and 4.2, we know that the form of the solutions for b̂ (t) and

âout (t) can be expressed as:

b̂ (t) = c (t) b̂ (0) +

∫ t

0
dt′f

(
t′
)
âin
(
t′
)
, (4.5)

âout (t) = h (t) b̂ (0) +

∫ t

0
dt′g

(
t, t′
)
âin
(
t′
)
, (4.6)
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where c (t), f (t), h (t), g (t, t′) are functions to be found numerically. Since it is hard to

work with operators, we assume the system to be in coherent states. The response of

the system for single photon inputs is thus recovered by recalling the linearity property

of quantum mechanics, and the completeness of the set of coherent states. Equations 4.5

and 4.6 can thus be written as

b (t) = c (t) b (0) +

∫ t

0
dt′f

(
t′
)
ψ
(
t′
)
, (4.7)

aout (t) = h (t) b (0) +

∫ t

0
dt′g

(
t, t′
)
ψ
(
t′
)
, (4.8)

where ψ (t) has to be intended as the wave function of the single photon. We can now plug

eq.4.7 and eq.4.8 in the equations of motion derived earlier, eqs.4.2-4.4 to have a system of

differential equations suitable for a numerical analysis. What we want to do is, essentially,

to express our equations of motion in terms of the functions c (t), f (t), h (t), g (t, t′) only.

By plugging the general solution for the operator b (t), eq.4.7, into the equation of motion

describing the phonon dynamics, eq.4.2, we find a differential equation in terms of the new

functions c (t) and f (t):

ċ (t) b (0) + f (t)ψ (t) = −igα (t) a (t) . (4.9)

Since we do not have a solution for the light field a (t) in terms of the functions we want

to solve numerically for, we use the input-output relation introduced earlier to find:

a (t) =
ψ (t)√
κ
− h (t) b (0)√

κ
−
∫ t

0
dt′
g (t, t′)ψ (t′)√

κ
. (4.10)

Plugging this last result, eq.4.10, in the equation of motion for the coefficients, eq.4.9, we

derive an equation that only depends on the functions c (t), f (t), h (t), g (t, t′):

ċ (t) b (0)+f (t)ψ (t) = ig
α (t)√
κ

∫ t

0
dt′g

(
t, t′
)
ψ
(
t′
)
+ig

α (t)√
κ
h (t) b (0)−igα (t)√

κ
ψ (t) . (4.11)

Focusing our attention to this last result, eq.4.11, we distinguish two different contribu-

tions. First, we recognise the terms related to the mechanics: those having some relation

with the operator b (0). Second, the terms taking into account the single photon input

field, ψ (t). One can claim that the evolution of these different contributions needs to be

independent from each other. In other words, we can decouple eq.4.11 into a mechanical

contribution, and a single photon contribution ψ (t), to find:

ċ (t) = ig
α (t)√
κ
h (t) , (4.12)
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f (t) = ig
α (t)√
κ

G (t)

ψ (t)
. (4.13)

Here, we defined the function

G (t) =

∫ t

0
dt′g

(
t, t′
)
ψ
(
t′
)
− ψ (t) . (4.14)

From the equation of motion of the operator b̂ (t), eq.4.2, we found two equations relating

the four functions we want to solve numerically for. If we apply the same procedure

again for the equation of motion of the field inside the cavity, eq. 4.3, we can use similar

arguments to find the other two equations:

ḣ (t) = −
(
i∆ +

κ

2

)
h (t) + ig

√
κα∗ (t) c (t) , (4.15)

Ġ (t) = −
(
i∆ +

κ

2

)
G (t)− g2α∗ (t)

∫ t

0
dt′G

(
t′
)
α
(
t′
)
− κψ (t) . (4.16)

For practical purposes, we rewrite this last equation by making the substitution I (t) =∫ t
0 dt

′G (t′)α (t′) in eq.4.16:

Ġ (t) = −
(
i∆ +

κ

2

)
G (t)− g2α∗ (t) I (t)− κψ (t) . (4.17)

The function I (t) thus satisfies

İ (t) = G (t)α (t) . (4.18)

In order to write the system in a more compact way, we collect the four ordinary differential

equations in matrix notation:
ċ (t)

Ġ (t)

ḣ (t)

İ (t)

 =


0 0 igα(t)√

κ
0

0 −
(
κ
2 + i∆

)
0 −g2α∗ (t)

ig
√
κα∗ (t) 0 −

(
κ
2 + i∆

)
0

0 α (t) 0 0




c (t)

G (t)

h (t)

I (t)

+


0

−κψ (t)

0

0


(4.19)

From the definitions of the coefficients c (t), G (t), h (t), I (t), it is possible to determine

their initial values: 
c (0)

G (0)

h (0)

I (0)

 =


1

−ψ (0)

0

0

 . (4.20)

We solve the system in eq.4.19 with the initial conditions in eq.4.20 with the non stiff,

versatile ode solver ode45 [8] available in MATLABR©’s library, which is based on an ex-

plicit Runge-Kutta (4,5) formula, the Dormand-Prince pair [9][10]. With this, and adding

the relation with the last function, f (t), eq.4.13 we find a solution and can check the

theoretical results derived in the following.
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4.2 Analytic solution and optimisation in the adiabatic regime

We now study our system analytically, comparing our results with the ones obtained with

the numerical method derived in the previous section. Here, we derive the optimal shape

of the strong pulse for the photon storage in the adiabatic limit. This guarantees that, at

least in the adiabatic regime, the storage efficiency of our memory is maximised.

As we justified in the previous chapter, we can adiabatically eliminate the field inside

the cavity if the leaking out time described by the constant κ is large enough compared

to the time evolution of the light fields. The condition to be fulfilled is :

κσ � 1, (4.21)

where σ is the timescale characterising the single photon, and is required to be shorter

than the pulse duration Tψ. For instance, σ could be the width of a Gaussian pulse. This

condition is the same as the one given in the previous chapter, but written in a more con-

venient way. As we shall see later on, eq.4.21 is indeed fully characterising the adiabaticity

of the system.

4.2.1 Storage and retrieval of information in the membrane

Assuming the condition eq.4.21 to be fulfilled, we can find the adiabatic solution to the

field inside the cavity to be:

â (t) =
−igα∗ (t) b̂ (t) +

√
κâin (t)

κ
2 + i∆

(4.22)

Using the equation of motion for the operator b̂ (t), eq.4.2, and the adiabatic solution to the

field inside the cavity, eq.4.22, the phonon dynamics can be derived from the differential

equation:

˙̂
b (t) = −b̂ (t)

g2‖α (t) ‖2
κ
2 + i∆

− ig
√
κ

κ
2 + i∆

α (t) âin (t) (4.23)

This equation can be formally integrated to find the time evolution of the phonon creation

operator, yielding:

b̂ (t) = b̂ (0) e−γ(t) − ig
√
κ

κ
2 + i∆

∫ t

0
dt′α

(
t′
)
âin
(
t′
)
eγ(t′)−γ(t), (4.24)

where we defined:

γ (t) =
g2

κ
2 + i∆

∫ t

0
dt′‖α

(
t′
)
‖2. (4.25)
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The mechanical creation and annihilation operators b̂(†) (t) given in eq.4.24 do satisfy the

commutation relation: [
b̂ (t) , b̂†

(
t′
)]

= δ
(
t− t′

)
(4.26)

does hold for the derived expression for b̂ (t) eq.4.24.

Let us take a closer look at eq.4.24 and the definition eq.4.25. Since γ (t) is a positive,

strictly increasing function, and α (t) is normalised to a certain number of photons N , at

timescales large compared to the width σ of the coherent pulse α (t), the exponential term

behaves like a Heaviside step function. For t � σ, then, the first term in eq.4.24 disap-

pears, allowing us to explore not only the storage of photons in the mechanical modes,

but also their retrieval (recall that we assumed an infinite decoherence time for the mem-

brane’s modes). This way, we see now the importance of the classical pulse’s shape α (t).

Basically, if we want a fast and complete retrieval of the information stored, we have

to send a classical pulse α (t) with a large number of photons within a short time (this is

exactly the scenario explored in chapter 2, where we investigated the change in momen-

tum due to a fast kick in the membrane). If these two parameters, namely the number

of photons and the pulse duration are, respectively, large and short enough, the shape of

the pulse will not matter and we can increase the efficiency and the speed of the retrieval

process as much as desired.

If, on the other hand, we are interested in the storage of a new single photon, the shape

of the strong, classical field does play a role. Therefore, we have to find the optimal pulse

shape that maximises the efficiency of the storage process. We investigate this in the

following section.

4.2.2 Optimisation of the pulse shape for storage purposes

Above we found the relation, in the adiabatic limit, between the creation of phonons in

the membrane and the field inside the cavity. In this section, we optimise the shape of

α (t) for storage purposes. In order to simplify our computations, we assume that our

memory is in its ground state at the time we start our experiment (or, in other words,

that no photon has been stored previously, so that we do not have to take into account

the retrieval process before the storage of the new incoming field): b̂ (0) = 0.

As said above, we send a single photon and a classical field, and we want to store the

first one. The total time of the experiment Te is required to be longer than the single
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photon pulse duration, Tψ, so that we make sure that we send the whole pulse and all of

its energy is transferred to the membrane’s mechanical modes.

To quantify the storage efficiency, we compute the mean number of phonons in the mem-

brane after we sent the pulse, and divide it by the number of photons we are interested in

storing. In the following, we consider a single photon (such that only a single phonon can

be created in the membrane), and thus the efficiency coincides with the mean number of

phonons: η = 〈n̂b〉 = 〈b̂† (Te) b̂ (Te)〉.

Defining the incoming pulse as we did in previous chapters

âin =

∫ +∞

−∞
dtψ (t) â (t) , (4.27)

we finally find, using eq.4.24, the mean number of phonons:

〈n̂b〉 = ‖Z‖2e−γ∗(Te)−γ(Te)

∫ Te

0
dt′
∫ Te

0
dt′′
∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

ψ (τ1)ψ∗ (τ2)α
(
t′
)
α∗
(
t′′
)
eγ
∗(t′)+γ(t′′) 〈0| â (τ1) â†

(
t′
)
â
(
t′′
)
â† (τ2) |0〉︸ ︷︷ ︸

δ(τ1−t′)δ(τ2−t′′)

=

=

∥∥∥∥∫ Te

0
dtZα (t)ψ (t) eγ(t)−γ(Te)

∥∥∥∥2

. (4.28)

In this last expression, we introduced, for simplicity, the constant Z, which groups all the

other ones in eq.4.24:

Z = −ig
√
κ

κ
2 + i∆

(4.29)

If we want to maximise the photon storage, we can identify this last expression eq.4.28 as

the scalar product between two appropriately defined functions. The first one, which we

call the control function Υ (Te, t), depends on the large field α (t) only (recall the definition

of γ (t), eq.4.25). Defined as

Υ (Te, t) = Zα (t) eγ(t)e−γ(Te), (4.30)

it describes how we can tune the efficiency of the process by changing the shape of α (t).

The second function in the scalar product is the wave function ψ (t) of the single photon,

which we want to be stored in the phononic mode of the membrane.

Since the storage efficiency equals to the scalar product of two normalised functions (see
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appendix A), we know, recalling the Cauchy-Bunyakovsky-Schwarz (CBS) theorem, that

it will be upper limited by the product of its absolute values:∥∥∥∥∫ Te

0
dtΥ (Te, t)ψ (t)

∥∥∥∥2

≤ 1. (4.31)

Eq.4.31 is in agreement with the fact that the maximum expected number of phonons

created in the membrane (and the maximum efficiency) equals one. The CBS theorem

also states that the equality is reached if and only if

Υ (Te, t) = ψ∗ (t) . (4.32)

Recalling the definitions of the control function Υ (Te, t), eq.4.30, and γ (t), eq.4.25, the

optimal shape of the large field is found by solving the following integral equation:

α (t) =
ψ∗ (t)

Z
e

g2
κ
2 +i∆

∫ Te
t dt′‖α(t′)‖2

. (4.33)

Tt is useful to take a look at the time variables involved in eq.4.33. Te is a parameter

that defines the experiment’s final time, and t is the variable in which the experiment

takes place, so that 0 < t < Te. With this in mind, let’s find the solution to the integral

equation, eq.4.33.

First, by taking the absolute values of both sides in eq.4.33 and rewriting the exponent,

we get:

‖α (t) ‖2 =
‖ψ (t) ‖2

‖Z‖2
e‖Z‖

2
∫ Te
t dt′‖α(t)‖2 . (4.34)

Introducing the new variable y (t, Te), defined as:

y (t, Te) =

∫ Te

t
dt′‖α

(
t′
)
‖2, (4.35)

∂

∂t
y (t, Te) = −‖α (t) ‖2, (4.36)

eq.4.34 can be rewritten as:

−∂y (t, Te)

∂t
=
‖ψ (t) ‖2

‖Z‖2
e‖Z‖

2y(t,Te). (4.37)

The boundary condition is y (Te, Te) = 0, as can be trivially found from the definition of

y (t, Te). The solution is:

y (t, Te) = − 1

‖Z‖2
log

{
1−

∫ Te

t
‖ψ
(
t′
)
‖2dt′

}
. (4.38)

Substituting this solution into the first integral equation, eq.4.33, we find:

α0 (t) =
ψ∗ (t)

Z

[
1−

∫ Te

t
dt′‖ψ

(
t′
)
‖2
]− 1

2
+i∆

κ

, (4.39)
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which is valid for any value of Te. Importantly, as we discussed previously, the final

experimental time Te must be large enough to have the single photon pulse transferred

into the membrane. Therefore, Te must be (at least) large enough such that ψ (t) is

normalised over it: ∫ Te

0
dt‖ψ (t) ‖2 = 1. (4.40)

By imposing this condition into eq.4.39, we finally find the shape that optimises the

adiabatic storage of the single photon:

α0 (t) =
ψ∗ (t)

Z

[∫ t

0
dt′‖ψ

(
t′
)
‖2
]− 1

2
+i∆

κ

. (4.41)

This result, for the case of zero detuning, ∆ = 0, is the same as the one found by Gorshkov

et al. for the optimal adiabatic storage in a Λ-type optical dense atomic media [7].

4.2.3 Implications in the adiabatic limit

First by, if we want to perform the experiment described above, the physical parameter

we would be interested in would be the light’s intensity needed to maximise the storage of

the single photon. This incoming intensity, I (t), is proportional to the modulus squared

of α (t) (which essentially tells us the instantaneous flux of photons within the classical

pulse in the cavity).

I (t) = ‖α (t) ‖2. (4.42)

The intensity needed to achieve a maximum storage efficiency is thus

I (t) =
κ
2 + ∆2

g2κ

‖ψ (t) ‖2∫ t
0 ‖ψ (t′) ‖2

. (4.43)

Importantly, the limits of I (t) can be seen to be:

lim
t→0

I (t) =∞, (4.44)

lim
t→Te

I (t) =
κ
2 + ∆2

g2κ
‖ψ (Te) ‖2. (4.45)

It is interesting that, even if we assumed the mechanics to be initially in its ground state

(or, equivalently, that no photon had been stored previously), we find that this incoming

control pulse is not only optimal for the storage process, but also for the retrieval of any

previously stored field. We can understand this fact more clearly if we plot the intensity

I (t), eq.4.43, and recalling the results of previous chapters: in chapter 2 we showed that,

in order to achieve a maximum change in the membrane’s momentum (without assuming

any initial state for it), we need a large number of photons sent within the classical pulse.
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In this case, and comparing the timescales of the intensity and the single photon pulse, we

conclude that any information previously stored is retrieved before storing the new sin-

gle photon. This fact can also be understood with a time reversal argument, as done in [7].

Fig.4.1 shows the intensity of the optimal pulse α0 (t) for a sinusoidal-shaped single pho-

ton, ψ (t) =
(

2
π

) 1
2 sin (t), 0 ≤ t ≤ Tψ, with the pulse duration Tψ = π and the experimental

time Te = 2Tψ. and the wave function of the single photon itself, so that the timescales

of both functions can be compared. It is only used as qualitative proof of this behaviour,

and thus the units of time and intensity are meaningless.
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Figure 4.1: Intensity of the optimal control pulse α0 (t) (top plot) and single photon’s

shape ψ (t) (bottom plot).

It is now a good exercise to make sure that the expression for α (t) derived above, eq.4.41,

does maximise the stored number of photons in the membrane. In order to do so, let

us compute the mean number of phonons in the membrane, eq.4.28, with the constraint

41



α (t) = α0 (t).

〈n̂b (Te)〉 =

∥∥∥∥∫ Te

0
dtZα0 (t)ψ (t) eγ(t)−γ(Te)

∥∥∥∥2

. (4.46)

If we first compute the exponential term in eq.4.46, we find that

γ (t) =

(
1

2
− i∆

κ

)
log

∫ t
0 dt

′‖ψ (t′) ‖2

limt→0

∫ t
0 dt

′‖ψ (t′) ‖2
. (4.47)

By calculating the difference between the two exponential terms γ (t)− γ (Te), we get rid

of the divergent point, and we find:

〈n̂ (Te)〉 =

∫ Te

0
dt‖ψ (t) ‖2. (4.48)

Since we considered the experimental time Te = 2Tψ, ψ (t) is normalised in the interval

[0, Te], and thus:

〈n̂ (Te)〉 = 1. (4.49)

Therefore, the photon is perfectly stored.

In the same way, using eq.4.24 and eq.4.47, we find the time evolution of the phonon

operator b̂ (t) in the adiabatic regime. This will be useful later for the study of the non-

adiabatic regime. Using eq.4.24 with the optimal shape α0 (t), eq.4.41, yields:

b̂ (t) =

[∫ t

0
dt′‖ψ (t) ‖2

] 1
2

+i∆
κ

, (4.50)

from which we also recover the result for 〈n̂ (t)〉 = 〈b̂† (t) b̂ (t)〉 found in eq.4.48.

In fig.4.2 we plot the numerically obtained 〈n̂b〉 as a function of time. As it is possi-

ble to see for t ≥ Tψ the storage efficiency η, is maximised. We considered a single photon

with ψ (t) =
(

2
σπ

) 1
2 sin

(
t
σ

)
, σ = 100[a.u], Tψ = σπ and Te = 2Tψ. A cavity loss rate

κ = 1[a.u] has been assumed. σ and κ are in arbitrary units of time and frequency re-

spectively, such that κσ is dimensionless. The condition of adiabaticity κσ � 1 is thus

fulfilled.

In fig.4.3 we compare the analytical result, eq.4.24, with the efficiency computed nu-

merically, by plotting the absolute error between them.

The residual error in fig.4.3 is proportional to (κσ)−2. We later on derive an analyti-

cal proof of this fact.
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Figure 4.2: Number of phonons in the membrane with the optimal control pulse α0 (t) in

the adiabatic regime. ψ (t) =
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)
, σ = 100[a.u], Tψ = σπ, Te = 2Tψ κσ = 100,
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Figure 4.3: Absolute error εabs between numerical and analytical computations of the

storage efficiency. ψ (t) =
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) 1
2 sin
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t
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)
, σ = 100[a.u], Tψ = σπ, Te = 2Tψ κσ = 100,

∆ = 0.
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4.3 Non adiabatic regime

In this section we investigate the non adiabatic regime of our quantum memory. We first

explore numerically its main features, and then develop a mathematical method that al-

lows us to find analytical results. Our framework is not restricted to our specific problem,

and can be used to study the non adiabatic regime of linear differential equations in gen-

eral. We use a perturbative expansion for pushing the adiabatic limit to higher orders.

In the following, we assume α (t) = α0 (t), the optimal pulse shape in the adiabatic regime,

and study how the efficiency decreases with the parameter characterising the adiabaticity

of our system, κσ.

4.3.1 Numerical exploration of the non adiabatic regime

As we have seen above, when the adiabatic condition κσ � 1 is fulfilled, we can always

reach a unitary efficiency for the photon storage. This is done by properly adjusting the

classical driving field according to eq.4.41.

Using the numerical approach of section 4.1, we study the system with a Gaussian-shaped

single photon and the optimal driving pulse α0 (t). In this case, we identify the time-scale

of the quantum pulse σ with the variance of the Gaussian distribution. By decreasing

the width for a fixed value of κ, we enter the non-adiabatic regime, and investigate the

decrease in efficiency.

In fig.4.4 we see how, even with the optimal pulse, the storage efficiency decreases with

κσ. The pulse α0 () in eq.4.41 is no longer optimal in the non adiabatic regime. It is also

noticeable that, as we approach the adiabatic regime, the better efficiency comes at the

cost of longer times in the storage process (this is, in the end, what doing things adiabat-

ically means).

Investigating the efficiency achieved with different shapes ψ (t), we find the results plotted

in fig.4.5. We consider the four possibilities:

ψ1 (t) =
e−

t2

4σ2

(σ22π)
1
4

, (4.51)

ψ2 (t) =

√
2t

σ
0 ≤ t ≤ σ, (4.52)

44



ψ3 (t) = sin

(
t

σ

)(
2

σπ

) 1
2

0 ≤ t ≤ πσ, (4.53)

ψ4 (t) =
e
t
σ√

σ e
2−1
2

0 ≤ t ≤ σ. (4.54)
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Figure 4.4: Number of phonons in the membrane as a function of time for a Gaussian

single photon, ψ (t) =
(

2
σπ

) 1
2 sin

(
t
σ

)
, for different values of κσ.

We see that the single photon shape is a critical factor for the storage efficiency. Some

shapes behave better than others, and we want to understand why. To do so, we expand

the efficiency curves in powers of 1
κσ :

ηi = 1−
∑ c

(i)
n

(κσ)n
, (4.55)

where the index i refers to the shape ψi considered. For the different shapes, and by choos-

ing α0 (t) according to eq.4.41, the first non-zero terms in the series eq.4.55 are different.

Thus, the efficiency of some shapes scale proportionally to (κσ)−1, while to (κσ)−2 for

some others. The adiabaticity condition of the system is fulfilled at different values of κσ
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using different shapes.
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Figure 4.5: Storage efficiency as a function of the parameter κσ for various single photon

shapes. In particular, ψ1,2,3,4 are given in eqs.4.51-4.54.

By plotting 1 − ηi and the dashed lines representing (κσ)−1 and (κσ)−2, we can qual-

itatively conclude that ψ2 (t) and ψ4 (t), eq.4.52 and eq.4.54 respectively, only get a first

order contribution:

η2,4 ≈ 1− c
(2,4)
1

κσ
. (4.56)

On the other hand, for ψ1 (t) and ψ3 (t), eq.4.51 and eq.4.53 respectively, we get a second

order contribution, whereas the first order is negligible:

η1,3 ≈ 1− c
(1,3)
2

(κσ)2 . (4.57)

Thus, for the Gaussian and sinusoidal single photons, the non-adiabatic contributions be-

come important at lower values of κσ, and the driving field α0 (t) is optimal for a wider

range of the adiabatic parameter.
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Figure 4.6: 1 − ηi (solid lines) in a logarithmic scale for the different shapes ψ1,2,3,4,

eqs.4.51-4.54. The dashed lines, (κσ)−1 and (κσ)−2, are used to qualitatively understand

the behaviour of the efficiency.
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Another feature that we can extract from our numerical simulations is the role of the

detuning ∆. For any of the single photon shapes with a first order correction in their effi-

ciencies, ψ2 (t) and ψ4 (t), the detuning does not change the efficiency. On the other hand,

for ψ1 (t) and ψ3 (t), which only have a second order correction, the efficiency changes for

different values of the detuning ∆. Notice that, by changing the detuning ∆, the blue

sideband may contribute. In particular, for ∆� κ, our results need to be generalised by

considering the full Hamiltonian in eq.2.55.
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Figure 4.7: Storage efficiency of a single photon with a Gaussian shape, for different values

of detuning.

In fig4.7 we plot the storage efficiency of a single photon with a Gaussian shape, eq.4.51,

for different values of the parameter ∆
κ . We can see how, increasing this value, the adia-

baticity of the system is more solid.

48



4.3.2 Pushing the adiabatic limit

In physical systems described by differential equations, it may be difficult or even im-

possible to find analytic solutions, with only numerical results available. In some cases,

however, such numerical results are not sufficient to understand the physics of the system.

An analytic description is therefore needed in order to exploit some of its properties, and

approximations in the equations of motion have to be made. Under certain circumstances,

as we have seen trough all this work so far, it is very useful to study systems by performing

an adiabatic elimination. Nevertheless, this approximation is only valid within a certain

range of the parameters describing the system. Since the interesting features usually ap-

pear outside this narrow regime, in the following we introduce a framework that allows us

to extend that range up to an arbitrary precision.

In other words, we present a mathematical method that allows us to study physical sys-

tems outside the adiabatic regime.

Let us consider a general function f (t) in a neighbourhood of a given point t0 ∈ <,

and let it be infinitely differentiable and continuous in a given vicinity of t0, say, ∆t =

(t0 −∆tL, t0 + ∆tR). Assume that such a function is not given, but is the solution of a

system of two coupled first order ordinary differential equations that can be written, in a

general form, as:
df (t)

dt
= a (t) f (t) + b (t) q (t) , (4.58)

dq (t)

dt
= c (t) q (t) + d (t) f (t) , (4.59)

where a (t), b (t), c (t) and d (t) are also assumed to be infinitely differentiable and contin-

uous in the considered interval ∆t.

Assume that, for the functions given a (t), b (t), c (t) and d (t), eq.4.58 can be adiabatically

eliminated: ∥∥∥∥df (t)

dt

∥∥∥∥ ≈ 0,∀t ∈ ∆t. (4.60)

Thus we can express the function f (t) as an adiabatic solution to our differential equation

eq.4.58:

f (t) ≈ f0 (t) = − b (t)

a (t)
q (t) , (4.61)

which will be valid in the specified regime identified by the functions a (t) and b (t). At this

point it is always possible to find an approximate solution q0 (t) for q (t) by solving eq.4.59

with eq.4.61. An analytical solution of the system of differential equations is therefore

available in such regime.
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Assume now that the given functions a (t) and b (t) do not satisfy condition eq.4.60. This

implies that the error between the exact solution and the approximated in eq.4.61 is not

negligible. In order to approximate the solution in this new regime, let us express f (t) as

a perturbative expansion around the adiabatic point, so that, to first order:

f (t) ≈ f0 (t) + f1 (t) , (4.62)

where f0 (t) is the solution found by adiabatically eliminating eq.4.58 above.

Recalling now the differential equation for f (t), eq.4.58, we can plug eq.4.62 into it to

get:
df0 (t)

dt
+
df1 (t)

dt
= a (t) f (t) + b (t) q (t) . (4.63)

Let us assume that, in this new regime, the functions a (t), b (t), c (t) and d (t) are such

that we can adiabatically eliminate the first correction f1 (t) in eq.4.63. Using eq.4.61,

this condition is fulfilled if ∥∥∥∥ ddt
{

1

a (t)

d

dt

{
b (t)

a (t)
q (t)

}}∥∥∥∥ ≈ 0. (4.64)

By adiabatically eliminating f1 (t) in eq4.63 the perturbative solution can be expressed as:

f (t) ≈ − b (t)

a (t)
q (t)︸ ︷︷ ︸

f0(t)

+
1

a (t)

df0 (t)

dt︸ ︷︷ ︸
f1(t)

, (4.65)

where we can now identify the terms f0 (t) and f1 (t) by comparison with eq.4.61 and

eq.4.62. By collecting the leading terms in the expansion, we can find the correction q1 (t)

by plugging eq.4.65 into eq.4.59.

If ‖df1(t)
dt ‖ � 0, we can consider a second order expansion. In the same fashion described

above, we have:

df0 (t)

dt
+
df1 (t)

dt
+
df2 (t)

dt
= a (t) f (t) + b (t) q (t) . (4.66)

Following the same procedure, assume that in a regime further away the adiabatic point

the second order correction can be adiabatically eliminated, yielding the solution:

f (t) = − b (t)

a (t)
q (t)︸ ︷︷ ︸

f0(t)

+
1

a (t)

df0 (t)

dt︸ ︷︷ ︸
f1(t)

+
1

a (t)

df1 (t)

dt︸ ︷︷ ︸
f2(t)

, (4.67)

which is valid if ∥∥∥∥ ddt
{

1

a (t)

d

dt

{
1

a (t)

d

dt

{
b (t)

a (t)
q (t)

}}}∥∥∥∥ ≈ 0. (4.68)
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By iterating this process, it can be seen that the solution to the differential equation

eq.4.58 can be expressed as an expansion of the form

f (t) ≈
N∑
n=0

fn (t) , (4.69)

where each term in the sum is given by the recursive relation:

fn (t) =
1

a (t)

dfn−1 (t)

dt
. (4.70)

The initial term, f0 (t), is the one obtained in eq.4.61. The n-th order solution is a good

approximation to the exact solution f (t) if:∥∥∥∥Dn+1b (t) q (t)

∥∥∥∥ ≈ 0. (4.71)

Here we defined the differential operator D = d
dt

1
a(t) . The derivative in D applies to all

functions to its right, as can be seen in eq.4.64 and eq.4.68.

We developed a theory that allows us to perform an expansion of the function f (t) and

q (t). In the following, we include explicitly the series for q (t):

q (t) ≈
N∑
n=0

qn (t) , (4.72)

and determine the coefficients fn (t) and qn (t) to leading order. In fact, by looking at

eq.4.61, it is clear that f0 (t) is not accessible, as q (t) is unknown.

By plugging eq. 4.72 into eq.4.69, with the recursive relation eq.4.70 we can rewrite

the perturbative solution to f (t) as:

f (t) = − b (t)

a (t)
q0 (t)︸ ︷︷ ︸

(0)

− b (t)

a (t)
q1 (t)︸ ︷︷ ︸

(1)

− b (t)

a (t)
q0 (t)︸ ︷︷ ︸

(2)

+...+

− 1

a (t)

d

dt

− b (t)

a (t)
q0 (t)︸ ︷︷ ︸

(1)

− b (t)

a (t)
q1 (t)︸ ︷︷ ︸

(2)

− b (t)

a (t)
q2 (t)︸ ︷︷ ︸

(3)

+...

+

− 1

a (t)

d

dt

 1

a (t)

d

dt

− b (t)

a (t)
q0 (t)︸ ︷︷ ︸

(2)

− b (t)

a (t)
q1 (t)︸ ︷︷ ︸

(3)

− b (t)

a (t)
q2 (t)︸ ︷︷ ︸

(4)

+...


+ ... (4.73)
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By neglecting higher order terms and properly regrouping them, we define:

f̃0 (t) = − b (t)

a (t)
q0 (t) , (4.74)

f̃1 (t) = − b (t)

a (t)
q1 (t)− 1

a (t)

d

dt

b (t)

a (t)
q0 (t) , (4.75)

f̃2 (t) = − b (t)

a (t)
q2 (t)− 1

a (t)

d

dt

b (t)

a (t)
q1 (t)− 1

a (t)

d

dt

[
1

a (t)

d

dt

b (t)

a (t)
q0 (t)

]
, (4.76)

where now each of the terms f̃n only collects the n-th order correction of the exact solution.

The solutions f̃n (t) follow the recursive relation:

f̃n (t) = − b (t)

a (t)
qn (t) +

1

a (t)

df̃n−1 (t)

dt
. (4.77)

With these new definitions, f (t) can be finally rewritten:

f (t) ≈
N∑
n=0

f̃n (t) , (4.78)

where now each of the f̃n (t) can be easily determined.

Plugging solution eq.4.78 into eq.4.59, we can solve for the n-th order contribution to

the perturbation expansion in 4.72 as:

dqn (t)

dt
= c (t) qn (t) + d (t) f̃n (t) . (4.79)

For simplicity, consider a (t) in eq.4.58 to be a constant a (t) = a. In this case, the solutions

to the n-th order perturbation corrections are given by:

qn (t) = e
−
∫ t
0 dt
′
[
c(t′)− b(t

′)
a

] qn (0)− 1

a

∫ t

0
dt′

n∑
j=1

dj

dtj
b (t′) qn−j (t′)

aj
e

∫ t′
0 dt′′

[
c(t′′)− b(t

′′)
a

] ,
(4.80)

f̃n (t) = − b
a

n∑
j=0

dj

dtj
qn−j (t)

aj
. (4.81)

These solutions are valid in a regime such that

‖an‖ �
∥∥∥∥dnf̃0 (t)

dtn

∥∥∥∥. (4.82)

With this results and equations 4.72 and 4.78, we can finally get an analytical solution

to the system of coupled differential equations, eq.4.58 and eq.4.59, outside the adiabatic

regime. These solutions can be tailored to approximate the real functions f (t) and q (t)

to an arbitrary precision, as just as condition eq.4.82 is fulfilled.

52



4.3.3 Analytic solution in the non adiabatic regime

In our numerical analysis of the non adiabatic regime, we concluded that the efficiency of

our memory can be expressed as a sum of various terms, eq.4.55, the first equal to 1 (the

efficiency in the adiabatic regime is always maximum with the proper input large field),

and the others decreasing while incrementing the parameter κσ. These higher order terms,

c
(i)
n (where n is the perturbation order and i the index in ψi), only depend on the shape

of the input field. In fact, by looking at eq.4.56 and eq.4.57, we deduce that the photon

shape is the only free variable. In this section, using the previously derived mathematical

method, we determine the contributions c
(i)
n for the shapes ψ (t) and the control field α0 (t).

It is helpful to slightly modify our description of the system, and introduce the defini-

tion of a dimensionless time τ , such that στ = t. As before, σ is the parameter used

to describe the duration of the single photon pulses. With the dimensionless time τ we

rewrite our system eq.4.2 and eq.4.3 of coupled differential equations in a more convenient

way:
˙̂
b (τ) = −igσα (τ) â (τ) , (4.83)

˙̂a (τ) = −κσ
(

1

2
+ i

∆

κ

)
â (τ)− igσα∗ (τ) b̂ (τ) + σ

√
κâin (τ) . (4.84)

By comparison to eqs.4.58 and 4.59, we deduce that the adiabatic condition derived in

section 4.3.2, eq.4.82, reads:

‖ (κσ)n ‖ �
∥∥∥∥ 1(

1
2 + i∆

κ

)n∥∥∥∥∥∥∥∥dnâ0 (τ)

dτ

∥∥∥∥, (4.85)

where â0 (τ) is the adiabatic solution found in eq.4.22.

According to the formalism derived above, we expand the operators â (τ) and b̂ (τ) as:

â (τ) =

N∑
n=0

ân, (4.86)

b̂ (τ) =
N∑
n=0

b̂n. (4.87)

The n-th order perturbative corrections to the field inside the cavity can be found with

eq.4.77:

ân (τ) = − igα∗ (τ)

κ
(

1
2 + i∆

κ

) b̂n (τ)− 1

κσ

˙̂an−1 (τ)
1
2 + i∆

κ

. (4.88)

And, using and eq.4.79, the terms for the phonon dynamics are:

˙̂
bn (τ) = −g

2‖α (τ) ‖2

κ
(

1
2 + i∆

κ

) b̂n (τ) +
1

κσ

igα (τ)
1
2 + i∆

κ

˙̂an−1 (τ) . (4.89)
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Here, the zeroth order contributions are given in eq.4.22 and eq.4.50, and completely de-

termine all higher order corrections.

By formally integrating eq.4.89, we find the solution for the nth order correction term

to the non adiabatic creation of phonons operator to be, for a general coherent pulse

α (τ):

b̂n (τ) =
ig

κσ
(

1
2 + i∆

κ

) ∫ τ

0
dτ ′α

(
τ ′
)

˙̂an−1

(
τ ′
)
eγ(τ ′)−γ(τ). (4.90)

Here, γ (τ) is the function defined in the adiabatic regime, eq.4.25. Substituting γ (τ) in

eq.4.90 and considering the optimal coherent pulse α0 (t) derived for the adiabatic regime,

eq.4.41, we find the expression for b̂n (τ):

b̂n (τ) = − 1

κσ

[∫ τ

0
dτ ′‖ψ (τ) ‖2

]− 1
2

+i∆
κ
∫ τ

0
dτ ′
√
κψ∗

(
τ ′
)

˙̂an−1

(
τ ′
)
. (4.91)

Above, we described how to derive all terms of the adiabatic expansion for the operator

b̂ (τ). To any required precision, we can cut the expansion eq.4.87 to the relevant order,

after which the higher order corrections become negligible. In the following, we compare

the numerical results found in section 4.3.1 to our theoretical approach, for the different

single photon shapes described in eqs.4.51-4.54

From the qualitative results in eq.4.56 and eq.4.57, we can restrict ourselves to perturba-

tion expansions up to first and second order, depending on the photon shape ψi.

4.3.4 First order correction

The zeroth order contribution for the optical field inside the cavity can be found from

eq.4.50 to be:

a0 (τ) =
ψ (τ)√
κ
. (4.92)

Correspondingly, the zeroth order contribution to the mechanics has been already found

in eq.4.50. The first order correction to the non adiabatic dynamics for the operator b̂ can

be found using eq.4.92 and eq.4.91:

b1 (τ) = − 1

κσ

[∫ τ

0
dτ ′‖ψ (τ) ‖2

]− 1
2

+i∆
κ
∫ τ

0
dτ ′ψ∗

(
τ ′
)
ψ̇
(
τ ′
)
. (4.93)

Taking the single photon shapes ψi (τ) to be real, this last expression can be easily inte-

grated and yields:

b1 (τ) = − 1

κσ

[∫ τ

0
dτ‖ψ

(
τ ′
)
‖2
]− 1

2
+i∆

κ ψ2 (τ)− ψ2 (0)

2
. (4.94)
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Recalling that the photon must be normalised over the experimental time Te in order to

ensure that all its energy is transferred to the membrane, we can compute b̂1 (Te):

b1 (Te) = − 1

κσ

ψ2 (Te)− ψ2 (0)

2
. (4.95)

By comparison to eq.4.56, and computing the contribution of b̂1 to the efficiency of our

memory η = 〈b̂† (Te) b̂ (Te)〉, we can determine the constant c
(i)
1 :

c
(i)
1 = −ψ2

i (Te) + ψ2
i (0) . (4.96)

The storage efficiency is η = 1 +
c
(i)
1
κσ , in the non adiabatic regime where only a first order

correction is needed, as it is for ψ2 and ψ4 in eqs.4.52 and 4.54.

With this last result, eq.4.96, we can explain some of the features discovered during the

numerical analysis of the system.

First, we can distinguish two types of input single photons, depending on them hav-

ing a first order correction or not. The shapes ψi (τ) that are equal at the beginning and

at the final times of the experiment (and, therefore, all symmetric pulses) will not have a

first order contribution. On the other hand, shapes for which ψ (Te) 6= ψ (0) present this

first order correction, as proven by shapes ψ2 (τ) and ψ4 (τ) in fig.4.6.

Second, those shapes with a first order correction do not show a dependence in the detun-

ing ∆. This dependence is not only presumably negligible, but analytically nonexistent in

the regime where no higher order corrections in κσ are needed.

Lastly, we can see how, as we already expected, c
(i)
1 is only a shape-dependent func-

tion, and independent of the pulse width σ.

In fig.4.8 we plot both the numerical simulation and the analytic solution for the stor-

age efficiency of the single photon ψ4 (t), eq.4.54. In fig.4.9 we show the same results for

ψ2 (t), eq.4.53. We can see that for both shapes our theory is in good agreement with the

numerical computations nearby the adiabatic limit, κσ � 1.

As we discussed above, the first order corrections of the shapes ψ1 (t) and ψ3 (t) are

zero, with the leading term being quadrative in 1
κσ .
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Figure 4.8: Comparison between the efficiency η obtained numerically (dashed) and by

means of the analytic method developed (solid), for a single photon with shape ψ4 (t),

eq.4.54. η (top plot) and 1− η (bottom plot).
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Figure 4.9: Comparison between the efficiency η obtained numerically (dashed) and by

means of the analytic method developed (solid), for a single photon with shape ψ2 (t),

eq.4.52. η (top plot) and 1− η (bottom plot).
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4.3.5 Second order correction

With the recursive relation for the non adiabatic corrections to the field inside the cavity,

eq.4.88, and the results obtained above, eq.4.92 and eq.4.94, we can compute â1 (τ):

a1 (τ) =
1

κσ

1
1
2 + i∆

κ

1√
κ

[
−ψ̇ (τ) +

(
1

2
− i∆

κ

)
ψ3 (τ)

2

[∫ τ

0
dτ ′‖ψ

(
τ ′
)
‖2
]−1
]
. (4.97)

Here we assumed, for simplicity, that the experiment starts just before the single photon

enters the cavity, such that ψ (0) = 0. This is always fulfilled by all the photon shapes

considered in our study, eqs.4.51-4.54.

Let us define I (τ) =
∫ τ

0 dτ
′‖ψ (τ ′) ‖2. By plugging eq.4.97 into eq.4.91, we find the second

order correction to the phononic dynamics:

b2 (τ) = −I
− 1

2
+i∆

κ (τ)

(κσ)2

∫ τ

0
dτ ′

ψ (τ ′)
1
2 + i∆

κ

[
ψ̈
(
τ ′
)

+

−
(

1

2
+ i

∆

κ

)
3ψ2 (τ ′) ψ̇ (τ ′) I−1 (τ ′)− ψ5 (τ ′) I−2 (τ ′)

2

]
. (4.98)

This yields the second constant c
(i)
2 in the expansion for η:

c
(i)
2 =

‖c(i)
1 ‖2

2
+

−2<
{∫ Te

0
dτ

ψi (τ)
1
2 + i∆

κ

[
ψ̈i (τ)−

(
1

2
+ i

∆

κ

)
3ψ2

i (τ) ψ̇i (τ) I−1
i (τ)− ψ5

i (τ) I−2
i (τ)

2

]}
.

(4.99)

With this, the storage efficiency is computed, to second order, as η = 1 +
c
(i)
1
κσ +

c
(i)
2

(κσ)2 .

Recall that, in our case, the second order corrections are needed when the first order c
(i)
1

is zero, and thus the first term in eq.4.99 will generally vanish.

According to previous discussions, we expected a leading second order contribution in

the storage efficiency for the shapes ψ1 (t) (eq.4.51) and ψ3 (t) (eq.4.53). In fig.4.10 and

fig.4.11 we plot the numerical and analytical results obtained for shapes ψ1 (t) and ψ3 (t),

respectively. Our theory describes well the numerics, and confirms the quadratic behaviour

of the efficiency η.
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Figure 4.10: Comparison between the efficiency η obtained numerically (dashed) and by

means of the analytic method developed (solid), for a single photon with shape ψ1 (t),

eq.4.51. η (top plot) and 1− η (bottom plot).
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Figure 4.11: Comparison between the efficiency η obtained numerically (dashed) and by

means of the analytic method developed (solid), for a single photon with shape ψ3 (t),

eq.4.53. η (top plot) and 1− η (bottom plot).
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Differently from c
(i)
1 , eq.4.96, in the expression for c

(i)
2 , eq.4.99, the parameter ∆

κ does

play a role. This was expected from the numerical analysis, as proven by fig.4.7. If we

investigate the behaviour of the second order correction as a function of ∆
κ , we find the

results plotted in fig.4.12.
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Figure 4.12: Value of c
(i)
2 as a function of ∆

κ , for single photon shapes ψ1 (t) and ψ3 (t).

From fig.4.12 we conclude that to a higher detuning ∆ is associated a lower absolute

value of c
(i)
2 . Moreover, c

(i)
2 is minimum for ∆ = 0, and asymptotically reaches a maxi-

mum as we increase the detuning. This is in complete accordance with the results found in

the numerical investigation, fig.4.7. Recall, however, that both analytical and numerical

results are derived without off resonant terms proportional to âb̂ and â†b̂† in the interac-

tion Hamiltonian. We expet this behaviour to be correct, as far as ∆ ∼ κ.

It is interesting that the single photon shape ψ1 (t) always presents a second order cor-

rection with a smaller absolute value than ψ3 (t), ‖c(1)
2 ‖ < ‖c

(3)
2 ‖. Recalling that both
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of them have c
(i)
1 = 0, eq.4.96, we conclude that the Gaussian shape is more efficient for

storage purposes. This is also in accordance with the numerical results plotted in fig.4.5.

Finding the single photon shape that performs better is still an open question. However,

with the results presented in this chapter, we an already exclude all shapes with a linear

contribution.
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Chapter 5

Conclusions and outlook

The photon storage efficiency is optimised in the adiabatic regime by mean of the coher-

ent pulse α0 (t), eq.4.41. On the other hand, the non adiabatic regime can be analytically

studied with the mathematical framework presented in chapter 4. Among all the con-

sidered possibilities, the Gaussian shape yields the best storage efficiency for short pulse

photons. In particular, the process is optimised for a large detuning ∆.

In our work, we found a class of function ψ (t) for which the efficiency scales quadratically

with the adiabaticity parameter 1
κσ . As such, we pave the way for the pulse optimisation,

excluding all the shapes for which the efficiency is linear in 1
κσ .

As an outlook, the single photon shape ψ (t) could be further optimised by mean of a

functional analysis of c
(i)
2 , as well as for higher order contributions c

(i)
n if required.

On the other hand, it would be interesting to derive analytical expressions for αn (t).

Here, αn (t) is the shape of the control field that allows for optimal storage up to the n-th

order, such that c
(i)
n = 0. This can be done by imposing that αn (t) is such that does not

allow the single photon escape. This is investigated in references [11] and [12] for atoms

in a Λ configuration inside a cavity.

Finally, it would be interesting to extend our formalism outside the rotating wave ap-

proximation, as well as to investigate the effect of decay in the mechanical modes of the

membrane.
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Appendix A

Normalisation of the control

function Υ (Te, t)

In chapter 4 we defined the control function Υ (Te, t), eq.4.30. To derive the expression

for the optimal shape α0 (t), it is required that Υ (Te, t) is normalised.

By squaring eq.4.30, we get:

‖Υ (Te, t) ‖2 = ‖Z‖2‖α (t) ‖2e‖Z‖
2
∫ t
Te
dt′‖α(t′)‖2 . (A.1)

With the change of variable

y (Te, t) = ‖Z‖2
∫ t

Te

dt′‖α
(
t′
)
‖2, (A.2)

∂

∂t
y (Te, t) = ‖Z‖2‖α (t) ‖2, (A.3)

we rewrite eq.A.1 as:

‖Υ (Te, t) ‖2 =
∂

∂t
y (Te, t) e

y(Te,t). (A.4)

Integrating eq.A.4 over time we get:∫ +∞

−∞
dt
∂

∂t
y (Te, t) e

y(Te,t) = ey(Te,+∞) − ey(Te,−∞) (A.5)

The parameter Te defines the final time of the experiment. Therefore, in the interval

t ∈ (Te,+∞) the pulse vanishes, yielding
∫ +∞
Te

dt‖α (t) ‖2 = 0. Thus:

ey(Te,+∞) = 1 (A.6)

In order to compute the second exponential, recall the definition of the pulse α (t), eq.3.21.

For a large number of photons N , we have:

lim
N→+∞

e−‖Z‖
2
∫ Te
−∞ dt′‖α(t′)‖2 = 0 (A.7)
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Plugging eq.A.6 and eq.A.7 into eq.A.5 yields:∫ +∞

−∞
dt‖Υ (Te, t) ‖2 = 1, (A.8)

from which we prove that the control function Υ (Te, t) is normalised.
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