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1 Introduction

In 1935 Einstein, Podolsky and Rosen elaborated on their view of interpretation of the then existing

quantum mechanical theory. Near the end of their article they arrive at the following conclusion which

would fuel discussions for not just their lifetimes but those of many other to come:

�One could object to this conclusion(1) on the grounds that our criterion of reality is not su�ciently

restrictive. Indeed, one would not arrive at our conclusion if one insisted that two or more physical

quantities can be regarded as simultaneous elements of reality only when they can be simultaneously

measured or predicted. ... No reasonable de�nition of reality could be expected to permit this.� 1

Here the statement implies that quantum theory's criterion of reality, does not allow physical quantities

that cannot be measured simultaneously to exist with arbitrary accuracy in reality. The discussion was

about the opinion that reality should exist, regardless of our observation. In other words, the order of

measurement should for instance not matter on the information that one can gather.

It wouldn't be until 1957 when the new science had matured that Bohm and Aharanov presented a

suggestion for an experimental proof2 of the discussion. This is where the current �eld of quantum

computation basically found its roots. It has since left the infantile shoes of interpretation and endless

discussions about physical reality, and rose up to answer the question of 'what we can do with it?'.

The basis of this thesis is the same as was the basis of the experiment of Bohm and Aharanov, two

entangled particles. However instead of asking whether or not it should be part of physical reality, one

can question how to prepare this entanglement of for instance a qubit, and keep it that way for periods

well beyond their normal decay times. In this way it can be employed for useful work and form a

contribution to every-day reality. Therefore this thesis will focus on preparation of an entangled state

in a condensed matter system of two emitters on a plasmonic wave-guide by use of external optical

drives and internal dissipative dynamics.

This thesis is organized in �ve sections: Section 1, contains a short description of the previous work

that has lead up to this work, it motivates the approach chosen and elaborates on the relevance of

the work in society. In Section 2, there is a presentation of the methods and concepts used to model

the situations concerned. Section 3 contains the �rst of the two situations, a two 2-level atoms on a

plasmonic wave-guide, where there will be looked for the relation between the emitter's coupling to

the wire and the �delity of an entangled state. In Section 4 the same will be done however in this

section for a novel two 3-level Λ-emitters on a plasmonic wave-guide, where schemes will be discussed

to acquire a relation between the �delity of an entangled state and the coupling to the wire. The

section will also show that this two 3-level set-up has advantages over a two 2-level set-up. Section 5

is devoted to the conclusion and discussions.

(1)The incompleteness of the quantum-mechanical description of physical reality
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1.1 Current status of the �eld

The �eld of quantum computation has not seen its birth come about by the exclamation of an `Eu-

reka!'3, a single great speech about a pinhead4 nor a controversial article5. Instead it has come about

slowly from the �rst quantum information packages6 and the need of a quantum information theory7

during the 1970s, That was a response to the proposition and theoretical realization of a quantum com-

puter.8 It wasn't until the advent of quantum cryptography9 and the derivation of Shor's algorithm10

that the �eld has gathered great interest from both the scienti�c community and the public.

This thesis will focus on the preparation of the desired entangled states, and will not elaborate on

other subjects in the �eld like computation and cryptography. Entangled states are the building block

for the majority of quantum information processes. Moreover they also o�er a great possibility in

understanding the quantum states of matter. The exact usage of the term entanglement with respect

to superposition states is elaborated in Sec. 2.1.1. These maximally entangled states, in particular

the bipartite states, are the core of entanglement theory which is the origin of the predicted improved

processing power of quantum computation over classical computation.

In every attempt to create a desired quantum state, one has to deal with undesired noise. This noise

stems from either the surroundings or the system itself, that causes decoherences. Frequent examples

of external noise are uncontrolled external processes like natural radiation, the lab environment, vi-

brations of the set-up, temperature �uctuations. Frequent examples of internal noise to a system can

be impurities, higher order e�ects, and spontaneous decay of states or 'dissipative' noise. At the turn

of the century it was however suggested that dissipative noise can be used in favour of quantum infor-

mation processing and assist in the preparation of entangled states. Several works11�17 showed that

dissipative dynamics of two atoms coupled to a mutual reservoir could lead to entanglement. These

works were generalized to reveal a general class of states and quantum information tasks that could

be realized by dissipation.18�20 Since then, various quantum information processes have been consid-

ered inside a dissipative state engineering framework. Several of these works show that dissipation

alone is enough to ful�ll tasks like, universal quantum computation,18 entanglement distillation and

quantum repeaters,21 quantum simulators,22;23 quantum memories24 and various kinds of entangled

state preparation.25�38 Several physical set-ups have so far been applied in dissipative state prepa-

ration, cavity quantum electrodynamics,26�28;30;32;35;38 optical lattices,19;29 atomic ensembles,28;33;34

ion traps12;22;23;25and plasmonic wave-guides.36;37 The latter will be the focus of this thesis.

In this thesis two atoms on or near a plasmonic metallic wave-guide will be considered. The cou-

pling of the atoms of this wire will be the main factor in achieving high �delities. Di�erent mechanisms

will be given depending on coherent driving by optical and Raman �elds. Two kinds of atoms will be

considered, two 2-level atoms on a single-mode wire and two Λ-atoms on a single-mode wire. It will

be shown that an arbitrarily �delity can be achieved in di�erent qualitative set-ups, depending on the

coupling of the atoms to the wire. Also the thesis strives to give a a more hands on elaboration of the

complicated processes present in a three level system. So that the reader has less di�culty compre-

hending the experimental set-ups that overall have a relatively complicated theoretical framework.
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1.2 Why dissipative state preparation on a wire?

The choice of a plasmonic wave-guide does not seem straightforward. It is experimentally not a simple

set-up. Since it has great loses due to the fact that half the plasmons will go into directions away from

both atoms, and the dipole interaction mediated by the wire is not as great as that of a cavity. But the

advantages outweigh these disadvantages. It will show that a good coupling between wire and atom

presents a reasonably high dipole-dipole coupling. It will also show that the added channel of decay

other then into the vacuum is a gift in dissipative state preparation. Foremost the plasmonic set-up is

a viable technique for future mass production due to the relative simplicity and size of the system. It

also o�ers a large set of physical advantages which, as shown below, is due to the decay of the atoms

into the wire or wave-guide. It su�ces to even say that this strong source of decoherence can be used

to achieve great coherences.

In order to entangle two atoms, one needs to increase the interaction between them. This is

generally done via electromagnetic or light-matter interactions. This increase in light-matter interac-

tions has many structures to do so, among these but not limited to are for instance photonic crystal

cavities39;40 and wave-guides,41 photonic nanowires,42 and dielectric slot wave-guides.43 All of these

structures rely on an enhancement of the coupling to an electromagnetic (EM) �eld, which in turn

causes a large Purcell factor, which is de�ned as the decay rate in the structure in comparison to the

decay rate in vacuum. This EM �eld intensi�cation is favoured by a con�nement of the allowed EM

modes. This strong �eld concentration is displayed in metallic structures that are known to support

surface plasmon modes propagating at the metal interface.44 This modal con�nement can even be

reached at a sub-wavelength level.45;46 Surface plasmons have already been used to control certain

properties of quantum emitters, including the decay rate,47 energy transfer48 and angular direction-

ality.49 The experimental realization of single plasmon generation,50;51 detection,52;53 the results on

plasmon transport switching54 and plasmon-assisted qubit-qubit interaction36;55 show that the use of

plasmonic wave-guides are just a few steps away from on-chip implementation.

1.3 Possible applications in industry, science and daily-life.

The application of wire mediated dissipative state preparation are mostly in the computing industry.

A plasmonic wave-guide is simply not suitable for long distance cryptography. In computational

structures the application in the computer is rather crucial for the eventual choice of structure and

method of the computational device. If for instance the goal is to simulate quantum states in a

universal quantum computer it would be preferred to have a computer with a quantum processor that

can handle a large variety of set-ups. This would lead to a computer that can simulate a broad range

of solid state models and e�ciently model many problems in condensed matter and nanophysics. Such

a machine would however not be the same as a computer designed to crunch numbers. Even though a

quantum Turing machine is theoretically capable to do both,56 the existence of separate markets will

for the near future provide di�erent speci�c needs in quantum computation and di�erent advances. It

is worth noting that current day applications alike D-wave57 do not use such entangled states as such,

and are most certainly not universal quantum computers.

For the number crunching market, the possibilities are great and promising. A quantum computer

could with Shor's algorithm10 easily factorize large numbers whereas this is impractical in normal
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computers.58 This impracticality is so far exploited in public-key cryptography, and would break a lot

of coding as it is used today in web pages, email and many other types of data including monetary

transactions. However there are no quantum algorithm's for all forms of encryption59 and some forms

of encrypted messages could of course become quantum encrypted and hence become intrinsically safer

by construction. However most quantum algorithms are still in their infant years and have yet to prove

their theoretical possibilities in order to live up to the expectancies of society. It is therefore that most

of the �nance is coming from industry whereas its application is more promising in scienti�c research

and security.
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2 Formalism and methods

In order to get to grips with the goal, this section will �rst discuss the principles of the applied theory,

and attempts to elaborate on the choice of the approach used. Second to this, the modeling of the

plasmonic wave-guide will be justi�ed. Subsequently it is shown how the chosen formalism, the master

equation, is to be calculated, used and interpreted for its physical meaning. Then, the approaches

on solving the model will be discussed which is done in both an analytical way and a numerical way,

and how these are applied to their best extend. Lastly a clear synopsis about the model in its most

complicated application will be given by a novel but relatively simple diagrammatic model.

2.1 The principle of dissipative entangled state preparation

As an introduction to dissipative state preparation it is good to contemplate what the actual goal of

such a venture is. Therefore an elaboration is made about some of the physical processes discussed in

this work. It is here assumed that the reader has some knowledge about quantum mechanics, and is

familiar with the concept of quantum states, their superpostions and Dirac's bra-ket notation. The

focus here will be only on the most relevant concepts used in this work.

2.1.1 Entanglement

Entanglement was a term coined by Erwin Schrödinger60 to describe the e�ect Einstein, Podolsky and

Rosen had discussed previously.(2) It is considered to be one of the most ba�ing parts of quantum

physics. It is meant to describe a feature of quantum mechanics that has no classical analogue. If

a quantum state exists, that cannot be described by two separated parts, then this state is said to

be entangled. This is not quantum superposition in general, however entanglement is a subgroup of

quantum superpositions. A superposition is where a particle is said to be expressible as a complex

sum of its pure states. This can be separable and non-separable in pure states, where the latter is

entanglement.

Entanglement is a state that occurs only between two indistinguishable entities. This can vary

from elementary particles to atoms, molecules or even increasingly larger entities. Theoretically there

are no limits to the size of these entities, as long as the entangled state cannot be separated into

2 di�erent states, either by observation or decoherence, it remains entangled. In practice however

the concept of indistinguishability is very limiting to the concept of entanglement. Once one can

distinguish between 2 entities, number them, label them, spatially determine their position or even

uniquely de�ne each as separate, then they are no longer indistinguishable from one another. Once

two entities become distinguished entanglement is lost as they are by de�nition already described

as two separate states. It is however possible to make distinguishable entities, indistinguishable by

construction. Hence entanglement is also possible between un-equal entities.

In this work, entanglement is used in its simple form; The description of an entangled state cannot

be reduced to separate states. As an example of such a state, the symmetric and anti-symmetric states

|T 〉 and |S〉 are introduced here respectively. These are symmetric and anti-symmetric under a parity

transformation. In other words, they transform di�erently when you change their respective indices:

(2)(See Introduction)

8



|T 〉 = 2−1/2(|1〉1 ⊗ |0〉2 + |0〉1 ⊗ |1〉2)

|S〉 = 2−1/2(|1〉1 ⊗ |0〉2 − |0〉1 ⊗ |1〉2)

Here ⊗ is the direct product which signi�es that the multiplication is between two di�erent Hilbert

spaces, or in physical terms, a multiplication of states not part of the same entity. If for state |S〉
the indices 1 ←→ 2 that represent the two di�erent entities and their separate (super)positions are

interchanged. Then |S〉 will become:

|S〉 → 2−1/2(|1〉2 |0〉1 − |0〉2 |1〉1) = − |S〉 (1)

Such a property of state |S〉 cannot be found in the sum of its separate superpostions of the individual

entities:

|S〉 6= 4−1/2(|1〉2 − |0〉2)⊗ (|0〉1 + |1〉1)

This is clearly a di�erent state and has a di�erent normalization too. In many occasions in this work,

the use of the direct product ⊗ in the equations will be neglected if di�erent indices of the states are

given. On occasion, it is included to prevent any possible confusion.

In general the state in Eq. (1) is called a Bell-state. These states are maximally entangled. It is the

properties alike parity transformations described above that are what make entangled states unique

and which are exploited in quantum computers. It is in fact the entanglement that makes a quantum

computer an actual universal quantum-computer. Therefore preparing such a state is elemental for

the �eld of quantum computation.

2.1.2 Elimination & Utilization of decoherence

A dominant issue in preparation of an entangled state is the process of decoherence. Decoherence is

the loss of coherence in general. Among these loss of coherence processes, states can decay or change

from their present state to a superposition of others by noise. It is the elemental process that destroys

the hard-won entangled states.

In practice sources of decoherence are numerous. In a typical experiment decoherences of the

outside lab environment and the set-up itself are to be considered. The most profound process ascribed

to decoherence can however not be isolated from the experiment in any possible way. This is the

interaction of any system with the vacuum. The vacuum in physics can be paraphrased as the `nothing'

from which with respect to energy is measured. How or why this has a non-zero value at all is far

beyond the scope of this work, but what matters is that it does. This means that any entity always

couples to at least the vacuum. After all, there will always at least be nothing. This coupling to the

vacuum causes spontaneous emission.

Spontaneous emission is therefore a leading source of decoherence in any theoretical work, since

it cannot be turned o� at even a theoretical level. In practice however it is more a matter of how

dominant such decoherences are. In principle all states have some sort of coupling to the vacuum.

This vacuum or electromagnetic vacuum, can support all possible sorts of EM radiation, yet the most

dominant is the dipole radiation. This is what causes most of spontaneous emission to manifest itself
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Figure 1: A simple three level system, where the ground state |0〉 is a dark state, as population does
not leave the state. The other 2 exited states are driven and or decaying, and hence not dark. Of
course this idealized set-up is isolated from the outside, otherwise even noise could make the ground
state less dark.

as the emission of (dipole)-radiation into free space.

In the case of Eq. 1 it is not surprising that when a decay occurs |1〉 → |0〉, state |S〉 is no longer

the same. However it is possible to reduce or utilize even this intrinsic process of decoherence. This

is not done by isolating the set up from the vacuum itself. Instead the product of this coupling, a

spontaneous emission, is utilized into a useful coherence. This can be done for instance by sending

the lost photon back into the system. In such a case the only decoherence is then the ine�ciency of

the process that sends this light back into the system where it came from. A practical example of this

would be an optical cavity, a system sandwiched between two highly re�ective parabolic mirrors.

In an attempt to reduce the e�ects of decoherences, an added coupling to another electromagnetic

�eld carrier will be used. This coupling can be much stronger then the coupling to the vacuum �eld,

and can cause a useful coherence out of spontanteous emission. This process chosen for this work, the

quantum wire, is described in Sec. 2.2

2.1.3 Dark states

The term `Dark states' is often used in quantum optics. The darkness of a state represents basically

how little energy is emitted by the state into an electromagnetic medium or to another state, as can be

seen in Fig. (1). This means that the darker a state, the less likely it is for the state to lose population

or occupation of the state to another state.

Resonant or o�-resonant driving a state will make it brighter or less dark, and a strong spontaneous

decay will also make it brighter. A perfect dark state would be a state that loses none of its occupation

to another state. This means that a perfectly dark states cannot be driven.

In this work it is bene�cial to make entangled states as dark as possible. This will increase their

purity and their longevity. Since often processes cannot be eliminated it is attempted to reduces their

brightness by making it comparatively small with respect to their gain of population. In short one
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not-so-dark state surrounded by very bright states is e�ectively darker. The darkness of states should

not be confused with subradiance or superradiance, which is a collective process for many particles

which is not relevant in the case of only 2 emitters. Due to this possible confusion, more or less outward

coupling of quantum states are expressed in terms of its brightness or darkness.

2.1.4 Steady states

A steady state, is a state whose population or occupation does not change over time. 'The steady

state' in general is the distribution of population over all possible states, that is unchanging in time.

This means in practice that the observable states, or the diagonal states of the density matrix, are

unchanging in time. This also means that 2 equal systems both at their steady state will give the same

distribution of states. As can be seen in Fig. (1) the states will eventually reach a steady state, since

the ground state is dark, and the two exited states have a drive between them, the steady state of Fig.

(1) is where all the population is in state |0〉.
It should be noted that the concept steady state, as will show in this work, can be a tricky one. First

of all, for all experimental and perhaps even physical relevance, one only needs a systems observables

to be unchanging in time. After all that is all one can know. This can be mathematically tricky, as

the often used density matrix consists out of more then just these observables. A good reference for

the use of density matrices can be found in Sakurai.61

Second one can argue when something is steady enough. Is something steady when it is unchanging

on a time-span of a (quantum) computation? Or is something steady only when it is unchanging in

large time spans like seconds, or even hours or days?

In this work, these problems are dealt with di�erently. At times an elaboration is given just what is

found. In numerical calculations, the computer will decide where the cut-o� of steady, and non-steady

lies. In analytical considerations this is not always possible, and instead will show to sometimes be

complicated, if for instance it is asymptotic with perfectly steady. In either way though, all results

naming 'a steady state' will have at least the most dominantly populated state in a distribution to be

unchanging in time. In this work this is always the desired prepared state. The actual complication

in the analytical calculations can often be moved to the unobservable and does not a�ect the outcome

of the steadiness of observable states.

2.1.5 Plasmons

Plasmons, which are the mediating mechanism of interaction through the quantum wire, is a quantiza-

tion of (surface) plasma oscillations. Just like phonons are quantizations of lattice vibrations, plasmons

are oscillations in the density of free charges. Plasmons exist in any matter which has enough free

electrons, but play an important role in metals. In metals they are the dominant process of light e�ects

like absorption and re�ection. In the case of the quantum wire, plasmons only exist as oscillations in

the otherwise con�ned uniform free one dimensional electron gas.

2.2 The plasmonic wave-guide
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1D Plasmons

d

Figure 2: Two emitters separated by a horizontal distance d are positioned above a generic wave-guide.
The plasmon modes supported by the structure constitute the electromagnetic interaction between the
two emitters.

The two emitter system employed in this paper consists of two identical quantum emitters posi-

tioned on, or in close proximity to a metallic wave-guide. (see Fig. 2) The positioning is done in

such a way that the emitters electromagnetic interaction can also revert into quasi one-dimensional

plasmonic modes in the wave-guide instead of free-space decay alone. This coupling of the emitters to

the wave-guide or wire can be a�ected by their distance to the wire, or to other factors depending on

the sample's construction and geometry. This coupling has been shown to increase the spontaneous

emission rate of the emitters with respect to their distance to the wire.51 The emitters can be atoms,

molecules quantum dots or some other solid state replacement of a level system, and will be modeled

here only for two and three levels. Since the level systems are generally required to couple to plasmonic

modes, these level structures will generally be that of an optical exited state and of a ground state. In

the case of three levels there are two ground states and one optically excitable state.

The wave guide is generally a wire62, a groove63 or a con�nement of a 2 dimensional electron

gas.64;65 These wires have been found to support plasmonic (surface) modes depending on the geometry

used. And each has their own conduction e�ectiveness depending on the wavelength of the plasmons.

The (spatial) con�nement in the grooves, wires and electron gas make sure that in theory the wires

only support certain modes. This in practice is also shown but are often still troubled by temperature

broadening due to impurities and alike. All of these set-ups have metallic states which support plasmons

on their surfaces or edges. Current advancement show great promise in qubits on a well-coupled and

well de�ned single-mode plasmonic wires.

A predominately decay into the wire in the model is preferred, though it will show in Section 4

that we would rather tune the wire to be responsive to only one transition then to have a very strong

coupling to the wire per se. The plasmonic wave-guide geometry can be very complicated66 and the

exact detailed physics of these wave-guides will be beyond the scope of this work.

Since there is a lot of possibilities and systems to chose from, here there will be worked with an

e�ective result36 from di�erent geometries of systems that show that for reasonable energies plasmonic

wave-guides exist that only excite a single mode. For simplicity from here on, the term wire will be

used whenever a plasmonic wave-guide is inferred. All in all to correctly calculate the electromagnetic

behavior the electric �eld operator is required:

~̂E(~r, ω) = i

√
~ω2

πε0c2

ˆ
d3~r′

√
εi(~r′, ω)~G(~r, ~r′, ω) ~̂f(~r′, ω) (2)
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In Eq. 2 ~̂f is the bosonic lowering operator and ~G(~r, ~r′, ω) is the (retarded) Green's tensor which

satis�es the Maxwell equations for an in�nitesimal dipole source located at spatial position ~r′. From

a physical point of view, the Green's tensor describes how the electromagnetic interaction is carried

from spatial point ~r′ to ~r. This Green's tensor is very complicated when expressed in modes, and far

to general for the single mode use. Instead, only a single mode Green's tensor is considered. In Eqs. 3

& 4 are the expressions for the dipole-dipole interaction gij,kl and the wire decay γij,kl which are the

real and imaginary parts of the Green's tensor respectively.

gij,kl w Dij,kle
−d/2lsin(krd) (3)

γij,kl wWij,kle
−d/2lcos(krd) (4)

Here d is the distance between the two emitters and kr = 2π/λpl where λpl is the modal wavelength of

the plasmon mode, typically in the order of 100′s of nanometers. In doing so it is assumed that all the

interaction between the emitters is mediated via the wire. The remainder of the decay is free-space

decay and does not contribute to the interaction between the emitters. In Eqs. 3 & 4 , i and j are

indices for the two emitters and in this case cannot be equal. Here Dij,kl & Wij,kl are constants, which

can be expressed in terms of free-space or total decay and coupling to the wire. Due to the use of the

formalism as expressed in section (2.3) these are not too straightforwardly de�ned. Constants k & l

are indices for transitions between states within each emitter.

To further simplify Eqs. 3 & 4 it is assumed that the free-space decay does not contribute to the

interaction between the emitters. This is a good approximation of the complete Green's tensor for

distances exceeding half a modal wavelength in length.36 In addition from here the plasmonic decay

factor e−d/2l is neglected. This is a negligible change over the distance of a modal wavelength and is

not of interest since Eqs. 3 & 4 are periodic over a modal wavelength. Whatever losses there might

be due to plasmonic decay will not contribute to the interaction, and will therefore be incorporated

within the constants Dij,kl & Wij,kl as free decay.

In an experimental set-up it is entirely seemingly that the dipole moment directions of each emitter

coupling to the wire, do not align in the same direction. This can be a problem, but for simplicity it is

assumed they are equal. The alignment of the dipoles does not in�uence the �nal results, as for these

speci�c distances the dipole-dipole interaction is zero.

It is also possible that the distance of each emitter with respect to the wire is not necessarily equal,

and therefore there would be a di�erence in the coupling strength to the wire for each emitter. It will

show not to be a problem if the constants Dij,kl & Wij,kl are expressed in terms of wire and free decay,

and since plasmons decay radiatively67 these are incorporated in free decay which is easily measurable

regardless of the geometrical set-up since the two emitters are observationally indistinguishable. Also,

experimentally, wire decay is easily measurable. This is why the formulation of the constants Dij,kl &

Wij,kl will prove to be very useful in preparation of the entangled state. The di�erence in coupling to

the wire between two equal emitters has not been looked into in this work, and is assumed to be equal.

There are two di�erent usages of the constants, one in terms of free, the other in terms of total

decay as expressed before. When the state desired to be prepared couples to the wire, it is best to use
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the constants Dij,kl &Wij,kl in their total-decay picture. This is because the parameters are expressed

with respect to either free decay or total decay. And a good beta would mean low free decay, which is

a problem for driving a fast decaying state if it needs to be prepared well, since it would be lower for

better coupling. In the subsequent use in this work they will each be elaborated upon use.

It will show that, in simple physics terms, the wire can break or preserve symmetries. This will

prove to be the most essential part of the dissipative preparation scheme, and also why the quantum

wire is favourable over other set-ups.

2.3 The chosen formalism, the master equation

The formalism to model the time evolution of the system used here is that of the so called master

equation. Many good derivations of this model exist68�70. However most of these only look into

the simpli�ed two-level case of the emitters. Agarwal (1975) however derives the master equation for

density matrices starting from Liouville operators for an atomic system and radiation �eld. In doing so

the Born approximation and a Markov approximation are applied. In addition to these approximation,

the whole master equation is subject to a rotating wave approximation. This prevents complications

from frequency shifts like the Lamb shift. The resulting master equation is expressed for N particles

with M levels:

∂%̂

∂t
= − i

~

[
Ĥ, %̂

]
− 1

2

∑
ij,kl

γij,kl(%̂ · σ̂lk,i ˆ⊗σkl,j + σ̂lk,i ˆ⊗σkl,j ·̂%− 2 · σ̂kl,j ⊗ %̂ ⊗ ˆσlk,i) (5)

Where the sigma σlk,i = |L〉i 〈K| is an operator that changes a state |k〉 → |l〉 in the Hilbert space �i�

and ⊗ is the direct product between Hilbert spaces. Formulations of Eq. 5 di�er in literature greatly

but all are mathematically identical. In this case, Ĥ is the Hamiltonian containing all interactions and

energies:

Ĥ = Ĥ0 + Ĥd + Ĥb + Ĥg (6)

Where Ĥ0 is the Hamiltonian containing the energies of the states under consideration. Ĥd contains

the externally applied drives, their resonance speci�cations and the phase di�erences between the

emitters determined by the geometry of the driving �elds with respect to the emitters. Ĥb contains

the magnetic �elds between the two emitters. And Ĥg contains the interactions between the emitters

are included, this is where the wire-mediated dipole-dipole interaction can be found. The presence or

lack of these terms, and their varied respective strengths and symmetries determine the outcome the

schemes which will follow in the coming chapters.

The summation in Eq. 5 implies that one has to sum over all possible decays. These decays

include decays where an individual emitter decays. Or conversely in the wire mediated case where

both emitters decay as a whole and have i 6= j, these two decays together can be symmetry conserving

or breaking.

The density matrix %̂ in the case of the derivation by Agarwal70 contains both the radiative density

matrix as the atomic density matrix. On this point there are some di�erences with other work71 in the

expression of the master equation. These depend on the initial and �nal conditions of the radiation
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�eld. Here the current derivation of Eq. (5) was chosen along the lines of previous work.69;70;72 Since

the coupling to the vacuum �eld does not contribute to mutual interaction, and the Born approximation

allows to eliminate the possibility of an emitted photon to react back on its emitter, there is no need to

include a radiation �eld. It should also be noted that in the case of set-ups where the emitted photon's

in the vacuum �eld can react with other emitters inside the �eld, can result in a more complicated

expression of the master equation. In that case, the density matrix needs to include states of the

vacuum �eld as well, for instant excited modes of an optical cavity. In the cases that are described in

this work, there is the relative luxury to not be bothered with this. Because the actual excitation of

plasmons inside the wave-guide are not used, but instead their respective electron densities as expressed

by Eqs. (2) , (3) & (4) . It is therefore noted that the master equation is mostly a formalism for atomic

systems.

The master equation for this work is an ideal tool to model the time evolution of the system, since

there are no vacuum exited states to be concerned. In other work there are plentiful of examples of the

use of this master equation on an arbitrary amount of 2-level emitters, and it is a well known tool in

the quantum optics community. This is in stark contrast with the application of three-level emitters.

To the author's best knowledge, there is currently only one work mentioning the use this formalism

in 3-level emitters73 though the work by Bargatin et al. seems to apply a dipole interaction with

optical pumping. This uncommonness could be attributed to the problem of non-Markovian noise in

higher leveled emitters74, which would render the master equation formalism inapt. The formalisms

for non-Markovian systems is however beyond the scope of this work.

2.4 Clari�cation of parameters in the master equation

The physical interpretation of Eq. (5) is not straightforward. Constants γij,kl in Eq. (5) are de�ned

for application of the joint system, and not for values of a single emitter alone. Di�erent de�nition are

used for these parameters in this work for di�erent systems. Used parameters are clari�ed;

The parameter Γ, which signi�es the total free decay, is all the decay that does not couple to the

wire added to the total decay of the wire modes. In other words Γ is all the decay out of the system

not via the wire.

The parameter β, which resembles the coupling of the emitters to the wire. The range of parameter

β is 0 to 1, representing respectively no decay into the wire, and total decay into the wire.

The parameter γ, which is total decay, or all free decay plus all wire decay.

These parameters relate to each other via the logical formula:

Γ = γ(1− β)

Using these three parameters means that constants of decay in γij,kl of Eq. (5) can be described

either by parameters β& γ or by β& Γ . The choice which of the two lies in, whether or not one

wants to scale all other parameters in the system by either the total decay, or the total free decay. All

couplings to and from the wire will therefore scale accordingly:

gji,lk = gij,lk = gij,kl = gji,kl = ckl
γβ

2
sin(kpld) = c′kl

Γβ

2(1− β)
sin(kpld) for i 6= j (7)
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γji,lk = γij,lk = γij,kl = γji,kl = cklγβcos(kpld) = c′kl
Γβ

(1− β)
cos(kpld) for i 6= j (8)

Here constants ckl & c′kl specify how strongly the transition couples with respect to the other possible

transitions, since these can be ampli�ed they can vary greatly, but in this work there is only a single

mode wire. For this reason in this work ckl = c′kl = 1, and the possible ampli�cation is incorporated

in the other parameters. kpl = 2π/λpl with λpl the modal wavelength of the plasmons. It can be seen

that Eqs. (7) & (8) will become in�nite for β → 1 . This corresponds to the unlikely case where

there is no more decay into free-space as even plasmons decay. Furthermore as β → 1 then Γ → 0

since Γ = γ(1 − β), hence it cannot become in�nitely large. And even if all free-space decay would

be captured by a wire, parameter Γ would still include plasmonic decay, meaning it remains �nite in

the physical case. The fact that interaction from emitter i to j is equal from emitter j to i, lies in the

indistinguishability of the two emitters.

Since there is no dipole moment in free-space, couplings of the individual dots and their decay

become:

gii,kl = 0 ∀ i, k, l

γjj,kl = γii,kl = dklγ = dklΓ

(
1 +

β

(1− β)

)
(9)

Here the self decay of an emitter is described. Here dkl is the constant of how strong transition from

state |k〉 to state |l〉 is in respect to the whole, hence
∑
k,l dkl = 1 at all times. In Eq. (9) on the far

right, there is a term which represents the decay into the wire. This is present because an emitter,

when decaying into the wire, will still decay by itself. The current formulation of parameter γjj,kl in

the master equation conserves the trace of the density matrix Tr(%̂) = 1.

2.5 Solution of the Master Equation

In an attempt to solve Eq. (5) various methods are employed, both analytical and numerical. Each

with their bene�ts and drawbacks. For this reason each method will be examined before it will be

applied in the coming two chapters. The results of these calculation will be compared in the conclusions

per chapter.

2.5.1 Analytical methods

There are four di�erent ways to �nd solutions for Eq. (5); Solving the di�erential equations that are

produced per element of the density matrix in Eq. (5). Solving the steady state conditions for ˆ̇% = 0

as a whole by use of an eigenvalue/eigenvector problem. Partially solving the di�erential equations,

by demanding not all elements of the density matrix in Eq. (5) to be steady. And �nally by the use

of rate equations, as described below.

Di�erential equations Di�erential equation method attempts to solve the steady state of the sys-

tem, by taking each equation per element of the density matrix in Eq. (5) and solve them as a set
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of coupled di�erential equations. This is an exact solution, but not always possible. For N emitters

of M levels, there will be M2N+M2

2 coupled time dependent di�erential equations. This number rises

really quickly, being 9 in the case of two 2-level emitters, 45 in the case of two 3-level emitters, and

369 in the case of three 3-level emitters. Solving these can only be reasonably done for the simplest

and least interesting set of parameters for the system, even if one is to use analytical software. It is

sometimes possible to reduce the problem to an eigenvalue problem for the steady state which will

greatly simplify the problem at hand.

Eigenvalue method The eigenvalue method with the density matrix in Eq. (5) is similar to solving

the time dependent di�erential equations as a steady state. For this method a transformation to the

Hamiltonian is applied to make it time independent, as the steady state cannot be time-dependent.

This will prove to be possible for most cases. By looking at the general steady state of Eq. (5) ˆ̇% = 0

one can then solve the system analytically with an eigenvalue problem of the matrix on the right-

hand side of Eq. (5). One can then �nd the eigenvector of the density-vector below, that belongs

to eigenvalue 0. Hence an e�ective matrix which works on this vectored density matrix needs to be

constructed. Hence Eq. (5) would become:

(
M
)
effective

� (%̂)vector = ˙(ˆ)%vector

Here Meffective is a matrix that has such a shape that each element inside the density vector has

an identically matching element inside the density matrix of Eq. (5). Then the eigenvalue problem for

eigenvalue zero exists that has the steady state solution as an eigenvector:

(
M
)
effective

� (%̂)steady = 0 · ˙(ˆ)%vector

In the analytical case the determinant of Meffective is zero for non-trivial solution. However the

determinant hasM2N ! elements for N emitters of M levels, or in the two 2-level case 2.0 ·1010 elements

approximately. Even in the realistic physical case where the amount of elements can be reduced to
M2N+M2

2 ! elements, this is still a formidable number. But can in some rare cases be solved quite quickly

by analytical software. Since most of these elements will be zero. Depending on the complexity of the

Hamiltonian in Eq. (5) these density-vector and e�ective matrix can be made.

Limitations of eigenvalue equations Setting the general steady state ˆ̇% = 0 implies the demand

that all elements of the density matrix are constant in time. This isn't a strange demand, since the

decay of the system will always stabilize the diagonal real elements of the density matrix. However in

the case of 3 level or higher there is a problem. Coherences also decay, and though in a 2 level system

coherences do not decay to another coherence, in a 3-level or higher system they do:

ˆ̇%ie ∼ −γdecay%ie → ˆ̇%if ∼ +γdecay%ie (10)

In Eq. (10) a coherence between state |i〉 ←→ |e〉 exists and state |e〉 → |f〉 decays into a �nal state.

A non-zero coherence %ie 6= 0 can form, due to decay, a non zero ˆ̇%if 6= 0 time dependent coherence.

In this case and of that of Rabi oscillations the general steady state ˆ̇% 6= 0 . Though this particular
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solution might be very bene�cial to prepare entangled states.

It is not particularly advantageous to exclude such a broad regime of physically stable steady state

solutions.

As mentioned before the di�erence between 'a stead state' and 'the steady state' can make it di�cult.

In the case where ˆ̇% 6= 0 , where 'the steady state' does not exist, it is often more di�cult to view the

entire e�ective matrix, and the eigenvalue/eigenvector problem cannot be used.

It makes it necessary decompose the elements of the density matrix of Eq. (5) into separate coupled

di�erential equations, and only solve some(most) of these equations as steady, as explained in the next

method. The e�ective matrix will however prove numerically to be very bene�cial as numerically it

can be easily solved. As though they cannot be perfectly zero, numerically seen, a null vector can exist

either way. This method therefore forms numerically the most reliable solving of the system.

It is worth noting in what numeric time dependent trial runs that where made of the evolution of

the system over time, the ˆ̇%if 6= 0 time dependent coherences were seen. These generally simply kept

growing in their absolute value, even when the seeming steady state of the diagonal elements were

long reached. These results are not incorporated in this thesis, as they seemed to have no e�ect on the

distribution of the population of the diagonal states in the density matrix.

Selective di�erential equation solving Solving the di�erential equations discussed above is also

possible by selecting which elements from Eq. (5) need to be time independent. Though this is not a

very aesthetic mathematical solution, it does allow to �nd steady on-diagonal steady states even when

the general steady state ˆ̇% = 0 is not attainable.

Even for time independent Hamiltonians oscillations can still occur in the more complicated systems

from 3 levels or higher. This however needn't be a di�culty, as in the end only the desired state needs

to have a time-independent population. Hence as long as Tr(%̂) = 1 and ˆ̇%desired state = 0 a steady

state solution for the desired state is found. In general it will prove in Sec. 4 that there are solutions

with only time dependencies present in coherences, and not in the population of diagonal states. This

method means that the choice of demanding which o�-diagonal elements of density matrix ˆ̇% to be zero

dominates the shape of the resulting solution.

This method is called partially or selectively solved because the solution is only valid in the case

where the choice of steady states and steady coherences applies in the physical case. Not surprisingly,

choosing coherences to non-decaying heavily driven o�-diagonal states to be time independent, is a

less well approximation then coherences to a highly decaying weakly driven state to become a time

independent steady state. For this reason this analytical method requires comparison with numeri-

cal simulations to verify its applicability. It does however prove to make very complicated systems

analytically solvable for the regime of interest by simple means of step by step solving.

It should be noted that it is perhaps possible to solve the set of di�erential equations as described

above, with di�erent choice of which coherences should be steady and which do not need to be.

Physically of course this should give the exact same answer for the diagonal elements of the density

matrix. It is however not always possible, as was in this case, to �nd an analytical solution with other

steady coherences that is doable with present day computers.
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Rate Equations Rate equations employ a very di�erent approach. In this method Eq. 5 is es-

sentially deconstructed and reconstructed for the speci�c set of parameters, or scheme, which one is

looking at. Firstly one transforms the speci�c scheme to a time independent representation due to a

unitary transformation, which is possible in almost all practical cases. In this unitary transformation

one can then also include the (time-independent) dipole couplings as level shifts. Then one only views

the diagonal terms and the coherence terms with an optical coherence. As a �nal step one solves all

equations with optical coherences, as being steady:75

ˆ̇%ij,optical = 0 for i 6= j

This is a reasonable demand as the desired steady state, is only attained when the decoherences have

stabilized. Unlike the normal steady state solution this is a less heavy demand. The so derived

equations give rates of how much goes into a state, and how much goes out of a state, depending on

the populations of other states. In conjunction with a speci�ed scheme, reasonable assumptions can

be made, and one can calculate a �delity of a state for the certain parameters analytically. Though

these can be complicated, it will prove relatively simple to approximate these rate-equations for high

beta factors and gain very useful predictions of a scheme whilst only looking at a part of the whole

quantum system. Since this method is only used in the case of two 3-level emitters, the full derivation

can be found in Sec. (4.3.1).

The methods described above have all been applied for this work, but are not as easily applicable

on each model. The steady state and time dependent di�erential equations method can be tried by

the use of computer analytics, yet even for the simple two 2-level case this becomes problematic due to

the sheer size and duration of the calculations. In the two and three level cases the eigenvalue method

will simplify numerical methods. In the 3-level case the selective di�erential equation solving method

was used for the full analytical derivation, this is however not always as transparent and the method

is incorporated in the appendix. In some speci�c parameter cases even the analytical software using

the partial di�erential equation method is unable to �nd an analytical solution via this way. As it is

limited to a single processor's speed.

In general using the analytical methods and their results are not a good option in the case at

hand, as the expressions are often several pages long and highly complicated. Hence analytical results

given here are only the lowest order Taylor approximations around β = 1 for simpli�cation. In �gures

however the full analytical solutions were used where possible. Numerical methods are faster, easier,

less complicated and more reliable, and are hence advised at any time.

2.5.2 Numerical Methods

Of the methods mentioned in Sec. (4.3.1) only the direct solving of the (time dependent) di�erential

equations, and e�ective matrix eigenvalue problems are used in numerical calculations. The solutions

are obtained with MATLAB. This can be done with a time-independent Hamiltonian, and with time

dependent Hamiltonians. The two di�er little in computation time in the case of the direct solving

method, but the time dependent version isn't available for the eigenvalue method. This is because

Eq. (5) which contains the decay dynamics and Hamiltonian is required to be recalculated for each
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time step due to the time dependence of the Hamiltonian. For this reason, if any of the parameters is

not in the same order of size as the others, computation time becomes drastically increased. This is

mostly unbene�cial for β ≈ 1 where Eqs. (8) & (7) grow, whereas parameter scaling lowers due to the

choice of parameter expression. This is however the region which is of interest in this work. Even with

a computer with many parallel processors calculating a simple �delity versus β-factor curve using the

di�erential equation solver can take up to a day, pending errors.

Instead, the numeric solving of the e�ective matrix eigenvalue problem as mentioned above was

employed in most cases in this thesis. This works much faster but the here used method is only

applicable if the e�ective matrix is diagonalizable. This method is therefore not usable for all possible

3-level schemes in general, but in this work these have not occurred at all. A good rule of thumb is,

that any system where decay from a high state can reach the lowest state via other states, are always

solvable by the e�ective matrix eigenvalue method. In many other cases the e�ective matrix might

still be diagonalizable, and in this work this is the case for all numerics, but it cannot be made as a

general statement.

E�ective matrix numerical analysis This method was developed at the end of the work done for

this research. It enables very fast calculation for complicated systems. If the right-hand-side of Eq.

(5) can be made time independent. Then, and only then, it is possible to make a time-independent

e�ective matrix. This matrix has dimensionM2×M2 whereM×M are the dimensions of the original

density matrix. It is possible to numerically write this by de�ning a vector from %̂ → ~% that has M2

elements. Then Eq. 5 reduces to its numerical equivalent:

∂~%

∂t
= Meff · ~% (11)

This implies that an e�ective matrix exists alike in Sec. 4.3.1 , with as one di�erence that solving the

steady state of this system isn't the only option. Instead, if Meff from Eq. 11 is diagonalizable, then

a set of unique eigenvalues exist for the evolution of each term in the density-vector. This means that

the density-vector from Eq. 11 can be expressed as:

~%(t) = exp(Meff · t) · ~%0 (12)

Where ~%0 are the initial conditions ~%(t = 0) . This equation allows for very fast calculations of the

dynamics of the master equation. Analytically there are many sets of parameters that make Meff not

diagonalizable. In the case of numerics however it is nearly always possible to �nd a set parameters

that are within the calculation tolerances that results in anMeff which is diagonalizable. This enables

the numerical computation time, in the most complicated cases, to be reduced from days to seconds. In

the case where there are no interactions that isolate two states from the rest, and hence no stable state

with Rabi oscillations occur, there is one solution with eigenvalue zero, that represents the steady-state

case. This can be calculated very quickly numerically.

One drawback of using just the eigenvalue zero is that this is the long-term steady-state case. It

is entirely possible for certain sets of parameters to have, even in the numerical case, an eigenvalue

which is �nite but still close to zero. These states could be semi-steady where they will live a long

time before they reach the steady state. However, in this work, such states were not encountered. At
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routine checks these values have not shown and therefore have not been explicitly tested for in this

work. It is however possible that for some set-ups and some scheme's semi-steady states are relevant

entangled states, depending on the scope of the work.

It should be stressed that the method also works in case of oscillations in time of elements ˆ̇%. The

solution found in this case is simply for a moment ˆ̇% (tknot) where tknot is the time where all the periods

of each separate oscillations coincide. Hence ˆ̇% (tknot) = 0, however, this might not coincide with the

most stable state. Checking whether this happens or not is however practically not doable. Instead

analytical arguments can be given to check with the applicability of these solutions.

2.6 Diagrammatic notation

In representing Eqs. (5) & (6) there is the di�culty of size. A lot of terms contribute to relatively

simple physical processes. There is no generally uni�ed way of expressing the processes at hand in a

simple and concise way. Thought this work does not mean to suggest such a uni�ed way, it will suggest

a diagrammatic description to equally compare the set-ups chosen for ease of comparison. This will

allow the reader to quickly see the di�erences between schemes. A di�erent description will be used

for the two 2-level description which is comparable in di�erent works.

In general the following diagrammatic conventions are used for both models:

� Double headed arrows, front and end, represent optical drives between states, open for symmetric

drives, closed heads for symmetry breaking drives.

� Single headed arrows represent the directional decay from one state into another.

� Thick bold lines are used to represent states.

� Thick dashed bold lines are used to represent states with a level shift.

� Colour is used to exemplify which or what wire coupling transition the states are tuned or shifted

to.

In general this covers most of the possible interactions in possible system set-ups. Decay arrows are

sometimes dashed when they can be a�ected by the wire decay. And on occasion a dashed �eld is

made around a section to denote a process of interest.

2.6.1 Two 2-level graphs

The two 2-level graphs will be familiar to most readers. It is known not only in the �eld but is a very

practical way to describe the two 2-level system. In Fig. 3 one can see an example where the emitters

on the wire have been placed a distance d 6= nλpl/2 with n an integer and λpl the modal wavelength

of the plasmons. In Sec. 3 , the set-up will be discussed and will be elaborated on all the e�ective

interactions of the model.
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Figure 3: The two 2-level diagrammatic notation. In this case there is a dipole-dipole interaction
between emitters which causes a level shift due to wire decay. The optical pumping drive has been
detuned to be in resonance with the shifted transition |00〉 ←→ |T 〉. Brown dashed arrows represent
decay, long dashed arrows are decay increased by the dipole coupling and dotted brown arrows are
decay decreased by the dipole coupling. In this example no one steady-state is prepared and Rabi
oscillations occur between |00〉 ←→ |T 〉.

The diagrammatic notation as in Fig. 3 is chosen such that all interactions can be placed without

too much overlap. Symmetric states placed on the left and anti-symmetric on the right, and energy on

the vertical axis. In this notation detuning alike in Fig. 3 the dashed lines can be incorporated to show

level shifts when necessary. Colours can be used to emphasize why or why not and with respect to

what the optical drives can detuned, as in the �gure due to the dipole-dipole shift due to the distance.

Decay can also be incorporated.

2.6.2 Two 3-level graphs

In Fig. 4 There is been given an example of how a diagrammatic notation of a three level scheme

might look like. The clover shape is based upon the way two 2-level graphs are expressed. The basis

and other details can be found in Sec. 4. A level shift due to a dipole-dipole interaction has only been

shown in one of the two a�ected states. This is done, because in relevant schemes a drive detuning

is used to put the the level shift on resonance for one transition and not the other. Drives which are

a�ected due to this detuning, and are no longer resonant with the two states they drive between, are

denoted by an apostrophe.

The example in Fig. 4 shows all three dipole couplings between the transitions �MW� |0〉 ←→ |1〉
(blue), �L� |0〉 ←→ |e〉 (green) and �Λ� |1〉 ←→ |e〉 (red). Where the dipole coupling of transition �L�

has caused a dipole-dipole level shift in addition to wire decay, whereas transitions �MW� and �Λ� do

not. The attentive reader will see that this example set-up is in fact only possible for a two-mode wire,

as the distance of the two dots cannot vary per mode, in this example however it serves merely an
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illustrative role. Due to the absence of any dipole-dipole interaction via the wire of the �Λ� transition

there is a maximal decay via the wire, and always some free decay. In this case transition �MW� does

not decay at all due to the emitters characteristics, and is displayed here only for completeness. For

the full physical interpretation of example Fig. 4 one should continue to Sec. 4.4 where there is an

elaborate description of the possibilities. In this Example case state |00〉& |11〉 are essentially dark,

and any steady state will end up in a linear superposition of these two.
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Figure 4: In this example all possible interactions are shown of each kind once. Open double-headed
arrows are symmetric drives and closed arrows are anti-symmetric drives. Brown single headed arrows
are non spontaneous decay, where dotted arrows are wire decays, and the long stripped arrows are free
decay. The three colours represent the three possible dipole interactions. Blue is a dipole coupling
between transition �MW� |0〉 ←→ |1〉 , green is a dipole coupling between transition �L� |0〉 ←→ |e〉
and red is a dipole coupling between transition �Λ� |1〉 ←→ |e〉. In some cases a drive is coloured, this
implies that the drive is detuned with respect to an associated level shift due to dipole interaction.
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Generally 4 will not be seen as a 'simple' representation of the possible e�ects. However it is the

authors opinion that the alternative, constantly changing locations of states to �t a readable �gure, will

only make it more di�cult to compare schemes. For this reason each 3-level �gure has the interactions

upon each emitter written below. So that simple information of decay of emitters and drives to emitters

separately is easily viewable. In the end, the possible and relevant interactions of a 9 state system will

most of the time be complicated to comprehend, hence Sec. 4.4 is devoted entirely to just that.
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|0₁〉 |0₂〉

|1₁〉 |1₂〉

Wire

Figure 5: The two 2-level system coupled to a wire. This relatively simple set up has 2 equal emitters
interacting with a single plasmon mode in a metallic wire. There is one drive Ω driving the ground
state to the exited state. And there is a decay γ from the exited state to the ground state which can
partially be mediated by the wire γ12.

3 Two-level section

In this section the two 2-level emitter set-up will be discussed. The formalism used will be derived

and several methods of solving the model will be employed. A new process of symmetry breaking will

be uncovered and an elaboration of its use will be made. Subsequently, the results of all methods will

be discussed, and an outlook will be given why a continuation of use of this set-up is unfavourable.

3.1 Derivation of the formalism

For derivation of the two 2-level scheme Eq. (6) is constructed for the two 2-level case:

Ĥ0 = ~
2∑
i=1

(ω0 |0i〉 〈0i|+ (ω1 + (−b)i) |1i〉 〈1i|) (13)

Ĥg = ~
∑
i 6=j

(gij |1i〉 〈0i| ⊗ |0j〉 〈1j |) (14)

Ĥd = 2−1~ΩeiωLt (|11〉 〈01| + eiφ |12〉 〈02|) + H.c. (15)

Here gij is alike in Eq. (7), Ω is the driving, ωL is the frequency of the drive, φ the phase di�erence

between two emitters, and b the magnetic �eld applied over the two emitters. In other sections a

unitary transformation will reduce H0 to Eq. (22). Any e�ect this magnetic �eld might have on the

plasmon modes is neglected. Denote the absence of the magnetic parameter at the ground state as

this isn't shifted by the Zeeman e�ect. From hereon ω0 is de�ned as being zero, since the mechanics

of the quantum system are not depended on absolute energies.

With the above the master equation Eq. (5) will become:
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∂%̂
∂t = − i

~

[
Ĥ, %̂

]
− 1

2

∑
ij γij [ %̂ · (|1i〉 〈0i| ⊗ |0j〉 〈1j |) +(|1i〉 〈0i| ⊗ |0j〉 〈1j |) · %̂

−2 · (|0j〉 〈1j | ⊗ %̂⊗ |1i〉 〈0i|) ]

(16)

Where γ12 = γ21 and γ11 = γ22 = γ . Wire decay γ12 is now related to ∼ βγcos(kpld) as is depicted in

earlier work.36 This could give the false impression that wire decay can in fact be turned o� for the

right distance, whereas the dipole term would be preserved. This is in reality of course not possible,

as the only interaction is via the wire, it will always have plasmons in it, which in turn decay. In this

section the total decay representation of Eqs. 8 & 9 are employed.

3.1.1 Unitary transformation

Following here will be a unitary transformation applied to the Hamiltonian in Eqs. (13), (14) & (15)

, to make it time-independent:

ˆ̄H = i~U̇U† + UHU† (17)

Where the bar over the Hamiltonian implies that ˆ̄H satis�es the Schrödinger equation, if the wave

functions transforms as |ψ̄〉 = U |ψ〉. The unitary transformation is:

U = exp(itωL

2∑
i=1

|1〉i 〈1|i) = eitHU/~ (18)

Then the time independent parts of Eq. (17) transform as follows:

UH0U
† = H0 , UHgU

† = Hg and i~U̇U† = −HU

The driving Hamiltonian transforms as:

Ĥd = 2−1~Ω (|11〉 〈01| + eiφ |12〉 〈02|) + H.c. (19)

The resulting master equation is now time independent.

It is possible to further simplify the master equation by transforming the parameters into scalar

parameters. Doing so means one needs to de�ne an unique and characteristic decay time τ = γ−1

where γ is de�ned as the total decay. Then Eq. (16) will become:

∂%̂
∂τ = − i

~

[
Ĥ(c′), %̂

]
− 1

2

∑
ij γ
′
ij [. . .] (20)

Where c′ is a set of parameters. Here the apostrophe implies that all parameters are scaled by the

total decay. In this section from hereon a parameter is implied to always be scaled with respect to the

total decay and the apostrophe is neglected. In �nal results it will however be shown for completeness.
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|00〉

|S〉|T〉

|11〉

g
g

Figure 6: The two 2-level emitters under a symmetric driving tuned to be on resonance with the
transition|00〉 ←→ |T 〉. Normal brown decay arrows have unaltered total decay since for a detuning
distance only dipole-dipole interactions exist on the wire. Denote that state |S〉 will therefore always
decay.

3.2 Solutions to the two 2-level system

In the case if the two 2-level emitter it is theoretically possible to �nd an exact solution for the general

case as described by the formalism in Sec. (3.1) . The method is discussed in paragraph 2.5.1 and would

ask for an eigenvalue problem of the e�ective matrix for the two 2-level system. Since by construction

all elements are decaying, there are no arguments against employing the eigenvalue method. However

that practical limitations here are simple, by hand the amount of equations are too many, and the

current computer analytical programs cannot handle these large symbolical equations. However by

exploiting symmetry conditions, it is possible to have an analytical solution by the di�erential equation

method for certain distances.

An attempt is made to prepare the system in a good entangled state to keep or get the preferred

state as dark as possible. As previously discussed in paragraph 2.1.3 by eliminating as much interactions

that move the system out of the desired state as possible. Alternatively a di�erent basis is used which

is dark with respect to certain interactions alike the magnetic �eld, to �nd a simpler solution.

Here, a �rst analysis of the preparation of the singlet and the problems that accompany it will

be shown. Then in the following sections it will be shown that the method of symmetry breaking as

proposed by Wang and Schirmer is theoretically sound, but is here not solely achieved by symmetry

breaking through a magnetic gradient alone. And �nally a scheme which makes steady state |S〉 dark
and dominantly populated as β → 1 is presented.

3.2.1 The two 2-level emitters under symmetric driving

To start the analysis of the system there will be looked at the system in the case of a coupling to the
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wire and only a drive which has the same phase over both emitters. The basis chosen to do so is:

|00〉 = |0〉1 |0〉2
|11〉 = |1〉1 |1〉2

|T 〉 = 2−1/2(|1〉1 |0〉2 + |0〉1 |1〉2)

|S〉 = 2−1/2(|1〉1 |0〉2 − |0〉1 |1〉2)

The symmetric driving causes a coherence between the symmetric states |00〉,|T 〉 & |11〉 as found in

Fig. 6. From this �gure there are 2 things to realize �rst. First there is always free space decay of all

exited states |S〉,|T 〉 and |11〉 . Second that the coupling to the wire can have various e�ects, it can

detune states |S〉 & |T 〉, and it can a�ect the decay in a symmetry breaking or symmetry conserving

way.

This shows the �rst problem, in order to make state |S〉 dark it needs to be made sure that it is

the darkest of all states. However by using the detuning of the states by dipole-dipole interaction one

can prefer transition from say |T 〉 ↔ |11〉 with respect to the transition |T 〉 ↔ |00〉. This is not as

bene�cial as it would seem as preferring one transition, means darkening the other. The lower the

contrast between darkness of states, the less favourable the scheme will be.

Second as can be seen from Eq. (7) a larger detuning of the states, means a better beta-factor.

Which as it will show in Sec. (3.4) is not in the bene�t of state preparation by dipole-dipole interaction,

as half of the plasmons disappear to the sides.

Finally it is obvious that under symmetric driving some mechanism is required to break symmetry.

In the next sections Sec. (3.3 & 3.4) two of these will be discussed. First the widespread use of an

externally applied magnetic �eld will be used. Then the intrinsic symmetry breaking due to the wire

is shown to also do the symmetry breaking required to prepare the |S〉 state. In the �nal scheme both

symmetry breaking mechanisms will prove to work most e�ectively when used simultaneously.

3.3 Symmetry breaking by magnetic �eld

As suggested before by Wang and Schirmer,30 a breaking of symmetry is required. One way is by

breaking the symmetry by an externally controlled applied magnetic �eld, which is opposite in strength

for each emitter. Such a �eld will shift the energy levels up or down between emitters by the Zeeman

e�ect, which e�ectively creates an asymmetry between the emitters. Below it will be introduced, put

into a dark basis and shown to be not generally e�ective in the case of strong coupling to quantum

wires.

3.3.1 Inclusion of the magnetic �eld

In the case of applying a magnetic �eld, there is a coherence between state |T 〉 and state |S〉. In the

basis chosen in Sec. (3.2.1) the general symmetrically driven Hamiltonian as seen in Figs. (6 & 7)

becomes Ĥ = Ĥd + Ĥb + Ĥg where

Ĥd =
~Ω

2
(|T 〉 〈00|+ |11〉 〈T |) + H.c. (21)
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|00〉

|S〉|T〉

|11〉
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Figure 7: The two 2-level emitters under a symmetric driving tuned to be on resonance with the
transition |11〉 ←→ |T 〉. Normal brown decay arrows have unaltered total decay since for a detuning
distance only dipole-dipole interactions exist on the wire. In this �gure there is also a magnetic �eld
applied which causes a coherence between states |S〉 ←→ |T 〉.

Ĥb = −~b
2

(|T 〉 〈S|+ |S〉 〈T |) (22)

Ĥg =
~g12

2
(|T 〉 〈T | − |S〉 〈S|) (23)

In a time independent rotating wave approximation with the ground state energy set to zero. It is

worth noting that g12 is periodic over a modal plasmon wavelength in the wire and that it's maxima

are at d = 1
4 (1 + 2n) with n an integer.

This magnetic �eld introduces both a gain and a loss to state |S〉. There is a good reason to use

this coupling, instead of, for instance, a drive to state |S〉. A drive between state |00〉& |11〉 and state

|S〉 would be anti-symmetric, and would mean a signi�cant loss process as it drives population out of

state |S〉 .
In order to compensate for the losses created due to the coherent coupling by the magnetic �eld,

the drive is made to be on resonance with transition |11〉 ←→ |T 〉. As state |11〉 subsequently decays

into state |S〉 again, as seen in Fig. (7). However good this process might be, there are still losses of

states |S〉 & |T 〉 as they decay into state |00〉. Even so, one can calculate the �delity by the use of

equations as found in appendix A which are the result of Eq. (16) for symmetric driving. This results

in complicated function which has no maximum over a quarter of the total population in the system

for state |S〉.
This result is not unsurprising. After all the decay out of the top three-state system |11〉 Ω↔ |T 〉 b↔

|S〉 is unaltered at dipole-dipole interaction distances. Though decay from state |11〉 stabilizes the

top system, the system itself decays just as bad to the ground state. It is in fact with this basis very

di�cult to create a high �delity of state |S〉. This is because any coherence that could cause any rate
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into |S〉 is necessarily coupled to one of the other states, which each strongly decay into the ground

state |00〉. In order to successfully engineer an entangled state, one needs to �nd a more simple basis

with the magnetic �eld to do so.

This result seems to be in contrast to previous work30 due to the lack of an optical cavity. In

the paper by Wang and Schirmer the same set-up of two 2-level emitters are placed within an optical

cavity. In that case the emitters are two Rubidium-87 atoms inside an optical lattice. One of the main

di�erences between the here used approach and the approach expressed in the paper30 is the driving

of the cavity. In the paper the cavity modes are driven so that the cavity mode can be eliminated by

adiabatic elimination. Then, a new basis is sought that is dark in the case of the elimination of the

cavity mode. This has also been done for a two 3-level Λ system38 and in the next paragraph a similar

approach will be made.

3.3.2 A dark basis with the magnetic �eld

The basis as described in Sec. (3.2.1) is not generally arbitrarily preparable by dissipative state

preparation with a plasmonic wire. It is therefore required to �nd a new basis, which is also an

entangled basis, but expressed in parameters dependent on the system. The basis as expressed in Sec.

(3.2.1) will transform as follows:

|00〉 → |Ψ0〉 = 1√
Ω2+b²

(−b |S〉+ Ω |00〉)
|11〉 → |11〉
|T 〉 → |T 〉

|S〉 → |ΨS〉 = 1√
Ω2+b²

(Ω |S〉+ b |00〉)

(24)

In these equations the new states are de�ned by the strength of the applied magnetic �eld b. As can

be seen in Eq. (22) the opposing magnetic �eld does not cause a level shift but an e�ective interaction

between the states |T 〉 and |S〉. Even though these states can shift due to the dipole-dipole interaction

the magnetic �eld will always be resonant with these shifted states.

An important note of this new basis is that it is no longer maximally entangled, as the state |00〉
is a separable and hence not maximally entangled state. Below the �delity of the new state will be

obtained. The choice of this basis is obvious, the losses from |S〉 go into |00〉, by combining these

appropriately it can be seen later on that the �delity with the new state |ψS〉 will be higher, and is

analytically 1 for β = 1. This is not the case for the original basis with an applied magnetic �eld

gradient.

3.3.3 Why a magnetic �eld alone will not work

As seen in this section, applying a magnetic �eld alone will not work. To �nd the reason why it is

important to look back at Eqs. (7,8 & 9). There are basically two paths of steady state preparation to

walk, �rst there is the use of level shifts and detunings. Basically this is state preparation by altering

parameters within Eq. (13) and Eq. (14) and the unitary transformation to appropriately intermix

these respective level shifts and dipole-dipole shifts. Then subsequently using the applied laser �eld

frequency to make sure that a maximally entangled state is prepared. This is a very controllable

process with a lot of room for adaptation, it also however does not work due to the coupling to the
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wire. Which in this case is still very dissipative due to the use of the dipole-dipole detunings, where

half of the plasmons are lost. This is not the case for optical cavities.

The second path one can walk is exploiting the inevitable path as seen in Eq. (9). The total decay

is a�ected by the presence of the wire. As unlike an optical cavity, where even the most crude optical

cavities have losses less then 50% per re�ection at the mirror walls. In the wire, half of all plasmon

excitations are lost because the wire has two ways. Surely this must mean that instead of using these

level shifts, one must make more clever use of this decay? In the next section will be shown that the

role of symmetry breaking can intrinsically be done by the wire itself. And at the right distance prove

that losses outside the wire are negatively interfered for certain symmetric cases.

3.4 Symmetry breaking by the wire

Breaking symmetry is performed by tuning the plasmon wavelength or the distances between the

emitters such that they di�er a multitude of half modal plasmon wavelengths. This means that the

electric �eld due to plasmons at each emitter is exactly zero. This in turn supports either enhanced

decay for symmetric or anti-symmetric states or the exact opposite, due to the superposition of the

plasmons in the wire. As can be seen in Fig. (8) di�erent symmetries of state cancel each other out

simply due to the distance. Either nullifying wire decay or nullifying constructive interaction.

As can be seen in Fig. (8), the symmetry breaking by the wire is strong. One either breaks

symmetric states and enhances anti-symmetric, or the exact opposite. This however doesn't mean

that one can only prepare the anti-symmetric state arbitrarily well. This is because Fig. (8) tells us

that the state and how it decays is depended on where it came from. There is no physical reason

why the separable state |11〉, can have its total decay interfered by the symmetries of the resulting

decay. As can be seen in Eqs. (22) & (23), symmetrical rules or Hamiltonians depended on these only

apply to states which have symmetrical preferences. Hence total decay from state |11〉, and total decay

into |00〉 will be una�ected. And all symmetry breaking will be done between maximally entangled

(anti)symmetrical states. In short, this is symmetry breaking by decoherence.

3.4.1 Decay dynamics of the two level case

As seen in Fig. (8) putting an anti-symmetric state on a single modal wavelength will conserve anti-

symmetric states whilst enhancing decay on symmetric states. Looking at the right hand side of the

master equation Eq. (16) and writing down its contribution to the |S〉 〈S| component gives two terms.

First there is the term for total decay

−γ
[
%̂
2 (2 |11〉 〈11|+ |T 〉 〈T |+ |S〉 〈S|) + (2 |11〉 〈11|+ |T 〉 〈T |+ |S〉 〈S|) %̂2

]
+γ
[
(|00〉 〈T |+ |00〉 〈S|+ |T 〉 〈11| − |S〉 〈11|) %̂2 (|00〉 〈T |+ |00〉 〈S|+ |T 〉 〈11| − |S〉 〈11|)

]
+γ
[
(|00〉 〈T | − |00〉 〈S|+ |T 〉 〈11|+ |S〉 〈11|) %̂2 (|00〉 〈T | − |00〉 〈S|+ |T 〉 〈11|+ |S〉 〈11|)

] (25)

And second there is a term for the fraction that is emitted in the wire
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Figure 8: Two kind of states, at two kind of distances. Symmetric states are the same under parity
transformations, whist anti-symmetric states change sign. a) At a single modal wavelength symmetric
states cancel each other out in between the emitters. b) At a single modal wavelength anti-symmetric
states amplify each other between the emitters. c) At a half modal wavelength symmetric states
amplify each other between the emitters. d) At a half modal wavelength anti-symmetric states cancel
each other out in between the emitters.
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|00〉

|S〉|T〉

|11〉

|00〉

|S〉|T〉

|11〉

Figure 9: The two level scheme with wire decay. a) The drive Ω is symmetric and g12 could form a level
shift at emitter distances of quarter and three-quarter modal wavelength between state |S〉,|T 〉 and |11〉
(not shown) . The γ here represents the total decay from a state, hence it includes the contributions
to the wire and the free decay. b) The same picture for β = 1 at integer modal wavelength emitter
distance. The decay from and to the state |S〉 comes from the term right of the commutator in Eq.
(5). The magnetic �eld b can be clearly seen to disturb the dark state |S〉 for β = 1, in earlier work
this is compensated by �ne tuning e�ective processes to make the state darker.38

−γ12

[
%̂
2 (|T 〉 〈T | − |S〉 〈S|) + [(|T 〉 〈T | − |S〉 〈S|) %̂2

]
+γ12

[
(|00〉 〈T |+ |00〉 〈S|+ |T 〉 〈11| − |S〉 〈11|) %̂2 (|00〉 〈T | − |00〉 〈S|+ |T 〉 〈11|+ |S〉 〈11|)

]
+γ12

[
(|00〉 〈T | − |00〉 〈S|+ |T 〉 〈11|+ |S〉 〈11|) %̂2 (|00〉 〈T |+ |00〉 〈S|+ |T 〉 〈11| − |S〉 〈11|)

] (26)

From Eqs. (25) & (26) it can immediately be seen why for single modal wavelength, state |S〉
becomes dark with respect to decay. Filling in the |S〉 〈S| component of Eq. (5) in case of symmetric

driving gives for the singlet state

˙|S〉 〈S| =− ib/2 (|S〉 〈T | − |T 〉 〈S|)− (γ − γ12) (|S〉 〈S| − |11〉 〈11|)

In the single modal case where the wire decay parameter will become γ12 = +βγ . This means that

the state |S〉 will be perfectly dark for β = 1 as depicted in Fig. (9 b). This set of parameters allows

to analytically calculate the singlet state around β = 1 in the case of a single modal wavelength as can

be seen below in Eq. (27) . The full analytical solution was done by the di�erential equation method

in Maple using the equations from the density matrix as found in Appendix (A).

In contrast to Wang-Schirmer's scheme, here the applied magnetic �eld is not working with the

cavity detuning but instead forms a coupling to state |S〉. Here there are two symmetry breaking

processes working. The �rst which is the breaking of symmetry by applied coherence, is due tot

he applied magnetic gradient. The second which breaks the symmetry by spontaneous decay into a

symmetry preferring wire, is due to the decoherences inside the wire. This is the inevitable process as

the system couples to the wire.
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In essence one optimizes the two processes of symmetry breaking in both terms in the master

equation (5), and then sets the externally controllable parameters to be at values that maximizes the

e�ectiveness of these two processes together. The solution for state |S〉 at zero magnetic �eld equals

ρ̂|S〉〈S| = 64
Ω/γ4

32 Ω/γ2(8 Ω/γ2+1)+(β+1)2 (27)

Not surprisingly this is not a very desirable way of producing a good �delity. As can be seen from

Fig. (9b) the magnetic �eld is required to couple state |S〉 to the rest of the system. Since there are no

other processes that can go into state |S〉, the two level system requires a magnetic �eld to populate

state |S〉 at all.

3.4.2 Two symmetry breaking mechanisms

To more easily solve the system the basis from Sec. (3.3.2) is used for the case of both symmetry

breaking processes. This case is similar to the same set up in an optical cavity, but without the use of

detunings.38 In contrast with that work there is a slightly di�erent choice of basis here due to di�erent

choice of parameters and that in this system all states interact in some way with the wire. The basis

is repeated here:

|ΨS〉 =
1√

Ω2 + b²
(Ω |S〉+ b |00〉) (28)

|Ψ0〉 =
1√

Ω2 + b²
(−b |S〉+ Ω |00〉) (29)

The state in Eq. (28) is a steady state of Eq. (5). The states |T 〉, |11〉 and Eqs. (28) & (29) form

an orthogonal basis. This basis can be seen in Fig. (10b)

In contrast to Wang-Schirmer's scheme for optical cavities, here the applied magnetic �eld is not

the only symmetry breaking factor. Instead the magnetic �eld breaks the darkness that was caused

by the symmetry breaking due to coupling to the wire as seen in Fig. (9b). The gray line in this

picture shows the loss process of state |Ψ0〉 that scales directly with the population of state |11〉 and
increases rapidly for even small values of the magnetic �eld strength and the driving. Whereas the

same processes scaling with ∼ (1− β) that a�ect state |ΨS〉 are only constructive in its population

gain.

3.4.3 Solving for the new basis

It is possible to analytically solve Eq. (5). This is done the di�erential equation method using Maple.

This leads to the following equations for a low magnetic �eld and a high magnetic �eld, which are the

highest order Taylor terms only. This shows that both regimes work, and an optimum must exist.

|ΨS〉 〈ΨS |low = 1 + (β − 1)

(
48 (Ω/γ)

4
+ 8 (Ω/γ)

2
+ 1
)

128
(

4 (Ω/γ)
2

+ 1
)

(b/γ)
2

+O((1− β)2 (30)
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Figure 10: The two level scheme with wire decay. a) The drive Ω is symmetric and doesn't a�ect the
anti-symmetric state |S〉. The dipole induced level shift g12 between state |S〉,|T 〉 and |11〉 are zero
due to the distance for n = 2 . The γ here represents the total decay. b) The same picture in the new
basis for β = 1, in this regime all but two coherences have disappeared. The state |ΨS〉 is dark with
respect to decay. The grey arrow denotes the main loss process of state |ΨS〉 which scales linearly with
the population of state |11〉.

|ΨS〉 〈ΨS |high = 1 +
(β − 1) (Ω/γ)

4

256(b/γ)
4 +O((1− β)2 (31)

Here Eq. (30) is the case where the not maximally entangled state |00〉 is minimally present,

whereas in Eq. (31) the maximally entangled state |S〉 is dominantly present. From this it can be seen

that state |ΨS〉 can be prepared for di�erent magnetic �elds. In order to maximize the entanglement

in state |ΨS〉 with respect to the ideal magnetic �eld strength it is required to add a correction for

the presence of state |00〉 . It should be worth noting that for β = 1, state |ΨS〉 is the only populated

state regardless of the values of parameters Ω & b. This is in seeming contrast with Fig. (9b), but is

caused by the exact contributions of the o�-diagonal elements that make it so.

Maximizing the �delity of state |S〉, which is maximally entangled, is done by applying a correction

term

FS = FΨS − ‖〈11|ΨS〉‖2 (32)

Subsequently then one substitutes b in the expression for the �delity with the state |S〉 in Eq.

(32) with b =
√

2pΩ and take the limit of Ω → ∞. Where p is a parameter that expresses the ratio

between driving and magnetic �eld strength. Then the limit for high driving is taken to �nd the

optimal parameter conditions as discussed before, which are valid for all values of Ω. This results in

the expression of the �delity
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FS,highΩ =
1

4

−8βp− 2β − β2 − 2β2p+ 26p+ 3 + 16p2

14p+ 20p2 + 8p3 + 3− β2 − 2β2p− 2β − 8βp− 8βp2
(33)

The expression found forms a near perfect approximation for driving over Ω > 2γ , and is expressed

here as 'high Ω' only for simplicity. Denote that for p = 0, or no magnetic �eld, the �delity is only a

quarter and hence both symmetry breaking mechanisms are required.

The Eq. (33) has a global maximum with respect to p. This maximum is the ideal ratio for between

drive and magnetic �eld depending on β alone. This maximum scales with a square root near β = 1

pmax =

√
3

8

√
1− β − 1

4
(1− β) +O((1− β)2 (34)

Substituting the expression for the ideal case from Eq. (34) into a non limit version of Eq. (33)

and expanding around β = 1 results in the following �delity with state |S〉 in the strongly dissipative

regime for all driving strengths

FS = 1− 1

24

(
12 Ω/γ

2
+ 1
)(

8 Ω/γ
2

+ 1
)

Ω/γ
2
(

4 Ω/γ
2

+ 1
) √

6
√

1− β +O((1− β)1 (35)

It is emphasized that this is not just for high driving alone. As can be seen from this expression

the �delity does however not bene�t from a low driving. This was to be expected from Fig. (9 b ), as

for low driving the term out of state |Ψ0〉 is reduced making the state the most populated in contrast

to state |ΨS〉. Also in the original basis, a low driving will not favour the populations of the higher

states and it simply reduces to the ground state |00〉 . Expanding Eq. (35) for higher driving Ω ≈ 2γ

and higher, results in a simpler equation with the highest order Taylor terms only

FS,highΩ = 1−
√

6
√

1− β +
11

2
(1− β)− 13

3

√
6 (1− β)

3/2
+O((1− β)2 (36)

This scaling of the �delity with the coupling to the wire is due to the fact that there are two

symmetry breaking processes working conjunctively in the system. One symmetry breaking process

is the same as was done in the work of Wang Schirmer with the magnetic �eld. This is the process

we want and can easily control. Whereas the other is the symmetry breaking done by decay into the

plasmonic wire. This is the inevitable process as the system couples to the wire and not an optical

cavity. In essence one optimizes the two processes of symmetry breaking in both terms in the master

equation (5), and then sets the externally controllable parameters to be at values that maximizes the

e�ectiveness of these two processes together.

Optimizing here means that the distance between the emitters is chosen to be of a distance that

is the lesser of two evils. As the distance that maximizes dipole-dipole coupling also maximizes decay

out of states |S〉 and |T 〉. Decay to a wire can, at certain distances, also be an elemental symmet-

rical mechanism that favours certain symmetric conditions, without the losses from the dipole-dipole

distances.

It should be noted that even though Eq. (36) scales with the square root of (1− β), it also means

that for β ≈ 9/10 the �delity is only FS ≈ 0.56, whereas for β ≈ 99/100 the �delity is FS ≈ 0.80. This

is experimentally seen not very favourable.
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Figure 11: The numerical result (dashed red) versus the analytical result (green) for a high driving
Ω/γ = 4, at the ideal ratio of Ω/b for each β separately. The curves change little for all values of
Ω/γ > 2. For values of driving strength below this value, both the analytical and the numerical results
will scale more steep near β = 1.

3.5 Numerical comparison

The results as found in Eqs. (35) & (36) have also been found in the numerical solving of Eq. (5)

using the null-vector method from Sec. 2.5.2. This result can be seen in Fig. (11).

From Fig. (11). It can be seen that the numerical result matches well with the analytical result.

This weak driving shows worse scaling with the error for both the analytical and the numerical result.

There is a small di�erence between the two curves for lower β. The reasons for this is that the analytical

answer is only computed for the �rst 5 terms of the Taylor approximation around β = 1. Unlike the

case that will be seen for Sec. 4.5.1 here the analytical solution is unique and the steady state is found

completely analytically without additional approximations. The scaling of Eq. (36) is numerically

con�rmed.
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3.6 Results

In this chapter it was shown that dissipative state preparation on a wire can be achieved for two 2-level

emitters. It was also shown that symmetry breaking by the wire alone is insu�cient in producing good

�delities in two 2-level systems. It was also shown that by inclusion of a magnetic symmetry breaking

it is possible to achieve arbitrarily good �delities. This �delity scales with the square root of the error

(1− β) for high β.

Furthermore the results suggest that the process of symmetry breaking by the wire, or by decoher-

ence, could be a su�cient symmetry breaking process on itself in the case of coupling to higher exited

states when a magnetic �eld is not required to couple to the desired state.

39



4 Three-level section

Figure 12: A single Λ-emitter. The three levels are labeled accordingly. Also shown are three possible
interaction two by lasers ωΛ andωL and a microwave �eld or Raman transition of Rabi frequency ΩMW

and energy ~ωMW in black arrows. The brown arrows represent the decay from each transition. Each
transition has a unique label as can be seen in the �gure.

In this section, we investigate why to take 3-level emitters instead of 2-level emitters. The formalism

used will be derived. Methods used to �nd solutions and their advantages and drawbacks will be

discussed. A road map will be given to more easily understand the results of Sec. (4.2) and to

facilitate possible exploration to other scheme's of entanglement production. After this a scheme is

given that result in dissipative state preparation of a maximally entangled state scaling linearly with

the β-factor. Based on the principle of this scheme other schemes are suggested. Subsequently the

results will be discussed, and a experimental set-up is suggested.

4.1 Why look at two 3-level Lambda emitters at all?

An interesting question is why to use a 3-level emitter in the �rst place. The two 2-level system works,

is more easily solvable and is much simpler to understand. It doesn't however represent the average

experimental set-up. In practice emitters are not as simple as they are described. They are either a set

of atoms, or molecules up to relatively large quantum dots. And whatever emitter used interactions

will be found are merely considered as-if it were a 2-level or 3-level emitter. Finding the right set-up

in an experiment is therefore never easy. In practice superconducting qubits76 are used for 3-level

emitters, based upon Josephson junction since these have a lot of freedom and couple relatively well

to optical cavities. Since here, the used level system needs to be coupled primarily to electronic states

like plasmons, we can employ gate controlled quantum dots77�80 instead.

An added di�culty of the 2-level emitters is that the di�erent ways to make a state maximally

entangled through dissipative state preparation is very limited. With only one drive, one phase di�er-

ence, one decay and one dipole coupling to tune doing this is theoretically simple, but experimentally
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troublesome. This is where 3-level Λ-emitter comes in use. As can already be seen in Fig. 4 were there

is three drives, phase di�erences, decay channels and three dipole couplings. Alongside this with the

3-level Λ-emitters there is a relative luxury to have an exited and hence fast decaying state.

In contrast to the 2-level emitters where the highest energy state is part of the desired entangled

state, the 3-level Λ-emitters have a highest state which is not only much higher, but also not part of

the desired prepared state. Due to Fermi's golden rule one can quickly see that these exited states are

fast decaying, meaning that undesired states are from the start physically unlikely to live long.

In conclusion, 3-level Λ-emitters are faster in dissipative state entanglement, are more easily to �nd

and are more easy to engineer regardless of experimental shortcomings. It will also show that 3-level

Λ-emitters have the unique possibility to optimize the wire usage in a system, where the best results

are found in an imperfect set of parameters.

4.2 Derivation of the formalism

In order to view all the possibilities, here the derivation of the general solution will be given. Unlike

the two 2-level case there will not be a magnetic �eld used. This is partially for simplicity and, it is

not necessary due to the more varied possibilities of a three level system. In the derivation there will

�rstly be given a set of operators who act on each emitter and each emitter is part of its own Hilbert

space. From thereon an unitary transformation is given for the Hamiltonian which can be di�erent for

di�erent preparation schemes and conditions. Only the general transformation is fully derived by the

selective di�erential equation method for the case of resonant drives.

To accommodate the large equations to follow, the lowering operators will be de�ned as earlier in

comparison to Fig. 12 :

σ̂e1,i = |1〉i 〈e|i σ̂1e,i = |e〉i 〈1|i
σ̂e0,i = |0〉i 〈e|i σ̂0e,i = |e〉i 〈0|i
σ̂10,i = |0〉i 〈1|i σ̂01,i = |1〉i 〈0|i

The index i = 1, 2 represents the emitter the operator is working on. And the raising operators are

their respective Hermitian conjugates. The terms in Eq. 6 then become:

Ĥ0 = ~
2∑
i=1

(ω0σ̂e0,iσ̂0e,i + ω1σ̂e1,iσ̂1e,i + ωeσ̂1e,iσ̂e1,i) (37)

Ĥg = ~
∑
i6=j

(gij,e0σ̂0e,i ⊗ σ̂e0,j + gij,e1σ̂1e,i ⊗ σ̂e1,j + gij,10σ̂01,i ⊗ σ̂10,j) (38)

Ĥd = 2−1~ΩLe
iωLt (σ̂0e,1 + eiφL σ̂0e,2) + H.c.

+ 2−1~ΩΛe
iωΛt (σ̂1e,1 + eiφΛ σ̂1e,2) + H.c.

+ 2−1~ΩMW e
iωMW t (σ̂01,1 + eiφL σ̂01,2) + H.c.

(39)

Filling in Eq. 6 the Eqs. (37),(38) & (39). The master equation Eq. (5) becomes:
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∂%̂
∂t = − i

~

[
Ĥ, %̂

]
− 1

2

∑
ij γij,e0 [ %̂ · (σ̂0e,i ⊗ σ̂e0,j) +(σ̂0e,i ⊗ σ̂e0,j) · %̂

−2 · (σ̂e0,j ⊗ %̂⊗ σ̂0e,i) ]

− 1
2

∑
ij γij,e1 [ %̂ · (σ̂1e,i ⊗ σ̂e1,j) +(σ̂1e,i ⊗ σ̂e1,j) · %̂

−2 · (σ̂e1,j ⊗ %̂⊗ σ̂1e,i) ]

− 1
2

∑
ij γij,10 [ %̂ · (σ̂01e,i ⊗ σ̂10,j) +(σ̂01,i ⊗ σ̂10,j) · %̂

−2 · (σ̂10,j ⊗ %̂⊗ σ̂01,i) ]

(40)

In the above equation all considered interactions of two Λ-emitters as in Fig. (12) have been taken

into account.

To further accommodate simplicity and make a comparison with this �gure the following relations are

given:

γii,e0 = γL γii,e1 = γΛ γii,10 = γMW

γ12,e0 = βγL γ12,e1 = βγΛ γ12,10 = βγMW

with γji,kl = γij,kl ∀ k, l

(41)

Where the the γ's are the total decay of a transition, and the beta is the fraction of decay into the

wire. Take note that the total decay does not equal the free decay γ 6= Γ unless there is no decay

into the wire. The exact expressions of these γ12's are given in Eq. (8).

4.2.1 Unitary transformation

Following here will be an unitary transformation applied to the Hamiltonian above, in an attempt to

make it time-independent:

ˆ̄H = i~U̇U† + UHU† (42)

Where the bar over the Hamiltonian implies that ˆ̄H satis�es the Schrödinger equation, if the wave

functions transforms as |ψ̄〉 = U |ψ〉. The unitary transformation chosen for the general case is:

U = exp(it

2∑
i=1

(|0〉i 〈0|i ωL + |1〉i 〈1|i ωΛ)) = eitHU/~ (43)

Then parts Eq. 42 transform as follows:

UH0U
† = H0& UHgU

† = Hg & i~U̇U† = −HU

And the desired change takes place in the Hd part of the Hamiltonian that contains the drives:

Ĥd = 2−1~ΩL (σ̂0e,1 + eiφL σ̂0e,2) + H.c.

+ 2−1~ΩΛ (σ̂1e,1 + eiφΛ σ̂1e,2) + H.c.

+ 2−1~ΩMW e
i(ωMW+ωΛ−ωL)t (σ̂01,1 + eiφL σ̂01,2) + H.c.

(44)

As can be seen in the equation above, the only case where the general solution is time-independent is
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for the case where all three drives are on resonant, then ωMW +ωΛ = ωL and the Hamiltonian becomes

time independent.

An important note to make is that this is the only possible case where a system with three drives

becomes time independent. However, in the case of two or one drive(s) applied there always exists an

unitary transformation transforming alike Eq. (42) that will make the system time-independent. It

will show that for all practical purposes this is the case. When so required the desired transformation

and resulting change HU will be given.

It is possible to further simplify the master equation by transforming the parameters into scalar

parameters. Doing so means one needs to de�ne an unique and characteristic decay time τ = Γ−1

where Γ is de�ned as the total free decay. Then Eq. (16) will become:

∂%̂
∂τ = − i

~

[
Ĥ(c′), %̂

]
− 1

2

∑
ij γ
′
ij [. . .] (45)

Where c′ is a set of parameters. Here the apostrophe implies that all parameters are scaled by the total

decay. In this section from hereon a parameter is implied to always be scaled with respect to the total

free decay and the apostrophe is neglected. In �nal results it will however be shown for completeness.

4.2.2 Basis

So far the explicit basis as is used in Fig. 4 has not yet been expressed. The solving of Eq. 40 is of

course not dependent on any basis whatsoever. It is however cognitively more pleasant to work in a

basis where all the states are part of the joint Hilbert space H1 ⊗H2 . In the end, any entangled state

worth researching is part of this Hilbert space. Many bases are possible, in this work however the basis

is used as used in other work38 and that has the same anti-symmetric ground state as for the 2-level

case:

|00〉 = |0〉1 |0〉2
|11〉 = |1〉1 |1〉2

|T 〉 = 2−1/2(|1〉1 |0〉2 + |0〉1 |1〉2)

|S〉 = 2−1/2(|1〉1 |0〉2 − |0〉1 |1〉2)

|T0〉 = 2−1/2(|e〉1 |0〉2 + |0〉1 |e〉2)

|S0〉 = 2−1/2(|e〉1 |0〉2 − |0〉1 |e〉2)

|T1〉 = 2−1/2(|e〉1 |1〉2 + |1〉1 |e〉2)

|S1〉 = 2−1/2(|e〉1 |1〉2 − |1〉1 |e〉2)

|ee〉 = |e〉1 |e〉2

Alike in the 2-level case, the entangled state that is to be prepared will be the |S〉 state in this section

unless explicitly noted otherwise.

4.3 Solving methods for 3-level systems

As expressed in Sec. (2.5) there two methods of solving are employed. In this case there will be an

elaboration of the two analytical methods and the numerical method used. These analytical methods
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are used speci�cally for the 3-level case as they cannot or are not be applied to the 2-level case. The

numerical method is the same.

4.3.1 Analytical methods

For the analytical methods rate equations will be used. The approximation is made that after the

coherence is balanced out with respect to the decay of this coherence, the term in the density matrix

is evolving very slowly. This approximation can be applied to nearly all optical coherences between

higher exited states. This is popularly applied to solve the optical Bloch equations.81 First there will

be a derivation of this method for the general case which can be used to quickly analyze the dynamics

between two states mediated by a higher exited state.

Figure 13: The general case for the e�ective rate between the initial state |i〉 and the �nal state |f〉
via the higher broadened and detuned state |e〉.

In Figure (13) one can see the system used in the e�ective rate derivation. Here Ω is the driving from

the initial state to a higher exited state, δ is the detuning of the higher state, Γ is the width of the

exited state which represents all its possible decay channels and γ is the decay(3) from the excited state

to the �nal state speci�cally. Then the change of the density matrix elements over time becomes:

%̇ii = iΩ(%ie − %ei) (46)

%̇ie = iΩ(%ee − %ii)− (
Γ

2
+ iδ)%ie (47)

(3)Not to be mistaken with the total and total free decay
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%̇ee = −Γ%ee − iΩ(%ie − %ei) (48)

%̇ff = γ%ee (49)

Then solving the optical coherence Eq. (47) so that %̇ie = 0 will give an expression for %ie :

%ie =
−iΩ

Γ + i2δ
(%ee − %ii) (50)

Substituting Eq. 50 into Eq. 48 yields:

%̇ee = −Γ%ee +
Ω2Γ

Γ2 + 4δ2
(%ii − %ee) (51)

Now approximating the higher states as fast decay so that there is no build up of population and the

change of population over time is zero %̇ee = 0, and subsequently substituting this result into Eq. 49

results in the e�ective rate expression:

%̇ff =
γΩ2

Ω2 + Γ2 + 4δ2
%ii (52)

This formula will allow a quick evaluation of the schemes as will be considered in Sec. 4.5. The system

as expressed in Fig. 13 and calculated above is in fact analytically solvable within the assumptions

taken. If one is to calculate with the selective di�erential equation method a similar technique is used,

with just much more di�erential equations.

The second analytical method is therefore the selective di�erential equation method. Where the

same approximations as named above are applied for all states. There is no general solution via

this method. The general solution of Eq. (40) is not practically solvable. Such a solution is not

mathematically impossible, however due to the limitations in computational power impossible to �nd.

4.3.2 Numerical methods

A time independent Hamiltonian , as was expressed in Sec. (4.2) , is not possible to make if one

has three drives. However as also previously expressed in Sec. (2.5.2) the time dependence of the

formalism is inherently there for some numerical methods, for these methods work independent of the

time dependency of the Hamiltonian. If knowledge of the change of the system over time is desired.

Therefore it is possible to numerically calculate inherently time-dependent systems, as discussed before.

They are however not as fast as the eigenvalue method.

Codes were written with explicit time dependence and without time dependence with MATLAB.

The �rst is a time di�erential equation solving method, and the latter the eigenvalue method as

described in Sec. (2.5.2). A template of this method for MATLAB can be found in de Appendix.

It should be noted that the computation speed of the time dependent codes depend entirely on the

size of the parameters used. This is only as relevant as the order of size di�erences between di�erent

parameters in the time dependent code. Due to Eqs. (7) & (8) this becomes problematic. As β → 1

these parameters become arbitrarily large and computation time is increased dramatically or simply

incomputable, since the the parameters scale with free decay and become smaller. For this reason
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the time dependent method was abandoned in favor of a, though more complicated, time independent

eigenvalue method. It can however be used to plot the evolution of the system for a speci�c set of

parameters.

In this case it is possible to construct the time-independent e�ective matrix as discussed in Sec.

(2.5.2).

4.4 How the system works.

In an attempt to understand how the system actually works a synopsis is given of all the terms that

are expressed in Eq. (40). With use of these it is far simpler to theorize possible schemes. It can also

be used in itself to understand the dynamics of a complicated system in a simpler way.

All the discussed sections below represent the system in their ideal case. In all realistic cases

a superposition of the driving �eld with both driving symmetric and antisymmetric transitions are

amongst things possible. Most notably is the wire decay and the dipole-dipole shift which cannot

be taken in a simple superposition, for an increased strength of the one is automatically a loss of

interaction strength of the other, as seen in Eqs. (8) & (7).
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4.4.1 Total Decay

|00〉

|T₁〉

|S₁〉

|S₀〉 |T₀〉 |S〉|T〉

|11〉

|ee〉

|e₁〉 |e₂〉

|1₁〉
|0₁〉

|1₂〉
|0₂〉

MW

MW

MW

FreeFree

L

L

L

FreeFree

Λ

Λ

Λ

FreeFree

Figure 14: Here all the spontaneous total decay is shown between the states in the basis as chosen in
Sec. 4.2.2. The split lines imply that a state equally decays into or from one or either states in the
direction of the arrow.
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In the Fig. 14 one sees all the possible total decay transitions. The values of the strengths can be

found in table 1. Decay elements with respect to o�-diagonal elements of the density matrix can be

found in Appendix (C).

Initial state Resulting states:
`L' |e〉 → |0〉 `Λ' |e〉 → |1〉 `MW' |1〉 → |0〉

|00〉 � � �
|11〉 � � (γMW/4) [|T 〉+ |S〉]
|T 〉 � � (γMW/4) |00〉
|S〉 � � (γMW/4) |00〉
|T0〉 (γL/4) |00〉 (γΛ/32) [|T 〉+ |S〉] �
|S0〉 (γL/4) |00〉 (γΛ/32) [|T 〉+ |S〉] �
|T1〉 (γL/8) [|T 〉+ |S〉] (γΛ/4) |11〉 (γMW/32) [|T0〉+ |S0〉]
|S1〉 (γL/8) [|T 〉+ |S〉] (γΛ/4) |11〉 (γMW/32) [|T0〉+ |S0〉]
|ee〉 (γL) [|T0〉+ |S0〉] (γΛ/4) [|T1〉+ |S1〉] �

Table 1: This table shows where a population from the initial state, or diagonal element of the density
matrix, will decay into and with what strength due to free decay. The strength is noted within brackets.
A � implies that the decay does not apply to this transition.
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4.4.2 Wire Decay + Free Decay
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Figure 15: Here all the wire decay is shown between the states in the basis as chosen in Sec. (4.2.2).
Orange arrows scale with (1 ∓ β) and purple arrows scale with (1 ± β). In future diagrams the
spontaneous decay will be shown with the above arrows as if β = 1 for simplicity. For the right
parameters decay will either become predominately symmetry breaking or symmetry preserving.
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In the Fig. (15) one can see all the possible wire decay transitions. The values of the strengths can

be found in table 2. The decay is at its maximum symmetry breaking, favouring either symmetric or

anti-symmetric states, as seen in Fig. (8), and in strength dependent on the coupling to the wire. This

kind of decay is a superposition of symmetry breaking and symmetry preserving, depending on the

distance between the emitters with respect to the modal plasmon wavelength. Fig. (15) only shows the

arrows for half-integer plasmon wave-lengths between emitters. At all other distances dipole-dipole

interaction, discussed in Sec. (4.4.5), is also incorporated. It should be noted that Fig. (15) does

not represent a very good experimental set-up as it would require three separate wires and various

distances. Decay elements with respect to o�-diagonal elements of the density matrix can be found in

Appendix (D).

Initial state Resulting states:
`L' |e〉 → |0〉 `Λ' |e〉 → |1〉 `MW' |1〉 → |0〉

|00〉 � � �
|11〉 � � (±βγMW/4) [|T 〉 − |S〉]
|T 〉 � � (±βγMW/4) |00〉
|S〉 � � (∓βγMW/4) |00〉
|T0〉 (±βγL/4) |00〉 (±βγΛ/32) [|T 〉 − |S〉] �
|S0〉 (∓βγL/4) |00〉 (∓βγΛ/32) [|T 〉 − |S〉] �
|T1〉 (±βγL/32) [|T 〉 − |S〉] (±βγΛ/4) |11〉 (±βγMW/32) [|T0〉 − |S0〉]
|S1〉 (∓βγL/32) [|T 〉 − |S〉] (∓βγΛ/4) |11〉 (∓βγMW/32) [|T0〉 − |S0〉]
|ee〉 (±βγL/4) [|T0〉 − |S0〉] (±βγΛ/4) [|T1〉 − |S1〉] �

Table 2: This table shows where a population from the initial state, or diagonal element of the density
matrix, will decay into and with what strength due to wire decay. The strength is noted within
brackets. A � implies that the interaction does not apply to this transition.
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4.4.3 Symmetric Driving
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Figure 16: Here all the symmetric drives shown between the states in the basis as chosen in Sec. 4.2.2.
This implies that the drive is symmetry conserving. In the physical case this means that both emitters
are driven with the same phase of the driving �eld.
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In the Fig. (16) one sees all the possible symmetry conserving driving transitions, in this case all

on resonance. The values of the strengths can be found in table 3. Unlike dipole interaction and decay

this interaction is completely externally applied and can be tuned in whatever way the experiment

requires. An example of this can be seen if Fig. (4) , it should be noted that for detuned drives, the

driving strength has a di�erent form of term due to the detuning. This form is similar to the result

from the e�ective rate formulation Eq. (52).

Initial state Resulting states:
`L' |e〉 ↔ |0〉 `Λ' |e〉 ↔ |1〉 `MW' |1〉 ↔ |0〉

|00〉
(√

2ΩL
)
|T0〉 �

(√
2ΩMW

)
|T 〉

|11〉 �
(√

2ΩΛ

)
|T1〉

(√
2ΩMW

)
|T 〉

|T 〉 (ΩL) |T1〉 (ΩΛ) |T0〉
(√

2ΩMW

)
[|00〉+ |11〉]

|S〉 (ΩL) |S1〉 (ΩΛ) |S0〉 �
|T0〉 (ΩL) [|00〉 − |ee〉] (ΩΛ) |T 〉 (ΩMW ) |T1〉
|S0〉 � (ΩΛ) |S〉 (ΩMW ) |S1〉
|T1〉 (ΩL) |T 〉

(√
2ΩΛ

)
[|ee〉 − |11〉] (ΩMW ) |T0〉

|S1〉 (ΩL) |S〉 � (ΩMW ) |S0〉
|ee〉

(√
2ΩL

)
|T0〉

(√
2ΩΛ

)
|T1〉 �

Table 3: This table shows where a population from the initial state to the resulting state and with
what strength due to symmetric driving. The strength is noted within brackets. A � implies that the
interaction does not apply to this transition.
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4.4.4 Anti-Symmetric Driving
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Figure 17: Here all the anti-symmetric drives are shown between the states in the basis as chosen in
Sec. 4.2.2. In this case the driving does not preserve symmetry but instead completely inverts the
symmetry. This corresponds to a physical case of two emitters being drive with opposite phase of the
driving �eld.
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In the Fig. (17) one sees all the possible anti-symmetry conserving driving transitions, in this case

all on resonance. The values of the strengths can be found in table 4. As in Sec. (4.4.3) the drives can

be detuned or super-positioned accordingly.

Initial state Resulting states:
`L' |e〉 ↔ |0〉 `Λ' |e〉 ↔ |1〉 `MW' |1〉 ↔ |0〉

|00〉
(√

2ΩL
)
|S0〉 �

(√
2ΩMW

)
|S〉

|11〉 �
(√

2ΩΛ

)
|S1〉

(√
2ΩMW

)
|S〉

|T 〉 (ΩL) |S1〉 (ΩΛ) |S0〉 �
|S〉 (ΩL) |T1〉 (ΩΛ) |T0〉

(√
2ΩMW

)
[|00〉 − |11〉]

|T0〉 � (ΩΛ) |S〉 (ΩMW ) |S1〉
|S0〉 (ΩL) [|00〉+ |ee〉] (ΩΛ) |T 〉 (ΩMW ) |T1〉
|T1〉 (ΩL) |S〉 � (ΩMW ) |S0〉
|S1〉 (ΩL) |T 〉

(√
2ΩΛ

)
[|ee〉+ |11〉] (ΩMW ) |T0〉

|ee〉
(√

2ΩL
)
|S0〉

(√
2ΩΛ

)
|S1〉 �

Table 4: This table shows where a population from the initial state will be going to and with what
strength due to anti-symmetric driving. The strength is noted within brackets. A � implies that the
interaction does not apply to this transition.
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4.4.5 Dipole-Dipole level shifts

Figure 18: Here all the spontaneous free decay is shown between the states in the basis as chosen in
Sec. 4.2.2. As in Fig. 15 there is a decay into the wire, however due to the separation of the emitters
this only constitutes in a maximal dipole-dipole interaction there remains wire decay. In this �gure a
Unitary transformation is applied so that the detuning is only e�ectively manifesting itself upon the
symmetric parts of the coloured regions. Without this the dipole interaction would be equal in size
but opposite for states with di�erent symmetry.
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Unlike the other interactions the dipole-dipole interaction is di�erent, it shifts energy levels. Alike

in the case of wire decay, this kind of coupling will only be in the system, if the parameters have a

distance d 6= (n/2) where the distance is expressed in terms of the modal wavelength of the plasmons

and n is an integer. In some cases, the distance can be tuned so that the maximal level shift is reached

for a certain coupling between emitter and wire.

The shift caused by the dipole-dipole interactions with respect to Eq. 7 is:

gL 99K T0 → (1 + gL)T0 & S0 → (1− gL)S0

gΛ 99K T1 → (1 + gΛ)T1 & S1 → (1− gΛ)S1

gMW 99K T → (1 + gMW )T & S → (1− gMw)S

In most cases a unitary transformation will be applied so that the detuning is only on one level and

leaves the other stable. In this transformation the dipole-dipole interactions look as follows:

gL → T0 → (1 + 2gL)T0

gΛ → T1 → (1 + 2gΛ)T1

gMW → T → (1 + 2gMW )T

(53)

This is the level shift that is displayed in Fig. 18. Again the example �gure does not represent a good

physical set-up as it would require three wires at three di�erent emitter distances.

The above discussed transitions in the above tables and �gures are what work on the system.

Combinations of these interactions are what make up the schemes that will be discussed below. However

the contents of this section can also be used to give a hands on approach what other schemes can be

made. Naturally not all possible schemes have been considered. And a focus has been made on a

scheme that works really well. The results of this scheme can be found in the next section.

4.5 Schemes

4.5.1 S1 scheme

The �rst scheme to look at is the so called S1 scheme, as proposed in other work.38 In this scheme only

transitions L & Λ decay. A microwave drive and a drive on the L-transition are applied. Here, only the

Λ (|e〉 → |1〉) transition couples to a mode in the single-mode wire. The diagrammatic representation

can be seen in Fig. 19 . In contrast to previous work this S1 scheme works with coupling to a lossy

wire instead an optical cavity, with emitters at a distance of a single modal plasmon wavelength.

For the S1 scheme both a solution via the selective di�erential equation method and a numerical

solution are given because the general analytical solution ˙̂ρ = 0 does not exist as was expressed in Sec.

(4.3.1). It should be noted that for a di�erent set of parameters the general analytical steady state

solution ˙̂ρ = 0 might exist. However if it exist, it must exist for all separate di�erential equations per

element of the density matrix too. And here that is not the case for the S1 scheme.

The time dependent elements of the analytical solution are irrelevant for the population of state

|S〉 , this allows a comparison between numerical and analytical results for sets of parameters for which
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this is relevant. This allows good analytical solution for a range of parameters, and good solution for

all possible set of parameters near β = 1.

Other then for the two-level emitters, it is undesirable to express parameters in terms of total decay.

Instead γii,e0 = γL,γii,e1 = γΛand γij,e1 = Γβ
1−β cos(kpld) for i 6= j. In this case γL = γΛ = Γ

2 .

The S1 scheme relies on the same symmetry breaking principle as in the two-level case. This time

however the symmetry breaking does not take place at the level of the ground states, but instead

symmetry is broken between the excited states |T1〉 and |S1〉. This is simply because this time the

ground states themselves do not decay. The e�ect is that the state |S1〉 is predominantly less dissipative

then state |T1〉. This is opposite to the S1-scheme discussed by Reiter, Kastoryano and Sørensen.38

In that case state|S1〉 is rapidly decaying into state |S〉 , whereas in this case state |T1〉 is rapidly

decaying in contrast to state |S1〉. The main loss process from state |S〉 is the driving to state |T1〉,
since this is strongly decaying, coherences have a harder time to establish and will result to be weaker.

This immediately also results in a problem, as an accumulation of population in states |S1〉and |S0〉 is
reshu�ed between them. This together with changed coherence due to the decay dynamics make the

steady state solution ˙̂ρ = 0 for this scheme non existent. It will however be shown to be possible to

solve the system e�ectively.

Looking at Fig. 19 immediately reveals the e�ective processes at hand. The L-drive drives reso-

nantly out of states |T 〉,|S〉 and |00〉. This excites them to a state of di�erent symmetry, |S1〉, |T1〉 and
|S0〉 respectively. This means that in contrast to the aforementioned scheme S1 scheme, the main gain

process for state |S〉 is not state |S1〉 but rather state |S0〉. This however changes when β → 1. When

the state |S1〉 becomes the predominant source of gain to state |S〉. This can be seen when combining

Tables (1) & (2). Then decay between the following states is enhanced

|T1〉 → |11〉
|T0〉 → |T 〉
|S0〉 → |S〉
|ee〉 → |T1〉

(54)

And the decay between the following states is reduced

|S1〉 → |11〉
|S0〉 → |T 〉
|T0〉 → |S〉
|ee〉 → |S1〉

(55)

In other words, alike we saw in Sec. (3.4) the coupling to the wire breaks symmetry by preferring

either symmetry breaking, or symmetry conserving decay channels. What should be noted is that

though Eqs. (54) & (55) show which transitions have enhanced and reduced decay, the total decay

of states |T0〉,|S0〉 and |ee〉 is una�ected. The increases in one channel is negating the loses due to

decreases in the other decay channel. This is in contrast to decay from states states |T1〉,|S1〉, which
are respectively increased and decreased. The total decay from state |S1〉 scales down making it the

second most populated. For this reason the scheme is named after the S1 scheme.
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Figure 19: The S1 scheme. At integer distance decay is enhanced or subdued between various transi-
tions favouring anti-symmetric states. A microwave �eld is applied to reshu�e the lower states with
exception of the target state |S〉. A resonant driving of the L-transition is used which couples state
|T 〉 to state |S1〉 and the target state |S〉 to state |T1〉 , where the latter has enhanced decay.
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The main contributing factors o� loss are the driving out of state |S〉. Since parts of this decays

back into state |S〉 via natural free decay, only losses via state |T1〉 into states |T 〉 and |11〉 are suspected
to be dominant.

Rate equations To exemplify the scheme the main loss and gain processes will be calculated by

a�ective rates to result the main contribution of the �delity with state |S〉. The main loss process is

|S〉 ΩL↔ |T1〉
( γ2 +γ12)
→ |11〉 (56)

Where the main gain processes are

|T 〉 ΩL↔ |S1〉
( γ2 )
→ |S〉

ΩMW l

|00〉 ΩL↔ |S0〉
( γ4 +

γ12
2 )
→ |S〉

(57)

Since the microwave �eld strongly reshu�es the symmetric ground states, they can be assumed

to be equally populated at all times in this rate equation consideration. The above three processes

are the dominant processes in the scheme, but their reconciliation is everything but trivial. If one for

instance only views the bottom gain and the only loss process, the two dominant processes, were to

be taken into account the steady state can be found by solving(
γ
4 + γ12

2

)
Ω2

Ω2 + γ2

(
1− ρSS

3

)
−

(
γ
2 + γ12

)
Ω2

Ω2 + (γ + γ12)
2 ρSS = 0

This yields the following expression for the �delity F|S〉〈S| of state |S〉 that scales wrongly (quadrat-
ically) with the β-factor

F|S〉〈S| = 1− 6

(
Ω

Γ

2

+ 1

)
(β − 1)

2

Whereas the process via state |S1〉contributes a linear term to the scaling with the β-factor. We

immediately see that for at least β = 1 it is expected that state |S〉 is the most populated.

It is striking that these three main processes are not su�cient enough to produce a linear scaling as

found by numerical considerations. The reason for this lies in the wire decay terms in the coherences

between the Eqs. (56) & (57). The coherences with higher states scale only slightly di�erent from

lower processes as can be seen in Fig. (20). But as β → 1, this minor di�erence is ampli�ed until their

contributions to the lower coherences exceed the decay loss. These are the transitions with the red

arrows in Fig. (20), they change not only the coherence strengths, but also increase the decay into lower

coherences. In other words, the o� diagonal terms in the density matrix that describe the coherences

in the ground states, have a increasingly growing term due to decay. This is not incorporated in the

rate equations used, making the result incorrect.

Hence a general solution of the entire density matrix must be found in order to produce the linear

scaling as is also found in the numerical calculations.

Selective Di�erential equation analysis
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For the analytical analysis, it is required to express the equations of the complete system. These

can be found in Appendix B . Here the matrix elements are expressed as %ij = %ij |i〉 〈j| in other words

all elements of the density matrix.

In order to calculate a �delity the following approach is used. All equations of states with optical

and decay terms are taken to be steady. This is the same approximation made in Sec. 4.3.1 . The

problem as described in Sec. 2.5.1, is that the steady state in this case does not exist analytically. This

problem is circumvented by choosing the states |00〉,|T 〉 and |11〉 to be well reshu�ed and hence equally

populated at all times. Also it is assumed the higher states |S0〉,|T0〉,|T1〉,|S1〉,|T 〉 and |ee〉 are essentially
empty. After these assumptions a solution is obtained for the population of ρSS(ΩL,ΩMW ,Γ, β) in

terms of the parameters ΩL,ΩMW ,Γ &β where Γ is the total free decay. And β the parameter that

represents coupling to the wire as expressed in Sec. (2.4).

The full solution is very complicated, but can be Taylored around β = 1. This yields the following

expression for the �delity FS of state |S〉:

FS = 1− 6

(
1 +

ΩL²

Γ²

)
(1− β) +

3

4

(
77 +

(
157 + 32

ΩMW ²

Γ²
+ 80

ΩL²

Γ²

)
ΩL²

Γ²
+ 24

ΩMW ²

Γ²

)
(1− β)

2

(58)

Plus higher order terms.

Eq. (58is what was more or less expected based upon some of the rate equations. Surprisingly the �rst

order term is not depended on ΩMW . This is not entirely strange as our assumption of equal ground

states already imposes the importance of the reshu�ing of the ground states by ΩMW . Since this isn't

done explicitly in the analytical derivation it stands to reason it not being present in the �rst term.

The full expression of Eq. (58) is plotted in Fig. 21.

Understanding the result From Fig. (20) it can be immediately seen why the scheme works. The

red arrows direction is dependent on the distance between the emitters. When this is a single modal

plasmon wavelength, it results in a reduced decay of the antisymmetric state |S1〉 versus an increased

decay to the symmetric state |T1〉. Where the symmetric ground-state |11〉 can be seen as a transition

state of this process as the chosen basis does not include a description for excitations inside the wire

(not depicted in the �gure).

If the symmetry of this decay process where to be reversed, when the distance of the emitters is half a

modal plasmon wavelength, then all red arrows from Fig. (20) will invert direction. The arrow hence

represents which of the two connected coherence becomes stronger than the other. At distances other

then half-integer distances detunings need to be considered due to dipole-dipole coupling from Eq.

(14).

Comparing the main terms in Eq. (58) with the Figure (20) we see an equation with the lowest

order Taylor terms with the error, and a �gure who is also at the lowest order Taylor terms. Looking

only at the coherences and populations in Fig. (20) with the �rst and zeroth order terms from Eq.

60



|00〉

|T₁〉

|S₁〉

|S₀〉 |T₀〉 |S〉

|T〉

|11〉

|ee〉

MW

M
W

M
W

M
W

L

L

L

Figure 20: Lowest order Taylor approximation of all elements from the analytical solution. Here
decay has stabilized the system in its current form. Near coherences and states can the scaling be
found. Blue lines represent the two dominant gain process, where gain from |S1〉 can only occur via
free decay and gain from |S0〉 is maximally twice as large as normal. Red lines show the e�ect of
the symmetry breaking on the preferences between coherences, coherence to and from state |S1〉 are
eventually favoured over those to |T1〉. Green area is the area which holds the time dependence of the
analytical solution. In this case the ground states are oscillating whilst preserving the total population
of the entire system.
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(58) ∼ (β − 1)¹ and ∼ (β − 1)0 shows how it works.

The zeroth order term 1 in Eq. (58) is due to the blue dotted line ∼ 2γΛ as this is enhanced

total decay, meaning the coupling to the wire in this case increases it. This also makes state |S0〉 very
lowly populated and coherences between this state and the three ground states in the green region

of the second order. The �rst order terms in Eq. (58) are because of the driving out of the three

ground-states in the green dotted region, and the loss of state |S〉 to state |T1〉 and the free decay of

states |S1〉 and |T1〉. The �rst order term with 1 that provides a loss to the �delity independent of the

driving out of state |S〉 is due to the steady state. At the steady state a recycling from population

loss out of |S〉 into state |T1〉 to the ground-states into state |S1〉 and back into state |S〉 is stable and
continues. There is always population stuck in this 'recycling-loop' due to the assumptions made. The

�rst order term with 1 comes from the fact that some of these loop states can decay into other states.

This above described result is di�erent from work in optical cavities38;82 where the unwanted

coherence between states |S〉 ←→ |T1〉 are suppressed by detunings. Here the enhanced decay of this

coherence and subsequent favouring to the coherence |S1〉 ←→ |T 〉 , as seen in Fig. 20, take over the

role of the detunings in the S1-scheme from earlier work.

As mentioned earlier, this strong wire decay also results in constructive coherence decay gains.

These should be taken into account for all 3-level or more coupled emitters which have good coupling

to a wire at half-integer distance. This regime is, from an analytical point of view complicated, but

however poses a very real regime in practical applications of dissipative state preparation. It is these

decay of high coherences into lower driven coherences and driven back into higher coherences that

make the scheme lack a full analytical solution as a steady state. Alike the case of the wire decay

mediating the process |T1〉
|11〉−→ |S1〉, so also the process |T0〉 〈T1|

|T 〉〈11|−→ |S0〉 〈S1| exists which occurs

both wire-mediated and from spontaneous decay. This can complicate the analytical solution. For

strong ΩL the higher states will be more populated, and the decay dependence of |T 〉 〈11| is increased
dramatically. For strong ΩMW the large coherence |T 〉 〈11| has a minor e�ect too. These processes

however disappear near β = 1. These e�ects can be illustrated by comparing the semi-analytical

solution to a numerical solution. As done in Fig. 21.

Numerical analysis For the numerical analysis the eigenvalue method is applied. Unlike analytical

solutions where a large symbolic matrix would increase calculation time exponentially with a larger

amount of elements. The numerical method has a relative luxury that it simply consists out of just

numbers.

An elaboration of the practical implementation of the method can be found in Appendix E

Comparison of Numerical and Analytical results From a comparison between the analytical

approach with the numerical results it shows that for values where the assumption holds, the agreement

is rather well. In Fig. (21) the striped curve represents the numerical result, and should be taken as

the best reliable result for given parameters. The straight curve is for the analytical result.

The agreement is less well for more extreme di�erences between drives. For very low ΩMW the

numerical result will, as expected, result in an error of 1. The analytical solution does not do this as

the main e�ect of ΩMW is incorporated as an assumption and hence cannot be 0. Also for very high
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Figure 21: The error , all the population not in state |S〉 , versus beta for the analytical (straight) and
numerical (striped) solution. Values used here are 4ΩL = Γ & 20ΩMW = Γ. Both methods show that
a lower ΩL gives better �delities, and that the �delity scales linearly near β = 1 . .

drive ΩL it cannot really be assumed that only the ground states are populated, and hence the �delity

given by Eq. (58) will be higher then the numerical case, though the scaling will remain the same.

As can be seen from Fig. (21), the linear scaling of beta with the Fidelity with state |S〉 is found
for both analytical and numerical results.

A point worth noting is that the driving strength scales with the total free decay, which for β → 1

of course approaches zero. Hence as Fig. (21) approaches from right to left, the drives go to zero.

Sustaining entanglement at high quality set-ups would hence ideally require only a single quantum of

energy to compensate for noise.

Plasmonic Decay The wire to which the Λ-emitters couple supports plasmonic modes that can also

decay. These decaying modes contribute to free decay as mentioned earlier. In that case β → βe−
d
L .

Then looking at the linear term in Eq. (58) it can be seen that as β → 1 the drive term grows larger
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and larger. Instead, if one were to substitute the decay into the �rst two terms the �delity becomes in

terms of total decay γ of the emitter

|S〉 〈S| = 1− 8 (1−Q)

(
3

4
+

(
ΩL

(1−Q) γ

)2
)

+O((1−Q)2) (59)

where Q = βe−
d
L . This means that if the driving ΩL 6= 0 the best �delity with state |S〉 is for an

imperfect system where Q 6= 1 . In other words, as can be seen from both Fig. (20) and the equation

above, some free space decay is required to get the best �delity, instead of just a perfect coupling to

the wire. In essence the coupling to the wire (or the quality of the wire itself) need to be imperfect

for the scheme to work most e�ectively.

4.5.2 Suggested schemes

As can be seen in the previous section, calculating schemes is a tedious and time consuming venture.

However the same rules of symmetry apply in all cases and hence the following schemes, all based

on the same principles as the S1-Scheme, are suspected to result the same scaling with the β-factor.

Pending a few factors.

S0 - Scheme Alike the S1 scheme only now the coupling to the wire is with the L-transition (|e〉 →
|0〉) , the reshu�ing is the same as that of the S1 scheme. Now the driving is from |11〉 ↔ |S1〉, as can
be seen in Fig. (22). This scheme is identical to the S1 scheme, with the symmetry breaking taking

place between states |T0〉 and |S0〉.
The scheme prepares the state |S〉.

T1 - Scheme Alike the S1 scheme only now the symmetry of the whole system is inverted. So the

coupling to the wire is with the L-transition (|e〉 → |1〉) but at half integer distance. The reshu�ing is

now anti-symmetric. And the driving is still anti-symmetric from |00〉 ↔ |S0〉, as can be seen in Fig.

(23). This scheme is identical to the S1 scheme, with the symmetry breaking taking place between

states |T1〉 and |S1〉 but this time in favour of the symmetric states.

The scheme prepares the state |T 〉.

T0 - Scheme Alike the T1 scheme only now the coupling to the wire is with the L-transition

(|e〉 → |0〉) , the reshu�ing is the same as that of the T1 scheme. Now the driving is from |11〉 ↔ |T1〉,
as can be seen in Fig. (24). This scheme is identical to the S1 scheme, with the symmetry breaking

taking place between states |T0〉 and |S0〉.
The scheme prepares the state |T 〉.
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Figure 22: The S0-scheme. At integer distance decay is enhanced or subdued between various transi-
tions favouring anti-symmetric states. A microwave �eld is applied to reshu�e the lower states with
exception of the target state |S〉. A resonant driving of the Λ-transition is used which couples state
|T 〉 to state |S0〉 and the target state |S〉 to state |T0〉 , where the latter has enhanced decay.
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Figure 23: The T1-scheme. At half integer distance decay is enhanced or subdued between various
transitions favouring symmetric states. A microwave �eld is applied to reshu�e the lower states with
exception of the target state |T 〉. A resonant driving of the L-transition is used which couples state
|T 〉 to state |S1〉 and the target state |S〉 to state |T1〉 , where the former has enhanced decay.
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Figure 24: The T0-scheme. At half integer distance decay is enhanced or subdued between various
transitions favouring symmetric states. A microwave �eld is applied to reshu�e the lower states with
exception of the target state |T 〉. A resonant driving of the Λ-transition is used which couples state
|T 〉 to state |T0〉 and the target state |S〉 to state |S0〉 , where the former has enhanced decay.
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Magnetic Schemes It is entirely seeming that the addition of a magnetic term is favourable for

creation of entanglement schemes, as was the case in the two level section. It will however add a level

of complexity which makes schemes, at least graphically, very hard to convey. As the strength of this

interaction is based upon the Zeeman-e�ect, and the 3 di�erent levels might react di�erently to the

same applied magnetic �eld. Considering the relative complexity of this, it is this authors opinion that

such attempts should only done numerically or experimentally. And an analytical method is strongly

discouraged.

4.6 Results

It was shown that a linear scaling can be achieved via the S1 scheme. This scheme su�ces with

symmetry breaking taking only place via the wire. It was also shown that a weaker drive between

ground and exited state results in better �delity-error scaling. It is also shown that the most ideal

scaling with the �delity of the maximally entangled state |S〉 , is achieved with wires that have a high

but unequal to unity scaling with the β-factor.

The results of Λ-emitters are promising, as they predict better scaling with imperfect coupling and

low driving, whilst pertaining long lived entangled states within the dissipative regime. Which would

make it ideal for on-chip implementation.

4.7 Application in heterostructure qubit

Applying the top schemes into a functional qubit might seem di�cult at �rst due to the strong de-

pendence of the distance of the emitters. However the distance is only dependent on the plasmon

wavelength. Hence production of a qubit is much simpler if one is able to modify the modal wave-

length inside the wire. Hence the production of these qubits is not easily done with quantum wires

that have a �xed modal plasmon wavelength. Instead having a wire with controllable width, and hence

controllable quantization leading to controllable wavelength is preferred.83 Here a suggestion of such

a system that can tune the modal plasmon wavelength by dimensional control is made.

Emitters on a GaAs Quantum Wire One way of making quantum wires is by putting gates on

top of a two dimensional electron gas (2DEG). It has already been shown that it is possible to make

a single mode wire in this fashion.84. Though this showed single mode transmittance due to a single

short con�ned blockage, it is reasonable to assume that an extended blockage will function with the

same con�nement characteristics normal to the plasmon propagation direction. The practical qubit

allows for a large variety of, if not complete electronic control of the qubit. The qubit is shown in Fig.

(25).

The di�culty of production is ensuring a good β-factor between the emitters and the 2DEG, and

the right shape of the dots to be Λ-emitters. A good beta-factor is ensured by making sure that with

exception of the driving laser �elds, the dots only really couple to the wire just outside the barrier that

con�nes them. This is controlled by the dot-gates and allows control of the levels of the emitter, and

68



Figure 25: A 2DEG based qubit. a) Top view; Gates are applied to regulate the width of the Quantum
wire, and with that the supported plasmon modal wavelength inside the wire. Also dot gates are
applied to control the level structure and �lling of the quantum +dots. The dotted region gives the
non-depleted 2DEG giving two dots and a 1D wire between them b) A side-view showing the layers
that make up the 2D electron gas and how gates locally deplete the electron gas.

hence the energy with which they decay into the wire. The distance between the dots can be a range

of distances, but typically lies in between 50 and 400 nanometers. Large side gates in Fig. (25) can

deplete the 2DEG in such a way that a single modal wavelength quantum wire is formed. These gates

are on both sides of the emitters. The voltage of these gates modify the width of the quantum wires,

the green dotted region in Fig. (25), and hence the wavelength of the plasmons. Externally only the

geometry of the applied drives is dependent on the physics of the system.

The described set up allows to easily control all parameters of the qubit. Most importantly it

allows electronic control of which transition in the Λ-emitters couples to the quantum wire and at

what plasmonic wavelength. This means that in the same sample, di�erent plasmonic distances can

be made. A good tuning of the controllable parameters would make it possible to use some of the

schemes as described in Sec. (4.5) within the same experimental set-up.

This means that, provided the qubit has a good β-factor and more or less the right distance between

the emitters, one has electronic control over long lived quantum states. By varying the geometry of

the drives, and the voltage and currents in the gates it is possible to make any combination of the

2 maximally entangled states by dissipative state preparation. This allows a large set of unitary

transformations to be applied on the quantum bit.

More complicated structures could be developed in the future that allow for more complicated

linear or surface quantum computation devices that are very long lived, based upon dissipative state

preparation by quantum wires.
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5 Conclusion, Discussion and Outlook

In this chapter a summary of the found conclusions with respect to the main focus of this thesis is

given. For conclusions in the speci�c case of either two or either three level emitters one can look at

Secs. (3.6) & (4.6). The focus of this work was the preparation of an entangled state in a solid state

system of two emitters on a plasmonic one dimensional wave-guide by use of external optical drives

and internal dissipative dynamics. The following can be concluded out of this work

5.1 Conclusions

This work has shown that within the master equation approach, it is possible for two emitters, of two

or three levels each, on a single mode plasmonic waveguide, to be arbitrarily maximally entangled.

The scaling of this entangling is generally linear with respect to the error, which is the amount of

not-wire mediated decay. It was shown that for the two level emitter case the addition of a magnetic

�eld gradient could improve this scaling to be scaling with a square root of the error.

It was also shown that the crucial step in entanglement preparation, the breaking of symmetry,

can be done with decay dynamics in the wire alone. This process can be improved by another process

of symmetry breaking alike the addition of a magnetic gradient between emitters. The resulting

dissipative state preparation o�er opportunities in symmetry breaking processes that are not seen

similarly with optical cavities.

Finally it was shown that the use of higher level emitters, or emitters with more then two levels,

seem to theoretically scale more favourable with 'natural' parameters. Due to the processes of the

higher states these set-ups can bene�t from scheme's that exploit an imperfect coupling to the wire.

For these reasons it is this author's opinion that from a theoretical point of view, the construction

of dissipative state qubits on quantum wires o�er a very real and good storage alternative to future

qubit production. Also he is of opinion that solid state dissipative state preparation does not prove

to be a regime of qubits that have a high noise, but instead a regime that o�ers long lived coherence

suitable for entangled state preparation by spontaneous decay of states.

5.2 Discussions

In this work several assumptions and methods have been used which are not free of discussion. There-

fore these discussion points have been split up between elementary theoretical discussion points, and

between discussion points of the interpretation and predictions of the attained results.

Theoretical points The �rst point of discussion should be the master equation. Though rigorously

derived by the cited authors, its application in three level-systems has seen very little publications.

Other then perhaps practical reasons it does hold some problematic points in its formulation. The

formulation of the decay part of equation (5) requires the use of raising and lowering operators. The

choice of these operators automatically limit the possible physics in multi-level applications. Uncareful

formulation might imply that it is not possible for a decay into the wire of transition A, to excite a

di�erent transition B inside another emitter. This problem does not arise in a two level system. And

in this article it was circumvented by only considering half integer emitter distances for three level
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systems. In this distance the locality of the emitters prevent an e�ective dipole-dipole coupling to form

via the wire. In an experimental situation however this might happen and the current formulation of

the used formalism does not support such possibilities, and would need to be expanded accordingly.

Another point of discussion is the use of decoherence. Here only �rst order coupling to the elec-

tromagnetic medium and vacuum have been used. This is generally a good approximation, however

as in this case this �rst order coupling is used to create a strong coherence, there will come a point

where the second order process of decoherence become of importance. These processes then will limit

the arbitrarily good �delity, yet these processes are generally much slower and should remain only a

minor noise in the overall picture.

An important point of discussion is the methods applied in solving the two and three level cases.

Though an unique analytical solution can often be found in the case of two level emitters, this is not

the case for the three level emitters. Here the solution method itself is but a selection of formulas

with respect to relevant and irrelevant interactions of the whole system. This is also discussed in

the corresponding chapter. Even the usage of practical numerical methods have, as discussed, their

respective drawbacks. It seems ironic but to fully comprehend even numerical solutions of this model,

it would be best to have the simulations run on a universal quantum computer. However since the

analytical results are generally very hard to come by, it is discussed that future research should employ

numerical methods alone.

Interpretation points More practical points of discussion is whether or not it is feasible at all, to

create a certain minimal coupling to a wire good enough for the proposed scheme's to function at all.

Furthermore the distance between emitters, and the plasmon wavelengths of their decays are of crucial

importance for the scheme's to work. Though, by use of gates and magnetic �elds these can be tuned

they also introduce in on their own multiple interactions which subsequently need to be incorporated

within the model. However, once a good coupling of controllable emitters is achieved with a single

controllable mode plasmon wire is achieved, such issue's should be easily resolved by experiment.

5.3 Outlook and future research

From this work it seems very interesting to take a better look at the application of magnetic gradients

on three level emitters. Such research would however have to be conducted with numerical methods,

or if possible, by experimental methods. A possible controllable set-up of this kind has been proposed.

Since the distance between emitters is so crucial for scheme's to work the way they do. It is advised

to couple quantum dots of some sort, to a two dimensional electron gas. Which can then be gated to

control plasmon wavelength inside the wire. Hence both from a theoretical and experimental point of

view, future research might provide interesting results and promising insights in the dissipative regime

of entanglement preparation.

5.4 Word of the author

As a �nal piece, this author would like to elaborate more on the �eld and promises of quantum

mechanics and their relation to society. There is a tendency to over-estimate the capacities of a

quantum computer. They are sometimes hailed as the future science that will exponentially increase
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our calculative power as a civilization. However paraphrasing Bennett; There are many ways to do

quantum computing, and very few algorithms to do it e�ciently.59 The Quantum computer will always

be limited by the e�ectiveness of its algorithms.

There lies a great responsibility with the physicist in the development and implementation of the

quantum computer. It is already known that the broadly used RSA key can be broken swiftly by Shor's

algorithm. And it is but a matter of time, until new algorithms occur that will run on the inevitably

arriving universal quantum computer. Where the use of the word inevitable is due to the results from

this very work, showing that on-chip implementation of qubits can be promising and not just a noisy

qubit. It has the potential to be a greater threat to society then anything we have faced before. At

the very least nuclear weapons were just big bombs, electricity but a commodity and Penicillin just a

new medicine. Now, quantum engineering o�ers a �eld, that is di�cult to comprehend from even a

philosophical point of view. This puts it in a league of its own.

In the coming years it will be imperative that the layman gains greater understanding about the

very philosophical basis of quantum theory. Whatever interpretation of quantum theory one might

attain, one cannot do with the idea that it is 'weird' when its in�uences will dominate our every day

lives a few decades from now. Society needs more, then just a handful of scientists, to comprehend the

imminent arrival of technology that will undoubtedly transform the ways of banking, computing and

communication as we know it. The quantum society will be our future, whether or not it is preferable

over our status quo is however still open for debate.
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7 Appendices

A Full equations for the two 2-level scheme

In Sec. 3.2 solutions are found for a set of coupled equations. Here γ is the total decay, κ is the

wire decay, Ω is the symmetric drive with phase di�erence φ = 0, and ∆ the level shift due to the

dipole-dipole coupling. The matrix elements expressed as %ij = |i〉 〈j| are part of the density matrix.

It should be noted that these equations are the result from the master equation and non-zero elements

in the o�-diagonal coherences do not mean that such a coherence is externally applied. The relevant

physics is in this case only in the diagonal elements.

Diagonal elements

∂

∂t
ρ0000 = − iΩ

2
(ρT00 − ρ00T ) + (γ + κ) (ρTT + ρSS )

∂

∂t
ρTT =

iΩ

2
(ρT00 − ρ00T − ρ11T + ρT11 )− (γ + κ) ρTT + (γ + κ) ρ1111 − 2ib (ρTS − ρST )

∂

∂t
ρSS = − (γ − κ) ρSS + (γ − κ) ρ1111 + 2ib (ρTS − ρST )

∂

∂t
ρ1111 = − iΩ

2
(ρT11 − ρ11T )− 2γρ1111

Relevant coherences

∂

∂t
ρTS = − iΩ

2
(ρ00S + ρ11S)− i (∆ + γ) + 2ib (ρSS − ρTT )

∂

∂t
ρT00 = −iΩ

2
(−ρ0000 − ρ0011 + ρTT ) +

i

2
(δ + ∆) ρ00T − 2 ibρ00S −

1

2
(g + κ) ρ00T + (γ + κ) ρT11

∂

∂t
ρ11T = −iΩ

2
(ρTT − ρ1100 − ρ1111)− i

2
(3 δ −∆) ρ11T − 2 ibρ11S −

(
3

2
γ +

1

2
κ

)
ρ11T

∂

∂t
ρ11S = − i

2
(3 δ + ∆) ρ11S − 2 ibρ11T − i

Ω

2
ρTS −

1

2
(3 γ − κ) ρ11S

∂

∂t
ρS00 =

i

2
(−δ + ∆) ρS00 + 2 ibρT000 + i

Ω

2
ρST −

1

2
(γ − κ) ρS00 + (γ − κ) ρ11S

∂

∂t
ρ1100 = −iΩ

2
(−ρo00T + ρT11 ) + (2 iδ − γ) ρ0011
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B Full equations for the S1 scheme

In paragraph 4.5.1 there are some elements of the density matrix used. These are given here below.

Here γ is the free decay of the desired transition, κ is the wire decay, the Ω′s are the drives, ∆ the level

shift due to the dipole-dipole coupling. The matrix elements expressed as %ij = f(Π) ∗ |i〉 〈j| where Π

is a set of parameters, are part of the density matrix.

Diagonal elements

∂

∂t
ρ0000 = − iΩL

2
(ρS000 − ρ00S0)− iΩMW

2
(ρT00 − ρ00T0) + γL (ρS0S0 + ρT0T0 )

∂

∂t
ρ1111 = − iΩMW

2
(ρ11T − ρT11 ) + γΛ (ρS1S1 + ρT1T1 ) + κΛρT1T1

∂

∂t
ρTT = − iΩMW

2
(ρ00T0 − ρT00 )− iΩMW

2
(ρT11 − ρ11T )+

γL
2

(ρS1S1 + ρT1T1 )+
γΛ

2
(ρS0S0 + ρT0T0 )+κΛρT0T0+

iΩL
2

(ρTS1 − ρS1T )

∂

∂t
ρSS = − iΩL

2
(ρT1S − ρST1 ) +

γL
2

(ρS1S1 + ρT1T1 ) +
γΛ

2
(ρS0S0 + ρT0T0 ) + κΛρS0S0

∂

∂t
ρT0T0 = − iΩMW

2
(ρT1T0 − ρT0T1 )− (γL + γΛ + κΛ) ρT0T0 +

γL
2
ρEE

∂

∂t
ρS0S0 = − iΩL

2
(ρ00S0 − ρS000 )− iΩMW

2
(ρS1S0 − ρS0S1 )−(γL + γΛ + κΛ) ρS0S0+

γL
2
ρEE+

iΩL
2

(ρS0EE − ρEES0 )

∂

∂t
ρT1T1 = − iΩL

2
(ρST1 − ρT1S )− (γL + γΛ + κΛ) ρT1T1 −

iΩMW

2
(ρT0T1 − ρT1T0 ) +

(γΛ

2
+ κΛ

)
ρEE

∂

∂t
ρS1S1 = − iΩL

2
(ρTS1 − ρS1T )− (γL + γΛ) ρS1S1 −

iΩMW

2
(ρS0S1 − ρS1S0 )

∂

∂t
ρEE = − iΩL

2
(ρS0EE − ρEES0 )− (γL + γΛ + κΛ) ρEE

Optical coherences

∂

∂t
ρTS1 = − iΩL

2
(ρS1S1 − ρTT )− (γL + γΛ)

2
ρTS1 +

γΛ

4
ρS0S1

∂

∂t
ρS0S1 = − iΩMW

2
(ρS1S1 − ρS0S0 )−

(
γL + γΛ +

κΛ

2
+
i∆

2

)
ρS0S1
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∂

∂t
ρT1S = − iΩL

2
(ρSS − ρT1T1 )−

(γΛ

2
+
γΛ

2
+
κΛ

2
+ i∆

)
ρT1S +

γΛ

4
ρT1T0

∂

∂t
ρ11T = − iΩMW

2
(ρ1111 − ρTT ) +

γΛ

2
ρS1T

∂

∂t
ρT0T1 = − iΩMW

2
(ρT1T1 − ρT0T0 )− (γL + γΛ + κΛ − i∆) ρT0T1

∂

∂t
ρS000 = − iΩL

2
(ρ0000 − ρS0S0 )−

(
γΛ

2
+
κΛ

2
+
i∆

2

)
ρS000

∂

∂t
ρS0EE = − iΩL

2
(ρEE − ρS0S0 )−

(
γL + γΛ + κΛ +

i∆

2

)
ρS0EE

∂

∂t
ρT00 = − iΩMW

2
(ρ0000 − ρTT ) +

γΛ

4
ρS000 (60)

All other elements of the density matrix are not required to �nd an analytical result.

C O�-diagonal total decay charts

In this table all the possible total decays terms on any of the 36 o� diagonal elements of the density

matrix is shown. These decays scale with parameter γ. Since the density matrix is Hermite, and

decay is real this means that the contributions are the same for their respective Hermite conjugate.

On the left side is the element of the density matrix under consideration with a di�erent transition in

each column. Entries are in blue for gain, entries in red are loses and black is for other. An element

without a red entry does not decay by itself. And blue entries are generally a special case coinciding

with a black entry at its symmetric opposite state. Unlike the diagonal case, these elements need not

be conserved and are just an e�ect of computing all elements of the decay part of Eq. (5). All results

were done by Maple.

It should be noted that not all entries seem as natural as one might expect. It is for this exact reason

that these results were derived rigorously. They seem to indicate that the physics of the dissipative

state is better explained in terms of symmetry preserving and symmetry breaking interactions, then

jumps from states to states.

Each column has its own distinctive decay parameter noted in apostrophes.
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'γii,oe = γL' |e〉 → |0〉 'γii,1e = γΛ'|e〉 → |1〉 'γii,o1 = γMW '|1〉 → |0〉
˙ρ0011 |00〉 〈11| −1/4ρ0011

˙ρ00T |00〉 〈T | −
√

2/16 (ρS0S1 + ρT0T1) −1/8ρ00T +1/4ρT11

˙ρ00S |00〉 〈S| −
√

2/16 (ρS0T1 + ρT0S1) −1/8ρ00S −1/4ρS11

˙ρ00T0 |00〉 〈T0| −1/8ρ00T0 −1/4ρT0ee −1/32ρ00T0 +
√

2/16 (ρTT1 − ρSS1)
˙ρ00S0 |00〉 〈S0| −1/8ρ00S0 −1/4ρS0ee −1/32ρ00S0 +

√
2/16 (ρTS1 − ρST1)

˙ρ00T1 |00〉 〈T1| −1/32ρ00T1 −1/8ρ00T1 −1/32ρ00T1

˙ρ00S1 |00〉 〈S1| −1/32ρ00S1 −1/8ρ00S1 −1/32ρ00S1

˙ρ00ee |00〉 〈ee| −1/4ρ00ee −1/4ρ00ee

˙ρ11T |11〉 〈T | +
√

2/16 (ρS1S0 + ρT1T0) −3/8ρ11T

˙ρ11S |11〉 〈S| +
√

2/16 (ρS1T0 + ρT1S0) −3/8ρ11S

˙ρ11T0 |11〉 〈T0| −1/8ρ11T0 −1/32ρ11T0 −1/4ρ11T0

˙ρ11S0 |11〉 〈S0| −1/8ρ11S0 −1/32ρ11S0 −1/4ρ11S0

˙ρ11T1 |11〉 〈T1| −1/32ρ11T1 −1/8ρ11T1 +1/4ρT1ee −9/32ρ11T1

˙ρ11S1 |11〉 〈S1| −1/32ρ11S1 −1/8ρ11S1 −1/4ρS1ee −9/32ρ11S1

˙ρ11ee |11〉 〈ee| −1/4ρ11ee −1/4ρ11ee −1/4ρ11ee

˙ρTS |T 〉 〈S| −1/32 (ρT1S1 + ρS1T1) +1/32 (ρS0T0 + ρT0S0) −1/4ρTS
˙ρTT0 |T 〉 〈T0| −1/8ρTT0 +

√
2/16ρT1ee −1/32ρTT0 −1/8ρTST0 +

√
2/16ρ11T1

˙ρTS0 |T 〉 〈S0| −1/8ρTS0 −
√

2/16ρS1ee −1/32ρTS0 −1/8ρTS0 +
√

2/16ρ11S1

˙ρTT1 |T 〉 〈T1| −1/32ρTT1 −1/8ρTT1 +
√

2/16ρT0ee −5/32ρTT1

˙ρTS1 |T 〉 〈S1| −1/32ρTS1 −1/8ρTS1 −
√

2/16ρS0ee −5/32ρTS1

˙ρTee |T 〉 〈ee| −1/4ρTee −1/4ρTee −1/8ρTee
˙ρST0 |S〉 〈T0| −1/8ρST0 −

√
2/16ρS1ee −1/32ρST0 −1/8ρST0+

√
2/16ρ11S1

˙ρSS0 |S〉 〈S0| −1/8ρSS0 +
√

2/16ρT1ee −1/32ρSS0 −1/8ρSS0 +
√

2/16ρ11T1

˙ρST1 |S〉 〈T1| −1/32ρST1 −1/8ρST1 +
√

2/16ρS0ee −5/32ρST1

˙ρSS1 |S〉 〈S1| −1/32ρSS1 −1/8ρSS1 −
√

2/16ρT0ee −5/32ρSTS1

˙ρSee |S〉 〈ee| −1/4ρSee −1/4ρSee −1/9ρSee
˙ρT0S0 |T0〉 〈S0| −1/4ρT0S0 −1/16ρT0S0 +1/32 (ρS1T1 + ρT1S1)
˙ρT0T1 |T0〉 〈T1| −5/32ρT0T1 −5/32ρT0T1 −1/32ρT0T1

˙ρT0S1 |T0〉 〈S1| −5/32ρT0S1 −5/32ρT0S1 −1/32ρT0S1

˙ρT0ee |T0〉 〈ee| −3/8ρT0ee −9/32ρT0ee

˙ρS0T1 |S0〉 〈T1| −5/32ρS0T1 −5/32ρS0T1 −1/32ρS0T1

˙ρS0S1 |S0〉 〈S1| −5/32ρS0S1 −5/32ρS0S1 −1/32ρS0S1

˙ρS0S1 |S0〉 〈ee| −3/8ρS0ee −9/32ρS0ee

˙ρT1S1 |T1〉 〈S1| −1/16ρT1S1 −1/4ρT1S1 −1/16ρT1S1

˙ρT1ee |T1〉 〈ee| −9/32ρT1ee −3/8ρT1ee −1/32ρT1ee

˙ρS1ee |S1〉 〈ee| −1/32ρS1ee −3/8ρS1ee −1/32ρS1ee
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D O�-diagonal wire decay charts

In this table all the possible wire decays terms on any of the 36 o� diagonal elements of the density

matrix is shown. These decays scale with parameter βγ. Since the density matrix is Hermite, and

decay is real this means that the contributions are the same for their respective Hermite conjugate. On

the left side is the element of the density matrix under consideration with a di�erent transition in each

column. Each element can have a positive or negative contribution depending on emitter distance.

Unlike the diagonal case, these elements need not be conserved and are just an e�ect of computing all

elements of the decay part of Eq. (5). All results were done by Maple.

It should be noted that not all entries seem as natural as one might expect. It is for this exact

reason that these results were derived rigorously.

Each column has its own distinctive decay parameter noted in apostrophes.
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'γij,oe = βL γL' |e〉 → |0〉 'γij,1e = βΛγΛ'|e〉 → |1〉 'γij,o1 = βMW γMW '|1〉 → |0〉
˙ρ0011 |00〉 〈11|
˙ρ00T |00〉 〈T | −

√
2/16 (ρS0S1 − ρT0T1) −1/8ρ00T +1/4ρT11

˙ρ00S |00〉 〈S| +
√

2/16 (ρS0T1 − ρT0S1) +1/8ρ00T +1/4ρS11

˙ρ00T0 |00〉 〈T0| −1/8ρ00T0 +1/4ρT0ee +
√

2/16ρTT1+
√

2/16ρSS1

˙ρ00S0 |00〉 〈S0| +1/8ρ00S0 +1/4ρS0ee +
√

2/16ρTS1+
√

2/16ρST1

˙ρ00T1 |00〉 〈T1| −1/8ρ00T1

˙ρ00S1 |00〉 〈S1| +1/8ρ00S1

˙ρ00ee |00〉 〈ee|
˙ρ11T |11〉 〈T | −

√
2/16 (ρS1S0 − ρT1T0) −1/8ρ11T

˙ρ11S |11〉 〈S| −
√

2/16 (ρS1T0 − ρT1S0) −1/8ρ11S

˙ρ11T0 |11〉 〈T0| −1/8ρ11T0

˙ρ11S0 |11〉 〈S0| +1/8ρ11S0

˙ρ11T1 |11〉 〈T1| +
√

2/16ρT1ee −1/8ρ11T1

˙ρ11S1 |11〉 〈S1| +
√

2/16ρS1ee+1/8ρ11S1

˙ρ11ee |11〉 〈ee|
˙ρTS |T 〉 〈S| −1/32 (ρT1S1 − ρS1T1) −1/32 (ρS0T0 − ρT0S0)
˙ρTT0 |T 〉 〈T0| +

√
2/16ρT1ee−1/8ρTT0 +

√
2/16ρ11T1−1/8ρTT0

˙ρTS0 |T 〉 〈S0| +
√

2/16ρS1ee+1/8ρTS0 +
√

2/16ρ11S1−1/8ρTS0

˙ρTT1 |T 〉 〈T1| +
√

2/16ρT0ee−1/8ρTT1 −1/8ρTT1

˙ρTS1 |T 〉 〈S1| +
√

2/16ρS0ee+1/8ρTS1 −1/8ρTS1

˙ρTee |T 〉 〈ee| −1/8ρTee
˙ρST0 |S〉 〈T0| −1/8ρST0 −

√
2/16ρS1ee +1/8ρST0 −

√
2/16ρ11S1

˙ρSS0 |S〉 〈S0| +1/8ρSS0 −
√

2/16ρT1ee +1/8ρSS0 −
√

2/16ρ11T1

˙ρST1 |S〉 〈T1| −1/8ρST1 +
√

2/16ρS0ee +1/8ρST1

˙ρSS1 |S〉 〈S1| +1/8ρSS1 +
√

2/16ρT0ee +1/8ρSS1

˙ρSee |S〉 〈ee| +1/8ρSee
˙ρT0S0 |T0〉 〈S0| −1/32 (ρS1T1 − ρT1S1)
˙ρT0T1 |T0〉 〈T1| −1/8ρT0T1 −1/8ρT0T1

˙ρT0S1 |T0〉 〈S1| −1/8ρT0S1 +1/8ρT0S1

˙ρT0ee |T0〉 〈ee| −1/8ρT0ee

˙ρS0T1 |S0〉 〈T1| +1/8ρS0T1 −1/8ρS0T1

˙ρS0S1 |S0〉 〈S1| +1/8ρS0S1 +1/8ρS0S1

˙ρS0S1 |S0〉 〈ee| +1/8ρS0ee

˙ρT1S1 |T1〉 〈S1|
˙ρT1ee |T1〉 〈ee| −1/8ρT1ee

˙ρS1ee |S1〉 〈ee| +1/8ρS1ee
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E Matlab template for e�ective matrix approach

The e�ective matrix approach is for complex time independent matrices for complicated quantum

systems. Here the used approach is elaborated so that it can be reproduced.

De�ning operators As a beginning single emitter states are de�ned in a complete basis, in this

case the three unity vectors.

NUL = [1; 0; 0];

ONE = [0; 1; 0];

EXI = [0; 0; 1];

Then the raising and lowering operators of these single emitters are created via the use of the Kronecker

product, in example the transition from state |0〉 → |e〉

σe0 = kron(EXI,NUL′);

Subsequently these are used to create raising and lowering operators per site

σ11 = kron(σ0e, id);

Where the �rst subscript is the index, the second subscript the transition under consideration, and id

the identity matrix. This results in a full set of possible operators without yet having a choice of basis.

These operators can then be used to construct any Hamiltonian, as this is just a linear combination

of these operators.

The e�ective matrix relies on the fact that a nine by nine density matrix has 81 elements. When

such a matrix is multiplied by another matrix of the same dimensions, it creates a new matrix where

each element is the sum of 9 multiplications between elements of the two starting matrices. Since this

can then subsequently be multiplied with another matrix from the other side, this results in a total

of 9 × 9 × 81 elements. In other words, an 81 × 81 non Hermetian, non symmetric matrix can hold

all possible terms regardless of they fact whether they were multiplied �rst left and then right or any

combination of the two.

This means that the e�ective matrix consists out of a sum of 3 separate terms, A,B&C

Aρ̂→ EffAρ̂vector

ρ̂B → EffB ρ̂vector

C1ρ̂C2 → EffC ρ̂vector

So that the sum of these matrices create the e�ective matrix, which is unique and upholding the rules

of matrix multiplication and their non-commutativity. Matrices A and B are relatively easily found as

they are again the superposition of the already known raising and lowering operators.

EffA = kron(IDEN,LEFT.′);

EffB = kron(RIGHT, IDEN);
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Where LEFT/RIGHT is the sum of all linear combinations of operators that multiply on the left/right

from the density matrix, and IDEN the identity matrix. The e�ective matrix of the in between density

matrix is more complex, and requires the a systematic subdivision of the e�ective matrix. An example

of this is for instance for the transition from state |0〉 → |e〉

EffC11 = γ11(kron(ONES, (σ1
′
1).′). ∗ kron(σ11, ONES));

EffC12 = γ12(kron(ONES, (σ2
′
1).′). ∗ kron(σ11, ONES));

EffC21 = γ21(kron(ONES, (σ1
′
1).′). ∗ kron(σ21, ONES));

EffC22 = γ22(kron(ONES, (σ2
′
1).′). ∗ kron(σ21, ONES));

Where ONES is a matrix with on its diagonal only ones and zero everywhere else. With exception

of parameter names, all above formulas are in Matlab notation. The sum of the parts is the e�ective

matrix. In other words,

(EffA + EffB + EffC) ρ̂ = Effρ̂ =
∂

∂t
ρ̂

This is easily solvable in case of the steady state. In Matlab one has only to compute the null-vector

of the e�ective matrix to �nd the steady state. If it exists. In all case encountered this exists, within

the boundaries of computation. Since su�ciently small values become zero the state is found easily.

It should be noted that Matlab has the possibility to distinguish between an analytical zero 0 and

a numerical zero ′0.0′. In all manually checked instances, other then trivial cases, no analytical null

value was found, only numerical null values. This could indicate that the numerical approach is only

the approximation of the steady state, whereas this analytically does not exist. The greatest bene�t

is though that the numerical approach is universal, and will always �nd the best approximation to the

steady state.

Naturally more methods exist for �nding a steady state. Programs were written for the solving

of the time dependent di�erential equations as a whole. And intermediate steps with other matrix

formulations were also developed. However none of these methods proved as practical in speed as the

null-vector formalism. It is easily a factor of 10000 times faster then solving the di�erential equations,

and hence it is the only used method when examining the β dependence.
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