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Chapter 1

Introduction

In this first section, I aim to present my personal entry point to the study of carbon nanotubes
(CNTs), ie. the reason why I think this particular systems are of any interests. I then outline the
thesis organization, ie. present an overview of the chapters.

1.1 Carbon nanotubes and quantum computers

In a standard “classical” computer, every piece of data is represented by a vector of bits which
can each take the value of 0 or 1. In the first part of the last century it was shown by Alan Turing
and others, that any algorithm could be implemented by repeated application of the NAND gate
to this vector.

However, in 1982, Richard Feynman sparked a new field inside physics, mathematics and
computer science, when he pointed out that while classical computers can indeed carry out any
algorithm, only a subset of the computational operations made available by the Schrodinger equa-
tion [2] are described by the classical gates such as the NAND gate. In quantum physics we know
that states need not be in either one state or another, but can be in a superposition of eg. state
0 and state 1, and, more importantly, we know that different states may be entangled with each
other, eg. the state |Ψ〉 = 1√

2
(|01〉 + |10〉) where each state depends on the other state, so that if

a measurement is made on the first state, and it is found to be in the “0” position, the other one
immediately shifts from being in a superposition of “0” and “1” to being in position “1” with unit
certainty. Now, we may imagine having a vector of N such states, or “qubits1”, and preparing
them in a superposition of all 2N possible (classical) states, ie. if we use |n〉 to denote the state
where the qubits in some given ordering is the binary representation of the number n, we may
prepare the state 1√

2N

∑

n |n〉. Now, if we have an algorithm that we wish to evaluate, one way

of formally characterizing the quantum computation (due to Kitaev[3]), is to note we must have
some physical system that implement a time development operator U , such that for a given input
vector |i〉, we have that |o〉 = U |i〉 is the desired output, for any input vector |i〉 - such an operation
have been shown to be implementable with an array consisting of a number of “quantum gates”,

1QUantum BITS
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CHAPTER 1. INTRODUCTION

each of which is one of 3 basic 1 or 2 qubit operations, reminiscent of the NAND gate mentioned
above, shown in e.g. [4] .

Combining these two things, U and |Ψ〉, we find that we can generate a superposition of all
possible output states of the system, since U |Ψ〉 = U 1√

2N

∑

n |n〉 = 1√
2N

∑

n |on〉 where |on〉 is

defined as the algorithms output when given input |n〉. Since the U operation was used only once,
the time needed for this calculation is the same as the time needed to calculate the result for only
one input state, and so this principle have been named “quantum parallelism” - however if we try
to measure the result of the calculation, the wavefunction will collapse and we will receive only
one of the answers, so it was not clear if this scheme provides any advantages over the classical
computer, but through the work of e.g. Deutch[5] ,Grover[6] and especially Shor[7], quantum
algorithms with significant speedup over classical computation was discovered, some of which also
had significance for the society at large.

The theory of quantum computation have developed much in its approx. 30 year long existence,
however the implementation of these ideas in actual physical systems have proven to be a formidable
challenge in its own respect. There are some fundamental reasons for this, but it all comes down
to 5 demands made of a quantum computer, some of which seems mutually exclusive. To qualify
as a physical system for quantum computation, a system must have

1. Strong controllable interaction, providing a “handle”, so we can set the qubit and interact
with it.

2. Weak interaction with surroundings, so that when we leave the system, the data contained
in the qubit is preserved.

3. Readout: We need a way to measure the state of a qubit once calculation is done.

4. Scalability: One qubit is not (very) interesting - we need easy way to expand the number of
qubits for larger calculations

5. A way to make two qubits interact in a controlled way.

So far, probably the most successful implementation of this has been the iontrap quantum com-
puter, first proposed by [1] . However, it is at its core an atomic physics implementation, meaning
that all operations is carried out on individual ions in a single trap, making scalability the major
problem of this implementation2. As an alternative route to the quantum computer, solid state
implementations have been considered, since it may be thought that the scalability will be easier
here, as has been seen for classical computers. However, here one runs into the problem that most
physical variables is strongly coupled to the surroundings in for instance crystals: The charge of
a given area is eg. coupled by the strong Coulomb potentials of nearby charges - thus, what we
need is a variable that is weakly coupled with the environment. The spin of an (unpaired) elec-
tron of a spin-0 atom (to avoid hyperfine interaction) is a potentially good candidate, since the
spin is typically relatively weakly interacting with the environment compared to e.g. the charge,

2although there are also problems with speed: By design, the quantum computer will never get far above 104

quantum gates pr. second
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1.2. ORGANIZATION OF THE THESIS

thus fulfilling condition 2 above, but we then need a strong interaction to control the qubit: The
magnetic field is an obvious candidate, but changing magnetic field is relatively slow compared to
changing electric fields, and thus one could search for a system where one has electric control of
the spin. One possible candidate for such a system is carbon nanotubes: They can, on one hand,
be made using only C-12 atoms, which have nuclear spin 0, and since the spin-orbit coupling here
gives a physical interaction between the motion around the circumference of the nanotube and the
spin of the electrons[14], it could thus be hoped, that by electrically controlling the orbital motion
of the electrons, one could, in a controlled way, alter their spin, thus fulfilling condition 1 above.

Around the beginning of the work on this thesis, an article showing new, relevant experimental
data was published [8] where several unexpected features due to spin-orbit coupling in carbon
nanotubes were observed. This prompted us to attempt a more thorough examination of the
effects of spin-orbit coupling in carbon nanotubes, which was found independently by us, has a
highly nontrivial correlation with the so-called chirality of the nanotube, which is a measure of the
specific geometry of a given carbon nanotube.

1.2 Organization of the thesis

This thesis is roughly organized as a gradually more advanced description of the physical effects
in a carbon nanotube, each chapter adding a new part to the hamiltonian of the system:

• The first chapter concerns graphene, which forms the basis of the description of the carbon
nanotubes, since these may be thought of as rolled up sheets of graphene.

• Then follows a chapter describing the effects of the cylindrical like topology of the carbon
nanotube.

• Then we describe the effect of spin-orbit coupling in a nanotube.

• In chapter 5 we describe the first of the results from a numerical simulation of the system,
and explain it, using a pertubative approach.

• As an interlude, chapter 6 describes another derivation, reaching the same principal result
as us, but with a slightly different, and perhaps more elegant, way of deriving it.

• Then follows a chapter on the effect of applying a magnetic field along the tube axis direction,
where we explain some further numerical results.

• Finally, a chapter describes the numerical algorithm used to generate the numerical data in
this thesis.

3
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Chapter 2

Graphene

In order to solve the graphene system, we shall employ Bloch’s theorem, so we assume that we may
deal with an infinite sheet of graphene. We use a tight-binding approximation, ie. we shall assume
that the electron wavefunctions can be described as linear combinations of atomic orbitals, also
known as the LCAO approximation, so we shall ignore e.g. ionized basis functions - this follows
the literature standard for solving graphene, which was first developed for graphite by [30]. First
of all, however, we must define the unitcell to be used in these calculations, along with a few other
important basics.

2.1 Basic definitions

In figure 2.1 we see the honeycomb lattice of graphene. The first thing one notices (or remembers
from basic solid state physics) is that the honeycomb lattice is not a bravais lattice, but rather,
composed by two sub(bravais)lattices or in other words, the primitive unitcell will contain two
atoms, and thus the two vectors, a1 and a2 in figure 2.1 are chosen to be our lattice vectors,
and, defining the latticeconstant (the length of the lattice vectors), as a0, we find through simple
geometry that

a1 = a0

(
√

3
2
1
2

)

a2 = a0

(
√

3
2

−1
2

)

(2.1)

From these, it is easy to see that the reciprocal lattice will be spanned by the two vectors:

b1 =
2π

a0

( 1√
3

1

)

b2 =
2π

a0

( 1√
3

−1

)

(2.2)

Notice also that from the real lattice, we may gather that the distance between neighboring
atoms is acc ≡ a0√

3
, and since the lattice constant is approximately a0 = 2.46 Å[30] we find that

acc = 1.42Å.
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CHAPTER 2. GRAPHENE
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Figure 2.1: The crystal structure of graphene. The red(blue) dots denotes carbon atoms on
sublattice A(B) and the lines denote the σ-orbital bonds between the atoms. Note, that with
the coordinatesystem shown, the σ orbitals presented in the text denotes the orbitals on the A
sublattice sites.

2.2 Symmetry of graphene

In principle, one could now start out with the full hamiltonian for the graphene system, including
all 6 electrons (pr. atom). However, a few assumptions vastly decreases the work required. First,
we shall assume that the 1s electrons are so tightly bound to the carbon nuclei that they are too
far down in the Fermi sea to play any role, reducing our problem to 4 electrons pr. atom. Now,
in graphene, the symmetry helps reduce this even further1: From figure 2.1 it is obvious that
there is a threefold rotation symmetry around each atom, and therefore the crystal field part of
the full hamiltonian will also have this symmetry, and consequently it will be easier to solve the
system if we can construct atomic orbitals that have this symmetry inbuilt and use them, instead
of the usual continuously rotationally symmetric |nlm〉 (hydrogenic) functions. This is indeed
possible: we define the z direction to be perpendicular to the graphene plane, and start out from
the wellknown three, realvalued orbitals lying along the 3 axis’s, build from the standard |nlm〉 as
follows:

|px〉 =
1√
2
(−|211〉 + |21 − 1〉)

|py〉 =
i√
2
(|211〉 + |21 − 1〉)

|pz〉 = |210〉 (2.3)

and the remaining 2s shell. First we see that the |pz〉 shell, since it is invariant under any rota-
tion around the z axis, immediately fulfills the crystal symmetry, and second we make the linear

1note, however, that this relies on the planar geometry of the graphene sheet - things become somewhat more
involved once we consider the cylindrical CNTs
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2.3. BLOCH’S THEOREM FOR GRAPHENE

Figure 2.2: The isoprobability curves of the first sigma orbitals. The nucleus is at (0,0) and the
units are Ångstrøm, and the neighboring atom would thus be at (1.42,0)

combinations, known as the σ orbitals

|σ1〉 =
1√
3
|2s〉 +

√

2

3
|px〉

|σ2〉 =
1√
3
|2s〉 −

√

1

6
|px〉 +

1√
2
|py〉

|σ3〉 =
1√
3
|2s〉 −

√

1

6
|px〉 −

1√
2
|py〉 (2.4)

The isoprobability contours of the |σ1〉 orbital has been shown in figure 2.2 - We note that the
orbitals evidently rotate onto one another under the 3 fold rotation we are considering.

In graphene, the crystal field clearly causes the sp2 orbitals to have a lower energy than the
|pz〉 bands, since the sp2 orbitals get closer to the surrounding, positive nuclei. Therefore 3 out of
the 4 electrons in the outer shell of carbon will fall into these orbitals, and form bonds with the 3
surrounding atoms, holding the crystal structure together. The fourth electron could in principle
fall into these orbitals as well, but that would cost a large amount of coulomb energy, since they are
all halffilled, and so we may assume that it goes into the energetically less favorable, but free, |pz〉
orbital, also known as the π orbital. Since these do not form any bonds (graphene is pr. definition
a monolayer crystal), it is appropriate to use Bloch’s theorem for these electrons, identifying the
crystal lattice as the periodic potential.

2.3 Bloch’s theorem for graphene

From basic solid state physics, we know that the eigenfunctions of the electrons (Ψkn(r)) in a
periodic potential, U(r), can be chosen to be blochwaves, that is

Ψnk(r) = eik·runk(r) (2.5)

7



CHAPTER 2. GRAPHENE

where n refers to the band number and unk(r) has the same periodicity as the crystal potential,
U(r), so they fulfill the Bloch condition

Ψnk(r + R) = eik·r+Runk(r + R) = eik·Reik·runk(r) = eik·RΨnk(r) (2.6)

where R is a lattice vector.
We now wish to couple this to the atomic orbitals described above, in particular to the π

orbitals at each atomic site, since this will put us in a position to use the standard LCAO (Linear
Combination of Atomic Orbitals) machinery. This is done by first noting that we may make an
inverse Fourier transform of any Bloch wavefunction, that is, any function fulfilling (2.6), since it
is periodic in the reciprocal lattice. So

Ψnk(r) =
∑

R

eik·Rφn(r,R) (2.7)

Now, if we can establish that the φn functions may be represented by atomic orbitals, we will be
ready to solve the graphene problem. This will eventually rely on an approximation, but we may
make some rigorous progress using the standard Wannier decomposition method, as in chapter 10
of [9], by noting that by virtue of the mechanics of the Fourier transform, we know that

φn(r,R) =
1

A

∑

k

e−iR·kΨnk(r) (2.8)

where A is as usual, the area of the graphene unitcell. From this we may see that the φn(r,R)
may be viewed as molecular orbitals on each unitcell, since they may be expressed as a function
solely of the difference between r and R, which is seen by recalling that Ψnk fulfills (2.6) and
thus, φn(r,R) = φn(r + Rl,R + Rl) where Rl is a lattice vector, and thus the solution to the
problem can be viewed as the φn(r,R) functions placed at each unitcell of the crystal, with the
appropriate Bloch phase. Now we make the LCAO assumption that these φn functions may be
expressed as linear combinations of the atomic orbitals present in the unitcell, thus solving two
problems with one stroke, namely the problem of connecting the Bloch waves to the atomic orbitals
and the complication of the diatomic unitcell, since the molecular orbitals φn is now assumed to
be linear combinations of atomic orbitals, so that, inserting into (2.7), we may express the Bloch
wavefunctions as2

Ψnk(r) =
1√
N

∑

R

eik·R(aπA(r − R) + beik·l1πB(r − R − l1))

≡ a|ψn,k〉A + beik·l1|ψn,k〉B (2.9)

where l1 = a0

(−1√
3

0

)

is the vector between the two atoms in a unitcell, ie. between different

sublatices, N is the number of unitcells, the A/B subscripts on the wavefunctions denotes the

2One could ask why we don’t just use the Wannier functions instead of making this assumption. The main
reason for this is, as stated above, that we may find the elements of the Hamiltonian and the overlap matrix,S, for
the atomic orbitals, but it is important to remember that the choice of basisfunctions are not fixed by the theory
and other sets of functions may serve us better in other circumstances, as we shall indeed see in section 8

8



2.3. BLOCH’S THEOREM FOR GRAPHENE

sublattice, and a and b are the coefficients to be determined from solving the Schrödinger equation:

ĤΨnk = EnΨnk (2.10)

Notice that in (2.9), we explicitly write out the relative blochphase between the atoms in a given
unitcell. This may seem slightly at odds with the “molecular orbitals” approach, since we might
have made it a part of the coefficient, ie. used b̃ = beil1·k instead of b - however, this explicit
representation will be convenient later, and so it is left in. Now, we have to be slightly careful
when we use π orbitals instead of the Wannier functions as in (2.9): Whereas the Wannier functions
were orthogonal by construction, the atomic orbitals at different sites are not. This requires a slight
modification of the Schrödinger equation: let us define a non-orthonormal, but complete, set of
|ξm〉. The fact that the set is complete means that the eigenstates of H may be expressed as
Ψnk =

∑

a cank|ξa〉 - then, if we define the overlap matrix Sab = 〈ξa|ξb〉, the usual schrödinger
equation (2.10) is

∑

a

Ĥcank|ξa〉 = En

∑

a

cank|ξa〉 =⇒
∑

a

Hbacank = En

∑

a

cankSba =⇒

ĤΨnk = EnSΨnk (2.11)

where the first implication follows from multiplying from the left with 〈ξb|, and the second one
follows from the fact that the second line in (2.11) is in fact one row of the equation Ĥcnk = EnScnk,
where cnk is now a column of the coefficients for the nth eigenvector. This equation is equivalent
to the last line of (2.11).

Now we apply the schrödinger equation to the LCAO Bloch waves (2.9) in order to find En,a
and b:

ĤΨnk(r) =
1√
N

∑

R

eik·R(aĤπA(r −R) + beil1·kĤπB(r − R − l1)) =

EnkSΨnk(r) =
1√
N

∑

R

eik·R(aSπA(r− R) + beil1·kSπB(r −R − l1)) (2.12)

Thus, we see that we need the matrix elements of Ĥ and S in order to proceed, and in order
to make progress with this, we employ our next assumption, namely that only nearest neighbour
atoms interact through the hamiltonian, and have a significant overlap. Notice from figure 2.1
that nearest neighbours are always from different sublattices. Clearly, since we have a diatomic
unitcell, and since we consider only one atomic orbital pr. atom, the hamiltonian and overlap
matrix may be written as 2x2 matrices in the A-B space in which the eigenfunctions (2.9) is

described by the vector of the coefficients on the sublattices ie.

(

a
b

)

, and consequently, we need

Aij ≡ 〈ψnk|iA|ψnk〉j for A =
{

Ĥ,S
}

, and i,j denoting sublatices. We consider the elements of

these matrices one by one:

9



CHAPTER 2. GRAPHENE

The HAB and SAB element: As observed above, the graphene crystal have a threefold rotational
symmetry, which immediately yields that the transfer integrals between nearest neighbour are equal
(since they are rotated onto one another by the symmetry operation), and we denote this transfer
integral γ0. From figure 2.1 one sees that an A sublattice orbital couples to 3 orbitals in the B

sublattice, at positions l1, l2 ≡ a0

( 1
2
√

3
1
2

)

, l3 ≡ a0

( 1
2
√

3
−1
2

)

relative to the A orbital, which leads to

the sum over l in the following derivation:

〈ψnk′|AĤ|ψnk〉B =
1

N

∑

R′,R

ei((R+l1)·k−R′·k′)πA(r − R′)HπB(r − R− l1) =

1

N

∑

R

eiR·(k−k′)
∑

j

eil·kγ0 = δk,k′

∑

j

eik·ljγ0 ≡ Γ(k)γ0 (2.13)

A completely analogous argument yields the SAB element, except that the transport integral γ0

between neighbours is of cause exchanged with s0, the overlap integral between neighbours: Thus
SAB = Γ(k)s0. These calculations also immediately gives us theHBA element since the hamiltonian
is hermitian, so HBA = H∗

AB, in agreement with (2.13), since the only change in the derivation
comes from the fact, that while the A sublattice orbitals couple to the B sublattice orbitals at the
unitcells at positions l1, l2, l3 relative to the original unitcell, the B sublattice couple to A orbitals
at relative positions −l1,−l2,−l3, which we see is the same as interchanging Γ(k) with Γ(k)∗ in
(2.13). Thus, choosing γ0 real, we have that HBA = Γ(k)∗γ0 = (Γ(k)γ0)

∗ = H∗
AB. This also applies

to SBA = S∗
AB.

Now we turn to the diagonal elements SAA and HAA. Since we know from eg. [10] that the
overlap between nearest neighbours is small (s0 = 0.129) and the overlap decreases exponentially
with distance (since the |π〉 orbitals have an exponential decaying dependency on distance), we
are vindicated in the nearest neighbour assumption, and since the |π〉 orbitals are normalised, the
derivation of SAA becomes easy by using the fact that none of the nearest neighbour to the atoms
on the A sublattice are themselves part of the A sublatice:

〈ψnk′ |AS|ψnk〉A =
1

N

∑

bR′,R

ei(R·k−R′·k′)πA(R)SπA(R′)

=
1

N

∑

R,R′

δR,R′eiR·(k−k′) = δk,k′ (2.14)

Since this derivation only involves orbitals from the same unitcell, indeed the same atom, it is
precisely the same for SBB, so SBB = SAA. Furthermore, an analogous derivation gives us HAA

(and HBB) except we need to exchange the overlap (1) with the energy of the |π〉 orbital, ie.
ǫ0 ≡ 〈π|Ĥ|π〉, thus giving HBB = HAA = δk,k′ǫ0.

Notice that all the elements have a delta Dirac function between k and k′, proving that eigen-
functions at different points in the Brillouin zone does not couple to one other - this is a (standard)
consequence of the assumption of an infinite sheet.

The parameters γ0 and s0 are usually found by formally solving the problem, and then fitting
the resulting dispersion relation either to DFT calculations or to experiments. In this thesis I use

10



2.3. BLOCH’S THEOREM FOR GRAPHENE

Figure 2.3: The Brillouin zone of graphene. Note the 6 points where the valence and conduction
band touch - two of them are in-equivalent, and is conventionally denotedK andK ′. The dispersion
relation close to these points is linear in k, thus giving rise to the name “Dirac points” for these
points. The units are Å−1 for the two horizontal axises, and eV for the vertical axis.

the numerical estimates from [10] for the parameters, since they have all the parameters for the σ
orbitals as well, which I will use later in the thesis. It should be noted however, that it is not clear
how and to what the fit is made since the article cites “private communication” - however, from
the plots in the article, it is clear that the parameters produce the wellknown dispersion relation
for graphene (compare figure 6a in [10] with eg. figure 2 in [11]).

We then have to solve the following generalized eigenvalue problem:
(

ǫ0 γ0Γ(k)
γ0Γ(k)∗ ǫ0

)(

a
b

)

= En

(

1 s0Γ(k)
s0Γ(k)∗ 1

)(

a
b

)

(2.15)

This problem is easily solvable, by noting that ĤΨn = EnSΨn =⇒ (Ĥ − EnS)Ψn = 0, and since
this linear equation has nonzero solutions for Ψn precisely when the determinant of Ĥ − EnS is
zero, we get the following expressions for the two energy bands:

ǫ+(k) =
ǫ0 − γ0|Γ(k)|
1 + s0|Γ(k)| ǫ−(k) =

ǫ0 + γ0|Γ(k)|
1 − s0|Γ(k)| (2.16)

The two energy bands have been depicted in figure 2.3.
Note that since γ0 = −3.033eV we have that ǫ+(k) ≥ ǫ−(k) for all k. By the standard

method we find that the eigenfunctions of the graphene hamiltonian may be described as

(

a
b

)±
=

1√
2

(

∓Γ(k)
|Γ(k)|

1

)

.

We work in the socalled halffilling regime throughout the thesis, meaning simply that there
is 1 π band electron pr. carbon atom (ie. the graphene sheet is electrically neutral), so since
there are 2 π orbitals pr. atom (due to spin) the lower half of the states in the Brillouin zone is
filled, corresponding to the states with energies described by ǫ−(k). Thus we see that the points

11



CHAPTER 2. GRAPHENE

where ǫ+(k) = ǫ−(k) are of special interest, since these are the points where the dispersion relation
touches the fermisurface. From (2.16) we see that this happens exactly when Γ(k) = 0 - we now
also see that if we define ǫ0 = 0 we have set the Fermi energy ǫF = 0. There are two inequivalent
points in the Brillouin zone where Γ(k) = 0, namely the two socalled diracpoints K and K ′:

K(′) =
2π

a
(

1√
3
,±1

3
) (2.17)

where the ± distinguishes between K and K ′3. We are mainly interested in the bandstructure
near the fermisurface, since these are the states that will be of interest in a quantum dot setup.
Therefore, we expand the energy in a small deviation k around the K and K’ point in the Brillouin
zone. We have seen that the crucial part is the Γ(K+k), and thus we expand this function around
eg. K:

Γ(K + k) = eil1·Keil1·k + eil2·Keil2·k + eil3·Keil3·k ≈ (−1

2
− i

√
3

2
)(1 + il1 · k)+

(−1

2
+ i

√
3

2
)(1 + il2 · k) + (1 + il3 · k) = (−1

2
− i

√
3

2
)(1 − i

a0kx√
3

)+

(−1

2
+ i

√
3

2
)(1 + i(

a0kx

2
√

3
+
a0ky

2
)) + (1 + i(

a0kx

2
√

3
− a0ky

2
)) =

−a0

√
3

4
(
√

3kx + ky + i(
√

3ky − kx)) ≈
−a0

√
3

2
(k0

C + ik0
T ) (2.18)

where we have defined a new coordinatesystem,

{k0
C , k

0
T} = {

√
3

2
kx +

1

2
ky,−

1

2
kx +

√
3

2
ky} (2.19)

the naming convention of which will become more meaningful in the next chapter. An equivalent

calculation for the K’ point gives yields Γ(K′ + k) ≈ −a0

√
3

2
(−k0

C + ik0
T ). From this we see that

the dispersion relation is linear around the K and K’ point, giving rise to the term “Dirac points”,
since the gapless, linear dispersion is also found in relativistic quantum mechanics for massless
particles. It is also of worth to note that this leads to the concept of an “effective hamiltonian”,
ie. a hamiltonian that gives the physics of the interesting states near the Fermi surfaces, which is
obtained by inserting the approximated expression of Γ(k) from (2.18) into the hamiltonian part
(or indeed into Ĥ − EkS) from (2.15) to obtain

(

ǫ0 −En (γ0 − Ens0)
−a

√
3

2
(τk0

C + ik0
T )

(γ0 −Ens0)
−a

√
3

2
(τk0

C − ik0
T ) ǫ0 −En

)

(

a
b

)

=

(

0
0

)

(2.20)

where τ is 1(-1) for K(K’).
This concludes the introduction to the physics of graphene.

3note, that we can only choose ǫ0 to 0 as long as we only wish to study states close to these Dirac points. If the
size of Γ(k) becomes appreciable, we see from (2.16) that it is no longer just an energy shift, and we will have to
choose our energy scale to set ǫF to 0 explicitly, if we wish to do so

12



Chapter 3

Folding up the nanotube

We now turn to the task of “rolling up the graphene sheet” into a cylinder called a carbon nanotube
or CNT. This gives rise to two effects, namely the imposition of cyclic boundary conditions and
the breaking of the graphene plane mirror symmetry, most importantly leading to mixing of the π
and σ bands, which were separate in graphene. We shall treat these two effects in turn, but first
we need to make some basic definitions, especially concerning the crucial concept of chirality.

3.1 Chirality and unitcell of the CNT

In folding up the CNT we have a choice of how exactly to do so - Essentially we may specify
everything about the folding of the nanotube by specifying two equivalent atoms in the graphene
lattice that will be folded onto one another - this is done by specifying the chiral vector, C going
from these two sites, and thus going around the circumference, and is illustrated in figure 3.1. We
shall use two equivalent methods for specifying the chiral vector:

• by specifying the two numbers n and m, so that C = na1 + ma2. Because of the sixfold
rotational symmetry and the mirror symmetry around a line parallel with a given nearest
neighbour bond (see figure 3.1), we see that we may impose the condition n ≥ m ≥ 0. It is
customary to denote a CNT by its chiral vector as (n,m) eg. a (4, 3) CNT, and also to denote
(n, 0) CNTs as “zigzag” nanotubes, and (n, n) as armchair nanotubes. All other CNTs are
denoted “chiral” nanotubes.

• by specifying the radius r of the nanotube (giving the length of C, since obviously |C| = 2πr)
and the chiral angle, θ, which we define as the angle between C and a1. From the above
restriction on n and m, it is clear that 0 ≤ θ ≤ π

6
. We see that zigzag nanotubes have θ = 0

and armchair nanotubes have θ = π
6
. Note that this implies that θ becomes larger if we turn

C in a clockwise direction.

We also need to consider the possible unitcells of the CNT. First, we shall prove that we may
still use the diatomic unitcell from graphene (although of cause curved) following the derivations of
[12], and then we shall consider the larger socalled translational unitcell,which is easier to handle
numerically than the primitive unitcell.

13



CHAPTER 3. FOLDING UP THE NANOTUBE

a2

1a

k
Ck
0

T

0

θ
2,1C

Figure 3.1: The (2,1) chiral vector in a graphene sheet. The two broken lines (perpendicular
to C) are folded onto one another, so the chiral vector goes around the circumference. The
coordinatesystem {k0

C,k
0
T} is also shown.

3.1.1 The helical unitcell

Following [12], we first observe, that the two atoms that make up a unitcell of graphene may be
mapped onto the CNT surface by arbitrarily placing the first atom onto the surface, and then, since
the vector between two atoms in the same unitcell is d = a1+a2

3
, and since, as we noted above, C

is mapped onto the circumference of the CNT. We may therefore divide d into an rotation around
the tube axis by 2πd·C

|C| radians, and a translation along the tube axis direction, which is simply

|d×C|, since Usually (for all but the armchair case) the direction of the d vector will not coincide
with the direction of the C vector.

Thus the unitcell may be uniquely mapped onto the surface of the nanotube - we now turn to
the task of proving that this mapped unitcell is indeed a unitcell of the CNT: First observe, that
there may be unitcells at the same coordinate along the tubule axis as the first unitcell placed,
but at different angles around the circumference: This happens, if C can be expressed as a shorter
chiral vector, C̃ = m̃a1 + ña2, times some factor M , since this means that we may reach another
unitcell from the first one, by translating C̃ in the graphene plane, or correspondingly rotating
|C̃|2π
|C| radians around the tubule axis. Since m̃ and ñ must both be integers, we see that the shortest

C̃ possible in the direction of C, corresponding to the largest M possible, is the C̃ for which M
is the greatest common divisor of n and m, ie. M = gcd(n,m). This leads us to the first of our
lattice vectors for the CNT primitive cell, namely the vector C/M corresponding to a rotation of
2π
M

around the tubule axis. With this lattice vector alone we can place M unitcells in a helical
motif around the circumference of the CNT.

We now desire a second operation, S(h, α) that, when applied successively to this motif, gen-
erates the nanotube, ie. we desire a unique pair of integers k and l, such that, given an origo on
the CNT, the lattice point of any unitcell may be found by applying the rotational operation, ie.
rotating 2π

M
radians around the tube axis, k times, and then applying the helical operation S(h, α) l

14



3.1. CHIRALITY AND UNITCELL OF THE CNT

times. First we notice that we may couple the S(h, α) operation to a corresponding lattice vector1

in the graphene plane
H = pa1 + qa2 (3.1)

by noting that h = |H×C|
|C| and α = C·H2π

|C|2 . We may insure that H and C
M

are indeed lattice vectors,

by demanding that h = |H×C|
|C| be as small as possible: since per definition all unitcells in graphene

are alike, all unitcells with the distance r ∗h perpendicular to C from a given origo unitcell, can be
found by adding rH (corresponding to r applications of S(h, α) on the CNT) to a unique number

of C̃ (corresponding to a given number of |C|2π
M

rotations around the CNT axis) - here r must be
an integer, since, if the number h is the minimal distance perpendicular to C from one unitcell
to some other, it is the minimal distance perpendicular to C from any unitcell to some other.
Conversely only one linear combination of H and C̃ will yield the vector R connecting two given
unitcells, since they clearly span the graphene plane.

Thus, all we now need to do is to find the numbers h and α, or equivalently p and q. One way
to do this, is to note (as in [12]) that the area covered by the helical motif is

Amotif = M |a1 × a2| (3.2)

since the area of a unitcell is |a1 × a2|, but at the same time the nanotube can be thought of as
a repetition of the helical motif, rotated by α and stacked at distance h along the tubule axis, so
there is a new motif for each “step” of distance h along the axis, and thus, the area covered by
one motif must be the area of a cylinder of height h and circumference |C| or, in terms of H,

Amotif = |H× C| = |(pa1 + qa2) × (na1 +ma2)| = |(pm− qn)||a1 × a2| (3.3)

so that, by comparing the two expressions for the area covered by a helical motif, we have the
identity

pm− qn = ±M (3.4)

Clearly there are some ambiguities here, owing to the fact that S(h, α) = S(h, α + j2π) for any
integer j, which leads to H being indistinguishable from H + jC, and thus to the pair (p, q)
being indistinguishable from (p+ jn, q+ jm). Also, since the inverse operation of S(h, α), namely
S(−h,−α) would work just as well, corresponding to −H being as good as H, we also have
that (p, q) is indistinguishable from (−p,−q) as seen from the ± in (3.4). Clearly we can reach
unambiguity by selecting n > p ≥ 0, and thus, we may find p and q, and thus α and h from n and
m, using (3.4) together with the standard identity

|H|2 = (
|C · H|
|C| )2 + (

|C ×H|
|C| )2 (3.5)

Since the main purpose of this section is to prove the existence of the diatomic unitcell, we choose
not to carry out this calculation: It is sufficient for our purposes to prove its existence.

1ie. the vector connecting the two unitcells in graphene which, when mapped onto the CNT surface, will be
separated by the length h along the axis, and a rotation of α radians around the axis, so that S(h, α) will translate
one onto the other.
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CHAPTER 3. FOLDING UP THE NANOTUBE

3.1.2 The translational unitcell

We now turn to the other possible unitcell, namely the socalled translational unitcell, consisting
of a cylinder segment of height |T| and circumference |C| which may be repeated along the tube
axis to generate the CNT, where T is to be found in order to prove the existence of this unitcell.
In order to show that such a unitcell exists, we only need to prove the existence of a lattice vector
T which is perpendicular to C - this vector will be mapped onto the CNT along the tube axis,
and will thus satisfy the condition of connecting two cylinder segments. However the proof of the
existence of this vector is rather trivial, since if we define t1 and t2 so that T = t1a1 + t2a2 we

have, using ai · aj =

{

1 for i = j
1
2

for i 6= j
, that for C and T to be perpendicular,

0 = 2T · C = 2t1m+ 2t2n+ t1m+ t2n =⇒ t1(2m+ n) = −t2(2n+m) (3.6)

In order for T to be a lattice vector, t1 and t2 must be integers, and we see, that such integers
exists, and we may also find smallest possible translatory unitcell by setting

t1 = − 2m+ n

gcd(2m+ n, 2n+m)
t2 =

2n+m

gcd(2m+ n, 2n+m)
(3.7)

It is of interest to note that the area of the translatoric compared to the primitive unitcell is

N =
|C × T|
|a1 × a2|

=
|nt2 −mt1||a1 × a2|

|a1 × a2|
=

2(n2 +m2 + nm)

gcd(2n+m, 2m+ n)
(3.8)

For example the translatoric unitcell of a (10,9) CNT is 542 times larger than the primitive unitcell!
We may now divide the k vector of the blochwave into a part along reciprocal basis vector bT

of T, and a part along the reciprocal basis vector bC of C, ie.

k ≡ kt
bT

|bT|
+ kc

bC

|bC|
= ktb̂T + kCb̂C (3.9)

Given the definition of the reciprocal basis vector, ie. A · bB = 2πδA,B, we find that

bC =
−t2b1 + t1b2

N
bT =

mb1 − nb2

N
(3.10)

3.1.3 Comparing the unitcells

The two unitcells are of cause in principle equivalent, but whereas the translatory unitcell is well
suited for the numerical experiments, and, as we shall see in the following section, to describe the
effect of cyclic boundary conditions (since only kC will be effected), the larger size of the unitcell
is an insurmountable drawback when doing analytical calculations, since the amount of basis func-
tions in eg. a tight-binding model is of cause proportional to the number of atoms considered, and
thus to the size of the unitcell. Therefore we shall use either unitcell when convenient throughout
this thesis.

16



3.2. CYCLIC BOUNDARY CONDITIONS. METALLIC AND SEMICONDUCTING
NANOTUBES

3.2 Cyclic boundary conditions. Metallic and semicon-

ducting nanotubes

Having established the basic structure of the CNT, we now turn to the first of the two effects of
curling up the nanotube, namely the simple fact that the phase of the wavefunctions available to the
electrons must be single valued, and so the phase change when r is changed by one circumference
(|C|) must be an integer multiplum of 2π, or, if we choose to work with the translational unitcell
from section 3.1, we have the constraint that, since the blochcondition (2.6) for r = C now states
Ψnk(r + C) = eik·CΨnk(r) = Ψnk(r), we must have that, if we recall (3.9)

lC2π = k · C = kC
C · bC

|bC|
= kC |C| =⇒ kC =

lC2π

|C| (3.11)

where the third equality follows from the fact that bC is parallel to C which in turn follows from
the fact that T and C are perpendicular, and where we have defined the integer lC , which must
be restricted in order to insure that k cannot be written as some shorter vector plus a reciprocal
lattice vector. Using (3.9) and (3.10) and the above definition of lC , we find

k = ktb̂T + kCb̂C = ktb̂T +
lC2πbC

|C||bC|
= ktb̂T +

lC
N

(−t2b1 + t1b2) (3.12)

Now, using that pr. construction of t1 and t2, gcd(t1, t2) = 1, we see that if lC < N , −t2lC
N

and t1lc
N

cannot both be integers so lC(−t2b1 + t1b2) is not a reciprocal lattice vector, and thus we have
our constraint:

0 ≤ lC ≤ N − 1 (3.13)

Turning now to the effects of this constraint on the bandstructure, we see that this is the (main)
reason why some CNTs are semiconducting and others are metallic: If the condition excludes the
K and K’ points, there are no allowed k-values for which the bands touch the fermisurface, and
thus the CNT will be semiconducting, and conversely, if the K and K’ points are allowed values
of kC, the CNT will be metallic - in figure 3.2 this is illustrated for an example of either group.

In order to understand the results from the Hückel code shown later in the thesis, it is important
to note that we can now see the dispersion relation as being one dimensional (ie. along the kT

direction) and then using a zone folding scheme to include all theN possible values of kC as different
bands - this is of cause the “natural” Brillouin zone to use when we start out with the translational
unitcell, rather than the (constrained) 2D unitcell from figure 3.2 which, as is readily seen from
its size, corresponds to the diatomic, helical unitcell. In figure 3.2 we see the 1 dimensional bands
corresponding to the two chiralities, one metallic, the other semiconducting.
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Figure 3.2: The allowed k values are shown as black lines for a semiconducting (7,3) CNT (left)
and a metallic (9,3) CNT (right), where we can see explicitly that the lines in the (9,3) CNT touch
the diracpoints, while they do not in the (7,3) CNT - the hexagon denotes the first Brillouin zone
of graphene.
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Reduced zone band structure for (4,1) CNT
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Reduced zone band structure for (6,0) CNT

Figure 3.3: Reduced zone bandstructures for two different chiralities: left is the semiconducting
(4,1) CNT, and right is the metallic (6,0) CNT. Occupied bands are shown in red, unoccupied
are shown in blue. Note that the small gap in the (6,0) spectrum is due to imprecision in the
numerical code, and not curvature effects.

18
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NANOTUBES

For completeness, we shall now derive the condition for metallic vs. semiconducting nanotubes
from the numbers (n,m) specifying the chirality (see 3.1). Since K(′) = 2π

a
( 1√

3
, τ

3
), where τ = ±1

distinguishes K from K’, we find that

2πlC = K(′) · C = π(n+m+ τ
n−m

3
) =⇒

{

for τ = 1 : lC = 2n+m
3

for τ = −1 : lC = 2m+n
3

(3.14)

Observing that, since 3m
3

is always an integer, 2m+n
3

∈ Z ⇔ n−m
3

∈ Z, and from that we know that
2m+n

3
+ n−m

3
= 2n+m

3
∈ Z, so if KC is an “allowed” value, then so is K ′

C , and thus we have

A CNT is metallic if and only if 2n+m
3

is an integer.

It is also instructive to derive the effective hamiltonian, and thus the energies close the the K(’)
point, which is easily done by building on the effective hamiltonian description from last section
(2.20), and for simplicity ignore overlap (ie. s0 = 0) and furthermore set the fermilevel so that
ǫ0 = 0. First of all, we now see the logic behind the naming convention in (2.19): For the zigzag
case, ie. θ = 0, we have precisely that kC = k0

C and kT = k0
T . From studying figure 3.1 we see

that, in general, k0
C = cos θkC + sin θkT and k0

T = − sin θkC + cos θkT , leading to

τk0
C + ik0

T = τ cos θkC + τ sin θkT − i sin θkC + i cos θkT = e−iτθ(τkC + ikT ) (3.15)

where we use that τ 2 = 1. This can then be inserted into (2.20), following the spirit of [13], [18],
and others but I have used a slightly non-standard coordinatesystem and definition of the chiral
angle, so care should be taken when comparing the results. We find

(

−En γ0
−a0

√
3

2
(τk0

C + ik0
T )

γ0
−a0

√
3

2
(τk0

C − ik0
T ) −En

)

(

a
b

)

=

(

−En γ0
−a0

√
3

2
(τkC + ikT )e−iτθ

γ0
−a0

√
3

2
(τkC − ikT )eiτθ −En

)

(

a
b

)

=

(

0
0

)

(3.16)

Now we must take the constraint of kC into account. Here we need to remember that it is of cause
the total vector that has to fulfill the constrain, ie. (k + K(′)) · C = 2πlc. Therefore, using (3.14)
and the fact that |C| = 2Rπ where R is the radius of the CNT, we have

2πlC = (k + K(′)) ·C = kC2Rπ + π(n +m+ τ
n−m

3
)

=⇒ kC =
lc
R

− n+m+ τ n−m
3

2R
(3.17)

From this, we find the energy to be (recalling (2.20))

E± = ∓γ0a0

√
3

2

√

|τkC + ikT |2 = ∓γ0
a0

√
3

2R

√

(RkT )2 + (lc +
τ(3m− 3n) + n−m

6
)2 (3.18)
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CHAPTER 3. FOLDING UP THE NANOTUBE

It is of cause important to remember, that this is the result of an expansion, so the formula is only
accurate for the lC values closest to the Dirac-points, ie.

lc +
τ(3m− 3n) + n−m

6
=

{

0 for metallic tubes
±1

3
for semiconducting tubes

(3.19)

Since we can choose kT freely (due to the infinitely long tube), it is now clear that the energy gap
between the HOMO and the LUMO band in semiconducting CNTs should be inversely proportional
to the radius, irrespective of the details of the chirality.

When we alter (2.20) with our restriction on k we end up with the effective hamiltonian

(

−En γ0
−a0

√
3

2R
(ν

3
+ iRkT ))e−iτθ

γ0
−a0

√
3

2R
(ν

3
− iRkT )eiτθ −En

)

(

a
b

)

=

(

0
0

)

(3.20)

where ν is the “family number” of the CNT chirality, which is 0 for metallic tubes, or ±1 for
semiconducting tubes, depending on whether the smallest numeric value of kC is + or − 1

3
in

(3.19) off, compared to the Dirac points - later we shall see that ν plays an important role for
the understanding of spin-orbit coupling. One final manipulation of this hamiltonian is to realize
that we may rotate it to get rid of the phases in the off-diagonal elements, by evaluating Ĥeff

CNT =

U ˆ̃Heff
CNT U−1 with U =

(

eiτθ 0
0 1

)

, so we finally have

Ĥeff
CNT =

(

−En γ0
−a0

√
3

2R
(ν

3
+ iRkT ))

γ0
−a0

√
3

2R
(ν

3
− iRkT ) −En

)

(

a
b

)

=

(

0
0

)

(3.21)

This hamiltonian finally yields the following expressions for the eigenenergies near the K(’)
point:

E±
n = ∓γ0a0

√
3

2R

√

(
ν

3
)2 +R2k2

T (3.22)

3.3 σ/π band mixing

We now turn to the other major effect of curling up the nanotube, namely the breaking of the
mirror symmetry that allowed us to ignore the σ bands in the case of graphene. The first important
observation is now that the π bands on neighbouring sites now tilt towards one another - secondly
we shall find that the matrix elements between the σ orbitals and the π orbitals are no longer zero.
In order to parametrize these effects, we shall first study the geometry of the coupling between
the n = 2 shells on two neighbouring atoms, and due to symmetry reasons we shall find that
in principle only 4 different parameters are necessary, when we make the assumption that the
hamiltonian matrix element is zero if the orbital overlap is zero.

In table 3.1 we see the fundamentally different pairs of orbitals around two neighbouring carbon
atoms (denoted A and B) separated by acc along the x axis (notice, that the matrix elements we
seek are of cause the same if we exchange the A and B orbital, except for a complex conjugation,
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Table 3.1: The seven inequivalent orbit pairs at two neighbouring carbon atoms. The upper row
is shown in the text to have no overlap, and then by assumption no hamiltonian, matrix elements.
In 3.23 the overlap and hamiltonian elements for the remaining combinations is denoted, for the
second row, left to right, V π

pp/s
π
pp,V

σ
ss/s

σ
ss,V

σ
sp/s

σ
sp, and the coupling shown in the third row is denoted

V σ
pp/s

σ
pp.

stemming from the hermiticity of the hamiltonian). From these figures, and from the wellknown
property of the real p-orbitals that pi is an odd function along the i axis, and even along the two
other axises, plus the fact that s-orbitals are even along all Cartesian coordinates, it is easy to see
that overlap between the px,A and p(y,z),B (the y and z axises are indistinguishable in this case)
is 0, since the integrant p∗x,Ap(y,z),B is odd along either the y or z axis respectively. Likewise, the
overlap between py,A and pz,B is zero (since the integrant is then odd along both the y and z axis),
and finally the overlap between SA and p(y,z),B is zero, since again the integrant is odd along either
the y or the z direction - as mentioned, we then assume that the hamiltonian matrix elements
between these orbitals are also 0.

This leaves four pairs of orbitals have non-zero overlap/hamiltonian matrix elements, and, using
the numerical values from [10], we have

∫

drp∗(y,z),AĤp(y,z),B = V π
pp = −3.033eV,

∫

drp∗(y,z),Ap(y,z),B = sπ
pp = 0.129

∫

drp∗x,AĤpx,B = V σ
pp = −5.037eV,

∫

drp∗x,Apx,B = sσ
pp = 0.146

∫

drS∗
AĤpx,B = V σ

sp = −5.580eV,

∫

drS∗
Apx,B = sσ

pp = 0.102
∫

drS∗
AĤSB = V σ

ss = −6.769eV,

∫

drS∗
ASB = sσ

ss = 0.212 (3.23)

We need one final parameter to describe the entire n = 2 shell: In the previous sections, we
have only dealt with one “self-energy”, ǫ0, being the diagonal element of the hamiltonian of a 2p
orbital. We now have to include an energy corresponding to the 2S orbital, ǫS = −8.868eV . We
choose, following [14] to define the π orbitals on the CNT as the ones perpendicular to the cylinder
surface and we also “choose” to call the other three n = 2 orbitals, formed in the “three-clover”

21



CHAPTER 3. FOLDING UP THE NANOTUBE

π
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Figure 3.4: The geometry of two neighbouring atoms, projected onto the endface of the cylinder,
ie. T is perpendicular to the paper. Shown is the definition of αi and the directions of the π
orbitals at the two atom positions, A and B, Ri vector projected onto the plane of the paper,
perpendicular to the tube axis.

form as in graphene, and perpendicular to the radial, “π” direction, “σ” orbitals, although of cause
the symmetry that lead us to employ the sp2 is now broken.

Now we make some observations and definitions concerning the geometrical effects of curvature.
In figure 3.4 we define the angle α to parametrise the curvature effect between two neighbouring
atoms. We wish to couple this angle to the chirality of a CNT, and to this end, we know the radius
as seen in section 3.1, either as one of the parameters that define the chirality, or as |C|

2π
, and thus

for a given pair of carbon atoms, we need the length of the vector between them (“Ri”, where the
i subscript denotes the bond) projected onto the face perpendicular to the tube axis (which is of
cause not just acc, since the bond between neighbours will usually be partly along the tube axis
direction as well) - ie. we need the length Ri · Ĉ. However, if one studies the honeycomb lattice,
it is clear that only three different Ri’s exists, as we still restrict ourselves to nearest neighbour
interaction and only the direction of the bonds (compared to C) plays any role in the calculation
of α. Rigorously, if we define the angle between Ri and C as βi, we find that

βi = cos−1(
Ri · Ĉ
acc

) =⇒ sin(αi) =
Ri · Ĉ

2R
=
cos(βi)acc

2R
≡ ηcos(βi) (3.24)

We should note here, that there is actually an assumption hidden in this calculation, since it is
not clear whether Ri · Ĉ (which is well defined in flat graphene) is, after rolling up the CNT, the
length along the straight line in figure 3.4 - we could also have chosen it to be the length along the
curved line, ie. the surface of the cylinder. There are a few things to say about this

• The difference between the two is minute for anything but the smallest CNTs (of the order
of femtometers).

• The bondlength (acc) should be the length of the vector connecting the two atoms, regardless
of the cylindrical form we imagine for the tube.

The procedure for including the σ orbitals into the hamiltonian can be divided it three steps:
First, we shall derive the angle dependent hamiltonian between the π orbitals on neighbouring
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3.3. σ/π BAND MIXING

sites, then the hamiltonian connecting π orbitals to σ orbitals, and finally the coupling between σ
orbitals on neighbouring sites.

3.3.1 π − π orbital coupling

It turns out to be convenient to use the coordinate system {Ĉ, T̂, ẑ}, where Ĉ and ẑ is defined as
the circumferential and radial direction at the A atoms position, respectively. Now, following [14],
we can see the coupling between two neighbouring π orbitals as being composed of a coupling of the
V σ

pp type along the Rij vector plus a coupling of the V π
pp type perpendicular to the Rij vector - this

can be done since a p-type orbital in an arbitrary direction, can be expressed as a weighted sum
of any three linearly independent p orbitals, as they comprise a complete set for the n = 2, l = 1
orbitals around a given atom. Furthermore from studying the real p orbitals, it is easy to see
that they transform as simple vectors under rotation, ie. with the usual definition of θ and φ in a
spherical coordinate system, a p orbital pointing in the (θ, φ) direction can be written as

pθ,φ = sin(θ)cos(φ)px + sin(θ)sin(φ)py + cos(θ)pz (3.25)

This implies that we can write the hamiltonian integrals for the π − π coupling as[14]

〈πA|Ĥ|πB〉 = ((πA · R̂i)R̂i · (πB · R̂i)R̂i)V
σ
pp + (πA − (πA · R̂i)R̂i) · (πB − (πBR̂i)R̂i)V

π
pp·

= (πA · R̂i)(πB · R̂i)V
σ
pp + (πA · πB − 2(πA · R̂i)(πB · R̂i) + (πA · R̂i)(πB · R̂i))V

π
pp

= (πA · R̂i)(πB · R̂i)(V
σ
pp − V π

pp) + (πA · πB)V π
pp (3.26)

where πA and πB are unitvectors in the direction of the π orbitals at the origo site (A) and
the neighbouring site we are considering (B). All that remains then, is to describe the vectors
πA,πB and R̂i in terms of the chirality, or equivalently (as we have seen) in terms of the angles
βi and αi. However, remembering the definition of our {Ĉ, T̂, ẑ} coordinate system, we clearly
have πA = (0, 0, 1) and from figure 3.4, and from the fact that no π orbital has any component
along the tube axis, we see that πB = (sin(2αi), 0, cos(2αi)). The remaining vector in (3.26),
R̂i, is determined by noting that before we curve the graphene sheet, the vector is given by the
definition of the βi angles as (cos(βi), sin(βi), 0), and from figure 3.4 we see that, since only the
C and z directions are involved in the curving (since obviously T along the tube axis direction
is along the direction of the axis around which we curve the graphene sheet), we have that R̂i =
(cos(αi)cos(βi), sin(βi),−sin(αi)cos(βi)). Thus we may write

πA · πB = cos(2αi) (3.27)

πA · R̂i = −sin(αi)cos(βi) (3.28)

πB · R̂i = sin(2αi)cos(αi)cos(βi) − cos(2αi)sin(αi)cos(βi))

= −πA · R̂i = sin(αi)cos(βi) (3.29)

and, inserting into (3.26),

〈πA|Ĥ|πB〉 = −sin(αi)cos(βi)(sin(2αi)cos(βi)cos(αi)−
cos(2αi)sin(αi)cos(βi))(V

σ
pp − V π

pp) + cos(2αi)V
π
pp =

η2cos4(βi)(V
π
pp − V σ

pp) + (1 − 2η2cos2(βi))V
π
pp (3.30)
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Figure 3.5: The σ orbitals of two neighbouring atoms shown schematically, along with the enu-
meration used in this thesis of them.

where we have used (3.24), in order to transform all dependency on αi into dependency on βi - the
reason for this is that the parameter η now enters explicitly as the only parameter for the radius:
the βis depend only on the chiral angle from section 3.1, while η depends only on the radius, which
will help us in later sections, were we shall want to do perturbation theory in a0

R
∝ η, ie. construct

solutions for large radius CNTs.

3.3.2 σ − π orbital coupling

We now turn to calculating the hamiltonian elements between the π and σ orbital. As we know
from (2.4), there are three σ orbitals pr. atom, illustrated in figure 3.3.2.

Now, as we now from (2.4), the σ orbitals consists of part s orbital, and part p orbital (that we
shall treat using a unitvector pointing in the direction of this orbital, denoted pσl,A

for the lth σ
orbital in the following), directed towards the neighbouring atoms, but tangential to the cylinder
surface, rather than along the appropriate Ri, and so, given the definitions in (3.23) and table 3.1,
we see that the matrix element from the jth σ orbital to the π orbital at the atom that σ1 points
towards, is given as

〈σl,A|Ĥ|πB〉 =
1√
3
〈Si|Ĥ|πB〉 +

√

2

3
〈pσl,A

|Ĥ|πB〉 (3.31)

where we see that the term involving pσl,A
is similar to the π − π term, except πA has been

exchanged with pσl,A
, and thus we reach by analogy with (3.26) and from the fact at the integral

depicted in table 3.1 upper left is zero, that

〈σl,A|Ĥ|πB〉 = − 1√
3
πB · R̂iV

σ
sp +

√

2

3
((pσl,A

· R̂i)(πB · R̂i)(V
σ
pp − V π

pp) + (πB · pσl,A
)V π

pp) (3.32)

where the minus on the first term is due to the fact that the definition in (3.23) of V σ
sp was for

the situation where the positive part of the p orbital pointed towards the s orbital, and here Ri

points away from it. From this, it is obvious that we need a describing of the pσl,A
’s in terms of
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3.3. σ/π BAND MIXING

the chirality, just as above for the other vectors, and we shall treat the pσ1,A
orbital separately

from the others, as it turns out that the difference between σ2,A and σ3,A is a simple sign change,
reminiscent of the sign change on the |y〉 part that separates them in (2.4). pσ1,A

is easily found,
as it pr. definition of the σ orbitals has no radial component, and the tangential direction is along
the bond to the target atom, and so, from the definition of β we have pσ1,A

= (cos(βi), sin(βi), 0).

As we already know R̂i · πB = cosβi sinαi from (3.29), we need only calculate the two remaining
factors in (3.32):

pσ1,A
· R̂i = cos(αi)cos

2(βi) + sin2(βi) ≈ 1 − α2
i

2
cos2(βi) ≈ 1 − sin2(αi)

2
cos2βi (3.33)

pσ1,A
· πB = cos(βi)sin(2αi) = 2cos(βi)sin(αi)cos(αi) ≈ 2cos(βi)sin(αi) (3.34)

where the approximations are due to α ≪ 1. We therefore find, inserting into (3.32) and using
sin(αi) = ηcos(βi),

〈σ1,A|Ĥ|πB〉 ≈ ηcos2(βi)(−
1√
3
V σ

sp +

√

2

3
(V σ

pp + V π
pp)) (3.35)

We then turn to the 2 other σ orbitals - from (2.4) it is clear that the only difference we are
going to encounter compared to σ1 is, that the p-part of the σ orbital have been rotated ±120
degrees around the radial axis, and so we have that

pσ2
=





cos(2π
3

) −sin(2π
3

) 0
sin(2π

3
) cos(2π

3
) 0

0 0 1









−sin(βi)
cos(βi)

0



 =





1
2
(−cos(βi) −

√
3sin(βi))

1
2
(
√

3cos(βi) − sin(βi))
0





pσ3
=





cos(−2π
3

) −sin(−2π
3

) 0
sin(−2π

3
) cos(−2π

3
) 0

0 0 1









−sin(βi)
cos(βi)

0



 =





1
2
(−cos(βi) +

√
3sin(βi))

1
2
(
√

3cos(βi) + sin(βi))
0



 (3.36)

or, if we define a parameter ζ = ±1 as 1 for σ2 and -1 for σ3, pσl
= (1

2
(−cos(βi)−ζ

√
3sin(βi)),

1
2
(
√

3cos(βi)−
ζsin(βi)), 0) where the subscript l is either 2 or 3, distinguished by ζ . Completely analogously
with (3.33), we now need pσl

· R̂i and pσl
· πB in order to evaluate (3.32):

pσl
· R̂i =

1

2





−cos(βi) − ζ
√

3sin(βi)

ζ
√

3cos(βi) − sin(βi)
0



 ·





cos(αi)cos(βi)
sin(βi)

−sin(αi)cos(βi)



 =

1

2
(−cos2(βi)cos(αi) − sin2(βi)) +

√
3ζ

2
(−sin(βi)cos(βi)cos(αi) + cos(βi)sin(βi)) ≈

(−1

2
+
eta2cos2(βi)

4
) +

√
3η2cos2(βi)sin(2βi)ζ

2
(3.37)

pσl
· πB =

1

2





−cos(βi) − ζ
√

3sin(βi)

ζ
√

3cos(βi) − sin(βi)
0



 ·





sin(2αi)
0

cos(2αi)



 =

− η(cos2(βi)cos(αi) − ζ
√

3sin(βi)cos(βi)cos(αi)) ≈ −η(cos2(βi) +
ζ
√

3sin(2βi)

2
) (3.38)
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where again we have used sin(αi) = ηcos(βi), and the approximations are due to αi ≪ 1. We may
now evaluate (3.32) for the last two σ orbitals, where we have also recalled the definition of ζ :

〈σ2|H|πB〉 ≈
−ηcos2(βi)√

3
(V σ

sp +
1√
2
(V σ

pp + V π
pp)) +

1√
2
sin(2βi)V

π
pp (3.39)

〈σ3|H|πB〉 ≈
−ηcos2(βi)√

3
(V σ

sp +
1√
2
(V σ

pp + V π
pp)) −

1√
2
sin(2βi)V

π
pp (3.40)

This concludes the derivations necessary for calculating the coupling between π and σ bands.

3.3.3 σ − σ orbital coupling

Finally we turn to calculating the hamiltonian elements internally in the σ bands. The derivations
proceed much as above, except of cause that we now have two σ orbitals instead. Thus, analogous
to (3.32), we find

〈σl,i|H|σl′,B〉 =
1

3
V σ

ss +

√
2

3
(pσl,A

− pσl′,B
) · R̂iV

σ
sp

+
2

3
((pσl,A

· R̂i)(pσl′,B
· R̂i)(V

σ
pp − V π

pp) + (pσl′,B
· pσl,A

)V π
pp) (3.41)

where pσl′,B
is the unit vector pointing in the direction of the l’th sigma orbital at the target atom,

and where we have used the same trick as in (3.32) and (3.26) to rewrite the term involving the
p-parts of the orbitals. The sign on the V σ

sp parts differ, since R̂i is directed from the origo atom
to the target atom, and thus the situation is the same as presented in table 3.1 for one when
evaluating between the p part on the origo atom, and inverted when evaluating the term dealing
with the p part from the target atom.

From (3.41) we see that we now need two new inner products, namely pσl′,B
·pσl,A

and pσl′,B
·R̂i,

which is actually 9+3 new numbers, as both l and l′ can take 3 different values, and we need all
possible combinations. The derivations of these are straightforward but tedious, and so I have
placed them in the appendices - the main difficulty lies in determining the pσl′,B

s, but these can
be done by first noting that the orbital pointing toward the origo atom must be in the opposite
direction of R̂i, except tilted αi clockwise to make it tangential to the cylinder. After this is done,
the other p orbitals can be determined as done above for the origo atom, ie. by rotating the
first p orbital 120 degrees clockwise and anticlockwise using the πB direction as the axis - refer to
appendix A for the details of the calculation.

3.3.4 Selfenergy of the σ orbitals

In order to construct a full hamiltonian for the CNT including the σ orbitals, we need one last
ingredient, namely the matrix elements between the σ orbitals internally on a single atom - the
following calculation of this matrix is almost the same as the one in the appendix of [16], except
for our correction of an error made by them. They are of cause independent of which atom we deal
with, and the easiest way to find these elements is to use (2.4) directly, and one finds, using that
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the p-orbitals at the same atom are orthogonal, and the standard assumption that zero overlap
between two orbitals implies that the coupling between them is also zero, we find

〈σ1|H|σ1〉 = 〈σ2|H|σ2〉 = 〈σ3|H|σ3〉 =
ǫs + 2ǫp

3
(3.42)

〈σ1|H|σ2〉 = 〈σ2|H|σ3〉 = 〈σ3|H|σ1〉 =
ǫs − ǫp

3
(3.43)

where as usual ǫs = 〈S|H|S〉 and ǫp = 〈pi|H|pi〉 with i = x, y, z, and as discussed below (3.23) we
set this to zero, but unlike [16] we do not conclude from this that the diagonal elements must then
be zero, indeed we have that

ĤσA,σA
=
ǫs
3





1 1 1
1 1 1
1 1 1



 (3.44)

In this case the overlap matrix is of cause the identity matrix, since the sp2 basis set is orthonormal.

3.3.5 Solving the full CNT hamiltonian

Although we do not go into the same detail in the σ−σ case as for the π−π and the σ−π orbital
coupling, it should be clear that we can now produce all the matrix elements of the hamiltonian
for the CNT including the σ orbitals - of cause the overlap matrix elements follow the exact same
procedure as above, except we use the overlap parameters from (3.23). We now write a schematic
form of these matrices, in which we have used the coordinatesystem (πA, πB, σA, σB), the σs of
cause consisting of 3 coordinates each:

Hi =

























HπA→πB

0 0 0
HσA→πB

HσB→πA

0 0 0
0

HπB→σA
0
0

HσA→σA
HσB→σA

HπA→σB

0
0
0

HσA→σB
HσB→σB

























Si =

























SπA→πB

0 0 0
SσA→πB

SσB→πA

0 0 0
0

SπB→σA
0
0

1 0 0
0 1 0
0 0 1

SσB→σA

SπA→σB

0
0
0

SσA→σB

1 0 0
0 1 0
0 0 1

























(3.45)

Notice that eg. the Ĥπ→σ matrix, that we haven’t calculated directly can by found using the
hermiticity of the hamiltonian: as always, only the upper triangle is needed for a complete speci-
fication. Also, we subscript the matrices with the bond index i, since of cause there are different
matrices for each of the three bond directions, as both αi,βi,Ri and the relative blochphase to
the unitcell being connected to, is dependent on the bond number. We are now ready to insert
these matrices into the machinery of the blochwaves, ie. we must now, in analogy with the case
for graphene above, solve the generalized eigenvalue problem

(
∑

Ri

e−ik·RiHi −EnSi)Ψn,k = 0 (3.46)
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Once this is solved, we then have to apply the same restrictions to the k value as were done in
section 3.2 - since the algebra is formidable, we shall not do this explicitly, but it should be clear
how one calculates the band structure of the CNT including all effects of curvature. In the later
parts of the thesis, we shall take a pertubative approach to curvature and spin-orbit coupling,
rather than the full method described here, but we shall still need the matrices presented above.
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Chapter 4

Spin orbit interaction in CNTs

In this chapter, we shall derive the effects of the spin-orbit interaction on the electrons in a CNT.
We shall start out by briefly reminding ourselves of the general effect of the spin-orbit interaction
along with the simplifying assumptions we shall make in order to include it in both an analytic
and a numerical manner, and then derive the hamiltonian that shall form the basis of the effective
description of the CNT with spin-orbit coupling in the next chapter.

4.1 Basics of the spin-orbit coupling

The spin-orbit coupling originally comes from deriving the first order relativistic corrections to the
Pauli equation (that is, the scrödinger (non-relativistic) equation for spin-1

2
particles)[17]. However,

we shall state that the physical origin of the effect is that in the restframe of the electrons, the
electrical field (primarily from the nuclei) in the restframe of the nuclei (the laboratory frame) gives
rise to a magnetic field given as Brel = E×p

mc2
, where p is the momentum of the electron, and m is the

electron mass. This couples to the spin of the of the electron through the standard (Zeeman-like)
coupling, ie. Hso = −1

2
m ·Brel where the 1

2
is the Thomas-factor, stemming from the fact that the

electron restframe is not an inertial frame. The magnetic moment of the electron in its restframe
is due only to its intrinsic spin orbital momentum, so we have that m = −gµB

s
2

= −ge~

4m
s ≈ − e~

2m
s

where s is the vector of pauli matrices, ie. s ≡ sxx̂ + syŷ + szẑ, and we have used the fact that
the gyromagnetic constant for the electron spin moment is ≈ 2[31]. Also from the definition of
the electrostatic potential φ, namely E = −∇φ, and from the fact that the energy potential V in
an electrostatic field is given as V = qφ = −eφ, where e is the elementary charge, we find that
E = ∇V

e
. We insert this into the expression for Brel to obtain Brel = ∇V ×p

emc2
, and so we reach (in

agreement with [14])

Hso = −1

2
m · Brel = −1

2
(− e~

2m
s) · (∇V × p

emc2
) =

~

4m2c2
(∇V × p) · s (4.1)

This new part of the Hamiltonian has the immediate consequence that the states of our system
now also have to include a spin degree of freedom, which we shall denote by s in this thesis, eg.
|pz, s〉.
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CHAPTER 4. SPIN ORBIT INTERACTION IN CNTS

Finding the exact electric potential of a manybody system such as the CNT is in itself a
formidable problem, so we shall adopt the same assumption as [14], namely that the spin-orbit
coupling is purely intra atomic ie. Hso couples only the orbitals on the same atom, and that the
only relevant potential for these couplings is the centro-symmetric field originating from the nuclei
and the inner electrons, ie. V = V (r) - NB: the r used in this equation is of cause the distance
to the nucleus, not the distance to the CNT axis. This is the first example of an ambiguity that
is a source of many misunderstandings between quantities concerning the individual atoms, and
quantities concerning the CNT as a whole: I shall be as specific as necessary in order to counter
these ambiguities. The two assumptions above will allow us to produce a specific hamiltonian in
accordance with the technique used in [14], but note that we are somewhat more ambitious: While
Ando merely derives the spin-orbit coupling for the π bands, we aim to find the intra-atomic
hamiltonian for the entire atom, ie. also couplings between the π and σ orbitals, which, when
coupled with the σ/π curvature induced coupling from section 3.3 gives a previously unknown
term to the effective hamiltonian, first presented in [28]. Before this can be seen, however, we
must derive the intra atomic spin-orbit hamiltonian in full detail:

4.2 The atomic hamiltonian

The assumption of triatomic interaction allows us to specify one coordinate system for each atom,
ie. since we shall consider no effects concerning the other atoms in the CNT, we have the situation
of a free atom in vacuum for each carbon atom, and the various geometrical properties of the CNT
therefore yields no “natural” coordinate system for us to use. In light of the second assumption,
V = V (r), one might be tempted to use a spherical system with the atom in the origo - however, in
order to couple the following discussion to the previous sections, I shall instead choose a Cartesian
system in which the z direction is in the radial direction of the CNT, the y direction is in the tube
axis direction, and the x axis is along the circumference - this is precisely the same system as is
used in [14], and has the useful property that the pz orbital in the following can be immediately
identified as the π orbitals in the CNT, while the px and py orbitals1 are easy to geometrically
transform into the σ orbitals of the previous sections.

Now, we see that if we for the moment neglect the constant in (4.1), we have

(∇V × p) · s = −i~





dV
dy

d
dz

− dV
dz

d
dy

dV
dz

d
dx

− dV
dx

d
dz

dV
dx

d
dy

− dV
dy

d
dx



 · s (4.2)

where we have simply inserted the definition of p. Our goal in this section is to evaluate the matrix
elements of Hso between the n = 2 shells, and we shall use the lemma given explicitly in lemma in
appendix C, which proves that the derivative function with respect to a coordinate j (e.g. x,y or
z) is odd in j.

Now, given the assumption V = V (r) we see that the the potential is even in any of the
Cartesian coordinates. Furthermore, we remember that s is diagonal in the spatial part of the

1along with the 2s orbital of the atom
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Pauli equation, so we see from (4.2) that each term of the scalar product in the spatial part of
Hso is odd in two coordinates and even in the last coordinate. This means that, since we are
considering coupling between the pj (j = x, y, z) which is odd in the j coordinate and even in the
two others, and the s shell, which is even in all coordinates, we find that for the matrix element
of Hso not to be zero by symmetry, the two vectors being coupled must be |pj〉 and |pk〉 leading to

〈pj, s
′|Hso|pk, s〉 = 〈pj, s

′|ǫjkl
−i~2

4m2c2
(
dV

dj

d

dk
− dV

dk

d

dj
)sl|pk, s〉 (4.3)

where j,k and l are all coordinates, ie. x, y or z, and ǫjkl is the Levi-Civita symbol, which takes
care of two things: First, it insures that the sign of the operator is unchanged under exchange of
pj and pk, and second, it insures that the symmetry properties of (4.3) are correct, by insuring
that j and k are different from each other. Now, remembering that V = V (r), we have that
dV
dj

= dV
dr

dr
dj

= dV
dr

j
r
. With this identity (4.3) becomes

〈pj, s
′|Hso|pk, s〉 = 〈pj, s

′|ǫjkl
−i~2

r4m2c2
dV

dr
(j
d

dk
− k

d

dj
)sl|pk, s〉 =

〈pj, s
′| ~

2

r4m2c2
dV

dr
Llsl|pk, s〉 (4.4)

where we have introduced the angular momentum of the electrons along the l axis, Ll = −iǫjkl(j
d
dk
−

k d
dj

) - note that this definition has been made dimensionless. Three things may be said about this
equation: First, the spin part of the integral separates totally, ie. we have that

〈pj, s
′|Hso|pk, s〉 = 〈pj|

~

r4m2c2
dV

dr
Ll|pk〉〈s′|sl|s〉 (4.5)

Second, we have that

Lz|px〉 = Lz
1√
2
(−|211〉 + |21 − 1〉) = i

i√
2
(|211〉 + |21 − 1〉) = i|py〉 (4.6)

Lz|py〉 = Lz
i√
2
(|211〉+ |21 − 1〉) = −i 1√

2
(−|211〉 + |21 − 1〉) = −i|px〉 (4.7)

Lz|pz〉 = Lz|210〉 = 0 (4.8)

where we have used (2.4). From this follows the statement

Ll|pk〉 = −iǫjkl|pj〉 (4.9)

since the other 6 equations contained in (4.9) is obtained by rotating the coordinates cyclically in
equations (4.6), (4.7) and (4.8) once and twice. Third, if we, for a moment, consider the spatial
integral in a spherical coordinate system, we see that if we remember that the radial part of the
|nlm〉 orbitals depends only on n− l and since the |pi〉 all have n− l = 1 and the quantity ~

2

2rm2c2
dV
dr

in (4.5) only depends on r (as opposed to φ and θ in the spatial integral), we may rewrite (4.5)

〈pj , s
′|Hso|pk, s〉 = 〈pj|

−iǫjkl~
2

r4m2c2
dV

dr
|pj〉〈s′|sl|s〉

= 〈pj,θφ(φ, θ)|pj,θφ(φ, θ)〉〈s′|sl|s〉
∫

dr|pj,r(r)|2
−iǫjkl~

2

r4m2c2
dV

dr
(4.10)
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where we have also used (4.9) in the first equality, and we have separated the real function pj(r) =
pj,θφ(θ, φ)pj,r(r) and the spatial bracket in the final expression is understood to be the integral over
the angular dependence only, which furthermore is independent on j, since changing j from eg.
x to y simply corresponds to renaming the axises of the coordinatesystem . We can now use the
fact that 〈pj,θφ(φ, θ)|pj,θφ(φ, θ)〉 = 1, easily seen from (2.4) using that for the spherical harmonics
〈Ylm|Yl′m′〉 = δl,l′δm,m′ to finally define the (real and positive) constant αso,as

αso =

∫

dr|pj,r(r)|22
~

2

r4m2c2
dV

dr
(4.11)

which is approximately 12 meV for the 2p orbitals of carbon[29] (the factor two is there to insure
that we get the same value as is conventional in the literature), and thus allows us to write

〈pj , s
′|Hso|pk, s〉 = −αso

2
iǫjkl〈s′|sl|s〉 (4.12)

Now, all that remains is to be done is to determine the result of the spin-space integral. In (4.12)
we have not yet chosen a spin quantization axis, but if we, along with [14], choose the z direction,
we find that for we have

〈↓z |sk| ↓z〉 =







0 for k=x
0 for k=y
−1 for k=z

〈↓z |sk| ↑z〉 =







1 for k=x
i for k=y
0 for k=z

〈↑z |sk| ↓z〉 =







1 for k=x
−i for k=y
0 for k=z

〈↑z |sk| ↑z〉 =







0 for k=x
0 for k=y
1 for k=z

(4.13)

Now, remembering that the 2s shells are not affected by Ĥso due to symmetry, we can now write the
Ĥso in a matrixform, where we use the basis {|s, ↑z〉, |px, ↑z〉, |py, ↑z〉, |pz, ↑z〉, |s, ↓z〉, |px, ↓z〉, |py, ↓z

〉, |pz, ↓z〉},

Ĥso =
αso

2

























0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 −1
0 i 0 0 0 0 0 −i
0 0 0 0 0 1 i 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 i 0
0 0 0 −i 0 −i 0 0
0 −1 i 0 0 0 0 0

























(4.14)

and, since we shall need the Ĥso in the basis of σ and π orbitals, we can use the fact that the |pz〉
orbitals are by definition the same as the π shells, and furthermore, we have that the |px〉 orbitals
are in the direction of the chiral vector, we know, that in order to go from the {|s〉, |px〉, |py〉, |pz〉}
to the {s, x, y, π} coordinates used in (2.4), we need to employ β1 from the previous section (defined
above eqn. (3.24)) which is the angle between the chiral vector and the x orbital from (2.4). Now
we may switch to the {|σ1, ↑z〉, |σ2, ↑z〉, |σ3, ↑z〉, |π, ↑z〉, |σ1, ↓z〉, |σ2, ↓z〉, |σ3, ↓z〉, |π, ↓z〉}, orbital by
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two consecutive transformations (note that since the transformations are purely spatial, there is
no difference between spin-↑ and spin-↓, and to be concise, we show only the 4x4 transformation
matrix which may be used for either spin direction)

T̃ =











1√
3

√
2√
3

0 0
1√
3

− 1√
6

1√
2

0
1√
3

− 1√
6

− 1√
2

0

0 0 0 1



















1 0 0 0
0 cosβ1 sin β1 0
0 − sin β1 cosβ1 0
0 0 0 1









(4.15)

=













1√
3

√

2
3
cosβ1

√

2
3
sin β1 0

1√
3

− cos β1√
6

− sinβ1√
2

cos β1√
2

− sinβ1√
6

0
1√
3

− cos β1√
6

+ sinβ1√
2

− cos β1√
2

− sinβ1√
6

0

0 0 0 1













(4.16)

and so, if we define T =

(

T̃ 0

0 T̃

)

, we may formally write

Ĥso,{σ,π} = TĤso,{|s〉,|pj〉}T
−1 (4.17)

where the extra subscripts on the Ĥso denotes the coordinatesystem. Due to its size, I have put
the explicit expression of the matrix in appendix B.1.

In principle we are now done with the intra atomic spin-orbit coupling hamiltonian, however,
for later use we shall also need the spin-orbit hamiltonian in another system which will be global
rather than a local system defined with respect to the individual atom, as the above: We shall use
the cylindrical axis of the nanotube as the y axis, just as above, but the x-axis and z-axis shall be
defined with respect to some arbitrary, but fixed, atom position. In other words, if we define an
angular coordinate, φ, as the angular difference between the starting point and a given atom, and
rename the atomic coordinates from above for this atom x′ and z′, we have

|pz〉 = cos (φ)|pz′〉 − sin (φ)|px′〉 |px〉 = sin (φ)|pz′〉 + cos (φ)|px′〉 (4.18)

This is the same coordinate system as is used in [28], fig. 2. Furthermore, we shall choose to use
the y axis, ie. the tube axis, as spin quantization axis, both because it is the quantization used
by the numerical code used in this project, and because it will later be seen that the spin in the
axis direction is conserved to the lowest order perturbation theory in Ĥso, in contrast to the other
directions.

Now, of cause we could simply use the above results, and geometrically transform them to the
new system, however, we shall use a slightly different approach, the one probably most common in
the literature, both to present it in this thesis, and because it is quite easy to apply given the above
calculations. The method diverges from the above at the point of (4.2), where we now immediately
insert the specific form of ∇V (r), ie.

Ĥso =
~

4m2c2
(∇V (r) × p) · ŝ =

~

4rm2c2
dV

dr
(r × p) · ŝ =

~
2

4rm2c2
dV

dr
L̂ · ŝ (4.19)
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where the extra ~ in the last equality comes from the use of a dimensionless angular momentum.
This formula reminds us of the Heisenberg interaction, or exchange interaction, from basic quantum
magnetism, and in particular it reminds us of the rewriting we may make, using Ĵ j

± = Ĵk±iĴl, where
j,k and l are Cartesian axis denominators, fulfilling ǫjkl = 1, namely (using the trick of separating

the radial part of the integral and inserting αso from (4.11), thus implicitly changing Ĥso from an
operator on the full spatial+spin Hilbert space to an operator on the angular dependencies+spin,
since αso contains the radial integral):

Ĥso = αso(L̂yŝy +
1

2
(L̂y

+ŝ
y
− + L̂y

−ŝ
y
+) (4.20)

where we use the definition of Ĵ j
± of j being y, instead of the usual case where the quantization

axis is defined as z. Now, by reinserting the definitions for Ĵy
± into this expression, we find

Ĥso = αso(L̂yŝy +
1

2
((L̂z′ + iL̂x′)ŝy

− + (L̂z′ − iL̂x′)ŝy
+)) (4.21)

the matrix elements of which can easily be calculated, using (4.9). We present a derivation of all
the non-zero matrix elements, where we implicitly use that (4.9) contains a Levi-Civita symbol,
and that Sy

+(−)| ↑y (↓y)〉 = 0:

Ĥso|px′, ↑y〉 =
αso

2
(−i|pz′ , ↑y〉 + i|py, ↓y〉) (4.22)

Ĥso|py, ↑y〉 =
αso

2
(−i|px′ , ↓y〉 − |pz′, ↓y〉) (4.23)

Ĥso|pz′, ↑y〉 =
αso

2
(i|px′, ↑y〉 + |py, ↓y〉) (4.24)

Ĥso|px′, ↓y〉 =
αso

2
(i|pz′, ↓y〉 + i|py, ↑y〉) (4.25)

Ĥso|py, ↓y〉 =
αso

2
(−i|px′ , ↑y〉 + |pz′, ↑y〉) (4.26)

Ĥso|pz′, ↓y〉 =
αso

2
(−i|px′ , ↓y〉 − |py, ↑y〉) (4.27)

Of cause we find that the |2s〉 orbitals have no non-zero elements in this matrix, since L̂j|2s〉 = 0
for j = x, y, z. This hamiltonian is still defined with respect to a local coordinatesystem, but this
is of cause easily remedied using (4.18), such that, if we decide to use the basis

{|2s↑〉, |px,↑〉, |py,↑〉, |pz,↑〉, |2s↓〉, |px,↓〉, |py,↓〉, |pz,↓〉} (4.28)

and the corresponding one for the atomic coordinatesystem (ie. with x(z) exchanged to x′(z′)), we

have the transformation matrix from the global to the local system T̃g,l =









1 0 0 0
0 cos φ 0 − sin φ
0 0 1 0
0 sinφ 0 cosφ
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for both spin-up and down, we have

Ĥso,g =

(

T̃g,l 0

0 T̃g,l

)−1

Ĥso

(

T̃g,l 0

0 T̃g,l

)

=
αso

2

























0 0 0 0 0 0 0 0
0 0 0 i 0 0 −ie−iφ 0
0 0 0 0 0 ie−iφ 0 −e−iφ

0 −i 0 0 0 0 e−iφ 0
0 0 0 0 0 0 0 0
0 0 −ieiφ 0 0 0 0 −i
0 ieiφ 0 eiφ 0 0 0 0
0 0 −eiφ 0 0 i 0 0

























(4.29)
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Chapter 5

The pertubative hamiltonian

5.1 The basic problem

We are now in a position to understand the basic problem that we shall attempt to solve in
this thesis: First, we observe, that since all the terms of the hamiltonian presented so far are
invariant under time-reversal, we should expect Kramer doublets in the energy spectrum, ie. each
energylevel should have (at least) a degeneracy of 2. In terms of the quantum numbers so far used
to describe the states, and for the lowest energy states (where kt = 0) the effect of time reversal
is to change τ → −τ and sy → −sy, the first replacement owing to the fact that the state closest
to the K point will the same absolute value of kC as the one closest to K’, but with opposite sign,
ie. under time-reversal, where kC → −kC , K and K’ is exchanged, and the spin sign change is
seen from its identity as intrinsic angular momentum, since angular momenta always changes sign
under time-reversal. An instructive way to think of these states is to identify τ with the direction
of the (crystal) momentum along the circumference, and thus a (crystal) angular momentum of
the electrons parallel to the tube axis. Thus one may interpret the Kramer doublets as states
having either parallel or antiparallel orbital1 and spin angular momentum. It is possible, and
indeed as we shall see actually the case, that spin-orbit coupling and curvature effects leads to an
energysplitting between these Kramer doublets: We shall call this difference in energy between the
Kramer doublets ∆so.

Due to the curvature dependency it was expected that ∆so would be inversely proportional to
the radius of the CNT. However when we investigated this quantity as a function of chirality in
zigzag CNTs we found the mystifying functional dependence shown in figure 5.1: Something is
significantly different for the ν = −1 family of semiconducting CNTs.

Furthermore, the non-perturbed system has electron-hole symmetry for the low energy states,
as seen in the energy expression (3.22). However, when we studied the chirality dependence of ∆so

for zigzag nanotubes in figure 5.2, we see that this is broken by curvature and spin-orbit coupling:
When ∆so is large in the conduction band, it is small in the valence band, and vice versa.

These two effects can be explained by the pertubative hamiltonian that includes first order
curvature perturbation and first order spin-orbit coupling, ie. an effective 2nd order perturbation.

1crystal, not atomic
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Figure 5.1: Spin-orbit splitting for the conduction band in zigzag nanotubes. Note the logarithmic
y-axis, and that n on the x-axis is proportional to R, ie. R = a0

2π
n. The first few chiralities have

abnormal values due to higher order effects, and have been omitted.

The goal of this chapter is to derive and interpret this hamiltonian using the results of the two
previous chapters.

The reason why we call this splitting ∆so is, that in the experiments where we first saw the data
illustrated in figures 5.1 and 5.2, the gap opened only when we enabled the spin-orbit coupling.
There are reasons why only a spin dependent term could open this gap, but we shall choose to see
it as an experimental fact, to be explained by the following theory.

These data was obtained independently by me in the autumn of 2008, but was published first
in [35] - however, the explanation for the data given by [35] is not the one found by us, and by
[19] and [28].

5.2 The effective spin-orbit/curvature perturbation

Having established the atomic effect of the spin-orbit coupling in the previous chapter, we now
turn to the task of determining what the effect on the full eigenstates close to the K(’) points, ie.
formulating an effective hamiltonian. While this has been done in [28] and [19], it was also done
independently by me and the Copenhagen group. Since the spin-orbit effect involves the σ orbitals
as well as the π orbitals, we cannot simply augment the previously found effective hamiltonians
(which pr. definition only concerns the π orbitals), but we can consider the pertubative expansion
of the effective hamiltonian where, in the beginning, we consider the Ĥso as the perturbation.
Now, the first thing we notice, from appendix B.1 is, that there is no coupling between the
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Figure 5.2: Spin-orbit splitting for the valence band in zigzag nanotubes. This is opposite figure
5.1, in the sense that the ν = −1 family of the conduction band and the ν = 0,+1 family of the
valence band have similar values of ∆so for similar chiralities, and likewise for ν = 0,+1 of the
conduction band and ν = −1 of the valence band spin-orbit gaps. Again, the first few chiralities
are omitted

π orbitals (neither between spin-↑/spin-↓ or between the sublattices, as Ĥso is intra atomic by
assumption). Therefore, there is no 1st order contribution from the spin-orbit coupling to the
effective hamiltonian, and so we may think to immediately proceed to second order perturbation in
Ĥso. However, as stated above, we shall instead treat both the Ĥso and the hamiltonian describing
the curvature induced coupling (in the following denoted Ĥcv). We have to remember though, that
the states we are perturbing are degenerate at the K(’) points, wherefore we need the projection
operator that takes us out of the subspace spanned by the π bands, P̂π ≡ 1−

∑

{n:En=ǫf} |Ψnk〉〈Ψnk|
where |Ψnk〉 is the solution to the effective hamiltonian without curvature induced mixing and spin-
orbit coupling, found by diagonalizing (3.21). So, using the standard methods of perturbation
theory (eg. [32] chapter 5), we wish to evaluate the matrix element of

Ĥpert = Ĥso
P̂π

ǫf − Ĥ0

Ĥcv +H.C. (5.1)

on the states |Ψnk, s〉 from (3.21), where we have now included the spin degree of freedom. First,
we see that we may ignore the curvature induced coupling between π−π and σ−σ orbitals: since
the P̂π operator eliminates all contributions from the π orbitals, P̂πĤc,(π,π) = Ĥc,(π,π)P̂π = 0 (there
is a first order effect of this part of the curvature hamiltonian as seen in section 3.3.1, but that is
spin independent, and so not interesting for us). On the other hand, the |Ψnk, s〉 states contain no
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σ orbitals, so Hc,(σ,σ)|Ψnk, s〉 = 0, wherefore the 1+1 order perturbation due to these two parts of

the curvature hamiltonian will vanish and so we may replace Ĥcv with Ĥc,(σ−π) ie. the hamiltonian
build from (3.35),(3.39) and (3.40).

Similarly, we also see (with an argument very similar to the one employed by [16], although to
a different matrix), that if we choose the tube axis, y as our spin-quantization axis, the spin flip
part of the Ĥso hamiltonian is of no consequence, since all matrix elements in the spin off-diagonal
part of (4.29) has a factor of either eiφ or e−iφ, leading us to the conclusion, that if the bra and
ket of the energy shift expression, 〈Ψnk|Ĥpert|Ψnk〉 have the same dependence on φ (which is the
case for lowenergy states close to either the K or the K’ point respectively, since they all have
the same allowed kc value), the integral around the circumference of the spin-flip part of (4.29)

will be zero, using the wellknown expression
∫ 2π

0
eix·φdφ = δx,0 for x ∈ N. We need to be careful

here however: the states that we perturb comes from (close to) both the K and K’ point, which
will have opposite values of the wavenumber in the circumferential direction, kC , easily seen from
figure 3.2 on page 18 when we remember that the difference from neighbouring lines of allowed
k-values is exactly 2π

|C| , since this changes the value of kC by as little as possible while preserving

the cyclic boundary conditions, as seen from (3.11). This shows us why we cannot have a matrix
element of Hso between a state from near the K point to a state near the K’ point: Their kC value
differs by more than one “allowed” step. Actually, this interpretation of the e±iφ as a change in
the circumferential kC value gives us an unsurprising, but reassuring interpretation of the spin
off-diagonal elements of (4.29): the exponential functions insures that the total orbital momentum
along the y-axis is preserved, although now by adding or subtracting to/from the orbital angular
momentum of the blochwave, ie. the (crystal) angular momentum associated with going around
the circumference of the CNT, rather than the atomic orbital angular momentum from above.
Corresponding to this interpretation, it is also reassuring that the spin diagonal elements of (4.29)
doesn’t have any exponential functions in them: There would be nowhere for the orbital angular
momentum to come from/go to. Note, that the above argument is fundamentally dependent on
the fact that we only have one Ĥso in Ĥpert: if we go to higher order in Ĥso we will get terms

of the perturbation proportional to (L̂+Ŝ−)(L̂−Ŝ+), where L̂± now refers to the orbital angular
momentum around the tube axis. As stated, and as observed by [16], this effect is at least an order
of magnitude smaller than the effect of Ĥpert that we are currently studying, at least for normal

sized nanotubes: Since we know that the effect of the Ĥcv has an inversely proportional dependence
on the radius, for very large CNTs, the so called intrinsic spin- orbit coupling effect, ie. the 2nd
order effect of Ĥso becomes dominant, and indeed it is the only effect detected in graphene, which
can be thought of as a nanotube with infinite radius.

Now, similarly to the case for Ĥcv, we see that we only need the σ − π part of the Ĥso hamil-
tonian. Using that, from (4.29) and the above argument, we can write (in the language of second
quantization)

Ĥso = isy(c
†
xcz − c†zcx) (5.2)

Returning to the calculation (5.1) we see that in order to calculate the full perturbed hamil-
tonian, we also need to have the unperturbed hamiltonian for the system, ie. the graphene-
hamiltonian, for the σ states, rather than the π states as were found in chapter 2. This could in
principle be found from the derivations in the end of chapter 3, setting the curvature parameter
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Figure 5.3: The four different couplings between σ orbitals between to neighbouring atoms. The
other 5 possibilities can be generated by either the parity operation, ie. by interchanging the A
and B atom, or by the mirror symmetry in the line M.

to 0 (this is what [19] does, as we shall see in chapter 6), but some symmetries of graphene make
the calculation quite easy, and thus we shall carry it out in detail for the sake of completeness.
The principle of this calculation is the same as was used in [16] appendix A, except that we do not
employ the approximation that only σ orbitals pointing in the direction of each others host atom
couples, but rather, we calculate the entire coupling between all orbitals in the unitcell. Also note
that [16] make some untenable assumptions in their calculations, and so our result is different from
theirs.

5.2.1 calculation of Ĥ0

From symmetry we may determine that the number of different couplings is 4, even though there
are of cause 9 matrix elements to be determined (9 since there er 3 σ orbitals on either atom).
The four couplings are shown in figure 5.3 and the calculation of each uses the same parameters
as were defined in table 3.1 and numerically specified in eqn. (3.23) in section 3.3. Remembering
that the B atoms σ orbitals are found from the A atoms σ orbitals (2.4) by setting |x〉 → −|x〉

41



CHAPTER 5. THE PERTUBATIVE HAMILTONIAN

and |y〉 → −|y〉, we find that (using the definitions of the matrix elements from figure 5.3):

H11 ≡ 〈σA,1|σB,1〉 =
1

3
V σ

ss +
2
√

2

3
V σ

sp −
2

3
V σ

pp

H12 ≡ 〈σA,1|σB,2〉 =
1

3
V σ

ss +
1

3
√

2
V σ

sp +
1

3
V σ

pp

H23 ≡ 〈σA,2|σB,3〉 =
1

3
V σ

ss −
√

2

3
V σ

sp −
1

6
V σ

pp +
1

2
V π

pp

H33 ≡ 〈σA,3|σB,3〉 =
1

3
V σ

ss −
√

2

3
V σ

sp −
1

6
V σ

pp −
1

2
V π

pp (5.3)

We then, by symmetry have that

H31 = H21 = H13 = H12 H32 = H23 H22 = H33 (5.4)

Remembering section 3.3.4 we see that there is a coupling between the σ orbitals on the same
atom (unlike the case for the π orbitals, which we set to 0). This energy is

Hi ≡ 〈σA|Ĥ0|σA〉 = 〈σB|Ĥ0|σB〉 =
1

3
ǫs (5.5)

where |σA/B〉 represents any σ orbital on the specified atom.
There is a point to consider when calculating the H0, namely the precise form of the other two

terms in the Bloch sum, ie. the sum over the neighbours introduced (for the π − π coupling) in
(2.13): We have to remember that the orientation of the σ orbitals for eg. the A position is of
cause the same throughout the crystal, so the when specifying the matrix elements of the coupling
between the B atom and the A atom in the direction of the B atoms σ2 orbital, we have to cyclically
rotate the orbital numbers in (5.3) and (5.4), and for the last bond we have to rotate cyclically
once more - as can be seen from studying figure 5.3.

We furthermore have to consider which blochphase to use in the sum: strictly speaking, it
should clearly be e±ik·τj where τj is the vector defined in section 2, the ± takes care of the difference
between going from the A sublattice to the B sublattice and vice versa, and k = K(′)+κ, where κ
is the small deviation in the C direction, specified in (3.17) due to the cyclic boundary condition.
However, since we see from (3.17) that κ = O( 1

R
), and since we wish to study (5.1) to lowest order

in 1
R
, we may use K(′) instead of k, because

e±i(K+κ)·τj = e±iK·τje±iκ·τj = e±iK·τj(1 +O(
1

R
)) ≈ e±iK·τj (5.6)

Thus, we may write Ĥ0 as

Ĥ0 =

(

Ĥintra

∑

j=1...3 e
iτj·K(′)Ĥ0,σ,j

∑

j=1...3 e
−iτj·K(′)Ĥ†

0,σ,j Ĥintra

)

(5.7)

where

Ĥintra =
1

3





ǫs ǫs ǫs
ǫs ǫs ǫs
ǫs ǫs ǫs



 (5.8)
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and

Ĥ0,σ,1 =





H11 H12 H12

H12 H33 H23

H12 H23 H33



 Ĥ0,σ,2 =





H33 H12 H23

H12 H11 H12

H23 H12 H33



 Ĥ0,σ,1 =





H33 H23 H12

H23 H33 H12

H12 H12 H11



 (5.9)

5.3 The pertubative hamiltonian

We are now in a position to calculate the (1+1)nd order perturbation of curvature and spin-orbit
coupling, using as our basis (5.1), the Ĥcurv

π,σ hamiltonian from section 3.3.2 as Ĥcv and the part of

(4.29) that involves pz orbitals as Ĥso and constructing Ĥ0 from (5.7), (5.8) and (5.9). Using only
the parts of the hamiltonians coupling σ and π orbitals implicitly includes the P̂π and insures that
we perturb the low energy states 2 of graphene, since these are precisely the π bands.

The actual calculation is extremely involved, but may be carried out symbolically using a
computer (ie. mathematica). The only point one might worry about in this context is, that we
usually interpret the division by Ĥ0 in (5.1) as “diagonalize Ĥ0, insert the outer product of the
eigenstates into the numerator and divide each term by the corresponding eigenvalue”. But our
Ĥ0 is a 6x6 matrix, and thus cannot (necessarily) be automatically diagonalized, since this would
require solving a 6th order polynomial. This is not a major problem however, since we may equally
well interpret 1

Ĥ0
as the inverse matrix of Ĥ0, ie. Ĥ−1

0 , which can be calculated for any dimension,

thus avoiding the 6th order polynomial altogether.

The result of this calculation is the following:

Ĥpert = syτ





−V σ
ppa0αso cos 3θ

2
√

6R(V π
pp−V σ

pp)

a0αsoǫ2s(V π
pp+V σ

pp)

6
√

6(V σ
sp)2

a0αsoǫ2s(V π
pp+V σ

pp)

6
√

6(V σ
sp)2

−V σ
ppa0αso cos 3θ

2
√

6R(V π
pp−V σ

pp)



 ≡ syτ

(

A B
B A

)

(5.10)

In order to understand the results presented above, we wish the effect of it on the lowenergy
states. Therefore, we should add it to the effective 0th order hamiltonian with cyclic boundary
conditions (3.21), and diagonalize. Recalling that the real part of the off diagonal element of (3.21)
is kc , we see that +syτ

B2R
a0

√
3(−γ0)

(which is real) from (5.10) can seen as a pertubative correction to
ν
3
, and it is therefore easy to augment the energy expression in (3.22) to an expression for the full,

perturbed energy, that is, the energy taking the combined effect of the curvature and spin-orbit
coupling into account. As mentioned there is another contribution from the second (and first)
order perturbation due to curvature alone, similar in size to the one presented here. which we
omit in this part of the thesis, as it is naturally spin-independent, and thus, not relevant for the
explanation of the spin-orbit gap problem presented in the beginning of this section, and nor does
it contain any terms that break the electron-hole symmetry. There is also a quadratic term in
the spin-orbit coupling involving spin-flip processes, but the effect of this term is several orders
of magnitude smaller than the one presented here. A more complete discussion of these terms is
presented in the next chapter.

2ie. the states close to the Fermi level
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ν=−1
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Figure 5.4: The effect of the (1+1)nd order perturbation derived in the text for the two semi-
conducting families of nanotubes. From left to right in the two diagrams, first the graphene
hamiltonian (ie. ν) is introduced, then the B correction from the text is included, and finally the
A part is included. The arrows denote in the last two steps denote parallel or antiparallel states.

Thus we find the expression of the perturbed energy

Eeff =
a0

√
3

2R
(syτA∓ γ0

√

(
ν

3
+

B2R√
3a0(−γ0)

syτ)2 +R2k2
t ) (5.11)

This expression explains both results presented in the beginning of this chapter: First, recall that
we may set kt = 0 due to the assumption of an infinitely long nanotube. so the square root in
(5.11) becomes

|ν
3

+
B2R√

3a0(−γ0)
syτ | (5.12)

Thus, if ν
3

and Bsyτ have the same sign, there will be a large splitting between the plus and the
minus sign on the square root. Now, by inspection of (5.10) we see that B and A are positive
numbers (note that for zigzag nanotubes, cos 3θ = 1), and thus, from the square root alone (ie.
ignoring A), we should expect for the “odd” family ν = −1 that the “parallel” states (ie. states
with τ = sy) to be closest to the Fermi level, and the “anti-parallel” states (ie. states where
τ 6= sy) to be farthest away from it. However, since A is a positive number, the parallel states both
in the conduction and valence bands are shifted upwards, and so, the gap in the conduction band
is made narrower, and the gap in the valence band is made wider. For the situation where ν = +1
the situation is the opposite: Here, the parallel states are farthest from the Fermi level and the
antiparallel is closest to it, and thus, syτA widens the gap in the conduction band, and narrows it
for the valence band, in agreement with the numerical experiments presented in the beginning of
this chapter. I have tried to illustrate this effect in figure 5.4.
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Chapter 6

Izumidas derivation

There is a different, perhaps more elegant, way of reaching the effective hamiltonian of a CNT
with spin orbit coupling in the literature, namely the one presented by Izumida et al. in [19]. I
have chosen not to present it as the main method, mainly to present the (independent) work of
me and the Copenhagen group, but I shall still present the calculation in this thesis, which is the
subject of this section.

The idea of Izumidas calculation is the same as ours, ie. to attempt to explain the spin-
orbit coupling by using perturbation theory of the two perturbations, curvature and spin-orbit
interaction using the graphene hamiltonian as the unperturbed system. However, there are sev-
eral technical differences between the two calculations, and I shall therefore present a relatively
thorough derivation of their results.

6.1 Their coordinatesystem

Before going into the derivation of the effective hamiltonian, we must specify the coordinatesystem
used by Izumida, and furthermore we shall change the naming convention so as to become similar
to ours. The Izumida group, like we, operate with two different coordinate systems, ie. one global
and one atomic, defined for each atomic site on the tube. In order to be as close as possible to
our own calculation, we rename the axises of [19] so that, for the global coordinate system, the y
(not z) axis is along the tube axis, and x and z are in the plane perpendicular to the axis, where
the x-coordinate for the (arbitrarily chosen) atom 0 is chosen to be 0, so that the z-direction,
for atom 0, is coinciding precisely with the radial direction, and, consequently the x axis is along
the circumference at the position of atom 0. Compared to [19] this corresponds to making the
transformation x → y → z → x from their to ours. Similarly, their local coordinate system is
defined with origo at a given atom (denoted by subscript l) and having the x axis in the radial
direction, the z axis in the tube axis direction and y axis in the circumferential direction. We
make the same rotation here as for the global coordinate system, so as to ease comparison between
the methods: That is, in the following, the local coordinatesystem has z in the radial direction,
x in the circumferential direction and y in the tube axis direction. I have tried to illustrate this
in figure 6.1 where I have also included the θl angle, which is defined as the angle in a cylindrical

45



CHAPTER 6. IZUMIDAS DERIVATION
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Figure 6.1: The coordinate system used in this thesis to derive the results of Izumida et al.

coordinate system from the 0-atom to the lth atom on the tube, and likewise the yl coordinate is
the cylindrical coordinate along the tube from the 0 atom to the lth atom.

6.2 The effective hamiltonian

The premise, as mentioned, is the same as ours: Consider Ĥ0 = Ĥgraphene from 2 in a perturbation

expansion with the perturbation being Ĥ ′ = ĤSO + ĤCV being the hamiltonians describing spin-
orbit interaction and curvature effects respectively, both of which are assumed to be small in the
following calculation, and therefore candidates for perturbation theory. Then, introducing the
same nomenclature as in [19], 2nd order perturbation theory (5.1) becomes

〈zσ2s2τ2|Ĥ(2)
eff |zσ1s1τ1〉 =

∑

m

〈zσ2s2τ2|Ĥ ′|m〉〈m|Ĥ ′|zσ1s1τ1〉
−Em

=

∑

m

〈zσ2s2τ2|(ĤSO + ĤCV )|m〉〈m|(ĤSO + ĤCV )|zσ1s1τ1〉
−Em

(6.1)

where σ denotes whether a state represents Bloch functions on the A or B atoms, s represents the
spin of the state, and τ denotes whether the state is close to the K or the K’ point in k-space, and
〈m| and Em is the state and energy of the σ bands of Ĥ0 corresponding to one another (thus, the
projection operator from (5.1) is implicitly included), and where the Fermi energy has been set
to 0. We therefore see that we have in principle three different effective hamiltonians to calculate
the matrix elements for, namely one (Ĥ

(2)
SOSO) that comes from combining the two ĤSOs in (6.1),

another one (Ĥ
(2)
CV CV ) similarly coming from combining the two ĤCV s in (6.1), and one that comes

from the two combinations

Ĥ
(2)
SOCV =

∑

m

〈zσ2s2τ2|ĤSO|m〉〈m|ĤCV |zσ1s1τ1〉 + 〈zσ2s2τ2|ĤCV |m〉〈m|ĤSO|zσ1s1τ1〉
−Em

(6.2)
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Figure 6.2: The three independent parameters which are not zero by symmetry, denoted Hπ, Hσ

and Hsp, respectively.

describing the process of going into the σ bands (ie. bands composed of the 2s orbitals and the
p orbitals lying in the plane of the nanotube) using spin-orbit coupling and then returning to
the π bands, which are the states close to the Fermi level, composed of the p orbitals in the
radial direction at each atom site, plus the opposite direction, ie. into the σ band by curvature
perturbation and back to the π band by spin-orbit coupling. In this section we shall mostly concern
ourselves with the Ĥ

(2)
SOCV and Ĥ

(2)
CV CV (where we shall also include a first order contribution from

ĤCV ) and briefly note that the energy shift from Ĥ
(2)
SOSO is of the order of µeV and can thus be

safely ignored.
Just as in our own derivation, three things are necessary to evaluate (6.1):

1. The matrix elements from the |zσsτ〉 states to all the other states via curvature, ie. the
〈jσ2s2τ2|ĤCV |zσsτ〉 matrix elements, where j represents an atomic n = 2 orbital, ie. 2s, px,
py or pz.

2. The corresponding matrix elements for ĤSO, ie. 〈jσ2s2τ2|ĤSO|zσsτ〉.

3. The energies and eigenstates of the σ bands of Ĥ0, ie. of graphene.

6.2.1 The ĤCV hamiltonian

The curvature hamiltonian is in principle determined the same way as in chapter 3, ie. we start by
calculating the matrix elements for the orbitals on 2 neighbouring atoms (only nearest neighbour
hopping is considered in the analytics of [19], just as in our own calculations), and then, differing
from our calculation, a trick is used to generalize to the (spin-independent) Bloch-functions, from
which the generalization to the (spin-dependent) matrix elements we need is trivial, since curvature
effects are spin-independent (so we may simply add another index for spin without considering spin-
quantization axis). Now, the fundamental assumption of their derivation is the same as for our
calculations, namely that for any hopping element of all the hamiltonians considered, we have

〈j2σ2|Ĥ|j1σ1〉 ∝ 〈j2σ2|j1σ1〉 (6.3)

This assumption allows us to parametrize the matrix elements using only 3 parameters, as
already seen in chapter 3 - note, that although 4 different couplings was seen in table 3.1, we
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shall see that only the three depicted in figure 6.2 are necessary in this derivation. Since we are
considering curvature, we need to consider hopping elements from 2p or 2s orbitals to neighbouring
2s or 2p orbitals, where the 2p orbitals is not necessarily perpendicular or parallel to the vector
between the two atoms. Here [19] use the same decomposition as we did in 3.25 to obtain the same
equation as our 3.26:

〈jA0|Ĥcv|j′Bl〉 = ((n̂0j −
n̂0j · Rl

|Rl|2
Rl) · (n̂lj′ −

n̂lj′ ·Rl

|Rl|2
Rl))Hπ + (

n̂0j · Rl

|Rl|
· −n̂lj′ · Rl

|Rl|
)Hσ

= (n̂0j · n̂lj′ − 2
(n̂0j · Rl)(n̂lj′ ·Rl)

|Rl|2
+

(n̂0j · Rl)(n̂lj′ · Rl)(Rl · Rl)

|Rl|4
)Hπ − (

n̂0j · Rl

|Rl|
· n̂lj′ · Rl

|Rl|
)Hσ

= (n̂0j · n̂lj′)Hπ − (
n̂0j · Rl

|Rl|
· n̂lj′ · Rl

|Rl|
)(Hπ +Hσ) (6.4)

where we use [19]s names for the basic hamiltonian overlaps from (3.23) to remind ourselves
that there is a sign difference between Hσ and V σ

pp in (3.23). Besides of this difference however, Hπ

and Hsp are the same as V π
pp and Hσ

sp, respectively.

Similarly, we desire the overlap between a tilted 2p shell, and a neighbouring 2s shell and,
referring to figure 6.2, we see that we need only find the part of the 2p orbital lying along the Rl:

〈jA0|Ĥcv|2sBl〉 =
n̂0j · Rl

|Rl|
Hsp (6.5)

The next step is to relate these matrix elements to the geometry of the CNT. In order for us to
explain Izumida et al.s ideas, we choose to remain faithful to the definitions given in the appendix
of [19]. First, as noted before, in graphene, and indeed on the nanotube, there are only three
different nearest neighbour bonds, where “different” refers to different directions, or components
along the tube axis and circumferential directions, exemplified by the three bonds between the 0th
(A) atom and its three (B) neighbours. We shall, as in [19], define the first of these to be the one
closest to the positive circumferential direction and the second to be the one closest to the positive
direction of translational unit vector, ie. the tube axis direction. We wish to specify the vectors of
these bonds as an angle in the circumference direction and a length in the translatoric direction,
which we will call θl and Tl respectively, with l denoting the bond number.

In order to couple the results to the chirality of the CNT, we immediately calculate the depen-
dence of θl and Tl on the chiral angle, or rather, on φc = π

6
− θ, where θ (without subscript) is the

chiral angle, defined in the same way as we do in our own calculation , so φc is the angle between
the first bond and the circumferential direction. In the following, we shall make the assumption
(as we shall in general for the curvature hamiltonian) that a0

R
, where a is the lattice parameter

and R is the radius of the nanotube, is a small number, and we can therefore find the components
of the vectors representing the bonds using the approximation that the CNT close to atom 0 is
almost the same as a graphene sheet. Then, in order to maintain correspondence with the article,
we may choose to see the vector of bond number 2 as opposite the vector of bond number 1 rotated
π
3
, and the vector of bond 3 as opposite the vector of bond number 1 rotated −π

3
. This, along with
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Figure 6.3: The definitions used to calculate Ĥso is defined here. Note that only θ1 is shown, θ2
and θ3 follow by obvious extension.

the fact that each bond has the length a0√
3

leads to the following formulas for θl and Tl:

θl = γl
a0√
3R

cos(φc + δl) (6.6)

Tl = −γl
a0√
3

sin (φc + δl) (6.7)

where δl = (0, π
3
,−π

3
) and γl = (1,−1,−1). Now from this, it becomes a matter of simple geometry

to determine the vectors needed in (6.4) and (6.5) in the global coordinate system, allowing us to
start the calculation of the matrix elements: From the definition of the global coordinate system
we see, that the unit vectors of the 2p orbitals at atom 0 is simply n̂x = (1, 0, 0), n̂y = (0, 1, 0)
and n̂z = (0, 0, 1). The vector Rl is easily determined from the figure 6.3 as

Rl = (R sin θl, Tl, R(cos(θl) − 1)) (6.8)

Also shown in figure 6.3 is the two n̂lj′ in the plane perpendicular to the tube axis. From this we
see

n̂x = (cos(θl), 0,− sin (θl)) (6.9)

n̂z = (sin(θl), 0, cos(θl)) (6.10)

Finally, we observe that the unitvector along the tube axis direction is of cause the same for all
atoms, regardless of position on the CNT, and therefore we have

n̂y = (0, 1, 0) (6.11)

Now, calculation of the matrix elements of the atomic curvature hamiltonian proceeds by inserting
the relevant equations ((6.6),(6.7),(6.9),(6.11) and (6.10)) into the relevant equations (6.4) and
(6.5). The calculations are somewhat tedious but trivial, and so we simply present the results
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here:

〈zA0|Ĥcv|2sBl〉 = − 1

2
√

3

a0

R
cos2(φc + δl)Hsp (6.12)

〈zA0|Ĥcv|xBl〉 = −γl
1√
3

a0

R
cos(φc + δl)Hπ − 1

2
(Hπ +Hσ cos2(φc + δl)) (6.13)

〈zA0|Ĥcv|yBl〉 =
1

2
√

3

a0

R
γl sin (φc + δl) cos2(φc + δl)(Hπ +Hσ) (6.14)

〈zA0|Ĥcv|zBl〉 = −1

6
(
a0

R
)2 cos2(φc + δl)(Hπ − 1

2
(Hπ +Hσ) cos2(φc + δl)) (6.15)

The opposite matrix elements, ie. those involving a pz orbital on the B-atoms, can be determined
using a simple symmetry argument: if we consider only two atoms (as we do so far), we may rotate
the two nuclei onto one another by a π rotation around an axis going in the radial direction from
the tube axis through the point exactly midways between the two nuclei. Such a rotation rotates
|2sA〉 and |2sB〉 onto one another, and also |zA〉 and |zB〉 onto one another, however, |xA〉 and
|yA〉 is rotated onto −|xA〉 and −|yA〉 respectively and thus gives rise to a sign change in the
matrix elements, ie.

〈zA0|Ĥcv|2sBl〉 = 〈2sA0|Ĥcv|zBl〉 (6.16)

〈zA0|Ĥcv|xBl〉 = −〈xA0|Ĥcv|zBl〉 (6.17)

〈zA0|Ĥcv|yBl〉 = −〈yA0|Ĥcv|zBl〉 (6.18)

The next step is to determine the matrix elements of Ĥcv between various blochfunctions, and
since we work with spin independent basis functions in this part, these are naturally defined as

|jσk〉 =
1√
Ns

∑

l

ei(ktyl+µφl)|jσl > (6.19)

where Ns is the number of diatomic (primitive) unitcells in the translatoric unitcell, kt is the k
vector component along the tube axis, µ is the (dimensionless) k vector component along the
circumference, and yl and φl is the position of the σ atom in the lth primitive unitcell, and conse-
quently the sum is over primitive unitcells, rather than atoms. Now, before we begin calculating
the matrix elements it pays of to make a few general considerations:

First observe that for all the matrix elements we have that

Ĥj′A,jB
cv (k) ≡ 〈j′Ak|Ĥcv|jBk〉 =

1

Ns

∑

l,l′

ei(kt(yl−yl′)+µ(φl−φl′ ))〈j′Al′|Ĥcv|jBl〉 =

∑

l=1,3

ei(ktTl+µθl)〈j′A0|Ĥcv|jBl〉 = e
i

a0√
3
kx〈j′A0|Ĥcv|jB1〉+

e
i(− a0kx

2
√

3
+

a0ky
2

)〈j′A0|Ĥcv|jB2〉 + e
i(− a0kx

2
√

3
− a0ky

2
)〈j′A0|Ĥcv|jB3〉 (6.20)

where we have used that the first primitive unitcell (containing atom 0) is pr. definition equivalent
to all the other unit cells, and thus, instead of summing over l’ we may simply multiply by Ns,
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and furthermore, the sum over l can be reduced to three terms, due to the nearest neighbour
assumption. In the final equality, we exchange the natural CNT coordinatesystem for the k
vector, ie. k = (kt,

µ
R
) with the natural coordinatesystem for graphene, ie. k = (kx, ky) where

kx is the k-vector along the bond we defined above as the first. Since φc is precisely the angle
between the circumferential direction and the first bond, we find the relationship between the
coordinatesystems to be

(

kx

ky

)

=

(

cosφc − sin φc

sinφc cosφc

)(

µ
R

kt

)

(6.21)

The reason for this change of system is primarily that the K and K’ points, where the dispersion
relation of graphene and thus possibly also the CNT touches the Fermi level, has a chirality
independent definition in the graphene system, and we shall choose the same definitions as Izumida,
ie. K = 2π

a0
(0,−2

3
) and K = 2π

a0
(0, 2

3
) which we note is different from the K(’) points we have chosen

(2.17). They are of cause equivalent, but the final results become superficially different in the end
of this chapter: We shall deal with this at that point.

As one further derivation, before finding the actual matrix elements, observe that, if we for
brevity denote A = 〈j′A0|Ĥcv|jB1〉, B = 〈j′A0|Ĥcv|jB2〉 and C = 〈j′A0|Ĥcv|jB3〉, we find from
(6.20) that

Ĥj′A,jB
cv (k) = e

i
a0√

3
kxA+ e

i(− a0kx

2
√

3
+

a0ky
2

)
B + e

i(− a0kx

2
√

3
− a0ky

2
)
C =

e
i

a0√
3
kxA+ e

− ia0kx

2
√

3
1

2
(e

ia0ky
2 (B + C) + e

ia0ky
2 (B − C) + e

−ia0ky
2 (B + C) − e

−ia0ky
2 (B − C)) =

e
i

a0√
3
kxA+ e

− ia0kx

2
√

3 (cos(
a0ky

2
)(B + C) + i

√
3 sin(

ia0ky

2
)
B − C√

3
) =

e
i

a0√
3
kx(

1

3
(A +B + C) +

1

3
(2A−B − C)) + e

− ia0kx

2
√

3 cos(
a0ky

2
)(

2

3
(A+B + C)

+
1

3
(B + C − 2A)) + e

− ia0kx

2
√

3 i
√

3 sin(
ia0ky

2

B − C√
3

) =

A +B + C

3
(e

i
a0√

3
kx + 2e

− ia0kx

2
√

3 cos(
a0ky

2
)) +

B + C − 2A

3
(−ei

a0√
3
kx + e

− ia0kx

2
√

3 cos(
a0ky

2
))

+ e
− ia0kx

2
√

3 i
√

3 sin(
ia0ky

2

B − C√
3

)

≡ A +B + C

3
f(k) +

B + C − 2A

3
g(k) +

B − C√
3

h(k) (6.22)

What is the purpose of this derivation? Our general goal is to determine the effective hamil-
tonian of the perturbations Ĥcv and ĤSO near the K(K’) point. Therefore, in the end, we wish to
find the matrix elements not at general values of k but specifically at the K and K’ points, and
one can check that

f(K) = f(K ′) = 0 (6.23)

g(K) = g(K ′) = −3

2
(6.24)

h(K) = −h(K ′) = −iτ 3

2
(6.25)
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where we remember that τ is the valley index, which is 1 for K and −1 for K ′. This means that
with (6.22) it is now easy to determine the matrix elements between the states at the two valleys:
First, we extract the atomic matrix elements from (6.12)-(6.15), then we insert into (6.22) and
finally we use the above relations at the K(’) point to find the matrix elements at the K(’) point.
The actual calculation is a rather tedious, repeated application of the 5 wellknown trigonometric
relations

cos(φc + δl) = cos δl cosφc − sin δl sinφc (6.26)

sin(φc + δl) = sin δl cos φc + cos δl sin φc (6.27)

sin(α) cos(β) =
1

2
(sin(α− β) + sin(α + β)) (6.28)

cos(α) cos(β) =
1

2
(cos(α− β) + cos(α + β)) (6.29)

sin(α) sin(β) =
1

2
(cos(α− β) − cos(α+ β)) (6.30)

However, the calculation is essentially trivial, and so we simply present the results:

〈zAk|Ĥcv|2sBk〉 = − 1

4
√

3

a0

R
Hsp(f(k) − cos 2φcg(k) − sin 2φch(k)) (6.31)

〈zAk|Ĥcv|xBk〉 =
1

8
√

3

a0

R
(Hπ +Hσ)f(k) cos 3φc + (5Hπ − 3Hσ)(cosφcg(k) − sinφch(k)) (6.32)

〈zAk|Ĥcv|yBk〉 =
1

8
√

3

a0

R
(Hπ +Hσ)(−f(k) sin 3φc + sinφcg(k) + cosφch(k)) (6.33)

〈zAk|Ĥcv|zBk〉 = Hπf(k) − 1

96
(
a0

R
)2(f(k)(5Hπ − 3Hσ) − 4(Hπ −Hσ)(cos 2φcg(k) + sin 2φch(k))

+ (Hπ +Hσ)(cos 4φcg(k) − sin 4φch(k))) (6.34)

note that in (6.34) we have actually included the graphene hopping element (f(k)Hπ), and so, as
far as the pz orbitals are concerned, the above equations actually the full hamiltonian, except for
spin-orbit coupling. This is the reason why Izumida et al. calls them Ĥ0 rather than, as we have
chosen, Ĥcv, but note, that the σ − σ curvature coupling is not included: We shall not need this
part of the hamiltonian (just as, in fact, we did not need it in our own calculation - it was included
in chapter 3 only for completeness)

The final step in the derivation of Ĥcv is to find the matrix elements for any valley and any A-B
subspace states. The valley part is easily accomplished, since it simply consists of using (6.23) to
(6.25) in (6.31) to (6.34). The subspace part of the calculation is essentially based on two things:

First, (6.3) means that there is always a factor δσ,−σ′ in this matrix: orbitals at the same atom
are orthogonal and we also use the nearest neighbour assumption.

Second, observe, that since (6.31)-(6.34) are essentially linear combinations of each of the matrix
elements (6.12)-(6.15), they transform the same way under exchange of the sublattices, ie. we can
use the symmetries presented in (6.16)-(6.18), along with the general property of inner products
that

〈Ψ1|Ĥ|Ψ2〉 = 〈Ψ2|Ĥ|Ψ1〉∗ (6.35)
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to find the effect of exchanging the sublattices, and thus expressing a general formula of the form
desired.

These calculations are in principle trivial, but for clarity we shall present the full calculation
for one of the matrix elements, namely 〈yσ′τ |Ĥcv|zστ〉:

〈zAk|Ĥcv|yBk〉[from (6.33)] =
1

8
√

3

a0

R
(Hπ +Hσ)(−f(k) sin 3φc + sinφcg(k) + cosφch(k))

⇓ [from (6.23)-(6.25)]

〈zAτ |Ĥcv|yBτ〉 = −
√

3

16

a0

R
(Hπ +Hσ)(sinφc + iτ cos φc) = −iτ

√
3

16

a0

R
(Hπ +Hσ)e

−iτφc (6.36)

〈zBτ |Ĥcv|yAτ〉 = [from (6.35)]〈yAτ |Ĥcv|zBτ〉∗ = [from (6.18)] − 〈zAτ |Ĥcv|yBτ〉∗ =

− iτ

√
3

16

a0

R
(Hπ +Hσ)eiτφc (6.37)

By inspection of (6.36) and (6.37), we see that we, remembering the delta-kornecher function
mentioned above, may write

〈zστ |Ĥcv|yσ′τ〉 = −iτ
√

3

16

a0

R
(Hπ +Hσ)e−iστφcδσ,−σ′ (6.38)

The other four elements of Ĥcv are found in the same manner, and here we only present the results
of the calculations:

〈zστ |Ĥcv|2sσ′τ〉 = −
√

3

8

a0

R
Hspe

i2στφcδσ,−σ′ (6.39)

〈zστ |Ĥcv|xσ′τ〉 = −σ
√

3

16

a0

R
(5Hπ − 3Hσ)e

−iστφcδσ,−σ′ (6.40)

〈zστ |Ĥcv|zσ′τ〉 = − 1

64
(
a0

R
)2(4(Hπ −Hσ)ei2στφc − (Hπ +Hσ)e

i4στφc)δσ,−σ′ (6.41)

Eqns. (6.38)-(6.41) finishes our derivation of the curvature hamiltonian - next is the derivation
of the spin-orbit hamiltonian.

6.2.2 ĤSO

Izumida et al makes the same simplifying assumption as we do, namely that the spin-orbit hamil-
tonian is intra atomic, due to the assumption that the only electric field strong enough to make
a noticeable contribution to spin-orbit coupling is due to the nuclei, and then only in the close
vicinity of the nuclei, so as to only couple orbitals around that same atom. Thus, along with [19]
we may write, remembering (4.20)

ĤSO,l =
αso

2
L̂l · ŝl (6.42)

where l is the subscript for the atom and the L̂l and ŝl operators are the orbital and spin angular
momentum operators, defined in the local coordinatesystem of the lth atom, a fact that we shall
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see later is of crucial importance. Now, below we shall see that the only good quantization axis
for the spin is the y-direction, and thus we choose to write

ĤSO,l =
αso

2
(L̂y,l · ˆsy,l + L̂+,y,lŝ−,y,l + L̂−,y,lŝ+,y,l) (6.43)

where L̂(ŝ)+(−),y,l is the ladder operators for the orbital and spin angular momentum in the y
direction. We see that this is exactly the same as our expression (4.20), and so we can use the
matrix elements evaluated in (4.27).

This is a good point to elaborate on the symmetry adapted blochfunctions that Izumida et al
introduces in section 2 of their article, and which shall have a crucial importance in chapter 8: The
first guess for a symmetry adapted (ie. invariant under the CNT symmetries) blochfunction would
be simply to stick a global spin quantum number into the |jσktµ〉 spin-independent blochstates,
giving us

|jσktµs〉 =
1√
Ns

∑

l

ei(ktzl+µθl)|jσzlθl〉|s〉 (6.44)

From this expression it is obvious that we should choose y as the spin-quantization axis, since any
other direction wouldn’t be preserved under the screw symmetry operation. However, even if we
do this, we still have a problem: Since the coordinate system of the spin part of the Bloch states is
global, it doesn’t remain invariant under the screw symmetry, even if the |sy〉 states do: To make
this particular point obvious, remember that we should also demand that linear combinations of
the Bloch states be invariant under the symmetry operations. One such linear combination could
be

|jσktµsy〉 + |jσktµ− sy〉 = |jσktµ ↓z〉 (6.45)

and clearly, the global coordinatesystems z axis is not preserved under the screw symmetry. In
order to fix this, Izumida et al chooses to use the local coordinate system to represent the spin at any
given atom by rotating the spin coordinatesystem around our y-axis (their z-axis) giving a factor of

e−i
θl
2

sy , since the local coordinatesystem at atom l is rotated θl compared to the coordinatesystem
of the spin-functions, ie. we have

|sl,y〉 = e−i
θl
2

sy |s〉 (6.46)

So, for example we may calculate 〈jσ′τ ′s′l|Ĥso|zστsl〉 in the global spin-coordinatesystem:

〈jσ′τ ′s′l|ĤSO|zστsl〉 = 〈jσ′τ ′s′l|
αso

2
(sl|pyστ,−sl〉 + isl|pxστ, sl〉) =

〈jσ′τ ′s|ei
θl
2

sαso

2
(sei

θl
2

s|pyστ,−s〉 + ise−i
θl
2

s|pxστ, s〉) =

〈jσ′τ ′s|αso

2
(seiθls|pyστ,−s〉 + is|pxστ, s〉) =

Vso

2
(eisθlsδσ′,σδτ ′,τδ−s′,sδj,py + isδσ′,σδτ ′,τδs′,sδj,px) (6.47)

Note, that we can freely exchange the eigenvalues of the spin, due to the fact that we chose the y
axis as quantization axis. We see the same encouraging fact that was also seen in section 5.2:the
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first, spin-altering term of (6.47) has a factor of eisθl, which, when combined with the other, spin-
independent phase of the blochstates from (6.44), alters the orbital angular part of the blochphase
to insure conservation of total angular moment. That this is in fact so is seen from the fact
that, if we find |s〉 from (6.46) and insert it into (6.44) we get Izumida et als symmetry adapted
blochfunctions:

|jσs̃kJ〉 =
1√
Ns

∑

l

ei(ktzl+Jθl)|jσzlθlsl〉 (6.48)

where J = µ + 1
2

and the over s in the ket signifies that the spin is measured in the linear
combination of local spin-coordinatesystems, rather than in the global coordinatesystem. Note
that two states of the form (6.44) goes into a single value of J , namely (taking only the angular
quantum numbers) |µ ↑〉 and |µ+1 ↓〉. This makes it evident that the new, total angular momentum
quantum number J is invariant under Ĥso, since it couples only states with both the same µ and
s, or states with µ′ = µ± 1 and corresponding s′ = s∓ 1, all of which have the same J value.

The final note on the spin-orbit hamiltonian has to do with the relative relevance of the two
terms in (6.47) to second order perturbation theory, hinted at in the previous chapter: Since the
curvature hamiltonian is angular momentum preserving, we see that the spin altering term would
only enter into a second order perturbation of Ĥso, and so we see that the prefactor for this effect
is

Ĥ
(2)
SOSO ∝ α2

so

Eµ±1
(6.49)

The other, spin preserving term on the other hand, couples the π bands to states that can be “sent
back” to the π bands by ĤCV , and so the prefactor for these terms will be

Ĥ
(2)
SOCV ∝ αsoa0

REµ
(6.50)

We shall (as Izumida et al.) assume that we are dealing with tubes with sufficiently small radii
that we can neglect the spin altering terms from here on, but it is of cause important to realize that
for sufficiently large nanotubes there is another effect that comes into play (indeed, the Ĥ

(2)
SOSO,

also called the intrinsic spin-orbit coupling, is the only term in graphene, which may be thought
of as an infinitely large CNT [13]).

6.2.3 The graphene hamiltonian Ĥ0

The last “ingredient” for the second order perturbation theory is the eigenfunctions and energies
of the graphene hamiltonian Ĥ0. One can of cause do what we did in previous chapters and use
the standard, real 2p orbitals in-plane (ie. the “σ” orbitals), geometrically calculate the overlap
in essentially the same way as we did above for the curvature hamiltonian, and then solve it
to yield the desired eigenfunctions and energies. However, Izumida et al. have a symmetry to
blockdiagonalize the hamiltonian into three 2x2 matrices:

Notice, that we need only calculate the hamiltonian at the K and K’ point. Now, we can
calculate what the Bloch phase on the atoms surrounding the zeroth atom (on the A sublattice),
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as done in e.g. [13], using the convention K(′) = (0,−τ 2π
a0

2
3
):

φBloch,1 = K(′) · l1 =

(

0
−τ 2π

a0

2
3

)

·
( a0√

3

0

)

= 0 (6.51)

φBloch,2 = K(′) · l1 =

(

0
−τ 2π

a0

2
3

)

·
(− a0

2
√

3
a0

2

)

= −τ 2π

3
(6.52)

φBloch,3 = K(′) · l1 =

(

0
−τ 2π

a0

2
3

)

·
(− a0

2
√

3

−a0

2

)

= τ
2π

3
(6.53)

Notice, that it is important that we define the zeroth atom to be on the A sublattice: If we were
to find the relative blochphase of the atoms surrounding a B atom, the ll vectors direction would
be inverted, ie. we would have −ll at all places of the above calculations, giving us an opposite
sign in the results, since scalar product is linear. This can be conveniently expressed as

φBloch,1 = 0 φBloch,2 = −στ 2π

3
φBloch,3 = στ

2π

3
(6.54)

where σ stands for the sublattice of the implied zeroth atom.
Already here, we glimpse the outline of the technique used to blockdiagonalize the hamiltonian:

Let us try to calculate 〈2sAτ |Ĥ|2sBτ〉:

〈2sAτ |Ĥ|2sBτ〉 =
1

Ns

∑

l,l′

e
i(ll−ll′)·(0,−τ 2π

a0

2
3
)〈2sAl′|Ĥ|2sBl〉 =

∑

l=1..3

e
ill·(0,−τ 2π

a0

2
3
)〈2sA0|Ĥ|2sBll〉 = 〈2sA0|Ĥ|2sBl1〉

∑

l=1..3

eiφBloch =

〈2sA0|Ĥ|2sBll〉 × 0 = 0 (6.55)

In the second equality we used the nearest neighbour assumption, and in the third, we used the
fact that the 2s orbitals are rotationally invariant, and so the only difference when calculating the
matrix elements to B atom 1, 2 and three is the different blochphases on these atoms. Now, for
the other components of the σ orbitals, px and py, the rotational dependence is not so easy to
include in our calculation, since it would be some trigonometric dependence on the angle between
the bonds from the A atom. There is, however another set of orbitals more suited for precisely this
sort of thing, namely the spherical harmonics we originally used to construct the real 2p orbitals.
Recall that

|nlm〉 = F (n, l)eimφ (6.56)

and also that

|21χ〉 =
1√
2
(−χ|px〉 − i|py〉) (6.57)

where χ = ±1 has been introduced as a parameter denoting which one of the spherical harmonics
we are referring to. Now, in analogy with derivation (6.55), we wish to express 〈(21χ)A0|Ĥ|2sBl〉
for l = 2, 3 as a multiplum of a phase factor and 〈(21χ)A0|Ĥ|2sB1〉. Of cause, the part of the
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blochφ      =τ2π/3

|2sB2>

<(21v)A0|

blochφ      =0

φ    =ν2π/3
rot

|2sB1><(21v)A0|

Figure 6.4: The rotational symmetry of the (21χ) at the K(’) points relevance for matrix element
calculation is seen here for an example of 〈(21χ)A0|Ĥ|2sB2〉: In order to make 〈(21χ)A0|Ĥ|2sB2〉
look like〈(21χ)A0|Ĥ|2sB1〉, we have to rotate the orbital on the A atom 2π

3
. We also remember

the blochphase, and the fact that we rotate the bra, not the ket, which gives us an extra minus
sign in the calculation in the text.

phase that comes from the Bloch nature of the functions is the same as it was in derivation (6.55),
but there is now an extra phase stemming from the fact, that the direction towards e.g. B atom 2
(l2) is rotated 2π

3
around the z-axis compared to the bond towards l1, and so, due to the rotational

dependence of the |21χ〉 functions (6.56), if we imagine looking at the |21χA〉 orbital from B atom
2, compared to the same function “seen” from B atom 1, the only difference will be a phase factor
of χ2π

3
. However, we must also remember that we wish to find the complex conjugate of this

rotation, since we need 〈21χ|, rather than |21χ〉. Therefore, we finally find, we may write

〈(21χ)A0|Ĥ|2sB2〉 = ei 2π
3

(−χ−τ)〈(21χ)A0|Ĥ|2sB1〉 (6.58)

This is illustrated in figure 6.4
For the last bond we see that both the rotation and the blochphase changes sign, and we

therefore get
〈(21χ)A0|Ĥ|2sB3〉 = ei 2π

3
(χ+τ)〈(21χ)A0|Ĥ|2sB1〉 (6.59)

Now calculating 〈(21χ)Aτ |Ĥ|2sBτ〉 is simple:

〈(21χ)Aτ |Ĥ|2sBτ〉 =
∑

l=1..3

e
ill·(0,−τ 2π

a0

2
3
)〈(21χ)A0|Ĥ|2sBll〉 = 〈(21χ)A0|Ĥ|2sB1〉

(1 + ei 2π
3

(−τ−χ) + ei 2π
3

(τ+χ)) = 3δτ,−χ〈(21χ)A0|Ĥ|2sB1〉 (6.60)

where the final delta-kornecher is derived from the fact that if τ and χ are the same, the phase
factors becomes 1 + ei 2π

3 + e−i 2π
3 = 0. An equivalent calculation for 〈(21χ)Bτ |Ĥ|2sAτ〉 gives

〈(21χ)Bτ |Ĥ|2sAτ〉 =
∑

l=1..3

e
ill·(0,−τ 2π

a0

2
3
)〈(21χ)B0|Ĥ|2sAll〉 = 〈(21χ)B0|Ĥ|2sA1〉

(1 + ei 2π
3

(−τ+χ) + ei 2π
3

(τ−χ)) = 3δτ,χ〈(21χ)B0|Ĥ|2sA1〉 (6.61)
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where the sign change on χ in the last line comes from the σ dependence of (6.54). Notice that
from (6.60) and (6.61) we may write

〈(21χ)στ |Ĥ|2sσ′τ〉 = 3δ−στ,χ〈(21χ)σ0|Ĥ|2sσ′1〉δσ,−σ′ =

3〈(21 − στ)σ0|Ĥ|2sσ′1〉δσ,−σ′ (6.62)

The last thing to calculate is the overlap between two |(21χ)〉 orbitals on neighbouring sites.
If, in figure 6.4 we replace the 2s orbital with another |(21χ′)〉 orbital, we see, that in order to get
from the bond l2 to the bond l1, we need to rotate the |(21χ′)〉 on the B atom as well, in the same
direction as the A atom, on top of the phase factors already found above. Specifically, we find the
matrixelement is

〈(21χ)Aτ |Ĥ|(21χ′)Bτ〉 =
∑

l=1..3

e
ill·(0,−τ 2π

a0

2
3
)〈(21χ)A0|Ĥ|(21χ′)Bll〉 =

〈(21χ)A0|Ĥ|(21χ′)B1〉(1 + ei 2π
3

(−τ−χ+χ′) + ei 2π
3

(τ+χ−χ′)) =

3δτ,χδχ,−χ′〈(21χ)A0|Ĥ|(21χ′)B1〉 = 3〈(21τ)A0|Ĥ|(21 − τ)B1〉 (6.63)

By carefully inspecting the results (6.60), (6.61) and (6.63), we find, that we have in fact found a
good basis in which the hamiltonian is composed of 3 2x2 blockdiagonal matrices, since the |21χ〉
orbitals combine with either another |21χ〉 orbital or a 2s on the other sublattice, but not both.

In order to calculate the actual eigenfunctions and energies, we need the atomic overlaps, but
that is simple using (6.57) and using the formulas (6.4) and (6.5) with the two simplifications that
there is no curvature, and we need only consider R1. Note however, that for the calculation arising
from (6.62), we need to have both R1, going from the A to the B sublattice, and −R1 going from
the B to the A sublattice. This we shall take into account by using σR1, since this will exactly
take care of this issue. From the fact that there is no curvature, we see that ˆnx,1 = (1, 0, 0) and
ˆny,1 = (0, 1, 0), and also σR1 = σ a0√

3
(cosφc,− sinφc, 0). We thus find

3〈(21 − στ)σ0|Ĥ|2sσ′1〉δσ,−σ′ =
3√
2
(στ〈xσ0|Ĥ|2sσ′1〉 + i〈yσ0|Ĥ|2sσ′0〉) =

3Hsp√
2

(στ
σR1 · n̂x

|R1|
+ i

σR1 · n̂y

|R1|
) =

3Hsp√
2

(στ
σa/

√
3 cosφc

a/
√

3
+ i

−σa0/
√

3 sinφc

a0/
√

3
) =

3Hsp√
2
τ(cosφc − iστ sinφc) =

3Hsp√
2
τe−iστφc (6.64)
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and

3〈(21τ)A0|Ĥ|(21 − τ)B1〉 =
3

2
((−τ〈xA0| + i〈yA0|)Ĥ(τ |xB0〉 − i|yB0〉)) =

3

2
(−〈xA0|Ĥ|xB0〉 + 〈yA0|Ĥ|yB0〉 + iτ(〈yA0|Ĥ|xB0〉 + 〈xA0|Ĥ|yB0〉)) =

3

2
(−(Hπ ˆnx,0 · ˆnx,1 − (Hπ +Hσ)

(R1 · ˆnx,0)(R1 · ˆnx,1)

|R1|2
)+

(Hπ ˆny,0 · ˆny,1 − (Hπ +Hσ)
(R1 · ˆny,0)(R1 · ˆny,1)

|R1|2
)

+ iτ((Hπ ˆnx,0 · ˆny,1 − (Hπ +Hσ)
(R1 · ˆnx,0)(R1 · ˆny,1)

|R1|2
)+

(Hπ ˆny,0 · ˆnx,1 − (Hπ +Hσ)
(R1 · ˆny,0)(R1 · ˆnx,1)

|R1|2
))) =

3

2
(Hπ − (Hπ +Hσ) cos2 φc −Hπ + (Hπ −Hσ) sin2 φc + iτ2(Hπ +Hσ) sinφc cosφc) =

3

2
(Hπ +Hσ)(cos 2φc + iτ sin 2φc) =

3

2
(Hπ +Hσ)e

i2φcτ (6.65)

This establishes the off-diagonal elements of the graphene hamiltonian. The diagonal elements
fall into two categories: Those between 2s orbitals and those between 2p orbitals (Izumida et al.
also makes the assumption that the energy of any 2p shell is the same as any other 2p shell). Along
with [19] we set 〈2pσ|Ĥ|2pσ〉 = 0 and define ǫ2s = 〈2sσ|Ĥ|2sσ〉, as in our own calculation.

With the graphene hamiltonian established, we can find the eigenvalues and eigenfunctions
that we need for the perturbation. This calculation is simple but tedious, and so we shall simply
present the results here:

For the two block matrices coming from overlap between |2s〉 and |21χ〉 orbitals we get the
same two eigenvalues for both:

E(2s,21χ),η =
1

2
(ǫ2s + η

√

ǫ22s + 18Hsp) (6.66)

and, defining cη =
√

ηE(2s,21χ),η

E(2s,21χ),+1−E(2s,21χ),−1
, the eigenfunctions

|m(2s,21χ), ηστ〉 = −ητcη|2s− στ〉 + c−ηe
−iστφc |(21 − στ)στ〉 (6.67)

where η = ±1 denotes conduction/valence band. Note that there are 4 eigenfunctions for a given
point in k-space (ie. a given τ): 2 possible η values times 2 possible values of σ.

For the third blockmatrix we find the eigenvalues

E(21χ,21χ),η =
3

2
η(Hπ +Hσ) (6.68)

and the eigenfunctions

|m(21χ,21χ),ητ 〉 =
1√
2

∑

σ

(−1)
1−η
2

1−σ
2 eiστφc |(21στ)στ〉 (6.69)
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At last, we are now ready to derive the effective hamiltonian: Using (6.38)-(6.40) for ĤCV ,
(6.47) for Ĥso (or in fact, only the spin preserving part of (6.47), since we are interested only in
intra-subband processes) and (6.66),(6.67),(6.68) and (6.69) for |m〉 and Em in equation (6.2) for
the perturbation theory, we may finally derive the matrices we set out to find.

6.2.4 Ĥ
(2)
SOCV and Ĥ

(2)
CV CV

The derivation leading to the two desired hamiltonians are now in principle trivial, but rather
involved: For completeness we shall go through them here. It is a good idea to find the 4 matrix
elements that shall be needed, as done in [19], namely the matrixelement between |zσsτ〉 and the
two eigenfunctions (6.67) and (6.69), respectively, for the two perturbation hamiltonians, ĤCV and
ĤSO, respectively: First we find the elements of ĤCV from (6.67), (6.69), (6.38)-(6.40) and of cause
employing the definition in (6.57). Since there is no spin dependency in ĤCV , we may simply add
the s index, and multiply the result of the spin-independent matrix elements by δs,s′ to insure spin
conservation:

〈zσsτ |ĤCV |m(2s,21χ),ησ′s′τ ′〉 = δs,s′(−ητ ′cη|zσsτ〉ĤCV |2s− σ′s′τ ′〉 +
c−η√

2
e−iσ′τ ′φc

(σ′τ ′〈zσsτ |ĤCV |xσ′s′τ ′〉 − i〈zσsτ |ĤCV |yσ′s′τ ′〉)) = δs,s′δτ,τ ′(δσ,−(−σ′)
ητcη

√
3a0

8R

ei2φcστHsp + δσ,−σ′
c−η√

2
eiστφc(−στ(−σ)

√
3a0

16R
(5Hπ − 3Hσ)e

−iστφc − τ

√
3a0

16R
(Hπ +Hσ)e

−iστφc)) =

δs,s′δτ,τ ′τ

√
3a0

8R
(δσ,σ′ηcηe

i2στφcHsp + δσ,−σ′

√
2c−η(Hπ −Hσ)) (6.70)

and

〈zσsτ |ĤCV |m(21χ,21χ),ηs′τ ′〉 =
1

2
δs,s′

∑

σ′

(−1)
1−η
2

1−σ′

2 eiφcτ ′σ′
(−σ′τ ′〈zσsτ |ĤCV |xσ′τ ′s′〉

− i〈zσsτ |ĤCV |yσ′s′τ ′〉) =
1

2
δτ,τ ′δs,s′(−1)

1−η
2

1+σ
2 e−iφcστ (στ(−σ

√
3

16

a0

R
(5Hπ −Hσ)e

−iφcτσ)

− τ

√
3

16

a0

R
(Hπ +Hσ)e

−iστφc) = δs,s′δτ,τ ′τ(−1)
1−η

2
1+σ

2
+1e−i2φcτσ

√
3

16

a0

R
(3Hπ −Hσ) (6.71)

Next, we calculate the corresponding matrix elements of ĤSO, using (6.47). Notice, that due to
the way (6.47) was derived, we unfortunately need the complex conjugate of it. However, all
parameters (αso in particular) are real, so complex conjugating is a simple matter. Recall also,
that since we are not dealing linear combinations of states, we can freely exchange sl with s in the
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bra and ket of (6.47):

〈zσsτ |ĤSO|m(2s,21χ),ησ′s′τ ′〉 =

− ητ ′cη〈zσsτ |ĤSO|2sσ′s′τ ′〉 +
c−η√

2

αso

2
e−iσ′τ ′φc(σ′τ ′〈zσsτ |ĤSO|xσ′s′τ ′〉 − i〈zσsτ |ĤSO|yσ′s′τ ′〉) =

αsoc−η

2
√

2
e−iσ′τ ′φc(−isσ′τ ′δτ,τ ′δσ,σ′δs,s′ − isδµ,µ′−sδs,−s′δτ,τ ′δσ,σ′) =

− is
αsoc−η

2
√

2
e−iστφc(στδs,s′ + δµ,µ′−sδs,−s′)δτ,τ ′δσ,σ′ (6.72)

Where we remember from section 6.2.2 that the µ quantum number is the quantum number for
the circumferential part of the k vector. The final matrix element needed is

〈zσsτ |ĤSO|m(21χ,21χ),ηs′τ ′〉 =

1

2

∑

σ′

(−1)
1−η
2

1−σ′

2 eiσ′τ ′φc(σ′τ ′〈zσsτ |ĤSO|xσ′s′τ ′〉 − i〈zσsτ |ĤSO|yσ′s′τ ′〉) =

VSO

4

∑

σ′

(−1)
1−η
2

1−σ′

2 eiσ′τ ′φc(isσ′τ ′δs,s′δσ,σ′δτ,τ ′ − isδs,−s′δµ,µ′−sδσ,σ′δτ,τ ′) =

iαsos

4
(−1)

1−η
2

1−σ
2 eiστφcδτ,τ ′(στδs,s′ − δµ,µ′−sδs,−s′) (6.73)

In the following derivation, it will turn out to be useful to know three quantities, which we shall
therefore derive first. Since only the eigenvalues from (6.66) shall be involved, we abbreviate
E(2s,21χ),η to Eη:

∑

η

c2η
Eη

=
∑

η

ηEη

Eη(E1 − E−1)
=
∑

η

η

(E1 −E−1)
= 0 (6.74)

∑

η

c2−η

Eη
=
c2−1

E1
+

c21
E−1

=
E−1c

2
−1 + E1c

2
1

E1E−1
=

−E2
−1 + E2

1

E1E−1(E1 − E−1)
=

E1 + E−1

E1E−1
=

ǫ2s

1
4
ǫ2s − 1

4
(ǫ2s + 18H2

sp)
= − 2ǫ2s

9H2
sp

(6.75)

∑

η

c−ηcηη

Eη
=
c−1c1
E1

− c1c−1

E−1
=

E−1

√−E1E−1

E1E−1(E1 −E−1)
− E1

√−E1E−1

E1E−1(E1 − E−1)
=

− E1 −E−1√−E1E−1(E1 − E−1)
=

−1√−E1E−1

=
−1

√

−1
4
(ǫ2s − ǫ2s − 18H2

sp)
= −

√
2

3Hsp
(6.76)
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As stated in section 6.2.2 we shall ignore the inter-subband terms, ie. the terms containing δµ,µ′−s.
We can then derive

∑

η

〈zσ′′s′′τ ′′|ĤCV |m2s,21χ, ησ
′s′τ ′〉〈m2s,21χ, ησ

′s′τ ′|ĤSO|zσsτ〉
−E(2s,21χ),η

=

∑

η

(δs′′,s′δτ ′′,τ ′τ ′′
√

3a0

8R
(δσ′′,σ′ηcηe

i2τ ′′σ′′φcHsp + δσ′′,−σ′

√
2c−η(Hπ −Hσ)))(

isαsoc−η

2
√

2
eiστφcδτ,τ ′δσ,σ′στδs,s′)

−E(2s,21χ),η

=

αso
a0

R
δτ ′′,τδs′′,ss

√
3i

16
√

2
τ 2(δσ′′,σ

∑

η

(
ηcηc−η

−E(2s,21χ),η

)e3iστφcHspσ+

δσ′′,−σ

√
2
∑

η

(
c2−η

−E(2s,21χ),η

)σ(Hπ −Hσ)eiτσφc) =

αsoa0

√
3

16R
ŝZ τ̂I(iσ̂Z

1

3
ei3στφc + σ̂Y e

iστφc
2ǫ2s(Hπ −Hσ)

9H2
sp

) (6.77)

Where in the last equality we have started to use the subband,valley and spin Pauli matrices,
through the identities for the components of a general paulimatrixvector Σ̂:

Σ̂I = δΣ,Σ′′ Σ̂X = δΣ,−Σ′′ Σ̂Y = iΣδΣ,−Σ′′ Σ̂Z = ΣδΣ,Σ′′ (6.78)

Next we calculate the other term of Ĥ
(2)
SOCV involving |m2s,21χ, ησ

′s′τ ′〉1:

∑

η

〈zσ′′s′′τ ′′|ĤSO|m2s,21χ, ησ
′s′τ ′〉〈m2s,21χ, ησ

′s′τ ′|ĤCV |zσsτ〉
−E(2s,21χ),η

=

∑

η

(−iσ′′τ ′′s′′δs′′,s′δτ ′′.τ ′δσ′′,σ′
αsoc−η

2
√

2
e−iσ′′τ ′′φc)(δs,s′δτ,τ ′τ

√
3a0

8R
(δσ,σ′ηcηe

−i2φcστHsp + δσ,−σ′

√
2c−η(Hπ −Hσ)))

−E(2s,21χ),η

= −isδs,s′′
αsoa0

√
3

16R
τ 2δτ,τ ′′(δσ,σ′′e−i3στφcσ

1√
2
Hsp

∑

η

(
ηcηc−η

−E(2s,21χ)η

)+

δσ,−σ′′eiστφc(Hπ −Hσ)(−σ)
∑

η

(
c2−η

−E(2s,21χ)η

))

=
αsoa0

√
3

16r
ŝZ τ̂I(−iσ̂Z

1

3
e−i3στφc + σ̂Y e

iστφc
2ǫ2s(Hπ −Hσ)

9H2
sp

) (6.79)

Following this, we need to calculate the contribution to Ĥ
(2)
SOCV using the other intermediate states,

ie. |m21χ,21χητs〉. There are three observations that shall make the calculation somewhat easier:

1This may at first seem as a simple complex conjugation of (6.77) - that is not true however: We also need to
exchange the initial and final state after complex conjugation, and it is therefore better to be careful and make a
separate calculation.
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First, E(21χ,21χ),+1 = −E(21χ,21χ),−1. Second, since both σ and η are ±1, the quantity 21−η
2

1−σ
2

+ 1

is always odd, and third (−1)
1−η
2

( 1−σ
2

+ 1+σ
2

)+1 = −η. So:

∑

η

〈zσ′′s′′τ ′′|ĤCV |m(21χ,21χ),ηs′τ ′〉〈m(21χ,21χ),ηs′τ ′ |ĤSO|zσsτ〉
−E(21χ,21χ),η

=

∑

η

(δs′′,s′δτ ′′,τ ′τ ′′(−1)
1−η
2

1+σ′′

2
+1e−2iσ′′τ ′′φc

√
3a0

16R
(3Hπ −Hσ))(−iαsos

4
(−1)

1−η
2

1−σ
2 e−iστφcδτ,τ ′στδs,s′)

−Eη
=

− sδs′′,sτ
2δτ ′′,τ

(3Hπ −Hσ)
√

3a0αsoi

64R
(δσ,σ′′σ

∑

η

(
(−1)

1−η
2

( 1−σ
2

+ 1+σ
2

)+1

−Eη
)e−i3φcστ−

δσ,−σ′′σ
∑

η

(
(−1)

1−η
2

( 1−σ
2

+ 1−σ
2

)+1

−Eη

)eiστφc) =

− sδs′′,sδτ ′′,τ
(3Hπ −Hσ)

√
3a0αsoi

64R
(δσ,σ′′σe−i3φcστ (

1

E+1
− 1

E−1
) − δσ,−σσe

iστφc(
1

E+1
+

1

E−1
)) =

− sδs,s′′δτ,τ ′′δσ,σ′′σ
(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
e−3iστφc = −(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
σ̂Z τ̂I ŝZe

−3iστφc (6.80)

where we from the second line onwards have abbreviated E(21χ,21χ),η to Eη for readability. Then
the other element from (6.2) involving the functions |m(21χ,21χ),ηsτ 〉 is evaluated:

∑

η

〈zσ′′s′′τ ′′|ĤSO|m(21χ,21χ),ηs′τ ′〉〈m(21χ,21χ),ηs′τ ′ |ĤCV |zσsτ〉
−E(21χ,21χ),η

=

∑

η

( iαsos′′

4
(−1)

1−η
2

1−σ′′

2 eiσ′′τ ′′φcδτ ′′,τ ′σ′′τ ′′δs,s′′)(δs,s′δτ,τ ′τ(−1)
1−η
2

1+σ
2

+1e2iφcστ
√

3a0

16R
(3Hπ −Hσ))

−Eη
=

sδs,s′′τ
2δτ,τ ′′

iαso

√
3a0(3Hπ −Hσ)

64R
(δσ,σ′′σ

∑

η

(
(−1)

1−η
2

( 1−σ
2

+ 1+σ
2

)+1

−Eη

)e3iστφc

+ δσ,−σ′′(−σ)
∑

η

(
(−1)

1−η
2

( 1+σ
2

+ 1+σ
2

)+1

−Eη
)eiστφc) =

iαso

√
3a0(3Hπ −Hσ)

64R
sδs,s′′δτ,τ ′′(δσ,σ′′σei3στφc(

1

E−1

− 1

E+1

) − δσ,−σ′′σeiστφc(
1

E+1

+
1

E−1

)) =

sδs,s′′δτ,τ ′′δσ,σ′′σ
(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
e3iστφc =

(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
σ̂Z τ̂I ŝZe

3iστφc (6.81)

where again we have abbreviated E(21χ,21χ),η to Eη.

Finally we can construct Ĥ
(2)
SOCV by adding the contributions from (6.77), (6.79), (6.80) and
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(6.81):

Ĥ
(2)
SOCV =

αsoa0

√
3

16R
ŝZ τ̂I(iσ̂Z

1

3
(ei3στφc − e−i3στφc) + 2σ̂Y e

iστφc
2ǫ2s(Hπ −Hσ)

9H2
sp

)+

(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
σ̂Z τ̂I ŝZ(e3iστφc − e−3iστφc) = −(

(3Hπ −Hσ)a0αsoi

16
√

3R(Hπ +Hσ)
+
αsoa0

√
3

16R
)σ̂I τ̂Z ŝZ sin 3φc+

(Hπ −Hσ)ǫ2s

12
√

3H2
sp

αso
a0

R
(τ̂I ŝzσ̂y cosφc + iσ̂Y τ̂I ŝZστ sin φc) =

(
−Hπ

2
√

3(Hπ +Hσ)
σ̂I τ̂Z sin 3φc +

(Hπ −Hσ)ǫ2s

12
√

3H2
sp

(τ̂I σ̂y cosφc − σ̂X τ̂Z sinφc))ŝZ
αsoa0

R

≡ (A2σ̂I τ̂Z sin 3φc + A1(σ̂Y τ̂I cosφc − σ̂X τ̂Z sinφc))ŝz (6.82)

where we have introduced the two parameters A1 = (Hπ−Hσ)ǫ2s

12
√

3H2
sp

αso
a0

R
and A2 = −Hπ

2
√

3(Hπ+Hσ)
αso

a0

R
.

Similarly the above calculations for Ĥ
(2)
SOCV , we may find the 2nd order curvature induced

perturbation, Ĥ
(2)
CV CV , arising from hybridization with the σ states, using (6.70) and (6.71) for

both perturbation matrices. From (6.1) we see that only one term relevant to this calculation

exists, as opposed to the two terms necessary when calculating Ĥ
(2)
SOCV :

Ĥ
(2)
CV CV =

∑

m,η

〈zσ′′s′′τ ′′|ĤCV |mηs′τ ′σ′〉〈mηs′τ ′σ′ |ĤCV |zσsτ〉
−Emη

(6.83)

where them subscript denotes the two possible types of σ states, ie. |m21χ,21χ, ηsτ〉 and |m2s,21χ, ηsτσ〉
(so obviously the σ′ index in (6.83) only applies to the (2s, 21χ) states). Thus analogous with the

calculation above for Ĥ
(2)
SOCV we evaluate (6.83) for each m:

∑

η

〈zσ′′s′′τ ′′|ĤCV |m2s,21χ, ηs
′τ ′σ′〉〈m2s,21χηs

′τ ′σ′|ĤCV |zσsτ〉
−E(2s,21χ),η

=
∑

η

1

−E(2s,21χ),η

(δτ ′′,τ ′δs′′,s′τ
′′ 3a2

0

64R2
(c−η(Hπ −Hσ)

√
2δσ′′,σ′ + ηcηe

i2σ′′τ ′′φcHspδσ′′,σ)

· τ(c−η(Hπ −Hσ)
√

2δσ,σ′ + ηcηe
−i2στφcHspδσ,σ))

=
−3

64
(
a0

R
)2τ 2δτ,τ ′′δs,s′′(δσ,σ′′(2(Hπ −Hσ)

2
∑

η

(
c2−η

Eη
) +H2

sp

∑

η

ηc2η
E(2s,21χ),η

)

+ δσ,−σ′′(
√

2
∑

η

(
c−ηcηη

E(2s,21χ),η
)(Hπ −Hσ)Hspe

−i2στφc +
√

2
∑

η

(
c−ηcηη

E(2s,21χ),η
)(Hπ −Hσ)Hspe

−i2στφc))

=
−3

64
(
a0

R
)2δτ,τ ′′δs,s′′(δσ,σ′′2(Hπ −Hσ)

2 2ǫ2s

9H2
sp

+ δσ,−σ′′2
√

2
−
√

2

3Hsp
(Hπ −Hσ)Hspe

−2iστφc)

= − 3

64
(
a0

R
)2(

4(Hπ −Hσ)2ǫ2s

9H2
sp

τ̂I σ̂I ŝI +
−4(Hπ −Hσ)

3
(σ̂xτ̂I ŝI cos 2φc − σ̂y τ̂z ŝI sin 2φc)) (6.84)

64



6.2. THE EFFECTIVE HAMILTONIAN

where we have used (6.74)-(6.76) in the third equality and (6.78) in the last equality. We then
calculate (6.83) for the other σ states:

∑

η

〈zσ′′s′′τ ′′|ĤCV |m21χ,21χ, ηs
′τ ′〉〈m21χ,21χηs

′τ ′|ĤCV |zσsτ〉
−E(21χ,21χ),η

=
∑

η

δτ,τ ′′δs,s′′τ
′′τ 3

256
(a0

R
)2(3Hπ −Hσ)

2(−1)
1−η
2

1+σ′′

2
+1e−2iσ′′τ ′′φc(−1)

1−η
2

1+σ
2

+1e2iστφc

−E(21χ,21χ),η

= −δτ,τ ′′δs,s′′τ
2 3

256
(
a0

R
)2(3Hπ −Hσ)2e2iτφc(σ−σ′′)

∑

η

(−1)
1−η
2

1+σ
2

+1+ 1−η
2

1+σ′′

2
+1

E(21χ,21χ),η

= −δτ ′′,τδs′′,s
3

256
(
a0

R
)2(3Hπ −Hσ)2(δσ,σ′′

∑

η

(−1)(1−η) 1+σ
2

E(21χ,21χ),η
+ δσ,−σ′′e4iτσφc

∑

η

(−1)
1−η
2

E(21χ,21χ),η
)

= −δτ,τ ′′δs,s′′δσ,−σ′′
3

256
(3Hπ −Hσ)2(

a0

R
)22

2

3(Hπ +Hσ)
e4iτσφc

= −ŝI
1

64
(
a0

R
)2 (3Hπ −Hσ)2

Hπ +Hσ
(τ̂I σ̂x cos 4φc + τ̂zσ̂y sin 4φc) (6.85)

where we, in the fourth equation, have used that E(21χ,21χ),η ∝ η (6.68) and the fact that (since

η = ±1 and σ = ±1), (−1)(1−η) 1+σ
2 = 1.

In contrast to the case for Ĥ
(2)
SOCV there is a “first order” contribution (6.41)2 contribution to the

effective hamiltonian, that must be added to the above expressions to get the effective curvature
hamiltonian to order (a0

R
)2. We notice also that the first term of the result of (6.84) has a factor of

τ̂I σ̂I ŝI and so simply shifts the energy for all states, and therefore we ignore it (or rather, shift the
origin of the energy axis so as to make this term effectively 0). We therefore reach the final result

Ĥ
(2)
CV CV =

(Hπ −Hσ)

16
(σ̂xτ̂I ŝI cos 2φc − σ̂y τ̂z ŝI sin 2φc)

− ŝI
1

64
(
a0

R
)2 (3Hπ −Hσ)2

Hπ +Hσ
(τ̂I σ̂x cos 4φc + τ̂zσ̂y sin 4φc)

− 1

64
(
a0

R
)2(4(Hπ −Hσ)(ŝI σ̂xτ̂I cos 2φc − ŝI σ̂y τ̂z sin 2φc)

+ (Hπ +Hσ)ŝI σ̂xτ̂I cos 4φc + ŝI σ̂yτ̂z sin 4φc)

= (
a0

R
)2Hπ(Hπ +Hσ)

8(Hπ +Hσ)
(ŝI σ̂xτ̂I cos 4φc + ŝI σ̂y τ̂z sin 4φc)

≡ B(ŝI σ̂X τ̂I cos 4φc + ŝI σ̂Y τ̂Z sin 4φc) (6.86)

where we defined B = (a0

R
)2 Hπ(Hπ+Hσ)

8(Hπ+Hσ)
. Note that this results differ from [19]: They get a non-zero

contribution to the 2φc dependent part of Ĥ
(2)
CV CV , probably due to a factor 2 error in their version

of (6.84).

2It is first order in the sense that there are no intermediate states, but it has the same prefactor (a0

R
)2 as the

second order contribution
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In principle, this ends the derivations made in [19]. However, in order for us to compare to our
own results, and to ascertain the physical consequences of this derivation, we wish to rotate these
results into the effective hamiltonian formalism used so far in the thesis, ie. we wish to rotate from
the k-coordinatesystem kx and ky that is natural for graphene (and thus chirality independent),
into the coordinatesystem natural to the CNT, ie. kc = µ

R
and kt: This is the same procedure as

was done in (2.18). This can be done by a unitary transformation very similar to the one used in
[13], which can be seen by finding the π band graphene hamiltonian by expanding 〈zAk|Ĥ|zBk〉
around the K(’) point to find

〈zAk|Ĥ|zBk〉 ≈ Hπf(k) ≈ −
√

3aHπ

2
(−ikx − τky) =

~vf(kC(−i cosφC − τ sinφC) + kt(i sinφC − τ cosφC)) = ~vf(−ie−iτφC (kv − iτkt)) (6.87)

and so we have (since (〈zBk|Ĥ|zAk〉)∗ = 〈zAk|Ĥ|zBk〉) the effective hamiltonian

ˆ̃Heff
π = ~vf

(

0 −ie−iτφc(kc − iτkt)
ieiτφc(kc + iτkt) 0

)

(6.88)

and from this we see that the unitary transformation from kx,ky to kc,kt should be U =

(

ieiτφc 0
0 1

)

so

Ĥeff
π = U ˆ̃Heff

π U−1 = ~vf

(

0 kc − iτkt

kc + iτkt 0

)

(6.89)

also derived in section 2, except for the position of the τ : This is due to the difference in the choice
of K(’) points, mentioned above.

Observe that (6.86) and (6.82) does not contain ŝx,ŝy,τ̂x or τ̂y, that is, it contains no non-
diagonal elements in s or τ . Thus both hamiltonians may be written in the AB-subspace, “effective”
basis, since ŝz(τ̂z) can be written as sŝI(τ τ̂I), and further, we can transform these using the same
unitary transformation as above to obtain the effective hamiltonians:

UĤeff
SOCV U−1 =

(

ieiτφC 0
0 1

)(

sτA2 sin(3φ) sA1(−i cosφC − τ sinφC)
sA1(i cosφC − τ sinφC) sτA2 sin(3φ)

)(

−ie−iτφC 0
0 1

)

=

(

A2sτ sin 3φC −sA1

−sA1 A2sτ sin 3φc

)

= ~vf

(

A2

~vf
sτ cos 3θ −s A1

~vf

−s A1

~vf

A2

~vf
sτ cos 3θ

)

(6.90)

and

UĤeff
CV CV U−1 =

(

ieiτφC 0
0 1

)(

0 B(cos 4φC − iτ sin 4φC)
B(cos 4φC + iτ sin 4φC) 0

)(

−ie−iτφC 0
0 1

)

=

(

0 iBe−i3φC

−iBei3φC 0

)

= ~vf

(

0 B
~vf

(i sin 3θ + τ cos 3θ)
B

~vf
(−i sin 3θ + τ cos 3θ) 0

)

(6.91)
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where we have reintroduced the chiral angle θ = π
6
−φC and taken a factor ~vf out of the matrices,

so the can be immediately compared to the unperturbed hamiltonian, (6.89). We also used that
sin 3φC = sin (π

2
− 3θ) = cos 3θ, and cos 3φC = cos (π

2
− 3θ) = sin 3θ. When we add the three

contributions to the full effective hamiltonian, we see that the imaginary part of the off-diagonal
element in (6.91) can be interpreted as a shift in kt, while the real part of the off-diagonal part of
(6.90) and (6.91) becomes a shift in kc. Diagonalizing the full hamiltonian gives us the expression
for the energy also found in [19]:

E±
eff = sτA2 cos 3θ ±

√

(
ντ

3R
− s

A1

~vf
+ τ

B

~vf
cos 3θ)2 + (kt −

B

~vf
sin 3θ)2 (6.92)

where we used that τ 2 = 1, and where we have only given the energy for the energy band closest
to K(’), ie. we have set kc = ντ

3
, as in (3.21)

This function have all the same qualitative features as the energy function found in the last
chapter (5.11) except for the introduction of the Ĥ

(2)
CV CV part in this chapter, and for the dependence

of τ inside the squareroot. However, one may always multiply the shifted kc by τ , since τ 2 = 1,
and then we see that we get precisely the same dependence on σ and τ as in (5.11). However, it
should be admitted that there is a real difference in the value of A2: [19] have Hπ in the nominator,
while we found Hσ in the calculation of (5.11). While this is of cause unfortunate, we see that
there is no qualitative difference due to this: The properties of (6.92) is the same as those of (5.11),
and we shall not restate them here. Izumidas et als calculation, while obviously equivalent to our
own, has the nice feature, that it can be solved without appealing to automated derivations, ie.
mathematica, thus making each step of the calculation more transparent.
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Chapter 7

Magnetic field

We now wish to include a magnetic field into the system. In this thesis we shall constrain ourselves
to a field parallel to the tube-axis. Essentially, there are two separate effects of such a field: The
Aharonov-Bohm effect and the Zeeman effect. The latter we shall consider as an experimental fact,
since deriving it from the Dirac equation (of which it is, like the spin-orbit coupling, a lowenergy
approximation consequence) would take us too far of topic. The second, most peculiar effect follow
directly from the derivation of the inclusion of an electromagnetic field in the Schrodinger equation,
which have been carried out in some detail in appendix D, giving us the basic Schrodinger equation
for a particle in a magnetic field:

Ĥ =
1

2m
(p̂− qA)2 + qφ(x) =

1

2m
(−i~∇− qA)2 + qφ(x) (7.1)

After presenting the two effects, we shall make some quantitative considerations in order to
explain the numerical data obtained from the Hückel simulations, discussed in the last section.

7.1 Zeeman effect

The theoretical origin of the Zeeman effect is the Foldy-Wouthuysen approximation of the Dirac
equation, but we treat the effect as a basic effect, stating that a spin in a magnetic field will behave
as a magnetic dipole moment, described by the spin angular momentum exactly as if though it
was a classical, orbital angular momentum, except from the Thomas g-factor equal to 2, ie. there
will be a spin dependent term in the hamiltonian

ĤZ = gµB
1

2
σ̂yB = µBσ̂yB (7.2)

where we have introduced the Bohr magneton µB = e~

2m
and availed ourselves of the convenient

fact that we have chosen the spin-quantization axis in the axial direction, so that the standard
energy, −S · B reduces to the product of the magnetic field and the spin of the electron (notice,
that the minus in the energy is countered by the (unfortunate) convention that the electron has a
negative charge).
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7.2 The Aharonov-Bohm effect

In order to understand this surprising effect we need to solve the hamiltonian (7.1) in terms of
the solutions to the hamiltonian without a magnetic field, ie. the wavefunctions found in the
previous sections. Since the difference between the hamiltonians can be viewed as a change of the
momentum operator, ie. −i~∇ → −i~∇ + eA, we should try to “counteract” the eA correction
by changing the phase of the wavefunctions.

Now, the standard derivation of the Aharonov Bohm effect assumes that we have electrons
moving in vacuum, ie. the wavefunctions are simple plane waves, travelling through a portion of
space with a non-zero A field but vanishing B field. Here the correction is obvious, since we can
simply multiply the non-corrected wavefunctions with e

R x
xs

−i e
~
A(x′)dx′

, where xs is some arbitrary
starting point, since we have

ĤΨ(x)AB = (
1

2m
(−i~∇ + eA(x))2 + V (x))(e

R x

xs
−i e

~
A(x′)dx′

Ψn(x))

= e
R x

xs
−i e

~
A(x′)dx′

(
1

2m
(−i~∇

∫ x

xs

−i e
~
A(x′)dx′ + eA(x) − i~∇)2 + V (x))Ψn(x)

= e
R x

xs
−i e

~
A(x′)dx′

(
1

2m
(−eA(x) + eA(xs) + eA(x) − i~∇)2 + V (x))Ψn(x)

= e
R x

xs
−i e

~
A(x′)dx′

(
(−i~∇)2

2m
+ V (x))Ψn(x) (7.3)

Here, we have used that if B(x) is identically zero A can be written as a gradient of a scalar field,
and so the integral is independent of the path taken from xs to x. Also we defined A(xs) = 0,
which can be done by choosing the appropriate gauge, corresponding to adding a constant to A(x)
- even if we do not do this, A(xs) is just a energy shift.

In the case of the CNT however, the problem is slightly more complicated, in that we do not
start out from plane waves, but rather Bloch functions. We therefore need an argument to see
what happens to these functions in the presence of a magnetic field, and such an argument have
been outlined in chapter 6 of [21]:

Following the example of Luttinger in [24] (where he expands an intriguing theorem originally
due to Wannier [22] and formalized by Slater [23]) we change our basic Bloch functions from those
defined in (2.9) to include the magnetic field in a way very similar to the case of free electrons:

Ψnk(r) =
1√
N

∑

R

eik·Rφ(r − R) → ΨAB,nk(r) =
1√
N

∑

R

ei(k·R+ e
~
GR)φ(r −R) (7.4)

where the φ(r − R) are molecular wavefunctions, which we for the moment shall take to be the
Wannier functions from (2.7) and the AB subscript stands for Aharonov-Bohm, ie. the wavefunc-
tion is modified to take the Aharonov-Bohm effect into account, and G(R) is a phase factor defined
as

GR(r) =

∫ r

R

A(r′)dr′ =

∫ 1

0

(r −R) · A(R + λ(r −R))dλ (7.5)

where the integral is taken along the straight line from R to r and R is a lattice point.
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The reason for this replacement of the Bloch functions is the same as the above case for the
free electrons, namely that we may “counter” the A part of the hamiltonian, which is readily seen:

ĤΨAB,nk(r) =
1√
N

∑

R

eik·R(
1

2m
(p− eA(r))2 + V )ei e

~
GR(r)φ(r − R) =

1√
N

∑

R

ei(k·R+ e
~
GR(r))(

1

2m
(p− eA(r) + e∇GR(r))2 + V )φ(r− R) (7.6)

where we have explicitly written the periodic potential V . We see then, that we need the gradient
of GR(r) with respect to r, which we shall obtain using the definition in (7.5):

∇GR(r) =

∫ 1

0

dλ∇((r −R) · A(R + λ(r −R))) =

∫ 1

0

dλ((r− R) × (∇× A) + A× (∇× (r −R))+

(A · ∇)(r − R) + ((r − R) · ∇)A) (7.7)

where we have dropped the parameter on A in the last expression - it is implicitly understood that
A ≡ A(R + λ(r − R)), and used the wellknown rule of vector products:

∇(A · B) = A × (∇×B) + B × (∇× A) + (A · ∇)B + (B · ∇)A (7.8)

The terms of (7.7) can be treated one by one: First, notice that by the chain rule

∇× A(R + λ(r −R)) = λB(R + λ(r − R)) (7.9)

Second, since R is independent of r we have ∇× (r−R) = 0. Third, since ∇(r−R) = 1 we find
that (A · ∇)(r − R) = A. Using these observations, we see that we may write (7.7)

∇GR(r) =

∫ 1

0

dλ(λ(r− R) × B + A + ((r − R) · ∇)A) (7.10)

Finally we integrate A(R + λ(r − R)) by parts, taking the other function to be just 1:

∫ 1

0

dλA(R + λ(r− R)) = [λA(R + λ(r −R))]10 −
∫ 1

0

dλλ
d

dλ
A(R + λ(r − R)) =

A(r) −
∫ 1

0

dλ((r −R) · ∇)A(R + λ(r −R)) (7.11)

where the integrants in the last equality is most easily seen to be the same by defining ξ =
(R + λ(r−R)), and observing that, since r = (x, y, z), dξi

dλ
= (r−R)i where i is a coordinate, and

∂ξi

∂xj
= δj,iλ, and

dA

dλ
=
∂A

∂ξx

∂ξx
∂λ

+
∂A

∂ξy

∂ξy
∂λ

+
∂A

∂ξz

∂ξz
∂λ

(7.12)
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finally leading to

((r −R) · ∇)A =
dξx
dλ

dA

dx
+
dξy
dλ

dA

dy
+
dξz
dλ

dA

dz
=

dξx
dλ

dA

dξx

dξx
dx

+
dξy
dλ

dA

dξy

dξy
dy

+
dξz
dλ

dA

dξz

dξz
dz

= λ(
∂A

∂ξx

∂ξx
∂λ

+
∂A

∂ξy

∂ξy
∂λ

+
∂A

∂ξz

∂ξz
∂λ

) = λ
dA

dλ
(7.13)

where we have again dropped the argument to A for greater readability.
Now we insert (7.11) into (7.10) to obtain

∇GR(r) = A(r) +

∫ 1

0

dλλ(r− R) × B(R + λ(r − R)) (7.14)

This is then inserted into (7.6) to obtain

1√
N

∑

R

ei(k·R+ e
~

GR(r))(
1

2m
(p + e

∫ 1

0

dλλ(r− R) × B(R + λ(r − R)))2 + V )φ(r −R) (7.15)

Recall that the idea of this exercise, analogous to the free electron calculation in the beginning of
this subsection, is to arrive at a situation similar to that of the graphene sheet without a magnetic
field. We therefore would like to have an approximation in which the integral in (7.15) evaluates
to zero. But recall that the molecular orbitals, φ(r − R) is only non-zero for |r − R| ≈ 0. This
means that we only need to consider the integrant for r ≈ R, and if we furthermore assume that
B is relatively constant on the scale of the unitcell 1, B part becomes a constant with respect to
the integration, since λ going from 0 to 1 corresponds to the argument of B going from R to r,
and these were close due to the locality of the orbitals, and we therefore find

∫ 1

0

dλλ(r −R) × B(R + λ(r − R)) ≈ −B(r) ×
∫ 1

0

dλλ(r− R) ≈ 0 (7.16)

where the last approximation relies again on the molecular orbits locality, ie. r − R ≈ 0. Thus,
we finally end up with

ĤΨAB,nk(r) =
1√
N

∑

R

ei(k·R+ e
~
GR(r))(

1

2m
p2 + V )φ(r− R) (7.17)

This, we notice, is almost exactly like the equation for the hamiltonian in the case without
magnetic field in that we now have the hamiltonian from the graphene system, 1

2m
p2 + V working

on the molecular orbitals - which may of cause be modified in the same manner as we have done
in the previous sections, ie. perturbed by curvature and spin-orbit coupling - summed over all
unitcells with an exponential factor. The only dependence on the A field that remains is the
GR(r) term in the phase factor.

In this derivation so far we have used the Wannier molecular functions for the sake of brevity
and readability, but if we wish to determine the effect on the effective hamiltonians that we have

1an assumption that is indeed met in our case, since we consider a constant magnetic field
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used so far, we need to split these up into the A and B sublattice blochfunctions, and we must
consequently have two G phases, one for the A sublattice, which is as above, and another for the
B sublattice in which R is exchanged with R − l1, so we finally have

ĤΨAB,nk(r) =
1√
N

(
∑

R

ei(k·R+ e
~
GR(r))a(

1

2m
p2 + V )πA(r − R)

+ ei(k·(R+l1)+ e
~
GR+l1

(r))b(
1

2m
p2 + V )πB(r − R− l1)) (7.18)

Now, in the spirit of the derivation for the graphene sheet (and therefore by extension the
CNT with spin-orbit coupling), we wish to evaluate the hamiltonian element between two differ-
ent blochwaves ΨAB,nk,A and ΨAB,nk,B, where the last A or B denotes sublattice, in the nearest
neighbour assumption:

∫

drΨAB,nk,B(r)∗ĤΨAB,nk,A(r)

=

∫

dr
1

N

∑

R

∑

j

ei e
~
(GR(r)−GR+lj

(r))eik·lj(πB(r − R− lj)
∗Ĥ0πA(r − R))

=
∑

j

eik·lj
∫

drei e
~
(G0(r)−G0+lj

(r))(πB(r −R − lj)
∗Ĥ0πA(r −R)) (7.19)

where we have made use of the analogy with the derivation leading to (2.13), and 0 in the last line
refers to any given unitcell, since they are all equivalent.

We therefore find, that we need to evaluate the difference G0(r) − G0+lj(r). From the basic
definition (7.5), we find

G0(r) −G0+lj(r) =

∫ r

0

A(r′)dr′ −
∫ r

lj

A(r′)dr′ =

∫ r

0

A(r′)dr′ +

∫ lj

r

A(r′)dr′

+

∫ 0

lj

A(r′)dr′ −
∫ 0

lj

A(r′)dr′ ≡ Φ(r) +

∫ lj

0

A(r′)dr′ (7.20)

where we have identified the flux going through a triangle with corners in 0, lj and r through

∫ r

0

A(r′)dr′ +

∫ lj

r

A(r′)dr′ +

∫ 0

lj

A(r′)dr′ =

∮

dr′ · A(r′) =

∫

dσ · (∇× A(r′)) =

∫

dσ ·B(r′) = Φ(r) (7.21)

where we have used stokes theorem, and where we see that Φs dependence on r is to be understood
as the dependence on the position of the corner of the triangle through which we integrate the
magnetic flux. Notice, that in (7.19), we integrate over all of space. But the flux terms from
different points r in the integral approximately cancel out, since the path of the line integral for
some point r is in the opposite direction as the line integral for a corresponding point r′, and thus

73



CHAPTER 7. MAGNETIC FIELD

��

��

��
����

�
�
�
�

��
��
��
��

 Φ (r)

τ
j

0
r

 Φ (r’)
τ

j

0

r’

= −

Figure 7.1: The flux going through the two triangles is assumed to be the same, but the direction
of the line integral from (7.21) is anti-clockwise in the first, and clockwise in the second triangle,
so they cancel out.

the flux from these to integrals cancel one another out as illustrated in figure 7.1, under the same
assumption as above, namely that magnetic field does not change noticeably at an atomic length
scale, so the magnitude of the fluxes are equal (there is also an atomic hamiltonian overlap in
the position integral in (7.19), but at least for the dominant π, π orbital overlap in graphene in
a position dependent Hückel approximation2 this number is the same for the two points in figure
7.1, and so the argument still holds).

Thus, we may neglect the Φ(r) term in (7.20), and thus G0(r) − G0+lj(r) is independent on r
and we may thus denote it by φj, where j denotes the bond lj. Inserting this into (7.19) we find

∑

j

e
i 2π
Φ0

φjeik·lj
∫

dr(πB(r − R− lj)
∗Ĥ0πA(r −R)) =

∑

j

e
i 2π
Φ0

φjeik·ljγ0 (7.23)

where we have inserted the magnetic flux quantum Φ0 = h
e
3. This substitution, ie. the renor-

malization of the zero magnetic field overlap element with a phase factor is known as the Peierls
substitution, and the phase φj is known as the Peierls phase first presented in [26].

The above derivations are all general in the sense that they apply irrespective of the direction of
the magnetic field. We, however, have confined ourselves to a magnetic field in the axis direction,
and in this case, a useful simplification is possible: Notice from the requirement that bB = Bz ẑ
we may choose

A =
1

2
B × r =

1

2
Brφ̂ (7.24)

in cylindrical coordinates, so that the vector field points only in the φ̂ direction, leading to a

2that is to say, the approximation that not only the hamiltonian element between two orbitals is proportional
to the overlap between the orbitals, but also that the integrants of these to overlaps is proportional, ie. point by
point proportionality, or

πB(r − R − lj)
∗Ĥ0πA(r − R) ∝ πB(r − R − lj)

∗πA(r − R) (7.22)

3note that this is twice the definition one typically finds for the flux quantum, since such a quantum was first
anticipated by London[25] in a superconductor where the charge carriers are cooper pairs with a charge of 2e
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τ
j

φ

2

φ

R

Figure 7.2: : Illustration of the sector of the CNT discussed in (7.26). The vector lj connects
two carbon atoms, and the flux we need to calculate is the flux going through the triangle: We
approximate this by taking the flux through the entire sector, ie including the segment shown.

simplification of the integral in (7.20):

φj =

∫ lj

0

dr′ · A(r′) (7.25)

We see that the integral is nothing else than the flux going through the triangle with corners in 0,
j and the center of the tube, because we have that if TC denotes the corner on the tube axis,

∫ lj

0

dr′ · A(r′) =

∫ lj

0

dr′ · A(r′) +

∫ TC

lj

dr′ ·A(r′) +

∫ 0

TC

dr′ · A(r′)

=

∮

dr′ ·A(r′) =

∫

dσ · B(r′) =
φ

2π
πR2B =

φR2B

2
(7.26)

where φ in the last to expressions denote the angle spanned by lj, as seen in figure 7.2 (so |lj,φ| ≈
Rφ), and where the first equality follows from the fact that A only has a component in the φ̂
direction, and the two additional line integrals are in the radial direction, so the scalar product
is in fact identically zero, and the third equality follows from Stokes theorem and B = ∇ × A.
In deriving (7.26) we have made an approximation, in that we, without justification, add the
flux going through the segment of the CNT outside the line from 0 to j. This error drops of
with increasing radius of the CNT, since the area of the segment is O(R−1), because the maximal

distance from the straight line to the arc of the circle is
|lj|
2

sin(φ
2
) ≈ |lj|2

R
, and the length of the

chord is of cause always |lj,φ|, and the area of the triangle that is included is O(R), since it is

approximately R ∗ sin(φ) ∗R ≈ R2 |lj,φ|
R

= |lj,φ|R, so the relative error is O(R−2).
Notice that the phase from (7.26) can either be seen as a correction to the hamiltonian matrix

element, or, equivalently, the orbital at lj. The latter interpretation means that orbitals next to
j (other than 0) has an additional phase factor compared to the orbital at 0. We may continue
that argument all the way around the CNT, until we come back to the orbital at 0, which alters
the Bloch condition for the CNT, since if we wish to express the Bloch condition for the original,
non-Aharonov-Bohm corrected blochwaves, we must now include the Peierls phase in the condition:

Ψkn(r + Ch) = eik·Che
2π
Φ0

P

i

R ri+1
ri

A(R,0,0)li,i+1,φΨkn(r) (7.27)
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where the sum over i is understood to run over a chain of nearest neighbour orbitals going around
the circumference of the CNT, and li,i+1,φ is the length of the bond between the ith and the i+1st
orbital in the circumference direction. In fact, this phase is easily calculated by realizing, that the
integral of the sum corresponds, due to the argument below (7.26) to the total magnetic flux going
through the CNT, so the blochcondition becomes

Ψkn(r + Ch) = eik·Che
2πΦ
Φ0 Ψkn(r) = e

i2π(lC+ Φ
Φ0

)
Ψkn(r) (7.28)

where we have used (3.11) and (3.9). Now, in section 3 the periodic boundary conditions, ie.
that Ψkn(r + Ch) = Ψkn(r) meant that lC should be an integer, but we now have the simple but
powerful result that the Aharonov-Bohm effect changes this condition to

(lC +
Φ

Φ0

) ∈ Z (7.29)

This corresponds to shifting the allowed lines in figure 3.2 on page 18 in a direction perpendicular
to the lines, ie. in the kC direction. Remembering the low energy expression for the CNT (3.18),

E±(k) = ∓γ0a0

√
3

2

√

|kC + ikT |2 = ∓γ0a0

√
3

6R

√

9R2k2
T + (ν +

Φ

Φ0

) (7.30)

where we remember that ν = ±1 or 0 distinguishes the three chirality families, we see that the
lowest lying energy states is changed differently by the re normalized quantization condition on lC
in (7.29) depending on ν: For a given ν = ±1 (ie. semiconducting nanotube), the allowed kC value
moves away from one valley and towards the other, so one of the energies, that are equal without
the magnetic field, increases, and the other decreases with an energy that, for kT = 0 in (7.30) is
proportional to the magnetic flux going through the CNT.

This lends itself to an intuitive, phenomenological description: Since the low energy states are
always on opposite sides of the K versus the K’ point, and the dispersion relation is approximately
linear around the K(’) points, we see that the group velocity in the circumference direction ( dE

dkC
)

of the states close to the K point is the same size, but opposite sign, as the lowenergy states close
to the K’ point, ie. the wavefunctions go around the circumference with the same speed, but
in opposite directions. This could then be interpreted as a magnetic dipole moment, since the
wavefunctions are of cause electron-wavefunctions and we thus have a charge in orbital motion
around the CNT, and we recall the classical result (from eg [31]) that such a dipole moment has
least energy when it is parallel to the magnetic field and highest energy when they are antiparallel,
and that the energy of such a classical dipole moment is proportional to B · L, B being the
magnetic field, and L the angular momentum of the orbital motion. We see that this has the same
functional form as the above result for the energy from the magnetic field due to the Aharonov-
Bohm effect, but it is important to stress that the arguments are completely different, and that
the classical result differs in some crucial points from the Aharonov-Bohm effect: For one, the
functional dependence, ie. the linear dependence on velocity, was the same only because of the
curious, Dirac-like linear dispersion relation around the K and K’ points of the CNT, since this
was used to get (7.30). Another very peculiar difference is, that while the classical argument relies
on the Lorenz force on the electrons in a wire, ie. the magnetic field, B, has to be non-zero at the
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Figure 7.3: Energy as function of magnetic field for the four conduction bands in a (82,0) CNT.
The valence band has the same form, ie. the energy has a linear dependence on the magnetic field,
which is the result for all nanotubes tested. Note the splitting of the Kramer doublets: There is
no degeneracy left when we apply a magnetic field.

position of the electrons, the Aharonov-Bohm effect refers only to the vector potential A, or, as
we saw, the flux going through the CNT: The magnetic field need not extend to the wall of the
CNT, the electrons will “feel” it simply by going around it. This illustrates the general principle
that while the B field is the “physical” entity in classical electrodynamics, and the A field is just
a convenient, mathematical construction, in quantum mechanics, the A field is the fundamental
physical field.

Another thing to note about the effect of the magnetic field is the breaking of the time-inversion
symmetry: as we have seen, since the magnetic field defines a direction, one can no longer employ
inversion symmetry to obtain degeneracy between the states close to the K versus the K’ point, as
we have seen. Thus we should expect the Kramer doublets to be split, and, when taking spin-orbit
coupling and/or the Zeeman effect into account, the 4-fold degenerate LUMO and HOMO states,
to split up into 4 different energies. This is indeed what happens in the numerical simulations,
which we shall turn to now.

7.2.1 Numerical results

The results of the numerical simulations concerns two hypothesises which would be consequences of
the above: First, that the energy has a linear dependence on the magnetic field: This is predicted
from the conclusion reached in the end of section 7.2 above and from the fact that the Zeeman
term from section 7.1 is also linear in the magnetic field. This was tested for various families of
CNTs, namely the zigzag, armchair, (n, n

2
) and (n, n

3
) nanotubes for n up to 50 (and up to 90 for

the zigzag nanotubes) 4, and in figure 7.3 we see a representative result for this calculation: A
linear correspondence was confirmed in all cases tested.

The second hypothesis concerns the proportionality constant of this linear function. First, it
should be admitted that this has still not been fully understood, and we therefore present only a
heuristic argument based on the correspondence with a classical dipole moment presented above, ie.
we shall treat the problem as if though it concerned charged particles moving on the circumference

4the reason for choosing these particular families will become clear in the next chapter
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of the CNT in a magnetic field. We then know from basic magnetism, that the energy of the
particle due to the magnetic field is

Emag = −µ · B (7.31)

(see e.g. [31]) where µ is the magnetic dipole moment, which, for an electron going around a the
circumference of a CNT of radius R is

µ =
−eRvCg

2
ŷ (7.32)

, where

vCg ≡ ∂E

~∂kC
(7.33)

is the group velocity around the circumference.
Now, since we have discrete allowed values values for kC due to the rotational boundary condi-

tions, we may feel slightly uneasy about the derivative in (7.33). However, remembering that we
consider the CNT to be a rolled up sheet of graphene, the group velocity around the circumference
is the same as the group velocity in the appropriate direction in the graphene, ie. the direction
of the C vector in the graphene sheet. Remembering (2.16) then, we see that, if we neglect the
overlap matrix (which is justified, since the overlap, s0|Γ(k)| is small for k values around the K(’)
point that we are interested in, since here |Γ(k)| is small) we have

E(k) = −γ0|Γ(k)| (7.34)

and using (2.18) we find

E(k) = −γ0

√
3a

2
|kC + ikT | (7.35)

close to the Fermi points. In this thesis we wish to study the lowest lying energy states, and so we
set kT = 0 since we assume an infinitely long CNT. Thus we end up with

vCg =
∂E

~∂kC
= ±−γ0a

√
3

2~
≈ ± 3.033eV 2.46Å

√
3

2 · 6.582 · 10−16eV s
≈ ±9.82 · 105m

s
(7.36)

which, due to the linear dispersion relation in graphene, is the value typically given for the Fermi
velocity of graphene[19]. Inserting this into (7.32) and (7.31) we find that the proportionality
factor between the magnetic field and the energy is

gl =
evCgR

2
= 4.91 · 10−5R[Å]

eV

T Å
(7.37)

where the l subscript denotes that this is the proportionality constant for the orbital (or more
correctly, Aharonov-Bohm) part of the magnetic coupling: There is also the coupling to the spin,
seen in 7.1, where we know that gs, ie the proportionality between the magnetic field and the
energy, from (7.2) is

gs = µBs = ±5.79 · 10−5 eV

T
(7.38)
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where s = ±1 indicates the spin in the axial direction.
The numerical experiments for this hypothesis is shown for the zigzag CNTs in figure 7.4.

As may be seen, given the assumptions made to reach the theoretical results (lines in figure 7.4)
the correspondence with numerical data is quite good, leading us to the conclusion, that the
phenomenological system of an electron on a cylinder is surprisingly good, even though it has little
grounding in the quantum physical treatment of the system. The agreement between theory and
numerical experiment holds also for the (n, n/2), (n, n/3) and armchair nanotubes, although we
should note that, since there is no curvature gap in armchair nanotubes, and since they are all
metallic, the states are four fold degenerate for no magnetic field. There is still, however, four
different g-factors, corresponding to 2 orbital direction times 2 spin values, and so the pattern
seen in figure 7.4 is still seen. The valence band exhibits a pattern similar to the one seen in 7.4,
except that the structure of each triplet of radii is slightly different: in the conduction band, the
absolute value of the g factors are seen to be slightly higher for the ν = −1 family compared to
the corresponding ν = 0 (semi-metallic) family. This is not so in the valence band (shown in figure
7.5): Here the ν = −1 family has a smaller g factor than the following ν = 0 family. This is one
example of the lack of particle-hole symmetry that appears in the system when both spin-orbit
coupling, curvature and magnetic field are taken into consideration. Since this effect is very small,
however, we don’t attempt to explain it theoretically in this thesis.
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Figure 7.4: The proportionality constant between energy and magnetic field for zigzag CNTs
(conduction band), ie. the slopes of the lines in figure 7.3. The circles and squares (crosses and
dots) represent the g factor of the states from the lower (upper) Kramer doublet. The red lines
is the theoretical value for gl, ie. the proportionality constant between energy and the magnetic
field due only to the Aharonov-Bohm effect, and the black lines correspond to the proportionality
due to both Aharonov-Bohm and Zeeman effect.
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Figure 7.5: The proportionality constant between energy and magnetic field for zigzag CNTs
(valence band). As for the conduction band, the circles and squares (crosses and dots) represent
the g factor of the states from the lower (upper) Kramer doublet, and the red(black) lines are the
theoretical g values without(with) Zeeman effect taken into account. Note that for the ν = −1
family there is a difference compared to the conduction band in figure 7.4
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Chapter 8

Nummerical Hückel calculations

This final chapter concerns the numerical method used to obtain the results presented in previous
chapters. While we shall present as many mathematical arguments for the plausibility of this
method, it is worth noting from the beginning that it is essentially an empirical method: The
basic reason for believing the results of the algorithm is not theoretical but that it produces results
that agree with experiments and/or more advanced algorithms, such as DFT.

We start out by simply presenting the method, then making as much progress as is possible
from a purely theoretical viewpoint and further referring to the empirical data that reassures us
that the method is plausible. We shall then make a few considerations on the subject of spin-orbit
coupling and magnetic field in an EHT framework. Ending this chapter is a section elaborating
on the method used by both [28] and [19] that allows a significantly more thorough search of the
chirality space.

The extended Hückel theory framework for CNTs is described in [11], which describes the EHT
method in general, and provides the parameters used by our numerical code.

8.1 The extended Hückel method

One benefit of the method is in the simplicity of its prescription: It assumes the geometry of
the carbon nanotube, ie. the positions of the nuclei, and uses linear combinations of Slater type
orbitals (STOs) at the nuclei as basis functions, which may be viewed as parametrized versions of
the wellknown hydrogenic wavefunctions:

Φnlm(r) = Ne−ξrrn−1Y m
l (θ, φ) (8.1)

which were suggested by Slater in [34], and where Y m
l is the usual spherical harmonics. This gives

us a set of parameters to determine for the problem, namely ξi for each STO and a coefficient ci
for each of them to determine the linear combination used. Note, that the units typically given in
references are the Bohr units, ie. r has the numerical value 1 for the Bohr radius, and consequently
ξ is given in reciprocal Bohr radii in table 8.1 below.

Further, the EHT method assumes that the diagonal elements of the hamiltonian, ie. the self-
energy of a given orbital, is to be benchmarked against the difference between the electron affinity
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and the ionization energy for that orbital. It is important to note that in the EHT method, the
selfenergy is treated as a parameter, but we are able to make a heuristic argument for the size
of these elements: Adding an electron in a given orbital yields an energy which is per definition
the electron affinity (assuming that the atom being added to was neutral before adding the extra
electron), but this electron has to come from some other atom, and removing it from that atom
will cost the ionization energy. This argument is admittedly very crude and approximate, but it
yields an understanding of the fact that the Hückel method has one parameter for each kind of
orbital in the system: In our case the 2s and 2p orbitals in carbon.

Of these two we should expect a higher energy of the 2p orbitals, based on repulsion between
the electron being added and the core 1s electrons: the 2p orbitals have a smaller average distance
from the nuclei (and therefore a higher Coulomb repulsion energy) with these electrons: Thus less
energy will be freed by putting an electron into the 2p orbital than the 2s orbital.

EHT explicitly assumes that the core electrons are deep in the Fermi sea, and thus can be
neglected, but it is possible (and [11] gives parameters) to could include n = 3 or higher orbitals
in the model. In this thesis we choose to work with the n = 2 orbitals only, and so there are
two different parameters for the diagonal elements, namely ǫp and ǫs for the 2p and 2s orbitals
respectively.

Once the orbitals and selfenergies are set, the EHT method defines a way to determine the
off-diagonal matrix elements of the hamiltonian from the elements of the overlap matrix and the
diagonal matrix elements. The overlap matrix is determined by (numerical) integration given the
functional form of the STOs (8.1)

Notice that the selfenergy values do not take into account the crystal field: The geometrical
dependencies are assumed to be contained in the overlap matrix exclusively: one finds the off-
diagonal elements by multiplying the corresponding overlap matrix element by the average of the
two diagonal matrix elements and a model parameter KEHT which is set to 2.8, a value found
from [33]. This is a major assumption: One may show relatively rigorously that an orbital pair
dependent constant could be reasonably assumed, but the only reason for assuming the systemwide
constant KEHT lies in the empirical agreement with more advanced methods or experiments.

So, finally we see that, given a set of orbitals φν(r) (in our case linear combinations of STOs
and where ν denotes the orbital) and the energies of electrons in these orbitals (Eν), we can set
up the necessary elements for the secular equation presented in the previous chapters, ie. (2.11),
using three rules:

Sνµ =

∫

d(r)φ∗
ν(r)φµ(r) (8.2)

Hνν = Eν (8.3)

Hνµ = KEHTSνµ
Hνν +Hµµ

2
(8.4)

This problem is then in principle easy to solve, since it is a simple secular equation, although in
practice, since the dimensionality of the problem can easily be of the order of 10000, advanced
methods are used for diagonalizing the matrix, in our case the Lanczos algorithm.
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8.1.1 Semi-heuristic argument for EHT

There are two classes of situations, where one may theoretically explain (8.4), ie. a central as-
sumption of EHT, namely in two distinct situations where Hνµ = 0. One is the case when the two
orbitals are very far from one another. In this case we would heuristically not expect any hopping
between the orbitals, and, since the STOs decay exponentially with distance from the nucleus, the
overlap integral will go towards zero, and by (8.4) we get Hνµ → 0.

The other case is that the overlap integral is zero due to the parity properties of the two orbitals,
ie. we have that

Sνµ =

∫

d(r)φ∗
ν(r)φµ(r) = 0 (8.5)

because the integrant is odd in one or more of the coordinates x,y or z.
In this case, (8.4) yields a zero hopping element between these orbitals: This is actually a

reasonable assumption in our case, at least for nearest neighbours - assume that the hamiltonian
is simply described by

Ĥ = −~
2∇̂2 + V̂ (x) (8.6)

where the potential is simply the sum of the centrosymetric atomic potentials generated by the
nuclei. Observe first, that the kinetic energy operator −~

2∇̂2 is even in all coordinates. This is

due to the fact that d
dxi

is odd in xi and thus ( d
dxi

)2 is even in xi and therefore ∇̂2 ≡ d
dx

2
+ d

dy

2
+ d

dz

2

is even in all coordinates since a sum of even functions is itself even. Thus we have that the kinetic
part of the hamiltonian element is

∫

drφ∗
ν(r)(−~

2∇̂2)φµ(r) = −~
2

∫

drφ∗
ν(r)ψµ(r) (8.7)

where ψµ(r) is some function with the same parity as φµ(r). But if we then use the assumption
that the overlap integral between the orbits is zero due to parity, we see that the kinetic energy is
also zero: The same parity argument can be applied to (8.7) as could, by assumption, be applied
to (8.5).

This leaves the potential part of the hamiltonian. Now, assuming that the two orbitals in
question are nearest neighbours, it is reasonable to assume that the relevant part of the potential
is the sum of the two centrosymetric potentials from each nuclei. Here we see that the sum of these
potentials is rotationally invariant around a line connecting the two nuclei. This means that, if we
define the directions y′ and z′ perpendicular to one another and to the line between the nuclei, the
potential operator preserves parity in these two directions, since V (r) is dependent only on the
distance from this axis, and the position along it, not on the angular coordinate in a cylindrical
coordinate system with the line between the atoms defining the axial coordinate. Remembering
table 3.1, we know that all the cases where the overlap matrix element is zero (due to parity)
involves at least one orbital which is odd along either y′ or z′, since the parity properties of the
STOs are the same as for standard, hydrogenic atomic orbitals. Together, these observations mean,
that if we examine the potential part of the hamiltonian,

∫

drφ∗
ν(r)V (r)φµ(r) = −~

2

∫

drφ∗
ν(r)ψµ(r) (8.8)
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Orbital E ξ1 c1 ξ2 c2
2s -20.316 2.037 0.741 0 0
2p -13.670 1.777 0.640 3.249 0.412

Table 8.1: The parameters used for the linear combinations of STOs used in the EHT calculations.
The last parameter is the hückel constant, KEHT which is 2.8. All the parameters are taken from
[11].

we find, that ψµ(r) has the same parity properties in y′ and z′ as the original orbital function
φµ(r), and thus, coupled with table 3.1, we see that the assumption (8.5) leads to the potential
integral in (8.8) being zero.

Finally, remembering that the atomic orbitals are localized around their nuclei, we may make
the further assumption, that even if the two orbitals are not on neighbouring atoms, the only
relevant terms of the potential in the integral determining the hamiltonian matrix element are the
potentials of the “parent” nuclei, since the potential of all other nuclei is small at the positions
where the two orbitals are non vanishing.

The above considerations does not, of cause, prove the plausibility of the extended hückel
method: In particular there is no reason to believe that a single constant for the entire system,
KEHT is determinable. Here, we turn to the fact that, in [11] the authors show that it is possible to
find parameters for KEHT and the STO orbitals (ie. sets of ci,ν ,ξi,ν and Eν), so that the resulting
dispersion relations of the hückel method for CNTs agree with those found in using DFT. Since
the parameters are simply taken as input in our model, we shall not elaborate further on this. The
parameters are found in table 8.1, which is a copy of table 1 in [11].

8.2 EHT for magnetic field and spin-orbit coupling

The method covered so far, and indeed in the literature [11] immediately apply to our problem
of a CNT, however, it is not clear how to augment it to function with spin-orbit coupling and a
magnetic field as well, without which the model is of no use to us. This section gives the arguments
for the applicability of the above to the full problem of this thesis.

The magnetic field is easily introduced by observing that nothing was assumed about the
atomic orbitals for the derivation of the Peierls phase (7.23) in the previous chapter, except that
the orbitals should be localized at the atomic sites, which is certainly fulfilled for the STOs (8.1),
since the value of ξ yielding the standard hydrogenic orbitals would be 0.51, and the orbitals used
have a minimum ξ value of 1, 777a−1

0 . Thus we may avail ourselves of the Peierls substitution in
augmenting (8.4) to

Hνµ = KEHTSνµe
i2π

R

dσ·B(r)

Φ0
Hνν +Hµµ

2
(8.9)

where we remember that the integral may be approximated well by the magnetic flux going through
the section of the CNT from the ν atom to the µ atom, ie. if the magnetic flux going through the

1note, that a0 here is the Bohr radius 0.53Å, not the lattice constant of graphene
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CNT is Φ, we have that
∫

dσ · B(r) = φνµ

2π
Φ, so we find the result

Hνµ = KEHTSνµe
iφνµ

Φ
Φ0
Hνν +Hµµ

2
(8.10)

where φνµ (the difference in angular coordinate between ν and µ) is known in EHT, since it
presumes the geometry of the atoms in the CNT.

Spin-orbit coupling can in fact be included by (obviously) adding a spin degree of freedom to
the STOs (8.1) and using the same formulas as was developed using hydrogenic orbitals in chapters
4 and 6. This is possible due to the fact that the spin-orbit hamiltonian

ĤSO ∝ L̂ · Ŝ = L̂zŜz +
1

2
(L̂+Ŝ− + L̂−Ŝ+) (8.11)

only contains operators that depend on the angular part of the spatial wavefunction, plus the spin
degree of freedom, or, equivalently depends only on the quantum numbers ml and ms, and neither
of these are dependent on the radial part of the basis functions. But since we see in (8.1) that
the angular part of the STOs is the same as it is for the hydrogenic wavefunctions, ie. spherical
harmonics, there is no difference in the application of the spin-orbit coupling hamiltonian.

8.3 A more efficient method

The method used for the calculations in this thesis depends on the translational unitcell, and the
overlap integrals between all pairs of orbitals in this unitcell must be calculated and a matrix of
dimension “number of overlaps” must be diagonalized. Now, given that each atom have 4 orbitals
relevant for overlap calculation (since spin overlaps is trivially δs,s′, s(

′) being the spin of the
orbitals), and the number of atoms pr. helical unit cell is 2, and remembering (3.8), we see that
the number of orbitals that is to be used is

Norbs ≡ 2 · 8 2(n2 +m2 + nm)

gcd(2n+m, 2m+ n)
(8.12)

while the dimensionality the hamiltonian is 2 times bigger (due to spin), for a given chirality (n,m).
A relevant figure to compare this number to is the circumference of the nanotube, since we need
to see the radial dependence of the effective hamiltonians found from theory, and compare with
numerical results. Now using C = na1 +ma2, we see, using (2.1), that

|C|2 = (na1 +ma2) · (na1 +ma2) = a2
0(n

2 +m2 + 2nm(a1 · a2)) = a2
0(n

2 +m2 + nm) (8.13)

so that we get
Norbs

|C| =
16
√
n2 +m2 + nm

a0gcd(2n+m, 2m+ n)
(8.14)

In order for the hückel method to use as few computational resources as possible, we wish to
minimize this fraction. Simultaneously, we also might want to study families of chiralities that
have equidirectional chiral vectors, or equivalently have some fixed factor f ≡ n

m
. It is from these
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two demands that we get the idea first presented in chapter 7: let f be some small integer. Then
we have

Norbs

|C| =
16m

√

f 2 + f + 1

a0gcd((f + 2)m, (2f + 1)m)
=

16

a0

√

f 2 + f + 1

gcd(f + 2, 2f + 1)
(8.15)

where we see that, assuming the worst-case scenario that gcd(f + 2, 2f + 1) = 1, the fraction is
linear in f , thus the demand that f should be small. In practice, it turns out that the largest
f for which a reasonably large set of chiralities can be calculated was 3 - this limits the method
used severely in terms of scouring the chirality space, as mentioned in the final effect presented in
chapter 7. Note that achiral CNTs are always “easy”, since here gcd(2n + m, 2m + n) ∝ n, and
|C| ∝ n, leading to a small fraction in (8.15).

There is a better way of doing this, using the arguments first presented in [19], namely using
the crystal structure of the CNT in the numerical calculation, so that we reduce the size of the
hamiltonian that is to be diagonalized from the translational unitcells size to the 16x16 hamiltonian
natural to the helical unitcell. This is a situation, where the symmetry adapted blochfunctions
(6.48) becomes important, since they allow us to maintain delta functions in the angular momen-
tum, since these functions have been adapted to total angular momentum, which is not altered
by spin-orbit coupling (as there is no coupling to any environment that could absorb the angular
momentum). Thus, if we calculate the overlap between the Bloch functions explicitly we find

〈j′σ′s̃kJ ′ ||jσs̃kJ〉 =
1

Ns

∑

l,l′

ei((ktzl−k′
tzl′ )+(Jθl−J ′θl′ ))〈j′σ′θl′zl′sl′||jσθlzlsl〉

=
∑

l

ei(ktzl+µθl)ei 1−s
2

θl〈j′σ′θ0z0s||jσθlzls〉δkJ′ ,kJ
≡ Sj′σ′s̃,jσs̃δkJ ,kJ′ (8.16)

where we have implicitly used that there is no overlap between spin up and spin down, and where
we used in the third equality that the inner of the two sums over the crystal always gives the
same result. There is a completely analogous derivation for the hamiltonian overlap, ie. giving us
Hj′σ′s̃,jσs̃. Notice how we get a angular dependence from the rotation of spin coordinatesystems
which comes from the fact, that in order to evaluate the overlap between atomic orbitals, we need
them represented in the same coordinatesystems, ie. the global spin system, and, recalling (6.46),
this gives us a spin-dependent phase, even though the atomic overlap itself is spin-independent.
The above calculation takes care of both the graphene and the curvature part of the hamiltonian:
We make no assumptions of nearest neighbour coupling only, rather we simply calculate overlaps
based on either the Hückel approximation presented above (ie. calculate the atomic overlaps in
directly as integrals in (8.16) and use (8.4) to find the hamiltonian overlaps), or use a, possibly
superior, way of approximating the integrals using ab initio calculations directly[27], rather than
the somewhat crude approximations made in the Hückel method, ie. finding the overlaps from
fitting the dispersion relation to ab initio calculations.

We also need the spin-orbit coupling matrix in this numerical effective hamiltonian, but this
turns out to be very simple, due to the fact that in (6.48) we define the symmetry adapted
wavefunctions as a sum over wavefunctions where the spin is defined in the local coordinate system,
and since the spin-orbit coupling is still assumed to be intra-atomic only, the spin-orbit overlap is
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either 0, or can be calculated using e.g. (4.14), and so we find

〈xσs̃′kJ ′ |Ĥso|yσs̃kJ〉 =
1

Ns

∑

l,l′

ei((ktzl−k′
tzl′)+(Jθl−J ′θl′ ))〈xσθl′zl′sl′ |Ĥso|yσθlzlsl〉

= −iVso

2
δs̃′,−s̃l′

δkJ ,kJ′ ≡ ĤSO,xσs̃′,yσs̃δs̃′,−s̃l′
δkJ ,kJ′ (8.17)

〈zσs̃′kJ ′ |Ĥso|yσs̃kJ〉 =
1

Ns

∑

l,l′

ei((ktzl−k′
tzl′)+(Jθl−J ′θl′ ))〈zσθl′zl′sl′|Ĥso|yσθlzlsl〉

= s̃
Vso

2
δs̃′,−s̃l′

δkJ ,kJ′ ≡ ĤSO,zσs̃′,yσs̃δs̃′,−s̃l′
δkJ ,kJ′ (8.18)

〈zσs̃′kJ ′|Ĥso|xσs̃kJ〉 =
1

Ns

∑

l,l′

ei((ktzl−k′
tzl′)+(Jθl−J ′θl′ ))〈zσθl′zl′sl′|Ĥso|xσθlzlsl〉

= −is̃Vso

2
δs̃′,s̃l′

δkJ ,kJ′ ≡ ĤSO,zσs̃′,xσs̃δs̃′,s̃l′
δkJ ,kJ′ (8.19)

plus the hermitian conjugates of the above.
Now, one can simply set up the 16x16 effective hamiltonian, which can easily be solved no

matter the size of the translational unitcell, ie. irrespective of chirality. This enables both [19] and
[28] to make numerical experiments for any realistic chirality - the reason this was not used in this
thesis, is that we used a commercial implementation of the Hückel method, which was developed
to examine general systems, rather than crystals, and thus is not capable of employing the above
simplification.

Finally, it should be stressed, however, that the results obtained from our numerical experiments
are qualitatively consistent with the results in [28] and [19] - quantitatively, however there are some
differences, most likely due to the difference described in the methods of obtaining the atomic
overlaps.
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Chapter 9

Conclusion

In summary, we found the explanation for the main problems of the thesis posed in chapter 5, thus
explaining the surprising fact, that the spin-orbit induced energy gaps vary wildly as a function of
chirality: Even though the geometry of two carbon nanotubes is almost the same, this energy gap
can be several orders of magnitude different for them. Simultaneously we found the explanation
for the lack of particle-hole symmetry when spin-orbit coupling in the spin-orbit gap.

We also found a good correspondence between the theoretical expectations of the effect of a
magnetic field, and the numerical data.

Thus having established a more refined understanding of spin-orbit coupling in carbon nan-
otubes, we can continue the effort to establish the spin of electrons in quantum dots in carbon
nanotubes as a physical basis for qubits, and thus eventually as parts for a physical implementation
of the quantum computing which have attracted such attention in the last 25 years.
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Appendix A

σ − σ coupling elements

We wish to derive the parameters pσl′,B
· pσl,A

and pσl′,B
· R̂A, defined in section 3.3.

First we need to find the pσ1,B
vector, ie. the unitvector pointing in the direction of the σ

orbital of the target atom pointing towards the origo (see section 3.3 for definitions of the atom
positions). This is done through noticing, that the demand that it must point towards the origo
atom implies that

pσ1,B ,C

pσ1,B ,T

=
ˆRi,C

R̂i,T

=
cos(αi)

tan(βi)
(A.1)

where the C/T subscripts denote the respective coordinates. Also, in order for pσ1,B
to point in

the direction of a sigma orbital, it needs to be perpendicular to the π orbital at the target atom,
ie. we also have that

pσ1,B
· πB = 0 (A.2)

And finally, in order for the vector to be a unitvector, we also demand that

|pσ1,B
|2 = pσ1,B,T

2 + pσ1,B,C
2 + pσ1,B,R

2 = 1 (A.3)

Starting out from (A.2), we have, given that, since πB = (sin(2αi), 0, cos(2αi)),

pσ1,B
· πB = pσ1,B,Csin(2αi) + pσ1,B,Rcos(2αi) =⇒ pσ1,B,C = −

pσ1,B,R

tan(2αi)
(A.4)

and this, along with (A.1),

pσ1,B,T = −
pσ1,B,Rtan(βi)

cos(αi)tan(2αi)
(A.5)

We thus have both pσ1,B,C and pσ1,B,T in terms of pσ1,B,R, and we can therefore insert (A.4) and
(A.5) into (A.3), and, after some algebraic manipulations, we reach

pσ1,B,R = +

√

tan2(2αi)

1 + ( tan(βi)
cos(αi)

)2 + tan2(2αi)
(A.6)

where we explicitly take the positive solution (taking the negative value of the square root in (A.6)
would of cause also have worked, as (A.3) is only a constraint on pσ1,B,R

2). This is to insure that
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we get the solution that points towards, rather that away from, the origo atom: We should always
have that pσ1,B,R ≥ 0, since the R direction is defined as the Cartesian direction along the radial
direction at the position of the origo atom. Now we can combine (A.6) with (A.4) and (A.5) to
find

pσ1,B,C = − 1

tan(2αi)

√

tan2(2αi)

1 + ( tan(βi)
cos(αi)

)2 + tan2(2αi)
(A.7)

and

pσ1,B,T = − tan(βi)

cos(αi)tan(2αi)

√

tan2(2αi)

1 + ( tan(βi)
cos(αi)

)2 + tan2(2αi)
(A.8)

We then have to find the two other unitvectors corresponding to σ2,B and σ3,B. In total analogy
with the case for the origo atom, we may find these vectors be rotating the pσ1,B,R vector ±120
degrees around the πB vector. This is done by performing a coordinatesystem shift on the rotation
matrix already used in (3.36), ie.

Oσ =





cos(2π
3

) −sin(2π
3

) 0
sin(2π

3
) cos(2π

3
) 0

0 0 1



 =





−1
2

−
√

3
2

0√
3

2
−1

2
0

0 0 1



 (A.9)

, and since we have πB = (sin(2αi), 0, cos(2αi)), the rotation matrix that takes the radial direction

into πB and preserves the tube axis is Oπ =





cos(2αi) 0 −sin(2αi)
0 1 0

sin(2αi) 0 cos(2αi)



, and we find that the

desired rotation matrix is

Oσ,B = Oπ
−1OσOπ =





1
4
(1 − 3cos(4αi)) −1

2

√
3cos(2αi)

3
4
sin(4αi)

1
2

√
3cos(2αi) −1

2
−
√

3cos(αi)sin(αi)
3
4
sin(4αi)

√
3cos(αi)sin(αi)

1
4
(1 + 3cos(4αi))



 (A.10)

At this point the algebraic expressions regrettably become somewhat more complex but clearly
we now have

pσ2,B,R = Oσ,Bpσ1,B,R pσ3,B,R = Oσ,B
2pσ1,B,R (A.11)

and with these it is in principle trivial to calculate the necessary inner products, but we choose
not to present them here because of their complexity.
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Explicit Hso matrix
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A
P
P
E
N

D
IX

B
.

E
X

P
L
IC

IT
H

S
O

M
A
T

R
IX

B.1 Explicit Hso matrix








































0 − i√
3

i√
3

0 0 0 0 −
√

2
3
eiβ

i√
3

0 − i√
3

0 0 0 0
(−3i+

√
3)eiβ

3
√

2

− i√
3

i√
3

0 0 0 0 0
(3i+

√
3)eiβ

3
√

2

0 0 0 0
√

2
3
eiβ −

√
2(−3i+

√
3)eiβ

6
−

√
2(3i+

√
3)eiβ

6
0

0 0 0
√

2
3
(e−iβ 0 i√

3
− i√

3
0

0 0 0 −(3i+
√

3)e−iβ

3
√

2
− i√

3
0 i√

3
0

0 0 0 −(−3i+
√

3)e−iβ

3
√

2
i√
3

− i√
3

0 0

−
√

2
3
e−iβ

√
2(3i+

√
3)e−iβ

6

√
2(−3i+

√
3)e−iβ

6
0 0 0 0 0









































(B.1)
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Appendix C

Oddness of derivative operator

The derivative function is odd, ie. if E(x) is an even function in x, dE
dx

is odd in x, and if O(x)
is odd in x, dO

dx
is even in x

Proof: let E be an even function in x. We then have

dE(−x)
dx

= lim
∆→0

E(−x+ ∆) − E(−x)
−x+ ∆ − (−x) = lim

∆→0

E(x− ∆) − E(x)

x+ ∆ − x

= lim
∆→0

E(x′) − E(x′ + ∆)

x′ + ∆ − x′
= −dE(x′)

dx′
≈ −dE(x)

dx
(C.1)

where in the second equality we use that E(x) is even in x, and x′ = x − ∆, ie. for the relevant
limit of ∆ → 0, x′ = x so the last ≈ is actually an equality. The other case, ie. the derivative of
an odd function, proceeds in exactly the same way, except we get an extra minus in the second
equality, which carries through to the final expression proving that the derivatives of odd functions
are even.2
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Appendix D

Electromagnetic field in
quantummechanics. Canonical and
Kinematic impulse

In order to understand the second effect, the Aharonov-Bohm effect, we must first state the basics
of electromagnetics in quantum physics: we seek therefore the proper hamiltonian to use for a
charged particle in an electromagnetic field. The way we shall proceed is to state the proper
hamiltonian to use in the classical system, and then employ the correspondence principle to get
the quantum mechanical operator. We wish to find a hamiltonian that yields the Lorenz force
when we find mẍ, where, as usual, the dots denote time derivatives, ie. ẋ ≡ dx

dt
. From analytical

mechanics (eg. [20]) we know, that from the hamiltonian we may find the kinematic and canonical
impulse as

mẋi = m
∂H

∂pi
(D.1)

ṗi = −∂H
∂xi

(D.2)

Here we must emphasize that pi (the canonical impulse) is not necessarily the same as mẋi (the
kinematic impulse). For brevity we now propose the hamiltonian which is indeed the correct an-
swer, and then proceed to prove, that the expression obtained for mẍi is indeed the ith component
of the Lorenz force, q(v × B + E). Let

H =
1

2m
(p − qA(x, t))2 + qφ(x) (D.3)

where A(x, t) is the vector potential defined from B = ∇×A and φ(x) is the electric potential, ie.

E(x) = −∂A(x, t)

∂t
−∇φ(x) (D.4)

and q and m is the charge and mass of the particle, respectively. It is important to realize that in
the hamiltonian formulation of analytical mechanics, H is considered to be a function of x, p and
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t only, as this will come into play when distinguishing between total and partial derivatives. From
(D.1) we find

mẍi = m
d

dt
(
∂H

∂pi
) =

d

dt
(pi − qAi(x, t)) = ṗi − q

∑

j

∂Ai(x, t)

∂xj
ẋj − q

∂Ai(x, t)

∂t
(D.5)

Now, inserting (D.3) into (D.2) we find

ṗi = − 1

m

∑

j

(pj − qAj(x, t)(−q
∂Aj(x, t)

∂xi

)) − q
∂φ(x)

∂xi

=
∑

j

(ẋjq
∂Aj

∂xi

) − q
∂φ(x)

∂xi

(D.6)

We can insert this into (D.5) we find

mẍi = q
∑

j

(ẋj(
∂Aj(x, t)

∂xi

− ∂Ai(x, t)

∂xj

)) + q(−∂Ai(x, t)

∂t
− ∂φ(x)

∂xi

)

= q(
∑

j

(ẋjǫijkBk) + Ei(x)) = q((ẋ × B)i + Ei(x)) (D.7)

which, as we required is exactly the equation of motion of a charged particle in a electromagnetic
field, and where we have used that

ǫijkBk = ǫijk(∇× A)k = ǫ2ijk(
∂A(x, t)j

∂xi

+
∂A(x, t)i

∂xj

) (D.8)

and the expression of the electric field E from (D.4). We should thus (by the correspondence
principle) use the quantum mechanical hamiltonian operator

Ĥ =
1

2m
(p̂− qA)2 + qφ(x) =

1

2m
(−i~∇− qA)2 + qφ(x) (D.9)

where, for brevity I have dropped the parameters of A. Now, if we write out the square we find
that

ĤΨ =
1

2m
(−~

2∇2Ψ + q2A2Ψ + iq~(∇ · AΨ + A · ∇Ψ))

=
1

2m
(−~

2∇2Ψ + q2A2Ψ + iq~(Ψ∇ ·A + 2A · ∇Ψ))

=
1

2m
(−~

2∇2 + q2A2 + iq~(2A · ∇))Ψ (D.10)

where in the last equality I have used the Coulomb gauge, ie. ∇ ·A = 0.
The formula (D.9) forms the outset for the explanation of the Aharonov-Bohm effect.
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