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Abstract

The Heisenberg model on a two-dimensional square lattice with nearest and next-nearest

neighbor exchange interactions exhibits a highly frustrated point at J2 = 1
2
|J1|. Introduc-

ing spin-waves into this system in both a classical and a quantum mechanical (Holstein-

Primakoff) spin-wave theory yields a spin-wave dispersion relation at the highly frus-

trated point. At this point the dispersion has a whole spectrum of zero-energy modes,

which indicates that faulty assumptions have been used in the calculation. This thesis

investigates whether adding additional interactions to the system will correct the issues

of the spin-wave dispersion. The square lattice is stretched to an orthorhombic lattice,

where the exchange interactions differ in the two perpendicular directions of the lat-

tice. The ground state spin configuration of this lattice is determined and spin-waves

are introduced into the system. By stretching the square lattice, the symmetries of

the system are reduced which subsequently lead to a reduction of zero-energy modes

in the spin-wave dispersion, as the highly frustrated point does not exist in the or-

thorhombic lattice. Thereafter the anisotropic Dzyaloshinsky-Moriya interaction on the

two-dimensional square lattice is added to the J1-J2 Heisenberg model. The ground state

spin configuration is determined using the Luttinger-Tisza method, and the possibility

of adding an external magnetic field is considered. Once more spin-waves are introduced,

and the spin-wave dispersion relation is determined using a classical and a quantum me-

chanical spin-wave theory, and the relations are found to be in agreement. This spin-wave

dispersion only contains a zero-energy mode at the Γ-point. Both additional interactions

reduce the amount of zero-energy modes in the spin-wave dispersion.
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Chapter 1

Introduction

Materials, which are characterized as magnetic, contain an array of magnetic moments

arranged in a lattice. These magnetic moments may arrange themselves in a multitude

of different ways, enabling a multitude of different structures and characteristics; one of

which being the phenomenon of frustration. A magnetic system containing frustration

is one in which all competing interactions cannot be satisfied simultaneously, may it be

geometric frustration, where the geometry of the lattice prevents all interactions from

minimizing simultaneously, or frustration through interaction, to which long-range ex-

change interactions is the most common cause. Frustration of magnetic systems leads to

an extensive degeneracy of the ground state. Systems containing frustration are of great

interest as they can lead to the manifestation of a multitude of different fascinating phe-

nomena. They are for example thought to play an important part in the understanding

of unconventional superconductors [1, 2].

The interaction between periodic arrays of spins can be modeled by the Heisenberg

model, where the interaction between two spins at site i and j are characterized by the

exchange interaction Jij. Frustration through interaction is effortlessly obtained when

adding long-range interactions, as it quickly becomes difficult to satisfy conflicting inter-

actions on all lattice geometries when interactions reach farther than the closest neighbor

to a given site. Just two interactions are enough to create frustration, which the J1-J2

Heisenberg model is an excellent example of. This seemingly simple model manifests

several complex theoretical concepts. In this model, an atom interacts with its nearest

and next-nearest neighbors through J1 and J2, respectively. On the square lattice, the

ground state spin configuration is unsurprisingly a simple ferromagnet or antiferromag-

net, depending on the sign of the nearest neighbor interaction, for weak next-nearest

neighbor interactions, J2 < |J1|. For J2 > |J1|, however, the system exhibits frustration

as the ground state spin configuration consists of two interpenetrating Néel lattices dif-

fering by an arbitrary relative angle. A point of particular interest is at J2 = 1
2
|J1| as

this makes the system highly frustrated, and no magnetic order is exhibited as a result.
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CHAPTER 1. INTRODUCTION

According to the Mermin-Wagner theorem, no spontaneous breaking of a continuous

symmetry can occur at finite temperature in the two-dimensional model; however, the

system shows a discrete nematic phase transition at finite temperature [3]. Close to the

highly frustrated point, the system is thought to form a spin liquid [4, 5]. Furthermore,

when spin-waves are considered at the highly frustrated point the resulting spin-wave

dispersion gives rise to a whole spectrum of zero-energy modes. This indicates the possi-

bility of faulty assumptions having been used in the calculation. This thesis investigates

the possibility of this discrepancy being fixed by adding additional interactions to the

model, namely considering an orthorhombic lattice and adding an anisotropic exchange

interaction.

The orthorhombic lattice describes a system in which the spacing is different in the two

perpendicular directions of the lattice. This means that the ”nearest neighbor” interac-

tion differs in these directions, and might instead be described by a J1y-J1z-J2 Heisenberg

model on the two-dimensional lattice in the yz-plane. J2 then actually describes the third

nearest neighbor coupling, and an additional interaction has therefore been added. This

is minor change to the geometry of the system, but it changes the fluctuation spectrum

when spin-waves are considered.

The other additional interaction which will be considered in this thesis is the anisotropic

exchange interaction, which stems from considering the spin-orbit coupling in Anderson

theory of superexchange [6]. The interaction was first formulated by Dzyaloshinsky and

Moriya [7, 8] and is therefore called the Dzyaloshinksy-Moriya (DM) interaction. This

interaction couples the cross product of the classical spin vectors through the exchange

vector Dij between site i and j, which depends on the lattice geometry. The DM in-

teraction is thought to be a source of stabilized skyrmions [9, 10], which are candidates

for spintronic devices, where the spin of electron is exploited as an additional degree of

freedom compared to regular electronics. The DM interaction is present in systems such

as copper formate tetradeuterate (CFTD), which is close to an ideal two-dimensional

Heisenberg antiferromagnet with nearest neighbor exchange constant J = 6.3meV and

DM interaction strength d = 0.46meV [11].

The purpose of this thesis is, thus, to investigate the behavior of different systems under

collective spin excitations and to see the change relative to the highly frustrated J1-J2

Heisenberg model, in which the spin-wave theory describes an unphysical system.

1.1 Outline of thesis

The thesis is structured in the following way to give an in-depth introduction to the

system which constitutes the starting point of the investigation, the J1-J2 Heisenberg

2



CHAPTER 1. INTRODUCTION

model on a square lattice. Subsequently, alterations are added, and the effect they have

on the original setup is determined.

� An overview of relevant background material necessary for the following chapters

is contained in Chapter 2.

� In Chapter 3, the ground state spin configuration of the J1-J2 Heisenberg model

is found and is subsequently subjected to spin fluctuations using both a classical

and a quantum mechanical spin-wave theory. The spin-wave dispersion relation is

determined and is found to be the same in the two theories.

� In Chapter 4, he square lattice model is generalized to the orthorhombic J1y-J1z-

J2 Heisenberg model and the effect that the stretching of the lattice has on the

spin-wave dispersion is discovered.

� In Chapter 5, the asymmetric Dzyaloshinsky-Moriya interaction is added to the

J1-J2 Heisenberg model, and the ground state spin configuration and spin-wave

dispersion are determined. Once again, the same expression for the dispersion is

obtained using both a classical and a quantum mechanical spin-wave theory as a

way of verifying the relation.

� Chapter 6 presents conclusions and discusses potential options for future research

on the subjects of this thesis.
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Chapter 2

Background

2.1 Magnetic materials

Solid magnetic materials contain microscopic magnetic moments, spins, arranged in a

periodic crystalline structure. They arrange themselves in such a manner as it is the

simplest way that the atoms can be arranged to create a macroscopic solid [12]. One

explanation for them being periodic might be that if a certain arrangement lowers the

energy in the vicinity of one atom, the same arrangement probably does so for similar

atoms. This periodic arrangement can have endless compositions but a certain subgroup

of these structures are the so-called Bravais lattices. These are lattices where all points

within it are equivalent and can be described by

r = na1 +ma2 (2.1)

in two dimensions, where a1 and a2 are the two-dimensional primitive lattice vectors and

n and m are integers. Note that the choice of lattice vectors is not unique and can be de-

termined in several different ways. The square and the rectangular lattices are examples

of Bravais lattices in two dimensions. However far from all materials in nature can be

characterized by Bravais lattices, and those who cannot are called non-Bravias lattices.

In the non-Bravais lattice not all point are equivalent, and they can be characterized by

two (or more) interpenetrating Bravais lattices. An example of a non-Bravais lattice is

the honeycomb lattice.

The real-space lattice associates each atom with a position in the lattice structure, but

materials are also defined through their reciprocal lattice. The reciprocal lattice is sim-

ilarly characterized by reciprocal lattice vectors. One can move between real space

and q-space using Fourier transformations. The first Brillouin Zone is spanned by the

Wigner-Seitz cell around the origin in reciprocal space. The reciprocal lattice is periodic

and it is therefore sufficient to explore the first Brillouin Zone when performing sums or

integrals over q.
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CHAPTER 2. BACKGROUND

In reciprocal space the so-called star of Q can be defined. The star of Q is the set of

discrete non-equivalent values of Q in the first Brillouin Zone [13]. Two q-vectors are

said to be equivalent if their difference constitutes a reciprocal lattice vector. Q is a

q-vector which minimizes the exchange interactions.

2.2 Magnetic interactions

The magnetic moments in the lattice structures of crystalline materials interact with each

other through numerous different interactions. These magnetic moments may interact to

induce long range (or short range) order in the system. The interactions can be modeled

by different theories. The most relevant models are discussed in the following sections.

2.2.1 Magnetic dipole-dipole interaction

One type of interaction is the magnetic dipole interaction. The interaction between two

magnetic dipoles µ1 and µ2, separated by displacement r, is given by [14]

E =
µ0

4πr3

[
µ1 · µ2 −

3

r2
(µ1 · r) (µ2 · r)

]
. (2.2)

However this interaction is too weak, even when two magnetic dipoles are separated by

typical distances at the atomic scale, to explain ordering in most magnetic materials [12].

The effect of the magnetic dipole-dipole is therefore often negligible when considering

small-scale phenomena.

2.2.2 Exchange interaction

The interaction between the spin angular momenta of two particles can be modeled after

the Heisenberg model

H =
1

2

∑
ij

JijSi · Sj (2.3)

where i and j refer to lattice sites and Si,j is the spin operator at site i, j. Jij is the ex-

change constant between two sites, and it decays exponentially with the distance between

the two sites as it depends on the degree of overlap of the the atomic wave functions.

The factor 1
2

accounts for double counting of the coupled lattice sites.

The sign and magnitude of the exchange constant determines the ground state spin con-

figuration in a given system. Consider for example a two-dimensional square lattice with

exchange constant Jij = J for i, j being nearest neighboring lattice sites and Jij = 0

otherwise. On the other hand for J < 0 the system would assume a ferromagnetic con-

figuration, where all neighboring spins are aligned. For J > 0 the configuration would

5



CHAPTER 2. BACKGROUND

be antiferromagnetic, where all spins are anti-aligned. This example is very simple and

intuitively clear. However, as it often is with physics, this is not always the case. Adding

a non-zero exchange interaction between next-nearest or even next-next-nearest neigh-

boring sites complicates the case and makes the ground state configuration a result of

the competition between the strenghts of these different interactions, which can all be

both ferromagnetic or antiferromagnetic. The lattice configuration might also compli-

cate the case further. Consider for example a two-dimensional triangular lattice with

antiferromagnetic nearest neighbor exchange interaction, see Fig. (2.1). The energy will

be minimized when the spins are anti-aligned, but the structure of the lattice prevents

all sites from anti-aligning with their nearest neighbor. The system is then frustrated,

as there is no single, unique ground state spin configuration, as one of the antiferro-

magnetic interactions in the triangle will always be unattained. The ground state spin

configuration turns out to be one where the spins are rotated by 120◦ relative to their

neighbors [15].

?

Figure 2.1: Triangular lattice with antiferromagnetic nearest neighbor exchange constant resulting in

a frustrated system, as all 3 spins cannot simultaneously anti-align.

2.2.3 Anisotropic exchange interaction

Another type of exchange interaction is the anisotropic exchange interaction, also some-

times called the antisymmetric exchange interaction. The typical form of this interaction

is

H =
∑
ij

Dij · (Si × Si) , (2.4)

where Dij is the antisymmetric exchange vector which depends on the geometry of the

lattice. The existence of this interaction was first discussed by Dzyaloshinsky [7] and later

formally formulated by Moriya [8], and it is therefore referred to as the Dzyaloshinsky-

Moriya interaction. The symmetric exchange interaction has lowest energy when the

spins are either aligned or anti-aligned, while the antisymmetric exchange interaction fa-

vors spins at a right angle in a plane perpendicular to D. Hence when both interactions

are present there will be a competition between these two interactions. When only the

6



CHAPTER 2. BACKGROUND

DM interaction is present the effect will be to slightly rotate the spins by a small angle,

leading to the phenomenon of weak ferromagnetism [8].

The shape of the antisymmetric exchange vector Dij coupling two atoms at location i

and j respectively can be determined from the following set of rules [8]. Denote the point

bisecting the straight line ij by k, see Fig. (2.2). Then

1. When a center of inversion is at k, the exhcange vector is Dij = 0.

2. When a mirror plane ⊥ ij passes through k, Dij ‖ to the mirror plane or Dij ⊥ ij.

3. When there is a mirror plane including i and j, Dij ⊥ to the mirror plane.

4. When a two-fold rotation axis ⊥ to ij passes through k, Dij ⊥ to the two-fold axis.

5. When there is an n-fold axis (where n ≥ 2) along ij, Dij ‖ ij.

i jk

Figure 2.2: Two lattice points at locations i and j with point k bisecting the line connecting them.

2.3 Weak and local constraint

Magnetism is purely a quantum mechanical effect, as the Bohr-van Leeuwen theorem

states, since the thermal average of the magnetization is zero within classical statistical

mechanics. However magnetism can be explored in a classical manner by treating the

effective spins of atoms as classical vectors in the large spin limit. These classical spins

can be treated under the local constraint

|Si|2 = S2 . (2.5)

But to minimize the energy under this constraint using the Luttinger-Tisza method [16]

would require N site dependent Lagrange multipliers λi, where N is the amount sites in

the lattice. So to make things simpler the local constraint is often relaxed to the weak

constraint

∑
i

|Si|2 = NS2 (2.6)

stating that only the average of the spins is conserved, and not every single spin, as in

Eq. (2.5). To minimize the energy under the weak constraint using Lagrange multipliers

7



CHAPTER 2. BACKGROUND

would only require a single Lagrange multiplier λ, hence the situation has been simplified

significantly. It is clear that the spins obeying the weak constraint in Eq. (2.6) make up

a subset of the spins already obeying the local constraint.

2.4 Fourier conventions

In this thesis the following conventions for the discrete Fourier transform and inverse

discrete Fourier transform of classical spin vectors will be used

Si =
1√
V

∑
q

eiq·ri Sq (2.7)

Sq =
1√
V

∑
i

e−iq·ri Si . (2.8)

The convention is completely analogous to Eq. (2.7) and Eq. (2.8) for Fourier transforms

of other types of operators used, such as Holstein-Primakoff bosons and π-fields.

The Fourier transform of exchange interactions is defined a bit differently, as the Heisen-

berg exchange constant used in this thesis is

Jij =
1

V
∑
q

eiq·δij Jq (2.9)

Jq =
∑
δij

e−iq·δij Jij , (2.10)

where δij = (ri − rj). The Fourier transfrom of the Dzyaloshinsky-Moriya exchange

vector is

Dij =
1

V
∑
q

eiq·δij Dq (2.11)

Dq =
∑
δij

e−iq·δij Dij . (2.12)

Additionally the very useful relation between a sum of complex exponential functions and

the Dirac delta function is applied numerous times according to the following definition

1

V
∑
q

eiq·ri = δ(ri) . (2.13)

8



Chapter 3

The Heisenberg model

This chapter contains a classification of the Heisenberg model along with the determi-

nation of the ground state spin configuration in the J1-J2 model on a two-dimensional

square lattice. The frustration of the ground state is discussed and spin fluctuations

are introduced into the system. The spin-wave dispersion is determined using both a

classical and a quantum mechanical spin-wave theory. This chapter is based on [16] and

[17].

3.1 Ground state spin configuration

The general Heisenberg model is given by

H =
1

2

∑
ij

JijSi · Sj (3.1)

where Si is the spin on the atom at site i in the lattice and Jij is the Heisenberg exchange

interaction between the atoms at site i and site j. The Heisenberg exchange interaction

is translationally and reflectionally symmetric and, as discussed in the previous chapter,

it is trivial that Jij < 0 (Jij > 0) favors alignment (anti-alignment) of spins Si and Sj

when treated as classical vectors.

Minimizing the energy while imposing the weak constraint
∑

i|Si|2 = NS2 yields a set

of equations

0 =
∂

∂Sαi

[
1

2

∑
ij

JijSi · Sj − λ

(∑
i

|Si|2 −NS2

)]
(3.2)

for α ∈ {x, y, z}. λ is a Lagrange multiplier, of which only one is needed according to

Sec. (2.3). This stationary condition yields the set of eigenvalue equations

1

2

∑
j

JijS
α
j = λSαi . (3.3)

9



CHAPTER 3. THE HEISENBERG MODEL

These equations have eigenvalue λ = 1
2
JQ and are solved by

Sαi = Aα cos (Q · ri + φα) (3.4)

for real phases φα, which can be shown by

1

2

∑
j

JijS
α
j =

1

2

∑
j

JijAα cos (Q · rj + φα)

=
1

4V
∑
q

∑
j

AαJqeiq·(ri−rj)
(
ei(Q·rj+φα) + e−i(Q·rj+φα)

)
=

1

2
JQAα cos (Q · ri + φα)

(3.5)

where the Fourier transform of the Heisenberg exchange interaction, given by Eq. (2.9),

was inserted, and the fact that J−Q = JQ was utilized. The ground state spins satisfying

the weak constraint thus comprises planar spiral, and it is composed of a single q-vector.

The energy of the system is

E =
1

2
NJQ (3.6)

where N is the total number of sites in the lattice. Q may be chosen to minimize the

energy, which is done by choosing the q-vector which minimizes Jq.

The fulfillment of the local constraint rather than the weak constraint can be met by

adjusting the free parameters of Sαi . Choosing two of the constants Aα to be 1 and the

remaining to be 0, while the one of the phases is φα = φ and the other one is φα = φ+ π
2

is one way of doing this. The spin configuration then becomes

Si = cos (Q · ri + φ) û+ sin (Q · ri + φ) v̂ . (3.7)

The unit vectors û and v̂ may be pointed in any direction where û ⊥ v̂. For simplicity

the phase φ is φ = 0 henceforth.

3.1.1 J1-J2 model on two-dimensional square lattice

The J1-J2 model is used to describe a system where each atom is coupled to their nearest

(next-nearest) neighbor via the exchange interaction J1 (J2). In the two-dimensional

square lattice each atom is positioned at a site i in the lattice, described by

ri = nia1 +mia2 (3.8)

where a1,2 are the primitive lattice vectors and ni,mi ∈ Z. The rectangular lattice is an

example of such a system, and the primitive lattice vectors depend on the lattice con-

stants. For the rectangular lattice in the yz-plane one choice of primitive lattice vectors

10



CHAPTER 3. THE HEISENBERG MODEL

is a1 = (ay1, a
z
1)T = (ay, 0)T and a2 = (0, az)

T, see Fig. (3.1). In the following section

the square lattice, where ay = az will be treated, while the orthorhombic lattice, with

ay 6= az will be investigated in Sec. (4).

ay = a
az = a

J1

J2

y

z

Figure 3.1: The two-dimensional square lattice ground state spin configuration in the J1-J2 Heisenberg

model with two antiferromagnetic sublattices represented by white and black points, nearest (next-

nearest) neighbor exchange constant J1 (J2) and lattice constants ay = az.

In the square lattice the four nearest neighbors of site i are situated at lattice sites

ri ± aŷ and ri ± aẑ and the four next-nearest neighbors are situated diagonally at

ri±aŷ±aẑ. The system is described by the Heisenberg Hamiltonian given by Eq. (2.3).

Upon inserting the Fourier transform of the spins, given by Eq. (2.7), the Hamiltonian

assumes the form

H =
1

2

∑
q

JqSq · S−q (3.9)

where

Jq = 2J1 (cos (qya) + cos (qza)) + 4J2 cos (qya) cos (qza) . (3.10)

By minimizing the energy, corresponding to minimization of Jq with respect to q, it

is apparent that the appropriate minima Q = (Qy, Qz) depends on the strength of the

exchange interactions between sites. There are two straightforward cases; for J1, J2 < 0

both the nearest and next-nearest neighbor couplings prefer alignment of the spins, and

the energy is minimized by Q = (0, 0) simply resulting in a completely ferromagnetic

system. For J1 > 0, J2 < 0 the couplings are also not conflicting and energy is minimized

by Q = 1
a
(π, π), resulting in an antiferromagnetic system. In both of these cases the

star of Q only contains one element, and the ground state spin configuration is therefore

11



CHAPTER 3. THE HEISENBERG MODEL

described by Eq. (3.7).

However when J2 > 0 the nearest and next-nearest neighbor couplings cannot be satisfied

simultaneously and a competition to dominate arises between them, making the system

frustrated. For J2 <
1
2
|J1| the interaction is dominated by the nearest neighbor coupling,

and the minimum is at Q = 1
a
(π, π) (Q = (0, 0)), see Fig. (3.2a), if J1 prefers anti-

alignment (alignment) of the spins. Once again the spin configuration is given by Eq.

(3.7). For J2 >
1
2
|J2| there is a transition to either Q(1) =

(
0, π

a

)
or Q(2) =

(
π
a
, 0
)
, see

Fig. (3.2b).

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

qy

q
z

-3

-2

-1

0

1

2

3

4

(a) Jq for J1 = 1, J2 = 0.1.

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

qy

q
z

-3.0

-1.5

0

1.5

3.0

4.5

6.0

7.5

(b) Jq J1 = 1, J2 = 1.

Figure 3.2: Contour plot of Jq from Eq. (3.10) for different strengths of the exchange interaction J1

(J2) between nearest (next-nearest) neighboring sites in the two-dimensional square lattice with a = 1.

The minimum of Jq shifts from (Qy, Qz) = 1
a (π, π) to Q(1) =

(
0, πa

)
or Q(2) =

(
π
a , 0
)

as J2 increases

from J2 <
1
2 |J1| to J2 >

1
2 |J1|.

When J2 > 1
2
|J1| the star of Q contains two elements Q(1) and Q(2). Since 2Q is a

reciprocal lattice vector for both of these q’s, the ground state spin configuration can be

described by [13]

Si = cos
(
ϕ

(1)
i

)
cos(Θ)û+ cos

(
ϕ

(2)
i

)
sin(Θ)v̂ (3.11)

where ϕ
(1)
i = Q(1) ·ri and ϕ

(2)
i = Q(2) ·ri. The unit vectors û ⊥ v̂. Hence the spin config-

uration is split up into two interpenetrating Néel sublattices, see Fig. (3.1), where sites

belonging to one sublattice are represented by white circles and sites belonging to the

other are represented by black circles. 2Θ = θ represents the angular separation between

the two sublattices. In this case the ground state energy of the system is E = −2NJ2.

It is therefore evident that ground state energy is independent of the orientation of the

sublattices, since there is no dependency on the angle Θ, and the system is therefore

12
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degenerate in this angle.

In between these two cases there is the situation of J2 = 1
2
|J1|, where Q actually is every

point on the entire edge of the Brillouin Zone, see Fig. (3.3).

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

qy

q
z

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Figure 3.3: Contour plot of exchange interaction Jq in the two-dimensional square lattice with a = 1

for J1 = 1, J2 = 0.5.

3.2 Local spin fluctuations - Spin waves

As was seen in the previous section, the star of Q may consist of one or two elements

in the J1-J2 Heisenberg model on the square lattice and the system can therefore be

described by different ground state spin configurations, depending on which situation

is the relevant case. The stability of these spin configurations can be investigated by

allowing spin-waves, using a classical theory in terms of local spin fluctuations in the

system. The Hamiltonian of the system is

H =
1

2

∑
ij

JijSi · Sj (3.12)

and since there are two solutions for Si,j the two cases will be treated separately with

regards to the introduction of local spin fluctuations.

3.2.1 One element in star of Q

As was seen in Sec. (3.1.1) the star of Q consists of one element (either Q = (0, 0) or

Q = 1
a
(π, π)) when J2 <

1
2
|J1|. In this case the ground state spin configuration is given

by

Si
S

= cos(ϕi)û+ sin(ϕj)v̂ , (3.13)

13
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where ϕi = Q · ri. The behavior of the system when subjected to spin fluctuations

will now be investigated. The existence of spin fluctuations means that the spins may

deviate from the spin configuration given by Eq. (3.13), and the spin configuration of

this excited state can then be described by a new Si

Si = S0
i + δSi (3.14)

where S0
i are the unperturbed spins of the ground state given by Eq. (3.13) and δSi are

the deviations. These deviations can be classified by some component in two transverse

directions of S0
i , so locally at each lattice site i

Si = S0
i (cos(ϕi)û+ sin(ϕi)v̂) + S1

i (− sin(ϕi)û+ cos(ϕi)v̂) + S2
i (û× v̂) (3.15)

where S1
i and S2

i then characterizes the magnitude of the deviations of the spin in each of

the two transverse directions. Thus no fluctuations present locally at site i is equivalent

to (S0
i , S

1
i , S

2
i ) = (1, 0, 0). In terms of this spin configuration the Hamiltonian in Eq.

(3.12) can be written as

H =
1

2

∑
ij

Jij
[(
S0
i S

0
j + S1

i S
1
j

)
cos (ϕi − ϕj) +

(
S0
i S

1
j − S1

i S
0
j

)
sin (ϕi − ϕj) + S2

i S
2
j

]
(3.16)

using standard trigonometric relations. Fluctuations must preserve the normalization of

the spins, so S2 = (S0)
2

+ (S1)
2

+ (S2)
2
. π-fields can be introduced to parametrize the

fluctuations Sβ

S
= πβ for β ∈ {0, 1, 2}. The general form of a fluctuation vector is then

S

(√
1− π2

1 − π2
2, π1, π2

)
' S

(
1− 1

2

(
π2

1 + π2
2

)
, π1, π2

)
. (3.17)

Eq. (3.17) is valid for small fluctuations π1, π2 � 1. Using this assumption the Hamil-

tonian can be written as

H ' 1

2
S2
∑
ij

Jij

[(
1−

π2
1i + π2

2i + π2
1j + π2

2j

2
+ π1iπ1j

)
cos(ϕi − ϕj)

+ (π1j − π1i) sin(ϕi − ϕj) + π2iπ2j

] (3.18)

to second order in the fluctuations. By relabeling of indices i → j and j → i the

Hamiltonian can be simplified to

H ' 1

2
S2
∑
ij

Jij
[(

1− π2
1i − π2

2i + π1iπ1j

)
cos (ϕi − ϕj) + 2π1i sin (ϕi − ϕj) + π2iπ2j

]
(3.19)

14
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utilizing the fact that the exchange interaction is symmetric Jji = Jij. Inserting the

Fourier transform of the π’s, π1,2i = 1√
V

∑
q eiq·riπ1,2q and of the exchange constant,

given by Eq. (2.9), in the Hamiltonian yields

H =
S2

2V2

∑
ij

∑
qq′q′′

Jqeiq·(ri−rj)

{[
δq,q′δq,q′′ − π1q′π1q′′ei(q

′+q′′)·ri − π2q′π2q′′ei(q
′+q′′)·ri

+ π1q′π1q′′eiq
′·ri+iq′′·rj

]1

2

(
eiQ·(ri−rj) + e−iQ·(ri−rj)

)
+

√
V
i
π1q′eiq

′·ri
(
eiQ·(ri−rj) − e−iQ·(ri−rj)

)
+ π2q′π2q′′eiq

′·ri+iq′′·rj

}

=
S2

2
JQ +

1

2
S2
∑
q

[(
1

2
(JQ+q + JQ−q)− JQ

)
|π1q|2 + (Jq − JQ) |π2q|2

]
(3.20)

where ϕi − ϕj = Q · (ri − rj) has been employed. Identifying |π1q| and |π2q| as two

separate modes and simplifying the spin normalization to S = 1, the Hamiltonian may

be written neatly as

H = E0 +
∑
q

(
ω1q|π1q|2 + ω2q|π2q|2

)
(3.21)

where

E0 =
1

2
JQ (3.22)

and

ω1q =
1

4
(JQ+q + JQ−q)− 1

2
JQ (3.23)

ω2q =
1

2
(Jq − JQ) . (3.24)

3.2.2 Two elements in star of Q

The star of Q consists of two elements when J2 >
1
2
|J1|, namely Q(1) = 1

a
(0, π) and

Q(2) = 1
a
(π, 0). In this case it was shown in Sec. (3.1.1) that the ground state spin

configuration is

Si = cos
(
ϕ

(1)
i

)
cos(Θ)û+ cos

(
ϕ

(2)
i

)
sin(Θ)v̂ (3.25)

where ϕ
(1)
i = Q(1) · ri and ϕ

(2)
i = Q(2) · ri. As was done in the previous section, spin

fluctuations can now be introduced by allowing deviations of the ground state spin

configuration Si = S0
i + δSi, and S0

i is the ground state spin configuration in Eq. (3.25).

15
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In terms of the spin components in the transverse directions of S0
i the spin vectors are

locally

Si = S0
i

(
cos
(
ϕ

(1)
i

)
cos(Θ)û+ cos

(
ϕ

(2)
i

)
sin(Θ)v̂

)
+ S1

i

(
− cos

(
ϕ

(2)
i

)
sin(Θ)û+ cos

(
ϕ

(1)
i

)
cos(Θ)v̂

)
+ S2

i (û× v̂) .
(3.26)

In terms of this locally fluctuating spin configuration the Hamiltonian can be written as

H =
1

2

∑
ij

Jij

[ (
S0
i S

0
j + S1

i S
1
j

) (
cos
(
ϕ

(1)
i

)
cos
(
ϕ

(1)
j

)
cos2(Θ) + cos

(
ϕ

(2)
i

)
cos
(
ϕ

(2)
j

)
sin2(Θ)

)
+
(
S0
i S

1
j − S1

i S
0
j

) (
cos
(
ϕ

(2)
i

)
cos
(
ϕ

(1)
j

)
− cos

(
ϕ

(1)
i

)
cos
(
ϕ

(2)
j

))
cos(Θ) sin(Θ) + S2

i S
2
j

]
.

(3.27)

Utilizing relabeling of indices and the symmetry of the exchange interaction the Hamil-

tonian can be simplified to

H =
1

2

∑
ij

Jij

[ (
S0
i S

0
j + S1

i S
1
j

) (
cos
(
ϕ

(1)
i

)
cos
(
ϕ

(1)
j

)
cos2(Θ) + cos

(
ϕ

(2)
i

)
cos
(
ϕ

(2)
j

)
sin2(Θ)

)
+ 2

(
S0
i S

1
j − S1

i S
0
j

)
cos
(
ϕ

(2)
i

)
cos
(
ϕ

(1)
j

)
cos(Θ) sin(Θ) + S2

i S
2
j

]
.

(3.28)

Note that cos
(
ϕ

(1),(2)
i

)
cos
(
ϕ

(1),(2)
j

)
= 1

2

(
cos
(
ϕ

(1),(2)
i − ϕ(1),(2)

j

)
+ cos

(
ϕ

(1),(2)
i + ϕ

(1),(2)
j

))
.

Recall from Eq. (3.8) that ri = aniŷ + amiẑ for ni,mi ∈ Z. For Q(1) =
(
0, π

a

)
it can

be seen that ϕ
(1)
i + ϕ

(1)
j = Q(1) · (ri + rj) = (mi +mj) π. Taking the cosine of this will

therefore yield either +1 or −1 depending on if the summation mi + mj yields an even

or an odd number. However when the sum yields an even (odd) number the difference

mi −mj correspondingly yields an even (odd) number. Therefore

cos
(
ϕ

(1)
i − ϕ

(1)
j

)
+ cos

(
ϕ

(1)
i + ϕ

(1)
j

)
= 2 cos

(
ϕ

(1)
i − ϕ

(1)
j

)
. (3.29)

The same is true for any combination of (1) and (2) in cos
(
ϕ

(1),(2)
i + ϕ

(1),(2)
j

)
. Thus the

Hamiltonian can be simplified to

H =
1

2

∑
ij

Jij

[ (
S0
i S

0
j + S1

i S
1
j

) (
cos
(
ϕ

(1)
i − ϕ

(1)
j

)
cos2(Θ) + cos

(
ϕ

(2)
i − ϕ

(2)
j

)
sin2(Θ)

)
+
(
S0
i S

1
j − S1

i S
0
j

)
cos
(
ϕ

(2)
i − ϕ

(1)
j

)
sin(2Θ) + S2

i S
2
j

]
(3.30)

using cos(x) sin(x) = 1
2

sin(2x). Just as in the previous section, spin vectors can now be

parametrized by small fluctuations π1, π2 � 1 preserving the normalization

(
S0, S1, S2

)
'
(

1− 1

2

(
π2

1 + π2
2

)
, π1, π2

)
. (3.31)
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In terms of these the Hamiltonian becomes

H =
1

2

∑
ij

Jij

[ (
1− π2

1i − π2
2i + π1iπ1j

) (
cos
(
ϕ

(1)
i − ϕ

(1)
j

)
cos2(Θ) + cos

(
ϕ

(2)
i − ϕ

(2)
j

)
sin2(Θ)

)
+ (π1j − π1i) cos

(
ϕ

(2)
i − ϕ

(1)
j

)
sin(2Θ) + π2iπ2j

]
.

(3.32)

Inserting the Fourier transforms of the π-fields yields a Hamiltonian in reciprocal space

given by

H =
1

2V2

∑
ij

∑
qq′q′′

Jqeiq·(ri−rj)

{[
δq,q′δq,q′′ − π1q′π1q′′ei(q

′+q′′)·ri − π2q′π2q′′ei(q
′+q′′)·ri

+ π1q′π1q′′eiq
′·ri+iq′′·rj

][1

2

(
eiQ

(1)·(ri−rj) + e−iQ
(1)·(ri−rj)

)
cos2(Θ)

+
1

2

(
eiQ

(2)·(ri−rj) + e−iQ
(2)·(ri−rj)

)
sin2(Θ)

]
+ π2q′π2q′′eiq

′·ri+iq′′·rj

+

√
Vδq′,q′′

2

(
π1q′′eiq

′′·rj − π1q′′eiq
′′·ri
)(

eiQ
(2)·ri−iQ(1)·rj + e−iQ

(2)·ri+iQ(1)·rj
)

sin (2Θ)

}
.

(3.33)

Carrying out the i, j sums yields

H =
1

2

(
JQ(1) cos2(Θ) + JQ(2) sin2(Θ)

)
+

1

2

∑
q

{[(
1

2

(
JQ(1)+q + JQ(1)−q

)
− JQ(1)

)
cos2(Θ)

+

(
1

2

(
JQ(2)+q + JQ(2)−q

)
− JQ(2)

)
sin2(Θ)

]
|π1q|2

+
(
Jq − JQ(1) cos2(Θ)− JQ(2) sin2(Θ)

)
|π2q|2

}
.

(3.34)

It is not immediately obvious why the terms linear in the π-fields vanish. They turn out

to give

sin(2Θ)

4V 3
2

∑
ij

∑
qq′

Jqeiq·(ri−rj)
(
π1q′eiq

′·rj − π1q′eiq
′·ri
)(

eiQ
(2)·ri−iQ(1)·rj + e−iQ

(2)·ri+iQ(1)·rj
)

=
1

2

√
V sin(2Θ)

(
JQ(2) − JQ(1)

) (
π1Q(1)−Q(2) + π1Q(2)−Q(1)

)
= 0

(3.35)

since JQ(1) = JQ(2) = −4J2, as can be seen from Eq. (3.10). So once again the Hamilto-

nian in Eq. (3.34) is of the form
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H = E0 +
∑
q

(
ω1q(Θ)|π1q|2 + ω2q(Θ)|π2q|2

)
(3.36)

where

ω1q(Θ) =
1

2

(
1

2

(
JQ(1)+q + JQ(1)−q

)
− JQ(1)

)
cos2(Θ)

+
1

2

(
1

2

(
JQ(2)+q + JQ(2)−q

)
− JQ(2)

)
sin2(Θ) (3.37)

ω2q(Θ) =
1

2

(
Jq − JQ(1) cos2(Θ)− JQ(2) sin2(Θ)

)
(3.38)

and

E0 =
1

2

(
JQ(1) cos2(Θ) + JQ(2) sin2(Θ)

)
. (3.39)

3.2.3 Quantization of fluctuations

Having identified two modes in the Hamiltonian the π-fields may now be quantized in

order to obtain the spin-wave dispersion relation. The fields can be quantized according

to [18] [
Sx
S
,
Sy
S

]
= i

Sz
S2

(3.40)

in the large spin limit S → ∞ (which can be thought of as the classical limit of the

quantum mechanical case) in accordance with the canonical commutation relations. Us-

ing this, the identification xq =
√

2π1q and pq =
√

2π2q (which obeys [xq, pq′ ] = ihδq,q′)

can be made. The Hamiltonian can then be written as

H = E0 +
∑
q

(
1

2
ω1qx−qxq +

1

2
ω2qp−qpq

)
, (3.41)

where E0 depends on the ground state spin configuration (e.q. Eq. (3.22) or Eq. (3.39)).

Then the second quantized spin-wave operators can be introduced

aq =
1√
2

(
1

cq
xq +

i

~
cqpq

)
, a†−q =

1√
2

(
1

cq
xq −

i

~
cqpq

)
(3.42)

where cq =
√

~√ω2q√
ω1q

and with reverse transformation

xq =
cq√

2

(
a†−q + aq

)
, pq = i

h√
2cq

(
a†−q − aq

)
. (3.43)

In terms of these operators the Hamiltonian can then be written as

H = E0 +
∑
q

~Ωq

(
a†qaq +

1

2

)
(3.44)
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where

Ωq =
√
ω1qω2q (3.45)

is the spin-wave dispersion.

One element in star of Q

In the case of one element in the star of Q, where the spin configuration is given by Eq.

(3.13), the two branches were shown to be

ω1q =
1

4
(JQ+q + JQ−q)− 1

2
JQ (3.46)

ω2q =
1

2
(Jq − JQ) . (3.47)

In the J1-J2 Heisenberg model on the square lattice the q-vector which minimizes the

energy is given by

Q = (Qy, Qz) =

(0, 0) for J1 < 0, J2 <
1
2
|J1|,

1
a
(π, π) for J1 > 0, J2 <

1
2
|J1|.

(3.48)

as was seen in Sec. (3.1.1). Denoting ξx = cos (xa), the exchange interaction from Eq.

(3.10), with ay = az = a, can be written as

Jq = 2J1

(
ξqy + ξqz

)
+ 4J2ξqyξqz . (3.49)

In the case of Q = (0, 0) the spin-wave spectrum in Eq. (3.45) is quite simple since

JQ = 4 (J1 + J2) and JQ±q = Jq. It is

Ωq =
1

2
(Jq − JQ) = J1

(
ξqy + ξqz − 2

)
+ 2J2

(
ξqyξqz − 1

)
. (3.50)

A plot of this spin-wave dispersion can be seen in Fig. (3.4a) for J1 = −1 and J2 = 0.1.

When Q = 1
a
(π, π) the minimized exchange coupling is JQ = 4 (−J1 + J2) and JQ±q =

−2J1

(
ξqy + ξqz

)
+ 4J2ξqyξqz . Then the spin-wave spectrum given by Eq. (3.45) is

Ωq =
√(

J1

(
−ξqy − ξqz + 2

)
+ 2J2

(
ξqyξqz − 1

)) (
J1

(
ξqy + ξqz + 2

)
+ 2J2

(
ξqyξqz − 1

))
.

(3.51)

This spin-wave dispersion can be seen in Fig. (3.4b) for J1 = 1 and J2 = 0.1.

19



CHAPTER 3. THE HEISENBERG MODEL

(a) Ωq from Eq. (3.50) for J1 = −1 and J2 = 0.1 where

Q = (0, 0).

(b) Ωq from Eq. (3.51) for J1 = 1 and J2 = 0.1 where

Q = 1
a

(π, π).

Figure 3.4: Plot of spin-wave dispersion Ωq for different strenghts of the Heisenberg exchange in-

teractions Jij between nearest neighboring sites (J1) and next-nearest neighboring sites (J2) in the

two-dimensional square lattice with a = 1 described by the Hamiltonian given in Eq. (2.3).

Two elements in star of Q

When there are two q-vectors in the star of Q for the two-dimensional square lattice,

and when 2Q is a reciprocal lattice vector for both of these Q’s, the spin configuration

is given by Eq. (3.25). Once again two branches emerge with spectra

ω1q =
1

2

(
1

2

(
JQ(1)+q + JQ(1)−q

)
− JQ(1)

)
cos2(Θ)

+
1

2

(
1

2

(
JQ(2)+q + JQ(2)−q

)
− JQ(2)

)
sin2(Θ) (3.52)

ω2q =
1

2

(
Jq − JQ(1) cos2(Θ)− JQ(2) sin2(Θ)

)
(3.53)

and Jq is still given by (3.10). The two q-vectors in the star of Q are Q(1) =
(
0, π

a

)
and

Q(2) =
(
π
a
, 0
)
. Once again denoting ξx = cos (xa) it can be seen that

JQ(1) = JQ(2) = −4J2 (3.54)

JQ(1)±q = 2J1

(
ξqy − ξqz

)
− 4J2ξqyξqz (3.55)

JQ(2)±q = 2J1

(
−ξqy + ξqz

)
− 4J2ξqyξqz . (3.56)

The spin-wave spectrum in Eq. (3.45) is then

Ωq =
√
J1

(
ξqy − ξqz

) (
cos2(Θ)− sin2(Θ)

)
+ 2J2

(
1− ξqyξqz

)√
J1

(
ξqy + ξqz

)
+ 2J2

(
1 + ξqyξqz

)
.

(3.57)

This spin-wave dispersion can be seen in Fig. (3.5) for different angles Θ. In general an

angle of Θ + π
2

rotates the figure by π
2

compared to that of angle Θ.
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(a) Ωq for J1 = J2 = 1, Θ = 0. (b) Ωq for J1 = J2 = 1, Θ = π
4

.

Figure 3.5: Plot of spin-wave dispersion Ωq from Eq. (3.57) for different angles Θ, where 2Θ = θ is

the angle between spins of the two antiferromagnetic sublattices of the ground state spin configuration,

see Fig. (3.6) in the two-dimensional square lattice with a = 1.

3.3 Quantum spin fluctuations - Magnons

So far the spin-wave dispersion has been obtained using a classical spin-wave theory while

treating the spin operators as classical vectors, which were then quantized. However

the spin operators are inherently quantum mechanical objects, and a suitable quantum

mechanical approach to determine the spin-wave dispersion will now be applied. A

Holstein-Primakoff transformation of the spin operators will be employed to obtain a

bilinear Hamiltonian, to which a Bogoliubov transformation then can readily be applied.

3.3.1 Holstein-Primakoff transformation

The Holstein-Primakoff transformation describes the relation between the spin projection

operators and the magnon creation and annihilation operators in second quantization

[19]. The transformation is given by [20]

S+
i = Sxi + iSyi =

√
2S − b†ibibi (3.58)

S−i = Sxi − iS
y
i = b†i

√
2S − b†ibi (3.59)

Szi = S − b†ibi . (3.60)

The operators in Eqs. (3.58)-(3.60) satisfy the necessary commutation relation for the

spin operator projections
[
Sα, Sβ

]
= εαβγiS

γ, where α, β ∈ {x, y, z}. b†i and bi are the

bosonic magnon creation and annihilation operators and they obey the bosonic commu-

tation relations

[bi, bj] = 0 ,
[
b†i , b

†
j

]
= 0 ,

[
bi, b

†
j

]
= δi,j . (3.61)

21



CHAPTER 3. THE HEISENBERG MODEL

In the limit of large spin S (compared to the magnon creation and annihilation operators)

the spin operators can be expanded in powers of 1
S

yielding

S+
i '
√

2Sbi (3.62)

S−i '
√

2Sb†i (3.63)

Szi = S − b†ibi . (3.64)

In the J1-J2 Heisenberg model for J2 >
1
2
|J1| the ground state spin configuration of the

two-dimensioanal square lattice consists of two antiferromagnetic sublattices, differing

by a relative angle θ, as discussed in Sec. (3.1.1), see Fig. (3.1). The Hamiltonian

describing the system is given by Eq. (2.3). The Holstein-Primakoff representations are

defined in local coordinate systems, in which the spins are parallel to the local z-axis.

To be able to apply this method a rotation by angle θi of each spin Si in the lattice is

done, so that is becomes parallel with the z-axis. Using the rotation matrix

Rx(φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 (3.65)

which describes a rotation by angle φ around the x-axis, which is the only rotation

relevant here, since all spins lie in the yz-plane, whereas for a three-dimensional system

two rotation matrices would be necessary. For the rotation matrices it is evident that

R−1
x (φ) = Rx(−φ) and Rx(φa)Rx(φb) = Rx(φa + φb), which is true for rotations about

any axis, not just the x-axis. Additionally the rotation matrices are orthogonal matrices,

such that RT
xRx = R−1

x Rx = 1. The Hamiltonian can therefore be written as

H =
1

2

∑
ij

JijSi · Sj

=
1

2

∑
ij

JijSiR
−1
x (θi)Rx(θi) ·R−1

x (θj)Rx(θj)Sj

=
1

2

∑
ij

JijS̃iRx(θi − θj)S̃j

(3.66)

where S̃i,j = Rx(θi,j)Si,j are the spin operators defined in the local reference frame. These

rotated spin operators still obey the required commutation relation
[
S̃α, S̃β

]
= εαβγiS̃

γ.

Because of the form of Rx, given by Eq. (3.65), the Hamiltonian can be simplified to

H =
1

2

∑
ij

Jij

[
S̃xi S̃

x
j + cos (θi − θj)

(
S̃yi S̃

y
j + S̃zi S̃

z
j

)
+ sin (θi − θj)

(
S̃zi S̃

y
j − S̃

y
i S̃

z
j

)]
.

(3.67)

Noting that Sxi = 1
2

(
S+
i + S−i

)
and Syi = 1

2i

(
S+
i − S−i

)
the Hamiltonian becomes
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H ' S

2

∑
ij

Jij

{
1 + cos(θi − θj)

2

(
b†ibj + bib

†
j

)
+

1− cos(θi − θj)
2

(
b†ib
†
j + bibj

)
− cos (θi − θj)

(
b†ibi + b†jbj

)
+ S cos (θi − θj) + sin (θi − θj) i

√
S

2

(
b†i − b

†
j − bi + bj

)}
(3.68)

to second order in the Holstein-Primakoff bosons in the large S expansion, given by

Eqs. (3.62)-(3.64). Using the trigonometric identities 1
2

(1 + cos(x)) = cos2
(
x
2

)
and

1
2

(1− cos(x)) = sin2
(
x
2

)
the Hamiltonian can be written as

H ' S

2

∑
ij

Jij

{
cos2

(
θi − θj

2

)(
b†ibj + bib

†
j

)
+ sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
− cos (θi − θj)

(
b†ibi + b†jbj

)
+ S cos (θi − θj) + sin (θi − θj) i

√
S

2

(
b†i − b

†
j − bi + bj

)}
.

(3.69)

This Hamiltonian can be simplified by utilizing relabelling of indeces i → j and j → i

and keeping in mind that the exchange constant is symmetric Jji = Jij, as is cosine

cos(θj − θi) = cos(θi − θj) while sine is asymmetric sin(θj − θi) = − sin(θi − θj). The

full Hamiltonian describing the J1-J2 Heisenberg model using the Holstein-Primakoff

representation is then

H ' S

2

∑
ij

Jij

{
2 cos2

(
θi − θj

2

)
b†ibj + sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
− 2 cos (θi − θj) b†ibi

+ S cos (θi − θj) + 2 sin (θi − θj) i
√
S

2

(
b†i − bi

)}
.

(3.70)

Next the Fourier transform of the Holstein-Primakoff bosons will be inserted

bi =
1√
V

∑
q

eiq·ribq (3.71)

b†i =
1√
V

∑
q

e−iq·rib†q (3.72)

and the contributions from the nearest and the next-nearest neighbors will be determined

separately. As it is very important to be careful in the following derivation, since there are

lots of traps to fall in, the derivation will be done in full for each term in the Hamiltonian.

Nearest neighbor contribution

The ground state spin configuration of the J1-J2 Heisenberg model consists of two dif-

ferent types of spin vectors, along with the antiferromagnetic partner of each of these,

so four different vectors in total, see Fig. (3.6).
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BA

CDC

B A

D

θ

Figure 3.6: Spin configuration in ground state of J1-J2 Heisenberg model with the four possible

different types of spin vectors A, B, C and D.

A spin at site i is coupled to their 4 nearest neighbors by exchange constant Jij = J1,

see Fig. (3.1). The difference in the angle with the z-axis between spins A and C have

with their nearest neighboring sites are

θA,C − θj =

−θ for nearest neighbors in the y-direction,

−θ ± π for nearest neighbors in the z-direction
(3.73)

and for spins B and D

θB,D − θj =

θ for nearest neighbors in the y-direction,

θ ± π for nearest neighbors in the z-direction.
(3.74)

Employing this the terms of the J1-J2 Heisenberg Hamltonian in Eq. (3.70) can be

determined in q-space upon insertion of the Fourier transform of the bosonic creation

and annihilation operators. Firstly consider

S
∑
〈ij〉

Jij cos2

(
θi − θj

2

)
b†ibj =

S

V
J1

∑
〈ij〉

∑
qq′

cos2

(
θi − θj

2

)
e−iq·rieiq

′·rjb†qbq′

=
S

V
J1

∑
iqq′

e−i(q−q
′)·ri
(

cos2

(
θ

2

)[
eiq

′
ya + e−iq

′
ya
]

+ sin2

(
θ

2

)[
eiq

′
za + e−iq

′
za
])

b†qbq′

= 2SJ1

∑
q

[
cos2

(
θ

2

)
cos (qya) + sin2

(
θ

2

)
cos (qza)

]
b†qbq

(3.75)

where
∑
〈ij〉 denotes a sum over nearest neighbor sites only and noting that cos2

(±θ±π
2

)
=

sin2
(
θ
2

)
. Using

∑
q

b†qbq =
∑
−q

b†−qb−q (3.76)
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this can be rewritten to

2SJ1

∑
q

[
cos2

(
θ

2

)
cos (qya) + sin2

(
θ

2

)
cos (qza)

]
b†qbq

= SJ1

∑
q

[
cos2

(
θ

2

)
cos (qya) + sin2

(
θ

2

)
cos (qza)

](
b†qbq + b†−qb−q

)
.

(3.77)

Similarly

S

2

∑
〈ij〉

Jij sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
=

S

2V
J1

∑
〈ij〉

∑
qq′

sin2

(
θi − θj

2

)(
e−iq·rie−iq

′·rjb†qb
†
q′ + eiq·rieiq

′·rjbqbq′

)
= SJ1

∑
q

[
sin2

(
θ

2

)
cos (qya) + cos2

(
θ

2

)
cos (qza)

](
b†qb
†
−q + bqb−q

)
(3.78)

and

−S
∑
〈ij〉

Jij cos (θi − θj) b†ibi = −SJ1

V
∑
〈ij〉

∑
qq′

cos (θi − θj) e−i(q−q
′)·rib†qbq′

= −SJ1

V
∑
i

∑
qq′

ie−i(q−q
′)·rib†qbq′ [2 cos(θ)− 2 cos(θ)]

= 0 .

(3.79)

Lastly consider one of the terms linear in the magnon operators

∑
〈ij〉

Jij sin(θi − θj)b†i =
J1√
V

∑
〈ij〉

∑
q

sin(θi − θj)e−iq·rib†q

=
J1√
V

∑
iq

e−iq·ri [2 sin(θ)− 2 sin(θ)] b†q

= 0 .

(3.80)

All similar linear terms vanish in the same manner. In a similar approach the remaining

constant term is

S2

2

∑
〈ij〉

Jij cos (θi − θj) =
S2

2
J1

∑
i

[2 cos(θ)− 2 cos(θ)] = 0 . (3.81)

All contributions from nearest neighboring site interacions have now been determined,

and the next-nearest neighbor contribution will be established.
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Next-nearest neighbor contribution

A site and their next-nearest neighbor is coupled by exchange constant Jij = J2, see

Fig. (3.1). Because of the nature of the ground state consisting of two antiferromagnetic

sublattices, the difference in angle between a site and their next-nearest neighbors is

θi − θj = ±π (3.82)

for i any of the four spins A, B, C or D in Fig. (3.6). From this, it is immediately

apparent that terms in the Hamiltonian given by Eq. (3.70) with cos2
(
θi−θj

2

)
and

sin(θi − θj) vanish. First consider

S

2

∑
〈〈ij〉〉

Jij sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
=
SJ2

2V
∑
〈〈ij〉〉

∑
qq′

(
e−iq·rie−iq

′·rjb†qb
†
q′ + eiq·rieiq

′·rjbqbq′

)
=
SJ2

2V
∑
iqq′

[
e−i(q+q′)·ri

(
ei(q

′
ya+q′za) + ei(q

′
ya−q′za) + ei(−q

′
ya+q′za) + e−i(q

′
ya+q′za)

)
b†qb
†
q′

+ ei(q+q′)·ri
(

ei(q
′
ya+q′za) + ei(q

′
ya−q′za) + ei(−q

′
ya+q′za) + e−i(q

′
ya+q′za)

)
bqbq′

]
= 2SJ2

∑
q

cos (qya) cos (qza)
(
b†qb
†
−q + bqb−q

)
(3.83)

where
∑
〈〈ij〉〉 denotes a sum over next-nearest neighbors. Secondly consider

−S
∑
〈〈ij〉〉

Jij cos (θi − θj) b†ibi =
4SJ2

V
∑
iqq′

e−i(q−q
′)·rib†qbq′

= 4SJ2

∑
q

b†qbq

= 2SJ2

∑
q

(
b†qbq + b†−qb−q

)
.

(3.84)

Lastly the constant term is

S2

2

∑
〈〈ij〉〉

Jij cos (θi − θj) = −2S2J2N . (3.85)

Having calculated all contributions the bosonic Bogoliubov transformation can now be

employed to determine the spin-wave spectrum.

3.3.2 Bosonic Bogoliubov transformation

Collecting the contributions from the nearest and next-nearest neighbors the Hamiltonian

in Eq. (3.70) can be written on a bilinear form
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H = C +
∑
q

[
E0

(
b†qbq + b†−qb−q

)
+ E1

(
b†qb
†
−q + bqb−q

)]
(3.86)

where

C = −2S2J2N (3.87)

E0

S
= J1 cos2

(
θ

2

)
cos (qya) + J1 sin2

(
θ

2

)
cos (qza) + 2J2 (3.88)

E1

S
= J1 sin2

(
θ

2

)
cos (qya) + J1 cos2

(
θ

2

)
cos (qza) + 2J2 cos(qya) cos(qza) (3.89)

in the J1-J2 Heisenberg model on a two-dimensional lattice. To diagonalize the Hamil-

tonian in Eq. (3.86) a bosonic Bogoliubov transformation may be applied. This trans-

formation converts the Hamiltonian to a diagonal form by performing a linear transfor-

mation of the bosonic operators

bq = uαq − vβ†q (3.90)

b−q = uβq − vα†q (3.91)

where α and β are also bosonic operators obeying the bosonic commutation relations,

which can easily be verified. When doing so it is evident that u2− v2 = 1. Inserting the

Bogoliubov transformation in the Hamiltonian in Eq. (3.86) it becomes

H = C +
∑
q

Ωq

(
α†qαq + β†qβq + 1

)
(3.92)

and the diagonalization has been achieved. By parametrizing u = cosh(t) and v = sinh(t)

the eigenvalues can be rewritten to

Ωq =
(
u2 + v2

)
E0 − 2uvE1 =

√
E2

0 − E2
1 . (3.93)

Inserting the expressions from Eq. (3.88) and Eq. (3.89) the spin-wave spectrum becomes

Ωq =
[ (
J1

(
ξqy cos2(Θ) + ξqz sin2(Θ)

)
+ 2J2

)2

−
(
J1

(
ξqy sin2(Θ) + ξqz cos2(Θ)

)
+ 2J2ξqyξqz

)2
] 1

2

=
√
J1

(
ξqy − ξqz

) (
cos2(Θ)− sin2(Θ)

)
+ 2J2

(
1− ξqyξqz

)√
J1

(
ξqy + ξqz

)
+ 2J2

(
1 + ξqyξqz

)
(3.94)

using 2Θ = θ. Comparing Eq. (3.57) and Eq. (3.94) it is evident that the same spin-

wave dispersion relation has been obtained using a classical and a quantum mechanical
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spin-wave theory.

This dispersion relation can be used to investigate the degenerate state that occurs when

J2 = 1
2
|J1|, as described in Sec. (3.1.1). In this case no unique q-vector minimizing the

energy exists, as the entire continuous edge of the Brillouin Zone may be used as Q.

No discernible spin-wave dispersion can therefore be determined, but the dispersion for

J2 > |J1| may be considered in this limit. This can be seen for different angles in Fig.

(3.7).

(a) Ωq for Θ = 0. (b) Ωq for Θ = π
4

.

Figure 3.7: Plot of spin-wave dispersion Ωq from Eq. (3.57) at the degenerate point J2 = 1
2 |J1| for

different angles Θ, where 2Θ = θ is the angle between spins of the two antiferromagnetic sublattices of

the ground state spin configuration, see Fig. (3.6) in the two-dimensional square lattice with a = 1.

Ref. [21] shows that the free energy of the system is minimized for θ = 0, π. The system

is therefore ordered while subject to thermal fluctuations to a greater extent than the

zero temperature ground state. The same is the case for quantum fluctuations [21]. This

is an example of the phenomenon of so-called order by disorder.

Group velocities

For small q the spin-wave spectrum in Eq. (3.94) can be expanded to second order in

q. Considering Θ = 0 this yields an approximate dispersion

Ωq '
√

(J1 + 2J2)2 q2
y + (J1 + 2J2) (−J1 + 2J2) q2

z . (3.95)

At the highly frustrated point J2 = 1
2
|J1|, and the dispersion therefore reduces to

Ωq ' ±2J1qy (3.96)

i.e. there is no dependency on qz, which gives rise to the continuous spectrum of zero-

energy modes. The group velocities along the y and z axes are
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vy =
∂Ωq

∂qy
=

2 (J1 + 2J2)2

Ωq

qy (3.97)

vz =
∂Ωq

∂qz
=

2 (J1 + 2J2) (−J1 + 2J2)

Ωq

qz . (3.98)

It is evident that the group velocities differ along the two axes. Having gone throught

the J1-J2 Heisenberg model, additional interactions may now be added, to determine the

effect that this has on the system.
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Chapter 4

The orthorhombic lattice

In this chapter it is investigated how the breaking of a symmetry affects the Heisenberg

model on the two-dimensional lattice described in Ch. (3). In this case it is the C4

symmetry of the lattice which is reduced to a C2 symmetry, by stretching the lattice,

so that the lattice constants ay 6= az, which will affect the strengths of the exchange

couplings. An orthorhombic J1y-J1z-J2 lattice is investigated and the spin-wave spectrum

is calculated, both in a straightforward manner and by letting J1 differ in the y and z

direction at the frustrated point J2 = 1
2
|J1| arising in the J1-J2 model on the two-

dimensional square lattice described in Sec. (3.1.1).

4.1 Ground state spin configuration

So far the Heisenberg model has been used on the two-dimensional square lattice where

the lattice constants are equal ay = az, see Ch. (3). A system which does not fulfill this

similarity of the lattice constants is the orthorhombic lattice, in which ay 6= az, see Fig.

(4.1) for an example with ay > az.

In the orthorhombic lattice there are no longer four nearest neighbors to a site i, but

only two. Once again the system is described by the Heisenberg Hamiltonian in Eq.

(2.3). The two-dimensional orthorhombic lattice in the yz-plane, which can be described

by the J1y-J1z-J2 Heisenberg model, will be investigated. Here a site is coupled to their

neighbors by an exchange constant given by

Jij =


J1y for an immediate neighbor j in the y-direction,

J1z for an immediate neighbor j in the z-direction,

J2 for a neighbor j at ri ± ayŷ ± azẑ.

. (4.1)

J2 describes the coupling to the third nearest neighbor when the lattice constants fulfill√
a2
y + a2

z < 2az and ay > az. One should be careful with excessive stretching of the
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ay
az

J1y

J1z

J2

y

z

Figure 4.1: Illustration of an example of an orthorhombic spin lattice structure with different exchange

constants in different directions of the lattice

lattice as this might result in the sites at ri ± 2azẑ being third nearest neighbors. How-

ever this only poses a problem in the description of a site coupling to its nearest, second

nearest and third nearest neighbors. In that case the exchange constant in Eq. (4.1)

may still be used, but the sites then actually couple to their nearest, second nearest and

fourth nearest neighbors. In the following
√
a2
y + a2

z < 2az and ay > az will be assumed,

so that Eq. (4.1) describes the coupling to the nearest, second nearest and third nearest

neighbors and couplings to neighbors further away are neglected.

The Hamiltonian can be written in q-space by inserting the Fourier transform of the

spins, given by Eq. (2.7). It becomes

H =
1

2

∑
q

JqSq · S−q (4.2)

where

Jq = 2J1y cos (qyay) + 2J1z cos(qzaz) + 4J2 cos(qyay) cos(qzaz) . (4.3)

Minimizing the energy of the system, given by Eq. (3.6), corresponds to minimizing Jq

with respect to q. As was seen in Sec. (3.1.1) the ground state spin configuration can

be characterized by

Si = cos (Q · ri) û+ sin (Q · ri) v̂ . (4.4)

The q-vector which minimizes the energy, denoted Q, depends on the interactions

strengths J1y, J1z and J2. Jq is plotted for different combinations of these in Fig. (4.2).
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Just as in the case of the square lattice described in Sec. (3.1.1), there are two cases of

interaction strengths which result in a self-evident ground state. When J1y, J1z, J2 < 0

all exchange interactions prefer alignment of the spins, and Q = (0, 0) resulting in a

ferromagnetic ground state spin configuration. When J1y, J1z > 0 and J2 < 0 all interac-

tions can again be satisfied simultaneously, and Q =
(
π
ay
, π
az

)
and an antiferromagnetic

ground state spin configuration emerges. A contour plot of this situation can be seen in

Fig. (4.2a).

Contrarily, when J2 > 0 the third nearest neighbor interaction energy is minimized when

the corresponding spins are antiparallel, which cannot be fulfilled simultaneously with

the J1 interactions, no matter the sign of these. This leads to a change in the value

of Q to either
(

0, π
az

)
, see Fig. (4.2b), or

(
π
ay
, 0
)

, i.e. an antiferromagnetic stripe in

either the y or z direction depending on the exact strengths of the exchange interactions.

But the degeneracy which was seen in Sec. (3.1.1) where every point on the edge of the

Brillouin Zone could be used as Q is no longer present, since J1 no longer has the same

contribution to the energy for neighboring sites in the y-direction and in the z-direction.

Additionally the frustration arising because of the two q-vectors (Q(1) = 1
a

(0, π) and

Q(2) = 1
a

(π, 0)) minimizing the energy in the J1-J2 model, when J2 >
1
2
|J1|, has also

vanished in the orthorhombic lattice, as one of these will always correspond to a lower

energy than the other.
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(a) Jq for J1y = 0.8, J1z = 1, J2 = 0.1.

- π

2
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2
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- π
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π

2

π

qy

q
z

-1.52
-0.76
0
0.76
1.52
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3.80
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(b) Jq for J1y = 0.8, J1z = 1, J2 = 0.5.

Figure 4.2: Contour plot of Jq from Eq. (4.3) for different strengths of the exchange interactions J1y,

J1z and J2 between sites in the two-dimensional orthorhombic lattice with ay = 1.2 and az = 1. The

minimum of Jq shifts from Q =
(
π
ay
, πaz

)
to Q =

(
0, πaz

)
as J2 increases.

In Fig. (4.2) a linear relation between the lattice constant and the corresponding ex-

change interaction has been assumed. When the distance between two atoms decreases it

is fair to assume that the interaction between them grows stronger, and likewise when the
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distance increases the interaction strength must decrease. Concretely J1y,z = −ay,z + 2

has been assumed.

Since the C4 symmetry of the square lattice has been reduced to a C2 symmetry in the

orthorhombic lattice the degeneracy of the ground state, which is apparent in Fig. (3.2)

and Fig. (3.3) is broken. The competition between the J2 and J1’s is never frustrated,

and there is never more than one q-vector which minimizes the energy. Therefore the

ground state spin configuration is given by Eq. (4.4) [13].

4.2 Classical fluctuations - Spin waves

The stability of the classical ground state of the orthorhombic lattice may now be in-

vestigated by introducing spin deviations. The procedure for obtaining the spin-wave

dispersion is completely analogous to that of the J1-J2 Heisenberg model, which was

done in Sec. (3.2). The only difference is that of the exchange interactions Jq, but this

does not affect the derivation. Therefore the derivation will be done swiftly here. The

ground state spin configuration is given by Eq. (4.4). By introducing spin deviations S1
i

and S2
i in the two transverse directions of the ground state S0

i , the spin configuration

can be written as

Si = S0
i (cos(ϕi)û+ sin(ϕi)v̂) + S1

i (− sin(ϕi)û+ cos(ϕi)v̂) + S2
i (û× v̂) . (4.5)

Inserting this in the Hamiltonian and parameterizing the fluctuations by π-fields

(
S0, S1, S2

)
'
(

1− 1

2

(
π2

1 + π2
2

)
, π1, π2

)
(4.6)

for small fluctuations π1, π2 � 1 yields a Hamiltonian given by

H = E0 +
∑
q

(
ω1q|π1q|2 + ω2q|π2q|2

)
(4.7)

in q-space, where E0 = 1
2
JQ and

ω1q =
1

4
(JQ+q + JQ−q)− 1

2
JQ (4.8)

ω2q =
1

2
(Jq − JQ) . (4.9)

The spin fluctuations may be quantized according to the derivation in Sec. (3.2.3) and

the spin-wave dispersion is then given by

Ωq =
√
ω1qω2q . (4.10)
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Denoting ξqα = cos(qαaα) the exchange interaction in Eq. (4.3) can be written as Jq =

2J1yξqy + 2J1zξqz + 4J2ξqyξqz . For Q = (0, 0) the minimized exchange interaction is

JQ = 2 (J1y + J1z) + 4J2 and JQ±q = Jq. The spin-wave spectrum is then

Ωq =
1

2
(Jq − JQ) = J1y

(
ξqy − 1

)
+ J1z (ξqz − 1) + 2J2

(
ξqyξqs − 1

)
(4.11)

which reduces to Eq. (3.50) for J1y = J1z as it should. For Q =
(
π
ay
, π
az

)
the minimal

exchange interaction is JQ = −2 (J1y + J1z) + 4J2 and JQ±q = −2
(
J1yξqy + J1zξqz

)
+

4J2ξqyξqz , so the spin-wave dispersion is

ωq =
√
J1y

(
1− ξqy

)
+ J1z (1− ξqz) + 2J2

(
ξqyξqz − 1

)√
J1y

(
ξqy + 1

)
+ J1z (ξqz + 1) + 2J2

(
ξqyξqz − 1

) (4.12)

which reduces to Eq. (3.51) for J1y = J1z. As J2 increases the minimum of Jq shifts

to Q =
(

0, π
az

)
or Q =

(
π
ay
, 0
)

, depending on the exact geometry of the orthorhombic

lattice. For Q =
(

0, π
az

)
, the exchange interaction is JQ = 2 (J1y − J1z) − 4J2 and

JQ±q = 2
(
J1yξqy − J1zξqz

)
− 4J2ξqyξqz and the spin-wave spectrum is

Ωq =
√
J1y

(
ξqy − 1

)
+ J1z (1− ξqz) + 2J2

(
1− ξqyξqz

)√
J1y

(
ξqy − 1

)
+ J1z (ξqz + 1) + 2J2

(
ξqyξqz + 1

) (4.13)

which reduces to Eq. (3.57) for J1y = J1z and Θ = 0 or Θ = π. A plot of the spin-wave

dispersion in this case is presented in Fig. (4.3a).

To see how stretching of the lattice affects the frustration of the J1-J2 Heisenberg model

on the square lattice described in Sec. (3.2.2) this model may be investigated in the

J1y-J1z-J2 model. Initially assume no difference between J1y and J1z and two elements

in the star of Q, Q(1) =
(

0, π
az

)
and Q(2) =

(
π
ay
, 0
)

. The ground state spin configuration

is then given by

Si = cos
(
ϕ

(1)
i

)
cos(Θ)û+ cos

(
ϕ

(2)
i

)
sin(Θ)v̂ . (4.14)

The derivation of the two modes ω1q and ω2q is done in Sec. (3.2.2) and results in

ω1q =
1

2

(
1

2

(
JQ(1)+q + JQ(1)−q

)
− JQ(1)

)
cos2(Θ) (4.15)

+
1

2

(
1

2

(
JQ(2)+q + JQ(2)−q

)
− JQ(2)

)
sin2(Θ) (4.16)

ω2q =
1

2

(
Jq − JQ(1) cos2(Θ)− JQ(2) sin2(Θ)

)
. (4.17)

In the J1y-J1z-J2 model the spin-wave dispersion then becomes
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Ωq =
[ (
J1y

(
ξqy − 1

)
+ J1z (1− ξqz) + 2J2

(
1− ξqyξqz

))
cos2 (Θ)

+
(
J1y

(
1− ξqy

)
+ J1z (ξqz − 1) + 2J2

(
1− ξqyξqz

))
sin2 (Θ)

] 1
2

[
J1y

(
ξqy − cos2 (Θ) + sin2 (Θ)

)
+ J1z

(
ξqz + cos2 (Θ)− sin2 (Θ)

)
+ 2J2

(
ξqyξqz + 1

) ] 1
2
.

(4.18)

The dispersion in Eq. (4.18) is presented in Fig. (4.3b). Comparing this figure with Fig.

(3.7a) it is evident that the lines of zero-energy modes vanishes, as the energy is raised

due to ay 6= az.

(a) Ωq from Eq. (4.13), for J1y = 0.8, J1z = 1 and J2 = 0.1.

(b) Ωq from Eq. (4.18) for J1y = 0.8, J1z = 1, J2 = 0.5 and

Θ = 0.

Figure 4.3: Plot of spin-wave dispersion Ωq for different interactions strengths in the two-dimensional

orthorhombic lattice in the J1y-J1z-J2 Heisenberg model.
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Chapter 5

Anisotropic Dzyaloshinsky-Moriya

exchange interaction

In this chapter the effect that adding the anisotropic Dzyaloshinsky-Moriya (DM) inter-

action to the J1-J2 Heisenberg model on the two-dimensional square lattice is determined.

The inversion symmetry of the lattice is broken as a result of the form of the DM interac-

tion. The ground state spin configuration is determined and thereafter subjected to spin

fluctuations. A spin-wave dispersion is obtained using a classical local spin fluctuations

theory and a quantum Holstein-Primakoff transformation.

5.1 Ground state spin configuration

In a system with both symmetric and antisymmetric exchange interactions, the Hamil-

tonian is given by

H =
∑
ij

[
1

2
JijSi · Sj + Dij · (Si × Sj)

]
. (5.1)

To find the ground state spin configuration, the Luttinger-Tisza method is employed,

based on [16]. The energy of the system is minimized under the weak constraint rather

that the local constraint, as explained in Sec. (2.3)

0 =
∂

∂Sαi

[
H − λ

(∑
i

|Si|2 −NS2

)]
, (5.2)

for α ∈ {x, y, z}, where Sαi is the α-component of the spin vector. This method utilizes

a single Lagrange multiplier λ and gives the set of equations
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∑
q

eiri·q
(
λSxq

)
=
∑
q

eiri·q
(

1

2
JqS

x
q + SyqD

z
q − SzqDy

q

)
(5.3)

∑
q

eiri·q
(
λSyq

)
=
∑
q

eiri·q
(

1

2
JqS

y
q + SzqD

x
q − SxqDz

q

)
(5.4)

∑
q

eiri·q
(
λSzq

)
=
∑
q

eiri·q
(

1

2
JqS

z
q + SxqD

y
q − SyqDx

q

)
(5.5)

which can be written compactly as∑
q

eiq·ri
(
λSαq

)
=
∑
q

eiq·ri
(

1

2
JqS

α
q + [Sq ×Dq]α

)
. (5.6)

The Fourier components in Eq. (5.6) must be equal, which leads to a set of three

equations, which are then to be solved for λ. In the following section this is done for a

two-dimensional square lattice.

5.1.1 J1-J2 Heisenberg model with DM interaction

Consider the two-dimensional square lattice with lattice points in the yz-plane. In the

J1-J2 Heisenberg model, the exchange constant Jij is present for sites coupled to their

nearest neighbor, with coupling strength J1, and for sites coupled to their next-nearest

neighbor, with coupling strength J2, as can be seen in Fig. (5.1). When the DM interac-

tion is also present in the two-dimensional square lattice, it couples nearest neighboring

sites by coupling vector Dij, which can be expressed as [22, 23]

Dij =

−D sgn (yi − yj) δzi,zj
0

0

 (5.7)

where D is the interaction strength and yi,j and zi,j are the coordinates of the lattice

site in the y- and z-direction, respectively.

When using the DM interaction in Eq. (5.7), the set of equations, originating from the

demand that the Fourier components in Eq. (5.6) are equal, simplifies to

λSαq =
1

2
JqS

α
q + SzqD

x
qδα,y − SyqDx

qδα,z . (5.8)

Eq. (5.8) has two solutions

1. λ = 1
2
JQ and Sy,zQ = 0

2. λ = 1
2
JQ ± iDx

Q and SxQ = 0.
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J1

J2

y

z

x

Dij

i j

Figure 5.1: Two-dimensional square lattice with nearest (J1) and next-nearest (J2) neighbor

Heiseneberg exchange coupling and nearest-neighbor anisotropic Dzyaloshinsky-Moriya exchange cou-

pling Dij .

Q is the q-vector which minimizes the energy. As an ansatz for the classical spins the

spiral

Sαi = Aα cos (Q · ri + φα) (5.9)

is used. Eq. (5.9) fulfills the eigenvalue equation in Eq. (5.8) if Ay = Az, φ
y = φ and

φz = φ + π
2
, which in turn also ensures that the local constraint is fulfilled. The spin

configuration is then

Si = S sin (Q · ri + φ) v̂ + S cos (Q · ri + φ) û (5.10)

where û ⊥ v̂. For simplicity the phase is set to φ = 0 henceforth. Inserting the Fourier

transforms of the spins and the exchange interactions, given by Eq. (2.7), Eq. (2.9) and

Eq. (2.11), in the Hamiltonian in Eq. (5.1) yields the Hamiltonian in reciprocal space.

This is

H =
∑
q

[JqSq × S−q + D−q · (Sq × S−q)] (5.11)

where

Jq = 2J1 (cos (qya) + cos (qza)) + 4J2 cos (qya) cos (qza) (5.12)

Dq = 2iD sin (qya) x̂ . (5.13)

The energy of the system is then

E =
V
2
JQ −

V
i
DQ · t̂ (5.14)
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where t̂ = û × v̂. The energy is evidently minimized when DQ is perpendicular to the

planar spiral. In the two-dimensional square lattice DQ only has a component in the x

direction, which therefore forces the planar spiral to be in the yz-plane. By minimizing

the energy yields Q = (Qy, Qz) as a function of the different interactions strengths, it can

be seen that Qz is always either π or 0 no matter the strengths of the other interactions.

The choice of π or 0 only depends on the sign of J1. For J1 > 0 (J1 < 0) Qz = π

(Qz = 0). On the other hand Qy does depend on the interaction strenghts, and it can

be expressed as Qy = tan−1
(

2D
2J2−J1

)
. A contour plot of the energy in Eq. (5.14) can be

seen in Fig. (5.2). The frustration seen in the J1-J2 Heisenberg model in Sec. (3.1.1) is

broken by the addition of the DM interaction and there is never more than one q in the

star of Q when the DM interaction is present.
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0 π

2
π

-π

- π

2

0
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2

π

qy

q
z

-3.0
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1.5

3.0

4.5

6.0

7.5

(a) E for J1 = 1, J2 = 1 and D = 0.2.
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0 π

2
π
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- π

2
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2

π

qy

q
z

-4.10

-2.46

-0.82

0.82

2.46

4.10

5.74

7.38

(b) E for J1 = 1, J2 = 1 and D = 1.

Figure 5.2: Contour plot of the energy E from Eq. (5.14) for different strengths of the Heisenberg ex-

change interactions between nearest (J1) and next-nearest (J2) neighboring sites and the DM interaction

strength D in the two-dimensional square lattice.

5.1.2 Adding an external magnetic field

The addition of an external magnetic field, and thereby a Zeeman interaction between

the magnetic field and the magnetic moments, is described by the Hamiltonian

H =
∑
ij

[
1

2
Jij Si · Sj + Dij · (Si × Sj)

]
+ gµBB ·

∑
i

Si (5.15)

where g is the g-factor and µB is the Bohr magneton, for a general external magnetic

field B = (Bx, By, Bz). The additional term of the coupling between the B-field and

the magnetic moments results in an extra term in the set of eigenvalue equations in Eq.

(5.8), so that
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λSαq =
1

2
JqS

α
q + SzqD

x
qδα,y − SyqDx

qδα,z + gµBB
αδq,0 . (5.16)

In this case, a separate solution for q = 0 emerges, where λ 6= 1
2
J0 and S0 = gµBB

λ− 1
2
J0

.

For q = Q 6= 0 the solutions from Sec. (5.1.1) are still valid. Using the ansatz in Eq.

(5.9) and imposing the local constraint makes it evident that a homogeneous q = 0 can

only be added if it is in a direction which is perpendicular to the spiral solution, so that

S0 ⊥ û and S0 ⊥ v̂. This fixes the uv-plane to be perpendicular to B. In this case the

spin configuration becomes

Si = βt̂+
√

1− β2 [cos (Q · ri + φ) û+ sin (Q · ri) v̂] (5.17)

where β = gµB
λ− 1

2
J0
|B| and λ = 1

2
JQ± iDx

Q. Upon Fourier transformation of the spins, the

energy of the system becomes

E =
1

2
β2VJ0 +

(
1− β2

)
V
[

1

2
JQ −

1

i
DQ · t̂

]
+ βVB · t̂ . (5.18)

The addition of the external magnetic field does not change the value of Q, the q-vector

which minimizes the energy. It only changes the energy at this Q, which depends on the

interactions strengths.

5.2 Local spin fluctuations

Returning to the scenario with no external magnetic field B = 0, the stability of the

ground state spin configuration determined in Sec. (5.1.1) can now be investigated by

allowing the presence of spin-waves using a classical theory. The ground state spin

configuration of unit normalized spins is given by

Si = sin(ϕi)ŷ + cos(ϕj)ẑ , (5.19)

where ϕi = Q · ri. Introducing local spin fluctuations implies that the spins may deviate

from the spin configuration given by Eq. (5.19), and the spin configuration of this excited

state can then be described by a new Si

Si = S0
i + δSi (5.20)

where S0
i are the unperturbed spins of the ground state given by Eq. (5.19) and δSi are

the deviations. These deviations can be characterized by a component in each of the two

transverse directions of S0
i , so locally at each lattice site i

Si = S0
i (sin(ϕi)ŷ + cos(ϕi)ẑ) + S1

i (cos(ϕi)ŷ − sin(ϕi)ẑ) + S2
i x̂ (5.21)
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where S1
i and S2

i characterizes the magnitude of the deviation of the spin in each of

the two transverse directions, just as in Sec. (3.2.1). The contribution to the spin-wave

spectrum from the Heisenberg interaction was determined in Sec. (3.2.1) to be

1

2

∑
ij

JijSi · Sj '
1

2
JQ +

1

2

∑
q

[(
1

2
(JQ+q + JQ−q)− JQ

)
|π1q|2 + (Jq − JQ) |π2q|2

]
.

(5.22)

Using the same procedure as in Sec. (3.2.1), the contribution from the DM interaction

can now be determined. The cross product between the spin vectors in terms of the spin

deviations is

Si × Sj =
[(
S0
i S

0
j + S1

i S
1
j

)
sin(θi − θj) +

(
S1
i S

0
j − S0

i S
1
j

)
cos(θi − θj)

]
x̂(

S0
i cos(θi)− S1

i sin(θi)
)
S2
j −

[
S2
i

(
S0
j cos(θj)− S1

j sin(θj)
)
−
]
ŷ[

S2
i

(
S0
j sin(θj) + S1

j cos(θj)
)
−
(
S0
i sin(θi) + S1

i cos(θi)
)
S2
j

]
ẑ .

(5.23)

As presented in Sec. (3.2.1), the spin deviations may be parametrized by small fluctua-

tions π1, π2 � 1 preserving the normalization of the spins

(
S0, S1, S2

)
'
(

1− 1

2

(
π2

1 + π2
2

)
, π1, π2

)
. (5.24)

The contribution from the DM interaction can then be written as

HDM ≡
∑
ij

Dij (Si × Sj)

'
∑
ij

Dij ·
([(

1− 1

2

(
π2

1i + π2
2i + π2

1j + π2
2j

)
+ π1iπ1j

)
sin (ϕi − ϕj)

+ (π1i − π1j) cos (ϕi − ϕj)
]
x̂+

[
π2j cos (ϕi)− π1iπ2j sin (ϕi)− π2i cos (ϕj)

+ π2iπ1j sin (ϕj)
]
ŷ + [π2i sin (ϕj)− π2iπ1j cos (ϕj)− π2j sin (ϕi) + π1iπ2j cos (ϕi)] ẑ

)
(5.25)

to second order in the fluctuations. Since the i and j sum over the same sites, the indeces

can be relabeled i→ j and j → i to simplify some terms. Note the antisymmetry of the

DM interaction vector Dji = −Dij. Then

HDM '
∑
ij

Dij ·
([(

1− π2
1i − π2

2i + π1iπ1j

)
sin (ϕi − ϕj) + 2π1i cos (ϕi − ϕj)

]
x̂

+ [−2π1iπ2j sin (ϕi)− 2π2i cos (ϕj)] ŷ + [2π2i sin (ϕj) + 2π1iπ2j cos (ϕi)] ẑ

)
.

(5.26)

In the two-dimensional square lattice the DM vector is given by
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Dij =

−D sgn (yi − yj) δzi,zj
0

0

 (5.27)

so the y- and z-components of the dot product in Eq. (5.26) vanishes. Upon inserting

the Fourier transform of the π’s, πi = 1√
V

∑
q eiq·riπq and of the DM interaction vector,

given by Eq. (2.11), the remaining x-component in reciprocal space is

HDM '
1

V2

∑
ij

∑
qq′q′′

Dx
qeiq·(ri−rj)

{[
δq,q′δq,q′′ − π1q′π1q′′ei(q

′+q′′)·ri − π2q′π2q′′ei(q
′+q′′)·ri

+ π1q′π1q′′eiq
′·ri+iq′′·rj

] 1

2i

(
eiQ·(ri−rj) − e−iQ·(ri−rj)

)
+ δq,q′′

√
Vπ1q′eiq

′·ri
(
eiQ·(ri−rj) + e−iQ·(ri−rj)

)}
= −iDx

Q +
∑
q

[(
1

2

(
iDx

Q+q + iDQ−q
)
− iDx

Q

)
|π1q|2 − iDx

Q|π2q|2
]
.

(5.28)

Combining this with the contribution from the Heisenberg exchange interaction in Eq.

(5.22) yields a Hamiltonian with two modes

H ' 1

2
JQ − iDx

Q +
∑
q

(
ω1q|π1q|2 + ω2q|π2q|2

)
(5.29)

where

ω1q =
1

4

(
JQ+q + JQ−q + 2iDx

Q+q + 2iDx
Q−q

)
− 1

2
JQ − iDx

Q (5.30)

ω2q =
1

2
(Jq − JQ)− iDx

Q . (5.31)

As conducted in Sec. (3.2.3) the π-fields can be quantized analogously. As the Hamil-

tonian in Eq. (5.29) and Eq. (3.21), have the same form with a constant term and

sum over q-vectors quadratic in the π-fields, the derivation of the quantization of the

fluctuations is exactly the same in the two cases. Therefore, the Hamiltonian in Eq.

(5.29) can be written as

H =
1

2
JQ − iDx

Q +
∑
q

~Ωq

(
a†qaq +

1

2

)
(5.32)

where the second quantized spin-wave operators are

aq =
1√
2

(
1

cq
xq +

i

~
cqpq

)
, a†−q =

1√
2

(
1

cq
xq −

i

~
cqpq

)
(5.33)

where cq =
√

~√ω2q√
ω1q

. The spin-wave spectrum is once again
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Ωq =
√
ω1qω2q . (5.34)

Denoting ξx = cos(xa) and ξ̄x = sin(xa), the symmetric exchange interaction from Eq.

(3.10) and the antisymmetric exchange interaction from Eq. (5.13) can be written as

Jq = 2J1

(
ξqy + ξqz

)
+ 4J2ξqyξqz (5.35)

Dx
q = 2iDξ̄qy . (5.36)

Since Q = (Qy, Qz) =
(
Qy,

π
a

)
it can be seen that

JQ = 2J1

(
ξQy − 1

)
− 4J2ξQy (5.37)

JQ±q = 2J1

(
ξQy±qy − ξqz

)
− 4J2ξQy±qyξqz (5.38)

−2iDQ = 4Dξ̄Qy (5.39)

2iDQ±q = −4Dξ̄Qy±qy (5.40)

using cos(π ± x) = − cos(x). The spin-wave spectrum from Eq. (5.34) is then

Ω =
√
J1

(
ξQyξqy − ξqz − ξQy + 1

)
+ 2J2ξQy

(
1− ξqyξqz

)
+ 2Dξ̄Qy

(
1− ξqy

)√
J1

(
ξqy + ξqz + 1− ξQy

)
+ 2J2

(
ξqyξqz + ξQy

)
+ 2Dξ̄Qy .

(5.41)

Plots of the spectrum can be seen in the following section, see Fig (5.4) and Fig. (5.5).

5.3 Quantum spin fluctuations

Similarly to what was done for the J1-J2 Heisenberg model in Sec. (3.3), a quantum

mechanical treatment of spin fluctuations will now be carried out in the J1-J2 Heisenberg

model with the addition of the DM interaction. Since the ground state spin configuration

is altered when the DM interaction is added, the results from Sec. (3.3) cannot be reused

and this part of the calculation has to be done once more.

5.3.1 Holstein-Primakoff transformation

Analogously to what was done for the J1-J2 Heisenberg model in Sec. (3.3.1), the

Holstein-Primakoff transformation will once again be employed to obtain a Hamiltonian

expressed in terms of the magnon creation and annihilation operators in second quanti-

zation. In the large spin S limit, the Holstein-Primakoff transformation is given by Eqs.

(3.62)-(3.64). Using the J1-J2 Heisenberg model with the addition of the DM interaction,

the Hamiltonian is given by Eq. (5.1). The Holstein-Primakoff representations are given
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in local coordinate systems, in which the spins are parallel to the z-axis. The ground

state spin configuration of the Hamiltonian in Eq. (5.1) is an antiferromagnetic stripe

in the z-direction and a spiral in the y-direction. Since the spins lie in the yz-plane, a

rotation around the x-axis will once again be sufficient to align all spins with the z-axis.

In Sec. (3.3.1) it was shown how this method works on the Heisenberg model. Since the

DM interaction couples to the cross product of the spins, the method differs slightly in

this model. Utilizing the orthorgonality of the rotation matrices RT
xRx = R−1

x Rx = 1 and

the feature R−1
x (θ) = Rx(−θ), with Rx given by Eq. (3.65), the cross product between

the spin projection operators can be written as

Dij · (Si × Sj) = Dij ·
(
Si
[
R−1
x (θi)Rx (θi)

]
×
[
R−1
x (θj)Rx (θj)

]
Sj
)

= Dij ·
((

S̃iRx (θi)
)
×
(
Rx (−θj) S̃j

)) (5.42)

where S̃i,j are the spin operators defined in the local reference frame. Carrying out the

matrix multiplication with Rx, given by Eq. (3.65), yields

Dij ·
((

S̃iRx (θi)
)
×
(
Rx (−θj) S̃j

))
= Dx

ij

{[
cos(θi)S̃

y
i + sin(θi)S̃

z
i

] [
sin(−θj)S̃yj + cos(−θj)S̃zj

]
−
[
− sin(θi)S̃

y
i + cos(θi)S̃

z
i

] [
cos(−θj)S̃yj − sin(−θj)S̃zj

]}
+Dy

ij

{
−S̃xi

(
sin(−θj)S̃yj + cos(−θj)S̃zj

)
+
(
− sin(θi)S̃

y
i + cos(θi)S̃

z
i

)
S̃xj

}
+Dz

ij

{
S̃xi

(
cos(−θj)S̃yj − sin(−θj)S̃zj

)
−
(

cos(θi)S̃
y
i + sin(θi)S̃

z
i

)
S̃xj

}
.

(5.43)

In the large S limit the Holstein-Primakoff representations can now be inserted. Utilizing

relabelling of indeces i → j and j → i, and being careful with the symmetries of the

trigonometric functions yields a DM Hamiltonian given by

HDM =
∑
ij

Dij · (Si × Sj)

'
∑
ij

[
Dx
ij

{
− i
√

2SS cos(θi − θj)
(
−b†i + bi

)
+ S sin(θi − θj)

(
1

2

[
−b†ib

†
j − bibj

]
+ b†ibj + S − 2b†ibi

)}
+Dy

ij

{
−iS sin(θi)

(
bibj − b†ib

†
j − bib

†
j + b†ibj

)
− i
√

2SS cos(θi)
(
bj + b†j

)}
+Dz

ij

{
−iS cos(θi)

(
−bibj + b†ib

†
j − bib

†
j + b†ibj

)
− i
√

2SS sin(θi)
(
bj + b†j

)}]
,

(5.44)

to second order in the magnon creation and annihilation operators, since
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Dji = −Dij . (5.45)

As the DM vector Dij only has a x-component for the two-dimensional square lattice,

see Eq. (5.7), Dy
ij = Dz

ij = 0. The DM Hamiltonian can be simplified further as a result

of this. Combining this with the Hamiltonian for the Heisenberg model, obtained in Sec.

(3.3.1), given by Eq. (3.70) yields the full Hamiltonian describing the Heisenberg model

with present DM interaction in the two-dimensional square lattice, which is given by

H ' S

2

∑
ij

Jij

{
2 cos2

(
θi − θj

2

)
b†ibj + sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
− 2 cos (θi − θj) b†ibi

+ S cos (θi − θj) + 2 sin (θi − θj) i
√
S

2

(
b†i − bi

)}
+
∑
ij

Dx
ij

{
− i
√

2SS cos(θi − θj)
(
−b†i + bi

)
+ S sin(θi − θj)

(
1

2

[
−b†ib

†
j − bibj

]
+ b†ibj + S − 2b†ibi

)}
.

(5.46)

Now, the Fourier transform of the Holstein-Primakoff bosons, given by Eq. (3.71) and Eq.

(3.72), will be inserted in the Hamiltonian, and the nearest and next-nearest neighbor

contributions will be calculated separately. This will be done in detail, as one might

quickly lose track of the contribution that each term in the Hamiltonian yields.

Nearest neighbor contribution

The ground state spin configuration consists of spins rotating by π along the z-axis and

spiraling by some angle φ in the y-direction, see Fig. (5.3).

φ 2φ

y

z

3φ

Figure 5.3: Ground state spin configuration in J1-J2 Heisenberg model with DM interaction, for

J1 = J2 = D = 1 with an antiferromagnetic stripe in z-direction and spiral varying with angle φ in

y-direction.
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The difference in angle between a site i and its nearest neighbor j is then

θi − θj =


φ for a nearest neighbors in the +y-direction,

−φ for a nearest neighbor in the −y-direction,

±π for nearest neighbors in the z-direction.

(5.47)

Consider then a term like

S
∑
〈ij〉

Jij cos2

(
θi − θj

2

)
b†ibj =

S

V
J1

∑
〈ij〉

∑
qq′

cos2

(
θi − θj

2

)
e−iq·rieiq

′·rjb†qbq′

=
S

V
J1

∑
iqq′

e−i(q−q
′)·ri
(

cos2

(
φ

2

)[
eiq

′
ya + e−iq

′
ya
]

+ cos2
(π

2

) [
eiq

′
za + e−iq

′
za
])

b†qbq′

= 2SJ1

∑
q

cos2

(
φ

2

)
cos(qya)b†qbq

= SJ1

∑
q

cos2

(
φ

2

)
cos(qya)

(
b†qbq + b†−qb−q

)

(5.48)

where
∑

q b
†
qbq =

∑
q b
†
−qb−q was utilized and

∑
〈ij〉 once again denotes a sum over

nearest neighboring sites. In a similar manner it can be seen that

S

2

∑
〈ij〉

Jij sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
=

S

2V
J1

∑
〈ij〉

∑
qq′

sin2

(
θi − θj

2

)(
e−iq·rie−iq

′·rjb†qb
†
q′ + eiq·rieiq

′·rjbqbq′

)
= SJ1

∑
q

(
sin2

(
φ

2

)
cos(qya) + cos(qza)

)(
b†qb
†
−q + bqb−q

)
(5.49)

and

−S
∑
〈ij〉

Jij cos (θi − θj) b†ibi = −SJ1

V
∑
〈ij〉

∑
qq′

cos (θi − θj) e−i(q−q
′)·rib†qbq′

= −SJ1

∑
q

2 (cos(φ)− 1) b†qbq

= 2SJ1

∑
q

sin2

(
φ

2

)(
b†qbq + b†−qb−q

) (5.50)

which was rewritten using the trigonometric identity (cos(x)− 1) = −2 sin2
(
x
2

)
. For

Heisenberg terms linear in the bosonic operators, it can be seen that
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∑
〈ij〉

Jij sin(θi − θj)b†i =
1√
V
J1

∑
〈ij〉

∑
q

sin(θi − θj)e−iq·rib†q

=
1√
V
J1

∑
iq

e−iq·ri [2 sin(π) + sin(φ) + sin(−φ)] b†q

= 0 .

(5.51)

For the DM terms linear in the magnon creation and annihilation operators, it can

similarly be seen that

∑
ij

Dx
ij cos(θi − θj)b†i =

1√
V

∑
ij

∑
q

Dx
ij cos(θi − θj)e−iq·rib†q

=
1√
V

∑
iq

eiq·rib†q (D cos(−φ)−D cos(φ))

= 0 .

(5.52)

The mixed DM terms yields

S
∑
ij

Dx
ij sin(θi − θj)b†ibj =

S

V
∑
ij

∑
q,q′

Dx
ij sin(θi − θj)e−iq·rieiq

′·rjb†qbq′

=
S

V
∑
iqq′

e−i(q−q
′)·ri
(
D sin(−φ)eiq

′
ya −D sin(φ)e−iq

′
ya
)
b†qbq′

= −S
∑
q

D sin(φ) cos(qya)
(
b†qbq + b†−qb−q

)
(5.53)

and the procedure is completely analogous for the b†ib
†
j and the bibj DM terms. The

nearest neighbor contribution from the constant term is

S2

2

∑
〈ij〉

Jij cos (θi − θj) =
S2

2
J1

∑
i

(2 cos(π) + 2 cos(φ)) = −2NS2J1 sin2

(
φ

2

)
. (5.54)

Lastly, the remaining DM term is

−2S
∑
ij

Dx
ij sin(θi − θj)b†ibi = −2S

V
∑
ij

∑
q,q′

Dx
ij sin(θi − θj)e−i(q−q

′)·rib†qbq′

= −2S

V
∑
iqq′

e−i(q−q
′)·ri (D sin(−φ)−D sin(φ)) b†qbq′

= 2S
∑
q

D sin(φ)
(
b†qbq + b†−qb−q

)
.

(5.55)

As the nearest-neighbor contributions have now been determined, the next-nearest neigh-

bor contributions will now be considered.
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Next-nearest neighbor contribution

The angle between a site i and its next nearest neighbor j is

θi − θj =

−φ± π for a next-nearest neighbor in +y-direction,

φ± π for a next-nearest neighbor in −y-direction.
(5.56)

There is no DM interaction between next-nearest neighbors. Consider again the term

S
∑
〈〈ij〉〉

Jij cos2

(
θi − θj

2

)
b†ibj =

SJ2

V
∑
〈〈ij〉〉

∑
qq′

sin2

(
φ

2

)
e−iq·rieiq

′·rjb†qbq′

=
SJ2

V
∑
iqq′

sin2

(
φ

2

)
e−i(q−q

′)·ri
(

ei(q
′
ya+q′za) + ei(q

′
ya−q′za)

+ ei(−q
′
ya+q′za) + e−i(q

′
ya+q′za)

)
b†qbq′

= 2SJ2

∑
q

sin2

(
φ

2

)
cos (qya) cos (qza)

(
b†qbq + b†−qb−q

)
(5.57)

where
∑
〈〈ij〉〉 denotes a sum over next-nearest neighboring sites only. Similarly

S

2

∑
〈〈ij〉〉

Jij sin2

(
θi − θj

2

)(
b†ib
†
j + bibj

)
= 2SJ2

∑
q

cos2

(
φ

2

)
cos (qya) cos (qza)

(
b†qb
†
−q + bqb−q

) (5.58)

and

−SJ2

∑
〈〈ij〉〉

cos (θi − θj) b†ibi = 2SJ2

∑
q

cos(φ)
(
b†qbq + b†−qb−q

)
. (5.59)

The linear term of the Hamiltonian vanishes once again, since

∑
〈〈ij〉〉

Jij sin(θi − θj)b†i = J2

∑
i

(2 sin(φ)− 2 sin(φ)) b†i = 0 . (5.60)

Lastly the contribution from the constant term is

S2

2

∑
〈〈ij〉〉

Jij cos (θi − θj) = −S
2

2
J2

∑
i

4 cos (φ) = −2S2J2N cos(φ) . (5.61)

5.3.2 Bosonic Bogoliubov transformation

Collecting all terms from the nearest and next-nearest neighbor contributions, it can be

seen that the full Hamiltonian in Eq. (5.46) can be written on a bilinear form
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H = C +
∑
q

[
E0

(
b†qbq + b†−qb−q

)
+ E1

(
b†qb
†
−q + bqb−q

)]
(5.62)

where

C = −2NS2

(
J2 cos(φ) + J1 sin2

(
φ

2

))
(5.63)

E0

S
= J1 cos2

(
φ

2

)
cos(qya) + 2J1 sin2

(
φ

2

)
+ 2J2 sin2

(
φ

2

)
cos (qya) cos (qza) (5.64)

+ 2J2 cos(φ)−D sin(φ) cos(qyay) + 2D sin(φ)

E1

S
= J1 sin2

(
φ

2

)
cos(qya) + J1 cos(qza) + 2J2 cos2

(
φ

2

)
cos (qya) cos (qza)

+D sin(φ) cos(qya) . (5.65)

The Hamiltonian for the J1-J2 Heisenberg model with added DM interaction in the

Holstein-Primakoff representation in Eq. (5.62) is of exactly the same form as the one

for the J1-J2 Heisenberg model in Eq. (3.86). Therefore, the procedure to diagonalize

the Hamiltonian and obtain the eigenvalues ωq of the system using the Bogoliubov

transformation is exactly the same as in Sec. (3.3.2), and the result can then readily be

read of

Ωq =

√
(E0)2 − (E1)2 . (5.66)

The angle φ is actually φ = Qy, which is evident when considering the dot product Si ·Sj
(with spins given by Eq. (5.19)) between the two spins at ri = (0, 0) and rj = (1, 0)

in the lattice. This yields Si · Sj = cos (Qy), making φ = Qy. Inserting E0 and E1 and

utilizing the trigonometric identities 2 cos2
(
x
2

)
= 1 + cos(x) and 2 sin2

(
x
2

)
= 1− cos(x)

yields a spin-wave spectrum of

Ωq =

[(
1

2
J1ξqy

(
1 + ξQy

)
+ J1

(
1− ξQy

)
+ J2

(
1− ξQy

)
ξqyξqz + 2J2ξQy −Dξ̄Qyξqy + 2Dξ̄Qy

)2

−
(

1

2
J1

(
1− ξQy

)
ξqy + J1ξqz + J2

(
1 + ξQy

)
ξqyξqz +Dξ̄Qyξqy

)2
] 1

2

.

(5.67)

The difference between to squared terms, as is seen in Eq. (5.67), can be written as

A2 −B2 = (A+B) (A−B). Using this, the spin-wave spectrum becomes

Ωq =
√
J1

(
ξQyξqy − ξqz − ξQy + 1

)
+ 2J2ξQy

(
1− ξqyξqz

)
+ 2Dξ̄Qy

(
1− ξqy

)√
J1

(
ξqy + ξqz + 1− ξQy

)
+ 2J2

(
ξqyξqz + ξQy

)
+ 2Dξ̄Qy .

(5.68)
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Comparing Eq. (5.68) and Eq. (5.34), it can be seen that the exact same spin-wave

spectrum is obtained by using a classical spin-wave theory, as by using a quantum me-

chanical approach. The dispersion can be seen for different interaction strengths in Fig.

(5.4) and Fig. (5.5).

In the limit of no DM interaction Dij = 0 the y-component of the minimal q-vector

Qy = tan−1
(

2D
2J2−J2

)
is Qy = 0 and the spin-wave dispersion in Eq. (5.68) reduces

to the J1-J2 Heisenberg model spin-wave dispersion in Eq. (3.94) with Θ = 0. This

unsurprisingly amounts to picking Q(1) as the minimal q-vector (rather than Q(2)) which

is exactly what the addition of the DM interaction amounts to.

(a) 3D plot of Ωq.

-π - π

2
0 π

2
π

-π

- π

2

0

π

2

π

qy

q
z

0.18

0.54

0.90

1.26

1.62

1.98

2.34

2.70

(b) Contour plot of Ωq.

Figure 5.4: A 3D and a contour plot of the spin-wave dispersion Ωq from Eq. (5.68) for J1 = 1, J2 = 1

and D = 0.2 on the two-dimensional square lattice.

In Fig. (5.4) the effect of adding the DM interaction can be seen, as it describes the same

situation as Fig. (3.5a) but with DM interaction. The addition of the DM interaction

raises the energy of the points on the edge of the Brillouin Zone. In Fig. (5.5) the effect

of adding the DM interaction at the highly frustrated point of the J1-J2 Heisenberg

model (see Fig. (3.7a)) can be seen. The lines of zero-energy modes have been erased,

as the energy is raised in every point except for the Γ-point.
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(a) 3D plot of Ωq.
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(b) Contour plot of Ωq.

Figure 5.5: A 3D and a contour plot of the spin-wave dispersion Ωq from Eq. (5.68) for J1 = 1,

J2 = 0.5 and D = 1 on the two-dimensional square lattice.

Group velocities near Γ-point

The group velocities of the low-energy modes in the spectrum given by Eq. (5.68) can

now be investigated. These clearly lie near the center of the Brillouin Zone, the so-called

Γ-point, see Fig. (5.5). The spin-wave spectrum is therefore expanded numerically in

q = (qy, qz) to second order in q. The spin-wave dispersion becomes

Ωq '
√

∆yq2
y + ∆zq2

z

=
√
q2
(
∆y cos2(θ) + ∆z sin2(θ)

) (5.69)

when changing from cartesian to polar coordinates qy = q cos(θ) and qz = q sin(θ). Here

∆y =
1

2

(
J1ξQy − 2J2ξQy − 2Dξ̄Qy

) (
−3J1 + J1ξQy − 2J2ξQy − 2J2 − 2Dξ̄Qy

)
(5.70)

∆z =
1

2

(
J1 + 2J2ξQy

) (
3J1 − J1ξQy + 2J2ξQy + 2J2 + 2Dξ̄Qy

)
. (5.71)

It is evident from Eq. (5.69) that the spin-wave spectrum is warped, i.e. it is dependent

on the angular coordinate θ. The group velocity is

vy =
∂Ωq

∂qy
=

(
J1ξQy − 2J2ξQy − 2Dξ̄Qy

)
Π qy

Ωq

(5.72)

vz =
∂Ωq

∂qz
=
−
(
J1 + 2J2ξQy

)
Π qz

Ωq

(5.73)

where Π =
(
−3J1 + J1ξQy − 2J2ξQy − 2J2 − 2Dξ̄Qy

)
. It is evident that the group velocity

is different in the y and z directions. Consider now vy at qz = 0 and J2 = 1
2
|J1|
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vy =
2∆yqy√

∆yq2
y

= 2
√

∆y = 2
√
Dξ̄Qy

(
4J1 + 2DξQy

)
. (5.74)

And consider similarly vz at qy = 0 and J2 = 1
2
|J1|

vz = 2
√

∆z =
√

2J1

(
1 + ξQy

) (
−4J1 − 2Dξ̄Qy

)
. (5.75)

Near the Γ-point the group velocities of the spin-waves excitations are constant in the y

and z direction.
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Conclusion

In this thesis, the J1-J2 Heisenberg model on the two-dimensional square lattice was

studied in detail. The ground state spin configuration has a highly frustrated point at

J2 = 1
2
|J1|. The spin-wave dispersion was determined for all determinable ground state

spin configurations of the model using local spin fluctuations and a Holstein-Primakoff

transformation. The obtained dispersions were in agreement with each other and were

considered in the limit of the highly frustrated point of the model. In this limit, the

dispersion showed a spectrum of zero-energy modes. This suggests faulty assumptions

in the calculation. The goal of this thesis was to investigate if additional interactions

added to the system would yield an improved spin-wave dispersion.

The two-dimensional orthorhombic lattice was considered in the J1y-J1z-J2 Heisenberg

model. As a consequence of the geometry of the lattice, the exchange interaction, de-

noted J1, in the square lattice is inherently different in the two axes of the orthorhombic

lattice. This means that the system no longer has the highly frustrated point, and the

degeneracy is therefore broken. The spin-wave dispersion was determined in all possible

ground state spin configurations of the orthorhombic lattice and a reduction in zero-

energy modes compared to the J1-J2 Heisenberg model on the square lattice could be

seen.

Subsequently, the antisymmetric Dzyaloshinsky-Moriya interaction was added to the J1-

J2 Heisenberg model on the two-dimensional square lattice. The ground state spin config-

uration was determined, and the additional interaction eliminated the highly frustrated

point of the system. Spin-waves were introduced into the system, and both classical and

quantum mechanical theories were used to obtain the spin-wave dispersions, which were

once more in agreement with each other. The lines of zero-energy modes observed in

the spin-wave dispersion of the J2-J1 Heisenberg model were removed with the addition

of the Dzyaloshinsky-Moriya interaction. The group velocities of the low-energy modes

were determined in the vicinity of the Γ-point.
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To continue the work initiated in this thesis, one could add an external magnetic field

and possibly a magnetic anisotropy to determine the effect that this would have on the

ground state spin configuration and spin-wave dispersion. As only terms up to second

order in the magnon operators were calculated in this thesis, the effect that higher order

terms would have, such as magnon-magnon interactions and decays, could be interesting

to explore.
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