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Abstract

Spin qubits hosted in industry-fabricated silicon quantum dot devices have good
prospects of tackling the scalability challenge that comes with realizing a large-scale,
fault-tolerant quantum information processor. High-fidelity single- and two-qubit
gates as well as long coherence times have been successfully demonstrated using spin
qubits hosted in silicon QD devices [1][2]. A challenge in the operation of spin qubits
hosted by (industry-fabricated) Si QD-devices is the complex valley-orbital structure
that is unknown a priori and highly dependent on the atomic details of the confining
interface [3], thereby strongly deviating from device to device.

Here, we perform pulsed gate experiments in a foundry-fabricated silicon-on-insulator
device. We report the observation of enhanced relaxation rates at distinguishable val-
ues of the double dot detuning, which are attributed to level crossings in the double
dot two-electron spectrum. The measurements are based on time-resolved measure-
ments using gate-based dispersive RF sensing while applying a self-compensating
detuning-axis pulse cycle.

In addition, by exploiting the two-dimensionality of a 2x2 Si QD array, we demon-
strate an alternative RF charge sensing method by using a DQD as an RF charge
sensor.

Furthermore, we tune and explore a singlet-triplet qubit in a GaAs/AlGaAs het-
erostructure device by operating exchange oscillations of a singlet-triplet qubit hosted
by a GaAs double quantum dot.
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Introduction

The field concerned with information processing based on quantum bits, has experi-
enced extremely rapid development, ever since the notion of quantum computation
was raised by Pail Benioff in 1980 [4]. The first decade thereafter was primarily
in light of developing quantum algorithms that are predicted to result in a signifi-
cant speedup in computation times, leading to well-known quantum algorithms like
Deutsch–Jozsa algorithm [5], Shor’s algorithm [6] and Grover’s algorithm [7]. This
was followed by an increasing effort being directed towards the experimental realiza-
tion of a well-defined quantum-mechanical two-level system whose basis states can
be initialized, readout, and manipulated. The field concerned with the experimental
realization of qubits, quantum hardware, has been a key agent in the astounding
progress made in quantum computing over the last two decades, enabling the emer-
gence of promising experimental realizations of well-defined qubits based on a diverse
range of platforms and underlying physical principles.

Several experimental qubit realizations are promising candidates for quantum com-
putation, demonstrating high coherence and high-fidelity single- and two-qubit oper-
ations.

While promising results have been obtained on the few-qubit level, scaling up to
more qubits is one of the remaining challenges. The number of physical qubits nec-
essary for fault-tolerant computation of the most promising quantum algorithms has
been estimated to lie around 106 − 108 physical qubits [8][9][10]. Consequently, the
physical system needed for a single qubit as well as the readout and control schemes
requires to be scalable in order to realize a large, fault-tolerant quantum processor
that has the ability to compute relevant algorithms with minimal error (requiring the
implementation of error correction codes).
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Spin-based qubit encodings in semiconductor quantum dot devices comprise an at-
tractive experimental qubit platform for working towards a fault-tolerant quantum
processor. The inherent small size of the physical implementation of a single-qubit
in electrostatically-defined quantum dot platforms compared to other experimental
qubit implementations like superconducting qubits, in combination with long coher-
ence times compared to single- and two-qubit gate operation times as well as high
single-qubit (F1Q=99.96% [11]) and two-qubit gate fidelities (F2Q=98 % [11]) makes
semiconductor spin qubits one of the leading candidates for the realization of a scal-
able quantum information processor 1.

In addition, the possibility of harnessing the existing semiconductor industry for the
large-scale fabrication of semiconductor spin qubit devices will have the potential
advantage of providing a high yield, throughput, and uniformity [2] in the fabrication
of devices containing hundreds or thousand qubits. This significantly enhances the
prospects of facing the scalability challenge.

This, together with the high coherence of spin qubits in Si2, has motivated the spin
qubit community to shift focus to silicon gate-defined QD devices. Spin qubits in
industry-fabricated silicon QD devices have been demonstrated to reach coherence
times close to coherence times reported in silicon QD devices fabricated in academic
labs [2].

While using spin qubits in QD systems for quantum computation purposes has re-
ceived a lot of attention, the applications of gate-defined QD systems are more diverse
than fault-tolerant quantum computation.

Semiconductor QD arrays could play an essential role in the exploration of quantum
simulation. The aim of quantum simulation is to emulate a complex quantum problem
by measuring the evolution of a quantum state in an engineered system that acts
according to the Hamiltonian that is to be simulated.

GaAs quantum dot devices have a relative in its simplicity of fabrication [12] and
have played a crucial role in the early development of spin qubits in electrostatically-
defined quantum dot devices [13]. However, limited coherence times of spin qubits
hosted in GaAs as a result of the interaction of the spin qubit’s state with the nuclear
spin bath present in GaAs, make the experimental platform less attractive for the
realization of the scalable spin-qubit-based quantum information processor. Methods
to counteract dephasing of the spin qubit’s state have been successfully harnessed

1It is too simplistic to say that the physical qubit realization needs to be scalable [9], since
the readout and control scheme, as well as the interconnectivity between instruments required to
operate and readout the qubit’s state, require to be scalable. A growing effort has been directed to
making the control and readout scheme more scalable by for example moving to voltage control to
the chip level (at cryogenic temperatures) [9] and more compact readout schemes. In combination
with the demonstration of successful operation at higher temperatures, the prospects for scalability
are increasing.

2A primary source of decoherence in materials like GaAs is the interaction of the qubit’s state
with the nuclear spin states of isotopes in the material. The lower concentration of half-integer spin
nuclear isotopes in natural silicon has a beneficial effect on the coherence time of the spin qubits
hosted in Si, which is even further enhanced by hosting the qubits in isotopically-enriched 28-Si.
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and have shown the ability to extend coherence times by several orders of magnitude
[12]. Compared to silicon quantum dot spin qubits, coherence times of spin qubits in
GaAs quantum dots are limited and therefore less suitable as a material platform for
a quantum information processor, especially when also considering the advantages
that come with the integration of Si devices in the existing semiconductor industry.
Nonetheless, the relative simplicity in fabrication and the extensive knowledge of
GaAs QD systems allows for the fabrication of complex QD architecture allowing to
engineer two-dimensional QD arrays and complex gate electrode layouts that provide
precise control of the physical parameters in the system. These aspects make the
material an excellent platform for, among other applications, quantum simulation or
testing machine-learning automation schemes.

1.1 Thesis structure
The focus of this work is the exploration of two-dimensional semiconductor quantum
dot arrays in a GaAs/AlGaAs heterostructure and a foundry-fabricated silicon-on-
insulator device by exploiting state-of-the-art pulsed gate techniques.

Chapter 2 provides a short introduction to semiconductor quantum dot systems,
focusing on providing a basic understanding of electrostatics and electron transport
in QD systems. In addition, spin-based qubit encodings and their initialization,
readout, and manipulation schemes in quantum dot system are introduced with a
clear focus on a S− T0-qubit.

The experimental apparatus and relevant methods for a fundamental understanding
of the results presented in Chapter 4-6 are presented in Chapter 3. The nanostruc-
tures of the two devices under study: a fully-depleted silicon-on-insulator 2x2 QD
device and a GaAs/AlGaAs heterostructure device are introduced in Sec. 3.1 and 3.4
respectively. A short introduction of the employed charge readout methods based on
RF reflectometry is introduced in 3.2, while details of the readout in the two setups
are presented in Sec. 3.3 and Sec. 3.5. Electrostatic control of the QD potential
landscapes are discussed in Sec. 3.1.2 and 3.4.1. The employed methods and calibra-
tion for applying high-frequency electrical control sequences to the gate electrodes
are introduced in Sec. 3.6.

In Chapter 4, a S− T0 qubit is realized in a DQD within a GaAs/AlGaAs heterostruc-
ture QD device, focusing on the operation of coherent exchange oscillations.

In Chapter 5, pulsed gate experiments are performed on a DQD in a fully-depleted
silicon-on-insulator quadruple QD device, exploring the complex level structure present
in SOI devices by performing pulsed gate spectroscopy.

In Chapter 6, a new RF gate-based readout method is presented, exploiting a DQD
as an RF charge sensor in a two-dimensional Si QD array.

Chapter 7 provides a summary and outlook based on the results of the experiments
presented in Chapters 4-6.
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Introduction to spin qubits in gate-defined quan-
tum dot systems

2.1 Introduction to quantum dots

Quantum dots are (quasi)-zero-dimensional nanostructures that can trap charge car-
riers in an artificially-created confinement potential.

A charge carrier trapped in a QD will occupy a discrete electronic level. The elec-
tronic level structure in a QD is dominated by two effects: the electrostatic Coulomb
interaction between electrons and the non-interacting discrete single-particle ener-
gies in the QD as a result of the three-dimensional confinement potential [14]. The
Coulomb interaction between electrons results in a charging energy EC that has to be
overcome when an additional electron is added to the QD, whereas the discrete level
spacing results in an additional energy contribution (∆E) that is required to popu-
late the next single-particle level when an electron is added when the lower electronic
shells are filled. The addition energy Eadd is expressed as the sum of both dominant
energy contributions: Eadd = EC + ∆Ei.

In practice, the three-dimensional confinement required for the formation of quantum
dots can be realized by a variety of experimental platforms, generally using a combi-
nation of smart engineered nanostructures that provide spatial confinement in one,
two, or three dimensions and electrostatic confinement to ensure confinement in the
remaining (if any) direction(s). Experimental platforms used for quantum dot devices
include carbon nanotubes, self-assembled nanocrystals, and electrostatically-defined
semiconductor QDs.

In this work, we explore electrostatically-defined semiconductor QD systems. Fig. 2.2
shows commonly-used QD systems that use an electrostatically-defined confinement
potential to define the QDs in the system.
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Figure 2.1: Common-used nanostructures for electrostatically-defined quan-
tum dot devices: Quantum dots are schematically indicated in red, charge sensor
dots indicated in white (dashed). From left to right: Nanowire-based QD devices -
quantum dots are formed by electrostatic confinement in a nanowire channel. The
channel provides two-dimensional confinement, while the electrostatic potential as
a result of the voltages exerted on the lithographically-patterned gate electrodes
(G1,G2) defines the confinement potential in the remaining direction. (a) Common-
used accumulation-mode SOI nanowire-based geometries include pumping geometries
(top) [1], split-gate geometries (bottom) [15] and side gate geometries. (b) Semicon-
ductor hetereostructures. A SiGe/Si heterostructure (top) [16], QD’s are formed in
the 2DEG by using lithographically-patterned gate electrodes that define the QD
potential. AlGaAs/GaAs heteresostructure (bottom) [17] (c) Planar group-IV gate-
defined quantum dot devices. Confinement is provided is by electrostatic gating [18]

2.2 Charge transport in quantum dot systems

2.2.1 The constant interaction model

A simple, but effective description of the quantized charge states in a quantum dot
system is based on considering the quantum dot as a conducting island that can be
described with a constant capacitance C (independent of the number of electrons
residing on the QD itself). The electrostatics of the resulting capacitive circuit de-
scribing the QD system gives a purely classical model, but is remarkably successful
in providing an understanding of basic charge properties in QD systems [14].

The constant interaction model (CIM) is based on two assumptions [14]: First, the
Coulomb interaction can be parameterized with a constant capacitance, and second
the single-particle energies are assumed to be independent of the Coulomb interaction
and other interactions in the system.
We consider a single QD that is tunnel-coupled to a source and drain reservoir, allow-
ing for the exchange of electrons between the QD and the left(drain) and right(source)
reservoirs. The quantum dot is modeled as a conducting island with a capacitance C
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that can be charged/discharged by exchanging electrons with left and right electron
reservoirs (Fig. 2.2). In this picture, the total capacitance on the quantum dot is
given by the sum of the capacitances connected to the dot: C = CS +CD +CG, where
CS(CD) is the capacitance between the QD and the source(drain) reservoir and CG

is the capacitance between the QD and the gate.

The total electrostatic energy stored by the single-dot system in the CI approximation
is given by

U(N,VG, VS, VD) =
1

2C
[−|e|(N −N0) + CSVS + CDVD + CGVG]2, (2.1)

where VG, VD, VS are the voltages on the gate and drain and source contacts respec-
tively. Q0=|e|N0 is the offset or background charge, with N0 the number of electrons
residing on the dot when VG = VS = VD = 0

The electrochemical potential of the QD, given an occupation of N electrons, is given
by

µ(N) = U(N)−U(N − 1) =
|e2|
C

(N −N0 −
1

2
)− |e|

C
(CSVS +CDVD +CGVG). (2.2)

Self-evidently, adding the Nth electron to a QD occupied by N−1 electrons will then
cost an energy1

µ(N)− µ(N − 1) =
|e2|
C

= EC . (2.3)

A change in voltage VG on the capacitively-coupled gate electrode, will result in a
shift of the electrochemical potential level of the dot µN . Consequently, this changes
the relative electrochemical potential levels of the QD with respect to the source
(µS) and drain (µD) reservoirs. This is at the core of control of the fixed number
of electrons residing on the dot when operating the system in the Coulomb blockade
regime, via exchange of charges with the source and drain electron reservoirs and can
be used to load/unload electrons on the QD.

1Here the discrete single-particle energies in the QD are not taken into account, which results in
an additional contribution of ∆Ei whenever all lower-lying electronic shells are filled
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Figure 2.2: Capacitive model of a single-quantum dot connected to source
and drain reservoirs (a) The quantum dot is modelled as a conducting island that
is capacitively coupled to a gate and tunnel coupled to a electron reservoir on either
side of the dot. The island can be charged/discharged by exchanging electrons with
the reservoirs. (b) Purely capacitive model, where the quantum dot is modelled with
a total capacitance C and is capacitively coupled to source (C = CS), drain (C = CD)
and gate (C = CG)

2.3 A double quantum dot
By adding a QD to the system with a mutual capacitive coupling Cm between the two
dots, a double quantum dot system is formed, where we consider the left(right) QD to
be tunnel coupled to the drain(source) electron reservoir. In the CI approximation,
the total electrostatic energy stored in the double quantum dot (DQD) system is
expressed as [19]

Figure 2.3: Capacitive circuit of a double quantum dot system - QD1 and
QD2 have a mutual capacitive coupling Cm. Each of the dots is capacitively coupled
to a gate electrode. QD1 is tunnel coupled to the drain contact and QD2 to a source
contact, here solely modelled with a capacitance, but often a resistive element is
added.

U(N1, N2, V1, V2, VL, VR) =
1

2
N2

1EC2 +
1

2
N2

2EC2 +N1N2ECm + f(V1, V2) (2.4)

, with f(V1, V2) = 1
−|e| (Cg1V1(N1EC1(N1ECm)(Cg2V2(N1ECm(N2EC2)+ 1

e2
1
2C

2
g1V

2
g1EC1+
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1
2C

2
g2V

2
g2EC2 + C2

g1Vg1C
2
g2Vg2ECm, the charging energy of QD1 EC1 = e2 C2

C1C2−C2
m

,

the charging energy of QD2 EC2 = e2 C1

C1C2−C2
m

and the mutual charging energy

ECm = e2 Cm

C1C2−C2
m

.

Upon changing the voltages V1, V2 on thecapacitively coupled gate electrodes, charge
is induced on the dots or charge is exchanged between the two dots due to the
mutual capacitive coupling. The charge ground states can be determined by finding
the lowest energy state for a given set of voltages V1, V2. As a function of the voltages
on the gates, the charge ground states reveal a charge stability diagram that reveals
a characteristic honeycomb pattern in the case of Cm > 0.

2.3.1 Characteristics of a DQD system

Figure 2.4: (a) Charge ground states of a DQD system as a function of the voltages
on V1 and V2 (a charge stability map) in the absence of a mutual capacitance. Figure
adapted from [19]. (b) Charge stability map in the presence of a mutual capacitance
Cm. (c) Transport through a DQD in the absence of a source-drain bias VSD. In the
presence of a tunnel coupling tc, the charge states hybridyze, resulting in a curvature
of the charge ground states that is proportional to tc. Figure adapted from [14]

In the absence of a source-drain bias, transport through the DQD is only possible
when the QD levels of the left/right dot align with the drain/source reservoir. In
voltage gate space, this occurs at the so-called triple points, indicated in Fig. ??.
When a source-drain bias is applied, single-electron transport in the DQD the triple
points in triangular regions, known as bias triangles within which single-electron
transport through the DQD occurs.

2.3.2 Constant Interaction Model of a system with N nodes

The CI model can be extended to larger dot systems by describing the electrostatics
of a capacitive circuit consisting of N nodes. The capacitances between each node
to each other node in the system as well as the capacitances between each node to
ground make up the N(N+1)/2 capacitances in the resulting capacitive circuit. The
total electrostatic energy stored on the N(N+1)/2 capacitances in the system can be
expressed in a convenient matrix formulation [19]:
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U =
1

2

−→
V Ĉ ·

−→
V (2.5)

, where C is the capacitance matrix, where the diagonal elements are given by the
total capacitance on node i: cii = Σj=0,j and off-diagonal elements are given by
Cij = Cji = −cij .

In a QD system, the nodes in the capacitive circuit represent a QD or a voltage
source. Since the voltages on the voltages sources are known, it is convenient as
a block matrices consisting of submatrices that describe the capacitances between
voltage nodes and capacitors between the capacitors and between voltage nodes (Ĉcv,
Ĉcc and Ĉvv).

(−→
Qc−→
Qv

)
=

(
Ĉcc Ĉcv

Ĉvc Ĉvv

)(−→
Vc−→
Vv

)
, (2.6)

where
−→
Qc(
−→
Vc) represents the charges(voltages) on the capacitors and Qv(Vv) the

charges(voltages) on the voltage nodes.

2.4 Spin-based qubit encodings in QD systems
There exist several spin-based qubit encodings in gate-defined quantum dot systems,
including (but not limited to) a Loss-Divenchenzo (single-spin) qubit, a singlet-triplet
qubit hosted in a DQD, an exchange-only qubit and a charge-spin hybrid qubit [12].
Any physical qubit realization needs to meet key criteria to be considered suitable for
quantum information purposes [20], which include initialization in a fiducial state,
long coherence times (typically longer than computation times), the ability to per-
form high-fidelity single-qubit and two-qubit operations (which requires an interac-
tion between the qubits resulting in an entanglement of the qubit’s states) and a
qubit-specific, high-fidelity readout capability,

2.4.1 A two-level QM system as a quantum information pro-
cessing entity

A well-defined two-level quantum-mechanical system can be used to encode a qubit.
The computational basis is then spanned by the eigenstates of the system and is
encoded in |0〉 and |1〉.
Any quantum mechanical state of the system can then be expressed as a linear com-
bination of the basis states |0〉 and |1〉 as ψ = α1 |0〉 + α2 |1〉. The normalization of
quantum states requires that |α1|2 + |α2|2 = 1. The qubit’s state can be expressed
as: ψ = cos θ2 |0〉+ exp(iφ) sin θ

2 |1〉. The qubit’s (pure) states can therefore be repre-
sented as a unit vector in a two-dimensional complex space, commonly geometrically
represented as a complex vector in a unit sphere, known as the Bloch sphere.

Figure 2.5: Geometrical representation of a qubit’s state in a Bloch sphere
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2.4.2 The Loss-Divichenzo qubit

The electron spin state of a single excess electron confined in a quantum dot can be
used as a qubit encoding by encoding the electron’s spin state in the computational
basis |0〉 = |↑〉 , |1〉 = |↓〉. In the presence of a static magnetic field Bz, the energy
levels of |↑〉 and |↓〉 are split by the Zeeman energy Ez = gµBBz, where g is the
electron g-factor and µB is the Bohr magneton.

This difference in energy for the |↓〉 and |↑〉 states at finite magnetic field allows for
readout of the spin state by spin-to-charge conversion. This is achieved by energy-
selective readout or tunnel-rate-selective readout. In energy-selective readout, com-
monly referred to Elzermann readout, the electrochemical potential of the electron
reservoir is precisely tuned in between the energy-split spin-up and spin-down levels
µ↓ < µD < µ↑. This then allows an electron in the spin-up state to tunnel from the
dot to the reservoir, while a spin-down electron will be blocked. The spin state is
inferred from the presence/absence of the charge tunneling event.

Initialization of a spin-down state2 can be easily achieved in a similar way, where now
tunneling from the reservoir to the spin-down state is energetically allowed, while the
spin-up state is energetically inaccessible. Alternatively, an electron in a random
state (either spin-up or spin-down) can be loaded and is initialized by interleaving
the qubit’s state for a time longer than the spin relaxation time to the ground state
(twait > T1).

The spin state can be controlled and manipulated by applying a local oscillatory in-
plane magnetic field (B = B1cos(ω0t)). The field couples to the electron spin by the
Zeeman effect, which allows for fast coherent control over the spin state. This can
then be used to induce single-qubit rotations of the spin’s state. For the realization of
two-qubit operations, the respective spin states of the two qubits have to be entangled.
This entanglement is often realized by exploiting the Heisenberg exchange interaction
in the system. The interaction can either be direct or indirect (via for example the
interaction with another spin state or via a spin bath (bus)).

2.4.3 Singlet-triplet qubit

The two-electron spin state of two electrons hosted in a DQD can be used to encode
a qubit in the Sz = 0 subspace. The |S〉-|T0〉-states and |↓↑〉 |↑↓〉-states span a com-
putational basis and are used to encode the qubit’s state.

A singlet-triplet qubit is encoded in the |S〉 , |T0〉-basis. The energy splitting between
the two states is set by the exchange interaction strength J .

Initialization of the S− T0 qubit is achieved by energy relaxation to the system’s
ground state by interleaving the qubit for a wait time longer than the energy relax-
ation T1.

Readout of the two-electron spin state of the system relies on Pauli spin blockade.

2For positive(negative) values of the g-factor, the |↓〉 (|↑〉)-state is the lower energy state
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By projecting the (1,1) state onto the (0,2) or (2,0) state, the presence(absence) of
a tunneling event implies the state being in a triplet state (singlet state), since the
triplet states will be blocked due to Pauli spin blockade 3. Readout is performed by
projection onto (2,0)/(0,2) state by diabatically traversing the inter-dot transition.

The system’s Hamiltonian in the qubit’s basis {|S〉 , |T0〉} is given by

Ĥ =
J(ε)

2
σ̂z +

∆B||

2
σ̂x, (2.7)

where J is the exchange energy splitting between the |S〉- and |T0〉-state, ∆B|| is a

magnetic field gradient between the two dots and σ̂x and ˆsigmaz are the Pauli spin
matrices.

The unitary time evolution of the qubit’s state φ(t) under the influence of the Hamil-
tonian given by Eq. 2.7 is given by

|φ(t)〉 = e
−iĤt

~ φ(0) = Û(t)φ(0) (2.8)

, where ~ is the reduced Planck constant. Û(t) ≡ e−iĤt
~ is an unitary time evolution

operator. The evolution of the qubit’s state under the influence of Eq. 2.7 translates
into the precession of the qubit’s state around a quantization axis defined by J and
∆B||.

If J dominates, the qubit will rotate around the quantization axis defined by the J ,
indicated in green in Figure 2.6 in the Bloch sphere.

The exchange interaction strength can be altered in-situ owing to its dependence on
the double-dot detuning ε as J = J(ε). Experimentally, the exchange interaction can
be altered by changing the voltages along a virtual detuning voltage parameter, that
directly relates to the double detuning by its lever arm.

Rotation of the S − T0 qubit is addressed experimentally by fast voltage control
that alters the voltages along a detuning axis. The experimental implementation is
discussed in more detail in Chapter 4, in which a S − T0 qubit in a GaAs DQD is
presented.

3Essential to note here, is that we here only consider the two-lower lying energy levels and that
any excited state level spacing (higher-lying orbital-, valley-, or valley-orbit states) is greater than
the Zeeman splitting, ∆Ei > Ez .

13



Figure 2.6: Singlet-triplet qubit (a) A singlet-triplet qubit is encoded in the spin
state of two electrons hosted in a DQD system (b)-(c) Readout of a singlet-triplet
qubit is achieved through projection of the (1,1) spin state onto the (2,0) spin state
and relies on Pauli spin blockade of the polarized T(1,1) state. (e) Bloch sphere
representation of a S − T0 qubit, illustrating the two quantization axes defined by J
and ∆Ez respectively.(d) Schematic illustration of the two-electron spin spectrum of
a DQD near the (1,1)-(2,0) transition.
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Experimental methods

A standard experimental setup for the operation of semiconductor spin qubit de-
vices has three key requirements. First, the device needs to be cooled to cryogenic
temperatures, typically operating at temperatures below T < 100mK1 in a dilution
refrigerator.

Second, electrical control of the potential defining the QD system is required, thereby
enabling control of physical parameters characterizing the QD system (e.g. µi, ti).
High-precision voltage control is generally provided by room-temperature equipment
that is interconnected to the device’s gate electrodes via low- and high-frequency
lines in the cryostat. Focusing on the manipulation of a singlet-triplet qubit, high-
frequency voltage pulses allow for manipulation of the qubit’s state by rapid electrical
control sequences [22]. The experimental setup and methods for low- and high-
frequency voltage control are introduced in Sec. 3.1.2 and 3.4.1.

Lastly, readout of the charge and (electron) spin states is required. Here, we employ
RF readout techniques for the experiments presented in Chapters 4-6. A general
introduction to RF charge readout methods in quantum dot devices is presented in
Sec. 3.5, focusing on gate-based dispersive readout methods and RF-SQD based
readout.

In this work, experiments are performed on two devices: a foundry-fabricated fully-
depleted SOI device (Sec. 3.1) and a GaAs/AlGaAs device (Sec. 3.4).

We employ a gate-based RF readout technique for readout of the four QD charge
states in the FDSOI quadruple dot device and an RF-SET ohmic-based reflectometry
technique. A general introduction to RF reflectometry is discussed in Sec. 3.2. The

1Higher temperature (T>1K) operation of spin qubits in silicon devices have been successfully
demonstrated by several groups [10][21].
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specifics of the readout setup and methods in the FDSOI device and GaAs device are
discussed in Sec. 3.3 and Sec. 3.5 respectively.

3.1 A fully-depleted silicon-on-insulator 2x2 quan-
tum dot array

3.1.1 Device nanostructure

The device under study is a foundry-fabricated fully-depleted silicon-on-insulator
(FDSOI) device with a double split-gate geometry. The device is fabricated by LETI
in Grenoble, using a top-down fabrication process on a 300mm silicon-on-insulator
wafer [23][24]. Details on the fabrication process can be found in [24].

A scanning electron micrograph (SEM) image of a device similar to the one studied
(Fig. 3.1) illustrates its nanostructure, consisting of a 7nm undoped silicon channel
with n+-doped regions acting as source and drain electron reservoirs (dark grey). Two
pairs of split-gates (LG=32nm) partially overlap the channel and are used to induce
four quantum dots in a 2x2 arrangement. The gate material stack consists of 50nm
poly-Si and a 5-nm-thick TiN layer. The gates are separated from the Si channel by
a thin insulating SiO2 layer. SiN spacers are added to separate the gates as well as
the gates and the doped source and drain region from each other [23]. Additionally,
a metal line is situated 300nm above the nanowire channel (not illustrated), acting
as an overall top gate.

Figure 3.1: Fully-depleted SOI QD device architecture - (a) SEM image
of a silicon split-gate device [23] similar to the device under study, (b) Simpli-
fied schematic illustration of the device layout with dimensions W=70nm, L=32nm,
SH = 32nm,SV = 32nm.

3.1.2 Electrostatic control in a silicon 2x2 array

By changing the voltages exerted on the gates G1 −G4, electrons can be accumulated
underneath each of the gates G1 −G4. Four quantum dots can be formed, constitut-
ing a quadruple dot system in a 2x2 arrangement when all QDs are activated.
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Figure 3.2: Simplified schematic of electrostatic control of the Si quadruple
dot system - A tilted SEM of a device similar to the one under study, shows the
Si channel with embedded source (S) and drain (D) reservoir. The gates G1-G3 are
connected via on-chip bias tees to low-frequency and high-frequency lines, while G4 is
wire bonded to an inductor L and connected via a bias tee to a low-frequency line and
the coaxial transmission line used in RF readout. Details on filtering and attenuation
on the low- and high-frequency are omitted here and can be found in Appendix A.

The electrochemical potential of the individual dots, µi, is altered and controlled
with the voltages Vi exerted on the gates. In addition, the cross-capacitive coupling
between the gate-dot (given by the off-diagonal elements of the dot-gate capacitive
matrix: Ccv

ij = Ccv
ji = −ccvij , i 6= j) induces a change in the electrochemical po-

tential of the dots upon changing the voltages on the other gates. Similarly, the
cross-capacitance between the dots (given by the off-diagonal elements of the capaci-
tive matrix Ccc) results in a change in electrochemical potential upon changes in the
number of electrons (Nj) in the other dots.

The dot-gate capacitances have been measured and reported in previous work on
the device, yielding the following dot-gate capacitance matrix (elements expressed in
attofarads) [25]:

Ĉcv =


2.14 0.33 0.25 0.73
0.3 1.69 0.22 0.17
0.32 0.6 1.41 0.26
0.79 0.34 0.47 2.00

 (3.1)

The metal line situated 300nm above the nanowire channel adds control of the overall
tunnel couplings between the dots in the array (t|| between parallel dots and t⊥
between opposing dots) [23].

While overall control of the tunnel couplings in the array is achieved in this manner,
it is fair to note that the absence of barrier gate electrodes makes the precise tuning
of the individual tunnel couplings between each pair of dots unattainable.
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Additionally, the tunnel coupling is altered by the number of electrons in the respec-
tive dots.

Source and drain contacts are connected to low-frequency voltage control lines and can
be used to apply a source-drain bias for the purpose of DC transport measurements.
The presented experiments rely on RF reflectometry readout techniques and source
and drain contacts are grounded in the experiments.

3.2 Introduction to RF reflectometry readout tech-
niques

RF reflectometry has been harnessed as a high-sensitive, fast charge detection readout
technique across several qubit platforms [13]. The concept of RF readout techniques
relies on inferring the charge state from the RF signal reflected from an LC circuit
loaded with a variable impedance that depends on the QD state. This is achieved
by embedding a high-sensitive charge sensor (e.g. a QPC, SET) in the LC resonator
circuit or by directly embedding the gate of a QD. The latter method, referred to
as gate-based dispersive readout, has two main advantages. First, it yields an in-
creased measurement accuracy [13] and second it drops the requirement of a separate
in-proximity-placed charge detector, thereby simplifying the overall QD device archi-
tecture. We employ a gate-based dispersive readout method for the experiments per-
formed on the 2x2 silicon device. The basic concepts of RF reflectometry techniques
are introduced below, while the specifics of gate-based dispersive readout methods
employed for charge readout of the silicon quadruple dot system are discussed in Sec.
3.4.

The amplitude and phase of the reflected signal will strongly depend on the variable
complex impedance of the QD. The QD acts in this case as a variable impedance
for the resonator. Upon encountering a change in impedance, the RF signal will be
reflected with a (complex) reflection coefficient of

Γ =
Z − Z0

Z + Z0
(3.2)

, where Z0 = 50 is the impedance of the coaxial transmission line. Z is the QD-
state dependent complex impedance of the resonance circuit. For perfect matching
Z = Z0, the reflected coefficient is at its minimum. If Z differs significantly from
Z0, the method becomes insensitive to the loaded QD impedance. The sensitivity of
the readout method is maximized if Z is near Z0 such that a small change in QD
impedance results in a large change in RF reflected signal.

Embedding the gate of a quantum dot in a resonant LC circuit in RF-based readout
techniques allows for probing the parametric capacitance of the QD system.

For a single QD, the capacitance as seen by the gate has two contributions: a (fixed)
geometrical capacitance Cgeom and a variable tunneling capacitance Ct. The tunnel-
ing capacitance results from the single-electron tunneling between the QD and the
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lead and is expressed as [26]:

Ct = −|e|α∂P1

∂Vg
(3.3)

, where α is the lever arm, |e| the electron charge, and P1 the probability of having
an excess charge on the QD.

The tunneling capacitance can be probed by applying an RF tone with a frequency
fdrive on the gate, the AC signal on the gate will result in a modulation of the
difference in electrochemical potential levels of the dot and lead, given by the detuning
ε: ε = ε0 + δε sin(2πfdrivet). For fdrive � Γ, this then drives the resonant tunneling
of an electron between the QD and the lead. This induces a change in the tunneling
capacitance Ct, which results in a shift of the resonance frequency of the LC resonator.
The change in resonance frequency can be detected by using standard homodyne
detection techniques, which rely on intermixing the incoming RF (reference) signal
with the reflected signal to detect changes in phase and amplitude of the reflected
RF signal.

Figure 3.3: Principles of gate-based dispersive readout by probing the state-
dependent tunneling and quantum capacitance in s single-dot lead and
double dot system: Figures adapted from [27]((a)-(c)) [26]((d)-(e))

A tunnel-coupled DQD system occupied by a single electron charge forms a two-level
system with eigenenergies E± = ±

√
ε2 + 2t2.
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The capacitance as seen by the gate [26] has two contributions: a geometrical capac-
itance and a quantum capacitance Cq. The quantum capacitance is a function of the
band structure and polarizability of the DQD charge state [28]:

Cq = −(αe)2
d2E

dε2
(3.4)

, where α is the lever arm, e the electron charge, and d2E
dε2 the second derivative of

the density of states.

A change in Cq results in a shift in the resonance frequency fc. This shift can be
detected using homodyne detection techniques [28].

3.3 Gate-based dispersive RF readout methods and
setup quadruple dot silicon device

Gate-based RF readout is achieved by embedding the gate of one of the four dots (G4)
in an LC circuit. This is achieved by wire-bonding the gate to a surface-mount induc-
tor (L=820nH). The inductor together with the downstream capacitance to ground
then forms the LC circuit (Fig. 3.4). The resonance frequency can be extracted by
measuring the transmission (S21) between two ports of a Vector Network Analyzer
(Fig. 3.4(c)) of which port 1 is connected to the RF input at the cryostat (Rx) which
via an attenuated coaxial line reaches the device (Fig. 3.4) and port 2 is connected
to the RF signal output signal at the cryostat (Tx). The measured transmission
S21 then gives a measure of the reflection coefficient Γ, which is at its minimum if
matching condition is achieved, |Γ| = Γmin (Γmin = 0 if perfect matching is achieved).

The extracted resonance frequency f0 is given by:

f0 =
1

2π
√
LCtot

≈ 191.2MHz (3.5)

, yielding a total capacitance to ground of Ctot = 0.84pF.

The experiments are operated at a drive frequency near the resonance frequency.
Thereby, the RF readout is operated near matching condition, where reflection is
minimum. Here, the reflected signal is highly sensitive to any changes in the QD
impedance loaded on the LC circuit.

Changes of the reflected RF carrier signal are measured by using standard homo-
dyne detection techniques by intermixing the incoming RF (reference) signal with
the reflected signal to detect changes in phase and amplitude in the reflected signal,
yielding a demodulated DC voltage VH. A schematic of the homodyne detection
circuit is illustrated in Fig. 3.4.

The charge state of the other dots (QD1,QD2,QD3) can be inferred from the sensor
dot’s state. This is achieved by exploiting the capacitive shift that the sensor dot

20



Figure 3.4: (a) RF reflectometry setup for gate-based dispersive readout in the Si
QD device. (b) Schematic of the RF circuit model. The probed capacitance consists
out of a geometrical capacitance (Cgeom and a variable quantum capacitance Cq). (c)
Average of 100 S21-traces (measured transmission between port 1 port 2 of a Vector
Network Analyzer), data taken by F. Berritta
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peak undergoes whenever an electron is loaded on of the other dots in the array. As
long as the shift is larger than the Full Width Half Maximum of the sensor dot signal,
the shift can be detected and used to infer charging events on the other dots. The
number of electrons in each of the QDs in the system is determined by emptying the
dots up to the last electron.

Figure 3.5: Principles of RF charge sensing in the quadruple dot system The
Coulomb peaks of QD4 (see line trace) are used as the sensing signal. A capacitive
shift of the sensor dot peak ∆VC3C4

is the result of the loading(unloading) of an
electron on the other dots in the array. If Γi�fdrive the dispersive signal as a result of
the resonant between QDi and the leads gives a measurable dispersive RF response
signal (indicated by the green arrow) for the QD3 charging line.

We note that the dispersive readout technique requires high tunnel rates Γ between
the sensor quantum dot (QD4) and the lead. Experimentally, this is realized by oc-
cupying the sensor dot with multiple electrons (in this device, typically 5-8 electrons)

3.4 A two-dimensional GaAs four DQD array

Device architecture

A GaAs/AlGaAs heterostructure is used to trap electrons in a 2DEG (depth 59nm)
[29]. Quantum dots are depleted in the 2DEG using the plunger gates of the DQD
(indicated in red) and a SQD (indicated in white). The details on electrostatic control
of the DQD and SQD potential well by using the gate electrodes are discussed in Sec.
3.4.1.
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Figure 3.6: GaAs device structure (a) SEM of a GaAs device similar to the device
studied, four double dots can be formed, one in each of the quadrants Q1-Q4. For
readout purposes a nearby sensor dot is formed in proximity of the double dot (S1-S4).
The large accumulation dot (white-dashed) can be used to couple the non-neighboring
DQDs.fedele. (b) Schematic of the GaAs/AlGaAs hetereostructure.

Apart from the larger accumulation dot (indicated by the white dashed lines in Fig.
3.6) and its gates, the gate layout of the device is top-down and left-right symmetric.
Each of the four quadrants (Q1-Q4) contains nine gate electrodes and two ohmic con-
tacts of which one is connected to a surface-mount inductor used to employ an SQD
ohmic-based RF readout method. The other ohmics can be used as either source or
drain contacts in transport measurements between any pair of ohmics in the device.
The backbone gate electrodes (labeled BB in Fig. 3.6) can isolate the four quadrants
by pinching off the 2DEG.

3.4.1 Electrostatic control in a two-dimensional GaAs array

Here we discuss the electrostatic control of the DQD and SQD potentials using the
gate electrodes in one quadrant of the device. In each of the quadrants, a larger
quantum dot and a double quantum dot can be formed. The larger quantum dot is
used as a charge sensor and is electrostatically confined by its barrier gate electrodes
(V SQD

RB and V SQD
LB ). Electrons are loaded on the SQD by shifting the electrochemical

potential ladder of the dot µSQD with respect to the lead by sweeping the voltage on

the plunger gate V SQD
PL .

A DQD can be induced in the proximity of the SQD using the plunger gates VL and
VR. The electrostatic potential landscape of the DQD can be altered and controlled
by the outer barrier gates (V DQD

LB and V DQD
RB ), the plunger gates for the left (V DQD

LP )

and right QDs (V DQD
RP ) and a middle barrier gate (VM) (Fig. 3.7). The middle barrier

gate (VM) allows for tuning of the tunnel coupling between electrons residing on the
individual dots. This additional control knob is useful in the realization of a singlet-
triplet qubit hosted by the DQD. The DQD potential well is defined and controlled
by two outer barrier gates (V DQD

LB ) and V DQD
RB , which enables control of the tunnel
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coupling to the electron reservoir. If the middle barrier is sufficiently low, a single
quantum dot is formed, while for a sufficiently high middle barrier, the two dots are
well-separated and have a vanishing tunnel coupling. The DQD electron occupation
is controlled by the plunger gates of the individual dots.

Figure 3.7: Control and readout in one of the quadrants in the GaAs device:
(a) The gate electrodes that define and control the DQD constitute two outer barrier

gates (V DQD
LB and V DQD

RB ), a plunger gate for the left (V DQD
LP ) and right QD (V DQD

RP )
and a middle barrier gate (VM). For charge sensing purposes a nearby sensor dot
is formed and controlled with left and right barrier gates (V S1LB , V S1RB) and a plunger
gate (V S1PL ). The top left ohmic gate is connected to a tank circuit consisting of a
surface-mount inductor (L1) and a parasitic capacitance to ground (Cp). A coupling
capacitor Cc and a resistor RD form a bias tee that additionally allows for applying
a DC voltage on the ohmic contact (which can be used in transport measurement).
Another ohmic contact can act as a source/drain reservoir and allows for transport
measurements between any pair of ohmics in the device. A voltage can be applied to
act as a source-drain bias. The ohmic is grounded in RF reflectometry measurements.
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3.5 Charge sensing using SQD ohmic-based RF re-
flectometry

Here, charge sensing with RF frequency reflectometry is achieved by monitoring the
sensor dot impedance, which acts as a variable load on the LC circuit. In each quad-
rant of the device, one of the ohmics is connected to an inductor, which together
with the parasitic capacitance to ground forms the LC circuit (Fig. 3.7b). Since
L1 6= L2 6= L3 6= L4, the resonance frequencies differ for the individual LC circuit
resonators, which allows for simultaneous, frequency-multiplexed RF readout of the
four DQD states. The DQD state is inferred from changes in the sensor dot state
which is monitored by the RF reflectometry due to capacitive coupling to the SQD.
From capacitive shifts in the sensor dot Coulomb peaks, charging events on the double
quantum dot can be inferred. The occupations numbers in the DQD are determined
from emptying the dot up to the last electron. Thereby inferring the first electron
loading on QD1 and QD2 and counting the number of charging events from there.

The resonance frequencies are extracted by acquiring the reflection coefficient of the
ohmic embedded in the tank circuit while pinching off the 2DEG of the corresponding
quadrant with the backbone gates (Fig. 3.8). From S21 traces acquired with a VNA,
we extract f10 ≈130.4MHz, f20 ≈274.1MHz, f30 ≈156.8MHz, f40 ≈182.5MHz.
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Figure 3.8: Averaged S21-traces taken with a Vector Network Analyzer while pinching
off the 2DEG in Q1 (purple), Q2(red),Q3 (blue) and Q4(green).

3.6 Calibration of high-frequency voltage pulses
Rapid electric control is at the core of readout and manipulation methods of S− T0

qubits hosted in a DQD as well as for pulsed gate spectroscopy experiments. In
the experimental apparatus, high-frequency voltage signals are generated by an ar-
bitrary waveform generator (AWG) and are interconnected to the gate electrodes at
the device through attenuated coaxial lines in the cryostat, reaching a bias tee that
enables combining the low- and high-frequency voltage signals before reaching the
gate electrode. This inter-connectivity has three experimentally relevant effects on
the waveform arriving at the sample of the high-frequency voltage signal output by
the AWG. Careful calibration is needed to ensure that the control sequence arriving
at the sample corresponds to the designed control sequence.
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First, the attenuation along the coaxial lines in the cryostat result in a reduction
of the pulse amplitude by a factor Vout/Vin = 10loss/20. To compensate for the
attenuation, the signal output by the AWG is multiplied by the calibrated voltage
division factor Vout/Vin. The voltage division factor is calibrated by measuring the
peak splitting between two copies of a peak that appear when a continuous square
wave pulse sequence with a 50/50 duty cycle and amplitude V AWG

pp is applied to the
device.

When a high-frequency voltage signal passes the bias tee, the signal will be high-
pass filtered, the high-pass filtering of the capacitor in the bias tee will result in
a systematic distortion of the waveform arriving at the sample. We can correct
for this systematic distortion by uploading a waveform that after high-pass filtering
results in the desired waveform. This is done by applying a high-pass correction to
the waveforms uploaded to the AWG and requires careful calibration of the applied
correction.

In addition, a high-frequency voltage pulse cycle with non-zero time average passing
through a bias tee, rejecting all low-frequency components of the signal. This then
results in a DC offset of the high-frequency control voltage signal applied on the gate
electrodes of the sample. To overcome this problem, a correction pulse, that brings
the time-average of the pulse cycle to zero, can be embedded in the pulse cycle. A
drawback of this technique is the (often) lengthy correction pulses as well as the need
to adapt the uploaded correction pulse when pulse parameters (e.g. duration, the
amplitude of the individual pulses in the cycle) is varied throughout the sequence.
In the experiments presented in Chapter 5, we instead employ an alternative pulsing
method that inherently has a zero time average, thereby overcoming this experimental
complication.

A self-compensating pulse method

A self-compensating pulsing method employed in Chapter 5, is designing a pulse cycle
for which
V AWG(t + T/2)=V AWG(−t + T/2), and consequently VAWG(t)=0. Introducing this
self-balanced pulsing technique drops the requirement of adding an additional correc-
tion pulse to the sequence and has the advantage of being inherently compensated.
As a consequence, pulse parameters in the sequence can be varied without the need of
adjusting the compensation. The basic and key concept is to design a pulse cycle in
which the pulse voltage control cycle (purposed for the experiment to be performed)
is traversed, the reversed path (in voltage space) is then added to the cycle to bring
the center of gravity of the pulse cycle to zero.

By embedding two measurement points, the reversed path is re-purposed and can
for example serve as a control, comparison, or verification measurement. This two-
measurement self-compensating pulsing scheme could especially be of interest for
pulsed gate spectroscopy or PSB experiments.

Fig. 3.9 shows two pulse cycle designs in the self-compensated pulsing scheme with
a single (Fig. 3.9a) and two measurement points (3.9b) embedded in the pulse cycle.
Fig. 3.9a shows a control cycle used for PSB measurements, constituting a typical
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triangular pulse cycle used in PSB detection experiments (annotated in green). The
reversed path (annotated in red) balances the pulse cycle, ensuring the center of
gravity of the pulse cycle is found at zero.
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Figure 3.9: A self-compensating pulse sequence scheme (a) A single balanced
pulse cycle containing one measurement that coincides with the center of gravity
of the pulse cycle (black). A typical triangular pulse cycle used in PSB detection
experiments is annotated on the charge stability map (green) of a DQD formed in
the top-left quadrant of the GaAs device near the (1,1)-(2,0) transition. The reversed
path (red) balances the pulse cycle and ensures that the center of gravity of the cycle
is found at zero. (b) The voltage control pulse cycle applied on the high-frequency
line of the right gate of the DQD. The time-average of the AWG output signal of a
single pulse cycle is zero. (c) Balanced pulse cycle with two measurement points of
interest M1 and M2 positioned in the (1,1) and (0,2) charge stability respectively. (d)
Control voltage output signal of a single pulse cycle applied on the high-frequency
line of one of the gates of the DQD.
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Coherent operation of a singlet-triplet qubit in
a GaAs double quantum dot

In the following, the coherent operation of a singlet-triplet qubit hosted by the top-
left DQD of the two-dimensional GaAs QD array (see Section 3.6) is presented. We
operate exchange-driven oscillations by applying a rapid electrical control sequence
on the high-frequency lines of the plunger gates of the DQD. A sensible design of the
control sequence requires knowledge of the S-T+ anti-crossing in the two electron spin
state spectrum from |S〉 into |T+〉, to minimize leakage outside the qubit’s subspace
(S = 0).

To this end, S-T+-leakage spectroscopy is performed (Sec. 4.1) to extract the loca-
tion (in double-dot detuning ε) of the S-T+ anti-crossing at a given magnetic field Bz.
The point in the detuning of the S-T+ anti-crossing moves with magnetic field as the
split-off polarized triplet states will move in energy. A magnetic field sweep reveals a
funnel-shaped pattern of the observed S-T+-leakage from which the tunnel coupling
tc, the exchange interaction strength J (as a function of the double-dot detuning ε)
and the parallel and perpendicular offset fields can be extracted.

Exchange-driven oscillations are operated by employing a fast electrical control se-
quence (Sec. 4.2). The rotations are a result of the spin-exchange interaction and
yield oscillations at a frequency of Ω = J/~. Since J depends on the double-dot de-
tuning ε, the frequency can be modulated by changing the exchange operation point
in detuning (ε = εE), which is achieved by altering the exchange pulse amplitude in
the electrical control sequence. We extract the Rabi frequency f = Ω/2π, exchange
interaction strength J , and the T ∗2 -times from the measured exchange oscillations for
different operating points εE .
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4.1 S−T+ leakage spectroscopy

The experiment is operated in the vicinity of the (1-1)-(2,0) inter-dot transition (Fig.
4.1) of the DQD in the top-left quadrant (Q1) of the GaAs device, where (n,m) is the
number of electrons residing on the left and right dot respectively. Charge transitions
are induced by traversing the (1,1)-(2,0) charge state degeneracy line by changing the
voltages on the plunger gates of the DQD along a detuning axis - ε(V) (Fig. 4.1).
This virtual voltage parameter is a linear combination of the voltages on the two
plunger gates of the double dot and can be directly related to the double dot (en-
ergy) detuning by the lever arm α.

For ε < 0, the DQD charge state where one electron resides on either dot (1,1) be-
comes energetically favorable, whereas for ε > 0, the (2,0) state, where two electrons
reside on the left dot is the energetically preferred state. Consequently, transitions
from (1,1) to (2,0) can be induced by changing ε from negative to positive values. This
is an essential tool in the readout of the two-electron spin state, which is achieved by
spin-to-charge conversion through projecting the two-electron (1,1) spin state onto
(2,0).

The two-electron spins form a singlet S(2, 0) when residing on the same dot (Fig
4.1(c)). When the two electrons are separated on the individual dots, the two-
electron-spin state is a singlet (S(1,1), S=0) or one of the triplet states
(T+(1, 1), T0(1, 1), T−(1, 1), S = 1). In the presence of a magnetic field, the triplet
states are split by the Zeeman energy, given by Ez = g∗µBB, where g∗ is the elec-
tron g-factor (g∗ = −0.44 in GaAs) and µB is the Bohr magneton. The singlet and
unpolarized triplet state T0 are split by the exchange interaction strength J . For
large negative detuning, the spin exchange interaction approaches zero and conse-
quently the spins become independent, i.e. the two-electron spin states are given by
|↓↓〉 |↓↑〉 , |↑↓〉 , |↑↑〉.

At the S− T+ avoided crossing, ε = εST+ , mixing of the two states results in a high
probability of the state transitioning into the T+-state. Thereby leaking into a state
outside the qubit (S = 0) subspace. This S-T+ leakage can be detected by applying
a fast control sequence as discussed in the following.
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Figure 4.1: Two-electron spin state spectrum in a DQD near the (1,1)-
(2,0) transition as function of the detuning ε - (a) Charge stability map in the
vicinity of the (1-1)-(2,0) transition of the DQD under study. The defined detuning
voltage parameter is annotated. The offset is defined such that ε=0 is at the charge
degeneracy line. (b) Schematic of two-electron spin state energy spectrum near the
(1,1)-(2,0) transition as a function of the detuning ε.

A single train of voltage pulses that makes up the high-frequency pulse sequence for
S-T+ leakage spectroscopy is annotated on the DQD charge stability map (Fig. 4.2)
and consists of four control steps. First, a S(2,0) is prepared on the left dot by (i)
unloading and (ii) reloading an electron. This is achieved by applying slow adiabatic
ramps (tL = tU = 10µs) across the charging line that adds(removes) an electron on
the left dot. After preparation, the two electrons are separated on the individual dots
by applying a diabatic pulse across the inter-dot transition along the detuning axis
to ε = εS = εM −As, where εS is the point in detuning of the separation point, εM is
the location of the measurement point and AS is the separation pulse amplitude in
the sequence.

At the separation point (ε = εS), a wait time of ts=20ns is implemented. The ampli-
tude of the separation pulse (and thereby εS), is varied in each consecutive waveform
in the sequence from AS=1-50 mV. For εS = εST+

, an increased probability of leak-
age into the T+-state is expected. Since the T+(1, 1) state is blocked due to Pauli
blockade when projecting the state onto (2,0), the T+ leakage probability can be in-
directly inferred from the measured charge signal at ε = εM > 0. This then allows
for extracting the point in detuning where the S and T+ cross in the two-electron
spin state level spectrum, since the leakage probability is expected to be highest at
ε = εST+

as a result of maximum admixing of the states at the crossing point.

Projective measurement of the DQD charge state at M is achieved by applying a
diabatic pulse from the separation point to ε = εM across the (1,1)-(2,0) transition.
In practice, this requires a measurable difference in the sensed reflected RF signal
between the (1,1) and (2,0) DQD charge states at ε = εM. Projection of the DQD
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charge state onto (2,0) when the system resides in T+(1, 1) will then result in sensing
the RF signal corresponding to V HM (1,1) charge state at the measurement point M.

Figure 4.2: High-frequency voltage control pulses for S− T+-leakage spec-
troscopy: The control pulse cycle of a single waveform consists out an adiabatic
ramp to U followed by a ramp back to M to initialize S(2,0). The separation pulse
separates the two electrons on the individual dots by pulsing from M to S. After
a wait time of ts=20ns, projective readout is achieved by pulsing from S to M. At
M, a wait time of 10µs is implemented. (a) Annotated pulses of a single waveform.
The points S and M are located on the defined detuning voltage parameter ε. (b)
Schematic of the pulses contained in a single waveform applied on the plunger gate
of the right dot.

Fig. 4.3 shows the measured integrated (tint= 8µs) homodyne voltage signal at M,
measured by a fast digitizing card (Alazar 9360) while applying the above-described
control sequence on the high-frequency lines of the plunger gates of the DQD. We
observe S− T+ leakage as a peak in the (averaged) detected homodyne voltage at
the measurement point, which allows for extraction of εST+

.

By sweeping the magnetic field, the split-off T+-state and thereby εST+
are expected

to move (Fig. 4.3) with magnetic field. A magnetic field sweep while acquiring
the integrated homodyne voltage signal at M, shows a funnel-shaped pattern of the
detected leakage signal.
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Figure 4.3: S− T+ leakage spectroscopy with varying magnetic field - (a)
Spin funnel acquisition, the averaged integrated (tint = 8µs homodyne voltage mea-
sured at M gives an indirect measure of the T+ leakage probability, a high (1,1) state
probability results in a higher averaged detected homodyne voltage. (b) Line trace
of (a) at Bz = 0.03T .

4.2 Coherent exchange oscillations of a singlet-triplet
qubit

Coherent exchange oscillations can be driven by a high-frequency voltage control
pulse cycle applied on the fast lines of the plunger gates of the DQD. To design a
sensible electrical control pulse cycle, it is useful to know εST+ . This information can
be extracted from a S-T+ leakage spectroscopy acquisition at the magnetic field at
which the exchange oscillations are operated (Bz=100mT in the following).

The control pulse cycle (Fig. 4.4) starts with the preparation of a singlet S(2,0) by
unloading and reloading an electron on the left dot. After which the two-electron-
spin state is initialized in the |↓↑〉-|↑↓〉 basisfedele. This is executed in two steps:
first a rapid adiabatic passage of the S− T+ crossing is achieved by applying a ramp
that is faster than the typical timescale where mixing between the two states due to
the hyperfine interaction with the nuclear spin bath occurs (∼ ~µBgBN )[22]. This is
followed by a slow, adiabatic ramp to large negative detuning ε = εI << 0, where the
electron spin states become decoupled and the two-electron-spin state is a mixture of
|↓↑〉 , |↑↓〉. An exchange pulse is applied to bring the detuning to the operation point
εE , where a varying wait time of τ is implemented. During this time the spin state
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evolves for a period τ . If the Hamiltonian is dominated by the exchange interaction,
this will result in a rotation of the spin state around the rotation axis that is defined
J . After first pulsing back to εI , the reversed sequence is applied to arrive back at
the measurement point M, where readout of the charge state at M gives a indirect
measure of the two-electron spin state.

The frequency of the measured Rabi oscillations is determined by the exchange inter-
action strength as Ω = J/~. Since J(ε) depends on the double dot detuning ε, control
of the Rabi frequency is achieved by changing the amplitude of the exchange pulse
and thereby the exchange operation point (ε = εE) along the detuning axis (Fig.
4.4). We drive exchange oscillations at three different operating points εE by chang-
ing the exchange pulse amplitude to AE=(25,30,35)mV and thereby the exchange
operation point with respect to the inter-dot transition to εE=(-22.7,-27.7,-32.7)mV
respectively. The averaged homodyne voltage at the measurement point (tint = 8µs)
gives an indirect measure of the spin state and shows exchange-driven oscillations
(Fig. 4.4). The Rabi frequencies at different operation points are extracted by fitting
an exponentially damped cosine, yielding
f= (104.2± 0.4)MHz, f= 64.2± 1.3)MHz, f = (41.1MHz± 4.6)MHz
and an exchange interaction strength of
J= (0.43± 0.002)µeV, J= (0.27± 0.005)µeV, J= (0.17± 0.019)µeV
for εE=(-22.7,-27.7,-32.7)mV respectively. The extracted T ∗2 -times at different opera-
tion points are given by T ∗2 = (52.9± 3.2)ns, T ∗2 = (54.0± 4.0)ns, T ∗2 = (41.1± 4.6)ns.
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Figure 4.4: Coherent exchange-driven oscillations: (a) Illustration of the ap-
plied control sequence. The duration of the exchange pulse τ is varied in each con-
secutive waveform in the sequence. (b) Schematic of the energy spectrum of the
two-electron spin states. The splitting between S and T0 is given by the exchange
interaction strength J(ε), which depends on the detuning ε. (c) S− T+ leakage
spectroscopy measurement at Bz=100mT from which εST+ is extracted. (d) Driven
exchange oscillations for different exchange operation points εE=-22.7mV (green),
-27.7mV (blue), -32.7mV (purple).

4.3 Summary and discussion

We operate a singlet-triplet qubit hosted in a GaAs/AlGaAs heterostructure QD
device. The exchange interaction strength J , and consequently the Rabi frequency
of the exchange oscillations, is modulated by changing the operated exchange point.
We extract T ∗2 -times from the exponential decay of the recorded exchange oscillations
at different operating points, yielding the values presented in Table 4.1.
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εE(mV) T ∗2 (ns) J(µeV)
-22.7 (52.9± 3.2)ns 0.43± 0.002
-27.7 (54.0± 4.0)ns (0.27± 0.005)
-32.7 (41.1± 4.6)ns (0.17± 0.019)

Table 4.1: Extracted T ∗2 and J-parameters at different operating points for a singlet-
triplet qubit hosted in a GaAs/AlGaAs device

The future goal of this experiment is the optimization of |S〉-|T0〉 readout fidelities
using machine learning. We here tune-up a singlet-triplet qubit that is used for testing
of optimization of |S〉-|T0〉 readout fidelities.

36



5

C
h
a
p
t
e
r

Pulsed-gate experiments using a double quan-
tum dot in a two-dimensional silicon quantum
dot array

The valley degree of freedom in Si devices significantly complicates the realization
of spin qubits, since it fundamentally can limit initialization, manipulation and mea-
surement fidelities of spin qubits hosted in Si devices [30]. The high-dependency
of the orbital-valley level structure on atomic-scale details of the confining interface
that differs from device to device [30][3], has motivated the development of experi-
mental probing techniques to extract information of the valley-orbital levels. Com-
mon experimental methods employed to extract the valley splitting include transport
measurements via excited valley- or orbital level states, Shubnikov-de-Haas measure-
ments, photon-assisted tunneling techniques and pulsed gate spectroscopy. Pulsed
gate spectroscopy has been exploited to extract the valley splitting in a variety of
devices, including nanowire-based silicon-on-insulator devices. Reported valley split-
tings in similar devices to the one under study range from 0.2-0.7 meV [15][31].

In the following, we perform a pulsed gate experiment in a DQD (formed by QD2-
QD3) in the silicon 2x2 QD array using a self-balanced pulsing scheme. By performing
time-resolved measurements while pulsing diabatically across a detuning axis that
traverses the (1,1)-(0,2) inter-dot transition, non-monotonic behavior of the charge
decay is observed. Distinctive biasing points in the detuning for which enhanced
relaxation is observed, are identified and could be attributed to avoided level crossings
in the (1,1)-(0,2) two-electron spin spectrum.
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5.1 A self-balanced two-measurement pulse cycle
The pulsed gate experiment is performed by applying a high-frequency self-balanced
voltage control cycle on the gates (VHF

2 and VHF
3 ) of the DQD under study (QD2 −

QD3) while simultaneously stepping the DC voltages (i.e. VLF
2 ,VLF

3 ) along a detuning
axis ε(V ). This defined virtual voltage parameter is given by:

ε =

(
0.88
−0.47

)T (
V2

V3

)
+ ε0 (5.1)

, where ε0 is defined such that the detuning axis crosses the (1,1)-(0,2) charge degen-
eracy line at ε = 0.

The pulse sequence is built from a continuously repeated pulse cycle that has a total
duration of 160 µs. We design a self-compensating pulse cycle, with two measurement
points M1 and M2, where M1 is positioned in the (0,2) charge stability region and
M2 in the (1,1) charge stability region. Charge relaxation to the charge ground state
is measured by applying a diabatic pulse from P1 to M1 and from P2 to M2 across
the defined detuning axis (Fig. 5.1).

A single pulse cycle consists of six pulses, starting out with exchange of an electron of
QD3 with the leads via an adiabatic1 ramp (tload = tunload = 10µs) across the QD3

charging line from M2 to R1 and from R1 to P1.

This is followed by a diabatic2 pulse (Vpp=13mV)) from P1 to M1 across the (1-1)-
(0,2) inter-dot transition. A wait time of twait = 60µs at the measurement point is
implemented. The second part of the cycle follows the reversed path by first unloading
and reloading an electron through an adiabatic (tramp = 10µs) ramp from M1 to R2

and R2 to C2. This is followed by a diabatic pulse (Vpp = 13mV) along the defined
detuning axis ε across the inter-dot transition to M1.

The purpose of the ramps between P1−R1 and P2−R2 is two-fold: it allows for the
exchange of an electron with the leads before pulsing across the detuning axis and
it serves as a reference point. The latter uses (in this case) three diagnostic features
observed in the measurements: the two sharp, dispersive signal resulting from the
resonant tunneling of an electron between QD3 and the leads, and second the sensor
dot peak signal at R2 allows a check of the careful calibration of the pulses (e.g. R2

can act as a check of how the waveforms are arriving at the gate electrodes).

By stepping the virtual detuning parameter, the position of the M1 and M2 mea-
surement points are changed during the acquisition. Here, the stepped detuning axis

1Since QD3 charging line is sensed as a dispersive signal, we expect the tunnel rates of the
exchange of an electron of QD3 is expected to be Γ > fdrive, where fdrive = 191.1MHz.This is done
by moving slow enough (tpulse > 1/Γ) across the charging line in a 10µs ramp to point B1 and back
to C1 in a 10µs ramp.

2We note that the diabicity of the detuning pulse is an essential aspect for the interpretation of
the data. Here, we assume that the detuning pulse induces a diabatic transition, which is based on
performing increasingly fast ramps across the inter-dot transition to observe when tunnel times are
faster than the ramps.

38



allows for changing the detuning biasing point and potentially probing the detuning-
dependent DQD (1,1)-(0,2) spectrum.
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Figure 5.1: Pulse cycle design (a) Relevant DC points for the applied pulse cycle
along the detuning ε(mV). The sensor dot signal is tuned at one of the measurement
points M2 such that there is a difference in contrast at (1-1) and (0-2). Points Ci
and Mi are positioned along the defined detuning axis ε. The initial detuning DC
offset is defined such that the charge it intersects with the charge degeneracy line
at ε=0. The measurement points M1 and M2 are positioned at ε=+5mV and ε=-
5mV respectively. Points C1 and C2 are located at ε=+8mV and ε=-8mV, such
that Vpp=13mV for Ci-Mi square pulses. (b) Schematic of the output voltages on
the low-frequency (top) and high-frequency(bottom) lines. A wait time of 60µs is
implemented at each measurement point Mi.

A time-resolved measurement of the homodyne voltage acquired throughout the dura-
tion of one pulse cycle (t=160µs), reveals a non-monotonic charge relaxation pattern
with points in detuning for which enhanced relaxation is observed. For each step
along the detuning axis, the waveform is repeated 500 times, over which is averaged.

We observe enhanced relaxation when the measurement point M1 and M2 are biased
at the inter-dot transition, where the (1,1) and (0,2) charge states are maximally
hybridized. In practice, the actual detuning value at which the measurement is at
the inter-dot transition depends on the definition of the ε = 0 point. If the set ε = 0
point slightly differs from where the detuning axis crosses the inter-dot transition,
then the values for which M1 and M2 are found at the inter-dot transition are shifted
by |5 − εI |. Since by extracting the point in detuning where the homodyne signal

changes from V sensor
H to V background

H , we can identify the value for which the inter-dot
transition is traversed and introduce the corrected detuning voltage parameter as
εshifted = ε− (|5− εI—).

The other biasing point, labeled as ε
M1/M2

1 of enhanced relaxation is observed when
the exchange with the dot-leads becomes energetically favorable, resulting in a fast
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transition to the energetically favorable charge configuration. This occurs when M1

and M2 are biased further into the (1,1)/(0,2) charge stability region.

We define the detuning probing window as ∆εwindow = ε
M1/M2

1 - εI . Within this
window, we observe non-monotonic charge relaxation at M1 and M2. We investigate
this behavior in more detail for different applied magnetic fields Bz (Sec. 5.1.1).
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Figure 5.2: Time-resolved measurement of a SC pulsed gate experiment
at Bz = 0.1T (a) Averaged traces of the homodyne voltage measured with a high-
speed digitizing card (Alazar ATS9360) at a sample rate 100Msamples/s acquired
throughout the full period (t = 160µs) of one pulse cycle. For every value of the
detuning voltage parameter, the voltages on the low-frequency lines V LF

2 and V3LF
are set according to V2 = 0.88 ∗ ε + V ε02 and V3 = 0.88 ∗ ε + V ε03 . For every value
in detuning, 500 traces are acquired, over which is averaged i.e. every column in (a)
represents the average of 500 repetitions of the same acquisition.

5.1.1 Time-resolved measurements at different fields

We investigate the charge relaxation within the probed detuning window in more
detail at different magnetic fields. Figure 5.3 shows the averaged traces resulting from
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time-resolved measurement while pulsing the gates and stepping the DC voltages
along a detuning axis as introduced in the previous section. While the traces are
acquired throughout the full duration of one cycle (t=160 µs), here only the results
during the M1 and M2 stage are shown. The resulting averaged traces are plotted
against the shifted detuning, defined as εshifted = ε − (|5 − εI |). For each magnetic
field, the detuning offset ε0 is re-calibrated by taking a line trace along the defined
detuning (see Fig. 5.1). For comparison purposes, the averaged traces in Fig. 5.3 are
plotted against the shifted ε parameter to account for the difference in ε0 and εI . For

each magnetic field, ε
M1/M2

1 is indicated. The measured charge decay features within
the detuning probing window are investigated in more detail by extracting the decay
times from fitting a single exponential decay function through the line traces during
both measurement stages, resulting in Fig. 5.4. For |ε| > |ε1|, the charge relaxation
becomes too fast to fit a single exponential function, resulting in a large relative error
of the found optimized fitting parameter.
For |ε| < |εI | the M1/M2 measurement points have crossed the inter-dot transition.
Fitting of an exponential decay function then results in an unphysical interpretation
of the extracted time constant. Therefore, solely the extracted charge decay time
constants for values of |ε1| < |ε| < |εI | are shown 3.

3The time constants are extracted for a larger range of detuning values for the purpose of more
precise extraction of εI and ε1
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Figure 5.3: Time-resolved charge decay measurements at M1 and M2 at
different magnetic fields (a) Averaged traces of the homodyne voltage signal
acquired throughout the first measurement stage with a wait time (twait = 60µs)
at M1. Distinctive charge decay features are observed. Fast relaxation indicated by
the blue arrows is attributed to a fast transition from charge ground states due to
exchange with the leads rather than inter-dot tunneling. At the inter-dot transition,
fast relaxation is observed. The data is shifted such that M1 and M2 are exactly at
the charge degeneracy line ε = 0 for ε = +5mV, ε = −5mV respectively
(b) Time-resolved measurement during the M2 stage in the sequence. Data is plotted
on an inverted color scale for comparison purposes.)
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Figure 5.4: Extracted charge decay times from averaged time-resolved mea-
surements during wait times M1 and M2 (tM1

wait = tM2

wait = 60µs) Characteristic
charge decay time scales extracted from an exponential fit from the averaged of a
40µs window of the measurement stages (M1) and (M2). (a) Extracted time con-
stants during M1 stage at different fields. The plotted error bars indicate the square
root of the covariance of the optimized fitting parameter and are generally too small to
distinguish. The inset shows the charge decay rate Γ = 1/τ , plotted on a logarithmic
scale. Detuning values within the probed window εM1

window for which an clear enhanced
charge decay rate is observed are indicated by the black arrows. (b) Extracted time
constants during the M2-stage at different fields.
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5.2 Summary and discussion
We report the observation of enhanced relaxation at distinctive values of the DQD
detuning, reflecting the complex orbital-valley level structure in foundry-fabricated
SOI devices. While pulsed gate spectroscopy has been extensively used to extract the
valley splitting by probing the (0,1)-(1,0) spectrum, here we show the potential of
probing the (1,1)-(0,2)/(2,0) two-electron spin state levels. We note that the crowding
of states in the spectrum as well as the lack of knowledge of the tunnel coupling
prevents us from extracted the exact level structure (1,1)-(0,2).

We note that the extraction of εI to shift the data presented in Fig. 5.3 gives a
source of systematic error in the location of the observed relaxation features along the
detuning axis, making it challenging to record the shifting of the observed relaxation
hot spots in detuning.

5.3 Reproducibility
We report on the reproducibility of specific charge decay features observed at a given
field in the Appendix (see B).
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An RF-DQD charge sensor in a two-dimensional
QD array

Charge sensing techniques based on RF reflectometry have been harnessed as a suc-
cessful readout method in gate-defined quantum dot systems. In gate-based dispersive
RF readout, the QD system is probed with an RF tone applied on an existing gate
electrode, thereby dropping the requirement of implementing an additional charge
detector in the device [32]. This eases the requirements imposed on the QD device
architecture and enhances the scalability of the readout scheme. In conventional gate-
based dispersive sensing techniques, the QD of which the gate electrode is embedded
in the LC circuit acts as a sensing dot and can be used to sense nearby QDs that
are capacitively coupled to the sensor dot by detecting the capacitive shift that the
sensor dot Coulomb peak undergoes upon changes in charge occupations in the other
dots1.

Here, we explore RF charge sensing with a DQD in a two-dimensional QD array.
The proposed readout technique has several (potential) key advantages compared to
conventional gate-based dispersive readout using a single QD as a charge sensor.

First, the proposed readout technique does not directly involve a tunneling process
with the leads as in charge sensing by measuring the response signal of a single electron
tunneling between the sensor dot and the lead. And second, utilization of a DQD as
an RF charge sensor is expected to further enhance the scalability of gate-based RF
readout in two-dimensional QD arrays since the capacitive shift that the DQD inter-
dot signal undergoes of a far-away QD is from a simple electrostatic consideration to
be larger than the shift that the sensor QD peak undergoes.

1This requires the capacitive shift to be larger than the FWHM of the sensor peak in order to be
distinguishable
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The concept of a DQD RF-charge sensor is demonstrated in a two-dimensional QD
array in a FDSOI split-gate device. We focus on a two-by-two array, but the technique
could be especially advantageous in larger two-dimensional arrays. The charge state
of a DQD using the opposing two dots in the array as a DQD RF charge sensor by
monitoring the RF response signal as a result of the single-electron tunneling between
the dots of the tunnel-coupled sensing DQD. Thereby purposing the DQD as an RF
charge sensor to sense the charge state of the two opposing dots in the array.

A double quantum dot is formed by loading electrons on QD1 and QD4 (of which the
gate electrode G4 is embedded in the LC circuit).

Six to seven electrons are loaded QD4 and one to two electrons on its neighboring
dot (QD1) to form the sensing DQD in the array. The RF carrier frequency is
fc = 190.9MHz and the estimated RF power incident on the inductor is PRF =-
105dBm. Fig. 6.1a shows a charge stability map in the vicinity of the inter-dot
transition (7,2)-(6,1) of the sensing DQD. The dispersive RF response signal at the
charge degeneracy line resulting from the fast (Γ > fdrive) single-electron inter-dot
tunneling between the two dots is used as the sensing signal.

The sensed dispersive signal at the charge degeneracy line of the sensing DQD can
then be exploited to sense the charge state of the opposing QDs in the array.

This is achieved by precise tuning of the quadruple dot system such that the po-
larization line of the sensing DQD coincides with the (2,0) charge state in the four-
dimensional voltage parameter space. Fig. 6.1(b) shows the measured charge stability
map in the vicinity of the (1,1)-(2,0) transition of QD2,QD3. The dispersive inter-
dot signal of the sensing DQD (QD1 −QD4) creates a contrast between the (2,0) and
(1,1) charge states of the opposing DQD (QD2 −QD3).
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Figure 6.1: RF charge sensing with a DQD- (a) - Charge stability map showing
the charge states of the DQD acting as a charge sensor in the two-dimensional ar-
ray. The charge degeneracy line (7,2)-(6,1) of the DQD is measured as a dispersive
RF response signal (indicated by the diamond) and is exploited to sense the charge
occupations of the opposing quantum dots. b Charge stability map of the opposing
DQD in the array (QD2 −QD3). The dispersive inter-dot signal of the sensing DQD
(QD4 −QD1) is used to create a contrast between the (2,0) and (1,1) charge states.
(c) Charge stability map of the opposing DQD (QD2.QD3) when the inter-dot signal
of the sensing DQD is not tuned at the inter-dot transition.

6.1 Summary
In this chapter, RF charge sensing with a DQD in a two-dimensional Si array is
demonstrating, serving as a proof-of-concept experiment.
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Summary and outlook

This work has focused on performing pulsed gate experiments on a DQD within a
two-dimensional QD array in a GaAs/AlGaAs hetereostructure device and a silicon-
on-insulator nanowire device.

We operate exchange-driven oscillations of a singlet-triplet qubit hosted in a in a
GaAs/AlGaAs hetereostructure device. We modulate the Rabi frequency of the ex-
change oscillations by changing the operation point εE along the detuning axis. The
future goal is to use this |S〉− |T0〉 test qubit to test machine learning algorithms. In
specific, the aim is towards the optimization of |S〉 − |T0〉-readout fidelity.

We perform pulsed gate experiments in a foundry-fabricated SOI device employing
a self-compensating pulse sequence scheme that implements fast pulsing across a
detuning axis from (0,2) to (1,1) and (1,1) to (0,2). While not originally purposed
for pulsed gate spectroscopy, we observe enhanced charge decay rates at distinctive
values in double-dot detuning, which may be related to enhanced relaxation near
energy level crossings in the (1,1)-(0,2) level spectrum. Within the probed detuning
window, enhanced relaxation is observed and identified at distinctive values of the
double dot detuning. While pulsed gate spectroscopy has been extensively used to
extract the valley splitting by probing the (0,1)-(1,0) spectrum, here we show the
potential of probing the (1,1)-(0,2)/(2,0) two-electron spin state levels, which could
be valuable information for the realization and operation of a singlet-triplet qubit in
Si devices. We note that because of the crowding of states in the spectrum as well
as the lack of knowledge of the tunnel coupling prevents us from extracted the exact
level structure (1,1)-(0,2).

Future work on performing pulsed gate spectroscopy to extract the two-electron spec-
trum in SOI LETI devices should involve a systematic approach by first extracting
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relevant parameters for simulating the two-electron spectrum (tC ,∆V ) by employing
a set of experimental techniques, where first the valley splitting is extracted by prob-
ing the (0,1)-(1,0) spectrum by for example the detuning axis pulsed spectroscopy
technique recently proposed and demonstrated by HRL [30]. Once these parameters
are known, the two-electron spectrum can be probed by a detuning pulse cycle similar
to the one presented in this work. By recording the magnetic field dependence of the
observed relaxation hot spots by sweeping the field over a larger range, information
on the spectrum can be extracted. In addition, the presented pulse sequences can be
further advanced by introducing a variable wait time at P1 and P2 and varying the
pulse amplitude to measure when excited states become energetically (in)accessible.

In Chapter 6, we have demonstrated RF sensing with a DQD in a two-dimensional ar-
ray. This alternative charge sensing technique is expected to have several advantages
compared to gate-based dispersive charge sensing based on a single sensor-QD. Fur-
ther exploration of using a RF-DQD charge sensor could focus on the demonstration
of charge sensing in larger two-dimensional arrays as well as benchmark the readout
sensitivity compared to conventional gate-based dispersive charge sensing techniques.
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Experimental setup and instrumentation

The device is cooled down to cyrogenic temperatures in a Oxford Triton 200/400
dilution refrigerator, reaching a MC temperature of TMC ≈64mK.

High- and low-frequency voltage control signals are provided by an Arbritary Wave-
form Generator (AWG) and a high-precision voltage generator that operate at RT.
The output of the RT voltage control instruments. The output the AWG that sup-
plies high-frequency voltage signals is connected to the device chip via attenuated
coaxial lines that can be connected that connect to the PCB hosting the device via
mini-coax links. The low-frequency voltage signals output by the QDac are trans-
ferred inside the cryostat via DC looms equipped with a series of pi filters and low
pass filters. The low- and high-frequency signals are combined by a bias tee on the
motherboard. which then passes through an on-chip bias tees that connect to the
gates of the device.

The RF signal is generated by a RF source typically operating at a carrier frequency
of fdrive = 191MHz in the experiments presented. The signal passes through a DC
block before reaching a directional coupler that is connected to the reference port
of a RF mixer and the RF input branch that reaches the RF input (Tx) port of
the cryostat after a phase shifter, a high- and low-pass filter and a programmable
attenuator. The Tx port connects to a coaxial line that is attenuated at different
stages (total attenuation of -36dB), connect through the coupling port of a cyrogenic
directional coupler and then connects via a miniCoax tot the PCB, where it passes
a bias tee consisting of a coupling capacitor and a resistor then through a surface-
mount inductor to the gate of the sensor dot. The reflected RF signal then passes
first through the inductor, capacitor via the mainline of the directional coupler to DC
block. The reflected is then amplified amplified by a cyrogenic amplifier at the 4K
stage. The coaxial line connects via the output at the Rx port to a DC block and a
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low-pass filter before being amplified by a RT amplifier (gain: +45dB). After passing
a low- and high-pass filter, the signal arrives at at mixer. The IF signal output by
the mixer is low-pass filtered before being amplified by a lock-in amplifier (gain can
be set, and is changed in the experiments. Additionally, the lock-in amplifier low-
pass filters the signal. The LPF can be set and is set to 10kHz for low-frequency
acquisitions and 100MHz for experiments involving rapid pulsing and time-resolved
measurements. The voltage signal is then readout by a digital multimeter (used
in low-frequency acquisitions) or by a fast digitizing card (used for time-resolved
measurements). Acquisitions using the fast digitizing card are triggered by a marker
supplied by the AWG.
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Figure A.1: Experimental setup Schematic of the wiring and instrumentation in
the setup. Low(high)-frequency lines are indicating in green(red).
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Reproducibility of measured enhanced charge
decay rates

We test for the reproducibility of the detailed non-monotomic behvior of the charge
transition time by repeating the same acquisition at a magnetic field Bz=1.5T. In a
similar as discussed in Chapter5, we extract the characteristic decay time constant by
fitting a single exponential decay function through the 30µs of the M1 stage, resulting
in Figure B.1.

In addition, we compare the perform the same acquisition at opposite field Bz = 0.1T
and Bz = −0.1T . The extracted exponential decay time constants are given in Figure
B.2.
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Figure B.1: Extracted charge decay times at Bz =1.5T. A self-compensating
pulse cycle as introduced in 5. Characteristic decay times during the M1 stage are
extracted by fitting a single exponential decay function through the detuning line
traces of the acquired time-resolved measurement.

Figure B.2: Extracted charge decay times at Bz ==0.1T and Bz ==-0.1T. A
self-compensating pulse cycle as introduced in 5. Characteristic decay times during
the M1 stage are extracted by fitting a single exponential decay function through the
detuning line traces of the acquired time-resolved measurement.
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