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Abstract

In this thesis a theory for steady-state squeezing of an abstract collective spin-
variable is developed for particles in a Bose-Einstein condensate. Such a theory can
be put to direct use in the �eld of quantum-metrology, since squeezed states can
help improve the precision of atomic clocks. In the two-mode approximation it is
easy to see that a steady-state Bose-Einstein condensate will be spin-squeezed, since
the Hamiltonian describing such a system has the maximally squeezed state as the
lowest energy eigenstate.

The calculation central to this thesis is done using a Bogoliubov transformation
of perturbations of the quantum-�eld operator describing the particles in the con-
densate. This transformation will diagonalize the Hamiltonian, which enables us to
�nd an (almost) complete set of eigenvalues and eigenstates. These states can be
used to calculate the expectation values of the angular momentum operators, from
which the spin-squeezing can be calculated.

The atoms in the condensate are described using two constants U and Uab pro-
portional to the scattering lengths for atoms of equal and di�erent spin respectively.
The result of a numerical implementation of the theory is that for zero temperature
the optimal atoms have U ≈ Uab ≈ 0. This is contrary to the case of higher, phys-
ical temperatures, where atoms with U � Uab and U + Uab � 1 will maximize the
squeezing. Further results are that the most spin-squeezing is produced for as large
a particle number and as low a temperature as possible.
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Resumé

I dette speciale vil en teori for steady-state squeezing af en abstrakt kollektiv spin-
variabel blive udledt for partikler i et Bose-Einsteinkondensat. En sådan teori vil
kunne anvendes direkte inden for kvante-metrologi, idet squeezede tilstande kan
bruges til at forbedre præcisionen af atomure. I two-mode approksimationen er det
let at se, at et steady-state Bose-Einsteinkondensat vil være spin-squeezed, idet den
Hamiltonoperator, som beskriver et sådant system, har den maximalt squeezede
tilstand som sin laveste energiegentilstand.

Den centrale udregning i specialet er udført ved hjælp af en Bogoliubovtrans-
formation af perturbationer af den kvantefeltoperator, der beskriver partiklerne i
kondensatet. Den transformation vil diagonalisere Hamiltonoperatoren, hvilket gør
os i stand til at �nde et (stort set) fuldstændigt sæt af egenværdier og egentilstande.
De tilstande kan bruges til at udregne forventningsværdierne af impulsmomentop-
eratorerne, hvorfra spin-squeezingen kan udregnes.

Atomerne i kondensatet bliver beskrevet ved to konstanter U og Uab, der er
proportionale med spredningslængderne for atomer med henholdsvis ens og modsat
spin. Resultatet af en numerisk implementering af teorien er, at ved nul temperatur
har de optimale atomer U ≈ Uab ≈ 0, mens grænsen er den modsatte for højere,
fysiske temperaturer, hvor atomer med U � Uab og U + Uab � 1 vil maksimere
den opnåede squeezing. Andre resultater er, at så stort et partikelantal og så lav en
temperatur som mulig vil maksimere spin-squeezingen.
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Chapter 1

Introduction

This document is a master thesis made by Hjalte Axel Frellesvig under the super-
vision of Anders Søndberg Sørensen, at the Theoretical Quantum Optics Group at
the Niels Bohr Institute at the University of Copenhagen.

The title of the thesis is �Spin-squeezing in Bose-Einstein condensates�. This
subject has been investigated theoretically several times before1, which is why the
title should be seen as nothing but an abbreviation of a more correct title like
�Steady-state, non-symmetry-breaking Bogoliubov theory for spin-squeezing of in-
ternal states in Bose-Einstein condensates� describing a set of approaches which, to
the best of my knowledge, has not been used before in this combination.

The purpose of the thesis is to derive a model of a Bose-Einstein condensate using
the above combination of approaches, use the result to calculate the spin-squeezing
and investigate the results.

I try to aim this thesis at people at the same academical level as my own, that is
people who are about to �nish a master's degree in physics. It is possible to advance
that far without ever encountering the concept of spin-squeezing, and without having
more than a passing encounter with Bose-Einstein condensates. I therefore devote
a chapter to introducing each of these subjects. Let me, however, give a very brief
introduction here explaining the relation between the two, so the reader knows what
he/she is going into.

A spin-squeezed state is a state where the uncertainty of a measurement of one
component of the spin ∆Ji is less than what can be expected

2 from a state equalizing
the uncertainty relation ∆Ji∆Jj ≥ 1

2
|〈Ĵk〉|, while Bose-Einstein condensates (in the

following denoted BEC) can be considered a3 fourth state of matter, which is formed
when a bosonic gas is cooled so much that all the particles have the same, lowest
quantum state. In this thesis the spin in question is an abstract spin describing
two di�erent electronic states of some atoms, and when those atoms form a BEC

1See [1], [3], [4], [5], [6], etc.

2What is expected is not necessarily
√

1
2 |〈Ĵk〉|. See section 3.2.

3It is not THE fourth state of matter. Plasma, glass, the superconducting Ginzburg-Landau
phase, and Bose-Einstein condensates are all competitors for that title.

5



CHAPTER 1. INTRODUCTION 6

the Hamiltonian describing the condensate will have such spin-squeezed states as
the ground state. This bridges the two subjects of spin-squeezing and Bose-Einstein
condensates.

Theoretical physicists do occasionally have a hard time answering questions like
�what can this work of yours be used for?� The theory described in this thesis does
not have that problem, since there is a direct connection from this theory to the
theory of atomic clocks. Even though atomic clocks are the most precise type of clock
in existence, they do have some uncertainty. Noise from the classical uncertainty of
the involved measurements is still the biggest obstacle, but ultimately the precision
is limited by the quantum uncertainty, which can be diminished by squeezing the
variable in question. Even though other methods are available4, the use of Bose-
Einstein condensates is a promising way to achieve the desired squeezing.

The thesis starts with a chapter on atomic clocks, making the connection to
spin-squeezing obvious. Then follows a chapter on squeezing, containing an ex-
planation of squeezing of xp-variables and spin-variables, and a way to �nd the
minimal spin-squeezing is derived. The chapter also contains a discussion of the
connection between spin-squeezing and quantum entanglement. The next chapter is
about Bose-Einstein condensates, and contains a derivation of the Gross-Pitaevskii
equation describing BEC, and some discussion on ways to solve it. The chapters on
squeezing and BEC are written so that they can be read independently; no mention
of BEC in the chapter on squeezing and vice versa. Then follows a chapter named
�Spin-squeezing in Bose-Einstein condensates� which connects the two subjects, and
describes some previous theoretical and experimental results on the subject. It also
contains an introduction to the Bogoliubov transformations used in the main cal-
culation. The next chapter named �The full Bogoliubov calculation� presents the
central calculation of the thesis, where the desired steady-state Bogoliubov theory is
derived. It also contains some discussion of an alternate approach, and discussions
on how to implement the theory numerically. Finally the chapter named �Results�
contains the results from the numerical calculations, and explanations of some of
their essential features. After a section on conclusions and outlooks, some appen-
dices follow. First, two appendices containing some theory, which is too basic to be
in the main thesis. Then follows four appendices containing some detailed calcu-
lations that are too long compared to their importance to be granted space in the
main text, followed by an appendix containing the source code to my simulation,
an appendix containing some details on the precision of the simulations, and an ap-
pendix containing some results in addition to those presented in the results-chapter,
and an appendix showing some of our results in higher resolution. A bibliography
is added as a �nal appendix.

Some of the sections in the �rst chapters in the thesis, are detours on the way
towards the desired theory. If one wants to read the thesis by following the most
direct route, one should read sections 3.2, 3.4, 4.2, 4.4, 5.1, 5.2, 5.6, 6.1, 6.2, 6.3,

4Like the Quantum non-demolition measurement method described in [16].
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and chapter 7.

I would like to thank my thesis advisor Anders Søndberg Sørensen, for patiently
answering all my questions, and for reading through my calculations and writings at
the intermediate stages. Without him there would have been no thesis. It was also
Anders who got the idea for the subject matter in the �rst place, and this thesis
builds upon some of his previous work5. In addition I would like to thank Kjeld
Frellesvig and Jeppe Søgaard Juul for reading through my thesis and pointing out
language errors and obscurities.

1.1 Conventions

In this section I will describe some of the conventions used in the thesis. The
chapters are referred to with a number each, while appendices have the chapter
number replaced with a letter. Most of the chapters are further split into sections,
which are denoted with another number separated from the number of the chapter
with a decimal point. When referring to an equation, I write the number of the
equation in brackets. The number in question is composed of the chapter-number
and an equation number separated with a decimal point. Figures are referred to as
�g. xa where x is the number of the �gure constructed like the number for equations,
and a is a letter denoting the sub-�gure. Literature is referred to as [x], where x is a
number or a letter denoting the source. If x is a number the source is a paper, and
if x is a lower case letter the source is a book. The key to decoding the numbering
of the literature can be found in the bibliography at the end of the thesis.

When I write a sum or an integral without limits, I mean summation or integra-
tion over all possible values. For integrals I write the integration variable dx right
after the integral sign instead of writing it after the integrand. This means that∫

drf(r) ≡
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z) dx dy dz (1.1)

One should also note the notation
∑

i∗ used in results of Bogoliubov transformations,
which is de�ned as �sum over all modes, except the 0+ mode�. Another unusual
notation used in the �nal parts of the thesis is the operator ◦ which is de�ned as

f◦g ≡
∫

drf(r)g(r) (1.2)

Quantum operators are denoted with a hat, and vectors are written in bold, with
the exception of the vectors in the abstract 2 × 2-space introduced in (6.13) which
are denoted by a bar. No special notation is used for matrices.

5See [1], [3] and [4].
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Most of the variables used in the thesis are de�ned along the way. But those of
them used in more than one section will be listed below as reference.

a Standard oscillator length, a ≡
√

~/(mω).
a0 Bohr radius, a0 = 5.29177 · 10−11 m.
aij Scattering length between particles of type i and j.
âi Annihilation operator for the ith mode (for particles of type a).
A± Two matrix elements de�ned by (6.16).
α̂ An annihilation operator (for xp-variables).
α̂i± Annihilation operator for the ith ± Bogoliubov state.

b̂i Annihilation operator for the ith mode for particles of type b.
B± Two matrix elements de�ned by (6.16).
β Inverse unitless temperature, β ≡ 1/T .
ĉi± Annihilation operator for the ith mode for particles of type ±.
ĉ Annihilation operator for the condensate mode, ĉ ≡ ĉ0+.
Ci± A quantity de�ned by (7.15).
ĉ Annihilation operator for a general particle. See (6.7).
χ A parameter de�ned by (5.7).

δψ̂± The small parameter in the Bogoliubov transformation. See (6.2).
δij The Kronecker delta. See [f].
δ(r) The Dirac delta function. See [f].
∆x The uncertainty on a measurement of x, (∆x)2 = 〈x2〉 − 〈x〉2.
dB Decibel, x = y dB⇔ x = 10y/10.
E An energy.
E The energies given by (7.10).
ε A small parameter.
εijk The Levi-Civita symbol. See [f].
εi± The energy of the ith ± Bogoliubov state.
f Short for the fraction Uab/U .
F The functions de�ned by (3.31).
~ Reduced Planck's constant, ~ = 1.05457 · 10−34 Js.

Ĥ A Hamiltonian.
H0 Harmonic oscillator Hamiltonian, H0 ≡ −1

2
∇2 + 1

2
r2.

Ĥs The Hamiltonian for �one axis twisting�, Ĥs ≡ χĴ2
z .

Ĥ A second quantization Hamiltonian.

Ĥ0 The constant Hamiltonian de�ned by (6.9).
i The imaginary unit, i ≡

√
−1.

I A unit matrix.

Î A unit operator.
j Some angular momentum.
J Some collective angular momentum.
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Ĵi Angular momentum operator in the i-direction.

Ĵ The vector (Ĵx, Ĵy, Ĵz).
k Some momentum quantum number.
kB Boltzmann's constant, 1.38065 · 10−23 J/K.
l Some orbital angular momentum quantum number.
L A matrix de�ned by (6.36).

Λ̂± The operator Λ̂± ≡ ĉ†δψ̂±/
√
N .

λ A Lagrange multiplier. Later identi�ed as λ = −Ω/χ.
m The atomic mass.
m Some magnetic quantum number.

M̂ The operator M̂ ≡ Ĵ2
z − λĴx. See (3.33).

M A matrix de�ned by (6.15).
µ A chemical potential.
µ̌ The e�ective chemical potential, µ̌ ≡ µ− 1

2
Ω.

ni± The number of particles in the ith ± Bogoliubov state.
n̂i± The particle number operator for the ith ± Bogoliubov state.
N The total number of particles.
N0 The number of particles in the condensate mode.

N̂ The particle number operator.
ν The angle in �one axis twisting�. See the text to �g. 5.2.

∇ Nabla, ∇2 ≡ ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
.

O The order parameter.

Ô Some operator.
ω The trap frequency.
Ω The Rabi frequency coupling the a and b-modes. See (4.33).
p̂ The momentum operator.
φ Some angle.
ϕ Wave function for the condensate mode, ϕ ≡ ϕ0+.
ϕi± Wave function for the ith ±-mode.
Φi± The fraction Φi± ≡ Bi±/Ai±.
ψ Some wave function (normalized to N).

Ψ̂i Quantum �eld-operator for particles of type i.
Q(θ, φ) The Husimi Q-function de�ned by (3.21).
Q(θ, φ) The function de�ned by (3.29).
Q The function Q(r, r′) ≡ δ(r− r′)− ϕ(r)ϕ∗(r′).
Q◦ f(r) The projection operator Q◦f(r) ≡

∫
dr′Q(r, r′)f(r′).

r A radial variable.
r The position vector.
ρ A density matrix.
s Short for the sum U + Uab.

Ŝ The squeezing operator for xp-squeezing. De�ned by (3.11).
σi The Pauli spin-matrix in the i-direction.
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t A time.
t An imaginary time, τ ≡ it.
T The temperature.
T A unitless temperature, T ≡ kBT/(~ω).
θ Some angle.
u The atomic mass unit, u = 1.66034 · 10−27 kg.
ui± A function used in the Bogoliubov transformation. See (6.19).
ui The unit vector in the i-direction.
U An interaction parameter in the GPE, U ≡ Uaa = Ubb.
U0 The interaction parameter in the one-species GPE.
Uij The interaction parameter between particles of type i and j.
vi± A function used in the Bogoliubov transformation. See (6.19).
V± Two functions de�ned by (7.13).
w̄i± The vector

(
ui±, v

∗
i±
)
.

W− A function de�ned by (7.13).
x̂ The position operator.
ξ A squeezing parameter.
ξY Squeezing parameter for xp-squeezing in the Y -direction.
ξJi

Squeezing parameter for spin-squeezing in the Ji-direction.

Ŷ A rotated xp-operator. See (3.6).

Some abbreviations are used throughout the thesis. Like the variables, they are
explained when introduced, but I will list them here as reference.

BEC Bose-Einstein Condensate
GP Gross-Pitaevskii
GPE Gross-Pitaevskii Equation
NOU Natural Oscillator Units
SCS Spin-Coherent State
SSS Squeezed Spin State

Finally some notes on terminology:
I have chosen to write the thesis using the personal pronoun 'we', by which I

mean me as the author and you as the reader. We see x and we do y means that you
should see x and do y as well. Exceptions from this are the introduction6 and the
conclusion which are more personal in nature, and a few comments for which I take
the full responsibility. Personal pronouns will, however, be avoided when possible
using passive forms.

That English is not my �rst language is an unavoidable fact that unfortunately,
but most assuredly, will be apparent in the text, in spite of my e�orts to the contrary.

6Like this section. �We have chosen to write the thesis using the personal pronoun 'we' � is
factually wrong.
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1.2 The natural oscillator units

This thesis is written using two sets of units. SI-units and the natural oscillator
units (NOU) introduced in this section. From section 4.3 and onwards only NOU
will be used.

NOU is introduced in order to get rid of some of the constants in the central
equations in the thesis by setting them equal to one. Since no variables with electro-
magnetic units appear in the central equations, we can only remove three7 constants
corresponding to the mechanical units length, time and mass. In the system of nat-
ural oscillator units, these constants are the atomic mass m, the trap frequency ω,

and ~, which gives the unit length, unit mass, and unit time as a ≡
√

~
mω

, m, and

ω−1 respectively. The utility of the NOU is shown best by the Gross-Pitaevskii
equation (4.16) which is written

− ~2

2m
∇2ψ(r) +

1

2
mω2r2ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r) (1.3)

in SI-units, but reduces to

− 1

2
∇̃2ψ̃(r̃) +

1

2
r̃2ψ̃(r̃) + Ũ0|ψ̃(r̃)|2ψ̃(r̃) = µ̃ψ̃(r̃) (1.4)

in NOU, where the tilded variables can be expressed

r̃ =

√
mω

~
r , ∇̃2 =

~
mω

∇2 , ψ̃ =

(
~
mω

) 3
4

ψ , Ũ0 =

√
m3ω

~5
U0 , µ̃ =

µ

~ω
(1.5)

in terms of the original variables. In the main thesis the tildes will not be written.

7In fact a fourth unit appearing in the calculations is that of temperature. I have chosen to

handle the temperature by introducing a new variable for the unitless temperature T ≡ k
B

T

~ω , thus
handling it di�erent from the mechanical units. The temperature will not be considered part of
the NOU.



Chapter 2

Atomic clocks

Almost all1 clocks build throughout history measures time using the frequency of
an oscillating or rotating object. For sundials, what rotates is the earth itself. In
traditional mechanical clocks like church clocks and grandfather clocks the oscilla-
tor is a pendulum. In most modern mechanical clocks it is a balance wheel, and in
digital watches and computers the oscillator is a so-called crystal oscillator usually
made using a piezoelectric quartz crystal. None of these devices do, however, have
the accuracy necessary for precision measurements and modern navigational instru-
ments. The mechanical clocks are sensitive to temperature2 and are also subjects
to air resistance, and quartz clocks su�er from similar limitations. These e�ects
can be avoided by using an atomic clock. In an atomic clock the oscillations in
question are the so-called Rabi oscillations, which are the response of an atom to
an external electric �eld. The uncertainties on an atomic clock coming from the
experimental setup3 can be made so small that the real limit on the precision is
set by the quantum uncertainties implied by Heisenberg's uncertainty relation4. In
fact atomic clocks are so precise that they are used to de�ne the SI-unit �second�.
One second is de�ned as 9192631770 times the period of the radiation emitted by
the transition between the two hyper�ne levels of the ground state in Cesium-133.
The most precise clock reported of today5 has an uncertainty of one second over a
period of 3.7 · 109 years corresponding to a loss of 3.7 seconds over the lifetime of
the universe.

What is done in practice is that one measures the frequency of the relevant tran-
sition, often using a crystal oscillator, and then uses the result of that measurement
to calibrate the measurement device, which then can be used as a clock. We want
to minimize the uncertainty of the frequency measurement since the uncertainty of
a time measurement is proportional to the uncertainty of the frequency measure-

1Exceptions are hourglasses and some water clocks.
2The density is usually a function of temperature, and if the density changes so does the length

of the pendulum and the moment of inertia of the balance wheel.
3This is the uncertainty on the number of atoms, on the strength of the magnetic �eld, etc.
4See [18].
5See [17].

12
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ment6. Another name for frequency measurements is �spectroscopy�, so in order
to understand atomic clocks we must �rst understand spectroscopy, or rather the
speci�c experimental procedure used for spectroscopy in the case of atomic clocks,
a procedure known as Ramsey Spectroscopy.

2.1 Ramsey Spectroscopy

Mathematically, any quantum mechanical two-level system, like the one consisting of
the two levels in Cesium-133 mentioned above, is equivalent to a spin-1

2
particle. The

Rabi oscillation between the two states, which is induced by an external electrical
�eld7, will be described as an external magnetic �eld changing the direction of the
spin. This spin-picture is the one we will have in mind for the most of the rest of
the thesis.

Such an interaction is described as E = (−µ0/~)S ·B where S is the spin, and
µ0 is de�ned as µ0 ≡ gµ

B
where µ

B
is the Bohr magneton and g is the gyromagnetic

ratio. If an external magnetic �eld of size B0 is applied in the z-direction, the
Hamiltonian becomes

Ĥ = ω0Ŝz (2.1)

where ω0 ≡ −µ0B0/~. In realistic experimental settings there will be more than one
atom present, so if we de�ne the collective spin as Ĵ =

∑
Ŝ, the total Hamiltonian

becomes Ĥ = ω0Ĵz. Using the Heisenberg equation8 we can calculate the equation
of motion for Ĵ to be

dĴ

dt
= ω0 × Ĵ (2.2)

where ω0 = ω0uz with ui denoting a unit vector in the i-direction. This indicates
that the e�ect of the magnetic �eld is to make the angular momentum rotate around
the z-axis with angular frequency ω0. We now try to follow this rotation by adding
another magnetic �eld9

B1 = B1 (cos(ωt+ θ)ux + sin(ωt+ θ)uy) (2.3)

where ω ≈ ω0 and B1 is the size of the �eld. Changing to a new coordinate sys-
tem rotating around the z-axis with angular frequency ω, the z-component of the
resulting magnetic �eld becomes B0 − (−~ω/µ0) = −~ω∆/µ0 where ω∆ ≡ (ω0 − ω)

6The relation is ∆t
t = ∆ω

ω , which can be calculated using error propagation.
7See [2] and [13].
8 dÔ

dt = i
~ [Ĥ, Ô]. We also need the commutation relations [Ĵi, Ĵj ] = i~εijkĴk.

9This expression can be a result of the so-called �rotating wave approximation�. If we (experi-
mentally more realistic) use B1 = 2B1 cos(ωt + θ)ux the x- and the y-components of the �eld in
the rotating frame becomes B1 = B1((cos θ+cos(2ωt+ θ))ux +(sin θ− sin(2ωt+ θ)uy)), and if we
are close to resonance, the 2ωt-terms move too fast to a�ect the movement signi�cantly.
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is known as the detuning. The x- and y-components become B1(cos θux + sin θuy).
If we choose θ = π/2, the Heisenberg equation gives

dĴ′

dt
=

 0
ω1

ω∆

× Ĵ′ (2.4)

where10 ω1 ≡ −µ0B1/~ and Ĵ′ is Ĵ seen from the rotating frame. From here on we
will drop the prime.

In order to measure ω∆ we measure 〈Ĵz〉, which is known as the population inver-
sion11. The exact relation between 〈Ĵz〉 and ω∆ depends on the speci�c procedure.
What is described here is known as �the Ramsey method�12, and it is chosen since
it is the method giving the least experimental uncertainty13. The Ramsey method
applies the magnetic �elds in three distinct periods. The �rst and third period have
duration tπ/2 which is chosen so that ω1tπ/2 = π/2, and the second period have
duration T , where T � tπ/2. During the second interval B1 = 0. The total time is

then tf = 2tπ/2 + T . The movement of Ĵ is as follows:

t 0 tπ/2 tπ/2 + T tf = 2tπ/2 + T

xt ≡ 〈Ĵx(t)〉 x0 z0 z0 cos(ω∆T )− y0 sin(ω∆T ) −x0

yt ≡ 〈Ĵy(t)〉 y0 y0 y0 cos(ω∆T ) + z0 sin(ω∆T ) y0 cos(ω∆T ) + z0 sin(ω∆T )

zt ≡ 〈Ĵz(t)〉 z0 −x0 −x0 −z0 cos(ω∆T ) + y0 sin(ω∆T )

(2.5)

where the important part is

〈Ĵz(tf )〉 = −〈Ĵz(0)〉 cos(ω∆T ) + 〈Ĵy(0)〉 sin(ω∆T ) (2.6)

since that is what is measured. An illustration of the movement of the expectation
value of the collective spin can be seen in �g. 2.1.

The uncertainty on ω0 can be minimized using error propagation with the result14

∆ω = ∆Jz(tf )/|∂〈Ĵz(tf )〉/∂ω| = (2.7)

√
∆Jz(0)2 cos2(ω∆T ) + ∆Jy(0)2 sin2(ω∆T ) +

(
〈Ĵz〉〈Ĵy〉 − 1/2〈ĴzĴy + ĴyĴz〉

)
sin(2ω∆T )

T
∣∣∣〈Ĵz(0)〉 sin(ω∆T ) + 〈Ĵy(0)〉 cos(ω∆T )

∣∣∣
10ω1 is known as the Rabi frequency and is sometimes denoted Ω.
11This name comes from the fact that 〈Ĵz〉 = 1

2 (〈Na〉 − 〈Nb〉), where Na and Nb are the popu-
lations in | ↑〉 and | ↓〉 respectively.

12The Ramsey method is described in further detail in [2].
13See [2].
14If we were to include the experimental uncertainty on the measurement of 〈Ĵz〉 it should be

added to (2.7) squared inside the square root in the numerator.
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Figure 2.1: The three subplots shows the movement of 〈Ĵ〉 for the initial state |j,−j〉, in
each of the three time intervals making up the procedure of Ramsey spectroscopy. This
�gure is taken directly from [2] where it is denoted FIG. 2.

If 〈Ĵz(tf )〉(ω) were symmetric around ω = ω0 and thereby an even function of
the detuning ω∆, we could �nd the point with ω = ω0 by locating it right between
two points with the same 〈Ĵz(tf )〉 with lower uncertainty on ω, if such points were
to exist, given that the expression for ∆ω has the same symmetry. These criteria
are met by a state with 〈Ĵy(0)〉 = 〈Ĵx(0)Ĵy(0)+ Ĵy(0)Ĵx(0)〉 = 0, which reduces (2.6)
and (2.7) to

〈Ĵz(tf )〉 = −〈Ĵz(0)〉 cos(ω∆T ) (2.8)

∆ω =

√
∆Jz(0)2 cos2(ω∆T ) + ∆Jy(0)2 sin2(ω∆T )

T
∣∣∣〈Ĵz(0)〉 sin(ω∆T )

∣∣∣ (2.9)

This expression for ∆ω is minimized by frequencies with ω∆T = π/2, which turns
it into

∆ω =
∆Jy(0)

T |〈Ĵz(0)〉|
(2.10)

Let us compare this general expression for the uncertainty to the uncertainty of
a so-called Dicke state, which is a state with J = N/2. For the particular Dicke
state with 〈Ĵz〉 = −J we can calculate15

∆Jx = ∆Jy =
√
J/2 , ∆Jz(0) = 0 , 〈Ĵx〉 = 〈Ĵy〉 = 0 , 〈ĴzĴy + ĴyĴz〉 = 0 (2.11)

all evaluated at t = 0. From this we can �nd the uncertainty to

∆ωDS =

√
J/2

TJ
=

1

T
√
N

(2.12)

15This state is equivalent to what is known as the spin-coherent state in the −Jz-direction, see
section 3.3. In the |j,m〉-basis it is given as |j,−j〉 from which we can calculate the following
expressions, using the material in appendix B.
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A good measure of the size of ∆ω, would be to compare it to ∆ωDS, which gives
the result

∆ω

∆ωDS
=

√
N∆Jy(0)

|〈Ĵz(0)〉|
(2.13)

For a proper choice of the axis, this expression is similar to the the general expression
for the squeezing parameter which is given by (3.18)

ξJi
=

√
N∆Ji√

〈Ĵj〉2 + 〈Ĵk〉2
(2.14)

as we will see in section 3.2.
Finally it should be mentioned that there is a parallel between the Mach-Zehnder

interferometer known from quantum optics and the procedure of Ramsey spec-
troscopy. A Mach-Zehnder interferometer is a quantum-optical device consisting
of two 50/50 beam-splitters and phase-shifter with phase φ, mounted so the �rst
output of the �rst beam-splitter is the �rst input of the second beam-splitter, and
the second output of the �rst beam-splitter goes through the phase-shifter and fur-
ther into the second input of the second beam-splitter. The e�ect of a Mach-Zehnder
interferometer on the input state |10〉 having one photon in the �rst input of the
�rst beam-splitter, and zero photons in the second input on the �rst beam-splitter,
is16

|10〉 → 1√
2

(|10〉+ |01〉) → 1√
2

(
|10〉+ eiφ|01〉

)
→ 1 + eiφ

2
|10〉+

1− eiφ

2
|01〉(2.15)

From this we can calculate the 〈σ〉is in the �nal state to be

〈σx〉 = 0 , 〈σy〉 = sin(φ) , 〈σz〉 = − cos(φ) (2.16)

If we identify φ = π + ω∆T , we see from (2.5) that the e�ect of applying a Mach-
Zehnder interferometer to the state |10〉 is the same as applying the three steps of
Ramsey spectroscopy on the initial state |j = 1

2
,m = −1

2
〉. This correspondence can

be extended to more general initial states, and to higher photon numbers / particle
numbers, and it is for that reason the word interferometry occasionally appears in
articles about spectroscopy17.

16For more information on Mach-Zehnder interferometry including a derivation of the following
expression, see [d].

17An example is [13].



Chapter 3

Squeezing

To any set of quantum operators Â and B̂ obeying some commutation relation[
Â, B̂

]
= Ĉ (3.1)

is associated1 the uncertainty relation

∆A∆B ≥ 1

2

∣∣∣〈Ĉ〉∣∣∣ (3.2)

When the uncertainty of a measurement of one of the variables, say A, is less than
what is expected from a state equalizing the uncertainly relation, the state is said
to be squeezed in A. This thesis will limit the discussion of squeezing to xp-like
operators and to angular momentum-like operators of which the spin-operators are
an example. The reason for the word �squeezing� is illustrated by �g. 3.1b for the
case of xp-squeezing, where the uncertainty, which for a coherent state forms a circle,
is squeezed into an ellipse. A similar example for spin-squeezing can be seen in �g.
3.5c.

3.1 xp-squeezing

x̂ and p̂-like operators, referred to as xp-operators, are de�ned as operators obeying
the so-called canonical commutation relation

[x̂, p̂] = i~ (3.3)

x̂ and p̂ can be the usual position and momentum, but there are plenty of other
examples, one is the quadrature operators used in the quantization of the elec-
tromagnetic �eld2. The canonical commutation relation gives rise to Heisenberg's
uncertainty principle

∆x∆p ≥ ~
2

(3.4)

1See [b].
2See [d].

17
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A state squeezed in the x-variable is de�ned as a state ful�lling ∆x <
√

~
2mω

or in

the natural oscillator units

∆x <
1√
2

(3.5)

indicating that the uncertainty of a measurement of x is less than the uncertainty
of a measurement of p. A state having ∆x = ∆p = 1/

√
2 is known as a coherent

state3. As shown in �g. 3.1b4, a state can be squeezed without being squeezed in
either x or p but instead in a new generalized variable

Ŷ (θ) = cos(θ/2)x̂+ sin(θ/2)p̂ (3.6)

where Ŷ (θ) and Ŷ (θ + π) is a set of xp-variables. Wee see that x̂ = Ŷ (0) and
p̂ = Ŷ (π), so both x and p squeezing are special cases of squeezing in Y (θ).

In order to measure the amount of squeezing of a variable, we will de�ne a
squeezing parameter ξ. The most obvious de�nition for xp-operators is

ξY ≡
√

2∆Y (3.7)

which is < 1 if the Y-variable is squeezed.
We notice that since squeezing corresponds to ξ < 1 more squeezing corresponds

to a smaller value of ξ, which means that the point of maximal squeezing is the
point of minimal ξ. This terminology is used throughout the thesis.

To any set of x̂ and p̂-like operators, another set of operators denoted α̂† and α̂
known as creation and annihilation operators can be associated. The relation is

α̂† ≡ 1√
2
(x̂− ip̂) α̂ ≡ 1√

2
(x̂+ ip̂) (3.8)

which can be inverted to

x̂ =
1√
2
(α̂† + α̂) p̂ =

i√
2
(α̂† − α̂) (3.9)

The rotated operator Ŷ can be expressed by the annihilation and creation operators
as

Ŷ =
exp (iθ/2)√

2
â† +

exp (−iθ/2)√
2

â (3.10)

3Another de�nition of a coherent state is an eigenstate to the α̂-operator having α̂|α〉 = α|α〉.
One can show that the two de�nitions are equivalent, see [d].

4The �gures �g. 3.1b and �g. 3.2 are supposed to show a cross section of the probability
distribution of a measurement of x and p. But mathematically, such a collective probability
distribution is not well de�ned due to the non-commuting nature of x̂ and p̂, so a more stringent
plot would have shown one of the well-de�ned quasi-probability distributions, like the P-function,
the Q-function or the Wigner-function instead. See [d]. For a discussion of the Q-function in the
context of angular momentum variables, see section 3.3.
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Figure 3.1: A graphical representation of xp-squeezing. (a) shows the quantum uncertainty
of a set of conjugate variables x and p. The red area contains the states forbidden by
Heisenberg's uncertainty relation (3.4). The bold black curve shows the intelligent states
de�ned as those ful�lling the equality in that relation, and the green dot shows the coherent
states with ∆x = ∆p = 1√

2
. The pink area contains the states squeezed in x or p, and the

light blue area contains the rest of the allowed states. (b) shows the states in phase space.
The green, blue, red and pink states belongs to the similar coloured area in �gure (a). The
light gray state belongs to the blue area, since both ∆x and ∆p are > 1√

2
. But still the

state is squeezed, not in any of the variables x or p, but in the rotated variable Y de�ned
by (3.6), where the angle of rotation θ

2 is indicated on the �gure.

which we will use in the following.

A xp-squeezed state can be formed by applying an operator known as the squeeze
operator

Ŝ(r, φ) ≡ exp

(
1

2
r
(
e−iφα̂α̂− eiφα̂†α̂†

))
(3.11)

where φ is shown in �g. 3.2 and r is a measure of the squeezing. Of course this
operator can be used on any state, but let us concentrate on the squeezed vacuum
state5 denoted |ξ〉 which is the result of applying this operator to the vacuum state.
Obviously the result will be a superposition of number states with even numbers

|ξ〉 = Ŝ(r, φ)|0〉 =
∑
m

C2m|2m〉 (3.12)

since Ŝ creates and destroys particles in pairs. The coe�cients C2m can be found6,

5According to [d], a squeezed coherent state is made by displacing the squeezed vacuum state,
and not by squeezing a coherent state. This is another reason to concentrate on the squeezed
vacuum state.

6The result is C2m = (−1)m

√
(2m)!

2mm!

(eiθ tanh(r))m

√
cosh(r)

. See [d] p. 161.
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Figure 3.2: Visualization of the angles θ and φ. θ/2 is the angle of the axis along which
the uncertainty is measured, while φ/2 is the angle of the axis along which the state is
squeezed.

but the calculation is tedious and not necessary for our purpose. We want to show
that |ξ〉 indeed is squeezed. This is done by calculating7 ∆Y with the result

(∆Y )2 =
1

2

(
cosh2(r) + sinh2(r)− 2 cosh(r) sinh(r) cos(θ − φ)

)
(3.13)

where the angles θ and φ are shown in �g. 3.2.
This uncertainty is minimized if cos(θ − φ) = 1 corresponding to θ = φ. The

result is ∆Y = 1√
2
e−r from which we get the expression r = − ln(ξ) for r in terms

of the optimal squeezing parameter ξ. We see that ∆Y is a function only of the
di�erence between the rotational angle of the coordinate system θ and the angle of
the axis along which we measure the squeezing φ. This is not surprising since it
tells us that the squeezing is independent of the chosen coordinate system. We also
see that the uncertainty when θ− φ = π is ∆Yπ = 1√

2
er from which we see that the

squeezed vacuum state is an intelligent state having ∆Y0∆Yπ = 1
2
.

3.2 Spin-squeezing

The collective spin-operators introduced in section 2.1 are an example of angular
momentum operators, which are de�ned by the commutation relation[

Ĵi, Ĵj

]
= i~εijkĴk (3.14)

where i, j, k ∈ {x, y, z}. Using (3.2), we get the uncertainty relation for angular
momentum-like variables to be

∆Ji∆Jj ≥
1

2
~|〈Ĵk〉| (3.15)

7To do the calculation we need the Baker-Hausdor� lemma stating eλÂB̂e−λÂ = B̂+λ
[
Â, B̂

]
+

λ2

2!

[
Â,
[
Â, B̂

]]
+ . . .. The calculation is simpli�ed by the fact that Ŝ†ÂB̂Ŝ =

(
Ŝ†ÂŜ

)(
Ŝ†B̂Ŝ

)
which is true because Ŝ is unitary.
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The most obvious way to de�ne a squeezing parameter for these operators in NOU,
is analogous to (3.7)

ξ
(n)
Ji
≡ ∆Ji/

√
|〈Ĵk〉|/2 (3.16)

where the (n) is short for �natural� or �naïve�. Another possible de�nition is the
�number squeezing�

ξ
(N)
Ji

≡ ∆Ji/
√
J/2 (3.17)

It does, however, turn out that a third de�nition

ξJi
≡ N

1
2 ∆Ji√

〈Ĵj〉2 + 〈Ĵk〉2
(3.18)

suits our purpose best. The primary reason for this is that (3.18) is the expression
that arises naturally in the theory of atomic clocks8. We see that for a Dicke state
ξ

(N)
Ji

and ξJi
are related through ξ

(N)
Ji

= cos(φ)ξJi
where φ is the angle of 〈Ĵ〉 to the

plane perpendicular to Ji.
The essence of the connection between spin-squeezing and atomic clocks, is that

ξJi
can be seen as an indicator for sensitivity to rotations9, which is shown, in a

slightly di�erent way, by the following. Imagine a state with total angular momen-
tum J , with 〈Ĵx〉 = J and 〈Ĵy〉 = 〈Ĵz〉 = 0. This state is rotated with an angle θ, so

that 〈Ĵz〉 = J sin θ, and using error propagation10 we can calculate ∆Jz = J cos(θ)∆θ
or

∆θ =
∆Jz

J cos(θ)
(3.19)

For a Dicke state with11 〈Ĵx〉 = N/2, (3.19) gives ∆θDS =

√
N/4

N/2
= 1/

√
N , from

which we can calculate the relative uncertainty to be

∆θ

∆θDS
=

∆Jz
√
N

J cos(θ)
=

√
N∆Jz√

〈Ĵx〉2 + 〈Ĵy〉2
= ξJz (3.20)

indicating how the squeezing-parameter, as de�ned by (3.18), can be used as a
measure of sensitivity to rotation. Such a geometrical interpretation cannot be

8See (2.13).
9Like the rotation made in the second step of the procedure of Ramsey spectroscopy. See section

2.1.
10See [c]. The relevant formula states for a function q(x1, x2, . . . , xn) that ∆q =√
(∆x1∂x1q)

2 + . . .+ (∆xn∂xnq)
2
.

11This state in known as a spin-coherent state in the Jx-direction. In the |j,m〉-basis it is given
by (3.24).
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made as easily from the alternate de�nitions (3.16) and (3.17). Another reason to
prefer the de�nition (3.18) is that squeezing by that de�nition implies entanglement,
as we will see in section 3.6 and in appendix C.

Two general methods to generate SSSs independent of the discussions on BEC,
are described in [7] and summarized in section 5.3.

3.3 Visualization of spin-squeezing, the Bloch sphere.

For a qubit12 the density matrix can, in general, be written ρ = (1
2
I+
∑

i Piσi) where
the σis are the three Pauli spin matrices. We know that the coe�cient on I must
be 1

2
since the trace of ρ should be 1 and the σis are traceless. The determinant of

ρ must be positive since the two eigenvalues of ρ both are, and this condition can
be rewritten to P 2 ≤ 1

4
where P is the vector formed by the three Pis. This means

that the allowed values of Pi form a ball with radius 1
2
known as the Bloch sphere.

One can calculate that the states on the surface of Bloch sphere have det(ρ) = 0
corresponding to eigenvalues 0 and 1. Pure states have this characteristic, showing
that the surface of the Bloch sphere consists of the pure states. For a qubit described
by a vector P we can calculate from 〈Ô〉 = Tr(ρÔ) that 〈Ĵi〉 = Pi. This means that
there exists a one to one correspondence between the state of the qubit, a point
on the Bloch sphere, and the expectation value of the three components of angular
momentum.

We want to be able to de�ne a generalized Bloch sphere for states with more
internal degrees of freedom (or in our formalism, higher spin) than a qubit. We
could use the relation Pi = 〈Ĵi〉 as de�nition of our Bloch vector P . In this case we
can no longer make a one to one correspondence between the state and the value13

of P , nor can we be sure that pure states ful�l |P | = j as was the case for the
qubits. We do however get that |P | ≤ j like we did for a general state in the qubit
case. Fig. 2.1 can be seen as an example of a plot made using this de�nition.

This description is quite insu�cient since we leave out a lot of information about
a state, if we depict it as a point only. Any information about 〈Ĵ2

i 〉 and thereby
about ∆Ji would be absent in such a visualization. Something like a probability
distribution would be better, where the value in a given point in the Bloch sphere
corresponds to the probability of measuring the corresponding combination of 〈Ĵ〉is.
But how to de�ne such a distribution mathematically is not clear, due to the impos-
sibility of actually measuring all three angular momentum variables simultaneously.
We can, however, obtain something similar. The so-called Husimi Q-function is

12A qubit is a system with only two possible quantum states.
13This can be seen from the fact that a pure state with total angular momentum j needs 2(2j+

1)− 1 = 4j + 1 real variables for a full description. (The −1 comes from the fact that we can �x
an overall phase.) Fixing the three expectation values and requiring normalization gives us four
equations, so for j ≥ 1 we have more variables than equations, indicating that some of them are
free.
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de�ned as

Q(θ, φ) ≡ Nρ〈θ, φ|ρ|θ, φ〉 (3.21)

where |θ, φ〉 is a so-called spin-coherent state (or SCS) and Nρ is a normalization

constant de�ned so that
∫ 2π

0
dφ
∫ π

0
dθ sin(θ)Q(θ, φ) = 1. A SCS is de�ned as an

eigenstate to the operator

Ĵθ,φ ≡ sin(θ) cos(φ)Ĵx + sin(θ) sin(φ)Ĵy + cos(θ)Ĵz (3.22)

with eigenvalue j. The SCS can be found by rotating the |j, j〉-state around the
y-axis with an angle θ and then around the z-axis with an angle φ. The general
expression is14

|θ, φ〉 =

j∑
m=−j

√(
2j

j +m

)
cosj+m(θ/2) sinj−m(θ/2)e−i(j+m)φ|j,m〉 (3.23)

For the special case of θ = 0 corresponding to an eigenstate to Ĵz, the above result
reduces unsurprisingly to |z〉 = |j, j〉, and for θ = π/2 and φ = 0 corresponding to
an eigenstate to Ĵx, the result reduces to

|x〉 = 2−j
j∑

m=−j

√(
2j

j +m

)
|j,m〉 (3.24)

The Husimi Q-function is a quasi probability distribution. It gives the probability
of measuring the speci�c spin-coherent state |θ, φ〉 given that we measure some spin
coherent state. For the classical limit j →∞ where the relative minimal uncertainty
goes to 0, the Q-function will go towards the desired probability distribution.

We can illustrate this by calculating the Q-function for the states |j, j〉 and |j, 0〉.
|j, j〉 is the SCS in the Jz-direction, so the probability of measuring a Jz 6= j should
be zero for a true probability distribution. Likewise the state |j, 0〉 must give Jz = 0
with no uncertainty. We can �nd the matrix elements to

〈j, j|θ, φ〉 = cos2j(θ/2)e−2ijφ

〈j, 0|θ, φ〉 =

√(
2j

j +m

)(
sin θ

2

)j
e−ijφ (3.25)

giving the normalized Q-functions

Qjj(θ, φ) =
2j + 1

4π
cos4j(θ/2)

Qj0(θ, φ) =
(2j + 1)!!

4π · (2j)!!
sin2j(θ) (3.26)
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Figure 3.3: This plot shows the Q-functions for the states |j, j〉 and |j, 0〉 for various values
of j. Exact expressions for these functions are given by (3.26). (a), (c), and (e) shows
Qjj(θ, φ) and (b), (d), and (f) shows Qj0(θ, φ). (a) and (b) are plotted for j = 10, (c) and
(d) are for j = 40 and (e) and (f) are for j = 100. We see that the functions become more
and more singular as j increases, as postulated in the main text.
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where x!! ≡ x(x− 2)(x− 4) · · · is the double factorial. We see from (3.26) and from
�g 3.3 that as j → ∞ the Q-function becomes more and more singular, indicating
that the Q-function goes to a true probability distribution in this limit.

Other kinds of quasi probability distributions can be de�ned, examples are the
P-function and the Wigner function15, but in this thesis we will stick to using the
Q-function as our quasi probability distribution.

We would like to be able to calculate something similar to the Q-function for a
state, when we do not have the state expressed in the |j,m〉-basis. Let us make the
assumption16 that the state can be written as a Gaussian probability distribution
in (J ′x, J

′
y, J

′
z)-space, where J

′
x, J

′
y, and J

′
z are three orthogonal axes. That is

P̃ (J ′x, J
′
y, J

′
x) ∝ exp

(
− (J ′x − 〈J ′x〉)

2

2(∆J ′x)
2

)
exp

(
−
(
J ′y − 〈J ′y〉

)2
2(∆J ′y)

2

)
exp

(
− (J ′z − 〈J ′z〉)

2

2(∆J ′z)
2

)
In order to do that we need to �nd J ′x, J

′
y, and J

′
z in terms of our usual Jx, Jy, and

Jz coordinates. This can be done17 by diagonalizing the covariance-matrix, where
the eigenvectors will be the J ′ axes expressed in the J-basis, and the eigenvalues
will be the (∆J ′)2s. The covariance matrix can be written as

Σ ≡

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 (3.27)

where18

Vij =
1

2

(
〈ĴiĴj〉+ 〈ĴjĴi〉

)
− 〈Ĵi〉〈Ĵj〉 (3.28)

We see that the diagonal elements reduce to Vii = 〈Ĵ2
i 〉− 〈Ĵi〉2, the ordinary expres-

sion for the variance.

14See [8]. Can be checked by inserting in (3.22).
15See [d] for discussions of all three quasi probability distributions in the case of states de-

�ned in the xp-basis. The de�nition of the Wigner function for states in an |j,m〉-basis is

Wρ(θ, φ) ≡
√

2j+1
4π

∑2j
K=0

(∑K
Q=−K %KQYKQ(θ, φ)

)
where %KQ ≡ Tr(ρT †KQ) where TKQ ≡∑m=j

m=−j(−1)j−m
√

2K − 1×
(

j K j
−m Q m−Q

)
|j,m〉〈j,m−Q|. The quantity in the brackets

is known as a �Wigner 3j symbol�. See [8] and [9]. Like we do for the Q-function, the P-function
for |j,m〉-states can be de�ned analogous to the xp-case, that is ρ =

∫
P (θ, φ)|θ, φ〉〈θ, φ| sin θdθdφ.

See [9].
16This assumption will always be wrong since we can not measure all three coordinates at the

same time. But as j →∞ the approximation gets better, as we have seen.
17See [f].
18For ordinary commuting variables, the elements are written Vij = 〈ĴiĴj〉 − 〈Ĵi〉〈Ĵj〉, where

Vij = Vji which makes Σ Hermitian ensuring real eigenvalues. But when
[
Ĵi, Ĵj

]
6= 0 this is no

longer the case, so the generalization to non-commuting variables is the expression (3.28) which
preserves Vij = Vji.
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Figure 3.4: This �gure compares the functions Q(θ, φ) and Q(θ, φ) for three di�erent states.
Q(θ, φ) is on the upper row and Q(θ, φ) is on the lower. We see that Q reproduces the
essential features of Q.

The 'probability distribution' P̃ can be expressed as a function of j, θ, and φ
by writing J ′x = j sin(θ) cos(φ), J ′y = j sin(θ) sin(φ), and J ′z = r cos(θ) where the
radial variable has been named j since it has the interpretation as the radius of
the Bloch sphere. It is not obvious which way we best de�ne j. One option is to
choose j2 = 〈Ĵ ′x〉2 + 〈Ĵ ′y〉2 + 〈Ĵ ′z〉2 which makes the sphere go through the maximum

of P̃ , and another option is to pick j = N/2 which is what we will do in this thesis19.
The 'probability distribution' P̃ (θ, φ) cannot be directly compared to the Q-function
since Q(θ, φ) has the interpretation as the probability of measuring the SCS in the
(θ, φ)-direction, given that some SCS is measured. We can however construct a
function, which we name the Q-function, with this interpretation as

Q(θ, φ) ≡
∫

dθ′
∫

dφ′ sin(θ′)P̃ (θ′, φ′)Gθ,φ(θ
′, φ′) (3.29)

where Gθ,φ(θ
′, φ′) is playing the role as the SCS and is modeled as a Gaussian

distribution centered in (θ, φ) with variance j/2 like the ordinary SCS. In �g. 3.4
we see a comparison of Q and Q for some states.

19The reason for this is that it gives the best correspondence between Q and Q, which can be
seen by a comparison like the one in �g. 3.4.
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For the rest of this thesis we will use the Q-function when we want to plot a
state which is not expressed in the |j,m〉-basis.

3.4 Absolute minimum: the F-functions

When considering20 spin-squeezing, one has to choose the axes i, j, and k in (3.18).
Let us choose the axes so the squeezing parameter becomes

ξ2 ≡ N(∆Jz)
2

〈Ĵx〉2
(3.30)

where we have abbreviated ξJz as ξ. This means that we name the axis, for which
we calculate the uncertainty of the collective spin, the z-axis, and that we pick
the axes perpendicular to the z-axis so that 〈Ĵy〉 = 0. This choice of axis will be
kept for the rest of the thesis. One might think that in order to minimize this
squeezing parameter, one just needs to pick a state minimizing ∆Jz. One such state
is | ↑↑ . . . ↑〉 which is an eigenstate for the Ĵz-operator and has ∆Jz = 0. But this
state has 〈Ĵx〉 = 0 as well, so strictly speaking (3.30) is not even de�ned for that
state21. If one instead choose a state very close to the above, with ∆Jz ≈ 0 and
〈Ĵx〉 ≈ 0, it is not clear why that state should result in a smaller ξJz than another
state having both ∆Jz and 〈Ĵx〉 bigger, so we see that there is a trade-o� between
small ∆Jz and large 〈Ĵx〉. Fig. 3.5 shows the two extrema, and a squeezed state as
a compromise in between.

Let us investigate the behaviour of ∆Jz for a �xed value of 〈Ĵx〉, by de�ning a
family of functions FJ(x), denoted F-functions, with the property that

J · FJ
(
〈Ĵx〉/J

)
(3.31)

equals the minimal possible value of the variance (∆Jz)
2. The reason for the Js in

this de�nition, is that we want the F-functions to be easily comparable by making
them have the same domain and range for any value of J , and with this de�nition
the domain of FJ(x) is [−1; 1] and the range turns out to be [0; 1

2
] for all values of J .

Let us calculate the F-functions for various values of J . Our choice of axis means
that we stay in the xz-plane where the states are purely real. For J = 1

2
this means

that we can write a general state vector (c, s) where c and s are short for sine and
cosine to some angle. From this we can calculate (∆Jz)

2 = c2s2 and 〈Ĵx〉 = cs which
gives

F 1
2
(x) =

1

2
x2 (3.32)

as the expression for the F-function for states with J = 1
2
.

20What is done in this section corresponds closely to what is done in [3].
21Since it would force us to calculate 0/0.
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Figure 3.5: (a) shows the Q-function for |j, j〉, the SCS in the Jx-direction. This is the
state that maximizes the denominator of (3.30). (b) shows the same for |j, 0〉 which has
Jz = 0 and thereby it minimizes the numerator of (3.30). (c) shows a spin-squeezed state
found as the lowest eigenvalue eigenstate to (3.33) with λ = 1

2 . All states are plotted for
j = 40. We see that (c) lies in between (a) and (b) showing how a spin-squeezed state
(squeezed in the z-direction with 〈Ĵy〉 = 0) is a compromise between low ∆Jz and high
〈Ĵx〉.

The state maximizing 〈Ĵx〉 will always be at the equator of the Bloch sphere. If
J is an integer, a state minimizing ∆Jz will be here as well, namely the state |J, 0〉,
which does not exist for half-integer J . This gives us reason to believe that the
state minimizing (3.30) will be at the equator as well, at least for integer J which
is what we will consider in the following. States on the equator of the Bloch sphere
have 〈Ĵz〉 = 0, which means that (∆Jz)

2 = 〈Ĵ2
z 〉, so for a �xed value of 〈Ĵx〉 the

minimization of ξ can be done by minimizing 〈Ĵ2
z 〉 − λ〈Ĵx〉 where λ is a Lagrange

multiplier. We know that the state corresponding to this minimization must be an
eigenstate to the operator

M̂ ≡ Ĵ2
z − λĴx (3.33)

since the eigenstate corresponding to the lowest eigenvalue always gives the lowest
possible expectation value. So this means that for integer J , the state minimizing
(3.30) will be an eigenstate to M̂ . For J = 1 the state can be calculated analytically.
In this case22

M̂1 =

 1 η 0
η 0 η
0 η 1

 (3.34)

where η = −λ/
√

2. M̂1 has the eigenvalues 1 and 1
2
± 1

2

√
1 + 8η2, correspond-

ing to the normalized eigenvectors 1√
2
(1, 0,−1) and 1√

2+a2
±

(1, a±, 1) where a± ≡
−1±

√
1+8η2

2η
. The smallest eigenvalue is the one involving the minus, so now we can

22See appendix B.
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Figure 3.6: (a) shows the F-functions for various values of J . The red curve is the result for
J = 1

2 given by (3.32), and the blue curve is the result for J = 1 given by (3.35). The black
curves are numerical results for J = 2, 3, 4, 5, and 10 starting from above. These numbers
are chosen in order to reproduce FIG. 1. in [3]. We see that all the curves are convex,
which is shown in the main text. (b) shows the spin-squeezing for the same values of J ,
with N = 2J . We see that the maximal squeezing is obtained at 〈Ĵx〉 = 0, independent of
the value of the total angular momentum. The minimal squeezing parameter is given as
ξ2Jz

= 1/(J + 1) for integer values of J , which is derived in (3.39).

calculate (∆Jz)
2 and 〈Ĵx〉 with the results (∆Jz)

2 = 2
2+a2 and 〈Ĵx〉 = 2

√
2a

2+a2 giving
the F-function

F1(x) =
1

2

(
1−

√
1− x2

)
(3.35)

For higher values of J the calculation has to be done numerically, and the results
for some values are plotted in �g. 3.6a. F-functions for half-integer J or odd N can
be calculated using Monte Carlo methods23, but we will not delve deeper into this
here.

We see from �g. 3.6a that all the F-functions are convex, which is a result we
will need later. This can be proven24 for integer J , where the states are eigenstates
to (3.33). We can calculate the slope of the F-function to

d〈Ĵ2
z 〉

dĴx
=

d〈Ĵ2
z 〉

dt

/
d〈Ĵx〉
dt

=
−iλ

[
Ĵx, Ĵ

2
z

]
i
[
Ĵ2
z , Ĵx

] = λ (3.36)

So if we let λ be an adiabatically increasing function of time starting from λ = 0,
then 〈Ĵx〉 will increase as well, since a higher λ will give more weight to the Ĵx-part

23See [3].
24This proof is inspired by [3]. I do not know whether a general proof exists.
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of (3.33). And since the slope of the F-function equals λ, we have that d2〈Ĵ2
z 〉

d〈Ĵx〉2
> 0,

which is equivalent to F (x) being convex.

The squeezing corresponding to the F-functions can be calculated25, and the re-
sults are potted in �g. 3.6b. We see that a higher J corresponds to more squeezing26,
and therefore the state maximizing the squeezing has as high a J as possible. The
highest possible value is J = N/2, so therefore the F-function for an ensemble of N
spin-1

2
particles is the one corresponding to J = N/2.

In �g. 3.6b. we have plotted the squeezing as a function of 〈Ĵx〉. We see that
for all values of J , the squeezing parameter has its minimum at 〈Ĵx〉 = 0, where the
F-functions tell us that 〈Ĵ2

z 〉 = 0. This means that the minimizing state must be
|J, 0〉, but as we saw, the squeezing parameter is not de�ned in that point, so let us
instead calculate the squeezing for a perturbation around that state

|ψ〉 =
√

1− 2|ε|2|J, 0〉+ ε|J, 1〉+ ε|J,−1〉 (3.37)

where the parameter ε is small. From this we can calculate27

〈Ĵ2
z 〉 = 2|ε|2 and 〈Ĵx〉 = 2

√
1− 2|ε|2

√
j(j + 1)ε (3.38)

which gives the squeezing parameter ξ2 = 1
J+1

corresponding to

ξ2 =
2

N + 2
(3.39)

This result is the absolute maximal squeezing obtainable for a given value of N . The
calculation was purely mathematical and, as we will see, realistic physical situations
will result in less squeezing than the amount produced by the F-functions.

3.5 Entanglement

Another reason why the de�nition of the squeezing parameter (3.18) is to be pre-
ferred, is that squeezing, according to this parameter, implies quantum entangle-
ment. Quantum entanglement has been the cause of controversy in the history of
quantum physics, due to some of the apparent paradoxes it causes28. But with the

25For J = 1
2 and J = 1 the calculation can be done analytically, and the results are ξ 1

2
= 1 and

ξ1 = 1

1+
√

1−〈Ĵx〉2
.

26When plotting 3.6b a little cheating was involved, since we already choseN = 2J . But choosing
a smaller N is impossible, and choosing a bigger N would move the curves upwards and thereby
reduce the squeezing.

27This is done using Ĵz|j,m〉 = m|j,m〉, Ĵ±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m ± 1〉 and Ĵx =
1
2

(
Ĵ+ + Ĵ−

)
. See appendix B.

28These paradoxes were the subject of the famous EPR (Einstein, Podolsky and Rosen) paper
[20], and also one of the subjects of the Einstein-Bohr debates. A modern formulation is that
entangled states can lead to violations of Bell's inequality, see [10].



CHAPTER 3. SQUEEZING 31

emergence of the �eld of quantum information, ways have been found to utilize this
highly non-classical behaviour to produce a theory of a (so far mostly hypothetical)
type of computers, called quantum computers, able to do computations faster than
what is information-theoretically allowed for classical computers. Another classical
limit that quantum entanglement can help to surpass is the limit on the security
of cryptographic key distribution29. Further discussion of these subjects is beyond
the scope of this thesis. In this section only the basic de�nitions will we presented,
enabling us to prove that spin-squeezing implies entanglement in the next section.

The de�nition of an entangled state of n subsystems is that the density matrix
ρ of the state does not ful�l

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(n)
i (3.40)

where ρ
(n)
i is the i'th density matrix for the n'th subsystem. That is, an entangled

state can not be written as a sum of products of density matrices for the individual
subsystems in any way. A state that does ful�l the above equation is known as a
separable state. The de�nition is inspired by the relation

P (x1, x2, . . . , xn) =
∑
i

piP
(1)
i (x1) · P (2)

i (x2) · . . . · P (n)
i (xn) (3.41)

for the joint probability distribution of n variables x1 to xn which holds true for any
discrete classical probability distribution.

The general expression for a density matrix is

ρ =
∑
i

pi|ψi〉〈ψi| (3.42)

which in the case of a pure state |ψ〉, reduces to ρ = |ψ〉〈ψ|. Since a pure state
cannot be made out of a combination of mixed states, (3.40) reduces to |ψ〉〈ψ| =∑

i pi|ψ
(1)
i 〉〈ψ

(1)
i | ⊗ . . .⊗ |ψ

(n)
i 〉〈ψ(n)

i |, and we can infer that the only solution making
|ψ〉 pure is

|ψ〉 = |ψ(1)〉 ⊗ . . .⊗ |ψ(n)〉 (3.43)

which is the separability criterion for pure states.

3.6 Squeezing and entanglement

In this section we will sketch the proof of the fact that spin-squeezing according
to (3.18) implies entanglement30. The full proof is given in appendix C. For the

29For more on the mentioned quantum information procedures, see [10].
30Other sketches of this proof can be found in [1] and [3].
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variance of a measurement of the z-component of the collective spin, we have

(∆Jz)
2 = 〈Ĵ2

z 〉 − 〈Ĵz〉2 (3.44)

Assuming a separable state, the above expression can be rewritten using (3.40) to

(∆Jz)
2 ≥

∑
i

pi
∑
k

(∆j(k)
z )2

i (3.45)

where j
(k)
z is the z-component of the angular momentum for the k-th individual

subsystem. The expression (3.45) basically states that the the total variance is the
sum of the variances of the individual subsystems, just as one would get from error
propagation. The '>-part' stems from the fact that the individual subsystems does
not need to have their j-vectors pointing in the same direction.

Let us now insert the F-functions found in section 3.4, which were de�ned so

jFj

(
〈ĵx〉/j

)
≤ (∆jz)

2. This gives

(∆Jz)
2 ≥

∑
i

pi
∑
k

j(k)Fj(k)

(
〈ĵ(k)
x 〉i/j(k)

)
(3.46)

We saw from (3.36) that Fj(x) is convex for all values of j. For all convex functions
Jensen's inequality holds, stating that∑N

k akF (xk)∑N
k ak

≥ F

(∑N
k akxk∑N
k ak

)
(3.47)

or �the weighted average of a convex function evaluated at some inputs, is greater
than or equal to the function evaluated at the weighted average of the same inputs�.
Using Jensen's inequality on both of the sums in (3.46) gives

(∆Jz)
2 ≥ NjFj

(
〈Ĵx〉/Nj

)
(3.48)

where we have used that all the subsystems have the same spin, which is true in
the case of an ensemble of spin-1

2
particles. Inserting j = 1

2
corresponding to the

F-function F 1
2

= 1
2
x2 which is derived in (3.32), gives

(∆Jz)
2 ≥ 〈Ĵx〉2

N
⇔

ξJz ≥ 1 (3.49)

This long calculation started by considering ∆Jz, but we could have started from
∆Ji instead where i could be any axis, and we would have got the same result ξJi

≥ 1.
This means that, if we start out by a separable state, there will not be squeezing
along any axis. This again implies that, if there is squeezing along an axis, then the
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state can not be separable and it is therefore entangled. This proves that squeezing
implies entanglement. It should be noted that this is a genuine implication. Not all
entangled states are squeezed, which should be clear from the facts that most states
are entangled and most states are non-squeezed.

We also want to show that the alternate de�nitions of squeezing given by (3.16)
and (3.17) does not imply entanglement. This can be done using a simple example in-
volving two qubits |ψ〉± = cos(θ/2)|↑〉± sin(θ/2)|↓〉 combined like |ψ〉 = |ψ〉+⊗|ψ〉−
showing that the state is not entangled. In order to calculate the squeezing we
must calculate the expectation values of the angular momentum operators31, giving
〈Ĵx〉 = 〈Ĵy〉 = 0, 〈Ĵz〉 = (c4 − s4), and 〈Ĵ2

x〉 = (c4 − 2c2s2 + s4)/2 where c and s

are short for cos(θ/2) and sin(θ/2). This gives ξ
(n)
Jx

=
√
| cos(θ)| and ξ(N)

Jx
= | cos(θ)|

which are ≤ 1. If we calculate the squeezing using (3.18), we get ξJx = 1 i.e. un-
squeezed in accordance with what is expected.

The methods used in the �rst part of this section can be used to prove another
interesting result as well. If a state is entangled we saw that it meant that it is could
not be written on the form (3.40)

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(n)
i (3.50)

where ρ(k) is the density matrix of the kth individual particle. But that does not
rule out the possibility that ρ can be written as (3.50) where the ρ(k)s are density
matrices for subsystems made up of more than one particle. If that is the case, the
steps in our �squeezing implies entanglement�-proof will hold up to (3.46), which
will have the form

(∆Jz)
2 ≥

∑
i

pi
∑
k

j
(k)
i F

j
(k)
i

(
〈ĵ(k)
x 〉i
j
(k)
i

)
(3.51)

Using Jensen's inequality enables us to rewrite32 it to

(∆Jz)
2 ≥ 1

2
NFjmax

(
〈Ĵx〉
1
2
N

)
(3.52)

where jmax is the total angular momentum of the subsystem having the largest total

angular momentum. This means that if some state has the point

(
〈Ĵx〉
1
2
N
, (∆Jz)2

1
2
N

)
lying

below the F-function corresponding to some j we know that the state has jmax > j,
and therefore the corresponding subsystem is made up of at least 2j particles.

31For such a combination of qubits, the operators can be calculated as Ĵi = Ĵ
(1)
i ⊗Î(2)+Î(1)⊗Ĵ (2)

i ,
where the upper index refers to the �rst and second qubit respectively.

32See the �nal part of appendix C. The calculation uses the relation f(x) ≥ af(x/a) which holds
for convex, positive functions, having f(0) = 0.
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Therefore we have that if we know that a given state corresponds to some point
in 〈Ĵx〉-(∆Jz)2-space, we can �nd a minimum on the number of entangled particles
needed in order to produce that state, by �nding the F-function with the highest j
that lies above the point in question, in which case the minimal number of entangled
particles will be 2j.



Chapter 4

Bose-Einstein condensate

A Bose-Einstein condensate (in the following known as BEC) is a macroscopical
state characteristic for bosons. The existence of this macroscopical state stems from
the fact that bosons are not subject to the Pauli exclusion principle, and therefore
they can assemble in one common quantum state. Identical particles in the same
quantum state will have identical behaviour, and this makes a BEC di�erent from
an ordinary Bose gas, which is a statistical mixture of particles in many quantum
states. The fact that the usual statistical description is insu�cient in describing
BEC is suggested by the following section.

4.1 The existence of Bose-Einstein condensate

This section describes a crude model of BEC, which is di�erent from the Gross-
Pitaevskii model that will be used in the rest of the thesis. The purpose of this
section is to show that a gas of bosons forms a condensate at low temperatures.

Usually the energy distribution in a Bose gas is described by the Bose distribution
function

n
B
(E) =

1

exp
(
E−µ
kBT

)
− 1

(4.1)

It can be seen from (4.1) that if µ > E then n
B
< 0 which is unphysical, so therefore

µ ≤ 0 must hold in any case1, and we also see that µ = 0 will give the highest possible
value for n

B
(E). In general µ can be found by isolating it in the expression for the

total particle number

N =

∫ ∞

0

dE ρ(E)n
B
(E) (4.2)

1This result assumes that the lowest energy state has E = 0, which is equivalent to ignoring
the zero-point energy. If the zero-point energy is included we �nd that µ = 3

2 in the absence of
particle interactions.

35
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where ρ is the density of states.
In this thesis we will only consider the case where the external potential is the

isotropic harmonic oscillator2 given by V (r) = 1
2
mω2r2 = 1

2
mω2(x2 + y2 + z2),

and the quantized energy-levels of non-interacting particles in such a potential are
Enx,ny ,nz = ~ω

(
nx + ny + nz + 3

2

)
. By integrating up to the plane in n-space made

up of states with the same energy, we see that the number of particles with energy
less than some energy E is approximately3 G(E) = E3

6~3ω3 , from which we can �nd

the density of states ρ ≡ dG(E)
dE

to be

ρ(E) =
E2

2~3ω3
(4.3)

Now we may calculate the total particle number from (4.2) using µ = 0, with
the result4

N = 1.2021 · (k
B
T )3

~3ω3
(4.4)

This means that for values of N bigger than the one found above, the theory
for the ordinary Bose gas breaks down, since no value of µ describing the situation
can be found. More speci�cally, the error is that the derivation of (4.3) assumes the
existence of a continuum of states. Such a continuum does not exist, since reality is
made of a discrete set of quantum states. If we isolate T in (4.4), we get the critical
temperature Tc where the transition to BEC happens, to be

kBTc = 0.9405 · ~ωN1/3 (4.5)

For temperatures below Tc we can calculate the number of particles in the condensate
N0 by calculating the number of particles in the Bose gas Ngas using (4.4) and �nally
use conservation of particle number N = Ngas +N0.

All particles in a BEC will be in the same quantum state, as mentioned. Let us
in the following name the wave function for this state ϕ(r). For the harmonic trap
potential, The Schrödinger equation can be written

− ~2

2m
∇2ϕ+

1

2
mω2r2ϕ = Eϕ (4.6)

2For the cases of an anisotropic harmonic oscillator potential or a box-shaped potential, calcu-
lations corresponding to those in this section are done in [a] p. 17 �., which is where the inspiration
to the calculations in this section comes from as well.

3Here we disregard the vacuum energy 3
2 and the fact that the levels are discrete.

4This is done using the integral
∫∞
0

xα−1

ex−1dx = Γ(α)ζ(α) for α > 1, where Γ(α) and ζ(α) are
the two mathematical functions the gamma function and the Riemann zeta function respectively.
The relevant values are Γ(3) = 2 and ζ(3) = 1.20205 . . .. As we see is α = 3 in the case of the
isotropic three-dimensional harmonic oscillator, and for a particle in a three-dimensional box we
can calculate that α = 3

2 . For α ≤ 1 as is the case for a particle in a box with dimension ≤ 2,
N(µ) has a singularity in µ = 0, and no condensate will appear.
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ϕ(r) will always be the lowest energy state, and by solving (4.6) it can be found5 to

ϕ(r) =
1

π3/4a3/2
e−r

2/2a2

(4.7)

where a ≡
√

~/mω. The associated energy is E = 3
2
~ω for each particle.

4.2 The Gross-Pitaevskii equation

The calculation in the previous section is, however, not entirely correct. This is
because (4.6) and also the rest of the calculations in the previous section, assumed
no interaction between the individual particles in the BEC. In fact the particles will
interact electromagnetically, which means that the interaction between two particles
i and j should be written Hint = U(ri − rj).

Let us try to relate this U -function to the better known scattering length de-
noted a, by considering the scattering of one particle from another. In the �rst
part of this section, we use the assumption that ω = 0 so the particles can move
freely. An incoming particle will have a wave function ϕ(r) ∝ e−ik·r, and under
the assumption of so-called s-wave scattering, which means that the outgoing wave-
function will be angular dependent, the outgoing wave function will have the form
ζ(r) ∝

(
e−ik·r + f(θ, φ)e−ikr/r

)
seen far away from the position of the target particle.

For s-wave scattering the de�nition of a is a ≡ −f .
ζi for the ith particle is a solution to

H0ζi +
∑
j

Uijζj = Eζi (4.8)

where H0 is short for the operator − ~2

2m
∇2
i + 1

2
mω2r2

i . In terms of continuous func-
tions, this becomes H0ζ(r) +

∫
dr′U(r, r′)ζ(r′) = Eζ(r) from which we can see that

a formal solution for ζ is

ζ(r) = ϕ(r) +

∫
dr′
∫

dr′′G(r, r′)U(r′, r′′)ζ(r′′) (4.9)

where G(r, r′) is the Greens function to the operator (E − H0) with the property
(E −H0)G(r, r′) = δ(r− r′) de�ning for Greens functions. The reason for the ϕ in
(4.9) is that we want ζ → ϕ for U → 0. The6 Greens function can be found7 to be

G(r, r′) = −2m

~2

1

4π

eik|r−r′|

|r− r′|
(4.10)

5See [b].
6The solution found here is not THE solution, but a solution known as the retarded Greens

function GR. It corresponds to a ζ being a spherical wave leaving the target particle. Another
solution to the same equation is the advanced Greens function GA corresponding to a spherical
wave hitting the target particle at the moment of impact. This is unphysical since it violates
causality, so this solution is discarded.

7See [b].
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Far away from the target particle we have r � r′, so there we can calculate |r−r′| ≈√
r2 − 2r · r′ ≈ r+ r

r
· r′ which means that eik|r−r′| ≈ eikre−ik

′·r′ where k′ ≡ kr
r
. This

allows us to identify

f = −2m

~2

1

4π

∫
dr′
∫

dr′′e−ik
′·r′U(r′, r′′)ζ(r′′) (4.11)

If we consider a contact potential with the target particle placed in the origin,
we get U(r, r′) = U0δ(r − r′)δ(r). Applying the so-called Born approximation8

which consists of replacing ζ inside the integral with ϕ ∝ eik·r
′′
, gives the result

f = −2m
~2

1
4π
U0. This is seen in a frame where the target particle is in r = 0, and

stays there after the collision. But due to momentum conservation this can not
be the case for identical particles. In that case we need to look in the center-of-
mass frame where the mass appearing in the formula above is the reduced mass
mr = m1m2/(m1 +m2), which reduces to mr = m/2 if the two masses are equal, as
they are in our case. This gives us the �nal relation between U0 and the scattering
length:

U0 =
4π~2a

m
(4.12)

Reincluding the trap potential, the Hamiltonian for the total system becomes

H =
N∑
i=1

(
− ~2

2m
∇2
i +

1

2
mω2r2

i + U0

∑
j>i

δ(ri − rj)

)
(4.13)

and by taking the expectation value of (4.13), we can �nd9 the average energy of
the system to be

E = N

∫
dr

(
1

2
|∇ϕ(r)|2 +

1

2
r2|ϕ(r)|2 +

N − 1

2
U0|ϕ(r)|4

)
(4.14)

where we have introduced the natural oscillator units which we will keep for the rest
of the thesis. We wish to �nd the ϕ(r) minimizing the energy, under the condition
that the particle number N is kept constant. This can be done by minimizing the
quantity E − µN instead of E. This additional term can be introduced in (4.14)
by including the term −µ|ϕ(r)|2 as part of the integrand in 4.14. In order to do
the minimization, variational calculus is used. The 'central theorem' of variational
calculus is

δ

∫
f
(
x(t), ẋ(t)

)
dt = 0 ⇔ ∂f

∂x
=

d

dt

∂f

∂ẋ
(4.15)

8This is the �rst order Born approximation. One can make a second order Born approximation
by replacing ζ inside the integral with the result of the �rst order approximation, etc. See [b].

9Here, partial integration on the ∇2-term is used, along with the assumption that r → ∞ ⇒
ϕ(r) → 0, a reasonable assumption given the shape of the potential. That is

∫∞
−∞ ϕ∗∇2ϕ =

−
∫∞
−∞ |∇ϕ|

2.
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where ẋ ≡ dx/dt, and δ denotes a small variation. If we let r play the role as t,
and ϕ∗(r) play the role as x(t), (4.15) and the modi�ed (4.14) will give the Gross-
Pitaevskii equation (in the following known as the GPE)

− 1

2
∇2ψ(r) +

1

2
r2ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r) (4.16)

where N � 1 is assumed and ψ(r) ≡
√
Nϕ(r), indicating that ψ is a many-body

wave function since it normalizes to N instead of to 1. With this latest de�nition
|ψ(r)|2 is the particle density of the condensate.

Going from (4.14) to second quantization10, the Hamiltonian becomes

Ĥ =

∫
dr

(
−Ψ̂†(r)

1

2
∇2Ψ̂(r) +

1

2
r2Ψ̂†(r)Ψ̂(r) +

U0

2
Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r)

)
(4.17)

where the ∇2-term has been reinserted. This Hamiltonian is known as the Gross-
Pitaevskii (or GP) Hamiltonian, and it is essential to the following calculations. In

order to �nd a time-dependent version of the GPE, we calculate the quantity i∂Ψ̂
∂t

using the Heisenberg equation, with the result

i
∂Ψ̂(r′)

∂t
= −1

2
∇2Ψ̂(r′) +

1

2
r2Ψ̂(r′) + U0Ψ̂

†(r′)Ψ̂(r′)Ψ̂(r′) (4.18)

Going back to �rst quantization gives

i
∂ψ(r)

∂t
= −1

2
∇2ψ(r) +

1

2
r2ψ(r) + U0|ψ(r)|2ψ(r) (4.19)

which is known as the time-dependent Gross-Pitaevskii equation.

4.3 Solutions to the Gross-Pitaevskii equation

The GPE (4.16) is a nonlinear di�erential equation and it has no general analytical
solution. There are, however, ways to �nd approximate analytical solutions. In the
absence of any interaction, ψ is given by (4.7)

ψ(r) =

√
N

π3/4a3/2
e−r

2/2a2

(4.20)

where a = 1 in NOU. An ansatz to �nding our analytical solution could be to
assume a solution of the same Gaussian form, but now with the width a replaced
by another width a′ minimizing the energy (4.14). This approach is denoted the
Gaussian approximation11. The energy can be calculated to

E =
3

2
N

(
1

a′2
+ a′2

)
+

N2U0

2(2π)3/2a′3
(4.21)

10See appendix A.
11See [a] p. 165 �.
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which is minimized by an a′ that is a solution to

a′
5 − a′ − NU0

(2π)
3
2

= 0 (4.22)

When NU0 is small compared to one, an approximate solution is

a′ = 1 +
NU0

4(2π)
3
2

(4.23)

and when NU0 is large compared to one, an approximate solution is

a′ = 5

√
NU0

(2π)
3
2

(4.24)

Plots of these results can be seen in �g. 4.1.
We see from (4.21) that if U0 is negative, corresponding to a negative scattering

length, the energy will have a negative singularity in a′ = 0. This means that the
condensate eventually will collapse into a point12. Therefore we will only regard
positive values of U0 in this thesis.

Another convenient approximation known as the Thomas-Fermi approximation
consists of neglecting the kinetic term in (4.16) giving

|ψ(r)|2 =
µ− 1

2
r2

U0

(4.25)

from r = 0 to r =
√

2µ and ψ = 0 elsewhere. From the normalization µ can be
found to be

µ =

(
15NU0

16
√

2π

)2/5

(4.26)

If we want to �nd a more precise result, it must be done numerically. Imagine
that we want to �nd the lowest energy state for an equation similar to the time
dependent Schrödinger equation

i
∂ψ(r, t)

∂t
= Ô(r)ψ(r, t) (4.27)

where Ô(r) is some linear operator. This can be done by making the variable shift
τ ≡ it so the equation becomes13

∂ψ(r, τ)

∂τ
= −Ô(r)ψ(r, τ) (4.28)

12For some slightly negative values of U0, we can calculate from (4.21) that E(a′) has a local
minimum di�erent from a′ = 0 where a metastable condensate can exist. This point has a′ ≈
−0.079 ·NU0 and it will only exist for NU0 & −8.426.

13If Ô = −∇2 as it is for the Schrödinger equation for a free particle, the equation becomes
equivalent to Fick's second law, the di�usion equation.
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Figure 4.1: The �ve graphs in (a) show the exact and the approximated solutions to
the GPE for various values of NU0. The black curve is the exact result found using
the imaginary time algorithm. The Blue curve is the result of the Gaussian approximation
(4.20), and the yellow and cyan curves are the Gaussian approximation in the limits of small
and largeNU0 respectively. The red curve is the result of the Thomas-Fermi approximation
(4.25), and the pink curve is the result in absence of interaction given by (4.7). (b) shows
the exact result for the �ve values of NU0, the curves correspond to NU0 = 0.1, 1, 10, 100,
and 1000 from above near r = 0.
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Figure 4.2: This plot shows the time evolution of the particle density for N = 1000 atoms
and an interaction U0 = 0.1, when the initial state is not an eigenstate to the GPE. In
this case the initial state is the steady state wave function for U0 = 0.2 found using the
imaginary time-formalism, and plotted as the red curves. The blue curves show the result
at di�erent times, found by solving the time-dependent GPE. The steady-state result for
U0 = 0.1 is plotted as the green curves, and we see that the temporal behaviour of ψ
is oscillations around that state. t = 1.13 is the point of maximal compression, and at
t = 3.03 the oscillation has returned to its initial value, that of minimal compression.
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ψ can be expanded into Fourier-components as ψ(r) =
∑

j kjψj(r) where the kjs
are some constants, and the ψj-functions are a complete set of eigenfunctions to the

operator Ô(r). From this we get the time evolution of ψ to be

ψ(r, t) = e−iÔ
∑
j

kjψj(r) =
∑
j

kje
−iωjtψj(r) →

ψ(r, τ) =
∑
j

kje
−ωjτψj(r) (4.29)

where the ωjs are the eigenvalues corresponding to the ψj eigenfunctions. We see
that in the limit τ → ∞ we get ψ(r) ∝ ψ0(r) since the term e−ω0τ decreases the
slowest with τ . The limit can be taken by solving (4.28) numerically for an imaginary
time long enough so that e−(ω0−ω1)τ � 1.

The time dependent GPE is, however, not on the form (4.28), because of the cubic
term U0|ψ(r)|2ψ(r). But fortunately it turns out that the described method still
works with a nonlinear term included, so this is the method that is used throughout
this thesis for numerical determination of ψ(r).

Finally, let us have a look at the behaviour of µ. Given an expression for ψ, µ can
be found using the GPE (4.16), by multiplying both sides with ψ∗ and integrating
over r. In the Gaussian approximation we �nd µ to be

µ =
3

2a′2
+

3

4

(
a′

2 − 1

a′2

)
+

NU0

(2π)
2
3a′3

(4.30)

where a′ is given by the solution to (4.22), but simpler results can be obtained by
using the approximations (4.23)14 or (4.24). For the Thomas Fermi approximation
the result is given by (4.26).

4.4 The two-species case

The atoms forming the clockwork of the atomic clock mentioned in chapter 2, need
two internal states in order for the proposed clock-scheme to function. While these
states in the experimental setting are two weakly exited states of the outermost
electron of the atoms, the theory describes them as the spin-up and spin-down
states of a spin-half particle15. The spin-squeezing in the headline of the thesis
refers to this abstract spin. The second quantization Hamiltonian for a condensate

14In this limit the result turns out to be the same as we would get using the 'zeroth order'
approximation a′ = 1 namely µ = 3

2 + NU0

(2π)
2
3
.

15This makes the theory in this thesis a theory about spin- 12 bosons. This would of course have
been impossible if the spin in question was a physical spin, and not this abstract spin.
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Figure 4.3: These graphs show µ as a function of NU0. Black is the exact result, blue is
the Gaussian approximation, magenta and green are the Gaussian approximation in the
limits of small and large NU0, and red is the result of the Thomas-Fermi approximation.

composed of particles of these two species, denoted a and b will be16

Ĥ =

∫
dr

(
Ψ̂†
a(r)H0,aΨ̂a(r) + Ψ̂†

b(r)H0,bΨ̂b(r)

+
Uaa
2

Ψ̂†
a(r)Ψ̂

†
a(r)Ψ̂a(r)Ψ̂a(r) +

Ubb
2

Ψ̂†
b(r)Ψ̂

†
b(r)Ψ̂b(r)Ψ̂b(r)

+UabΨ̂
†
a(r)Ψ̂

†
b(r)Ψ̂a(r)Ψ̂b(r) +

Ω

2

(
Ψ̂†
a(r)Ψ̂b(r) + Ψ̂†

b(r)Ψ̂a(r)
))

(4.31)

where

H0 ≡ −
1

2
∇2 +

1

2
r2 (4.32)

Ψ̂a(r) and Ψ̂b(r) are the quantum �eld operators for the a and b-particles respec-
tively, while Uij is the U0-constant for interactions between particles of type i and
j. The major di�erence between (4.31) and the corresponding one-species Hamil-
tonian (4.17) is the Ω-term caused by interactions with an external �eld, which
requires some extra explanation. The interaction Hamiltonian for an atom in a
(classical) electrical �eld is Hint = −d̂ · E, where d̂ is the dipole moment oper-
ator. Since 〈a|d̂|a〉 = 〈b|d̂|b〉 = 0, the dipole moment operator can be written
d̂ = d|a〉〈b| + d|b〉〈a|, where d is real. This means that Hint can be written

16This assumes that the two particle types do not di�er with respect to the constants m or ω,
since otherwise the rescaling (see (1.5)) cannot be done consistently, and (4.31) can not be written
as it is. Later we will assume that H0,a = H0,b which will solve this problem.
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Hint = (Ω/2)(|a〉〈b| + |b〉〈a|) = (Ω/2)σx = Ωĵx where Ω ≡ −2d · E is denoted
the Rabi frequency. When many atoms are present, we sum over them, giving
Hint = ΩĴx. In second quantization this becomes

Hint =
Ω

2

(
Ψ̂†
a(r)Ψ̂b(r) + Ψ̂†

b(r)Ψ̂a(r)
)

(4.33)

which is the term in question in (4.31).
In the following we will assume that H0,a = H0,b ≡ H0 and Uaa = Ubb ≡ U , that

is, the two types of particles act identically17. If we insert this, (4.31) becomes

Ĥ =

∫
dr

(
Ψ̂†
a(r)H0Ψ̂a(r) + Ψ̂†

b(r)H0Ψ̂b(r)

+
U

2

(
Ψ̂†
a(r)Ψ̂

†
a(r)Ψ̂a(r)Ψ̂a(r) + Ψ̂†

b(r)Ψ̂
†
b(r)Ψ̂b(r)Ψ̂b(r)

)
+UabΨ̂

†
a(r)Ψ̂

†
b(r)Ψ̂a(r)Ψ̂b(r) +

Ω

2

(
Ψ̂†
a(r)Ψ̂b(r) + Ψ̂†

b(r)Ψ̂a(r)
))

(4.34)

which is the form of the GP-Hamiltonian we will use the most in the following
calculations.

It is possible to calculate a Gross-Pitaevskii-like equation for the two species case
as well. This can be done by converting (4.34) back to a �rst quantization energy
expression, by replacing Ψ̂a(r) → ψa(r) and Ψ̂b(r) → ψb(r). Like we did when
deriving the GPE, we use variational calculus to minimize18 E − µN , with respect
to the variables ψ∗

a and ψ
∗
b . This results in the two-species GPE

H0ψa(r) + U |ψa(r)|2ψa(r) + Uab|ψb(r)|2ψa(r) +
Ω

2
ψb(r) = µψa(r) (4.35)

and a similar one with ψa and ψb interchanged.

17As we will see from (5.6), this ensures an absence of a Ĵz-term in the expression for H, which
keeps the Bloch-sphere from rotating.

18If no Ω-term had been present, Na and Nb would be conserved individually, making two
chemical potentials necessary.



Chapter 5

Spin-squeezing in Bose-Einstein

condensates

In this chapter we are going to relate the theory on BEC to our e�orts on min-
imizing the spin-squeezing, by showing how the former can be used as a tool for
the latter. Even though other methods to produce spin-squeezing are available, like
the quantum non-demolition measurement method described in [16], this thesis will
only consider spin-squeezing using BEC. In the end we are going to calculate the
spin-squeezing using a Bogoliubov method, but let us �rst show how spin-squeezing
and BEC are related by doing the more simple two-mode approximation.

5.1 The two-mode approximation

In general a second quantization operator Ψ̂(r) can be written

Ψ̂(r) =
∑
i

âiϕi(r) (5.1)

If we assume that the vast majority of particles are placed in the lowest energy
state as is the case for the BEC1, we can do the single-mode approximation Ψ̂(r) =∑

i âiϕi(r) ≈ â0ϕ0(r). When this is done for both Ψ̂a(r) and Ψ̂b(r) in (4.34) it is
known as the two-mode approximation. If U ≥ Uab the lowest energy state is one
where the two species will mix, so in that case we see that if Ω is large and negative,
the energy will be minimized if ϕa ≈ ϕb. Inserting the two-mode approximation and
ϕa(r) = ϕb(r) ≡ ϕ(r) in (4.34) gives

Ĥ = E
(
â†â+ b̂†b̂

)
+
U

2
|ϕ|4

(
â†â†ââ+ b̂†b̂†b̂b̂

)
+ Uab|ϕ|4

(
â†b̂†âb̂

)
+

Ω

2

(
â†b̂+ b̂†â

)
(5.2)

1The discussion in connection with (4.4) indicates that all particles are in the lowest energy
state at zero temperature. Later calculations show this to be not absolutely true due to the U and
Uab-terms.
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where

E ≡
∫

drϕ∗(r)H0ϕ(r) and |ϕ|4 ≡
∫

drϕ∗(r)ϕ∗(r)ϕ(r)ϕ(r) (5.3)

If on the other hand we had chosen the ferromagnetic regime U < Uab, the lowest
energy state will be one where the two atomic species are physically separate2, so
in that case this two-mode approximation will break down. This thesis will only
consider the antiferromagnetic regime where U ≥ Uab.

In order to relate this to the discussion of squeezing, we must use the Ĵ-operators
expressed in second quantization, where they are given as3

Ĵx =
1

2

∫
dr
(
Ψ̂†
a(r)Ψ̂b(r) + Ψ̂†

b(r)Ψ̂a(r)
)

Ĵy =
i

2

∫
dr
(
Ψ̂†
b(r)Ψ̂a(r)− Ψ̂†

a(r)Ψ̂b(r)
)

Ĵz =
1

2

∫
dr
(
Ψ̂†
a(r)Ψ̂a(r)− Ψ̂†

b(r)Ψ̂b(r)
)

N̂ =

∫
dr
(
Ψ̂†
a(r)Ψ̂a(r) + Ψ̂†

b(r)Ψ̂b(r)
)

(5.4)

which after applying the same two-mode approximation becomes

N̂ =
(
â†â+ b̂†b̂

)
, Ĵz = 1

2

(
â†â− b̂†b̂

)
, Ĵx = 1

2

(
â†b̂+ b̂†â

)
,

N̂2 =
(
â†ââ†â+ b̂†b̂b̂†b̂+ 2â†âb̂†b̂

)
, Ĵ2

z = 1
4

(
â†ââ†â+ b̂†b̂b̂†b̂− 2â†âb̂†b̂

)
(5.5)

where only the combinations relevant for this discussion are listed.
Inserting this into (5.2) gives4

Ĥ = αN̂ + βN̂2 + χĴ2
z + ΩĴx (5.6)

where

α ≡ E − U

2
|ϕ|4 , β ≡ U + Uab

4
|ϕ|4 , χ ≡ (U − Uab)|ϕ|4 , Ω ≡ Ω (5.7)

Since the particle number is conserved5, the N̂ - and the N̂2-terms will always give
the same contributions to the energy independent of the state. This means that the
essential part of the Hamiltonian is

Ĥ = χĴ2
z + ΩĴx (5.8)

2At least in the absence of Ω.
3See appendix B.
4If we had kept Uaa 6= Ubb and H0a 6= H0b there would also have been a Ĵz and a N̂ Ĵz-term

with coe�cients Ea − Eb − 1
2 (Uaa − Uab)|ψ|4 and 1

2 (Uaa − Ubb)|ψ|4 respectively.
5We assume this to be true physically, but now we can see it mathematically as well from the

fact that N̂ commutes with Ĥ.
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which is proportional to the operator M̂ from given by (3.33) with λ = −Ω/χ. This
means that the ground state of (5.8) will be the state minimizing the squeezing
parameter ξJz for a given value of 〈Ĵx〉, which can be regulated by changing Ω.

As mentioned in the section on the F-functions, it is not surprising that the
ground state of 5.6 is squeezed, when Ω is large and negative. The Ĵ2

z -term is
minimized by states on the equator of the Bloch sphere, and the Ĵx-term is minimized
by states like the coherent spin-state (3.24) close to the x-pole of the Bloch sphere. A
compromise is a state elongated in the y-direction but still localized around 〈Ĵx〉 = j,
and that is exactly a state squeezed in the z-direction, see �g. 3.5.

At this point it should be clear why BEC is interesting in the context of spin-
squeezing.

5.2 The plus-minus basis

We see from the previous section that if −Ω � |χ|, the state minimizing the energy
approaches an eigenstate to Ĵx, and therefore it has ψa ≈ ψb. In the following we
are going to do perturbations around this state, so that motivates us to do a change
of basis, and express (4.34) in terms of the new �eld operators

Ψ̂+ ≡
Ψ̂a + Ψ̂b√

2
, Ψ̂− ≡

Ψ̂a − Ψ̂b√
2

(5.9)

which can be inverted to

Ψ̂a =
Ψ̂+ + Ψ̂−√

2
, Ψ̂b =

Ψ̂+ − Ψ̂−√
2

(5.10)

We see that the SCS in the x-direction will have all the particles in the plus-mode.
Substituting the Ψ̂±-operators into (4.34) gives

Ĥ =

∫
dr

(
Ψ̂†

+(r)H0Ψ̂+(r) + Ψ̂†
−(r)H0Ψ̂−(r) + U

(
Ψ̂†

+(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂−(r)

)
+
U + Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂+(r)Ψ̂+(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂−(r)Ψ̂−(r)

)
+
U − Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂−(r)Ψ̂−(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂+(r)

)
+

Ω

2

(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

))
(5.11)

which is the form of the GP-Hamiltonian we will use most often in the following
calculations.

Let us try to calculate a GPE in the plus-minus basis. We saw that ψa ≈ ψb in
the mentioned limit, which corresponds to ψ+ ≈ ψ and ψ− ≈ 0 in the new basis.
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ψ is normalized to N, the total particle number. So when rewriting (5.11) back to
�rst quantization, we should use Ψ̂+ → ψ and Ψ̂− → 0, and then use variational
calculus to minimize with respect to ψ∗. The result is

H0ψ(r) +
U + Uab

2
|ψ(r)|2ψ(r) +

Ω

2
ψ(r) = µψ(r) (5.12)

and we see that we could have had the same result by inserting ψa = ψb = 1√
2
ψ into

(4.35). This form of the two-species GPE is similar to the one-species case given
by (4.16) with the substitutions U+Uab

2
→ U0 and µ − Ω

2
→ µ, meaning that the

results found in section 4.3 are valid for the two-species case as well after the above
substitutions.

The angular momentum operators and the number operator can be expressed in
the plus-minus basis as well, with the results

Ĵx =
1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

)
Ĵy =

i

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r)− Ψ̂†
−(r)Ψ̂+(r)

)
Ĵz =

1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r) + Ψ̂†
−(r)Ψ̂+(r)

)
N̂ =

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r) + Ψ̂†
−(r)Ψ̂−(r)

)
(5.13)

We see that the form of the N̂ -operator is unchanged by the basis shift, while the
form of Ĵx and the Ĵz-operators are interchanged. The Ĵy-operator changes sign
compared to the ab-basis.

5.3 Previous theoretical results

Let me at this point introduce some of the previous results on spin-squeezing and
BEC. This section is by no means a full introduction to everything that has been
done in the �eld, it will only touch the surface. All the articles described in this
section uses Hamiltonians including a Ĵ2

z -term, but with no ΩĴx-term unlike the one
used in the theory developed in this thesis.

A pioneering article in the �eld of spin-squeezing was [7] �Squeezed spin states�
by Kitagawa and Ueda. The article discusses the e�ects of applying the Hamiltonian

Ĥs ≡ χĴ2
z (5.14)

to the SCS to the Ĵx-operator given by (3.24), followed by a rotation around the
x-axis with an angle ν. Kitagawa and Ueda name this scheme �One-axis twisting�
and the e�ect of Ĥs is plotted in �g. 5.2.
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Figure 5.1: This �gure explains the white arrows on the Bloch spheres in this chapter. The
time evolution of the three angular momentum operators when applying the Hamiltonian

H
ζ
≡ ζĴz is

dĴx
dt = −ζĴy, dĴy

dt = ζĴx, and
dĴz
dt = 0. This corresponds to a rotation around

the Jz-axis with angular frequency ζ as illustrated on the upper row of Bloch spheres where
the Q-functions for the results of applying H

ζ
on some initial state for for ζt = 0, 0.5, and

1 are plotted. The white arrows indicate the direction of the rotation. In the lower row
of Bloch spheres the Hamiltonian Hs ≡ χĴ2

z is applied instead. No movement in the Jz-
direction can result from applying Hs, so the e�ect must be some sort of rotation as well.
On the 'northern hemisphere' of the Bloch sphere the sign of J2

z is the same as that of Jz,
while they are opposite on the 'southern hemisphere' which means that the movement on
the 'northern hemisphere' is expected to go in the same direction as when applying H

ζ
,

while the direction on the 'southern hemisphere' must be the opposite. This is shown by
the white arrows and it is indeed what is seen on the movement of our initial state, where
the Q-functions for the results for jχt = 0, 0.5 and 1 are plotted.
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Figure 5.2: Illustration of the scheme of one-axis twisting, showing the results of applying
Hs ≡ χĴ2

z on the SCS (3.24) for a system with j = 40. The three subplots are for
χt = 0, 0.05 and 0.1 respectively. The white arrows show qualitatively the e�ect of the
Hamiltonian, see �g. 5.1. Indicated in the �gure is the angle δ, an expression for which is
given in the main text, and we see that ν = −δ will produce the maximal squeezing in the
Jz-direction. This �gure is similar to FIG. 2. in [7].

After applying Ĥs and rotating, the expectation value of an operator Ô is

〈Ô〉 = 〈x| exp
(
iχtĴ2

z

)
exp

(
iνĴx

)
Ô exp

(
− iνĴx

)
exp

(
− iχtĴ2

z

)
|x〉 (5.15)

which can be calculated exactly6 for the relevant operators with the results

〈Ĵz〉 = 0

〈Ĵx〉 = j cos2j−1 (χt)

〈Ĵ2
z 〉 =

j

2

(
1 + 1

2
(j − 1

2
)
(
A−

√
A2 +B2 cos(2ν + 2δ)

))
(5.16)

where A ≡ 1− cosN−2(2χt), B ≡ 4 sin(χt) cosN−2(χt), and δ ≡ 1
2
tan−1

(
B
A

)
. We see

that ν = −δ will minimize the squeezing, as indicated by �g. (5.2). The squeezing
parameter as a function of time is

ξ2(ν, t) =
1 + 1

4
(N − 1)

(
A−

√
A2 +B2 cos(2ν + 2δ)

)
cos2N−2 (χt)

(5.17)

and for large N , the minimal squeezing is given as7

ξ2 = 1
2

(
3
N

)2/3
(5.18)

which should be compared to the ideal case of the F-functions (3.39) and to the
Schwinger model (5.50) considered later in section 5.7.

6The calculations are sketched in [7], and the results are given. Doing it requires pa-
tience, and the relations

∑
k

(
n
k

)
xn = (1 + x)n,

∑
k k
(
n
k

)
xn = nx

1+x (1 + x)n, and
∑

k k
2
(
n
k

)
xn =(

nx
1+x + n(n−1)

(1+x)2

)
(1 + x)n.

7See [1]. Something similar to this result is stated wrong in [7].
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Figure 5.3: Illustration of the scheme of two-axis countertwisting showing the results of
applying the Hamiltonian Ĥ2ac given by (5.19) on the SCS in the Jx-direction (3.24). The
plot is made for for a system with j = 40. The three subplots are for χt = 0, 0.01 and
0.02 respectively. The white arrows shows qualitatively the e�ect of the Hamiltonian, see
�g. 5.1. This plot is similar to FIG. 3. in [7].

Kitagawa and Ueda discuss another scheme as well, by which one can obtain
spin-squeezing. That scheme is denoted �Two-axis countertwisting� and works by
applying the Hamiltonian

Ĥ2ac = χ

( Ĵy + Ĵz√
2

)2

−

(
Ĵy − Ĵz√

2

)2
 (5.19)

the e�ect of which can be seen in �g. 5.3 which explains the name, since we see
that the twisting produced by each of the two components of (5.19) cancels each
other out, thus requiring no ν-rotation at the end of the procedure. The amount of
squeezing that can be obtained by two-axis countertwisting goes as8 ξ ∝ N−1 for
large N , which is better than the one-axis case.

Further theoretical results were found by Anders Sørensen, L.-M. Duan, J.I.Cirac,
and P. Zoller in the Nature article [1] named �Many-particle entanglement with
Bose-Einstein condensates�. Instead of the toy model Ĥs they consider the full
GP-Hamiltonian given by (4.34) without the Ω-term:

Ĥ =

∫
dr

(
Ψ̂†
a(r)H0Ψ̂a(r) + Ψ̂†

b(r)H0Ψ̂b(r)

+
U

2

(
Ψ̂†
a(r)Ψ̂

†
a(r)Ψ̂a(r)Ψ̂a(r) + Ψ̂†

b(r)Ψ̂
†
b(r)Ψ̂b(r)Ψ̂b(r)

)
+ UabΨ̂

†
a(r)Ψ̂

†
b(r)Ψ̂a(r)Ψ̂b(r)

)
(5.20)

8See [7].
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In the two-mode approximation, this Hamiltonian will reduce to

Ĥ = αN̂ + βN̂2 + χĴ2
z (5.21)

where α, β and χ are given by (5.7), a result identical to Ĥs except for terms
proportional to the particle number, which makes a comparison between the two
models reasonable. The method9 used by Sørensen, starts with a state with all the
particles in the a-mode, which we can write |Na, Nb〉 = |N, 0〉 corresponding to a
the SCS in the −Jz-direction. This state is rotated by π/2 around the y-axis so it
becomes

|ψ〉 = 2−N/2
∑
Na

√
N !

Na!Nb!
|Naφ(0), Nbφ(0)〉 (5.22)

which is identical to the SCS in the Jx-direction given by (3.24) since |j,m〉 =
|Na, Nb〉 with j = N/2 and m = Na/2. This approach di�ers from the two-mode
approximation considered previously in that it takes di�erences in the occupation
number of the two modes into account. It has been shown that this is equivalent to
the Bogoliubov calculations described in later sections. The procedure is to let the
state evolve according to (5.20), and the time evolution can be written

|Naφ0, Nbφ0〉 → CNaNb
(t)|Naφa,Na,Nb

(t), Nbφb,Na,Nb
(t)〉 (5.23)

where CNaNb
(t) is a complex phase factor |C|2 = 1, and where all the parameters

CNaNb
(t), φa,NaNb

(t), and φb,NaNb
(t) can be calculated. Using (5.4), this result can

be used to derive the expectation values 〈Ĵx〉 and 〈Ĵ2
z 〉 and thereby the squeezing

parameter. The result of such a calculation is plotted in �g. 5.4 which is taken
directly from [1]. We see that oscillations occur in the 〈Ĵx〉 vs. (∆Jz)

2-function.
This is due to oscillations in φa(t) and φb(t) similar to those plotted in �g. 4.2.
If U > Uab, most of the states in the sum in (5.22) will have less energy than the
initial state |N, 0〉, and therefore the oscillations start at minimal compression like
the situation plotted in �g. 4.2. We see that the 'dips' in the result in �g. 5.4 shifts
between small and large ones, and the small ones correspond to the points of maximal
compression, while the big ones correspond to minimal, or initial compression10.

In another article named �Bogoliubov theory of entanglement in a Bose-Einstein
condensate� [4], Anders Sørensen treats the same problem using a time-dependent
version of the Bogoliubov method described in this thesis, and gets a similar result.

In [4] a plot is shown of the fraction of the physical value of χ to the value
calculated for the two-mode approximation in (5.7), as function of the chemical
potential. In general this fraction is di�erent from one, and in the limit of large µ
which corresponds to a large value of N(U + Uab), the fraction approaches 7

10
. A

derivation of this value can be found in [11], but the fact that it is di�erent from one
is due to perturbations in the condensate similar to the Bogoliubov-modes found in
a later section, which makes the GPE less valid in this limit.

9The method is described in further detail in [11].
10See [1].
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Figure 5.4: This �gure is taken from [1], where it is denoted FIG. 1. The dotted line shows
the result for one-axis twisting given by (5.17), and the solid line shows the result of the
more realistic numerical calculation made in [1]. We see that the squeezing in some points
approaches, but never reaches the one-axis twisting result. The value of χ used to draw
the dotted line is corrected with the value of 7

10 mentioned in the main text.

5.4 Previous experimental results

In this section some of the previous experimental results on spin-squeezing and
BEC will be presented. Like the previous section, this section is not at all a full
introduction to all experiments that have been done in the �eld, only a few selected
experiments will be mentioned.

The �rst experiment that will be mentioned, is a recent one made by a group
in Heidelberg led by Marcus Oberthaler. The experiment is described in the arti-
cle [13] named �Nonlinear atom interferometer surpasses classical precision limit�.
The experiment had a trapped BEC going through the procedure of Ramsey spec-
troscopy described in section 2.1, and the reason for the word �interferometry� in the
title is the parallel between Ramsey spectroscopy and Mach-Zehnder interferometry
described in that section. It is however the initial step in which the experiment
squeezes the state of the atoms that will concern us here, since that step essentially
amounts to a realization of one-axis twisting.

The experiment used 2300 atoms of 87Rb trapped in an (almost) isotropic har-
monic oscillator potential with ω = 2π× 425 Hz. The |a〉 and |b〉-states were chosen
as the hyper�ne states |F = 1,mF = 1〉 and |F = 2,mF = −1〉. These states
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Figure 5.5: The experimental results by Oberthaler and Treutlein respectively. The �gures
are taken directly from the corresponding articles where they are denoted FIG. 3a and FIG.
2a. (a) is the result by Oberthaler from [13]. The blue data are the measurements corrected
for shot noise, and the red data with the error bars is further corrected for technical noise.
The gray line is a �t to (5.17) with α ≡ −ν, �tted after the parameter χ giving the result
mentioned in the main text. The Bloch spheres to the left of the �gure shows the one-axis
twisting procedure, indicating the angle α. (b) is the result by Treutlein from [14], showing
(what corresponds to) 4(∆Jz)2/N as functions of an angle θ similar to α in the Oberthaler
experiment. The closed circles show the measured data while the open circles are reference
data for a coherent spin state. The solid blue line is a �t to an expression similar to (5.17),
which takes losses into account, see [19]. The �t plotted as the red line takes technical
noise into account as well. The black line is a similar �t to the reference data, and we see
unsurprisingly that the SCS has ξ > 1 for all values of θ.

have the scattering lengths11 aaa = 100a0, aab = 97.7a0 and abb = 95a0 where a0 is
the Bohr radius. We see that aaa + abb ≈ 2aab making χ ≈ 0 and thereby making
squeezing harder to obtain, but Oberthaler circumvented this by using a Feshbach
resonance12 induced by an external magnetic �eld to adjust the value of aab so he
ended up with χ = 2π× 0.063 Hz. A side e�ect of the Feshbach resonance is that it
increases the particle loss, 15% of the atoms were lost during the experiment.

In �g. 5.5a we see the amount of squeezing produced by the experiment, as
function of an angle corresponding to the angle ν in (5.17). The optimal angle gives
a squeezing of −8.2 dB corresponding to ξ2 ≈ 0.15.

The second experiment I am going to mention was carried out by a group led by
Philipp Treutlein. The experiment is described in the article [14] named �Atom-chip-

11Oberthaler does strictly speaking not quote these values, he only writes that the fraction is
100 : 97.7 : 95. But I am comparing to Treutlein in [14] who uses the same atoms and almost the
same states, and he uses the same fractional notation, but writes that the unit of the numbers is
a0.

12See [13] and [a] p. 143 �.
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based generation of entanglement for quantum metrology�. Like Oberthaler, Treut-
lein's group used 87Rb-atoms, of which they had 1250 trapped in an anisotropic trap
with frequencies from ωlong = 2π × 109Hz to ωax = 2π × 500Hz. As the |a〉 and |b〉
states they used the hyper�ne states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 with
scattering lengths aaa = 100.4a0, aab = 97.7a0 and abb = 95.0a0 also giving χ ≈ 0.
Treutlein solved this problem another way, namely by separating the a and the b-
mode physically so the overlap between ψa and ψb diminishes, giving a χ = 0.49s−1.
The squeezing procedure is one-axis twisting, and the squeezing as a function of
an angle θ corresponding to the angle ν present in (5.17) is plotted in �g. 5.5 (b).
The minimal measured value of 4(∆Jz)

2/N is −3.7 dB and the value of 〈Ĵx〉/N is
0.88 giving a squeezing of −2.5 dB corresponding to ξ2 = 0.56. The experiment
took place on a so-called atom-chip making the setup more portable than the one
used by Oberthaler13, but the drawback is the increased technical noise which is the
reason why the amount of squeezing obtained by this experiment is not as large as
the amount produced in the experiment by Oberthaler described in [13].

None of the experiments described above looked at a static situation which is
what my theory is going to describe. This is, however, done in a previous experiment
by Oberthaler described in [15]. In this experiment he used a one-dimensional lattice
potential similar to the one used in [13], made up of a series of potential wells,
which can be approximated with a harmonic oscillator potential near the bottom of
each well. In this case the potential barrier is adjusted so there is some interaction
between particles in di�erent sites on the lattice. The particles do, however, not have
any internal degrees of freedom, so it is the position of the particle that plays the

role of spin. The maximal squeezing obtained in this experiment is ξ(N)2 = −7.2 dB.
It should be noted that the theory that will be derived in this thesis describes a

situation that is a combination of the two experiments by Oberthaler. It describes
internal states like the experiment in [13], but it looks at a steady-state situation
like the experiment in [15].

5.5 Parallel to xp-squeezing: a proposal

Let us return to the two-mode approximation for a moment. As we saw in section
5.1, the lowest energy eigenstate of the Hamiltonian (5.8) will be a squeezed state,
indicating that the system will approach this state if it is left in peace. But in the
dynamic case (5.8) will result in squeezing as well. In the limit 〈Ĵx〉 ≈ j we can use

Ĵx ≈
√
j(j + 1)− (Ĵ2

z + Ĵ2
y ) ≈ j − 1

2j
Ĵ2
z − 1

2j
Ĵ2
y (5.24)

to rewrite (5.8) to

Ĥ ≈ Ωj +
(
χ− Ω

2j

)
Ĵ2
z + −Ω

2j
Ĵ2
y (5.25)

13See [12] and [14].
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Figure 5.6: Q-functions for the states created by applying the Hamiltonian (5.25) for a
time χt = 1 to the SCS in the Jx-direction. (a) and (b) di�ers by the value of λ ≡ −Ω/χ.
(a) has λ = 1 and (b) has λ = 0.1. The resulting values of ξ2Jz

are 0.6606 and 0.2997
respectively. The white arrows show (qualitatively) the e�ect of the Ĵ2

z and the Ĵ2
y parts

of the Hamiltonian, see �g. (5.1).

and the application of this Hamiltonian results in squeezing as can be seen from �g.
5.6 and the associated text.

We can, however, get even further results out of (5.25) in the dynamical case.
In the ±-basis we can make an interesting parallel to the squeezing operator as
described in the section on xp-squeezing. If we assume that the vast majority of the
particles are in the plus-mode, the Ĵy and Ĵz operators become

Ĵy ≈ i
√
N

2

(
ĉ− − ĉ†−

)
Ĵz ≈

√
N

2

(
ĉ− + ĉ†−

)
(5.26)

which we can compare to the results for x̂ and p̂ in (3.9). In addition the uncertainty
relation for the spin operators becomes ∆Jy∆Jz ≥ 1

4
N , which we can compare to

the Heisenberg relation ∆x∆p ≥ 1
2
. From these relations we may get the idea that

we can make an analogy to xp-squeezing in this limit.

The most obvious identi�cations Ĵy ↔
√

N
2
p̂, Ĵz ↔

√
N
2
x̂, ĉ− ↔ â, and ĉ†− ↔ â†

create an inconsistency in the commutators. Instead the identi�cations Ĵy ↔
√

N
2
x̂

and Ĵz ↔
√

N
2
p̂ with ĉ− ↔ −iâ and ĉ†− ↔ iâ† will allow us to complete the analogy.

Writing (5.25) in the plus-minus basis gives

Ĥ = Ωj +
Nχ

4

(
ĉ−ĉ− + ĉ†−ĉ

†
−

)
+
N

4
(χ− Ω/j)

(
ĉ−ĉ

†
− + ĉ†−ĉ−

)
(5.27)

using the approximations for Ĵy and Ĵz found in (5.26). If we choose Ω so χ = Ω/j,
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Figure 5.7: A way to create spin-squeezing dynamically that, to the best of my knowledge,
have not been tried before experimentally. It consists of applying the Hamiltonian (5.8)
with Ω = χj to the SCS in the Jx-direction. As shown in the main text (5.8) reduces
to (5.25) in the limit of 〈Ĵx〉 ≈ j, and if Ω = χj it is identical to H2ac given by (5.19)
in a rotated coordinate system. (a) shows the initial state, and (b) and (c) show the
result of applying (5.8) for χjt = 0.5 and 1 respectively. (e) and (f) show the result
of applying (5.25) with the chosen Ω for the same times. The graphs on (d) show the
amount of squeezing produced by the two methods. The red curve is the result for two-
axis countertwisting (5.25), and the blue curve shows the result of applying (5.8), both with
the chosen value of Ω. We see that the amount of squeezing produced by (5.8) approaches,
but never reaches the result for two-axis countertwisting. Still it seems like an approach
worth trying experimentally.
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and insert the identi�cation ĉ− = −iâ, the time evolution of some state |ψ〉 will be

|ψ(t)〉 = exp

(
−iχNt

4

(
â†â† + ââ

))
|ψ(0)〉 (5.28)

if we ignore the phase coming from the constant Ωj-term. This can be rewritten as

|ψ(t)〉 = exp
(r

2

(
exp

(
iπ

2

)
ââ− exp

(
−iπ

2

)
â†â†

))
|ψ(0)〉 (5.29)

where we have made the additional identi�cation r ≡ χNt
2
. We see that this is

identical to the e�ect of applying the squeeze operator Ŝ(r, φ) as de�ned in (3.11)
with φ = π/2.

If we reinsert our relation Ω = χj directly into (5.25), we see that it becomes

Ĥ =
Ω

2j
Ĵ2
z −

Ω

2j
Ĵ2
y (5.30)

which is identical to the Hamiltonian for two-axis countertwisting given by (5.19) in
a rotated coordinate system rotated with the angle π/4, similar to what we found
in the parallel to xp-squeezing (5.29). The results of applying (5.30) and (5.8) with
Ω = χj are plotted in �g. 5.7. Even though we see that the squeezing produced
by (5.8) does not match the amount produced by (5.30), I still assume that this
approach to dynamical spin-squeezing production is worth trying experimentally,
since the amount of squeezing obtainable by two-axis countertwisting exceeds what
can be produced by one-axis twisting14.

5.6 Bogoliubov transformations

The Bogoliubov method is a way by which one can diagonalize a second quantization
Hamiltonian. In our case, the Bogoliubov transformation consists of two steps. The
�rst step is a rewriting of the second quantization operators Ψ̂±(r) as a sum of
a mean-�eld term and a perturbation term denoted δψ̂±(r) which is considered
small so one can discard higher order15 terms. The second step, which strictly
speaking is THE Bogoliubov transformation, consists of expressing16 δψ̂± which in
the original representation is a sum of terms δψ̂±(r) =

∑
i>0 ĉi±ϕi±(r), as another

sum of some new operators δψ̂±(r) =
∑

i

(
ui±(r)α̂i±+vi±(r)α̂†i±

)
having the property

of diagonalizing the Hamiltonian so that it can be written as a constant term plus∑
i εiα

†
iαi, indicating that the energy eigenstates are the eigenstates for the these

new number operators. The complication arises when one tries to �nd the functions
ui(r) and vi(r) making this diagonalization possible.

14See [7] and section 5.3.
15In the calculations in chapter 6, we discard terms of more than second order in δψ̂.
16In the calculations in chapter 6, this is not done to the δψ̂-operator but to a related operator

denoted Λ̂.
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The details of the calculations may di�er from case to case. In the case where
the Hamiltonian in question is a one-species Gross-Pitaevskii Hamiltonian, di�ering
from (4.17) by having the harmonic trap potential replaced with a box-shaped po-
tential, the Bogoliubov calculations can be solved exactly17. But whenever a more
complicated trap is present, even one as simple as the spherical symmetric one used
in this thesis, this can not be done and numeric calculations are necessary.

It seems like a time-dependent approach to Bogoliubov transformations has been
the most popular in the literature18. In this thesis however, the calculation is going
to be done time independently which will give us the steady-state result. This
explains the large focus in previous sections on time independent GPEs over the
time dependent ones, which for a two-species case can be constructed exactly like
(4.19) were for the one-species case. The advantage of a steady-state approach is
that the conditions are more easily met experimentally since the experiment does
not need to be timed precisely, in theory it can be done any time after the system
has reached equilibrium. For some examples of time-dependent calculations, see
appendix E.

Another choice that must be made is if we will do the calculations as though
there is a condensate in both the plus- and the minus-mode, or in the plus-mode
only. If we choose the plus-mode only, the rewriting for the minus-mode will be
Ψ̂− = δψ̂− which means that we view the ϕ0− mode as a part of the perturbation.
One might imagine that a calculation with a condensate in both modes is more
precise since we will do a smaller part of the calculation approximatively in that
case. This is, however, not the case, since such a rewriting is unable to take the
di�erences between the ϕ0+ and the ϕ0−-mode into account as we would need to use
ϕ0+ = ϕ0− = ϕ where ϕ is the condensate mode found by the GPE. Therefore the
calculation in chapter 6 will be done with ϕ0+ as the only condensate mode. With
this choice our interactions are as depicted in �g. 5.8.

The �nal choice we are faced with, is whether or not to make a symmetry-
break in the approximation. This choice is between the symmetry-breaking rewriting
Ψ̂+(r) = ψ(r) + δψ̂+(r) where ψ is the many-body wave function, and the more
correct rewriting Ψ̂+(r) = ϕ(r)ĉ + δψ̂+(r) where ϕ and ĉ are short for the wave
function and the annihilation operator for the condensate mode. The symmetry
in question is the U(1)-symmetry imposed by the fact that the Hamiltonian (5.11)
is invariant under the transformation Ψ̂ → Ψ̂eiθ. If we do the transformation and
calculate 〈Ψ̂+〉 in the two approaches with a state

⊗
i |ni〉i, the result is ψeiθ for the

symmetry-breaking rewriting, and 0 for the more correct non-symmetry-breaking
one. We see that the phase is present in the result under the symmetry-breaking
approach, thereby explaining the name. This gives a degree of freedom to the system
that would not otherwise have been there, and the mode formed by this symmetry
break is known as a Goldstone mode named after Goldstone's theorem predicting
that 'a spontaneous breaking of a continuous symmetry generates a massless bosonic

17See [a] page 229�.
18Examples are [4] and [6].
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Figure 5.8: The various dots in this picture illustrate the individual Bogoliubov modes
of our system. The interaction is modeled so that the condensate-mode 0+ is interacting
perturbatively with the other modes as illustrated by the gray lines. If we had chosen
to treat the 0−-mode as a condensate-mode as well, the 0+-0−-interaction would be done
non-perturbatively, but not necessarily yielding a more precise result.

particle'. The Goldstone mode would, since it has zero energy, be occupied by an
in�nite amount of quasi-particles that would need to be arti�cially excluded from
sums over all modes19. Other problems would arise as well, see section 6.4 which
explains the problems caused by the symmetry-breaking approach in further detail.

The choice of the non-symmetry-breaking approach does bring a few complica-
tions as well. In this approach expressing δψ̂(r) in terms of α̂-operators is not helpful,
we have to relate δψ̂ to another operator Λ̂ before changing to the α̂-operators using

Λ̂(r) =
∑

i

(
ui(r)α̂i + vi(r)α̂

†
i

)
instead. I addition we need to introduce a projection

operator Q◦ that projects away from the 0+-state. But these are complications that
can be overcome, which is why we choose the non-symmetry-breaking approach for
the main calculation in chapter 6.

5.7 The Schwinger model

Before doing the calculations for the full Hamiltonian (5.11), let us illustrate the use
of Bogoliubov transformations on the simpler Hamiltonian (5.8)

Ĥ = χĴ2
z + ΩĴx (5.31)

and let us further make the two-mode approximation saying that we only regard the
smallest energy state in each of the plus and minus-modes. This model is known as
the Schwinger20 model21.

19Like those that would turn up in equations similar to those from (6.42) to (6.45), which would
be expressed without excluding the sum over the 0+-mode, corresponding to the Goldstone mode.

20The Schwinger in question is Julian Schwinger, one of the fathers of Quantum Electro-
Dynamics.

21For more on the Schwinger model, see [b], page 217�.
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The relevant Ĵ-operators can be written

Ĵx =
1

2

(
ĉ†+ĉ+ − ĉ†−ĉ−

)
Ĵz =

1

2

(
ĉ†+ĉ− + ĉ†−ĉ+

)
(5.32)

since any spatial dependence will integrate out. Let us express these operators using
the new operators22

Λ̂ ≡ ĉ†+ĉ−√
N0

N̂ = ĉ†+ĉ+ + ĉ†−ĉ− (5.33)

where N0 is the number of particles in the plus-mode. Assuming that N0 � 1 allows
us to calculate

Ĵx =
1

2
N̂ − 1

2

(
Λ̂†Λ̂ + Λ̂Λ̂†

)
Ĵz =

√
N0

2

(
Λ̂ + Λ̂†

)
Ĵ2
z =

N0

4

(
Λ̂Λ̂ + Λ̂Λ̂† + Λ̂†Λ̂ + Λ̂†Λ̂†

)
(5.34)

so now we can write the Hamiltonian (5.31) as23

Ĥ = Ĥ0 +
1

2

(
A
(
Λ̂†Λ̂ + Λ̂Λ̂†

)
+B

(
Λ̂Λ̂ + Λ̂†Λ̂†

))
(5.35)

where

Ĥ0 ≡ Ω

2
N̂

A ≡ χN0

2
− Ω

B ≡ χN0

2
(5.36)

22In the Schwinger model only one mode exists in each of the plus- and minus-states, and
therefore the rewriting Ψ̂+ = ĉ+ϕ + δψ̂+ makes no sense. Only in the minus-mode where the
full model uses Ψ̂− = δψ̂− the Schwinger model has a corresponding operator, and that is the
Λ̂-operator mentioned here.

23In the full calculation it makes sense to write this equation as a matrix equation, Ĥ = Ĥ0 +
Λ̄†MΛ̄, where Λ̄ is a vector with the elements Λ̂ and Λ̂†, and M is a matrix with A and B as
elements arranged in a way similar to the matrix L which we will encounter later, except for
the minuses. For this Schwinger calculation such a rewriting does not simplify anything, so it is
avoided.
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We want to diagonalize this Hamiltonian, but in order to do this we need to have a
look at the commutator for the Λ̂-operators.[

Λ̂, Λ̂†
]

=
ĉ†+ĉ−ĉ+ĉ

†
− − ĉ+ĉ

†
−ĉ

†
+ĉ−

N0

=
ĉ†+ĉ+ − ĉ†−ĉ−

N0

≈ 1 (5.37)

where the approximation is known as the Holstein-Primako� approximation, and
consists of assuming that the vast majority of the particles are in the plus-mode,
just like we are going to do in the full calculation in chapter 6.

Now we are ready to do the diagonalization. The �rst step consists of expressing
Λ̂ as a sum of some new operators

Λ̂ = uα̂+ vα̂† (5.38)

as described in the general section on Bogoliubov transforms. We want to �nd values
for u and v so that the Hamiltonian is diagonal in the α̂-basis, meaning that it can
be written

Ĥ = Ĥ0 + ε
(
α̂†α̂+ α̂α̂†

)
(5.39)

Inserting the α̂-operators in the expression for the commutator gives[
Λ̂, Λ̂†

]
=

(
uα̂+ vα̂†

) (
u∗α̂† + v∗α̂

)
−
(
u∗α̂† + v∗α̂

) (
uα̂+ vα̂†

)
= (uu∗ − v∗v) α̂α̂† + (v∗v − uu∗) α̂†α̂ (5.40)

where we see that if the commutator equals one as it should as a result of the
Holstein-Primako� approximation, we must require that

u∗u− vv∗ = 1 (5.41)

since we require the α̂-operators to obey
[
α̂, α̂†

]
= 1. Inserting the expression for Λ̂

(5.38) into (5.35) gives

Ĥ = Ĥ0 +
χN0

4

(
(uu+ v∗v∗ + v∗u+ uv∗) α̂α̂+ (vv + u∗u∗ + u∗v + vu∗) α̂†α̂†

+ (uv + v∗u∗ + v∗v + uu∗) α̂α̂† + (vu+ u∗v∗ + u∗u+ vv∗) α̂†α̂
)

−Ω

2

(
(uv∗ + v∗u) α̂α̂+ (vu∗ + u∗v) α̂†α̂† + (uu∗ + v∗v) α̂α̂† + (vv∗ + u∗u) α̂†α̂

)
= Ĥ0 +

1

2

((
(v∗, −u)L

(
u
v∗

))
α̂α̂+

(
(v∗, −u)L

(
u
v∗

))∗

α̂†α̂†

+

(
(u∗, −v)L

(
u
v∗

))
α̂†α̂+

(
(u∗, −v)L

(
u
v∗

))
α̂α̂†

)
(5.42)
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where

L ≡
[

A B
−B −A

]
(5.43)

Using (5.41), we see that if

w̄ ≡
(

u
v∗

)
(5.44)

is an eigenvector to L with eigenvalue ε, (5.42) turns into (5.39) as desired, meaning
that u and v can be found by diagonalizing L.

The diagonalization can be done analytically, and the result is that one of the
sets of eigenvalues and eigenstates is

ε =
√
A2 −B2

u =
1√

1−
(
ε−A
B

)2
v∗ =

−1√(
B
ε−A

)2 − 1
(5.45)

We see that since B is positive24 and A and B are real, we can ensure the ε-
eigenvalue to be real if A > B which means that Ω < 0. This just means that the
energy of the +-mode is smaller than for the −-mode, and if that was not the case
the approximation n+ � n− would not make sense. The other eigenvalue is ε′ = −ε
with u′ = iv∗ and v∗′ = iu, where the i is necessary if we still want the state to obey
(5.41). We see that only one of the eigenvalues are positive and therefore physical.
It turns out that a positive real eigenvalue corresponds to real u and v-functions.
This can be seen from the fact that a real u corresponds to B2 > (ε− A)2 which
can be rewritten to ε > (A2 −B2) /A, and since the right hand side is positive, so
is the left hand side. If we insist on having real u and v, this result can be restated
as a claim that only states with a positive eigenvalue can solve (5.41).

When we have found u and v we can use them to calculate the expectation values
of our operators, under the assumption that no particles are in the α̂-mode, which
is similar to the Holstein-Primako� approximation made above. The results are

〈Ĵx〉 =
N0

2
− 1

2
v∗v

〈N̂〉 = N0 + v∗v

〈Ĵ2
z 〉 =

N0

4

(
1 + 2v∗v + uv + u∗v∗

)
〈Ĵz〉 = 0 (5.46)

24Which it is since we assume that U > Uab.
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Figure 5.9: (a) shows (∆Jz)2 as functions of 〈Ĵx〉 for various values of N , while (b) shows
the squeezing. The black and blue curves corresponds to the F-function case, and are
similar to what is shown in �g. 3.6, while the pink and red curves shows the results of the
Schwinger model. The black and the pink curves corresponds to N = 2, and the remaining
curves corresponds to N = 4, 6, 8, 10, and 20 just like in �g. 3.6.

since among the terms in the expressions for these operators involving the α̂-operator,
only those involving the combination α̂α̂† will contribute. These results can be com-
pared to the results for the full calculation obtained in the next chapter, given by
(6.52).

From (5.46) we can calculate

N0 =
N

2
+ 〈Ĵx〉 (5.47)

and

(∆Jz)
2 =

N
2

+ 〈Ĵx〉
4

(
1 + 2

(
N

2
− 〈Ĵx〉

)
− 2

√
N

2
− 〈Ĵx〉

√
1 +

N

2
− 〈Ĵx〉

)
(5.48)

where N ≡ 〈N̂〉 is the total particle number.
A plot of (∆Jz)

2 vs. 〈Ĵx〉 similar to the F-function de�ned by (3.31) can be seen in
�g. 5.9a. We see that as N increases, the result of the Schwinger model approaches
the F-function, and for N & 1000 the two functions are almost indistinguishable.
This is a surprise, since we can calculate from (5.47) that the Holstein-Primako�
approximation becomes linearly worse the further we are from the point 〈Ĵx〉 = J
around which the perturbation is done. But regardless of the value of N , the value
of (∆Jz)

2 in 〈Ĵx〉 = 0 will never become zero25 entirely, indicating that the squeezing
parameter will be in�nite in that point. This was the point where the F-functions

25As N →∞, (∆Jz)2 → 1/16.
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Figure 5.10: The black curve is the result given by (5.50), and the pink points are a few
of the points to which (5.50) is �tted. The red curve shows the result for the F-functions
given by (3.39).

had their maximal squeezing, but for the Schwinger model that point lies elsewhere.
The squeezing parameter can be found to be

ξ2 = N
N
2

+ 〈Ĵx〉
4〈Ĵx〉2

(
1 + 2

(
N

2
− 〈Ĵx〉

)
− 2

√
N

2
− 〈Ĵx〉

√
1 +

N

2
− 〈Ĵx〉

)
(5.49)

and a plot of ξ2 as a function of 〈Ĵx〉 can be seen in �g. 5.9b.
We want to �nd the minimal squeezing for each value of N . This can be done

numerically, and inspired by (3.39) we �t a function ξ2 = a/(N + b) to the results.
This gives us an expression for the minimal squeezing parameter26

ξ2 =
2.784

N + 2.709
(5.50)

which is plotted in �g. 5.10. A comparison with (3.39) shows that ξ2
Sch = 1.392 · ξ2

F

for large N , showing that less squeezing is produced by the Schwinger model than
by the two-mode approximation, even though the scaling with the particle number
is the same.

26The �t to ξ2 = a/(N+b) gives the values a = 2.7839±0.0009 and b = 2.7086±0.0022. Initially
I �tted a/(N + b)c which gave a c = 1.0044± 0.0003 almost but not entirely consistent with c = 1.
On the other hand the other parameters gave a = 2.8297± 0.0029 and b = 2.7565± 0.0031 where
we see that the uncertainties are greater than they are in the c = 1 case. Another option is to �t
a/(N + a) which gives a = 2.8167± 0.0034, which also has a higher uncertainty than the ab case.



Chapter 6

The full Bogoliubov calculation

At last we are ready to do the full Bogoliubov calculation central to this thesis. The
calculation will be split into a �rst and second part as described in section 5.6.

6.1 The full calculation: �rst part

We want to diagonalize the two-species Hamiltonian (5.11)

Ĥ =

∫
dr

(
Ψ̂†

+(r)H0Ψ̂+(r) + Ψ̂†
−(r)H0Ψ̂−(r) + U

(
Ψ̂†

+(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂−(r)

)
+
U + Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂+(r)Ψ̂+(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂−(r)Ψ̂−(r)

)
+
U − Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂−(r)Ψ̂−(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂+(r)

)
+

Ω

2

(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

))
(6.1)

A large value of −Ω will cause the Ω-term in (6.1) to be dominant, so in that case
the lowest energy state will be one where all the particles are in the Ψ̂+-state, which
means that this is where the condensate will be. The following calculations will
be perturbations around this state, which justi�es the approximation of small δψ̂,
where the δψ̂s are de�ned by the rewritings

Ψ̂+(r) =
∑
i

ĉi+ϕi+(r) = ĉ0+ϕ0+(r) +
∑
i>0

ĉi+ϕi+(r) ≡ ĉϕ(r) + δψ̂+(r)

Ψ̂−(r) =
∑
i

ĉi−ϕi−(r) ≡ δψ̂−(r) (6.2)

Assuming δψ̂(r) to be small enables us to ignore terms of more than second order
in δψ̂, which allow us to write Ĥ as

Ĥ ≡ Ĥ0 + Ĥ1 + Ĥ2 +O(δψ̂3) (6.3)

67
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where

Ĥ0 ≡
∫

dr

(
ϕ∗H0ϕĉ

†ĉ+
U + Uab

4
|ϕ|4ĉ†ĉ†ĉĉ+

Ω

2
|ϕ|2ĉ†ĉ

)
(6.4)

Ĥ1 ≡
∫

dr

(
δψ̂†

+H0ϕĉ+ ϕ∗ĉ†H0δψ̂+ +
Ω

2

(
δψ̂†

+ϕĉ+ ϕ∗ĉ†δψ̂+

)
+
U + Uab

4

(
2δψ̂†

+|ϕ|2ϕĉ†ĉĉ+ 2ϕ∗|ϕ|2ĉ†ĉ†ĉδψ̂+

))
(6.5)

Ĥ2 =

∫
dr

(
δψ̂†

+H0δψ̂+ + δψ̂†
−H0δψ̂− +

Ω

2

(
δψ̂†

+δψ̂+ − δψ̂†
−δψ̂−

)
+
U + Uab

4

(
δψ̂†

+δψ̂
†
+ĉĉ(ϕ)2 + ĉ†ĉ†(ϕ∗)2δψ̂+δψ̂+ + 4ĉ†ĉ|ϕ|2δψ̂†

+δψ̂+

)
(6.6)

+
U − Uab

4

(
ĉ†ĉ†(ϕ∗)2δψ̂−δψ̂− + δψ̂†

−δψ̂
†
−ĉĉ(ϕ)2

)
+ U

(
ĉ†ĉ|ϕ|2δψ̂†

−δψ̂−

))
We see that Ĥ0, Ĥ1, and Ĥ2 are terms of zeroth, �rst, and second order in δψ̂
respectively. For clarity, the r-dependence is no longer written explicitly from (6.4)
and onward. We see that the expression for Ĥ0 (6.4) is equivalent to (5.2), the
expression for Ĥ derived using the two-mode approximation. This means that to
zeroth order we expect the behaviour of ∆Jz(〈Ĵx〉) to be similar to the F-functions
derived in section 3.4. But since the F-functions describes the absolute maximal
squeezing, we expect the corrections coming from the higher order terms to be in
the direction of decreased squeezing.

We want to rewrite Ĥ0 to to be a function of a new operator ĉ for which N̂ = ĉ†ĉ,
is the total particle number operator. This should be compared to the usual ĉ-
operators for which 〈ĉ†ĉ〉 = N0, the number of particles in the condensate. The
reason for introducing the ĉ-operators is that while the number of particles in the
condensate mode can �uctuate, the total number of particles is a constant, making
terms in Ĥ proportional only to this operator constant as well.

We can rewrite the N̂ -operator as

N̂ =

∫
dr
(
Ψ̂†

+Ψ̂+ + Ψ̂†
−Ψ̂−

)
= ĉ†ĉ+

∫
dr
(
δψ̂†

+δψ̂+ + δψ̂†
−δψ̂−

)
⇔

ĉ†ĉ = ĉ†ĉ− δn̂ (6.7)

where δn̂ ≡
∫

dr
(
δψ̂†

+δψ̂+ + δψ̂†
−δψ̂−

)
. Since δn̂ is of order (δψ̂)2, we can ignore

terms of more than �rst order in δn̂ when we insert the above in the expression for
Ĥ0.
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Ĥ0 =

∫
dr

(
ϕ∗H0ϕ

(
ĉ†ĉ− δn̂

)
+

Ω

2
|ϕ|2

(
ĉ†ĉ− δn̂

)
+
U + Uab

4
|ϕ|4

((
ĉ†ĉ− δn̂

)2 − (ĉ†ĉ− δn̂
)))

≈
∫

dr

(
ϕ∗H0ϕĉ†ĉ +

U + Uab
4

|ϕ|4ĉ†ĉ†ĉĉ +
Ω

2
|ϕ|2ĉ†ĉ

)
−
∫

dr

(
ϕ∗H0ϕδn̂+

U + Uab
2

|ϕ|4δn̂+
Ω

2
|ϕ|2δn̂

)
= Ĥ0 −

∫
drϕ∗µϕδn̂ = H0 − µδn̂

= Ĥ0 − µ

∫
dr
(
δψ̂†

+δψ̂+ + δψ̂†
−δψ̂−

)
(6.8)

where

Ĥ0 ≡
∫

dr

(
ϕ∗H0ϕĉ†ĉ +

U + Uab
4

|ϕ|4ĉ†ĉ†ĉĉ +
Ω

2
|ϕ|2ĉ†ĉ

)
(6.9)

The approximation in (6.8) consists of assuming that N � 1 and of skipping terms
of second order in δn̂. As part of the calculation we used the GPE (5.12), where we
identi�ed the �rst quantization many-body wave functions ψ with the term ϕĉ.

When handling the Ĥ1-term (6.5) we observe that by using1 the GPE (5.12), it
can be rewritten to

Ĥ1 = µ

∫
dr
(
δψ̂†

+ϕĉ+ ĉ†ϕ∗δψ̂+

)
= 0 (6.10)

where the last equality is true due to the orthonormality of the ϕi-functions in the
expression Ψ̂(r) =

∑
i ϕi(r)ĉi. This means that H has no contributions to �rst order

in δψ̂.
Let us now de�ne an operator Λ̂ as

Λ̂±(r) ≡ ĉ†δψ̂±(r)√
N

(6.11)

and insert it in the results for Ĥ0, Ĥ1, and Ĥ2. This gives us an expression for the
total Ĥ

Ĥ = Ĥ0 +

∫
dr

(
Λ̂†

+(H0 − µ)Λ̂+ + Λ̂†
−(H0 − µ)Λ̂− +

Ω

2

(
Λ̂†

+Λ̂+ − Λ̂†
−Λ̂−

)
+
U + Uab

4

(
Λ̂†

+Λ̂†
+(ψ)2 + (ψ∗)2Λ̂+Λ̂+ + 4|ψ|2Λ̂†

+Λ̂+

)
(6.12)

+
U − Uab

4

(
(ψ∗)2Λ̂−Λ̂− + Λ̂†

−Λ̂†
−(ψ)2

)
+ U

(
|ψ|2Λ̂†

−Λ̂−

))
1Here we identify the �rst quantization wave function ψ with the term ϕĉ.
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which can be rewritten to2

Ĥ = Ĥ0 +
1

2

∫
drΛ̄†

+M+Λ̄+ +
1

2

∫
drΛ̄†

−M−Λ̄− (6.13)

where

Λ̄± ≡
(

Λ̂±(r)

Λ̂†
±(r)

)
(6.14)

and

M± ≡
[
A± B±
B∗
± A±

]
(6.15)

where

A+ ≡ H0 − µ+ (U + Uab)|ψ|2 +
Ω

2

B+ ≡ (U + Uab)

2
(ψ)2

A− ≡ H0 − µ+ U |ψ|2 − Ω

2

B− ≡ (U − Uab)

2
(ψ)2 (6.16)

With (6.13) we have written the Hamiltonian on a form that enables us to do
the Bogoliubov transform, which is the subject of the next section.

6.2 The full calculation: second part

Let us de�ne a function Q(r, r′) as

Q(r, r′) ≡ δ(r− r′)− ϕ(r)ϕ∗(r′) (6.17)

and a corresponding operator Q◦ as

Q◦f(r) ≡
∫

dr′
(
δ(r− r′)− ϕ(r)ϕ∗(r′)

)
f(r′) (6.18)

This operator functions as a projection operator into the hyperplane perpendicular
to ϕ(r). This can be seen by considering a function g(r) = κξ(r)+kϕ(r) where ξ(r)

2This step may appear like cheating, since we disregard the commutator
[
δψ̂†(r), δψ̂(r)

]
=

ϕ∗(r)ϕ(r)− δ(0), which is actually in�nite. One can always disregard a constant term in a Hamil-
tonian, but when that term is in�nite it seems questionable. Is is, however, all right, and this issue
is a part of a larger discussion about renormalization which will not be discussed further here.
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is perpendicular3 to ϕ(r) and k and κ are some constants. The result is Q ◦ g(r) =
κξ(r), which is what de�nes a projection operator. We notice that the function
Q(r, r′) obeys Q(r, r′) = Q∗(r′, r) and

∫
dr′′Q(r, r′′)Q(r′′, r′) = Q(r, r′), which are

results we will use later.
Let us do the Bogoliubov transform by writing the functions Λ̂+(r) and Λ̂−(r)

as

Λ̂+(r) =
∑
i>0

Q◦
(
ui+(r)α̂i+ + vi+(r)α̂†i+

)
Λ̂−(r) =

∑
i

(
ui−(r)α̂i− + vi−(r)α̂†i−

)
(6.19)

The reason for the Q◦-operator and the counting from one in the expression for the
Λ̂+-operator, is that the δψ̂+-operator and therefore also the Λ̂+-operator has to be
perpendicular to ϕ. When we have this extra requirement, we know that the terms
on the right hand side of (6.19) must span a function space one dimension smaller
than that of the ϕi+-functions, and this is ensured by skipping the 0+-mode. The
requirement that the skipped function is ϕ0+ and not something arbitrary, is ensured
by the Q-operator.

The u(r) and v(r)-functions should be found so that insertion of (6.19) results
in ∫

drΛ̄†
+M+Λ̄+ =

∑
i>0

εi+

(
α̂†i+α̂i+ + α̂i+α̂

†
i+

)
∫

drΛ̄†
−M−Λ̄− =

∑
i

εi−

(
α̂†i−α̂i− + α̂i−α̂

†
i−

)
(6.20)

which will diagonalize the Hamiltonian (6.13) giving it the form4

Ĥ = Ĥ0 +
∑
i>0

(
εi+α̂

†
i+α̂i+

)
+
∑
i

(
εi−α̂

†
i−α̂i−

)
(6.21)

The reason for this rewriting of the Hamiltonian is that it insures that the energy
eigenstates are the same as the number states in the α̂-basis, which makes them
much easier to calculate as long as the states are expressed in this basis.

The goal of this section is to �nd a way to calculate a set of u(r) and v(r)-
functions making this diagonalization possible, and in order to achieve this goal we
will take a look at the commutators. The derivation will be made for the plus-
operators since the calculation for the minus-operators is similar but simpler, so for
the rest of this section α̂i, ui and vi will refer to α̂i+, ui+, and vi+.

3Perpendicular means that
∫

drϕ∗(r)ξ(r) = 0.
4Yet again we skip an in�nite but constant term in the Hamiltonian! This is the term

∑
i(ε

+
i +

ε−i ). Like in the previous case this is allowed for reasons related to renormalization.
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We want all the involved operators to obey the canonical commutation relations.
That is [

α̂i, α̂
†
j

]
= δij , [α̂i, α̂j] =

[
α̂†i , α̂

†
j

]
= 0 (6.22)

and [
Ψ̂(r), Ψ̂†(r′)

]
= δ(r− r′) ,

[
Ψ̂†(r), Ψ̂†(r′)

]
=
[
Ψ̂(r), Ψ̂(r′)

]
= 0 (6.23)

From the �nal set of these, we can derive[
δψ̂(r), δψ̂†(r′)

]
= Q(r, r′) ,

[
δψ̂†(r), δψ̂†(r′)

]
=
[
δψ̂(r), δψ̂(r′)

]
= 0 (6.24)

and5 [
Λ̂(r), Λ̂†(r′)

]
= Q(r, r′) ,

[
Λ̂†(r), Λ̂†(r′)

]
=
[
Λ̂(r), Λ̂(r′)

]
= 0 (6.25)

Let us insert (6.19) in (6.25). Insertion in the
[
Λ̂, Λ̂†

]
-term gives

[
Λ̂(r), Λ̂†(r′)

]
=

∑
ij>0

(
Q◦
(
ui(r)α̂i + vi(r)α̂

†
i

)
Q∗◦

(
u∗j(r

′)α̂†j + v∗j (r
′)α̂j

)
−Q∗◦

(
u∗j(r

′)α̂†j + v∗j (r
′)α̂j

)
Q◦
(
ui(r)α̂i + vi(r)α̂

†
i

))
⇔

Q(r, r′) =
∑
i>0

(
Q◦ui(r) Q∗◦u∗i (r′)−Q◦vi(r) Q∗◦v∗i (r′)

)
(6.26)

and insertion in the
[
Λ̂, Λ̂

]
-term gives similarly

[
Λ̂(r), Λ̂(r′)

]
=

∑
ij>0

(
Q◦
(
ui(r)α̂i + vi(r)α̂

†
i

)
Q◦
(
uj(r

′)α̂j + vj(r
′)α̂†j

)
−Q◦

(
uj(r

′)α̂j + vj(r
′)α̂†j

)
Q◦
(
ui(r)α̂i + vi(r)α̂

†
i

))
⇔

0 =
∑
i>0

(
Q◦ui(r) Q◦vi(r′)−Q◦vi(r) Q◦ui(r′)

)
(6.27)

(6.26) plays a role as a completeness relation for the u and v-functions.
We want to invert (6.19) in order to express the α̂-operators as functions of the

Λ̂-operators. We assume that (6.19) can be inverted to

α̂i =

∫
dr
(
hi(r)Λ̂(r) + ki(r)Λ̂

†(r)
)

(6.28)

5In all the
[
Λ̂, Λ̂

]
-terms we disregard a term of order N−1.
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where hi(r) and ki(r) are some functions, which we are going to derive. Inserting in
(6.19) gives

Λ̂(r) =
∑
i>0

Q◦
(
ui(r)

∫
dr′
(
hi(r

′)Λ̂(r′) + ki(r
′)Λ̂†(r′)

)
+vi(r)

∫
dr′′

(
h∗i (r

′′)Λ̂†(r′′) + k∗i (r
′′)Λ̂(r′′)

))
=

∫
dr′
∑
i>0

((
Q◦ui(r)hi(r′) +Q◦vi(r)k∗i (r′)

)
Λ̂(r′)

+
(
Q◦ui(r)ki(r′) +Q◦vi(r)h∗i (r′)

)
Λ̂†(r′)

)
(6.29)

which is consistent only if the functions hi(r) and ki(r) makes the right hand side
equal to Λ̂(r) as it should be. If hi(r) = Q∗◦u∗i (r) and ki(r) = −Q◦vi(r) the Λ̂†-term
is seen from (6.27) to be zero as required, and the coe�cient to the Λ̂-term will
become Q(r, r′) which can be seen to give one after the r′-integration since Λ̂(r) is
perpendicular to ϕ(r). Therefore do this choice of hi and ki ful�l our requirement.
This means that (6.28) should be written

α̂i =

∫
dr
(
Q∗◦u∗i (r)Λ̂(r)−Q◦vi(r)Λ̂†(r)

)
(6.30)

which is consistent with (6.19).
Let us compare the commutators once again, this time the other way around,

using the above relation:[
α̂i, α̂

†
j

]
=

∫∫
drdr′

(
Q∗◦u∗i (r)Λ̂(r)−Q◦vi(r)Λ̂†(r)

)(
Q◦uj(r′)Λ̂†(r′)−Q∗◦v∗j (r′)Λ̂(r′)

)
−
∫∫

drdr′
(
Q◦uj(r)Λ̂†(r)−Q∗◦v∗j (r)Λ̂(r)

)(
Q∗◦u∗i (r′)Λ̂(r′)−Q◦vi(r′)Λ̂†(r′)

)
=

∫∫
drdr′

(
Q∗◦u∗i (r) Q◦uj(r′)

[
Λ̂(r), Λ̂†(r′)

]
−Q∗◦u∗i (r) Q∗◦v∗j (r′)

[
Λ̂(r), Λ̂(r′)

]
−Q◦vi(r) Q◦uj(r′)

[
Λ̂†(r), Λ̂†(r′)

]
+Q◦vi(r) Q∗◦v∗j (r′)

[
Λ̂†(r), Λ̂(r′)

])
⇔

δij =

∫∫
drdr′

(
u∗i (r)Q(r, r′)uj(r

′)− vi(r)Q∗(r, r′)v∗j (r
′)
)

(6.31)
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and

[α̂i, α̂j] =

∫∫
drdr′

(
Q∗◦u∗i (r)Λ̂(r)−Q◦vi(r)Λ̂†(r)

)(
Q∗◦u∗j(r′)Λ̂(r′)−Q◦vj(r′)Λ̂†(r′)

)
−
∫∫

drdr′
(
Q∗◦u∗j(r)Λ̂(r)−Q◦vj(r)Λ̂†(r)

)(
Q∗◦u∗i (r′)Λ̂(r′)−Q◦vi(r′)Λ̂†(r′)

)
=

∫∫
drdr′

(
Q∗◦u∗i (r) Q∗◦u∗j(r′)

[
Λ̂(r), Λ̂(r′)

]
−Q∗◦u∗i (r) Q◦vj(r′)

[
Λ̂(r), Λ̂†(r′)

]
−Q◦vi(r) Q∗◦u∗j(r′)

[
Λ̂†(r), Λ̂(r′)

]
+Q◦vi(r) Q◦vj(r′)

[
Λ̂†(r), Λ̂†(r′)

])
⇔

0 =

∫∫
drdr′

(
vi(r)Q∗(r, r′)u∗j(r

′)− u∗i (r)Q(r, r′)vj(r
′)
)

(6.32)

where (6.31) plays a role as an orthonormality criterion for the u and v-functions.
This can help us on in our search for expressions for ui(r) and vi(r). Let us insert

the expressions for M and Λ̄ into (6.20)∫
drΛ̄†MΛ̄

=

∫
dr
∑
ij>0

(
Q∗◦

(
u∗i α̂

†
i + v∗i α̂i

)
A Q◦

(
ujα̂j + vjα̂

†
j

)
+ Q∗◦

(
u∗i α̂

†
i + v∗i α̂i

)
B Q∗◦

(
u∗j α̂

†
j + v∗j α̂j

)
+ Q◦

(
uiα̂i + viα̂

†
i

)
B∗ Q◦

(
ujα̂j + vjα̂

†
j

)
(6.33)

+ Q◦
(
uiα̂i + viα̂

†
i

)
A Q∗◦

(
u∗j α̂

†
j + v∗j α̂j

))
=

∫
dr
∑
ij>0

((
Q∗◦v∗iAQ◦uj +BQ∗◦v∗iQ∗◦v∗j +B∗Q◦uiQ◦uj +Q◦uiAQ∗◦v∗j

)
α̂iα̂j

+
(
Q∗◦v∗iAQ◦vj +BQ∗◦v∗iQ∗◦u∗j +B∗Q◦uiQ◦vj +Q◦uiAQ∗◦u∗j

)
α̂iα̂

†
j

+
(
Q∗◦u∗iAQ◦uj +BQ∗◦u∗iQ∗◦v∗j +B∗Q◦viQ◦uj +Q◦viAQ∗◦v∗j

)
α̂†i α̂j

+
(
Q∗◦u∗iAQ◦vj +BQ∗◦u∗iQ∗◦u∗j +B∗Q◦viQ◦vj +Q◦viAQ∗◦u∗j

)
α̂†i α̂

†
j

)
We can see that a solution to (6.20) are the relations

εiδij =

∫
dr
(
Q∗◦u∗iAQ◦uj +BQ∗◦u∗iQ∗◦v∗j +B∗Q◦viQ◦uj +Q◦viAQ∗◦v∗j

)
0 =

∫
dr
(
Q∗◦v∗iAQ◦uj +BQ∗◦v∗iQ∗◦v∗j +B∗Q◦uiQ◦uj +Q◦uiAQ∗◦v∗j

)
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which can be rewritten to

εiδij =

∫
dr
(
Q∗◦u∗iAQ◦uj +BQ∗◦u∗iQ∗◦v∗j +B∗Q◦viQ◦uj +Q◦viAQ∗◦v∗j

)
=

∫
drdsdt

(
u∗i (s)Q∗(r, s)A(r)Q(r, t)uj(t) + u∗i (s)Q∗(r, s)B(r)Q∗(r, t)v∗j (t)

vi(s)Q(r, s)B∗(r)Q(r, t)uj(t) + vi(s)Q(r, s)A(r)Q∗(r, t)v∗j (t)

)
=

∫
dpdrdt

(
Q∗◦u∗i (p) , −Q◦vi(p)

)
L(p, r, t)

(
uj(t)
v∗j (t)

)
(6.34)

and

0 =

∫
dr
(
Q∗◦v∗iAQ◦uj +BQ∗◦v∗iQ∗◦v∗j +B∗Q◦uiQ◦uj +Q◦uiAQ∗◦v∗j

)
=

∫
drdsdt

(
v∗i (s)Q∗(r, s)A(r)Q(r, t)uj(t) + v∗i (s)Q∗(r, s)B(r)Q∗(r, t)v∗j (t)

ui(s)Q(r, s)B∗(r)Q(r, t)uj(t) + ui(s)Q(r, s)A(r)Q∗(r, t)v∗j (t)

)
=

∫
dpdrdt

(
Q∗◦v∗i (p) , −Q◦ui(p)

)
L(p, r, t)

(
uj(t)
v∗j (t)

)
(6.35)

where p, r, s, and t are di�erent positional variables, and L is a matrix de�ned as

L(p, r, t) ≡
[

Q(p, r)A(r)Q(r, t) Q(p, r)B(r)Q∗(r, t)
−Q∗(p, r)B∗(r)Q(r, t) −Q∗(p, r)A(r)Q∗(r, t)

]
(6.36)

A set of ui(r) and vi(r)-functions making (6.34) and (6.35) true, is obtained if

w̄i(t) ≡
(
ui(t)
v∗i (t)

)
(6.37)

is a solution to the eigenvalue equation∫
drdtL(p, r, t)w̄i(t) = εiw̄i(p) (6.38)

since this will allow us to rewrite (6.34) and (6.35) to

εjδij = εj

∫
drdr′

(
u∗i (r)Q(r, r′)uj(r

′)− vi(r)Q∗(r, r′)v∗j (r
′)
)

0 = εj

∫
drdr′

(
v∗i (r)Q(r, r′)uj(r

′)− ui(r)Q∗(r, r′)v∗j (r
′)
)

(6.39)

which are both true, according to (6.31) and (6.32).
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The corresponding calculation for the ui−(r) and vi−(r)-terms is similar, just
with the replacements Q(r, r′) → δ(r, r′), Q◦ → 1, and

∑
i>0 →

∑
i

So to summarize this long calculation: The Hamiltonian (6.1) can be expressed as
a function of the set of operators Λ̂±(r), which is done in (6.13). The sets of functions
ui±(r) and vi±(r), which can be found by solving (6.38), enable us to express the
operators Λ̂±(r) as functions of another set of operators αi± through the relations
(6.19) and (6.30). The reason for doing this is that the α̂i±-operators diagonalize
the Hamiltonian giving it the form (6.21). This diagonalization procedure is known
as a Bogoliubov transformation.

It turns out that some of the previous results can be simpli�ed by introducing σz
as the metric for the space in which the w̄i-vectors live, such that w̄i·w̄j = u∗iuj−viv∗j .
If we in addition introduce the alternate w̄i-vectors

w̄i+(r) ≡
(
Q◦ui+(r)
Q∗◦v∗i+(r)

)
(6.40)

we see that (6.31) and (6.26) can be written

δij =

∫
dr (w̄i+(r) · w̄j+(r))

δ(r, r′) = ϕ∗(r)ϕ(r′) +
∑
i>0

(w̄i+(r) · w̄i+(r′)) (6.41)

for the case of real ui and vi-functions. From (6.41) we clearly see how (6.31) and
(6.26) correspond to orthonormality and completeness, something which was stated
at the original expressions.

6.3 Rewriting the operators

In order to be able to use the results of the the calculation in previous sections to help
us calculate the spin-squeezing, we need to express the various operators6 involved in
the calculation of the squeezing parameter in the new α̂-basis. This is done by �rst
expressing the Ψ̂ operators in terms of the δψ̂ operators, then expressing those in
terms of the Λ̂-operators, and �nally expressing the Λ̂-operators in terms of u, v and
α̂-operators. This section will introduce some new notation. The summation

∑
ij∗

indicates that the sum should go over all modes if it is a sum over minus-modes, but
exclude the 0-mode if it is a sum over plus-modes, and the operator ◦ is de�ned as7

f ◦ g ≡
∫

drf(r)g(r).

6This refers to the operators N̂ , Ĵx, Ĵz, and Ĵ
2
z .

7This de�nition is di�erent from, but consistent with the ◦ in the Q◦-operator.
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Let us start by calculating the Ĵx-operator.

Ĵx =
1

2

∫
dr
(
Ψ̂†

+Ψ̂+ − Ψ̂†
−Ψ̂−

)
=

1

2

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
ĉ+ϕ+ δψ̂+

)
−
(
δψ̂†

−

)(
δψ̂−

))
=

ĉ†+ĉ+
2

+
1

2

∫
dr
(
δψ̂†

+δψ̂+ − δψ̂†
−δψ̂−

)
≈ ĉ†+ĉ+

2
+

1

2

∫
dr
(
Λ̂†

+Λ̂+ − Λ̂†
−Λ̂−

)
=

1

2

∫
dr
∑
i,j∗

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

)
Q◦
(
uj+α̂j+ + vj+α̂

†
j+

)
−
(
ui−α̂i− + vi−α̂

†
i−

)(
u∗j−α̂

†
j− + v∗j−α̂j−

))
+
ĉ†+ĉ+

2

=
1

2

∑
i,j∗

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+ + u∗i+◦Q◦uj+α̂

†
i+α̂j+

+ u∗i+◦Q◦vj+α̂
†
i+α̂

†
j+ − v∗i− ◦ uj−α̂i−α̂j− − v∗i− ◦ vj−α̂i−α̂

†
j−

− u∗i− ◦ uj−α̂
†
i−α̂j− − u∗i− ◦ vj−α̂

†
i−α̂

†
j−

)
+
ĉ†+ĉ+

2
(6.42)

Similar calculations can be done8 for the other operators, with the results

N̂ =
∑
ij∗

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+ + u∗i+◦Q◦uj+α̂

†
i+α̂j+

+u∗i+◦Q◦vj+α̂
†
i+α̂

†
j+ + v∗i−◦ uj−α̂i−α̂j− + v∗i−◦ vj−α̂i−α̂

†
j−

+u∗i−◦ uj−α̂
†
i−α̂j− + u∗i−◦ vj−α̂

†
i−α̂

†
j−

)
+ ĉ†ĉ (6.43)

Ĵz =
1

2

∑
ij∗

((
v∗i+◦Q◦uj− + ui+◦Q∗◦v∗j−

)
α̂i+α̂j− +

(
v∗i+◦Q◦vj− + ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− + vi+◦Q∗◦v∗j−

)
α̂†i+α̂j− +

(
u∗i+◦Q◦vj− + vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
+

∫
dr
∑
i

((
ϕ∗ui− + v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− + u∗i−ϕ

)
α̂†i−

)
(6.44)

8The full calculations for all Ĵ-operators and combinations thereof, can be found in appendix
D.
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Ĵ2
z =

N0

4

∑
i,j

((
ϕ∗◦ui−ϕ∗◦uj− + 2v∗i−◦ϕϕ∗◦uj− + v∗i−◦ϕv∗j−◦ϕ

)
α̂i−α̂j−

+
(
ϕ∗◦ui−ϕ∗◦vj− + 2v∗i−◦ϕϕ∗◦vj− + v∗i−◦ϕu∗j−◦ϕ

)
α̂i−α̂

†
j−

+
(
ϕ∗◦vi−ϕ∗◦uj− + 2u∗i−◦ϕϕ∗◦uj− + u∗i−◦ϕv∗j−◦ϕ

)
α̂†i−α̂j−

+
(
ϕ∗◦vi−ϕ∗◦vj− + 2u∗i−◦ϕϕ∗◦vj− + u∗i−◦ϕu∗j−◦ϕ

)
α̂†i−α̂

†
j−

)
+
ĉ†ĉ

4

+
1

4

∑
i,j

(
v∗i−◦uj−α̂i−α̂j− + v∗i−◦vj−α̂i−α̂

†
j− + u∗i−◦uj−α̂

†
i−α̂j− + u∗i−◦vj−α̂

†
i−α̂

†
j−

)
+

1

4

∑
i,j>0

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+

+u∗i+◦Q◦uj+α̂
†
i+α̂j+ + u∗i+◦Q◦vj+α̂

†
i+α̂

†
j+

)
(6.45)

Let us in the following assume that the occupation of the Bogoliubov modes is
caused by thermal excitations alone. In order to investigate such thermal excitations,
let us calculate the probability of having the system in the state x, which has nix
excitations in the ith Bogoliubov state.

px =
exp (−βEx)∑
x′ exp (−βEx′)

=
exp (−β (E0 +

∑
i εinix))∑

x′ exp (−β (E0 +
∑

i εinix′))
=

∏
i exp (−βεinix)∑

x′
∏

i exp (−βεinix′)

≈
∏
i

exp (−βεinix)∑
ni

exp (−βεini)
(6.46)

where β is de�ned as β ≡ 1
T where T is an unitless temperature de�ned as T ≡ kBT

~ω
where T is the temperature. The terms in the product on the �nal line of (6.46) are
the probabilities of having nix excitations in the ith state, so if we want to calculate
the average number of excitations in the ith state we can use these probabilities and
get

〈n〉i =
∑
ni

nipi,n =
∑
ni

ni
exp (−βεini)∑
ni

exp (−βεini)
≡
∑

n na
n∑

n′ a
n′

=

a
(1−a)2

1
1−a

=
1

a−1 − 1

=
1

exp (βεi)− 1
(6.47)

where we have de�ned a ≡ exp (−βεi) along the way. This result is similar to the
Bose-Einstein distribution, but di�ers by an absence of a chemical potential, which
is caused by the number of excitations in the Bogoliubov modes not being �xed.

We can use this result to calculate the expectation value of the combinations of
α̂i-operators appearing in (6.42) to (6.45). 〈α̂†i α̂i〉 = 〈n̂i〉 = 〈n〉i, and inserting this
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in (6.42) to (6.45) gives

〈N̂〉 = N0 +
∑
i∗

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

+v∗i− ◦ vi−
(
〈n〉i− + 1

)
+ u∗i− ◦ ui−〈n〉i−

)
(6.48)

〈Ĵx〉 =
N0

2
+

1

2

∑
i∗

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

−v∗i− ◦ vi−
(
〈n〉i− + 1

)
− u∗i− ◦ ui−〈n〉i−

)
(6.49)

〈Ĵz〉 = 0 (6.50)

〈Ĵ2
z 〉 =

N0

4
+
N0

4

∑
i

((
ϕ∗◦ui−ϕ∗◦vi− + 2v∗i−◦ϕϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)(
〈n〉i− + 1

)
+
(
ϕ∗◦vi−ϕ∗◦ui− + 2u∗i−◦ϕϕ∗◦ui− + u∗i−◦ϕv∗i−◦ϕ

)
〈n〉i−

)
+

1

4

∑
i

(
v∗i−◦vi−

(
〈n〉i− + 1

)
+ u∗i−◦ui−〈n〉i−

)
+

1

4

∑
i>0

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

)
(6.51)

which are the results we will use when doing calculations for non-zero temperatures.
For T = 0 the occupation number of all the Bogoliubov states goes to zero, and

the result for the expectation values of our operators reduces further to

〈Ĵz〉 = 0

〈Ĵx〉 =
N0

2
+

1

2

∑
i∗

(
v∗i+◦Q◦vi+ − v∗i−◦vi−

)
〈N̂〉 = N0 +

∑
i∗

(
v∗i+◦Q◦vi+ + v∗i−◦vi−

)
〈Ĵ2

z 〉 =
N0

4
+

1

4

∑
i∗

(
v∗i+◦Q◦vi+ + v∗i−◦vi−

)
+
N0

4

∑
i

(
ϕ∗◦ui−ϕ∗◦vi− + 2v∗i−◦ϕϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)
(6.52)

which we will use when doing calculations for zero temperature.
When we know these expectation values, calculating the spin-squeezing using

(3.30) is no problem.
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6.4 The symmetry-breaking approach

In this section the consequences of trying to do the symmetry-breaking calculation
will be described in more detail9. Some reasons to why the full calculation was done
using the (in some aspects) more complicated non-symmetry-breaking approach are
given, since we will show some of the problems arising from the symmetry-breaking
approach.

As mentioned in section 5.6 the symmetry break arises if the rewritings in (6.2)
are replaced with

Ψ̂+(r) ≈ ψ(r) + δψ̂+(r)

Ψ̂−(r) ≈ δψ̂−(r) (6.53)

which is an approximation, since it substitutes the operator ĉϕ with the c-number
ψ. The symmetry in question is the U(1)-symmetry induced by the fact that the
Hamiltonian is invariant under the transformation Ψ̂ → Ψ̂eiθ, and the symmetry
break can be seen from the fact that 〈Ψ̂+〉 = ψeiθ after the transformation (6.53),
where we would have had 〈Ψ̂+〉 = 0 from the non-symmetry-breaking rewriting
(6.2).

In the symmetry-breaking approach we do neither need to introduce the Λ̂-
operator, since the de�nition would become Λ̂ ≡ δψ̂, nor to introduce the Q◦-
operators since there no longer is a demand for the ϕi+-functions to be orthogonal
to ψ. When calculating the various operators, we can follow the same method as
for the non-symmetry breaking approach used in section 6.3, and we get for most
of the operators the same result as previously, except for the lack of Q◦-operators
and the fact that all sums start from zero. But in the calculation of10 Ĵ2

z a problem
arises. We can of course follow the same path as previously:

Ĵ2
z =

(
1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r) + Ψ̂†
−(r)Ψ̂+(r)

))2

=
1

4

∫
drdr′

(
Ψ̂†

+(r)Ψ̂−(r)Ψ̂†
+(r′)Ψ̂−(r′) + Ψ̂†

−(r)Ψ̂+(r)Ψ̂†
+(r′)Ψ̂−(r′)

+Ψ̂†
−(r)Ψ̂†

−(r′)Ψ̂+(r)Ψ̂+(r′)
)

+
1

4

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r) + Ψ̂†
−(r)Ψ̂−(r)

)
≈ N

4
+

1

4

∫
drdr′

(
ψ∗(r)ψ∗(r′)δψ̂−(r)δψ̂−(r′) + 2ψ∗(r)ψ(r′)δψ̂†

−(r′)δψ̂−(r)

+ψ(r)ψ(r′)δψ̂†
−(r)δψ̂†

−(r′)
)

+
1

4

∫
dr
(
δψ̂†

+(r)δψ̂+(r) + δψ̂†
−(r)δψ̂−(r)

)
= . . . (6.54)

9For the full calculation of the main result (6.60) of this section, see appendix F.
10In section 6.3 the result of the calculation of Ĵ2

z was just stated. For the full derivation of this
result see appendix D.
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which would give the same result as we got for the non-symmetry-breaking approach.
But another option is to insert (6.53) before doing the normal ordering

Ĵ2
z =

(
1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r) + Ψ̂†
−(r)Ψ̂+(r)

))2

=

(
1

2

∫
dr
((
ψ∗(r) + δψ̂+(r)

)(
δψ̂−(r)

)
+
(
δψ̂†

−(r)
)(
ψ(r) + δψ̂+(r)

)))2

≈ 1

4

∫
drdr′

(
ψ∗(r)ψ∗(r′)δψ̂−(r)δψ̂−(r′) + 2ψ∗(r)ψ(r′)δψ̂†

−(r′)δψ̂−(r)

+ψ(r)ψ(r′)δψ̂†
−(r)δψ̂†

−(r′)
)

= . . . (6.55)

where we see that we get a di�erent result. The di�erence arises from the fact that
ψ(r) and ψ∗(r′) commute where ĉϕ(r) and ĉ†ϕ∗(r′) do not. Of course it should not
be possible to get di�erent results by calculating the same thing in two di�erent
ways, so this is an indication that the symmetry-breaking method is inadequate,
and if we try the same for the non-symmetry-breaking approach this problem will
not arise. But even if we by chance had the right result here and carried on the
calculation, other problems would arise.

The u and v functions will be found to be those that solve the simpler version
of (6.38)

L(r)w̄i(r) = εiw̄i(r) (6.56)

where

L(r) ≡
[

A(r) B(r)
−B∗(r) −A(r)

]
(6.57)

and w̄i(r) ≡ (ui(r), v
∗
i (r)) as in the main calculation. Insertion gives

A(r)ui(r) +B(r)v∗i (r) = εiui(r)

B(r)ui(r) + A(r)v∗i (r) = −εiv∗i (r) (6.58)

from which we see that if we interchange u and −v we would have another eigenvec-
tor11 with eigenvalue −ε. This means that if ε = 0, a possible solution is u = −v.
For the plus-mode such a solution actually exists and by inserting the values of A+

and B+, we get(
H0 − µ+ (U + Uab)|ψ|2 +

Ω

2

)
u0+(r)− (U + Uab)

2
(ψ)2u∗0+(r) = 0 (6.59)

11One could argue that such an eigenvector can not ful�l (6.31) u′∗◦u′ − v′◦ v′∗ = 1 which
we require, but it could if one allows for complex eigenvectors and instead de�nes u′ = iv and
v′ = iu, where such a phase shift always is allowed in an eigenvalue equation. This is related to
the discussion of positive and negative eigenvalues in the section on the Schwinger model.
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and from the GPE (5.12) we see that a solution to this is u0+(r) = −v0+(r) = ψ(r).
Something is, however, wrong with this result, since we see that it never will ful�l
(6.31) because u∗0+ ◦u0+−v0+ ◦v∗0+ = u0+ ◦u0+−u0+ ◦u0+ = 0. Fortunately it turns
out12 that we can �nd a possible other eigenvector with the same eigenvalue, and a
superposition of the two turns out to be in accordance with (6.31). This new state
is, however, not an eigenstate to the matrix L, and therefore we can not diagonalize
Ĥ to the form given by (6.20). Instead we can write it as

Ĥ = Ĥ0 +
1

2

dµ

dN
Q̂2 + 0P̂ 2 +

∑
i>0

εi+

(
α̂†i+α̂i+

)
+
∑
i

εi−

(
α̂†i−α̂i−

)
(6.60)

where

Q̂ ≡ 1√
2
(α̂0+ + α̂†0+)

P̂ ≡ 1

i
√

2
(α̂0+ − α̂†0+) (6.61)

has been de�ned. We see from the expression (6.60), that the coe�cient on the
P̂ 2-term is zero, and the particles created by excitations in this P -mode are the
massless Goldstone bosons mentioned in section 5.6. An illustration of the P and
Q-modes13 can be seen in �g. 6.1.

An in�nite amount of particles could be created in this Goldstone-mode and
we would need to exclude them arti�cially from sums over all modes, like those
appearing in (6.42) to (6.45). It is in order to avoid this that the main calculation
in this thesis uses the non-symmetry-breaking approach.

6.5 Numerical calculations

Unlike the case of the simpler Schwinger model, the u and v-functions can not
be found analytically for our main calculation. So therefore we need to �nd a
way to implement the calculation numerically14. In order to be able to do any of
the calculations we must �nd the value of µ. This can be done by isolating it in
the GPE (5.12), where the value of ϕ is found using the imaginary time formalism

12See appendix F.
13Excitations in the Q-mode play a role analogous to that of Higgs bosons in the standard model,

with the coe�cient dµ
dN playing the role of the Higgs mass. Using the Thomas-Fermi approximation

(4.26), that value can be found to dµ
dN ≈ 0.163 · (U + Uab)2/5N−3/5.

14In principle this sentence could have ended �which we have done.�, and then we could have
went on to the next chapter presenting the results. But in the introduction I wrote that the thesis
is aimed at people at the same academical level as my own, and I am far from sure that everyone
would �nd numerical solutions of di�erential matrix-equations a trivial task. This is the reason for
the inclusion of this section in the main text, and not just as an appendix.
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Figure 6.1: An illustration of the Goldstone mode, which is a consequence of the symmetry
breaking approach. (a) represents the condensate-mode, while (b) represents the other
modes. The vertical axis shows the energy, and the horizontal axis shows the real and the
imaginary part of the wave-function for the mode in question. For modes di�erent from
the condensate-mode, we see that any excitation in the mode increases the energy, but
for the condensate-mode the situation is di�erent. The condensate contains per default
N0 particles, and any deviation from that number increases the energy, as shown by the
Q-mode. However, the phase is not �xed due to the symmetry break (〈Ψ̂+〉 = ψeiθ) and
changing the phase changes none of the physics, which is shown by the fact that excitations
in the Goldstone-mode P do not change the energy.

described in connection with (4.29), which can be solved using a fourth order Runge-
Kutta algorithm15. How to implement the ∇2-part of the H0-operator in the time-
dependent GPE is described below.

The u and v functions are the solutions to the equations16 (6.38)∫
dr′L±(r, r′)w̄i±(r′) = εi±w̄i±(r) (6.62)

where

w̄i±(r) ≡
(
ui±(r)
v∗i±(r)

)
(6.63)

L+(r, r′) ≡
[ ∫

dr′′
(
Q(r, r′′)A+(r′′)Q(r′′, r′)

) ∫
dr′′
(
Q(r, r′′)B+(r′′)Q∗(r′′, r′)

−
∫

dr′′
(
Q∗(r, r′′)B∗

+(r′′)Q(r′′, r′)
)

−
∫

dr′′
(
Q∗(r, r′′)A+(r′′)Q∗(r′′, r′)

) ]
(6.64)

and

L−(r, r′) ≡
[

δ(r− r′)A−(r′) δ(r− r′)B−(r′)
−δ(r− r′)B∗

−(r′) −δ(r− r′)A−(r′)

]
(6.65)

15See [f].
16Here we have rede�ned L so that the integration over the third variable which were called r

in (6.38), is moved into the de�nition.
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All of the variables r, r′ and r′′ are position variables, and when integrated they
are integrated over all of three dimensional space. The functions Q, A± and B± are
functions of r through the function ϕ(r), which is radially symmetric, and therefore
a function of r = |r| only. In addition A± depends on H0 which is a function of the
di�erential operator ∇2 which can be written

∇2f =
1

r

∂2

∂r2
(rf)− 1

r2
L2f (6.66)

in spherical coordinates, where the di�erential operator L2 is de�ned as

L2 ≡ 1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2(θ)

∂2

∂φ2
(6.67)

This means that the only part of the L-matrix that depends on θ and φ is the oper-
ator L2, and it turns out17 that the spherical harmonics Y m

l (θ, φ) are eigenfunctions
to L2 with eigenvalue l(l+1). This means that if our functions w̄ can be separated18

as f(r) = f(r) · Y m
l (θ, φ) the ∇2-operator can be written ∇2f = 1

r
∂2

∂r2
(rf)− l(l+1)

r2
f ,

and thus L becomes a function of r only. For functions of a radial variable only, an
integration over three dimensional space can be written∫

drf(r) = 4π

∫ ∞

0

dr r2f(r) (6.68)

which is the result we will use for the integrations in (6.62) and (6.64).
We are now left with a one dimensional eigenvalue equation involving the variable

r, which we (in principle) need to solve for each value of l. In order to solve this
numerically we need to turn r into a discrete variable, with step-size dr, and write
the four components of L as huge matrices. The local parts of A and B are easy
to discritize, since they can be written as diagonal matrices, and the only nonlocal
part of these operators is the ∂2

∂r2
(rf)-operator19 in A, which can be discretized as

∂2

∂r2
(rf) → 1

dr2


−2 1 0 0

1
. . . . . . 0

0
. . . . . . 1

0 0 1 −2




dr · f(dr)
2dr · f(2dr)

...
rmax · f(rmax)

 (6.69)

17See [f].
18This separation requires a little more explanation. A more general separation would be f(r) =

f(r)Θ(θ, φ), where Θ is some function. But any angular function can be written as a superposition
of spherical harmonics and if some of the spherical harmonics in the expansion of Θ have di�erent
values of l, that function can no longer be an eigenfunction of anything for which the L2-operator is
the only angular dependent part. If all of the spherical harmonics in Θ have the same value of l they
could be eigenfunctions, but so could other superpositions of the same harmonics perpendicular to
the �rst one, and all these functions would have the same eigenvalue. In general if two functions
solve the same eigenvalue-equation with the same eigenvalue, then so does some superposition of
these two functions, implying that we can always pick Θ as being one single spherical harmonic.

19The operator is local in the limit dr → 0, but since we are doing a discretization this limit is
not taken.
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There are no errors at the endpoints since the function rf is 0 in r = 0, and also
in r → ∞ since the trap-part in H0 would give an in�nite contribution for r → ∞
if the function had any other value than 0. If we choose rmax su�ciently large,
correct behaviour is guaranteed for the functions with smallest eigenvalues20. The
projection operator Q◦ f(r) =

∫
dr′Q(r, r′)f(r′) can be discretized as

Q◦ →

I − 4πdr

 ϕ(dr)ϕ∗(dr)dr2 ϕ(dr)ϕ∗(2dr)(2dr)2 . . .
ϕ(2dr)ϕ∗(dr)dr2 ϕ(2dr)ϕ∗(2dr)(2dr)2 . . .

...
...

. . .


 (6.70)

for the spherical symmetric parts of f(r), and as Q◦ → I otherwise. This means
that if f is proportional to a spherical harmonic Y m

l (θ, φ), we only should use the
expression (6.70) if that spherical harmonic is Y 0

0 , or rather when f has l = 0.
Using this we can write the left hand side of (6.62) as a compound matrix

∫
dr′L+(r, r′)w+(r′) →

 [
Q◦A+Q◦

] [
Q◦B+Q∗◦

][
−Q∗◦B∗

+Q◦
] [

−Q∗◦A+Q∗◦
] 



u+(dr)
...

u+(rmax)
v∗+(dr)

...
v∗+(rmax)



∫
dr′L−(r, r′)w(r′) →

[
A− B−
−B∗

− −A−

]


u−(dr)
...

u−(rmax)
v∗−(dr)

...
v∗−(rmax)


(6.71)

and then we can �nd the w-functions as the eigenvectors to these matrices.
Since ϕ(r) is a real function, Q = Q∗ and B = B∗, which means that both L+

and L− are on the form

[
C D
−D −C

]
. From this we see that if some w̄i with

ui(r) = x(r) and v∗i (r) = y(r) is a solution to (6.62) with eigenvalue ε, then so is
another w̄j with uj(r) = y(r) and v∗j (r) = x(r) with eigenvalue −ε. But we see from
(6.31) that all solutions should ful�l

u∗+◦Q◦u+ − v+◦Q∗◦v∗+ = 1 or u∗− ◦ u− − v− ◦ v∗− (6.72)

and these equations cannot be solved by both of the two functions w̄i and w̄j si-
multaneously. It turns out21 that the w̄-functions solving (6.72) are those with a

20See appendix H.
21In the Schwinger model we proved this to be the case, and for the the full model the result is

the same.
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positive energy eigenvalue, i.e. the physical ones, so after discarding the negative
eigenvalue eigenstates we are left with a number of k-states equal to the number of
steps in the discretization, as would be expected. When we have found the correct
set of w̄s, we can use them to �nd the expectation values of the Ĵ-operators using
the results (6.52) from the previous section.

After the numerical solution procedure, we get each w̄ labeled with three quan-
tum numbers k, l and m. But in (6.52) the states are labeled using only one number
i, so each i must correspond to a unique combination22 of k, l and m. This means
that whenever a sum over all states occurs, we should do the replacement

∞∑
i=0

fi →
kmax∑
k=0

lmax∑
l=0

l∑
m=−l

fklm =
kmax∑
k=0

lmax∑
l=0

(2l + 1)fkl (6.73)

where the equality is true because there are (2l + 1) m-states for each l-state, and
the results of the above calculations are independent of the m quantum number.

The source code to a program doing the calculations described in this section
can be found in appendix G. The code is commented so it should be understandable
using the results from this section. For a discussion of the precision of the numerical
calculations, see appendix H.

22What exact relation we use does not matter as long as i = 0 corresponds to k = l = m = 0. If
we use a maximum l-number lmax a possible indexing is i =

(
(lmax+1)2 ·k+ l(l+1)+m

)
. If we use

an in�nite number of l-states a possible indexing is i =
(
(l(l + 1) +m) · (kmax+1)+k

)
where kmax

is the number of the �nal step in the discretization of the r-axis. Even if both kmax and lmax are
in�nite an indexing is possible. Inspired by the proof of the fact that the cardinality of Q is the same

as for N, we �nd a possible indexing to be i =
(

(k+l)(k+l+1)(k+l+2)
3 − (k+l)(k+l+1)

2 + l(l + 1) +m
)
.



Chapter 7

Results

In this chapter the results produced by an implementation of the theory derived in
the previous chapter, will be presented. The source code to the program producing
these results can be found in appendix G. A discussion of the numerical input
parameters (like the resolution and the length of the r-axis) is presented in appendix
H, which concludes that the values of 〈Ĵx〉 and (∆Jz)

2 found in this section are
correct within a margin of error of 0.5%, while the calculated values of ξ2 are correct
within a margin of error of 1%. Not all results will be presented in this chapter, for
further results without the thorough discussion found here see appendix I. Some of
the �gures in this chapter are shown in higher resolution in appendix J.

7.1 Structure of the equations: preliminary results

In this section we will discuss the structure of the equations and present some
preliminary results, before discussing the main results about spin-squeezing in the
next sections.

As we now know, the equation (6.38) can not be solved analytically, and it will
therefore be solved numerically using the results from section 6.5. We can, however,
look at the equation in various limits, and thereby try to get some ideas about how
we expect the solutions to behave. As mentioned in section 6.4, the solutions will
come in pairs1, such that if w̄ is a solution with eigenvalue ε, then so is w̄′ with
u′ = v, v′ = u and ε′ = −ε. All the negative eigenvalues can be discarded as
unphysical, which leaves us with eigenvalues that we know to be ≥ 0. Let us write
out the equation for the plus-states.

Q◦A+Q◦u+(r) +Q◦B+Q∗◦v∗+(r) = εu+(r)

Q∗◦B∗
+Q◦u+(r) +Q∗◦A+Q∗◦v∗+(r) = −εv∗+(r) (7.1)

1In the mentioned section this was calculated using the symmetry breaking approach where the
Q-functions were absent. But the same calculation can be done with L as given by (6.36).
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where A and B are given by (6.16)

A+ ≡ H0 − µ+ (U + Uab)|ψ|2 +
Ω

2

B+ ≡ (U + Uab)

2
(ψ)2

A− ≡ H0 − µ+ U |ψ|2 − Ω

2

B− ≡ (U − Uab)

2
(ψ)2 (7.2)

We see that a solution to (7.1) is u(r) = ψ(r) and v(r) = −ψ(r) with eigenvalue
ε = 0 because Q◦ψ(r) = Q∗◦ψ∗(r) = 0. A problem could arise from this solution,
namely that it can not be properly normalized since (6.31) would always give zero
and not one as required, as we saw in section 6.4. But luckily this problem does not
concern us: We know that this ψ-eigenstate must have l = 0 because ψ is spherically
symmetric. And because none of the eigenvalues are negative, we know that this is
the lowest one, which assigns it k = 0 as well. This means that this ψ-eigenstate can
be identi�ed as the w̄0+-eigenstate which was excluded from all the sums from (6.42)
to (6.45), and therefore it will never in�uence our physical results. The physical w̄0+-
mode is of course the condensate-mode described by the ĉ-operator, but is is not a
part of the perturbation and it is not treated as such. With the exception of the
w̄0+-mode all the rest of the plus-modes will be orthogonal to ψ thanks to the Q-
operators, and ensuring this is the only function of these operators. In the following
we will disregard the Q-operators in order to simplify the equations.

Let us �rst have a look at the limit U = Uab = 0. In this case B+ = 0, so our
equation for the radial part of the plus-states will become

(µ̌+ εi+)ui+(r) =
1

2

(
−1

r

∂2

∂r2
(rui+(r)) +

l(l + 1)

r2
ui+(r) + r2ui+(r)

)
(µ̌− εi+) v∗i+(r) =

1

2

(
−1

r

∂2

∂r2
(rv∗i+(r)) +

l(l + 1)

r2
v∗i+(r) + r2v∗i+(r)

)
(7.3)

where

µ̌ ≡ µ− Ω

2
(7.4)

We see that the equations for u and v∗ are uncoupled in this limit, and that both
equations are identical to the Schrödinger equation for the three dimensional har-
monic oscillator2, with Eu = µ̌+ ε and Ev∗ = µ̌− ε. From (4.6) and (5.12) we know
that µ̌ = 3

2
(in this limit), so this means that Eu always will be positive, while Ev will

2This is not surprising since our GP-Hamiltonian (4.17) was constructed by adding an inter-
action term to the 3D harmonic oscillator Hamiltonian, and the limit regarded here consists of
setting that interaction to zero.
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be negative if ε > 3
2
. The Schrödinger equation has no negative energy solutions, so

the only way a contradiction can be avoided is if v+ = 0 in all cases. This means
that

w̄klm+(r) =

(
φkl(r) · Ylm(θ, φ)

0

)
(7.5)

is the correct solution to (7.3), where φkl(r) is the radial part of the wave function
for the three dimensional harmonic oscillator with quantum numbers k, l, and m.
The Schrödinger equation can be solved analytically in this case, and the solution
(in NOU) is

φkl(r) = Nklr
le−

1
2
r2L

(l+ 1
2
)

k (r2) (7.6)

where Nkl is a normalization constant and where the L
(α)
n (x)-functions are known

as the generalized3 Laguerre polynomials de�ned by

L(α)
n (x) ≡ x−αex

n!

∂n

∂xn
(
e−xxn+α

)
(7.7)

The associated energies are Eklm = 2k + l + 3
2
which translate to

εkl+ = 2k + l (7.8)

The equation for the minus-modes is identical to (7.3) with the exception that
Ω → −Ω or µ̌ → µ̌ + Ω. This transformation leaves the eigenfunctions the same
w̄kl− = w̄kl+, and the energies are εkl− = 2k + l − Ω. This means that the energy
di�erence between a plus- and a minus-mode with the same quantum numbers is
Ei− − Ei+ = εi− − εi+ = −Ω.

The calculated energies and φ-functions are plotted in �g. 7.1. We see from �g.
7.1 and from (7.6) that the u-functions go as rl close to r = 0 and that the functions
have value zero at k di�erent points4. So even though reincluding the interaction
terms will change the form of the u-functions, these features are essential enough
to remain after including the U -terms. Another e�ect of reincluding the U -terms is
that the Bs in (7.2) become non-zero, which makes the vs di�erent from zero, as we
see in �g. 7.2 where the u and v-functions are plotted for non-zero values of U and
Uab.

Also the energies will change when the non-linear terms are included. Let us
calculate the expectation values of Ĥ in the states |N〉0+, |N − 1〉0+ ⊗ |1〉i+, and

3These di�er from the ordinary Laguerre polynomials by the constant α. If we set α = 0 we
get the ordinary Laguerre polynomials.

4Excluding the zero at the limit r →∞ and for l 6= 0 the zero at r = 0.
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Figure 7.1: The solution to the three dimensional harmonic oscillator, corresponding to
U = Uab = 0. (a) shows the φkl(r)-functions (or ukl(r)-function) for various values of k
and l. Black curves correspond to k = 0, blue correspond to k = 1, red to k = 2 and green
to k = 3. For each k value a curve is plotted for l = 0, 1, and 2. (b) shows the values of εkl.
Blue points are the results for the plus-modes and red points are the minus-modes. The
l quantum number is on the horizontal axis and each curve corresponds to a �xed value
of the k quantum number starting from zero from below. The plus- and minus-states are
split by −Ω = 0.6.

|N − 1〉0+ ⊗ |1〉i− using (5.11). The results are

E0+ =

∫
dr

(
Nϕ∗

0+H0ϕ0+ +N(N − 1)
U + Uab

4
|ϕ0+|4

)
+N

Ω

2

Ei+ =

∫
dr

(
(N − 1)ϕ∗

0+H0ϕ0+ + ϕ∗
i+H0ϕi+ + (N − 1)(N − 2)

U + Uab
4

|ϕ0+|4

+(N − 1)(U + Uab)|ϕ0+|2|ϕi+|2
)

+N
Ω

2

Ei− =

∫
dr

(
(N − 1)ϕ∗

0+H0ϕ0+ + ϕ∗
i−H0ϕi− + (N − 1)(N − 2)

U + Uab
4

|ϕ0+|4

+(N − 1)U |ϕ0+|2|ϕi−|2
)

+ (N − 2)
Ω

2
(7.9)

where as usual Ei− includes i = 0 while Ei+ does not. In order to get a quantity
similar to the εis, we can calculate the energy relative to the ground state
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Figure 7.2: Some of the u and v functions as functions of r, for the parameters N = 1000,
U = 0.06, Uab = 0.04, and Ω = −0.01. u and v have been normalized so the u function
always starts out as positive, and all the plots show both of the functions. (a) and (b)
show the functions for various values of the k-quantum number, while l = 0. (a) shows the
plus-states while (b) shows the minus states. Black, blue, green, red, and azure correspond
to k = 0, 1, 2, 3, and 4 respectively. (c) and (d) show the function for varying l while k
is �xed at 0. (c) shows the plus-states and (d) shows the minus-states, while black, blue,
green, red, and azure correspond to l = 0, 1, 2, 3, and 4 respectively. We notice on (a)
and (c) that the u0+-mode is absent. This is due to the mode being a numerical artifact
as discussed in the main text.
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Ei± ≡ Ei± − E0+, with the results

Ei+ =

∫
dr

(
ϕ∗
i+H0ϕi+ − ϕ∗

0+H0ϕ0+ − (N − 1)
U + Uab

2
|ψ0+|4

+ (N − 1)(U + Uab)|ψ0+|2|ψi+|2
)

Ei− =

∫
dr

(
ϕ∗
i−H0ϕi− − ϕ∗

0+H0ϕ0+ − (N − 1)
U + Uab

2
|ψ0+|4

+ (N − 1)U |ψ0−|2|ψi+|2
)
− Ω (7.10)

The i-numbering of the states in (7.10) refers to the index of the ϕi-functions. This is
contrary to the use in the greater part of this thesis, where the i-numbering refers to
the index of the ui- and vi-functions

5. We have seen that in the case of U = Uab = 0
there is a one to one correspondence between the two indices, so this means that
Ei ≈ εi can be regarded as true in the limit of small U and Uab.

From (7.10) we can calculate the energy di�erence between a plus-state and a
minus-state with the same value of i. Under the approximation ϕi+ = ϕi−, we
obtain the results

∆E0 ≡ E0− − E0+ = −Ω + (N − 1)
U − Uab

2

∫
dr|ϕ0|4

∆Ei ≡ Ei− − Ei+ = −Ω− (N − 1)Uab

∫
dr|ϕ0|2|ϕi|2 (7.11)

where i 6= 0.
We see that in the limit U = Uab = 0, both of these reduce to ∆E = Ω like we

found previously. When this limit is not taken we get that ∆E0 increases with the
interaction, as long as U > Uab. ∆E6=0 on the other hand decreases with U , showing
that given a large enough U , the sign of ∆E6=0 can change so that Ei+ > Ei−. In �g.
7.3 the simulated values of εi are plotted for a non-zero value of the U -terms. We
see that the values behave in accordance with what is expected from (7.11).

As we saw in section 5.1 the two-mode approximation predicts that Ω = 0
corresponds to 〈Ĵx〉 = 0. But as we will see later, that is not the case for the
full Bogoliubov calculation, where a slightly positive Ω is needed in order to get
〈Ĵx〉 = 0. This can be explained by the positive extra term in the expression for
∆E0 in (7.11). The expressions (7.10) and their similarity to the εis will be of further
use in the coming sections where they are used to explain other details of our results.

5If we split the two di�erent i-indices in k, l and m quantum numbers, we get that the l and m
quantum numbers has a one to one correspondence between the two di�erent numberings, while
the k has not, except in the limit of U = Uab = 0 as we have seen.
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Figure 7.3: Some of the energy eigenvalues for the parameters N = 1000, U = 0.06,
Uab = 0.04, and Ω = −0.01. Blue points correspond to plus-modes and red to minus-
modes, and ×, ◦, +, •, and ∗ correspond to k = 0, 1, 2, 3, and 4 respectively. The l
quantum number is on the horizontal axis.

Let us have a look at the expectation values of the Ĵ- operators. For the case of
zero temperature they are given by (6.52), which can be written

〈Ĵx〉 =
N

2
− V−

(∆Jz)
2 =

N

4
+
N − V− − V+

4
W− (7.12)

where

V− ≡
∑
i

(
v∗i−◦vi−

)
V+ =

∑
i6=0

(
v∗i+◦Q◦vi+

)
W− =

∑
i

(
ϕ∗◦ui−ϕ∗◦vi− + 2v∗i−◦ϕϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)
(7.13)

We see that if vi = 0 for all i, we get V− = V+ = W− = 0 corresponding to
〈Ĵx〉 = N

2
and (∆Jz)

2 = N
4
, which are the values we get for the SCS in the Jx-

direction. This indicates that at the point of perturbation, we expect vi = 0 for all
i. In order to explain this and predict the behaviour away from that point, we will
make a model where we ignore the r-dependence of the u and v-functions. In that
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case we can �nd a crude expression for v like we did in the case of the Schwinger
model, by diagonalizing L analytically. The result is similar to (5.45), and is given
by

vi =
−1√
C2
i − 1

(7.14)

where

Ci ≡
Bi√

A2
i −B2

i − Ai
(7.15)

A similar expression for u can be found using ui ◦ ui − vi ◦ vi = 1. If we de�ne
Φi ≡ Bi/Ai, we can rewrite the expression for Ci to

Ci =
Φi√

1− Φ2
i − 1

(7.16)

from which we see that only the proportion between Ai and Bi matters, and not
their absolute values. We see that C2

i is a decreasing function of |Φi|, and that −vi
is a decreasing function of C2

i , showing that −vi is an increasing function of |Φi|.
The function is plotted in �g. 7.7a in the next section, and we can calculate that
near |Φi| = 0 it goes as vi = −1

2
|Φi|.

As Ω → −∞ we see from (7.2) that Ai− → ∞ while Bi− stays unchanged,
making Φi− → 0 and thereby vi− → 0. This explains why vi− = 0 corresponds to
the point of perturbation, since the perturbation is made around the point where
−Ω � 1.

7.2 Results for zero temperature

In this section the results for the spin-squeezing at zero temperature will be pre-
sented. In �gs. (7.4) and (7.5) we show (∆Jz)

2 vs 〈Ĵx〉 for di�erent values of
s ≡ U + Uab and f ≡ Uab/U , and using (3.30) we can easily calculate that all the
included values of s and f produce some amount of spin-squeezing6. The curves
have been made by doing the calculation for di�erent values of Ω, and each value of
Ω corresponds to a point on the curve in question. We see that some values of s and
f bring the curve closer to the F-function which is plotted in red as comparison, and
since the curves do not cross each other, we know that the curve closest to the F-
function gives the most spin-squeezing. We see that the point of maximal squeezing
is relatively close to 〈Ĵx〉 = N/2 which is unlike the result for the two-mode function
where the minimum was found to be at 〈Ĵx〉 = 0. Q-functions7 for the produced
states are shown in �g. 7.6, for one combination of parameters.

6As mentioned in sections 4.3 and 5.1 we limit the discussion to U and Uab ≥ 0, and U ≥ Uab.
This corresponds to s ≥ 0 and 0 ≤ f ≤ 1.

7We have to use the Q-function de�ned by (3.29) instead of the more physical Q-function, since
we do not have the Bogoliubov states expressed in the |j,m〉-basis. See sections 3.3 and 8.2.



CHAPTER 7. RESULTS 95

Figure 7.4: Graphs for (∆Jz)2 vs 〈Ĵx〉 for zero temperature and N = 1000. Each subplot
corresponds to a �xed values of Uab/U and each of the black curves to some value of
U + Uab. The values of U + Uab are 0.01, 0.1, 0.3, 0.6, 1, and 3 from below. The red
curve is the ideal result given by the F-function. We see that as U +Uab approaches zero,
the curves approach the ideal curve, indicating that for zero temperature, the parameters
maximizing the squeezing are U + Uab ≈ 0. The data plotted here are the same as those
plotted in �g. 7.5.
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Figure 7.5: Graphs for (∆Jz)2 vs 〈Ĵx〉 for zero temperature and N = 1000. Each subplot
corresponds to a �xed values of U + Uab and each of the black curves to some value of
Uab/U . The values of Uab/U are 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from above. The red curve is
the ideal result given by the F-function. We see that as Uab/U approaches one, the curves
approach the ideal curve, indicating that for zero temperature, the parameters maximizing
the squeezing have U ≈ Uab. The data plotted here are the same as those plotted in �g.
7.4.
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Figure 7.6: Q-functions for the states at di�erent values of Ω, for U = 0.06, Uab = 0.04,
N = 1000 and T = 0. The values of Ω from (a) to (f) are 0.00015, 0.00012, −0.000005,
−0.001 −0.01, and −1 respectively. Ω = −0.000005 gives a squeezing very close to the
maximum for these parameters, the value is ξ2 = 0.0346. The plot for Ω = 0.00015 has
〈Ĵx〉 = −365.30, and at that point the approximation N ≈ N0 has broken down.

It turns out that small values of s and values of f close to one, bring the curves
closest to the F-function. In section 4.3 we saw that a larger value of the constant
U0, which for the one-species case discussed there played the same role as s/2 does in
two-species GPE (5.12), corresponds to a broader ψ(r)-function. From the classical
expression for the angular momentum L = r× p we see that a broader ψ therefore
makes the value of p needed to access a state with some angular momentum, smaller,
which is equivalent to stating that less energy8 is needed to access modes with l 6= 0.
This will decrease the value of the

∑
i(ϕ◦ ϕi−)-terms in the expression for (∆Jz)

2,
since the terms in the sum with l 6= 0 give zero contribution. The consequence of
this is that the curves will be moved in the direction of less squeezing, which explains
why a small value of s gives the most squeezing.

The observed f -dependence can be explained from the time-energy uncertainty
relation, from which we see that a smaller characteristic time of an excitation of
the system corresponds to a greater uncertainty of the energy, meaning that the

8This can also be seen directly from the classical expression for energy in terms of angular

momentum E = L2

2I where I is the moment of inertia which in general goes as r2 and therefore
increases when s does.
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Figure 7.7: These graphs explain the behaviour of the subplots in �gs. 7.4 and 7.5. (a) is
a plot of the simpli�ed functions ui and −vi as functions of the fraction Φi ≡ Bi/Ai, given
by (7.14) and (7.16). (b) is similar to �g 7.3 and shows the values of εkl− for di�erent
values of s ≡ U + Uab. Black points correspond to s = 0, blue to s = 0.2, green to s = 0.6
and red to s = 1. The l-quantum number is on the horizontal axis and each set of curves
corresponds to values of k = 0, 1, 2, 3, and 4 from below. (c) shows values of v∗kl−◦vkl−
with the same colour code as (b) excluding s = 0 which gives vkl− = 0, and (d) shows the
same values multiplied with 2l + 1 showing how large s ensures that only a small part of
W− comes from the l = 0-states. On (c) and (d) each set of curves correspond to k = 0,
1, 2, 3, and 4 this time starting from above.

chance of the excitation being to a higher energy state is larger which decreases
the squeezing. The characteristic time is inversely proportional to χ which goes as
χ ∝ s(1 − f)/(1 + f) from which we see that χ decreases when f increases. This
explains why values of f close to one maximizes the squeezing.

A more mathematical explanation of these results can be seen from our position-
independent model from the previous section. Around the point of perturbation,
each Φi and consequently every vi will be small, meaning that we can disregard the
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v2
i -terms and set u = 1, giving

(∆Jz)
2 =

N

4
+
N

4
W− , W− ∝

∑
i

ϕ∗◦vi− (7.17)

indicating that all the relevant contributions come from the minus-states. Keeping
f �xed and increasing s will have the e�ect of increasing Φi−, −vi−, and thereby
V− and −W−. But we see that only terms with l = 0 give a contribution to W−
since the other terms have ϕ∗◦vi− = 0, so the value of W− will be most sensitive to
change, in con�gurations where a large part of the contribution to V− comes from
the l = 0-terms.

From (7.2) we see that a higher value of s corresponds to a higher value of Φi− for
high values of −Ω. A higher Φi− causes a higher vi− for each value of i, which means
that con�gurations with high s has more of the contribution to V− coming from the
l 6= 0-states which makes the response in W− to changes in Ω relatively smaller,
giving higher values of (∆Jz)

2 for a given value of 〈Ĵx〉. Another way to formulate
this is that higher s corresponds to lower values of dW−

dV−
, thereby making the slope of

the (∆Jz)
2 vs. 〈Ĵx〉-curves smaller close to 〈Ĵx〉 = N/2 which takes it further away

from the F-function in the direction of less squeezing, just as we see from �g 7.4.
Likewise we see from (7.2) that higher values of f correspond to a higher value of
Φi− which indicates that increasing f has the same e�ect as decreasing s, which is
just what we see from �g. 7.5.

We notice that isolating N0 in (7.12) gives N0 = 1
2
N − V+ + 〈Ĵx〉. This means

that if V+ � 〈Ĵx〉 as is the case close to the point of perturbation, we have that the
�correctness-parameter� for the approximation of discarding higher order terms in

δψ̂ is given as N−N0

N
= 1

2
− 〈Ĵx〉

N
showing that for the values plotted in �gs. 7.4 and

7.5 the approximation is still valid.

For the ideal case of the F-functions (3.39), the Schwinger model (5.50), and
for the time-dependent two-mode model described by (5.18) in the �Kitagawa and
Ueda�-part of section 5.3, we were able to �nd an expression for the squeezing as
function of the particle number. For the F-functions and for the Schwinger model

we had ξ2 ∝ N−1 for large N , while the time dependent case had ξ2 ∝ N−2
3 as we

saw in (5.18). For the Schwinger model the result was found by �tting a function to
the numerical results, and the same technique will be used here. We keep the value
of N(U+Uab) in order to keep the value of9 µ̌. In addition we have the free variables
f , Ω, and the temperature T , so we limit the discussion to some �xed values of these
parameters: zero temperature, N(U + Uab) = 100, and f = 2

3
. A plot of (∆Jz)

2/J

vs. 〈Ĵx〉/J is shown in �g. 7.8 for di�erent values of N , and from these results we

9As we saw in section 4.3, µ is a function of N and U only through the product NU in both
the Gaussian approximation and the Thomas-Fermi approximation. This result is also valid for
the two-species model, with the replacements µ→ µ̌ and U0 → 1

2 (U + Uab)
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Figure 7.8: This plot shows 〈Ĵx〉/J vs. (∆Jz)2/J for di�erent N , but constant N(U +
Uab) = 100 and Uab/U = 2

3 . The black curves are the results, while the red curves are
the F-functions as comparison. The values of N are 500, 1000, 1500, 2000, 2500, 3000,
4000, 5000, 7500, 10000, 20000, and 50000 from above. The insert shows the curve given
by (7.18) and the points of data to which it is �tted.

get that the Ω minimizing ξ gives the squeezing parameter10

ξ2 ≈ 1.31

(N − 17)0.527
(7.18)

where we see that the scaling with N is less advantageous than for all the previous
models. (7.18) is plotted in the insert in �g. 7.8, along with the data points. The fact
that the scaling with N is worse than for the squeezing produced by the F-functions
is not surprising, since the existence of the Bogoliubov modes bring the system away
from the two-mode approximation as argued above. The fact that the scaling with
N is worse than what was calculated from the time-dependent approach, is, however,
bad for the usefulness of the steady-state approach presented in this thesis.

7.3 Results for non-zero temperatures

The results of a simulation of how the squeezing depends on the temperature, can
be seen in �g. 7.9. We see that the (∆Jz)

2 vs. 〈Ĵx〉-curves for high temperatures
lie above those for low temperatures, giving rise to less spin-squeezing. Fig. 7.9b
shows a zoom on the rightmost part of these functions, and we see that independent
of the temperature, some amount of squeezing is obtained very close to the point of
perturbation. Q-functions for a non-zero temperature are plotted in �g. 7.10.

10The �tted function had the form a
(N+b)c , and the �tting result was a = 1.30648 ± 0.02111,

b = −17.792± 1.067, and c = 0.526847± 0.002174. The �t was made to the 13 points seen in the
insert in �g. 7.8.
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Figure 7.9: The black curves on these �gures show (∆Jz)2 vs. 〈Ĵx〉 for di�erent tem-
peratures. The red curve shows the F-function describing the ideal case as comparison,
while the green curve shows the function corresponding to ξ = 1. The temperatures go
from 0 to 0.49 with an interval of 0.049 from below. For the trap-frequency mentioned
in [13], T = 0.049 corresponds to T = 1nK. The interaction constants are U = 0.06 and
Uab = 0.04, and N = 1000. The two sub�gures di�er by the zoom only.

Figure 7.10: Q-functions for the states at di�erent values of Ω for T = 0.049. The shown
states have U = 0.4, Uab = 0.2, and N = 1000. The values of Ω from (a) to (f) are
0.00006, 0, −0.00025, −0.004 −0.1, and −10 respectively. Ω = −0.00025 gives a squeezing
very close to the maximum for these parameters, the value is ξ2 = 0.1039. The plot for
Ω = 0.00006 has 〈Ĵx〉 = −80.29, and at that point the approximation N ≈ N0 has broken
down.
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It is not surprising that higher temperatures corresponds to lower squeezing,
since higher temperatures will give rise to higher occupation levels of the Bogoliubov
modes, as seen from (6.47). We see that further away from the point of perturbation
where −Ω is small, (∆Jz)

2 takes an almost constant value proportional to the tem-
perature. This can be explained by the parallel to the xp-case explained in section
5.5, where we see from (5.26) that Ĵz behaves as

√
N/2 x̂ near the point of per-

turbation. This means that the Hamiltonian can be written as H ∝ χN
2
x̂2 ignoring

the Ω-term. This is similar to the classical expression for the potential energy in a
harmonic oscillator E = 1

2
kx2 with k = χN . For a classical harmonic oscillator the

thermal probability distribution is p(x) =
√
k/(2πT ) exp (−kx2/(2T )) from which

we can calculate 〈x̂2〉 = T /k which is proportional to T , as we see for (∆Jz)
2 in �g.

7.9.
For a more detailed explanation of the behaviour shown in �g. 7.9, we use our

position-independent model. As we can see from (6.48)-(6.51), we can let (7.12)
maintain its form if (7.13) is rede�ned to

V− =
∑
i

(
v∗i−◦vi−

(
〈n〉i− + 1

)
+ u∗i−◦ui−〈n〉i−

)
V+ =

∑
i>0

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

)
W− =

∑
i

((
ϕ∗◦ui−ϕ∗◦vi− + 2v∗i−◦ϕϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)(
〈n〉i− + 1

)
+
(
ϕ∗◦vi−ϕ∗◦ui− + 2u∗i−◦ϕϕ∗◦ui− + u∗i−◦ϕv∗i−◦ϕ

)
〈n〉i−

)
(7.19)

where the �nal result can be approximated as

W− ∝
∑
i

(
ϕ∗◦vi− + ϕ∗◦ui−〈n〉i−

)
(7.20)

near the point of perturbation.
vi = 0 and ui = 1 at the point of perturbation as we have seen, and from

(7.10) we see that Ei−, and therefore εi−, is in�nite at that point, which makes
V− = V+ = Wi = 0. This ensures that (∆Jz)

2 = N/4 and 〈Ĵx〉 = N/2 at the point
of perturbation, as we saw in the temperature independent case.

We know that near the point of perturbation, the points of maximal squeez-
ing will almost coincide with the minima of the (∆Jz)

2 vs. 〈Ĵx〉2-curves. These
points can be found by �nding the minimum of (7.20), which will be where the
ϕ◦ vi−-term dominates the most over the ϕ∗ ◦ ui−〈n〉i−-term. A higher tempera-
ture will give more weight to the ϕ∗◦ ui−〈n〉i−-term, which makes the values of −Ω
required to make the energy high enough to make the ϕ◦ vi−-term dominant even
larger. This ensures that the curve will diverge from the zero-temperature case even
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closer to the point of perturbation, thus giving less squeezing as we see from �g. 7.9.

A simulation with varying s and f , similar to the zero temperature case from
the previous section, has been made for non-zero temperatures as well. In �gs. 7.11
and 7.12 the results are plotted for one value of T , and for other values of T the
results can be found in appendix I. The same values of s and f have been used as
in the previous section.

We see that it is no longer the case that a low s and a f close to one maximizes
the squeezing, as we saw in the zero-temperature case. In fact the limit becomes
the opposite for su�ciently high temperatures11, and for the temperature used in
�gs. 7.11 and 7.12 we see that the optimal values are somewhere in between the
two extrema. This can be understood from the fact that inclusion of a tempera-
ture introduces a new energy-scale, that of T , in the system. The e�ects of the
temperature will be smallest when T � χ, and χ is largest for large s and small f .

Our position-independent model can explain these results as well. We remem-
ber that the points of maximal squeezing are the points making the ϕ◦ vi−-term in
(7.20) dominant. For low temperatures, the ϕ◦ vi−-term will always be dominant
and the behaviour will be as described for the zero-temperature case. But for the
high-temperature case we want some values of s and f that give as much weight to
the ϕ◦vi−-term as possible for a given value of Ω, and we saw in the previous section
that −vi− is maximized by high s and low f , indicating that for high temperatures
the squeezing will be maximized in this opposite limit. For temperatures between
the two limits, some set of s and f between the two extrema is expected to maximize
the squeezing, just as we see in �gs. 7.11 and 7.12.

I have tried to make a detailed calculation which imitates the values used in
the experiment by Marcus Oberthaler described in [13] and in section 5.4. When
calculating the value of U the average of aaa and abb is used resulting in the scattering
length a = 97.5a0. From this we can calculate U using (4.12) with the result12

U = 4.99 · 10−51 Jm2 which corresponds to U = 0.124 in the natural oscillator units.
As described in section 5.4, the experiment adjusts the value of aab using a Feshbach
resonance, so that the measured value of χ becomes χ = 2π×0.063Hz corresponding
to χ = 148 · 10−6 in NOU. We know, however, that in the limit of large interaction
Ns � 1 the physical value of χ is13 7

10
times the value χ = |ϕ|4(U − Uab) given by

(5.7). This means that the value of χ we should use when �nding Uab using (5.7) is
χ = 212 · 10−6. From this we can calculate14 Uab with the result15 Uab = 0.103. The

11We can not see this from �gs. 7.11 and 7.12 alone. Similar plots for di�erent temperatures are
shown appendix I. See speci�cally �g. I.3 in that appendix.

12The values for ω and m used in these calculations are ω = 2π × 425Hz and m = 87u where u
is the atomic mass unit. Both values are listed in the relevant part of section 5.4.

13See section 5.3, and the papers [4] and [11]
14Since the value of Uab a�ects the value of ϕ(r), this must be done by numerical iteration.
15This result corresponds to Uab = 4.14 ·10−51 Jm2 and aab = 81.0a0 corresponding to a decrease

of 17% from the original value of aab.
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Figure 7.11: Graphs for (∆Jz)2 vs 〈Ĵx〉 for N = 1000 and a temperature of T = 0.049.
Each subplot corresponds to a �xed value of f while s is varied. The blue, dark green, red,
cyan, violet, and brass curves correspond to s = 0.01, 0.1, 0.3, 0.6, 1, and 3 respectively,
while the black curve is the ideal result given by the F-function. The data plotted here
are the same as those plotted in �g 7.12, and the values of s and f are the same as those
in �g. 7.4.
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Figure 7.12: Graphs for (∆Jz)2 vs 〈Ĵx〉 for N = 1000 and a temperature of T = 0.049.
Each subplot corresponds to a �xed value of s while f is varied. The blue, dark green, red,
cyan, violet, and brass curves correspond to f = 0, 0.1, 0.3, 0.5, 0.7, and 0.9 respectively,
while the black curve is the ideal result given by the F-function. The data plotted here
are the same as those plotted in �g 7.11, and the values of s and f are the same as those
in �g. 7.5.
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Figure 7.13: Graphs for (∆Jz)2 vs 〈Ĵx〉 for the values of U , Uab, N and T used in the
experiment described in [13]. The black curve is the result, and the dark blue curve shows
the result for similar values at zero temperature. The red curve shows the F-function for
comparison, and the green and cyan curves correspond to ξ2 = 1 and ξ2 = 0.15 respectively.
The two sub�gures di�er by the zoom only.

temperature at which the experiment takes place is not reported in [13], but since
the experimental setup is similar to the one described in [15], I will assume that
the temperature is half of the smallest of those described in [15] namely T = 10nK
corresponding to T = 0.49. The particle number is N = 2300 which I will use
ignoring the 15% particle loss reported in [13].

The result of a simulation using these parameters is plotted in �g. 7.13. The
minimal value the squeezing parameter may assume is ξ2 = 0.9199 which should be
compared to the ξ2 = 0.15 obtained in [13]. This does not contradict my theory
since the experiment described in [13] uses a time-dependent approach to generation
of spin-squeezing, as described in section 5.4, which is di�erent from the steady-state
approach described by my theory. The conclusion we can derive from this is that
when the temperature is as high as 10nK a dynamical approach to production of
squeezing is preferable. In �g 7.13 the steady-state result for zero temperature
is plotted as well. We see that if zero temperature was to be obtained, it would
be possible to obtain more squeezing than was done by Oberthaler. The point of
maximal squeezing corresponds to ξ2 = 0.0271 in this case.



Chapter 8

Conclusions and outlooks

8.1 Conclusions

As stated in the introduction, the purpose of this thesis is to derive a steady-state
Bogoliubov model of a Bose-Einstein condensate, use the result to calculate the
spin-squeezing, and investigate the results. This derivation was done in chapter 6,
and the results are shown and analyzed in chapter 7.

The result of the derivation is that the two-species Gross-Pitaevskii Hamiltonian
(5.11) can be diagonalized by expressing the quantum-�eld operator for the particles
according to (6.2), (6.11), and (6.19), where the ui and vi-functions are eigenstates
to the matrix L as given by (6.38). The expectation value of the angular momentum
operators and thereby the squeezing, can be calculated from the ui and vi-functions
using (3.30) and (6.48) to (6.51). How the calculations are implemented numerically
is described in section 6.5.

Simpler models, like the Two-mode model and the Schwinger model, result in a
squeezing scaling with the number of particles as ξ2 ∝ N−1, showing that a large
number of particles gives better squeezing. This is still true for the case described
by my theory, even though the scaling is not as good as for the simpler models. For
one set of parameters the relation was found to be ξ2 ∝ N−0.527 for a �xed value of
the chemical potential. The results for various particle numbers can be seen in �g.
7.8.

The best results for the spin-squeezing are obtained at low temperatures. This
is not surprising since the system is closer to that described by the two-mode model
in that limit. The results for various temperatures can be seen in �g. 7.9, and in
appendix I.

For the case of zero temperature, the optimal squeezing is obtained for atoms
with U ≈ Uab and U+Uab ≈ 0, which can be seen in �gs. 7.4 and 7.5. But for higher
temperatures, like the 10 nK that were used in the discussion of the experiment
by Oberthaler, the limit is the opposite, in this case atoms with U � Uab and
U + Uab � 1 optimizes the squeezing. The results for non-zero temperatures giving
rise to this conclusion can be seen in �gs. 7.11 and 7.12, and in appendix I.
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A comparison with the experiment by Oberthaler described in [13] shows that for
physical temperatures like 10nK, the dynamical approach used there results in an
amount of squeezing surpassing the amount that can be obtained using the method
developed in this thesis. Therefore I must conclude that a dynamical approach to
creation of spin-squeezing is to be preferred, if the only concern is to squeeze as
much as possible. The results of this comparison can be seen in �g. 7.13.

8.2 Outlooks

The ultimate result of this thesis would have been a formula for the squeezing
parameter ξJz as function of all the free parameters U , Uab, N , Ω, and T . Since ξJz

cannot be found analytically, such a formula could only have been made by �tting
some function to the numerical results, like we did for the N -dependence alone in
(7.18). The reason this has not been done is that the time needed to make the
required number of simulations for all possible combinations of the free variables
simply was not available.

If one was to realize the method described in this thesis experimentally, the
primary limit on the amount of squeezing would be particle losses from the trap1.
Such atomic losses are not part of the model in this thesis, since it is hard to assign
reason to the notion of particle loss in a steady-state formulation requiring a system
in equilibrium. If this thesis was to be improved, I would need to �nd a way to
include such e�ects in the model anyway. In order to do this, one would presumably
need to go into further detail on the experimental setup than what is done in this
thesis, in order to �nd some optimal time being long enough to allow the system to
obtain equilibrium, but short enough that only a few atoms will have escaped the
trap. A similar calculation for the time-dependent approach can be found in [19].

Not the entire space of parameters was explored in this thesis. The discussion
was limited to the cases of positive scattering lengths U ≥ 0 and Uab ≥ 0, and to the
antiferromagnetic regime U ≥ Uab. As we saw in section 4.3 the condensate collapses
for large negative values of U and Uab, and as mentioned in section 5.1 U < Uab
results in a physical split of the a and b modes. Still it could have been interesting
to investigate the behaviour a little into these 'forbidden' parts of parameter space,
since we saw that for zero temperature, the squeezing is optimal for U ≈ Uab ≈ 0,
which is close to the forbidden area. Another possibility could have been not to
make the assumption Uaa = Ubb. If the two constants were kept separate, the two-
mode approximation would have included terms proportional to Ĵz, which would
imply that the maximally squeezed states would not be at the equator of the Bloch
sphere. The full calculation could have been done without this assumption2. The
result would have been that the plus- and minus-modes would not separate as they
do in (6.13), which in this case could be written Ĥ = Ĥ0 + 1

2
Λ̄†MΛ̄ whereM would

1Marcus Oberthaler: Private correspondence.
2See [4].
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be a 4× 4-matrix.
In section 5.6 some choices that had to be made in order to do the full calculation

were discussed. One of them was the choice of the non-symmetry-breaking approach,
and the consequences of a di�erent choice are discussed in detail in section 6.4. But
another choice that was taken in section 5.6, was the choice of treating the ϕ0−mode
as part of the perturbation, and not as a condensate-mode. We see in �g. I.2 in
appendix I, that the occupation number of that mode is much larger than of all
the other modes3, which makes the choice a little questionable. The reason for
this treatment of the ϕ0−mode is that otherwise we would have to choose ϕ0− ∝ ϕ
analogous to the case of ϕ0+ since it is not obvious how else we could �nd ϕ0−. This
choice would, however, be wrong, as the small di�erences in ϕa and ϕb would not be
taken into account4. Finding a way to solve this problem would be another possible
improvement of the thesis.

In order to plot the states resulting from an implementation of my theory, we
used the Q-function instead of the more physical Q-functions. The reason for this
is that we do not have an expression for the Bogoliubov-states in the |j,m〉-basis,
and �nding such an expression would be another possible improvement5.

Finally I should mention the e�ciency of my numerical simulations. I have
chosen to do all my programming in the programming language 'Matlab', since
that language is perfect for handling matrices, like those in (6.71) that have to be
diagonalized in order to �nd the squeezing. 'Matlab' is however not that e�cient
in handling loops, of which my programs6 contain plenty. It is very likely that
implementing the code in a lower level language, like 'C', would be more e�cient.
For handling the matrices undoubtedly some C-algorithms exist, which I could have
used for those parts of the calculations.

3At least for the value of Ω used to produce that plot. In �g. 7.7c the di�erence is not nearly
as large.

4ϕ+ ∝ ϕa+ϕb, so in that case small di�erences in ϕa and ϕb does not matter. But ϕ− ∝ ϕa−ϕb,
in which case any small di�erences would be blown up, and ϕ− ∝ ϕ would accordingly be very
wrong.

5A way to do this inspired by the Bogoliubov transform could be to express the α̂-operators
using some new β̂ operators α̂i ≡

∑
j(µij β̂ij + νij β̂

†
ij) where µij and νij are chosen so the operator

Ĵ2 ≡ Ĵ2
x + Ĵ2

y + Ĵ2
z becomes diagonal. In that case the eigenstates to the β̂†β̂-operator will be

eigenstates to Ĵ2, and thus similar to the |j,m〉-states. This leaves the problem of how to �nd the
m-quantum number. Whether this proposed method will work, is yet to be investigated.

6See appendix G.



Appendix A

Second quantization

The state vector for a pure state made up of N particles can be written as

|ψ〉 =
∑

ν1,ν2,...

Cν1,ν2,... · |ψ〉(1)ν1 ⊗ |ψ〉
(2)
ν2
⊗ . . .⊗ |ψ〉(N)

νN
(A.1)

where |ψ〉(i)νi is the νith quantum state of the ith particle. We assume the set of

|ψ〉(i)νi for a given i to be complete. In this thesis we will only consider bosons,
and for bosons the many-particle wave function is (per de�nition) symmetric under
exchange of two identical particles. So if our particles are indistinguishable, the
Cν1,ν2,...-coe�cients must be symmetric under exchange of νi and νj, for any i and j.
When the particles are indistinguishable it makes no sense to enumerate them like
we do in (A.1), and we can get rid of the enumeration by changing to the so called
number basis. In this case we notice that all the νis can assume the same values,
named 1, 2, 3, . . ., so in the number basis |ψ〉 is written1 as

|ψ〉 =
∑

n1,n2,...

Kn1,n2,... · |n1〉1 ⊗ |n2〉2 ⊗ . . . (A.2)

where |ni〉i means ni particles in the ν-state i.
Inspired by the quantum-harmonic oscillator we de�ne a set of annihilation and

creation operators âi and â
†
i which remove or add particles from the ν = i quantum

state respectively. These operators are de�ned to have the commutation relations[
âi, â

†
j

]
= δij ,

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0 (A.3)

which lead to the relations

âi|n〉i =
√
n|n− 1〉i , â†i |n〉i =

√
n+ 1|n+ 1〉i (A.4)

from which we see that the number operator n̂i can be written as

â†i âi|n〉i = n|n〉i = n̂i|n〉i (A.5)

1The expression for the Kn1,n2,...-coe�cients must be Kn1,n2,... = N !
n1!n2!...

C11,...,1n1 ,21,...,2n2 ,...,
but this result is never used.
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Let us have a look at a basis change from the complete basis enumerated by ν
to another complete basis enumerated by µ

|ψ〉µ =
∑
ν

|ψ〉ν〈ψ|ν |ψ〉µ =
∑
ν

〈ψµ|ψν〉∗|ψ〉ν (A.6)

If we write |ψ〉µ = â†µ|0〉 and |ψ〉ν = â†ν |0〉, we can deduce the transformation relations
for â to be

â†µ =
∑
ν

〈ψµ|ψν〉∗â†ν , âµ =
∑
ν

〈ψµ|ψν〉âν (A.7)

We see that the total particle number operator is given as

N̂ =
∑
µ

â†µâµ =
∑
µ

∑
ν

〈ψν |ψµ〉â†ν
∑
ν′

〈ψµ|ψν′〉âν′

=
∑
νν′

〈ψν |ψν′〉â†ν âν′ =
∑
ν

â†ν âν (A.8)

showing that the total particle number is unchanged by the transformation. If we
let the µ-basis be the continuous r-basis with |ψ〉µ = |r〉, then the transformation
becomes

Ψ̂(r) =
∑
ν

〈r|ψν〉âν =
∑
ν

ψν(r)âν (A.9)

where âr has been named Ψ̂(r) and is known as a quantum �eld operator. We see
that the total particle number operator is given as

N̂ =

∫
drΨ̂†(r)Ψ̂(r) (A.10)

Let us for a moment go back to �rst quantization and have a look at the local,
one-particle operator Ô. Inserting the completeness relations and transforming to
the r-basis, allows us to reexpress this operator as

Ô =
∑
ν′

|ψ〉ν′〈ψ|ν′
∫

dr|r〉〈r|Ô
∫

dr′|r′〉〈r′|
∑
ν′′

|ψ〉ν′′〈ψ|ν′′

=
∑
ν′ν′′

Ôν′ν′′|ψ〉ν′〈ψ|ν′′ (A.11)

where

Ôν′ν′′ ≡
∫

drψ∗
ν′(r)Ôψν′′(r) (A.12)

The second integral has vanished due to the delta function coming from the locality
of Ô. The many-particle generalization of Ô is

Ô ≡ Ô(1) ⊗ Î(2) ⊗ . . .⊗ Î(N) + . . .+ Î(1) ⊗ . . .⊗ Î(N−1) ⊗ Ô(N) (A.13)
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and acting with that operator on the many-particle state

|ψ〉 = |ψ〉(1)
ν1
⊗ |ψ〉(2)ν2 ⊗ . . .⊗ |ψ〉(j)νj

⊗ . . .⊗ |ψ〉(N)
νN

(A.14)

gives

Ô|ψ〉 =
∑
j

∑
ν′

Ôν′νj
|ψ〉(1)ν1 ⊗ |ψ〉

(2)
ν2
⊗ . . .⊗ |ψ〉(j)ν′ ⊗ . . .⊗ |ψ〉(N)

νN
(A.15)

where we have used the fact that 〈ψν′′|ψνj
〉 = δν′′νj

. Rewriting the above using
creation operators gives

|ψ〉 = â†ν1 â
†
ν2
. . . â†νj

. . . â†νN
|0〉 (A.16)

and

Ô|ψ〉 =
∑
j

∑
ν′

Ôν′νj
â†ν1 â

†
ν2
. . . â†ν′ . . . â

†
νN
|0〉

=
∑
ν′ν′′

Ôν′ν′′ â
†
ν′ âν′′|ψ〉 (A.17)

where the �nal equation has renamed νj ν
′′. Reinserting the expression for Ôν′ν′′

gives us

Ô|ψ〉 =
∑
ν′ν′′

∫
drψ∗

ν′(r)Ôψν′′(r)â
†
ν′ âν′′|ψ〉

=

∫
drΨ̂†(r)ÔΨ̂(r) (A.18)

with the de�nition of Ψ̂(r) inserted. By comparing this to the expression for the
expectation value of Ô

〈Ô〉 =

∫
drψ∗(r)Ôψ(r) (A.19)

we see that the form of these two expressions are the same. This is a general
principle true not only for one-particle functions2. So if we have an expression for
the expectation value of some operator, we can immediately generalize this to second
quantization using3

〈Ô〉 =

∫
drf

(
ψ(r)

)
→ Ô =

∫
drf

(
Ψ̂(r)

)
(A.20)

This principle will be used when going to second quantization throughout the thesis.

2In [e] the same calculation is done for two-particle operators, with the note that higher order
operators will not be encountered. This is true for this thesis as well.

3This is not entirely well de�ned, since the ψs commute, while the Ψ̂s do not. The rule of thumb
is that the Ψ̂-operators should appear in normal order. When the particle number is large we have
that 〈Ψ̂†Ψ̂〉 ≈ 〈Ψ̂Ψ̂†〉 which makes the order of the Ψ̂-operators less important in this limit.



Appendix B

Angular momentum in quantum

mechanics

In classical mechanics angular momentum is de�ned as

L = r × p (B.1)

This is generalized to �rst quantization by inserting the position operator r̂ and the
momentum operator p̂ = −i∇ giving

L̂l = −i
(
xm

∂

∂xn
− xn

∂

∂xm

)
εlmn (B.2)

where the Einstein summation convention is used. From this we can derive that the
commutation relation for angular momentum-like1 operators should be[

Ĵl, Ĵm

]
= iεlmnĴn (B.3)

We see that the operator Ĵ2 ≡ Ĵ2
x + Ĵ2

y + Ĵ2
z commutes with Ĵz (or any of the other

Ĵl-operators), which means that we can �nd a common complete set of eigenstates
to the two operators. Such states are denoted |j,m〉 and obey2

Ĵ2|j,m〉 = j(j + 1)|j,m〉
Ĵz|j,m〉 = m|j,m〉 (B.4)

where j can take integer or half-integer values, and m can take values from −j to
j with integer steps. j can be thought of as the total angular momentum, while m

1By angular momentum-like operators is meant operators that obey these commutation rela-
tions. Examples are the orbital angular momentum L̂, but also the spin Ŝ and the total angular
momentum Ĵ . Ĵ is the standard name for angular momentum-like operators, which is why it is
used in this thesis even when there is no orbital component.

2See [b].
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can be thought of as the component in the Jz-direction. When calculating Jx or Jy
for states in the |j,m〉-basis it is useful to introduce the operators

Ĵ+ ≡ Ĵx + iĴy , Ĵ− ≡ Ĵx − iĴy (B.5)

invertible to

Ĵx =
1

2

(
Ĵ− + Ĵ+

)
, Ĵy =

i

2

(
Ĵ− − Ĵ+

)
(B.6)

since the Ĵ±-operators obey the relations

Ĵ+|j,m〉 =
√

(j −m)(j +m+ 1)|j,m+ 1〉
Ĵ−|j,m〉 =

√
(j +m)(j −m+ 1)|j,m− 1〉 (B.7)

in the |j,m〉-basis. The related commutation relations are[
Ĵ+, Ĵ−

]
= 2Ĵz[

Ĵz, Ĵ±

]
= Ĵ± (B.8)

The lowest dimensional representation of the algebra de�ned by (B.3) is ĵm =
1
2
σm where

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(B.9)

are the Pauli spin-matrices. These ĵ-operators are angular momentum operators
for particles with total angular momentum 1

2
, and for this speci�c representation of

the ĵ-operators, the (1, 0) and (0, 1)-states are eigenstates for the ĵz-operator. For
particles with total angular momentum > 1

2
a higher dimensional representation

is needed. A representation for the Ĵ-operators for particles with total angular
momentum j is

Ĵx =



0
√

1
2
· j 0 · · · 0√

1
2
· j 0

√
1 · (j − 1

2
) 0

0
√

1 · (j − 1
2
) 0

. . .
...

...
. . . . . .

√
j · 1

2

0 0 · · ·
√
j · 1

2
0


(B.10)
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Ĵy = i



0 −
√

1
2
· j 0 · · · 0√

1
2
· j 0 −

√
1 · (j − 1

2
) 0

0
√

1 · (j − 1
2
) 0

. . .
...

...
. . . . . . −

√
j · 1

2

0 0 · · ·
√
j · 1

2
0


(B.11)

Ĵz =


j 0 0 · · · 0
0 j − 1 0 · · · 0
0 0 j − 2 0
...

...
. . .

...
0 0 0 · · · −j

 (B.12)

where each matrix is square with dimension 2j + 1. The basis vectors in this rep-
resentation are the states |j,m〉 mentioned previously, and the parts of the matrix
representations of Ĵx and Ĵy above and below the diagonal may therefore be regarded

as a matrix representation of the operators Ĵ+ and Ĵ− respectively.
For a spin-1

2
particle in the state |ϕ〉 = ϕa(r)|a〉 + ϕb(r)|b〉 where a and b cor-

respond to spin up and spin down3 and where
∫

drϕ∗
i (r)ϕi(r) is the probability of

measuring the particle in the ith state, the expectation value of ĵx will be

〈ϕ|ĵx|ϕ〉 =
1

2

∫
dr
(
ϕ∗
a(r)ϕb(r) + ϕ∗

b(r)ϕa(r)
)

(B.13)

For an ensemble of N particles the total angular momentum operator is de�ned as

Ĵk ≡ ĵ
(1)
k ⊗ Î(2) ⊗ · · · ⊗ Î(N) + · · · + Î(1) ⊗ · · · ⊗ Î(N−1) ⊗ ĵ

(N)
k (B.14)

and if the particles are identical4 with spin 1
2
, the resulting expectation value is

〈ψ|Ĵx|ψ〉 =
1

2

∫
dr
(
ψ∗
a(r)ψb(r) + ψ∗

b (r)ψa(r)
)

(B.15)

where ψ ≡
√
Nφ ful�ls∫

dr
(
ψ∗
a(r)ψa(r) + ψ∗

b (r)ψb(r)
)

= N (B.16)

Results similar to (B.15) can be obtained for the Ĵy and Ĵz-operators. Going to

second quantization5 corresponds to doing the substitution ψ(r) → Ψ̂(r) with the

3In strict notation |a〉 = | 12 ,
1
2 〉 and |b〉 = | 12 ,−

1
2 〉.

4This does not require the particles to be strictly identical. The requirement is that ϕai(r) =
ϕaj(r) and similarly for b, for two particles numbered i and j.

5See appendix A.



APPENDIX B. ANGULAR MOMENTUM IN QUANTUM MECHANICS 116

results

Ĵx =
1

2

∫
dr
(
Ψ̂†
a(r)Ψ̂b(r) + Ψ̂†

b(r)Ψ̂a(r)
)

(B.17)

Ĵy =
1

2i

∫
dr
(
Ψ̂†
a(r)Ψ̂b(r)− Ψ̂†

b(r)Ψ̂a(r)
)

(B.18)

Ĵz =
1

2

∫
dr
(
Ψ̂†
a(r)Ψ̂a(r)− Ψ̂†

b(r)Ψ̂b(r)
)

(B.19)

and likewise (B.16) in second quantization corresponds to the particle number op-
erator

N̂ =

∫
dr
(
Ψ̂†
a(r)Ψ̂a(r) + Ψ̂†

b(r)Ψ̂b(r)
)

(B.20)

In the main thesis we will denote these operators as Ĵi and N̂ respectively.



Appendix C

Squeezing implies entanglement

In this section the �squeezing implies entanglement�-proof will be presented in full
detail. For the same derivation with less equations but more discussion, see section
3.6.

(∆Jz)
2 = 〈Ĵ2

z 〉 − 〈Ĵz〉2 (C.1)

Let us calculate the two terms using the separability-criterion

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(n)
i (C.2)

〈Jz〉 = Tr(Ĵzρ̂)

= Tr

(∑
i

pi

(
ĵ(1)
z ⊗ 1⊗ . . .⊗ 1 + . . .+ 1⊗ . . .⊗ 1⊗ ĵ(n)

z

)
ρ̂

(1)
i ⊗ . . .⊗ ρ̂

(n)
i

)
=

∑
i

pi

(
Tr(ĵ(1)

z ρ̂
(1)
i ) + . . .+ Tr(ĵ(n)

z ρ̂
(n)
i )
)

=
∑
i

pi

(
〈ĵ(1)
z 〉i + . . .+ 〈ĵ(n)

z 〉i
)

=
∑
i

pi〈Ĵz〉i (C.3)
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〈J2
z 〉 = Tr(Ĵ2

z ρ̂)

= Tr

(∑
i

pi

(
ĵ(1)
z ⊗ 1⊗ . . .⊗ 1 + . . .+ 1⊗ . . .⊗ 1⊗ ĵ(n)

z

)2

ρ̂
(1)
i ⊗ . . .⊗ ρ̂

(n)
i

)

=
∑
i

pi

(∑
k

Tr((ĵ(k)
z )2ρ̂

(k)
i ) +

∑
k 6=k′

Tr
(
(ĵ(k)
z ⊗ ĵ(k′)

z )(ρ̂
(k)
i ⊗ ρ̂

(k′)
i

))

=
∑
i

pi

(∑
k

〈(ĵ(k)
z )2〉i +

∑
k 6=k′

〈ĵ(k)
z 〉i〈ĵ(k′)

z 〉i

)

=
∑
i

pi

(∑
k

〈(ĵ(k)
z )2〉i −

∑
k

〈ĵ(k)
z 〉2i +

∑
k

〈ĵ(k)
z 〉2i +

∑
k 6=k′

〈ĵ(k)
z 〉i〈ĵ(k′)

z 〉i

)

=
∑
i

pi

∑
k

(∆j(k)
z )2

i +

(∑
k

〈ĵ(k)
z 〉i

)2


=
∑
i

pi

(∑
k

(∆j(k)
z )2

i + 〈Ĵz〉2i

)
(C.4)

giving

(∆Jz)
2 = 〈Ĵ2

z 〉 − 〈Ĵz〉2

=
∑
i

pi

(∑
k

(∆j(k)
z )2

i + 〈Ĵz〉2i

)
−

(∑
i

pi〈Ĵz〉i

)(∑
i′

pi′〈Ĵz〉i′
)

=
∑
i

pi

(∑
k

(∆j(k)
z )2

i

)
+ (A ·A)(B ·B)− (A ·B)2 (C.5)

where Ai =
√
pi and Bi =

√
pi〈Ĵz〉i. Now we can use the Cauchy-Schwartz inequality

stating that (A ·A)(B ·B) ≥ (A ·B)2 for any set of vectors A and B, to give us

(∆Jz)
2 ≥

∑
i

pi
∑
k

(∆j(k)
z )2

i (C.6)

We know that (∆jz)
2 ≥ jFj(〈ĵx〉/j), so therefore

(∆Jz)
2 ≥

∑
i

pi
∑
k

jFj(〈ĵ(k)
x 〉i/j) (C.7)

where we have used that all the subsystems have the same j. Since F is a convex
function, we can use Jensen's inequality, stating that

N∑
k

akF (xk) ≥

(
N∑
k

ak

)
F

(∑N
k akxk∑N
k ak

)
(C.8)
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if F is convex. If used twice, once on the k-sum where the as are 1, and once on the
i-sum where the as are pi, Jensen's inequality gives

(∆Jz)
2 ≥

∑
i

pi
∑
k

jFj

(
〈ĵ(k)
x 〉i
j

)
⇒

(∆Jz)
2 ≥

∑
i

piNjFj

(∑
k〈ĵ

(k)
x 〉i

jN

)
⇒

(∆Jz)
2 ≥ NjFj

(∑
i pi
∑

k〈ĵ
(k)
x 〉i

jN

)
⇔

(∆Jz)
2 ≥ NjFj

(
〈Ĵx〉
jN

)
(C.9)

where the �nal step uses a result similar to (C.3) for Ĵx. Let us now use that j = 1
2

and calculate the corresponding F -function. For a state |ψ〉 = c|↑〉 + s|↓〉 where c
and s are short for cosine and sine to an angle, we get 〈Ĵz〉 = 0.5C, 〈Ĵx〉 = 0.5S and
〈Ĵ2

z 〉 = 0.25, where C and S are short for cosine and sine to twice the angle. This
gives (∆Jz)

2 = 〈Ĵx〉2 or

F 1
2
(x) = 1

2
x2 (C.10)

and insertion gives

(∆Jz)
2 ≥ 〈Ĵx〉2

N
⇔

√
N(∆Jz)

〈Ĵx〉
≥ 1 ⇔

ξJz ≥ 1 (C.11)

showing that the state is not squeezed. So if the state is squeezed, we know that our
initial assumption about separability was wrong, proving that if a state is squeezed,
the state is entangled.

The discussions in the �nal part of section 3.6 showing a way to �nd a minimum
for the amount of entangled particles giving rise to a state with certain values of
〈Ĵx〉 and (∆Jz)

2, are based on the following calculation
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(∆Jz)
2 ≥

∑
i

pi
∑
k

j
(k)
i F

j
(k)
i

(
〈ĵ(k)
x 〉i
j
(k)
i

)

≥
∑
i

pi
∑
k

j
(k)
i Fjmax

(
〈ĵ(k)
x 〉i
j
(k)
i

)

≥
∑
i

pi

(∑
k

j
(k)
i

)
Fjmax

(∑
k〈ĵ

(k)
x 〉i∑

k j
(k)
i

)

≥ 1
2
N
∑
i

piFjmax

(∑
k〈ĵ

(k)
x 〉i

1
2
N

)

≥ 1
2
NFjmax

(∑
i pi
∑

k〈ĵ
(k)
x 〉i

1
2
N

)
⇔

(∆Jz)
2 ≥ 1

2
NFjmax

(
〈Ĵx〉
1
2
N

)
(C.12)

where we have used the fact that any convex, positive function with f(0) = 0 obeys

f(|x|) ≥ af(|x|/a) where a ≥ 1. In this case a =
1
2
N

P
k j

(k)
i

.



Appendix D

Calculation of combinations of

J-operators

In this appendix we are going to express the Ĵi-operators and combinations thereof
using the results of the Bogoliubov approximation. Some of the results are stated
in section 6.3, and the rest are used when drawing the Q-functions for the results
of the main calculation in �gs. 7.6 and 7.10.
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N̂ =

∫
dr
(
Ψ̂†
aΨ̂a + Ψ̂†

bΨ̂b

)
=

∫
dr

(
Ψ̂†

+ + Ψ̂†
−√

2
· Ψ̂+ + Ψ̂−√

2
+

Ψ̂†
+ − Ψ̂†

−√
2

· Ψ̂+ − Ψ̂−√
2

)
=

∫
dr
(
Ψ̂†

+Ψ̂+ + Ψ̂†
−Ψ̂−

)
=

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
ĉ+ϕ+ δψ̂+

)
+
(
δψ̂†

−

)(
δψ̂−

))
= ĉ†+ĉ+ +

∫
dr
(
δψ̂†

+δψ̂+ + δψ̂†
−δψ̂−

)
≈ ĉ†+ĉ+ +

∫
dr
(
Λ̂†

+Λ̂+ + Λ̂†
−Λ̂−

)
=

∫
dr
∑
i,j∗

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

)
Q◦
(
uj+α̂j+ + vj+α̂

†
j+

)
+
(
ui−α̂i− + vi−α̂

†
i−

) (
u∗j−α̂

†
j− + v∗j−α̂j−

))
+ ĉ†+ĉ+

=
∑
i,j∗

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+ + u∗i+◦Q◦uj+α̂

†
i+α̂j+

+ u∗i+◦Q◦vj+α̂
†
i+α̂

†
j+ + v∗i−◦ uj−α̂i−α̂j− + v∗i−◦ vj−α̂i−α̂

†
j−

+ u∗i−◦ uj−α̂
†
i−α̂j− + u∗i−◦ vj−α̂

†
i−α̂

†
j−

)
+ ĉ†+ĉ+ (D.1)
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Ĵx =
1

2

∫
dr
(
Ψ̂†
aΨ̂b + Ψ̂†

bΨ̂a

)
=

1

2

∫
dr

(
Ψ̂†

+ + Ψ̂†
−√

2
· Ψ̂+ − Ψ̂−√

2
+

Ψ̂†
+ − Ψ̂†

−√
2

· Ψ̂+ + Ψ̂−√
2

)
=

1

2

∫
dr
(
Ψ̂†

+Ψ̂+ − Ψ̂†
−Ψ̂−

)
=

1

2

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
ĉ+ϕ+ δψ̂+

)
−
(
δψ̂†

−

)(
δψ̂−

))
=

ĉ†+ĉ+
2

+
1

2

∫
dr
(
δψ̂†

+δψ̂+ − δψ̂†
−δψ̂−

)
≈ ĉ†+ĉ+

2
+

1

2

∫
dr
(
Λ̂†

+Λ̂+ − Λ̂†
−Λ̂−

)
=

1

2

∫
dr
∑
i,j∗

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

)
Q◦
(
uj+α̂j+ + vj+α̂

†
j+

)
−
(
ui−α̂i− + vi−α̂

†
i−

)(
u∗j−α̂

†
j− + v∗j−α̂j−

))
+
ĉ†+ĉ+

2

=
1

2

∑
i,j∗

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+ + u∗i+◦Q◦uj+α̂

†
i+α̂j+

+ u∗i+◦Q◦vj+α̂
†
i+α̂

†
j+ − v∗i− ◦ uj−α̂i−α̂j− − v∗i− ◦ vj−α̂i−α̂

†
j−

− u∗i− ◦ uj−α̂
†
i−α̂j− − u∗i− ◦ vj−α̂

†
i−α̂

†
j−

)
+
ĉ†+ĉ+

2
(D.2)
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Ĵy =
i

2

∫
dr
(
Ψ̂†
bΨ̂a − Ψ̂†

aΨ̂b

)
=

i

2

∫
dr

(
Ψ̂†

+ − Ψ̂†
−√

2
· Ψ̂+ + Ψ̂−√

2
+

Ψ̂†
+ + Ψ̂†

−√
2

· Ψ̂+ − Ψ̂−√
2

)
=

i

2

∫
dr
(
Ψ̂†

+Ψ̂− − Ψ̂†
−Ψ̂+

)
=

i

2

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
δψ̂†

−

)
−
(
δψ̂†

−

)(
ĉ+ϕ+ δψ̂+

))
=

i

2

∫
dr

((
ĉ†+ϕ

∗δψ̂− − ĉ+δψ̂
†
−ϕ
)

+
(
δψ̂†

+− −†
− +

))
≈ i

2

∫
dr
(
Λ̂†

+Λ̂− − Λ̂†
−Λ̂+

)
+
i
√
N0

2

∫
dr
(
ϕ∗Λ̂− − Λ̂†

−ϕ
)

=
i

2

∫
dr
∑
i>0

∑
j

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

) (
uj−α̂j− + vj−α̂

†
j−

)
− Q◦

(
ui+α̂i+ + vi+α̂

†
i+

) (
u∗j−α̂

†
j− + v∗j−α̂j−

))
+
i
√
N0

2

∑
i

∫
dr

(
ϕ∗
(
ui−α̂i− + vi−α̂

†
i−

)
−
(
u∗i−α̂

†
i− + v∗i−α̂i−

)
ϕ

)
=

i

2

∑
i>0

∑
j

((
v∗i+◦Q◦uj− − ui+◦Q∗◦v∗j−

)
α̂i+α̂j− +

(
v∗i+◦Q◦vj− − ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− − vi+◦Q∗◦v∗j−

)
α̂†i+α̂j− +

(
u∗i+◦Q◦vj− − vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
+
i
√
N0

2

∫
dr
∑
i

((
ϕ∗ui− − v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− − u∗i−ϕ

)
α̂†i−

)
(D.3)
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Ĵz =
1

2

∫
dr
(
Ψ̂†
aΨ̂a − Ψ̂†

bΨ̂b

)
=

1

2

∫
dr

(
Ψ̂†

+ + Ψ̂†
−√

2
· Ψ̂+ + Ψ̂−√

2
− Ψ̂†

+ − Ψ̂†
−√

2
· Ψ̂+ − Ψ̂−√

2

)
=

1

2

∫
dr
(
Ψ̂†

+Ψ̂− + Ψ̂†
−Ψ̂+

)
=

1

2

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
δψ̂−

)
+
(
δψ̂†

−

)(
ĉ+ϕ+ δψ̂+

))
=

1

2

∫
dr
(
δψ̂†

+δψ̂− + δψ̂†
−δψ̂+

)
+

1

2

∫
dr
(
ϕ∗ĉ†+δψ̂− + δψ̂†

−ĉ+ϕ
)

≈ 1

2

∫
dr
(
Λ̂†

+Λ̂− + Λ̂†
−Λ̂+

)
+

√
N0

2

∫
dr
(
ϕ∗Λ̂− + Λ̂†

−ϕ
)

=
1

2

∫
dr
∑
i>0

∑
j

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

) (
uj−α̂j− + vj−α̂

†
j−

)
+ Q◦

(
ui+α̂i+ + vi+α̂

†
i+

) (
u∗j−α̂

†
j− + v∗j−α̂j−

))
+

√
N0

2

∑
i

∫
dr
(
ϕ∗
(
ui−α̂i− + vi−α̂

†
i−

)
+
(
u∗i−α̂

†
i− + v∗i−α̂i−

)
ϕ
)

=
1

2

∑
i>0

∑
j

((
v∗i+◦Q◦uj− + ui+◦Q∗◦v∗j−

)
α̂i+α̂j− +

(
v∗i+◦Q◦vj− + ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− + vi+◦Q∗◦v∗j−

)
α̂†i+α̂j− +

(
u∗i+◦Q◦vj− + vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
+

√
N0

2

∫
dr
∑
i

((
ϕ∗ui− + v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− + u∗i−ϕ

)
α̂†i−

)
(D.4)
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Ĵ2
x =

(
1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

))2

=
1

4

∫
drdr′

(
Ψ̂†

+(r)Ψ̂†
+(r′)Ψ̂+(r)Ψ̂+(r′)− 2Ψ̂†

+(r)Ψ̂+(r)Ψ̂†
−(r′)Ψ̂−(r′)

+ Ψ̂†
−(r)Ψ̂†

−(r′)Ψ̂−(r)Ψ̂−(r′)
)

+
1

4

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r) + Ψ̂†
−(r)Ψ̂−(r)

)
≈ ĉ†+ĉ+ĉ

†
+ĉ+

4
+

1

4

∫
dr

(
2ĉ†+ĉ+δψ̂

†
+(r)δψ̂+(r)− 2ĉ†+ĉ+δψ̂

†
−(r)δψ̂−(r)

+ δφ̂†+(r)δφ̂+(r) + δφ̂†−(r)δφ̂−(r)

)
≈ ĉ†+ĉ+ĉ

†
+ĉ+

4
+
N0

2

∫
dr
(
Λ̂†

+(r)Λ̂+(r)− Λ̂†
−(r)Λ̂−(r)

)
+

1

4

∫
dr
(
Λ̂†

+(r)Λ̂+(r) + Λ̂†
−(r)Λ̂−(r)

)
=

(
1

4
+
N0

2

)∫
dr
∑
i,j∗

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

)
Q◦
(
uj+α̂j+ + vj+α̂

†
j+

))

+

(
1

4
− N0

2

)∫
dr
∑
i,j

((
ui−α̂i− + vi−α̂

†
i−

)(
u∗j−α̂

†
j− + v∗j−α̂j−

))
+
ĉ†+ĉ+ĉ

†
+ĉ+

4

=

(
1

4
+
N0

2

)∑
i,j∗

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+ + u∗i+◦Q◦uj+α̂

†
i+α̂j+

+ u∗i+◦Q◦vj+α̂
†
i+α̂

†
j+

)
+

(
1

4
− N0

2

)(
v∗i− ◦ uj−α̂i−α̂j− + v∗i− ◦ vj−α̂i−α̂

†
j−

+ u∗i− ◦ uj−α̂
†
i−α̂j− + u∗i− ◦ vj−α̂

†
i−α̂

†
j−

)
+
ĉ†+ĉ+ĉ

†
+ĉ+

4
(D.5)
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Ĵ2
y =

(
i

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r)− Ψ̂†
−(r)Ψ̂+(r)

))2

=
1

4

∫
drdr′

(
2Ψ̂†

+(r)Ψ̂†
−(r′)Ψ̂+(r′)Ψ̂−(r)− Ψ̂†

+(r)Ψ̂†
+(r′)Ψ̂−(r)Ψ̂−(r′)

− Ψ̂†
−(r)Ψ̂†

−(r′)Ψ̂+(r)Ψ̂+(r′)
)

+
1

4

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r) + Ψ̂†
−(r)Ψ̂−(r)

)
≈ ĉ†+ĉ+

4
+

1

4

∫
drdr′

(
2ĉ†+ĉ+ϕ

∗(r)ϕ(r′)δψ̂†
−(r′)δψ̂−(r)− ĉ†+ĉ

†
+ϕ

∗(r)ϕ∗(r′)δψ̂−(r)δψ̂−(r′)

− ĉ+ĉ+ϕ(r)ϕ(r′)δψ̂†
−(r)δψ̂†

−(r′)
)

+
1

4

∫
dr
(
δψ̂†

+(r)δψ̂+(r) + δψ̂†
−(r)δψ̂−(r)

)
≈ ĉ†+ĉ+

4
+
N0

4

∫
drdr′

(
2ϕ∗(r′)ϕ(r)Λ̂†

−(r)Λ̂−(r′)− ϕ∗(r)ϕ∗(r′)Λ̂−(r)Λ̂−(r′)

− ϕ(r)ϕ(r′)Λ̂†
−(r)Λ̂†

−(r′)
)

+
1

4

∫
dr
(
Λ̂†

+(r)Λ̂+(r) + Λ̂†
−(r)Λ̂−(r)

)
=

N0

4

∑
i,j

((
2v∗i−◦ϕϕ∗◦uj− − ϕ∗◦ui−ϕ∗◦uj− − v∗i−◦ϕv∗j−◦ϕ

)
α̂i−α̂j−

+
(
2v∗i−◦ϕϕ∗◦vj− − ϕ∗◦ui−ϕ∗◦vj− − v∗i−◦ϕu∗j−◦ϕ

)
α̂i−α̂

†
j−

+
(
2u∗i−◦ϕϕ∗◦uj− − ϕ∗◦vi−ϕ∗◦uj− − u∗i−◦ϕv∗j−◦ϕ

)
α̂†i−α̂j−

+
(
2u∗i−◦ϕϕ∗◦vj− − ϕ∗◦vi−ϕ∗◦vj− − u∗i−◦ϕu∗j−◦ϕ

)
α̂†i−α̂

†
j−

)
+
ĉ†+ĉ+

4

+
1

4

∑
i,j

(
v∗i−◦uj−α̂i−α̂j− + v∗i−◦vj−α̂i−α̂

†
j− + u∗i−◦uj−α̂

†
i−α̂j− + u∗i−◦vj−α̂

†
i−α̂

†
j−

)
+

1

4

∑
i,j>0

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+

+ u∗i+◦Q◦uj+α̂
†
i+α̂j+ + u∗i+◦Q◦vj+α̂

†
i+α̂

†
j+

)
(D.6)
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Ĵ2
z =

(
1

2

∫
dr
(
Ψ̂†
a(r)Ψ̂a(r)− Ψ̂†

b(r)Ψ̂b(r)
))2

=

(
1

2

∫
dr
(
Ψ̂†

+(r)Ψ̂−(r) + Ψ̂†
−(r)Ψ̂+(r)

))2

=
1

4

∫
drdr′

(
Ψ̂†

+(r)Ψ̂−(r)Ψ̂†
+(r′)Ψ̂−(r′) + Ψ̂†

−(r)Ψ̂+(r)Ψ̂†
+(r′)Ψ̂−(r′)

+ Ψ̂†
+(r)Ψ̂−(r)Ψ̂†

−(r′)Ψ̂+(r′) + Ψ̂†
−(r)Ψ̂+(r)Ψ̂†

−(r′)Ψ̂+(r′)
)

=
1

4

∫
drdr′

(
Ψ̂†

+(r)Ψ̂†
+(r′)Ψ̂−(r)Ψ̂−(r′) + 2Ψ̂†

+(r)Ψ̂†
−(r′)Ψ̂+(r′)Ψ̂−(r)

+ Ψ̂†
−(r)Ψ̂†

−(r′)Ψ̂+(r)Ψ̂+(r′)
)

+
1

4

∫
dr
(
Ψ̂†

+(r)Ψ̂+(r) + Ψ̂†
−(r)Ψ̂−(r)

)
≈ ĉ†+ĉ+

4
+

1

4

∫
drdr′

(
ĉ†+ĉ

†
+ϕ

∗(r)ϕ∗(r′)δψ̂−(r)δψ̂−(r′) + 2ĉ†+ĉ+ϕ
∗(r)ϕ(r′)δψ̂†

−(r′)δψ̂−(r)

+ ĉ+ĉ+ϕ(r)ϕ(r′)δψ̂†
−(r)δψ̂†

−(r′)
)

+
1

4

∫
dr
(
δψ̂†

+(r)δψ̂+(r) + δψ̂†
−(r)δψ̂−(r)

)
≈ ĉ†+ĉ+

4
+
N0

4

∫
drdr′

(
ϕ∗(r)ϕ∗(r′)Λ̂−(r)Λ̂−(r′) + 2ϕ∗(r′)ϕ(r)Λ̂†

−(r)Λ̂−(r′)

+ ϕ(r)ϕ(r′)Λ̂†
−(r)Λ̂†

−(r′)
)

+
1

4

∫
dr
(
Λ̂†

+(r)Λ̂+(r) + Λ̂†
−(r)Λ̂−(r)

)
=

N0

4

∑
i,j

((
ϕ∗◦ui−ϕ∗◦uj− + 2v∗i−◦ϕϕ∗◦uj− + v∗i−◦ϕv∗j−◦ϕ

)
α̂i−α̂j−

+
(
ϕ∗◦ui−ϕ∗◦vj− + 2v∗i−◦ϕϕ∗◦vj− + v∗i−◦ϕu∗j−◦ϕ

)
α̂i−α̂

†
j−

+
(
ϕ∗◦vi−ϕ∗◦uj− + 2u∗i−◦ϕϕ∗◦uj− + u∗i−◦ϕv∗j−◦ϕ

)
α̂†i−α̂j−

+
(
ϕ∗◦vi−ϕ∗◦vj− + 2u∗i−◦ϕϕ∗◦vj− + u∗i−◦ϕu∗j−◦ϕ

)
α̂†i−α̂

†
j−

)
+
ĉ†+ĉ+

4

+
1

4

∑
i,j

(
v∗i−◦uj−α̂i−α̂j− + v∗i−◦vj−α̂i−α̂

†
j− + u∗i−◦uj−α̂

†
i−α̂j− + u∗i−◦vj−α̂

†
i−α̂

†
j−

)
+

1

4

∑
i,j>0

(
v∗i+◦Q◦uj+α̂i+α̂j+ + v∗i+◦Q◦vj+α̂i+α̂

†
j+

+ u∗i+◦Q◦uj+α̂
†
i+α̂j+ + u∗i+◦Q◦vj+α̂

†
i+α̂

†
j+

)
(D.7)
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ĴxĴy =
i

4

∫
dr

∫
dr′
(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

)(
Ψ̂†

+(r′)Ψ̂−(r′)− Ψ̂†
−(r′)Ψ̂+(r′)

)
≈ i

4
ĉ†+ĉ+

∫
dr

((
ĉ†+ϕ

∗δψ̂− − ĉ+δψ̂
†
−ϕ
)

+
(
δψ̂†

+− −†
− +

))
≈ i

4

∫
dr

(
N0

(
Λ̂†

+Λ̂− − Λ̂†
−Λ̂+

)
+
√
N0ĉ

†
+ĉ+

(
ϕ∗Λ̂− − Λ̂†

−ϕ
))

=
i

4
N0

∫
dr
∑
i>0

∑
j

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

) (
uj−α̂j− + vj−α̂

†
j−

)
− Q◦

(
ui+α̂i+ + vi+α̂

†
i+

) (
u∗j−α̂

†
j− + v∗j−α̂j−

))
+
i
√
N0

4
ĉ†+ĉ+

∑
i

∫
dr
(
ϕ∗
(
ui−α̂i− + vi−α̂

†
i−

)
−
(
u∗i−α̂

†
i− + v∗i−α̂i−

)
ϕ
)

=
i

4
N0

∑
i>0

∑
j

((
v∗i+◦Q◦uj− − ui+◦Q∗◦v∗j−

)
α̂i+α̂j−

+
(
v∗i+◦Q◦vj− − ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− − vi+◦Q∗◦v∗j−

)
α̂†i+α̂j−

+
(
u∗i+◦Q◦vj− − vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
+
i
√
N0

4
ĉ†+ĉ+

∫
dr
∑
i

((
ϕ∗ui− − v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− − u∗i−ϕ

)
α̂†i−

)
(D.8)

ĴyĴx =
i

4
N0

∑
i>0

∑
j

((
v∗i+◦Q◦uj− − ui+◦Q∗◦v∗j−

)
α̂i+α̂j−

+
(
v∗i+◦Q◦vj− − ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− − vi+◦Q∗◦v∗j−

)
α̂†i+α̂j−

+
(
u∗i+◦Q◦vj− − vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
(D.9)

+
i
√
N0

4

∫
dr
∑
i

((
ϕ∗ui− − v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− − u∗i−ϕ

)
α̂†i−

)
ĉ†+ĉ+
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ĴxĴz =
1

4

∫
dr

∫
dr′
(
Ψ̂†

+(r)Ψ̂+(r) +−Ψ̂†
−(r)Ψ̂−(r)

)(
Ψ̂†

+(r′)Ψ̂−(r′) + Ψ̂†
−(r′)Ψ̂+(r)

)
=

1

4
ĉ†+ĉ+

∫
dr

((
ĉ†+ϕ

∗ + δψ̂†
+

)(
δψ̂−

)
+
(
δψ̂†

−

)(
ĉ+ϕ+ δψ̂+

))
=

1

4
ĉ†+ĉ+

∫
dr

((
δψ̂†

+δψ̂− + δψ̂†
−δψ̂+

)
+
(
ϕ∗ĉ†+δψ̂− + δψ̂†

−ĉ+ϕ
))

≈ N0

4

∫
dr
(
Λ̂†

+Λ̂− + Λ̂†
−Λ̂+

)
+

√
N0

4
ĉ†+ĉ+

∫
dr
(
ϕ∗Λ̂− + Λ̂†

−ϕ
)

=
N0

4

∫
dr
∑
i>0

∑
j

(
Q∗◦

(
u∗i+α̂

†
i+ + v∗i+α̂i+

) (
uj−α̂j− + vj−α̂

†
j−

)
+ Q◦

(
ui+α̂i+ + vi+α̂

†
i+

) (
u∗j−α̂

†
j− + v∗j−α̂j−

))
+

√
N0

4
ĉ†+ĉ+

∑
i

∫
dr
(
ϕ∗
(
ui−α̂i− + vi−α̂

†
i−

)
+
(
u∗i−α̂

†
i− + v∗i−α̂i−

)
ϕ
)

=
N0

4

∑
i>0

∑
j

((
v∗i+◦Q◦uj− + ui+◦Q∗◦v∗j−

)
α̂i+α̂j−

+
(
v∗i+◦Q◦vj− + ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− + vi+◦Q∗◦v∗j−

)
α̂†i+α̂j−

+
(
u∗i+◦Q◦vj− + vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
+

√
N0

4
ĉ†+ĉ+

∫
dr
∑
i

((
ϕ∗ui− + v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− + u∗i−ϕ

)
α̂†i−

)
(D.10)

ĴxĴz =
N0

4

∑
i>0

∑
j

((
v∗i+◦Q◦uj− + ui+◦Q∗◦v∗j−

)
α̂i+α̂j−

+
(
v∗i+◦Q◦vj− + ui+◦Q∗◦u∗j−

)
α̂i+α̂

†
j−

+
(
u∗i+◦Q◦uj− + vi+◦Q∗◦v∗j−

)
α̂†i+α̂j−

+
(
u∗i+◦Q◦vj− + vi+◦Q∗◦u∗j−

)
α̂†i+α̂

†
j−

)
(D.11)

+

√
N0

4

∫
dr
∑
i

((
ϕ∗ui− + v∗i−ϕ

)
α̂i− +

(
ϕ∗vi− + u∗i−ϕ

)
α̂†i−

)
ĉ†+ĉ+



APPENDIX D. CALCULATION OF COMBINATIONS OF J-OPERATORS 131

1

2

(
ĴyĴz + ĴzĴy

)
=

i

4

∫
dr

∫
dr′
(
Ψ̂†

+(r)
ˆ

Ψ−(r)Ψ̂†
+(r′)Ψ̂−(r′)− Ψ̂†

−(r)Ψ̂+(r)Ψ̂†
−(r′)Ψ̂+(r′)

)
≈ i

4

(
ĉ†+ĉ

†
+ϕ

∗ ◦− ϕ∗ ◦− −ĉ+ĉ+∗
− ◦ ϕ∗

− ◦ ϕ
)

≈ iN

4

(
ϕ∗◦Λ̂− ϕ

∗◦Λ̂− − Λ̂†
−! ◦ϕ Λ̂†

−◦ϕ
)

=
iN

4

∑
ij

(
ϕ∗◦

(
ui−α̂i− + vi−α̂

†
i−

)
ϕ∗◦

(
uj−α̂j− + vj−α̂

†
j−

)
−
(
u∗i−α̂

†
i− + v∗i−α̂i−

)
◦ϕ

(
u∗j−α̂

†
j− + v∗j−α̂j−

)
◦ϕ
)

=
iN

4

∑
ij

((
ϕ∗◦ui− ϕ∗◦uj− − v∗i−◦ϕ v∗j−◦ϕ )α̂i−α̂j−

+
(
ϕ∗◦vi− ϕ∗◦vj− − u∗i−◦ϕ u∗j−◦ϕ

)
α̂†i−α̂

†
j−

+
(
ϕ∗◦vi− ϕ∗◦uj− − u∗i−◦ϕ v∗j−◦ϕ

)
α̂†i−α̂j−

+

(
ϕ∗◦ui− ϕ∗◦vj− − v∗i−◦ϕ u∗j−◦ϕ

)
α̂i−α̂

†
j−

)
(D.12)

In case of a product state |ψ〉 = |n0+〉0+⊗|n0−〉0−⊗|n1+〉1+⊗ . . . the expectation
values of our operators becomes

〈Ĵz〉 = 〈Ĵy〉 =
〈ĴxĴy + ĴyĴx〉

2
=
〈ĴyĴz + ĴzĴy〉

2
=
〈ĴzĴx + ĴxĴz〉

2
= 0 (D.13)
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and

〈N̂〉 = N0 +
∑
i∗

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

+ v∗i− ◦ vi−
(
〈n〉i− + 1

)
+ u∗i− ◦ ui−〈n〉i−

)
〈Ĵx〉 =

N0

2
+

1

2

∑
i∗

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

− v∗i− ◦ vi−
(
〈n〉i− + 1

)
− u∗i− ◦ ui−〈n〉i−

)
〈Ĵ2

x〉 =
N2

0

4
+

(
1

4
+
N0

2

)∑
i>i

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

)
+

(
1

4
− N0

2

)∑
i

(
v∗i− ◦ vi−

(
〈n〉i− + 1

)
+ u∗i− ◦ ui−〈n〉i−

)
〈Ĵ2

y 〉 =
N0

4
+
N0

4

∑
i

((
2v∗i−◦ϕϕ∗◦vi− − ϕ∗◦ui−ϕ∗◦vi− − v∗i−◦ϕu∗i−◦ϕ

)(
〈n〉i− + 1

)
+
(
2u∗i−◦ϕϕ∗◦ui− − ϕ∗◦vi−ϕ∗◦ui− − u∗i−◦ϕv∗i−◦ϕ

)
〈n〉i−

)
+

1

4

∑
i

(
v∗i−◦vi−

(
〈n〉i− + 1

)
+ u∗i−◦ui−〈n〉i−

)
+

1

4

∑
i>0

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

)
〈Ĵ2

z 〉 =
N0

4
+
N0

4

∑
i

((
ϕ∗◦ui−ϕ∗◦vi− + 2v∗i−◦ϕϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)(
〈n〉i− + 1

)
+
(
ϕ∗◦vi−ϕ∗◦ui− + 2u∗i−◦ϕϕ∗◦ui− + u∗i−◦ϕv∗i−◦ϕ

)
〈n〉i−

)
+

1

4

∑
i

(
v∗i−◦vi−

(
〈n〉i− + 1

)
+ u∗i−◦ui−〈n〉i−

)
+

1

4

∑
i>0

(
v∗i+◦Q◦vi+

(
〈n〉i+ + 1

)
+ u∗i+◦Q◦ui+〈n〉i+

)
(D.14)

If we try to use the above results to calculate (∆Jx)
2 = 〈Ĵ2

x〉 − 〈Ĵx〉2, the re-
sult becomes inconsistent, since the 〈Ĵx〉2-term would contain terms proportional to
(δψ̂)4, while those terms were discarded in the calculation of 〈Ĵ2

x〉. Therefore we
need to calculate a speci�c expression for (∆Jx)

2 containing all terms to all orders!
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The calculations are tedious, but the result is

(∆Jx)
2 =

1

4

∑
i∗

(
v∗i+◦Q◦ui+u∗i+◦Q◦vi+

(
〈ni+〉2 + 3〈ni+〉+ 2

)
+ u∗i+◦Q◦vi+v∗i+◦Q◦ui+

(
〈ni+〉 − 1

)
〈ni+〉

+ v∗i−◦ui−u∗i−◦vi−
(
〈ni−〉2 + 3〈ni−〉+ 2

)
+ u∗i−◦vi−v∗i−◦ui−

(
〈ni−〉 − 1

)
〈ni−〉

+
∑

(j 6=i)∗

(
v∗i+◦Q◦uj+u∗i+◦Q◦vj+

(
〈ni+〉+ 1

)(
〈nj+〉+ 1

)
+ v∗i+◦Q◦uj+u∗j+◦Q◦vi+

(
〈ni+〉+ 1

)(
〈nj+〉+ 1

)
+ v∗i+◦Q◦vj+v∗j+◦Q◦vi+

(
〈ni+〉+ 1

)
〈nj+〉

+ v∗i+◦Q◦vj+u∗i+◦Q◦uj+
(
〈ni+〉+ 1

)(
〈nj+〉+ 1

)
+ u∗i+◦Q◦uj+v∗i+◦Q◦uj+〈ni+〉

(
〈nj+〉+ 1

)
+ u∗i+◦Q◦uj+u∗j+◦Q◦ui+〈ni+〉

(
〈nj+〉+ 1

)
+ u∗i+◦Q◦vj+v∗i+◦Q◦uj+〈ni+〉〈nj+〉
+ u∗i+◦Q◦vj+v∗j+◦Q◦ui+〈ni+〉〈nj+〉

+ v∗i−◦uj−u∗i−◦vj−
(
〈ni−〉+ 1

)(
〈nj−〉+ 1

)
+ v∗i−◦uj−u∗j−◦vi−

(
〈ni−〉+ 1

)(
〈nj−〉+ 1

)
+ v∗i−◦vj−v∗j−◦vi−

(
〈ni−〉+ 1

)
〈nj−〉

+ v∗i−◦vj−u∗i−◦uj−
(
〈ni−〉+ 1

)(
〈nj−〉+ 1

)
+ u∗i−◦uj−v∗i−◦uj−〈ni−〉

(
〈nj−〉+ 1

)
+ u∗i−◦uj−u∗j−◦ui−〈ni−〉

(
〈nj−〉+ 1

)
+ u∗i−◦vj−v∗i−◦uj−〈ni−〉〈nj−〉

+ u∗i−◦vj−v∗j−◦ui−〈ni−〉〈nj−〉
))

(D.15)

If the state in question is |ψ〉 = |N〉0+ ⊗ |0〉0− ⊗ |0〉1+ ⊗ . . . the results (D.14)
and (D.15) reduces further to
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〈N̂〉 = N0 +
∑
i∗

(
v∗i+◦Q◦vi+ + v∗i− ◦ vi−

)
〈Ĵx〉 =

N0

2
+

1

2

∑
i∗

(
v∗i+◦Q◦vi+ − v∗i− ◦ vi−

)
〈Ĵ2

x〉 =
N2

0

4
+

(
1

4
+
N0

2

)∑
i>0

v∗i+◦Q◦vi+ +

(
1

4
− N0

2

)∑
i

v∗i− ◦ vi−

〈Ĵ2
y 〉 =

N0

4
+
N0

4

∑
i

(
2v∗i−◦ϕϕ∗◦vi− − ϕ∗◦ui−ϕ∗◦vi− − v∗i−◦ϕu∗i−◦ϕ

)
+

1

4

∑
i∗

(
v∗i−◦vi− + v∗i+◦Q◦vi+

)
〈Ĵ2

z 〉 =
N0

4
+
N0

4

∑
i

(
2v∗i−◦ϕϕ∗◦vi− + ϕ∗◦ui−ϕ∗◦vi− + v∗i−◦ϕu∗i−◦ϕ

)
+

1

4

∑
i∗

(
v∗i−◦vi− + v∗i+◦Q◦vi+

)
(∆Jx)

2 =
1

4

∑
i∗

(
2v∗i+◦Q◦ui+u∗i+◦Q◦vi+ + 2v∗i−◦ui−u∗i−◦vi−

+
∑

(j 6=i)∗

(
v∗i+◦Q◦uj+u∗i+◦Q◦vj+ + v∗i+◦Q◦uj+u∗j+◦Q◦vi+

+ v∗i+◦Q◦vj+u∗i+◦Q◦uj+ + v∗i−◦uj−u∗i−◦vj−

+ v∗i−◦uj−u∗j−◦vi− + v∗i−◦vj−u∗i−◦Q◦uj−
))

(D.16)



Appendix E

Time dependence

In this appendix we will calculate the equations of motion for the Λ̂-operator and
show that the time-dependent approach gives the same form of the matrix L as the
time-independent steady-state calculations done in the main text. Before carrying
out the calculation for the full theory, we will do it for a two-mode approximation
and for the Schwinger approximation.

As these calculations are similar to the time-independent calculations in the main
text, they will be done with a minimum of discussion.

A two-mode calculation

In this subsection we will use the two-mode approximation Ψ̂(r) → ĉ on the Hamil-
tonian

Ĥ =

∫
dr

(
Ψ̂†

+(r)H0Ψ̂+(r) + Ψ̂†
−(r)H0Ψ̂−(r) + U

(
Ψ̂†

+(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂−(r)

)
+
U + Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂+(r)Ψ̂+(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂−(r)Ψ̂−(r)

)
+
U − Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂−(r)Ψ̂−(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂+(r)

)
+

Ω

2

(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

))
(E.1)

giving

Ĥ = ĉ†+Eĉ+ + ĉ†−Eĉ− +
Ω

2

(
ĉ†+ĉ+ − ĉ†−ĉ−

)
+
U + Uab

4

(
ĉ†+ĉ

†
+ĉ+ĉ+ + ĉ†−ĉ

†
−ĉ−ĉ−

)
+
U − Uab

4

(
ĉ†+ĉ

†
+ĉ−ĉ− + ĉ†−ĉ

†
−ĉ+ĉ+

)
+ U

(
ĉ†+ĉ

†
−ĉ+ĉ−

)
(E.2)

135
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We wish to �nd the time dependence of Λ̂ as it was de�ned by (5.33) in the context
of the Schwinger model. This is done using the Heisenberg equation with the result

− iΛ̇ =

[
Ĥ, ĉ

†
+ĉ−√
N

]
=
[
Ĥ, ĉ†+

] ĉ−√
N

+
ĉ†+√
N

[
Ĥ, ĉ−

]
(E.3)

Let us �nd the various commutators[
ĉ†+ĉ+, ĉ

†
+

]
= ĉ†+[

ĉ+ĉ+, ĉ
†
+

]
= 2ĉ+[

ĉ†+ĉ
†
+ĉ+ĉ+, ĉ

†
+

]
= 2ĉ†+ĉ

†
+ĉ+ (E.4)

[
ĉ†−ĉ−, ĉ−

]
= −ĉ−[

ĉ†−ĉ
†
−, ĉ−

]
= −2ĉ†−[

ĉ†−ĉ
†
−ĉ−ĉ−, ĉ−

]
= −2ĉ†−ĉ−ĉ− (E.5)

This gives[
Ĥ, ĉ†+

]
= Eĉ†+ +

Ω

2
ĉ†+ +

U + Uab
2

ĉ†+ĉ
†
+ĉ+ +

U − Uab
2

ĉ†−ĉ
†
−ĉ+ + Uĉ†−ĉ

†
+ĉ− (E.6)[

Ĥ, ĉ−
]

= −Eĉ− +
Ω

2
ĉ− −

U + Uab
2

ĉ†−ĉ−ĉ− −
U − Uab

2
ĉ†−ĉ+ĉ+ − Uĉ†+ĉ+ĉ−

which gives

− i
√
N Λ̇ = Eĉ†+ĉ− +

Ω

2
ĉ†+ĉ− +

U + Uab
2

ĉ†+ĉ
†
+ĉ+ĉ− +

U − Uab
2

ĉ†−ĉ
†
−ĉ+ĉ−

+Uĉ†−ĉ
†
+ĉ−ĉ− − Eĉ†+ĉ− +

Ω

2
ĉ†+ĉ− −

U + Uab
2

ĉ†+ĉ
†
−ĉ−ĉ−

−U − Uab
2

ĉ†+ĉ
†
−ĉ+ĉ+ − Uĉ†+ĉ

†
+ĉ+ĉ− ⇔

−iΛ̇ = ΩΛ̂ +
U + Uab

2

(
ĉ†+ĉ+ − ĉ†−ĉ− − 1

)
Λ̂

+
U − Uab

2

(
ĉ†−ĉ− − ĉ†+ĉ+ − 1

)
Λ̂†

+ U
(
ĉ†−ĉ− − ĉ†+ĉ+ + 1

)
Λ̂ (E.7)

Let us do the same for Λ̂†

− iΛ̇† =

[
Ĥ, ĉ+ĉ

†
−√
N

]
=
[
Ĥ, ĉ+

] ĉ†−√
N

+
ĉ+√
N

[
Ĥ, ĉ†−

]
(E.8)
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The commutators are [
ĉ†+ĉ+, ĉ+

]
= −ĉ+[

ĉ†+ĉ
†
+, ĉ+

]
= −2ĉ†+[

ĉ†+ĉ
†
+ĉ+ĉ+, ĉ+

]
= −2ĉ†+ĉ+ĉ+ (E.9)

[
ĉ†−ĉ−, ĉ

†
−

]
= ĉ†−[

ĉ−ĉ−, ĉ
†
−

]
= 2ĉ−[

ĉ†−ĉ
†
−ĉ−ĉ−, ĉ

†
−

]
= 2ĉ†−ĉ

†
−ĉ− (E.10)

which gives

[H, ĉ+] = −Eĉ+ −
Ω

2
ĉ+ −

U + Uab
2

ĉ†+ĉ+ĉ+ −
U − Uab

2
ĉ†+ĉ−ĉ− − Uĉ†−ĉ−ĉ+[

H, ĉ†−
]

= Eĉ†− −
Ω

2
ĉ†− +

U + Uab
2

ĉ†−ĉ
†
−ĉ− +

U − Uab
2

ĉ†+ĉ
†
+ĉ− + Uĉ†+ĉ

†
−ĉ+(E.11)

with the result

− i
√
N Λ̇† = −Eĉ+ĉ†− −

Ω

2
ĉ+ĉ

†
− −

U + Uab
2

ĉ†+ĉ+ĉ+ĉ
†
− −

U − Uab
2

ĉ†+ĉ−ĉ−ĉ
†
−

−Uĉ†−ĉ−ĉ+ĉ
†
− + Eĉ+ĉ

†
− −

Ω

2
ĉ+ĉ

†
− +

U + Uab
2

ĉ+ĉ
†
−ĉ

†
−ĉ−

+
U − Uab

2
ĉ+ĉ

†
+ĉ

†
+ĉ− + Uĉ+ĉ

†
+ĉ

†
−ĉ+ ⇔

−iΛ̇† = −ΩΛ̂† +
U + Uab

2

(
ĉ†−ĉ− − ĉ†+ĉ+ − 1

)
Λ̂†

+
U − Uab

2

(
ĉ†+ĉ+ − ĉ†−ĉ− − 1

)
Λ̂

+ U
(
ĉ†+ĉ+ − ĉ†−ĉ− + 1

)
Λ̂† (E.12)

If we replace ĉ†±ĉ± → N± and assume that N+ � N−, the above results (E.7)
and (E.12) can be written on matrix form as

i ˙̄Λ = LΛ̄ (E.13)

where

Λ̄ ≡
(

Λ̂

Λ̂†

)
(E.14)
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and

L ≡
(

A B
−B −A

)
(E.15)

where

A ≡ −Ω− U + Uab
2

N + UN

B ≡ U − Uab
2

N (E.16)

If we use the GP-like equation

µ = E +
U + Uab

2
N +

Ω

2
(E.17)

we get

A = (E − µ)− Ω

2
+ UN

B =
U − Uab

2
N (E.18)

which is just the result we want, since it is just as similar to A− and B− as given by
(6.16) in the time independent calculation, as the two-mode approximation allows.

The Schwinger calculation

In this subsection we will do the time-dependent calculation for the Schwinger ap-
proximation, see section 5.7.

Ĥ = χĴ2
z + ΩĴx (E.19)

=
χ

4

(
ĉ†+ĉ

†
+ĉ−ĉ− + ĉ†−ĉ

†
−ĉ+ĉ+ + 2ĉ†+ĉ+ĉ

†
−ĉ− + ĉ†+ĉ+ + ĉ†−ĉ−

)
+

Ω

2

(
ĉ†+ĉ+ − ĉ†−ĉ−

)
The commutation relations for the ĉ-operators found in the previous subsection gives
for the Λ̂-operator
√
NiΛ̇ =

[
ĉ†+ĉ−, Ĥ

]
=
[
ĉ†+, Ĥ

]
ĉ− + ĉ†+

[
ĉ−, Ĥ

]
=

χ

2

(
ĉ†+ĉ

†
−ĉ+ĉ+ + ĉ†+ĉ

†
+ĉ+ĉ− − ĉ†−ĉ

†
−ĉ+ĉ− − ĉ†−ĉ−ĉ

†
+ĉ−

)
− Ωĉ†+ĉ− ⇔

iΛ̇ =
(χ

2

(
ĉ†+ĉ+ − ĉ†−ĉ− − 1

)
− Ω

)
Λ̂ +

χ

2

(
ĉ†+ĉ+ − ĉ†−ĉ− + 1

)
Λ̂† (E.20)

and for the Λ̂†-operator we get
√
NiΛ̇† =

[
ĉ+ĉ

†
−, Ĥ

]
=
[
ĉ+, Ĥ

]
ĉ†− + ĉ+

[
ĉ†−, Ĥ

]
=

χ

2

(
ĉ†+ĉ−ĉ−ĉ

†
− + ĉ+ĉ

†
−ĉ−ĉ

†
− − ĉ+ĉ

†
+ĉ

†
+ĉ− − ĉ+ĉ

†
+ĉ+ĉ

†
−

)
+ Ωĉ+ĉ

†
− ⇔

iΛ̇† =
χ

2

(
ĉ†−ĉ− − ĉ†+ĉ+ + 1

)
Λ̂ +

(χ
2

(
ĉ†−ĉ− − ĉ†+ĉ+ − 1

)
+ Ω

)
Λ̂† (E.21)
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If we, as in the previous subsection, replace ĉ†ĉ → N and assume that N+ � N−,
the above results can be written on matrix form as

i ˙̄Λ = LΛ̄ (E.22)

where

L ≡
(

A B
−B −A

)
(E.23)

and where

A ≡ N+χ

2
− Ω

B ≡ N+χ

2
(E.24)

which is the same result as for the time independent Schwinger calculation in the
main text.

The full calculation

Finally we will do a time-dependent version of the full calculation.

Ĥ =

∫
dr

(
Ψ̂†

+(r)H0Ψ̂+(r) + Ψ̂†
−(r)H0Ψ̂−(r)

+
U + Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂+(r)Ψ̂+(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂−(r)Ψ̂−(r)

)
+
U − Uab

4

(
Ψ̂†

+(r)Ψ̂†
+(r)Ψ̂−(r)Ψ̂−(r) + Ψ̂†

−(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂+(r)

)
+ U

(
Ψ̂†

+(r)Ψ̂†
−(r)Ψ̂+(r)Ψ̂−(r)

)
+

Ω

2

(
Ψ̂†

+(r)Ψ̂+(r)− Ψ̂†
−(r)Ψ̂−(r)

))

=

∫
dr

(
ϕ∗H0ϕĉ

†
+ĉ+ + ϕ∗ĉ†+H0δψ̂+ + δψ̂†

+H0ϕĉ+ + δψ̂†
+(H0)δψ̂+ + δψ̂†

−(H0)δψ̂−

+
U + Uab

4

(
|ϕ|4ĉ†+ĉ

†
+ĉ+ĉ+ + 2ϕ∗ĉ†+|ϕ|2ĉ

†
+ĉ+δψ̂+ + 2δψ̂†

+|ϕ|2ĉ
†
+ĉ+ϕĉ+

+(ϕ∗)2ĉ†+ĉ
†
+δψ̂+δψ̂+δψ̂

†
+δψ̂

†
+(ϕ)2ĉ+ĉ+ + 4|ϕ|2ĉ†+ĉ+δψ̂

†
+δψ̂+

+2ϕ∗ĉ†+δψ̂
†
+δψ̂+δψ̂+ + 2δψ̂†

+δψ̂
†
+δψ̂+ϕĉ+δψ̂

†
+δψ̂

†
+δψ̂+δψ̂+ + δψ̂†

−δψ̂
†
−δψ̂−δψ̂−

)
+
U − Uab

4

(
(ϕ∗)2ĉ†+ĉ

†
+δψ̂−δψ̂− + 2ϕ∗ĉ†+δψ̂

†
+δψ̂−δψ̂− + δψ̂†

+δψ̂
†
+δψ̂−δψ̂−

+δψ̂†
−δψ̂

†
−(ϕ)2ĉ+ĉ+ + 2δψ̂†

−δψ̂
†
−ϕĉ+δψ̂+ + δψ̂†

−δψ̂
†
−δψ̂+δψ̂+

)
+U
(
|ϕ|2ĉ†+ĉ+δψ̂

†
−δψ̂− + ϕ∗ĉ†+δψ̂+δψ̂

†
−δψ̂− + δψ̂†

+ϕĉ+δψ̂
†
−δψ̂− + δψ̂†

+δψ̂+δψ̂
†
−δψ̂−

)
+

Ω

2

(
|ϕ|2ĉ†+ĉ+ + ϕ∗ĉ†+δψ̂+ + δψ̂†

+ϕĉ+ + δψ̂†
+δψ̂+ − δψ̂†

−δψ̂−

))
(E.25)
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Let us calculate the equation of motion for Λ̂ and Λ̂† by calculating the commutators:[
ĉ†+, Ĥ

]
=

∫
dr

(
− ϕ∗H0ϕĉ

†
+ − δψ̂†

+H0ϕ−
Ω

2

(
|ϕ|2ĉ†+ + δψ̂†

+ϕ
)

− U + Uab
2

(
|ϕ|2|ϕ|2ĉ†+ĉ

†
+ĉ+ + ϕ∗|ϕ|2ĉ†+ĉ

†
+δψ̂+ + 2|ϕ|2ϕδψ̂†

+ĉ
†
+ĉ+

+ δψ̂†
+δψ̂

†
+(ϕ)2ĉ+ + 2|ϕ|2ĉ†+δψ̂

†
+δψ̂+ + δψ̂†

+δψ̂
†
+δψ̂+ϕ

)
− U − Uab

2

(
δψ̂†

−δψ̂
†
−(ϕ)2ĉ+ + δψ̂†

−δψ̂
†
−ϕδψ̂+

)
− U

(
|ϕ|2ĉ†+δψ̂

†
−δψ̂− + δψ̂†

+ϕδψ̂
†
−δψ̂−

))
(E.26)

[
δψ̂+, Ĥ

]
= H0ϕĉ+ +H0δψ̂+ +

U + Uab
2

(
|ϕ|2ĉ†+ĉ+ϕĉ+ + δψ̂(ϕ)2ĉ+ĉ+

+ 2|ϕ|2ĉ†+ĉ+δψ̂+ + ϕ∗ĉ†+δψ̂+δψ̂+ + 2δψ̂†
+δψ̂ϕĉ+ + δψ̂†

+δψ̂+δψ̂+

)
+
U − Uab

2

(
ϕ∗ĉ†+δψ̂−δψ̂− + δψ̂†

+δψ̂−δψ̂−

)
+ U

(
ϕĉ+δψ̂

†
−δψ̂− + δψ̂+δψ̂

†
−δψ̂−

)
+

Ω

2

(
ϕĉ+ + δψ̂+

)
(E.27)

[
δψ̂−, Ĥ

]
= (H0)δψ̂− +

U + Uab
2

δψ̂†
−δψ̂−δψ̂− −

Ω

2
δψ̂−

+
U − Uab

2

(
δψ̂†

−(ϕ)2ĉ+ĉ+ + 2δψ̂†
−ϕĉ+δψ̂+ + δψ̂†

−δψ̂+δψ̂+

)
(E.28)

+ U
(
|ϕ|2ĉ†+ĉ+δψ̂− + ϕ∗ĉ†+δψ̂+δψ̂− + δψ̂†

+ϕĉ+δψ̂− + δψ̂†
+δψ̂+δψ̂−

)
which gives

i
√
N Λ̇+ =

[
ĉ†+, Ĥ

]
δψ̂+ + ĉ†+

[
δψ̂+, Ĥ

]
= D0+ +D1+ +D2+ +O(δψ̂2) (E.29)

and

i
√
N Λ̇− =

[
ĉ†+, Ĥ

]
δψ̂− + ĉ†+

[
δψ̂−, Ĥ

]
= D1− +D2− +O(δψ̂2) (E.30)
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where

D0+(r) = ĉ†+

(
H0 +

U + Uab
2

(
|ϕ|2ĉ†+ĉ+

)
+

Ω

2

)
ϕĉ+δψ̂+

D1±(r) = −
∫

dr′
(
ϕ∗(r′)ĉ†+

(
H0 +

Ω

2
+
U + Uab

2
|ϕ(r′)|2ĉ†+ĉ+

)
ϕ(r′)

)
δψ̂±(r)

D2+(r) =

(
H0 + (U + Uab)|ϕ|2

(
ĉ†+ĉ+ − 1

)
+

Ω

2

)
ĉ†+δψ̂+(r)

+

(
U + Uab

2
(ϕ)2ĉ†+ĉ+

)
ĉ+δψ̂

†
−(r)

D2−(r) =

(
H0 + U |ϕ|2

(
ĉ†+ĉ+ − 1

)
− Ω

2

)
ĉ†+δψ̂−(r)

+

(
U − Uab

2
(ϕ)2ĉ†+ĉ+

)
ĉ+δψ̂

†
−(r) (E.31)

If we make the identi�cation ψ = ϕĉ+, we can use the GPE to transform the theD0+-
term into Nµϕδψ̂+(r) and the D1±-term into −µĉ†+δψ̂±(r). The D0+-term is just
the H0-term from the time independent theory, so ignoring that, and approximating
N ≈ N − 1 we get the equation of motion

iΛ̇± = A±Λ̂± +B±Λ̂± (E.32)

where

A+ ≡ H0 − µ+ (U + Uab)|ψ|2 +
Ω

2

B+ ≡ (U + Uab)

2
(ψ)2

A− ≡ H0 − µ+ U |ψ|2 − Ω

2
(E.33)

B− ≡ (U − Uab)

2
(ψ)2

just like we got from the time-independent calculation in (6.16).



Appendix F

The symmetry-breaking approach

In this appendix we will calculate the expression (6.60) which is postulated in the
main text.

The symmetry breaking approach consists of using the rewritings

Ψ̂+(r) ≈ ψ(r) + δψ̂+(r)

Ψ̂−(r) ≈ δψ̂−(r) (F.1)

instead of the more correct (6.2). In this approach we do not need to introduce
the operators Λ̂, since the de�nition would become Λ̂ ≡ δψ̂, and nor does we have
to introduce the Q◦-operators as there no longer is a demand for the ϕi+-functions
to be orthogonal to ψ. When calculating the various operators, we can follow the
same method as for the non-symmetry breaking approach and we get for most of
the operators the same result as previously, except for the lack of Q◦-operators and
the fact that all sums start form 0. The u and v functions will be found to be the
solutions to the simpler version of (6.38)

L(r)w̄i(r) = εiw̄i(r) (F.2)

where

w̄i(r) ≡
(
ui(r)
v∗i (r)

)
(F.3)

and

L(r) ≡
[

A(r) B(r)
−B∗(r) −A(r)

]
(F.4)

since Q(r, r′) gets replaced with δ(r, r′) in the symmetry-breaking approach. Inser-
tion gives

A(r)ui(r) +B(r)v∗i (r) = εiui(r)

B∗(r)ui(r) + A(r)v∗i (r) = −εiv∗i (r) (F.5)
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We see that if we switch u and −v we would have another eigenvector1 with eigen-
value −ε. This means that if ε = 0 a possible solution is u = −v. For the plus-mode
such a solution actually exists and by inserting the values of A+ and B+ from (6.16),
we get (

H0 − µ+ (U + Uab)|ψ|2 +
Ω

2

)
u0(r)−

(U + Uab)

2
(ψ)2u∗0(r) = 0 (F.6)

and from the GPE (5.12) we see that a solution to this is u0(r) = −v0(r) = ψ(r).
Let us denote the eigenvector describing this solution w̄0. Something is, however,
wrong with this result. We know that all w̄-functions should ful�ll (6.31)

δij =

∫
dr
(
u∗i (r)uj(r)− vi(r)v

∗
j (r)

)
(F.7)

and (6.32)

0 =

∫
dr
(
vi(r)u

∗
j(r)− u∗i (r)vj(r)

)
(F.8)

but inserting w̄0 in (F.7) gives u∗0 ◦u0−v0 ◦v∗0 = u0 ◦u0−u0 ◦u0 = 0, but if we could
�nd another eigenvector with the same eigenvalue, then a superposition of the two
might do the trick. From (F.5) we see that any eigenvector w̄ with u = v will give
the eigenvalue zero, and the same questionable result for insertion into (F.7) as the
previous solution. Let us name this u = ζ and then de�ne the superposition, which
we will denote w̄+ as

w̄+(r) ≡ 1√
2

(
ψ(r) + ζ(r)

−ψ∗(r) + ζ∗(r)

)
(F.9)

Requiring that w̄+ obeys (F.7) is equivalent to requiring that∫
dr
(
ζ(r)ψ∗(r) + ψ(r)ζ∗(r)

)
= 1 (F.10)

So now we can identify a possible value of ζ to ζ(r) = dψ(r)
dN

, since∫
dr

(
dψ(r)

dN
ψ∗(r) + ψ(r)

dψ∗(r)

dN

)
=

d

dN

∫
drψ(r)ψ∗(r) =

dN

dN
= 1 (F.11)

This implies that

w̄+(r) =
1√
2

(
ψ(r) + dψ(r)

dN

−ψ∗(r) + dψ∗(r)
dN

)
(F.12)

1We could argue that such an eigenvector can not ful�l (F.7) u′∗◦u′−v′◦v′∗ = 1 which we require,
but it could if we allow for complex eigenvectors and instead de�ne u′ = iv and v′ = iu, where
such a phase shift always is allowed in an eigenvalue equation. This is related to the discussion of
positive and negative eigenvalues in section 5.7.
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We must also test (F.7) between w̄+ and w̄i6=0+, and in order to do this it is convenient
to regard the expression∫

dr
(
w̄†
iMw̄j −

(
w̄†
jMw̄i

)∗)
= 0 (F.13)

which can be seen to be true from the fact thatM is Hermitian. If w̄i and w̄j both
are eigenvectors to L ≡ σzM, we can rewrite (F.13) to

(εj − ε∗i )

∫
dr
(
u∗i (r)uj(r)− vi(r)v

∗
j (r)

)
= 0 (F.14)

which is equivalent to (F.7) (assuming the eigenvalues to be non-degenerate). This
implies that w̄0 obeys (F.7) with another state, even though it does not obey it with
itself.

We want to insert w̄j = w̄+, but in order to do that, we must �rst calculate
Mw̄+, by inserting the concrete expressions for M and w̄+:

Mw̄+ =
1√
2

(
Âψ −Bψ∗ + Â dψ

dN
+B dψ∗

dN

−Âψ∗ +B∗ψ + Âdψ∗

dN
+B∗ dψ

dN

)
(F.15)

Because of (5.12) the two �rst terms in each component are seen to be 0, and in
order to handle the last two terms we regard the derivative of the GPE (5.12):

d

dN

(
H0ψ +

U + Uab
2

ψ∗ψψ +
Ω

2
ψ

)
=

d

dN
(µψ)

⇔ H0
dψ

dN
+ (U + Uab) |ψ|2

dψ

dN
+
U + Uab

2
(ψ)2dψ

∗

dN
+

Ω

2

dψ

dN
= µ

dψ

dN
+
dµ

dN
ψ

⇔ Â
dψ

dN
+B

dψ∗

dN
=

dµ

dN
ψ (F.16)

which implies

Mw̄+ =
1√
2

(
dµ
dN
ψ(r)

dµ
dN
ψ∗(r)

)
=

1√
2

dµ

dN
σzw̄0 (F.17)

We thereby see that w̄+ is not an eigenvector to M, and not to L = σzM either,
shoving that the ζ-eigenvector is not an eigenvector at all. But (F.13) holds anyway,
so we can insert w̄j = w̄+ in (F.13) and get

0 =

∫
dr
(
w̄†
iMw̄+ −

(
w̄†

+Mw̄i

)∗)
=

∫
dr

(
w̄†
i

1√
2

dµ

dN
σzw̄0 −

(
w̄†

+εiσzw̄i

)∗)
=

1√
2

dµ

dN

∫
dr (u∗iu0 − viv

∗
0)− εi

∫
dr
(
u∗+ui − v+v

∗
i

)
⇒

0 =

∫
dr
(
u∗+ui − v+v

∗
i

)
(F.18)
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where the facts that w̄0 ful�ls (F.7), and that εi 6= 0 have been used. This means
that w̄+ ful�ls (F.7) with another state, in addition to doing it alone. All states
ful�l (F.8) with themselves, and in order to investigate (F.8) for w̄+ and a w̄i6=0+,
we will regard the quantity∫

dr
(
ȳ†+Mw̄i −

(
w̄†
iMȳ+

)∗)
= 0 (F.19)

where

ȳi ≡
(
vi
u∗i

)
(F.20)

which implies

ȳ+ ≡ 1√
2

(
−ψ(r) + dψ(r)

dN

ψ∗(r) + dψ∗(r)
dN

)
(F.21)

On the exact same way as for w̄+ we can calculate that Mȳ+ = 1√
2

dµ
dN
σzw̄0, where

(5.12) and (F.16) have been inserted. Inserting this into (F.19) gives

0 =

∫
dr
(
ȳ†+Mw̄i −

(
w̄†
iMȳ+

)∗)
=

∫
dr

(
ȳ†+εiσzw̄i −

(
w̄†
i

1√
2

dµ

dN
σzw̄0

)∗)
= εi

∫
dr
(
v∗+ui − u+v

∗
i

)
− 1√

2

dµ

dN

∫
dr (u∗iu0 − viv

∗
0) ⇒

0 =

∫
dr
(
v+u

∗
i − u∗+vi

)
(F.22)

where the fact that w̄0 and w̄i ful�l (F.7) together, have be used. This shows that
w̄+ and w̄i6=0 together ful�l (F.8).

Summarizing: w̄+ ful�ls all that is expected of a w̄-state, except being an eigen-
state to L. This means that di�erent states ful�l (F.7), (F.8) and (F.2). But (F.7)
and (F.8) were derived from the commutation relations which are fundamental, so
therefore we have to discard (F.2).

Let us try to calculate
∫

drΛ̄†
+MΛ̄+, where

Λ̄+ ≡
(
δψ̂+

δψ̂†
+

)
(F.23)

with a δψ̂+ that includes the w̄+-state so that

δψ̂+ = u+α̂0 + v+α̂
†
0 +

∑
i>0

(
ui+α̂i+ + vi+α̂

†
i+

)
(F.24)
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This gives∫
drΛ̄†

+M+Λ̄+ =

∫
dr
(
δψ̂†

+A+δψ̂+ + δψ̂†
+B+δψ̂

†
+ + δψ̂+B

∗
+δψ̂+ + δψ̂+A+δψ̂

†
)

=
∑
ij

((∫
dr ȳiM+w̄j

)
α̂iα̂j +

(∫
dr w̄†

iM+w̄j

)
α̂†i α̂j + h.c.

)
=

1√
2

dµ

dN

((∫
dr ȳ+σzw̄0

)
α̂0α̂0 +

(∫
dr w̄†

+σzw̄0

)
α̂†0α̂0 + h.c.

)
+
∑
j 6=0

εj

((∫
dr ȳ+σzw̄j

)
α̂0α̂j +

(∫
dr w̄†

+σzw̄j

)
α̂†0α̂j + h.c.

)
+

1√
2

dµ

dN

∑
i6=0

((∫
dr ȳiσzw̄0

)
α̂iα̂0 +

(∫
dr w̄†

iσzw̄0

)
α̂†i α̂0 + h.c.

)
+
∑
i,j 6=0

εj

((∫
dr ȳiσzw̄j

)
α̂iα̂j +

(∫
dr w̄†

iσzw̄j

)
α̂†i α̂j + h.c.

)
=

1√
2

dµ

dN

1√
2

(
α̂0α̂0 + α̂0α̂

†
0 + α̂†0α̂0 + α̂†0α̂

†
0

)
+
∑
i,j 6=0

εjδij

(
α̂iα̂

†
j + α̂†i α̂j

)
=

dµ

dN
Q̂2 +

∑
i6=0

εi

(
α̂iα̂

†
i + α̂†i α̂i

)
(F.25)

As part of the calculation (F.7) and (F.8) have been inserted where they hold (that
is between w̄i and w̄j, between w̄i and w̄+, and between w̄i and w̄0) and

Q̂ ≡ 1√
2
(α̂0 + α̂†0)

P̂ ≡ 1

i
√

2
(α̂0 − α̂†0) (F.26)

have been de�ned. If we insert (F.25) in (6.13), and use the commutation relation
for the α̂is the result is

Ĥ = Ĥ0 +
1

2

dµ

dN
Q̂2 +

∑
i>0

εi+

(
α̂†i+α̂i+

)
+
∑
i

εi−

(
α̂†i−α̂i−

)
(F.27)

which is identical to (6.60), the result which we had set out to derive.



Appendix G

The source code

This appendix shows the source code to the program that have been used to produce
the data plotted in �gs. 7.11 and 7.12. Most of the data shown in the �results�-section
and in the �further results�-appendix could have been made using this program by
varying the initial parameters.

% prog10: % This means that this program is the tenth version.

N = 1000; % The particle number.

% First we calculate the F-function for the two-mode approximation.

Gchi = 1;

Gstor = 50;

for(j = 1:Gstor)

Gomegaer(j) = 1*10^(-5) * 10^(j/5);

end % Only positive values of (-Omega) are needed

% to produce the F-functions.

list = 1:(N+1);

lizt = 1:N;

GMx = sparse(list,list,(N/2-list+1)); % See (B.10)

GMz = sparse([lizt,(lizt+1)], [(lizt+1),lizt], % and (B.12).

0.5*sqrt([lizt,lizt].*(N+1-[lizt,lizt])));

GMz2 = GMz*GMz;

Genhedsmat = sparse(list,list,1);

for(j = 1:Gstor)

GOmega = - Gomegaer(j);

147



APPENDIX G. THE SOURCE CODE 148

GOper = Gchi*GMz2 + GOmega*GMx + N*abs(GOmega)*Genhedsmat;

% The operator defined by (3.33).

[Gt, Gw] = eigs(GOper,1,'sm'); % Diagonalizaton.

Gen(j) = Gw;

GJx(j) = Gt'*GMx*Gt;

GJz2(j) = Gt'*GMz2*Gt;

Gxi2(j) = (GJz2(j) - GJz(j)^2)*N/(GJx(j)*GJx(j));

% The results for the two-mode case.

end

% At this point the calculation of the F-function is finished.

% Here we begin the central calculation.

antr = 200;

maxr = 10; % Variables related the precision on the r-axis.

dr = maxr/antr;

antt = 30000;

maxt = 3; % Variables related the precision on the t-axis.

dt = maxt/antt;

antl = 30; % Number of l-modes incuded.

Ter = 0.049; % The temprature(s).

stort = size(Ter);

stort = stort(2); % This gives 1, since there only is one T.

ser = [0.01, 0.1, 0.3, 0.6, 1, 3]; % The sums s.

stors = size(ser);

stors = stors(2); % The number of s-values.

fer = [0, 0.1, 0.3, 0.5, 0.7, 0.9]; % The fractions f.

storf = size(fer);

storf = storf(2); % The number of f-values.

omegaer = [-0.00010, -0.00008, -0.00006, -0.00004, -0.00002, 0, 0.00001,

0.00002, 0.00003, 0.00006, 0.0001, 0.00015, 0.00025, 0.0004, 0.0006,
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0.001, 0.0015, 0.0025, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.06,

0.08, 0.1, 0.2, 0.3, 1, 10]; % The values of (- Omega).

stor = size(omegaer);

stor = stor(2);

rud=(1:antr)';

r = dr*rud; % The r-axis.

rud = rud - 1;

rmat = repmat(r,1,antr);

G = 4*pi*dr*( (r*r') .* eye(antr) );

% Integration matrix corresponding to the o-operator.

% Some of the output will be stored in these variables (see later).

eudp = zeros(stor,antr,antl,stors,storf,stort);

budp = zeros(stor,antr,antl,stors,storf,stort);

%uudp = zeros(stor,antr,antr,antl,stors,storf,stort);

%vudp = zeros(stor,antr,antr,antl,stors,storf,stort);

nudp = zeros(stor,antr,antl,stors,storf,stort);

Nudp = zeros(stor,antr,antl,stors,storf,stort);

eudm = zeros(stor,antr,antl,stors,storf,stort);

budm = zeros(stor,antr,antl,stors,storf,stort);

%uudm = zeros(stor,antr,antr,antl,stors,storf,stort);

%vudm = zeros(stor,antr,antr,antl,stors,storf,stort);

nudm = zeros(stor,antr,antl,stors,storf,stort);

Nudm = zeros(stor,antr,antl,stors,storf,stort);

d2dr2 = -2*eye(antr);

for j = 1:(antr-1)

d2dr2(j+1,j) = 1;

d2dr2(j,j+1) = 1; % The d2/dr2-matrix. See (6.69).

end

d2dr2 = d2dr2/(dr*dr);

antn = 40; % The number of times we will allow N and Nst to update.

fprintf('\n Hello prog10\n\n');

% This tells us that the loop-part of the program starts.

fil = fopen('output102.txt', 'w');

% This creates a text-file to store the output.

fprintf(fil, '\n\r Output from prog10\n\r\n\r');
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for(s = 1:stors)

for(f = 1:storf) % Loops for different s and f.

Uer(s,f) = ser(s)/(fer(f) + 1);

Uaber(s,f) = (ser(s)*fer(f))/(fer(f) + 1);

U = Uer(s,f);

Uab = Uaber(s,f);

% The values of U and Uab corresponing to the values of s and f.

for(b = 1:stort)

kT = Ter(b); % The temperature.

fprintf(fil, '\n\r\n\r kT: %f, U: %f , Uab: %f , N: %d , antr: %d ,

maxr: %d , antl: %d , antt: %d , maxt: %d\n\r\n\r\n\r', kT, U, Uab,

N, antr, maxr, antl, antt, maxt);

fprintf(fil, '%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\n\r\n\r',

'-Omega', 'lambda', 'Jx', 'Jz2', 'xi2', 'mu', 'Nst', 'Nat');

% This writes in the text-file.

for(x = 1:stor)

Omega = -omegaer(x); % The value of omega.

Nst(x,s,f,b) = 0.5*N; % A first guess of N_0 is N/2.

Natgl = 2*N;

Nstgl = N;

% Nst(x,s,f,b) = N;

% This should have been used if the zero-temperature

% form of the program was used.

for(y = 1:antn) % This loop updates N and N_0.

% Calculation of psi.

upsi = exp(-r.*r/2).*r;

upsi = upsi*sqrt(Nst(x,s,f,b)) / sqrt( 4*pi*dr*upsi'*upsi );

% A first guess of psi. The gaussian result for U=0.

for j=1:antt % This loop is the Runge-Kutta part
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% of the complex-time algorithm.

k1 = 0.5*d2dr2*upsi - 0.5*r.*r.*upsi - 0.5*(U + Uab)*

( ( (upsi.*transpose(upsi'))./(r.*r) ) .* upsi);

k2 = 0.5*d2dr2*(upsi+0.5*k1*dt) - 0.5*r.*r.*(upsi+0.5*k1*dt) -

0.5*(U + Uab)*( ( ((upsi+0.5*k1*dt).*transpose((upsi+0.5*k1*dt)'))

./(r.*r) ) .* (upsi+0.5*k1*dt));

k3 = 0.5*d2dr2*(upsi+0.5*k2*dt) - 0.5*r.*r.*(upsi+0.5*k2*dt) -

0.5*(U + Uab)*( ( ((upsi+0.5*k2*dt).*transpose((upsi+0.5*k2*dt)'))

./(r.*r) ) .* (upsi+0.5*k2*dt));

k4 = 0.5*d2dr2*(upsi+k3*dt) - 0.5*r.*r.*(upsi+k3*dt) -

0.5*(U + Uab)*( ( ((upsi+k3*dt).*transpose((upsi+k3*dt)'))

./(r.*r) ) .* (upsi+k3*dt));

upsi = upsi + (dt/6)*(k1 + 2*k2 + 2*k3 + k4);

upsi = upsi*sqrt(Nst(x,s,f,b)) / sqrt( 4*pi*dr*upsi'*upsi );

end % End of Runge-Kutta part.

psi = upsi ./ r;

varphi = psi/sqrt(Nst(x,s,f,b));

% End of calculation of psi.

Jx(x,s,f,b) = Nst(x,s,f,b)/2;

Nat(x,s,f,b) = Nst(x,s,f,b); % The major part of the J-operators.

Jz2(x,s,f,b) = Nst(x,s,f,b)/4;

lhs = -0.5*d2dr2*upsi + 0.5*r.*r.*upsi + (Omega/2)*upsi +

0.5*(U + Uab)*( ( (upsi.*transpose(upsi'))./(r.*r) ) .* upsi);

% Left hand side of the GPE.

mu(x,s,f,b) = sum(lhs)/(sum(upsi)); % Calculation of mu.

% Calculation of end-state.

Qr = eye(antr)*(G^(-1)) - (varphi*varphi'); % The Q-operator.

Qd = eye(antr)*(G^(-1));
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for L=1:antl %One calculation for each L-state (L = l+1).

delap = -0.5*d2dr2.*rmat'./rmat + 0.5*L*(L-1)*eye(antr)./(r*r') +

0.5*(r*r').*eye(antr) + (U + Uab)*(psi*psi').*eye(antr) +

(Omega/2)*eye(antr) - mu(x,s,f,b)*eye(antr); % This is A+.

delbp = 0.5*(U + Uab) * (psi*transpose(psi)).*eye(antr); % B+.

delam = -0.5*d2dr2.*rmat'./rmat + 0.5*L*(L-1)*eye(antr)./(r*r') +

0.5*(r*r').*eye(antr) + U*(psi*psi').*eye(antr) -

(Omega/2)*eye(antr) - mu(x,s,f,b)*eye(antr); % This is A-.

delbm = 0.5*(U - Uab) * (psi*transpose(psi)).*eye(antr); % B-.

if(L == 1)

Q = Qr;

else % Q-operators

Q = Qd;

end % Stricly speaking the Q-operator is Q*G.

delapq = Q*G*delap*Q*G;

delbpq = Q*G*delbp*Q'*G; % The L+ matrix.

delcpq = -Q'*G*delbp'*Q*G;

deldpq = -Q'*G*delap*Q'*G;

delamq = delam;

delbmq = delbm; % The L- matrix.

delcmq = -delbm';

deldmq = -delam;

Lmatp = [delapq, delbpq; delcpq, deldpq];

Lmatm = [delamq, delbmq; delcmq, deldmq];

% The L-matrices

% A little jump...

[tilstandep, energierp] = eig(Lmatp); % Diagonalizes the matrix.

[tilstandem, energierm] = eig(Lmatm);

energierp = real(diag(energierp)); % Finds u, v and e.

uernep = real(tilstandep(1:antr, 1:2*antr));

vernep = real(tilstandep((antr+1):2*antr, 1:2*antr));
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energierm = real(diag(energierm));

uernem = real(tilstandem(1:antr, 1:2*antr));

vernem = real(tilstandem((antr+1):2*antr, 1:2*antr));

[yp, indexp] = sort(energierp); % Sorts the energies

indp = indexp((antr+1):2*antr); % and pics the positive ones.

[ym, indexm] = sort(energierm);

indm = indexm((antr+1):2*antr);

energip = energierp(indp);

up = uernep(:,indp);

vp = vernep(:,indp); % The sorted energies, us and vs.

energim = energierm(indm);

um = uernem(:,indm);

vm = vernem(:,indm);

normp = diag( up'*G*Q*G*up - vp'*G*Q*G*vp ); % Normalization of u and v

normm = diag( um'*G*um - vm'*G*vm ); % using int dr (uu-vv) = 1.

for om=1:antr

if normp(om) < 0

buf = up(:,om);

up(:,om) = vp(:,om);

vp(:,om) = buf;

normp(om) = -normp(om);

end

if normm(om) < 0 % More normalization.

buf = um(:,om);

um(:,om) = vm(:,om);

vm(:,om) = buf;

normm(om) = -normm(om);

end

end

up = up./sqrt(repmat(normp',antr,1));

vp = vp./sqrt(repmat(normp',antr,1));

um = um./sqrt(repmat(normm',antr,1)); % Even more normalization.

vm = vm./sqrt(repmat(normm',antr,1));

tegnp = sign(up(1,:));

tegnp = repmat(tegnp,antr,1);

tegnm = sign(um(1,:));

tegnm = repmat(tegnm,antr,1);
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up = up.*tegnp;

vp = vp.*tegnp;

um = um.*tegnm; % u starts as positive, and v as negative.

vm = vm.*tegnm;

eudp(x,:,L,s,f,b) = energip; % Stores the variables for output.

eudm(x,:,L,s,f,b) = energim;

% uudp(x,:,:,L,s,f,b) = up;

% uudm(x,:,:,L,s,f,b) = um;

% vudp(x,:,:,L,s,f,b) = vp;

% vudm(x,:,:,L,s,f,b) = vm;

nudp(x,:,L,s,f,b) = diag(vp'*G*Q*G*vp);

nudm(x,:,L,s,f,b) = diag(vm'*G*vm); % The contribution to N.

Nudp(x,:,L,s,f,b) = nudp(x,:,L,s,f,b)*(2*L-1);

Nudm(x,:,L,s,f,b) = nudm(x,:,L,s,f,b)*(2*L-1);

% All m-states taken into account.

nbidp = 1./(exp(energip/kT)-1); % The expectation values <aa>

nbidm = 1./(exp(energim/kT)-1); % using Bose-Einstein distribution.

budp(x,:,L,s,f,b) = nbidp;

budm(x,:,L,s,f,b) = nbidm;

if(L == 1)

for j = 1:antr

up(j,1) = 0; % The first-order part of Jz2.

vp(j,1) = 0;

Jz2(x,s,f,b) = Jz2(x,s,f,b) + (Nst(x,s,f,b)/4)*(nbidm(j)+1)*

( (varphi'*G*um(:,j))*(varphi'*G*vm(:,j)) + 2*(vm(:,j)'*G*varphi)*

(varphi'*G*vm(:,j)) + (vm(:,j)'*G*varphi)*(um(:,j)'*G*varphi) );

Jz2(x,s,f,b) = Jz2(x,s,f,b) + (Nst(x,s,f,b)/4)*nbidm(j)*

( (varphi'*G*vm(:,j))*(varphi'*G*um(:,j)) + 2*(um(:,j)'*G*varphi)*

(varphi'*G*um(:,j)) + (um(:,j)'*G*varphi)*(vm(:,j)'*G*varphi) );

end

end

for j = 1:antr %Calculation of the expectation values of the operators.
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Jx(x,s,f,b) = Jx(x,s,f,b) + 0.5*(2*L-1)*( vp(:,j)'*G*Q*G*vp(:,j)*

(nbidp(j) + 1) + up(:,j)'*G*Q*G*up(:,j)*nbidp(j)

- vm(:,j)'*G*vm(:,j)*(nbidm(j) + 1) - um(:,j)'*G*um(:,j)*nbidm(j) );

Nat(x,s,f,b) = Nat(x,s,f,b) + (2*L-1)*( vp(:,j)'*G*Q*G*vp(:,j)*

(nbidp(j) + 1) + up(:,j)'*G*Q*G*up(:,j)*nbidp(j) +

vm(:,j)'*G*vm(:,j)*(nbidm(j) + 1) + um(:,j)'*G*um(:,j)*nbidm(j) );

Jz2(x,s,f,b) = Jz2(x,s,f,b) + 0.25*(2*L-1)*( vp(:,j)'*G*Q*G*vp(:,j)*

(nbidp(j) + 1) + up(:,j)'*G*Q*G*up(:,j)*nbidp(j) + vm(:,j)'*G*vm(:,j)*

(nbidm(j) + 1) + um(:,j)'*G*um(:,j)*nbidm(j) );

end

end % End of L-loop.

fprintf('Here: %d %d %d %d %d %f %f\n', s, f, b, x, y,

Nat(x,s,f,b), Nst(x,s,f,b));

% prints 'you are here'.

if(Jx(x,s,f,b) > (0.5*N - 2) && Jx(x,s,f,b) < (0.5*N + 1))

npre = 0.05;

else

npre = 0.5; % The value of the precetion of the determination of N.

end

if( Nat(x,s,f,b) < (N+npre) && Nat(x,s,f,b) > (N-npre) )

break; % Update algorithm for Nst.

else

nstbuf = Nst(x,s,f,b);

if( Nat(x,s,f,b) > N || Nat(x,s,f,b) < 0 )

if( Natgl > N || Natgl < 0 )

Nst(x,s,f,b) = Nst(x,s,f,b) - 0.5*(Nstgl - Nst(x,s,f,b));

else

Nst(x,s,f,b) = 0.5*(Nst(x,s,f,b) + Nstgl);

end

else

if( Natgl > N || Natgl < 0)

Nst(x,s,f,b) = 0.5*(Nst(x,s,f,b) + Nstgl);

else

Nst(x,s,f,b) = Nst(x,s,f,b) + 0.5*(Nst(x,s,f,b) - Nstgl);

end

end

Nstgl = nstbuf;
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Natgl = Nat(x,s,f,b);

end

% end of update algorithm.

% For zero temperature this loop is faster,

% for non-zero T it does not converge:

% if( Nat(x,s,f) < (N+npre) & Nat(x,s,f) > (N-npre) )

% break;

% else

% Nst(x,s,f) = N*Nst(x,s,f)/Nat(x,s,f);

% end

if( y == antn )

fprintf('\n Beware!!\n\n');

% Error statement, if the Nst update loop has

% not converged after antn rounds.

end

end % End of N-loop

xi2(x,s,f,b) = Jz2(x,s,f,b)*Nat(x,s,f,b)/(Jx(x,s,f,b)*Jx(x,s,f,b));

% Calculation of squeezing.

fprintf(fil, '%f\t%f\t%f\t%f\t%f\t%f\t%f\n\r\n\r', omegaer(x),

Jx(x,s,f,b), Jz2(x,s,f,b), xi2(x,s,f,b), mu(x,s,f,b),

Nst(x,s,f,b), Nat(x,s,f,b));

% Prints to the text-file.

end % End of omega-loop.

end % End of T-loop.

end % End of f-loop.

end % End of s-loop.

fclose(fil); % Closes the text-file.

clear GMx;

clear GMz; % Removes the large variables

clear GMz2; % that are not used as output.

clear GOper;

clear Genhedsmat;

clear Lmatm;

clear Lmatp;

clear Nudm;

clear Nudp;
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clear delam;

clear delamq;

clear delap;

clear delapq;

clear delbm;

clear delbmq;

clear delbp;

clear delbpq;

clear delcmq;

clear delcpq;

clear deldmp;

clear deldpq;

clear list;

clear lizt;

clear eudm;

clear eudp;

clear nudm;

clear nudp;

clear tegnm;

clear tegnp;

clear tilstandem;

clear tilstandep;

clear uernem;

clear uernep;

clear um;

clear up;

clear vernem;

clear vernep;

clear vm;

clear vp;

clear ym;

clear yp;

clear Gt;

clear budm;

clear budp;

save data10.mat -v7.3 % Saves the results as a

% matlab data file.

% End of program



Appendix H

Numerical precision

When doing the numerical simulations in this thesis, some precision parameters had
to be chosen. These parameters are denoted antt, maxt, antr, maxr, antl, and
npre. The values used for most of the simulations in this thesis are

antt 30000
maxt 3
antr 200
maxr 10
antl 30
npre 0.5

antt andmaxt are used in the imaginary time algorithm described in the vicinity
of (4.29). In that algorithm we need to solve the time-dependent GPE, with the
time t replaced with an imaginary time τ ≡ it. This is done numerically, and the
solution is produced using a fourth order Runge-Kutta algorithm. In this algorithm
the τ -axis needs to be discretized. antt is the number of steps in the discretization,
and the τ for which the algorithm stops is denoted maxt. This means that each
of the equidistant steps have the length dt = maxt/antt. In �g. H.1a we see a
zoom on one point in a plot of ψ, where each curve corresponds to a certain value
of antt. We see that the function is close to converging for antt = 30000. For antt
. 800 the curve does not converge at all, but becomes singular in either r = 0 or
r = maxr. The time it takes for the program to execute scales linearly with antt.
We can calculate the contribution to the total particle number from the 0−-mode
for di�erent values of antt. The result is that antt = 30000 gives a relative error
of 0.00402.

In �g. H.1b ψ(r) is plotted for di�erent values of maxt. We see that the result
has converged for maxt = 3 which is why that value was chosen.

antr and maxr are used when solving the GPE. The de�nitions are similar to
the τ -case, antr is the number of steps in the discretization of the r-axis, and maxr
is the maximal r used, which makes the step size dr = maxr/antr. In �g. H.1c we
see a zoom on a peak in one of the calculated u-functions for di�erent values of antr

158
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showing the e�ect of changing that variable. We can calculate the contribution to
the total particle number from the 0−-mode using various values of antr. The value
obtained for antr = 200 diverges from the correct result by a factor of 0.00004. The
time it takes to run the program is approximately proportional to antr squared.

In �g. H.1d some of the u−-functions are plotted for di�erent values of k. We see
that a larger k makes the function go to zero further out on the r-axis. Fig. H.1d is
made using maxr > 10, and we see that for a k larger than 20 the u-function has not
become zero at r = 10. This means that we expect some error on the contributions
from the Bogoliubov modes with k > 20 when we use maxr = 10. In �g. H.1e we
see the contribution to the total particle number from modes with di�erent k. We
see that modes with k > 20 gives a small contribution, 0.00301 of the total for the
plus-modes and 0.00002 for the minus modes. If the error from using maxr = 10 is
10% on these modes, the total relative error from maxr is 0.00030.

antl is the number of l-modes that we include in the calculation. In �g H.1f we
see the contribution to the total particle number from modes with di�erent l. The
contribution from modes with l ≥ 30 is 0.00001 for the plus-modes and 0 from the
minus-modes. The time it takes to run the program scales linearly with antl.

Finally npre is the precision of the number of atoms. The formula in (6.52)
uses N0 and not N , but since the known quantity is N , we need to carry out the
calculations a couple of times in order to let N converge to the right number. The
loop stops when the di�erence between the calculated and the correct value of N
is less than npre. The smaller npre is, the smaller the numerical bumps on the
(∆Jz)

2 vs. 〈Ĵx〉-curves will be. The data plotted in �gs. 7.4 and 7.5 are made using
npre = 0.05 all the way through, while the data plotted in �gs. 7.11 and 7.12 are
produced using npre = 0.05 on the rightmost part of the curves, but npre = 0.5
for most of the data. The di�erence can be seen. If the numerical error from npre
is npre/N , the total relative error it is 0.0005. The time it takes to execute the
program goes logarithmically with N/npre.

This means that the relative errors from the variables antt, maxt, antr, maxr,
antl, and npre are 0.00402, 0, 0.00004, 0.00030, 0.00001, and 0.00050 respectively.
If we assume the errors to be independent, we can calculate1 the total relative
error on the expectation value on one of the Ĵ-operators to be 0.00406 where the
vast majority of the error stems from the antt-variable. If the uncertainties on
(∆Jz)

2 and 〈Ĵx〉 are assumed independent, this gives the relative uncertainty on a
measurement of the squeezing parameter to be 0.00908. The conclusion I derive
from this is that the calculated values of 〈Ĵ〉 are correct within a margin of error of
0.5% while the calculated squeezings ξ2 are correct within a margin of error of 1%.

1The relative errors found in this section are relative errors on di�erent quantities. Sometimes
on the contribution to the total particle number from one Bogoliubov-mode, sometimes on the
contribution from all the modes, and sometimes on the particle number itself. This calculation
assumes the uncertainties to be uncertainties on measurements of one of the operators involved in
our calculations, which is why the error-calculation done here should be seen as an estimate only.
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Figure H.1: (a) shows a zoom on a part of ψ for di�erent values of antt. The values are
1000, 2000, 3000, 5000, 7000, 10000, 20000, and 30000 from above. (b) shows ψ(r) for
di�erent values of maxt for a �xed dt. The red curve shows the initial curve corresponding
to maxt = 0, and the black curves correspond to maxt = 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, and
3 respectively, counted from above at r = 0. The curves for 2 and 3 are indistinguishable.
(c) shows a zoom on a peak of the u90+-function for di�erent antr. Blue, green, red,
cyan, violet and brass corresponds to antr = 50, 100, 150, 200, 250, and 300 respectively.
(d) shows the uk0−-function for di�erent values of k, blue, green, red, cyan, violet, brass
and black correspond to k = 0, 4, 9, 14, 19, 24 and 29 respectively. (e) and (f) show
the contribution to the total particle number for di�erent k and l respectively. Blue
corresponds to the contribution from plus-modes and red corresponds to the contribution
from minus-modes.



Appendix I

Further results

In this appendix some results that did not �t in the main text is shown, with a
minimum of discussion.

Fig. I.1 is a detailed plot of various parameters for a single set of U , Uab, T
and N . Fig. I.2 shows the contributions to the total particle number for di�erent
Bogoliubov modes. Figs. I.3 and I.4 shows the results of a simulation for varying s
and T . Figs. I.5, I.6, I.7, I.8, I.9, I.10, I.11, and I.12 shows the results of varying s
and f for temperatures di�erent from the one used in �gs. 7.11 and 7.12.
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Figure I.1: The results of an implementation of the main theory, shown in further detail
than what is presented in the �results�-chapter. The plot is made for atoms with U = 0.06,
Uab = 0.04 and T = 0. The red curves show the results for the F-functions as comparison.
The Ø on some of the axis denotes − log10(Ω) on the left hand side of the graphs, and
log10(−Ω) on the right hand side. The large peaks for a positive Ω on some of the graphs
shows the break-down of the theory since N ≈ N0 is false for these values of Ω. The fact
that 〈Ĵx〉 = 0 corresponds to a positive Ω is discussed in section 7.1.
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Figure I.2: The contributions to the total particle number, coming from the various
Bogoliubov modes at zero temperature. As we can see from (6.52) the contribution is
v∗klm+ ◦ Q ◦ vklm+ from the plus-modes and v∗klm− ◦ vklm− from the minus-modes. This
�gure shows the contribution from a single m-mode. If we want to calculate the total
contribution for a given pair of k and l, the values in this �gure should be multiplied with
(2l+ 1) in order to take all the m-modes into account. The �gure shows curves for values
of k ranging from 0 to 9 starting from above. The points on the curves for k=0, 1, and 2
are marked with ◦-symbols, and the l quantum number is shown on the horizontal axis.
The blue curves show the plus-modes and the red curves show the minus-modes. We see
that the zoom is made so that δN01+ and δN00− are outside the range, the values being
δN01+ = 0.0923 and δN00− = 14.291. The jump between δN10+ and δN11+ may be ex-
plained by the position-independent model presented in the main text, since the value of
A+ could be smaller for l = 1 than for l = 0 if Ω had some negative value.
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Figure I.3: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent temperatures and di�erent values of
s. Each sub�gure is made for a �xed value of T while each curve corresponds to a speci�c
value of s. The values are s = 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right. The plots are
made for f = 2

3 .
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Figure I.4: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent temperatures and di�erent values of
s. Each sub�gure is made for a �xed value of s while each curve corresponds to a speci�c
value of T . The values are T = 0.0245, 0.049, 0.098, 0.147, 0.245, and 0.49 from below.
The plots are made for f = 2

3 .
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Figure I.5: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of f while each curve corresponds to a speci�c value of s. The values
are s = 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right. The plots are made for T = 0.0098,
di�ering from the value used in �g. 7.11 in the main text.
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Figure I.6: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of s while each curve corresponds to a speci�c value of f . The values
are f = 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from the left. The plots are made for T = 0.0098,
di�ering from the value used in �g. 7.12 in the main text.
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Figure I.7: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of f while each curve corresponds to a speci�c value of s. The values
are s = 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right. The plots are made for T = 0.0245,
di�ering from the value used in �g. 7.11 in the main text.
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Figure I.8: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of s while each curve corresponds to a speci�c value of f . The values
are f = 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from the left. The plots are made for T = 0.0245,
di�ering from the value used in �g. 7.12 in the main text.
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Figure I.9: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of f while each curve corresponds to a speci�c value of s. The values
are s = 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right. The plots are made for T = 0.0735,
di�ering from the value used in �g. 7.11 in the main text.
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Figure I.10: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of s while each curve corresponds to a speci�c value of f . The values
are f = 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from the left. The plots are made for T = 0.0735,
di�ering from the value used in �g. 7.12 in the main text.
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Figure I.11: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure is
made for a �xed value of f while each curve corresponds to a speci�c value of s. The values
are s = 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right. The plots are made for T = 0.098,
di�ering from the value used in �g. 7.11 in the main text.
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Figure I.12: The (∆Jz)2 vs. 〈Ĵx〉-curves for di�erent values of s and f . Each sub�gure
is made for a �xed value of s while each curve corresponds to a speci�c value of f . The
values are f = 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from the left. The plots are made for T = 0.098,
di�ering from the value used in �g. 7.12 in the main text.



Appendix J

Figures in higher resolution

In this appendix some of the �gures from chapter 7 are shown in higher resolution.

Fig. J.1 is equivalent to the f = 0.5 sub�gure in �g. 7.4.
Fig. J.2 is equivalent to the s = 0.6 sub�gure in �g. 7.5.
Fig. J.3 is equivalent to �g. 7.8.
Fig. J.4 is equivalent to �g. 7.9a.
Fig. J.5 is equivalent to �g. 7.9b.
Fig. J.6 is equivalent to the f = 0.5 sub�gure in �g. 7.11.
Fig. J.7 is equivalent to the s = 0.6 sub�gure in �g. 7.12.
Fig. J.8 is equivalent to �g. 7.13a.
Fig. J.9 is equivalent to �g. 7.13b.
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Figure J.1: The f = 0.5 sub�gure in �g. 7.4 in higher resolution. The temperature is zero
and the values of s are 0.01, 0.1, 0.3, 0.6, 1, and 3 from below of the (∆Jz)2-axis.
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Figure J.2: The s = 0.6 sub�gure in �g. 7.5 in higher resolution. The temperature is zero
and the values of f are 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from above of the (∆Jz)2-axis.
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Figure J.3: Fig. 7.8 in higher resolution. The values of N are 500, 1000, 1500, 2000, 2500,
3000, 4000, 5000, 7500, 10000, 20000, and 50000 from above of the (∆Jz)2-axis.
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Figure J.4: Fig. 7.9a in higher resolution. The temperatures go from 0 to 0.49 with an
interval of 0.049 from below of the (∆Jz)2-axis.
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Figure J.5: Fig. 7.9b in higher resolution. The temperatures go from 0 to 0.49 with an
interval of 0.049 from below of the (∆Jz)2-axis.



APPENDIX J. FIGURES IN HIGHER RESOLUTION 180

450
460

470
480

490
500

0 20 40 60 80

100

120

140

160

180

200

<
J

x >

var(J
z
)

f =
 0.5, T

 =
 0.049

Figure J.6: The f = 0.5 sub�gure in �g. 7.11 in higher resolution. The temperature is
T = 0.049 and the values of s are 0.01, 0.1, 0.3, 0.6, 1, and 3 from the right of the 〈Ĵx〉-axis.
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Figure J.7: The s = 0.6 sub�gure in �g. 7.12 in higher resolution. The temperature is
T = 0.049 and the values of f are 0, 0.1, 0.3, 0.5, 0.7, and 0.9 from the left of the 〈Ĵx〉-axis.
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Figure J.8: Fig. 7.13a in higher resolution. The black curve corresponds to T = 0.49 and
the blue curve corresponds to T = 0. The red curve is the F-function, and the green and
cyan curves corresponds to ξ2 = 1 and ξ2 = 0.15 respectively.
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Figure J.9: Fig. 7.13b in higher resolution. The black curve corresponds to T = 0.49 and
the blue curve corresponds to T = 0. The red curve is the F-function, and the green curve
correspond to ξ2 = 1.
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