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F O R E W O R D

This work started as a wild goose chase for evidence beyond any doubt that supernova data
show cosmic acceleration. Through a study involving artificial neural networks1, trying to find
parametrisation free constraints on the expansion history of the universe, we ran into trouble
that led us all the way to reconsider the standard method. We encountered the same problem
that has been lurking in many previous studies, only in an uncommon disguise. Solving this
problem for the neural networks degenerated into solving the original problem. Having done
that, it turned out that this result in itself is interesting. This thesis is more or less laying out
the article [1] in all gory details.

The level of rigour throughout is kept, I think, sufficient but not over the top — particularly
the chapter on statistics suffers at the hands of a physicist. I have tried to keep unnecessary
details out of the way in favor of results and physical insight. I leave the details to be filled in
by smarter people — well, more interested people.

A bunch of humble thanks to everyone who helped me at the institute, including — but
presumably not limited to — Laure, Andy, Chris, Anne Mette, Sebastian, Assaf, Morten, Jenny,
Christian, Tristan, and the rest of the Academy and high energy groups, and of course Helle
and Anette without whom our building would crumble.

Thanks to Alberto and Subir for company and supervision on this trip through cosmology
and data analysis. Obviously I extend my gratitude to Subir for teaching me the most valuable
lesson leading to this work: don’t believe any analysis you can’t understand and, if time permits,
carry out the analysis yourself. The following is my attempt at understanding the analysis of
supernova data.

1 This subject is interesting in its own right, but I will not have the space to go into any detail about it.



A B S T R A C T

The cosmological standard model at present is widely accepted as containing mainly things we
do not understand. In particular the appearance of a Cosmological Constant, or dark energy,
is puzzling. This was first inferred from the Hubble diagram of a low number of Type Ia
supernovae, and later corroborated by complementary cosmological probes.

Today, a much larger collection of supernovae is available, and here I perform a rigorous
statistical analysis of this dataset. Taking into account how the supernovae are calibrated to be
standard candles, we run into some subtleties in the analysis. To our surprise, this new dataset
— about an order of bigger than the size of the original dataset — shows, under standard
assumptions, only mild evidence of an accelerated universe.
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1
I N T R O D U C T I O N

The present standard model of cosmology explains quite well a host of observations. The
inclusion of a cosmological constant in Einstein’s equations combined with the assumed
homogeneous and isotropic Friedmann-Robertson-Walker metric description of spacetime gives
us the hailed ΛCDM model. Λ for the inferred cosmological constant, more popularly known
as dark energy, and CDM is the cold dark matter. Dark because we can’t see it, and cold because
apparently it behaves like non-relativistic particles — compared to (almost) massless particles,
like neutrinos, which are hot. The baryonic matter1 is a minor component of the content of the
universe.

The usual starting point of the history of modern cosmology is the two groups studying
supernovae at the end of the nineties, [2, 3]. With observations of very far-away supernovae, the
two teams independently claimed that the Hubble expansion rate is accelerating and inferred
from that a best-fit universe with a cosmological constant density parameter around 0.7. These
results followed a massive experimental effort to find, classify, and calibrate the supernovae.

The big bang picture of the universe had emerged long before then. From extrapolating
the expansion of the universe back in time, it was realised that in the past, the universe will
have been much denser and much hotter. Two consequences of this is the cosmic microwave
background (CMB) and a particular abundance of light elements, in particular 4He, in the
early universe — which is of course altered during the history of the universe. Both these
phenomenas are observable today,2 and confirm to a high degree this picture of a hot plasma
filling the universe. Since Penzias and Wilson first saw a glimpse of the cosmic radiation,
many experiments have come to the same conclusion. The three latest spaceborne missions,
COBE, WMAP, and Planck, have, one after the other, measured to unprecedented precision the
spectrum, and lately there has been a spur of interest in detecting gravitational waves in the
hopes of information about the inflationary stage — even before the hot plasma!

Since mid-2000, another probe has also come into light. Baryon accoustic oscillations
(BAO) are the remnant effects of soundwaves in the primeval plasma, which are supposed to
enhance the matter correlation function at a particular scale — even in the late universe. Other
constraints on the model come from more sides than I can hope to do justice here. Large scale
structure surveys, gravitational lensing surveys etc., all help to constrain parameters of the
model. Supernova observations have since the late nineties been one of the major players in
cosmology. They, along with BAO and CMB observations are now the three major pillars of any
analysis — an analysis of one will usually include the constraints of the others when quoting
final results. Amazingly, these three observables apparently agree that the universe is indeed
mostly cosmological constant and cold dark matter.

In the following I focus on the analysis of supernovae, in particular by performing a
maximum likelihood analysis to put constraints on the cosmological model parameters. On
the way, we will look at some of the problems of the standard model of cosmology and the
standard treatment of the supernova data. I hope to have made the whole thing reasonably self
contained.

I first present all the needed statistical tools in Chap. 2. This is followed by a description of
the cosmology we will look at in Chap. 3 and the observations of supernovae in Chap. 4. Finally
a presentation of the main analysis and result is in Chap. 5 and some concluding remarks in
Chap. 6.

1 This includes all particles of the standard model of particle physics, not just baryons.
2 Don’t mention the lithium problem! [4]
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2
S TAT I S T I C S

Statistics is an old, well studied subject, from which physicists take that everything is distributed
as gaussians and counting experiments have Poisson statistics. In the present section I hope
to clarify why this is the case, and to which extent it is true. The main approach will be what
is now known as frequentist, but Bayesian statistics will also be described briefly. For a vivid
discussion of the differences between the two, see eg. [5].

2.1 probabilities

I will start with the basics. We write the probability for some event, call it A, to happen P(A).
One immediate statement is that the universe is unitary, which is to say that something must
happen, so the sum of all probabilities must be one: ∑A P(A) = 1. If the outcome A is dependent
on some other observation B, we write the probability of A to happen, given B as P(A|B). This
quantity is in general different from P(A). We can connect the two through summing over the
possible outcomes of the event B,

P(A) = ∑
B

P(A|B)P(B) (2.1.1)

We may also consider the joint probability of both events A and B to happen, P(AB). We may
now expand this as the probability of just one of the events happening times the probability of
the other happening — given the other. In equations,

P(AB) = P(A|B)P(B) = P(B|A)P(A) (2.1.2)

The second step follows from the symmetry of A and B. The second equality is known as Bayes’
theorem. This is what underlies Bayesian statistics — but it is certainly true whether one is
Bayesian or not.

If we wish to describe outcomes which are not discrete (like heads or tails) but rather
continuous, we want to consider instead of just probabilities, a probability density function (pdf).
To motivate this, consider an infinite number of possible outcomes of an experiment. Then the
probability for any individual outcome in general vanishes. This is what the pdf sorts out for
us. Say A is a real number we are trying to predict. Then the pdf f (A) is defined to fulfil

P(A ∈ [Amin, Amax]) =
∫ Amax

Amin

f (A)dA (2.1.3)

This definition is trivially extended to multiple dimensions by simply extending A and general-
ising the interval. We may write, generally

P(A ∈ Ω) =
∫

Ω
f (A)dA, (2.1.4)

where Ω is some volume in the space of possible As. As before, the integral over all possible
outcomes must be 1 by unitarity. We note that by putting in delta functions in the above pdfs,
we can go back to the discrete picture. Say there are only discrete outcomes Ai of A with
probabilities pi, respectively. I can then write the pdf as

f (A) = ∑
i

δ(A− Ai)pi (2.1.5)

3



4 statistics

What shall interest us most here are continuous distributions, ie. pdfs. The Eqs. (2.1.1)-(2.1.2)
extend to

f (A) =
∫

f (A|B) f (B) dB (2.1.6)

f (A|B) f (B) = f (B|A) f (A) (2.1.7)

Note the abuse of notation that f may vary according to the argument. If nothing else is explicit,
it is simply to be understood as the pdf of the argument.

2.2 expectations

To any pdf f (A), where A may generally describe a set of multiple parameters, A = {a1, a2 . . . an},
we define the expectation value1 of a quantity B(A) as

〈B〉 =
∫

f (A)B dA (2.2.1)

Special cases of this are the average µ = 〈A〉 and variance σ2 = 〈A2 − 〈A〉2〉 of a distribution.
For some distributions these integrals may not converge, in which case extra care has to be
taken. A particular, not immediately interesting, average is the following function of k,

f̃ (k) = 〈eikA〉 =
∫

f (A)eikA dA, (2.2.2)

called the characteristic function. Obviously, this is just the fourier transform of the pdf2. The
significance of this particular function becomes evident when considering sums of random
variables. Take the sum of the independent random variables {Xi}. The characteristic function
of this is the expectation value of exp ik ∑i Xi ≡ exp ikY. Writing the exponential in two different
ways, we see that the characteristic function of the sum is just the product of the characteristic
functions of the summands,

f̃Y(k) = 〈exp ikY〉 = ∏
i
〈exp ikXi〉 = ∏

i
f̃Xi (k) (2.2.3)

Let’s see how this works in practice by some examples.

The χ2 distribution Consider ν independent random variables, all drawn from normal
distributions. We denote this as3

Xi ∼ N (0, 1)

fX(Xi) = (2π)−1/2 exp(−X2
i /2), (2.2.4)

We are now interested in the pdf fχ2 of Y = ∑ν
i X2

i , called the χ2 distribution with ν degrees
of freedom. We will use that we know how to go back again from the characteristic function,
simply by an inverse fourier transform. First writing down the characteristic function, I
denote Zi = X2

i ,

f̃χ2(k) =
∫

∏
i

eikZi fZ(Zi) dZi = ∏
i

f̃Z(k) (2.2.5)

1 Note that the expectation value is not necessarily what we expect. Indeed we may have the situation that f (〈A〉) = 0, ie.
we have no chance of obtaining the expected value! For this reason, one commonly uses average and mean to mean the
same thing. The most expected value, ie. the value with the highest probability density is called the mode.

2 Up to a constant in front of the integral, depending on your convention.
3 Seeing X as a vector, I will write X ∼ N (µ, Σ) ⇒ fX(X) = |2πΣ|−1/2 exp(−XTΣ−1X/2) to denote a multivariate

normal distribution.
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since Y is the sum of the Zis, the characteristic function is just the product of the characteristic
functions of the summands. Now we need first the characteristic function for the square of a
single normally distributed variable4. We find for the pdf of Z,

fX2(Z) =
∫

fX(X)δ(Z− X2)dX =
∫

fX(X)
δ(
√

Z− X) + δ(
√

Z + X)

2|X| dX

=(2Zπ)−1/2 exp(−Z/2), Z > 0 (2.2.6)

Where the second equality follows from the identity,

δ(g(x)) = ∑
xi

δ(x− xi)

|g′(xi)|
(2.2.7)

where the xi are the roots of g. The proof of Eq. (2.2.7) follows by a change of variables in the
integral.5 The characteristic function is then

f̃X2(k) =
∫

eikZ fX2(Z) dZ = (2π)−1/2
∫

Z−1/2eZ(ik−1/2) dZ

=(2π)−1/2
∫

e(2ik−1)X2/2dX =
1√

1− 2ik
(2.2.8)

From Eq. (2.2.3) we now see by multiplication and taking the inverse fourier transform that

f̃χ2(k) =
1

(1− 2ik)ν/2 ⇒ fχ2(Y) =
1

2π

∫
dk

exp(−ikY)
(1− 2ik)ν/2 (2.2.9)

This last one is a tricky integral. Anticipating the correct answer, I rewrite it as

1
2

exp(−Y/2)
(

Y
2

) ν
2−1 1

2πi

∫ −∞

∞
eY/2−ikY −iY dk

(Y/2− ikY)ν/2 (2.2.10)

Here I have simply pulled some functions of Y outside the integral and the inverse inside the
integral. Changing variables to s = −ikY + Y/2, we get

1
2

exp(−Y/2)
(

Y
2

) ν
2−1 1

2πi

∫ i∞+Y/2

−i∞+Y/2
ess−ν/2ds (2.2.11)

To solve this last integral, we are inspired by how it looks like an inverse Laplace transform,
[6]. Consider first the integral representation of the Γ function, which can be moulded to
look like a Laplace transform by a change of variables,

Γ(z) =
∫ ∞

0
tz−1e−tdt =

∫ ∞

0
(su)z−1e−sus du (2.2.12)

⇒Γ(z)
sz =

∫ ∞

0
uz−1e−sudu = L(uz−1) (2.2.13)

We now invert this and find uz−1 as the inverse Laplace transform of the left hand side,

uz−1 =
1

2πi

∫ i∞+λ

−i∞+λ
esu Γ(z)

sz ds

⇒ 1
Γ(z)

=
1

2πi

∫ i∞+λ

−i∞+λ
esu(su)−zu ds =

1
2πi

∫ i∞+λ̃

−i∞+λ̃
es̃ s̃−zds̃ (2.2.14)

It is now evident from inserting z = ν/2 and λ̃ = Y/2, that we get for Eq. (2.2.9)

fχ2(Y) =
1

2Γ(ν/2)

(
Y
2

) ν
2−1

exp(−Y/2) (2.2.15)

4 Which is the χ2 distribution with 1 degree of freedom.
5 Remember the δ function only formally makes sense inside an integral.
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The χ2 distribution is widely used in statistical analysis, and we shall see why later on.
Another application of characteristic functions is a derivation of the central limit theorem,

which goes as follows.

The central limit theorem This theorem states that asymptotically, the sum of many
random variables will converge to a normal distribution — almost irrespective of the original
distributions! We will again use the fact that the characteristic function of a sum is the
product of characteristic functions. Define Y = ∑i Xi/

√
N, where the Xi are independently,

identically distributed (iid.) variables,

f (X1) = · · · = f (XN) (2.2.16)

We are now interested in fY in the limit N → ∞. Assume first that f has a well defined
variance σ2 and zero mean µ = 0.6 Now expand the characteristic function to second order
in k and write

f̃Y(k) = f̃ (k/
√

N)N = ∏
i
〈eikXi/

√
N〉 =

(
1− k2σ2

2N
+O

(
k3

N3/2

))N

≈ exp
(
− k2σ2

2
+O

(
k3

N1/2

))
(2.2.17)

Now we calculate the characteristic function of a general normal distribution,

f (x) = N (a, b) =
1

b
√

2π
exp

(
(x− a)2

2b2

)
⇒ f̃ (k) =

∫
dxeikx 1

b
√

2π
exp

(
(x− a)2

2b2

)
= exp

(
iak− k2b2

2

)
(2.2.18)

Comparing Eqs. (2.2.17) and (2.2.18), we see that the two match if we identify

µY = 0 (2.2.19)

σ2
Y = σ2 (2.2.20)

Thus the distribution of a sum of many iid. random variables converges to a normal
distribution. This underlies many assumptions made in statistical treatments of errors and
uncertainties.

A closely related concept to the characteristic function is the moment generating function. This
is constructed by simply taking k imaginary in the characteristic function,

M(k) =
∫

f (x)exk dx = 〈exk〉 = f̃ (−ik) (2.2.21)

The nice property of this function is that we can, as the name suggests, generate the moments,
〈xn〉 of a distribution. Having all the moments of a distribution defines it uniquely7. To generate
the moments, we do the following,

〈xn〉 =
∫

xn f (x) dx =

(
∂

∂k

)n
M(k)

∣∣∣∣
k=0

(2.2.22)

We can eg. calculate the first two moments of the χ2 distribution. First, the moment generating
function is

Mχ2(k) = f̃χ2(−ik) = (1− 2k)−ν/2 (2.2.23)

6 This can always be arranged by simple subtraction.
7 This is easily realized with the connection to the fourier transform, which is one-to-one with the original distribution
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We then find easily by direct differentiation

〈x〉χ2 =
∂

∂k
(1− 2k)−ν/2

∣∣∣∣
k=0

= ν(1− 2k)−(ν/2+1)
∣∣∣
k=0

= ν (2.2.24)

〈x2〉χ2 = ν
∂

∂k
(1− 2k)−(ν/2+1)

∣∣∣∣
k=0

= ν(ν + 2) (1− 2k)−(ν/2+2)
∣∣∣
k=0

= ν(ν + 2) (2.2.25)

Recognising a pattern immediately, we boldly write down the general formula for the nth

moment, which can be proven by simple induction,

〈xn〉χ2 = ν(ν + 2) · · · (ν + 2(n− 1)) =
n−1

∏
i=0

(ν + 2i) (2.2.26)

2.3 common distributions

Some distributions are used more than others, and the normal distribution more than any. In
this section, I want to introduce a few common examples of probability distributions. A curious
property of the normal distribution is that many other distributions asymptotically converge to
it. We will see here exactly how this comes about. This combined with the central limit theorem
are the reasons why almost all statistics is carried out with normal distributions.

2.3.1 The Poisson distribution

The Poisson distribution describes the probability of obtaining N successes, eg. a number count
of cosmic rays or photons from some cosmic event, in a fixed time interval, if the average rate is
fixed and the different successes are uncorrelated. That is, any success is independent from
another. Call the rate λ, then the probability is

P(N; λ) =
λN

N!
e−λ (2.3.1)

This simply reflects the relative probability of obtaining N successes in the fraction, taking into
account combinatorics, along with a normalisation e−λ, such that ∑N P(N; λ) = 1.

We can find the mean and standard deviation by direct summation,

〈N〉 =
∞

∑
N

NP(N; λ) = λe−λ
∞

∑
N

λN

N!
= λ (2.3.2)

〈N2〉 =
∞

∑
N

N2P(N; λ) = λe−λ
∞

∑
N
(N + 1)

λN

N!

=λe−λ(λ + 1)
∞

∑
N

λN

N!
= λ(λ + 1) (2.3.3)

⇒ σ2 = λ (2.3.4)

Now let’s take the limit λ� 1. This means the mean, as we just calculated, is also very large,
and we allow ourselves to expand around it, parametrising the distribution with the continuous
N(δ) = λ(1 + δ), where the region of interest is |δ| � 1. Before things get interesting, we need
an intermediate result, known as Stirling’s approximation. This is basically an expansion of the Γ
function defined above in Eq. (2.2.12). Since n! = Γ(n + 1), we have

n! =
∫

xne−x dx =
∫

en log x−x dx (2.3.5)
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Figure 1: Examples of the Poisson distribution for various values of λ as described in the
legend.

Now I expand the content of the exponential around the maximum at x0 = n. This becomes

n log x− x ≈ n log n− n +
1

2n
(x− n)2 (2.3.6)

Inserting this into the integral, we have

n! ≈ nne−n
∫ ∞

0
e(x−n)2/2n dx ≈ nne−n

√
2πn (2.3.7)

where the last integral is done taking the lower limit to minus infinity, as we take n� 1. Now
put all this back into the distribution function,

f (δ; λ) ≈ λN

NNe−N
√

2πN
e−λ = exp {λδ− (λ[1 + δ] + 1/2) log(1 + δ)} 1√

2πλ

≈ 1√
2πλ

exp
{
−λδ2

2

}
=

1√
2πλ

exp
{
− (N − λ)2

2λ

}
(2.3.8)

where the last approximation expands the content of the exponential to second order in δ and
uses λ� 1� δ. We finally see here the result we might have anticipated, we simply insert the
mean and variance of the Poisson distribution in the normal distribution to get the asymptotic
expression for the former.

2.3.2 The binomial distribution

This distribution comes about when looking at binary outcomes of a repeated experiment, like
a series of coin flips. If the probability of the coin landing heads is p, then after N experiments,
the probability of obtaining exactly n heads is

P(n; N, p) =
(

N
n

)
pn(1− p)N−n (2.3.9)

The first factor on the right hand side is the binomial coefficient(
N
n

)
=

N!
n!(N − n)!

, (2.3.10)
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which takes care of the combinatorics of the different orders of obtaining the n heads. Note that
here we have a fixed number of repetitions, where in finding the Poisson distribution, we had a
fixed time interval.
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Figure 2: Examples of the binomial distribution for various values of p, but fixed N = 10.

We find again the mean and variance

〈n〉 =
N

∑
n=0

nP(n; N, p) = Np
N

∑
n=1

(N − 1)!
(n− 1)!(N − n)!

pn−1(1− p)N−n

= Np
N−1

∑
n=0

P(n; N − 1, p) = Np (2.3.11)

〈n2〉 = Np
N−1

∑
n=0

(n + 1)P(n; N − 1, p) = Np([N − 1]p + 1) = (Np)2 + Np(1− p)

⇒ σ2 = Np(1− p) (2.3.12)

Now consider the double limit N → ∞, p → 0 with the product Np = λ fixed. Rewriting
the probability distribution using n� N, we get

P(n; λ) = lim
N→∞

N!
n!(N − n)!

(
λ

N

)n (
1− λ

N

)N−n

=
λn

n!
lim

N→∞

N · · · (N − n + 1)
Nn

(
1− λ

N

)N−n

≈ λn

n!
e−λ (2.3.13)

which is just the Poisson distribution. That means that for a large amount of trials with
vanishing probability per trial, the binomial distribution looks just like the Poisson distribution.
This makes sense, since we can exactly interpret the infinite trials as being done in continuous
time with vanishing probability, such that Np is the rate of success. Taking λ � 1 of course
brings us to the gaussian limit again.
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2.3.3 The χ2 distribution

We have already seen what this distribution is, along with its moments. Here I quickly show how
also this distribution asymptotically looks like a gaussian. I again use Stirling’s approximation
to write, in the limit ν→ ∞, and writing temporarily x = ν(1 + δ),

f (x) =
ν/2 + 1√

4πν

(
e

ν/2

)ν/2 (ν

2

)ν/2−1
(1 + δ)ν/2−1e−ν(1+δ)/2

≈ 1√
2π(2ν)

e−νδ/2+(ν/2−1) log(1+δ) ≈ 1√
2π(2ν)

exp
{
−νδ2

4

}
=

1√
2π(2ν)

exp
{
− (x− ν)2

2(2ν)

}
(2.3.14)

which again is simply a normal distribution with the expected mean and variance.

1
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Figure 3: Examples of the χ2 distribution for various values of ν.

2.4 parameter estimation

An ideal theory will naturally explain all constants involved in it. That means we would very
simply be able to compare predictions of this theory with an experiment. However, this is
usually not the case. What happens most often is that a theory will contain some unexplained
parameter(s), which must be fitted. Supposing the model is true, we can then constrain the
parameters of the theory with a particular experiment. This notion of fitting is what the current
section explores.

We generally have some experiment, which produces random numbers — due to noise in
the experiment or intrinsic variability in the source. How do we compare our model of the
experiment to the data produced and in the process fit the parameters of the model? In general
these are two different problems, but by the method we are going to use, they can in general be
solved simultaneously. The majority of the current section will be about the likelihood and in
particular maximising the likelihood, along with finding estimators of the model parameters.
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The likelihood is defined as the pdf of the data, X̂,8 given a specific model, which I
generically denote θ,

L(θ) = f (X̂|θ) (2.4.1)

Note the funny semantics — it is indeed not a probability density of the model, but we still
want to link it to some notion of model selection by probability. This has the potential to
confuse. One easily avoids this by simply stating what the likelihood is, and never using it as a
probability of the model [5]. Note right away that the likelihood is itself in general a random
variable, as are the estimators we are going to derive from it.

We now define the maximum likelihood estimators (MLE), θ̂, to be the model parameters, which
maximise the likelihood given the obtained data, ie.

∂L(θ̂)
∂θ

= 0 (2.4.2)

These estimators generally have nice properties. The most interesting properties can be found
exactly in the context of linear models, which is what I discuss next. In the limit of infinite
datasets, these properties extend to non-linear models. I will not discuss this in detail, only
illustrate it with an example. For a complete description of the problem and its solution, I refer
to textbooks on the subject, eg. [7].

2.4.1 Linear models

Consider a model describing a dataset {x̂i, ŷi}, i = 1 . . . N as

yi(xi) =
M

∑
j=1

aj Aj(xi) (2.4.3)

where M < N and the functions Aj are fixed and linearly independent, ie. ∑j aj Aj(xi) = 0⇒
aj = 0. These Aj could be monomials, sines and cosines etc. Now assume we measure x with
negligible uncertainty and y with some known uncertainty, which we take to be gaussian, ie.
ŷi = yi + εi, where εi ∼ N (0, 1)9. We can now write the likelihood,

L ∝ exp

−1
2

N

∑
i

(
ŷi −

M

∑
j=1

aj Aj(x̂i)

)2
 (2.4.4)

The constant of proportionality just normalises the likelihood. Now we want to maximise this
likelihood as a function of the ajs — the unknown model parameters. Because the exponential is
a bit unwieldy, we take the log and a factor −2 out, and instead of maximising L, we minimise
−2 logL. The reason for this will hopefully become clear. To find the minimum, we simply
solve for the differential to be zero.10 Doing this, we get a set of M equations for the M ajs,

∂
(
−2 logL(âj)

)
∂aj

= 0 = −2 ∑
i

Aj(x̂i)

ŷi −
M

∑
j′=1

âj′Aj′(x̂i)

 (2.4.5)

Since we know linear algebra, and this looks an awful lot like it, we drop the indices and
see everything as vector-/matrix products. I explicitly define the elements of the matrix A as
Aji = Aj(x̂i), and the sum now looks like

0 = A(ŷ− AT â)⇒ â = (AAT)−1 Aŷ (2.4.6)

8 Hatted variables will generally be either observed data or estimators — both of which are random variables. Unhatted
will usually be the corresponding true variable.

9 It is always possible to absorb the variance of ε into the As and thus have unit variance
10 And show that it is indeed a minimum, not a maximum or saddlepoint.
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The matrix A was defined to have linearly independent rows, which in turn means the inverse
of AAT exists. The proof of this is as follows. Define S = AAT . Any positive-definite matrix is
invertible, so I want to show S is positive definite. We have straight forwardly that for any X,

XTSX = XT AATX = |XT A|2 ≥ 0 (2.4.7)

which shows it is positive semi-definite. Now we need to show that if the product is exactly
0, then so is X. Remember the functions Aj were assumed to be linearly independent, which
means

aT A = 0⇒ a = 0 (2.4.8)

This is exactly what we need, since if we write

0 = XTSX = XT AATX = |XT A|2 ⇒ XT A = 0⇒ X = 0 (2.4.9)

This means that S is indeed positive definite and the inverse (AAT)−1 exists.
Now we are interested in two things: the distribution of −2 logL(âj) and of the estimators

âj, under repeated (thought-)experiments11. We first look at the likelihood.12

−2 logL(â) = |ŷ− AT â|2 = |ŷ− AT(AAT)−1 Aŷ|2

=
∣∣∣(1N − AT(AAT)−1 A

)
ŷ
∣∣∣2 (2.4.10)

Here P = AT(AAT)−1 A is a projection in the sense P2X = PX for any X ∈ RN to an M
dimensional subspace. By an orthogonal transformation, we can rotate the ŷ to ỹ = Oŷ
such that the projection Pỹ has its elements only in the first M entries, ie. P(ỹ1, . . . , ỹN)

T =
(ỹ1, . . . , ỹM, 0, . . . , 0)T . Note that since the transformation is orthogonal, we also have ỹi ∼
N (0, 1). Taking now ȳ = (1N − P)ỹ = (0, . . . , 0, ỹM+1, . . . , ỹN)

T , the likelihood takes the
following form

−2 logL(â) = ȳT ȳ =
N

∑
i=M+1

ỹ2
i ∼ χ2

ν=N−M (2.4.11)

This result is the origin of two notions, which are often abused in practice. The first is, we
simply call −2 logL the chi squared, χ2. This may result in a bit of confusion since now one has
a random variable called χ2, which is χ2-distributed, ie. its pdf is the χ2 distribution. The other
is the idea of a reduced number of degrees of freedom, ν = N −M, ie. the number of data points
minus the number of fit parameters. These ideas are widely used even when the model is not
linear.

Now we turn to the distribution of the estimators â. We have already seen the result, which
is

â = (AAT)−1 Aŷ⇒ â ∼ N (a, (AAT)−1) = N (a, I−1), (2.4.12)

where the normal distribution is to be understood in the multivariate sense. We see here a
specific example of a more general result. The MLE is normally distributed around the true value
— it is unbiased — with covariance matrix described by13

Σâ ≥ I(â)−1, where (2.4.13)

I(â)ij =

〈
∂2(− logL(â))

∂ai∂aj

〉
(2.4.14)

11 Of course there is only the one actual experiment, but we might imagine performing it again and again. It is under
these repetitions that the estimators are random variables, whose pdfs we want to find.

12 Note that I have already thrown away a constant normalisation term. This only shifts the distribution, or rather, the

distribution we find is that of −2 log(L
√

2π
N
).

13 For two matrices A, B, we write A ≥ B if A− B is positive semi-definite. A proof of this inequality comes later.
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where the average is taken over repeated experiments. I = AAT is called the Fisher Information.
In this case, the double derivative is a constant, so the average is trivial. This bound on the
covariance matrix is called the Cramér-Rao bound, and is the minimal covariance for unbiased
estimators. An unbiased estimator with this minimal variance is called efficient. We see that the
MLE for linear models are all exactly unbiased, normally distributed, efficient estimators for all
N.

The linear models are nice because, as we have just seen, practically everything can be done
analytically. This gives us a nice starting point for the next discussion. For a general, non-linear
model, the results in the example are no longer valid. Let us explore finite sample sizes with a
very simple example.

2.4.2 A non-linear model

Consider the data set {x̂i}, i = 1 . . . N, drawn from a normal distribution with unknown mean
and variance, but with no measurement uncertainty, xi ∼ N (µ, σ). The likelihood for this
experiment is

L = (2πσ2)−N/2 exp

{
−1

2

N

∑
i

(
x̂i − µ

σ

)2
}

(2.4.15)

and we are trying to determine µ and σ2. Note how we cannot neglect the normalisation this
time, since we are now fitting σ. The maximum point (µ̂, σ̂2) is

µ̂ = N−1 ∑
i

x̂i (2.4.16)

σ̂2 = ∑
i
(x̂i − µ̂)2 (2.4.17)

Now consider the distribution of these estimators. The fact that we don’t know σ complicates
things, since this is what set the scale for us before — we could measure deviations in terms of
a fixed number. Now this scale is a random variable. For instance, we immediately see that
µ̂ ∼ N (µ, σ/

√
N), but here we’ve used the unknown σ to define the variance.

We turn therefore first to the distribution of the variance σ2. I first write out the µ̂ and
rewrite the sum, giving

σ̂2 = N−2 ∑
ij
(x̂i − x̂j)

2 (2.4.18)

We now need a small trick to evaluate this sum. What we really want — anticipating the answer
— is something like a sum of squares ∑ xixj, not of squares of differences, as we have. So we
recast it to

σ̂2 = N−1 ∑
ij

xiCijxj (2.4.19)

and find the matrix C we need here is

C =

1− N−1 −N−1 · · ·
−N−1 1− N−1

...
. . .

 , |C| = 0 (2.4.20)

We now pseudo14 Cholesky factorise C, ie. we find an upper triangular matrix U, which satisfies
UTU = C. This matrix is

Uij =


√
(N − i)/(N + 1− i) i = j

−1/
√
(N − i)(N + 1− i) i < j

0 i > j
(2.4.21)

14 Pseudo since strictly C is only positive semi-definite.
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We now use U to find the rank of C, which determines the pdf of the sum. Taking the reverse
product, we see that

UUT =


1 0 · · ·
0 1
...

. . .
1 0
0 0

 , (2.4.22)

which immediately tells us the rank of C is N − 1. This means U is almost an orthogonal
transformation — we just lose one degree of freedom. Thus we will define new variables
yj = ∑i Ujixi, j = 1 . . . N − 1, which are also drawn from independent normal distributions.
The variance is now given as

Nσ̂2 = ∑
ij

xiCijxj = ∑
ijk

xiUkiUkjxj

= ∑
i
(Ux)2

i =
N−1

∑
i

y2
i ∼ σ2χ2

ν=N−1 (2.4.23)

This shows that for finite N, the estimator is a bit off, as

〈σ̂2〉 = σ2 N − 1
N

(2.4.24)

This comes about because we fit the mean while calculating it. The missing degree of freedom is
of course the mean µ̂ which we now consider. Had we known σ, we would immediately write√

N(µ̂− µ)/σ ∼ N (0, 1). Exchanging σ for σ̂, the distribution changes a bit. We may write

√
N(µ̂− µ)/σ̂ =

n
c

(2.4.25)

where n is normally distributed n ∼ N (0, 1) and c follows a χ distribution, c ∼ χν=N−1.15

Note how this combination exactly cancels the dependence of σ. This particular combination
of random variables follows a distribution known as Student’s t-distribution with ν = N − 1
degrees of freedom. Its pdf is

f (x; ν) =
Γ( ν+1

2 )√
νπΓ( ν

2 )

(
1 +

x2

ν

)− ν+1
2

(2.4.26)

We are now in a position to understand the N → ∞ limit of the MLE. We see that for finite
N, neither of the two estimators follow a normal distribution, and σ̂2 is even biased. In the
asymptotic limit though, both distributions are normal, and we have

√
N(µ̂− µ)/σ̂ ∼ N (0, 1)⇒ µ̂ ∼ N (µ, σ̂/

√
N) (2.4.27)

Nσ̂2/σ2 ∼ N (N,
√

2N)⇒ σ̂2 ∼ N (σ2,

√
2
N

σ2) (2.4.28)

It is only in the asymptotic limit the estimators follow an unbiased normal distribution, with
variance given by Eq. (2.4.13). As I showed earlier, many distributions tend to a normal
distribution for large N. This is what is happening here too. In this limit, the likelihood tends
to a normal distribution, for which the results from the previous section hold.

15 The χ distribution is simply the distribution of the square root of a χ2 random variable.
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2.4.3 Cramér-Rao lower bound

Now let us see how the Cramér-Rao bound appears. I will follow the proof from [7]. Assume
we have a set of unbiased estimators {ĝi}, i = 1 . . . r, of the quantities {gi}, ie. 〈ĝi〉 = gi. The
likelihood function generally depends on some parameters, say θj, j = 1 . . . k. We now construct

another set of variables, { ∂ logL
∂θj
}, and build the r + k-vector {ĝ1 . . . ĝr, ∂ logL

∂θ1
. . . ∂ logL

∂θk
}. The

covariance matrix of this vector is (
Σĝ ∆
∆T I

)
(2.4.29)

Where Σĝ is the covariance of the estimators ĝ, I is the Fisher Information and

∆ij =
∫

ĝi
∂ logL

∂θj
L dx =

∫
ĝi

∂L
∂θj

dx =
∂gi
∂θj

(2.4.30)

By construction, this covariance matrix is positive definite. Furthermore, we have that∣∣∣∣1 −∆I−1

0 I−1

∣∣∣∣ = |I|−1 ≥ 0 (2.4.31)

since the Fisher Information is positive definite. This is seen easily since we can rewrite it as

Iij =

〈
∂2(− logL)

∂θi∂θj

〉
=

〈
∂ logL

∂θi

∂ logL
∂θj

〉

⇒ qTIq =

〈(
∑

i

∂ logL
∂θi

qi

)2〉
≥ 0 (2.4.32)

By multiplying the two matrices, we see that∣∣∣∣1 −∆I−1

0 I−1

∣∣∣∣× ∣∣∣∣Σĝ ∆
∆T I

∣∣∣∣ = ∣∣∣∣Σĝ − ∆I∆T 0
I−1∆T 1

∣∣∣∣ = ∣∣∣Σĝ − ∆I−1∆T
∣∣∣ ≥ 0, (2.4.33)

which holds for any subset of the estimators ĝ. From this it follows that all eigenvalues of
Σĝ − ∆I−1∆T are positive or zero, or equivalently that the matrix is positive semi-definite.
Looking at unbiased estimators of the θs, we see that ∆ reduces to an identity matrix and the
bound dictates the matrix Σθ̂ − I

−1 is positive semi-definite. This is exactly what is meant in
Eq. (2.4.13).

Note however, that in deriving this bound, we rely on the estimator being unbiased. It is
easy to think of estimators with lower variance, say ĝ = 1. This has obviously zero variance, but
is not a particularly good estimator of anything. It is also worth noting that this bound does
not require that the estimator follows a normal distribution. It sets a bound on the variance of
any unbiased estimator. However, it is only a lower bound, and by no means a guarantee — only
in special cases, like the MLE of a linear model, does an estimator saturate the bound exactly.

2.4.4 Confidence regions

Having found the distributions of the estimators of the parameters of a theory, I now want
to define the notion of confidence regions. Loosely speaking, these are regions in which we are
confident the true value of the parameter lies. This confidence is usually defined in terms of a
coverage probability, pc. That is, if we define our confidence regions in the same way in repeat
experiments, then for every repetition we have the probability pc that θ is inside our confidence
region. The usual objection here is that once the experiment is done, we can no longer speak of



16 statistics

a probability that the true θ is inside or outside the confidence region — it either is or is not!
The probability as such is defined prior to the experiment. This distinction shall not worry us
too much.

To begin the discussion on confidence regions, we have to understand the concept of a
p-value, which is closely related to the coverage probability. This is very simple. The p-value
of some event is the probability of seeing something more extreme or as extreme as what is
observed. In different scenarios this may be computed in a variety of ways, depending on the
difficulty of the problem at hand. In some cases, p-values can be computed analytically, while
for others one resorts to Monte Carlo (MC), ie. random simulations. As such, the p-value is
entirely dependent on the model being tested, and is only telling us how unlikely something is,
given a specific model. Let us see how this works in an example.

A fair coin? Consider tossing the same coin N times. We now ask ourselves the question
”is the coin fair?”, and we can address the answer with a p-value. Say the coin lands heads
up M times, where without loss of generality, M ≥ N/2. To calculate the p-value, we now
simply add up the probabilities of getting M or more heads when tossing a fair coin,

p =
N

∑
m=M

(
N
m

)
0.5m0.5N−m =

N

∑
m=M

(
N
m

)
0.5N

= 0.5N
(

N
M

)
2F1(1, M− N, 1 + M;−1), (2.4.34)

where 2F1 is the hypergeometric function, whose form is not particularly enlightening. To
make things more clear, let’s take a specific example. In Fig. 4 I take various values for N
and plot the p-value one would obtain as a function of M. The line across denotes the custom
95% confidence level, ie. everything under the line is excluded at more than 95% confidence.
It is evident that the as N goes up, we need a smaller and smaller relative deviation from
M = N/2 before we can exclude that the coin is fair.
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Figure 4: p-value, given by Eq. (2.4.34), of different outcomes M from tossing a coin N times
for different values of N as labeled in the legend. This tests the hypothesis that the coin is fair.

Originally we wanted to constrain our parameters. With the p-value at hand, we just need
Wilks’ theorem, which tells us the distribution of a likelihood ratio in terms of a χ2 distribution.
This was first shown in [8]. First I go through the proof of the theorem, and following that, we
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will see how this constrains our parameters through confidence regions. I will here just look at
a linear model, and I simply argue that the results we find extend to non-linear models in the
asymptotic limit — and that we abuse this fact and use Wilks’ theorem always.

Consider the type of model from Sec. 2.4.1. Take a space for the possible coefficients, Ω,
and a subset ⊥ ∈ Ω of dimensions N and M respectively, so 0 ≤ M < N. Now call the true
parameters aΩ ≡ {a⊥, aω}, where aω ∈ ω, a⊥ ∈ ⊥ = ω⊥. We can see ⊥ as the remaining part
of Ω, when we fix aω. Now we have both the MLE âΩ = {â⊥, âω} ∈ Ω and a restricted MLE
ˆ̂a⊥ ∈ ⊥, which satisfy

∂ logL(âΩ)

∂ai
= 0, i = 1 . . . N (2.4.35)

∂ logL( ˆ̂a⊥, aω)

∂ai
= 0, i = 1 . . . M (2.4.36)

The quantity Lp(aω) = L( ˆ̂a⊥, aω) is called the profile likelihood. ˆ̂a⊥ is given by

ˆ̂a⊥ = â⊥ − I−1
⊥ Ĩ(aω − âω) (2.4.37)

where I have partitioned the Fisher Information as

IΩ =

(
I⊥ Ĩ
ĨT Iω

)
(2.4.38)

Now I define the likelihood ratio

λ =
L( ˆ̂a⊥, aω)

L(âΩ)
(2.4.39)

and seek the distribution of this under the hypothesis that aω are indeed the true parameters.
Take −2 log of this and insert factors of the true likelihood L(aΩ),

−2 log λ = −2 log
L( ˆ̂a⊥, aω)

L(aΩ)
+ 2 log

L(âΩ)

L(aΩ)
(2.4.40)

Each of the terms on the right hand side can be reduced to the forms

−2 log
L( ˆ̂a⊥, aω)

L(aΩ)
= −( ˆ̂a⊥ − a⊥)TI⊥( ˆ̂a⊥ − a⊥) (2.4.41)

2 log
L(âΩ)

L(aΩ)
= (âΩ − aΩ)TIΩ(âΩ − aΩ) (2.4.42)

This is seen by simply inserting the MLE, Eq. (2.4.6) into Eq. (2.4.4) and collecting terms. Now
write the derivative of the log-likelihood at the true parameters aΩ, split into the ⊥ and ω parts
as (

η
ξ

)
i
=

∂ logL(aΩ)

∂ai
(2.4.43)

This gives two expressions for η and one for ξ,(
η
ξ

)
= IΩ(âΩ − aΩ) (2.4.44)

η = I⊥( ˆ̂a⊥ − a⊥) (2.4.45)

Remember, since the estimators follow the distribution in Eq. (2.4.12), these variables follow a
normal distribution (η, ξ)i ∼ N (0, IΩ). Inserting this into Eq. (2.4.40), we have

−2 log λ =

(
η
ξ

)T

I−1
Ω

(
η
ξ

)
− ηI−1

⊥ η (2.4.46)
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Using the following block inversion identity

I−1
Ω =

(
I−1
⊥ + I−1

⊥ Ĩ(Iω − ĨTI−1
⊥ Ĩ)

−1ĨTI−1
⊥ −I−1

⊥ Ĩ(Iω − ĨTI−1
⊥ Ĩ)

−1

−(Iω − ĨTI−1
⊥ Ĩ)

−1ĨTI−1
⊥ (Iω − ĨTI−1

⊥ Ĩ)
−1

)
(2.4.47)

we can write the first product in Eq. (2.4.46) as

ηTI−1
⊥ η + (ĨTI−1

⊥ η − ξ)T(Iω − ĨTI−1
⊥ Ĩ)

−1(ĨTI−1
⊥ η − ξ) (2.4.48)

The first term here is subtracted in the likelihood ratio, and we have

−2 log λ = (ĨTI−1
⊥ η − ξ)T(Iω − ĨTI−1

⊥ Ĩ)
−1(ĨTI−1

⊥ η − ξ) (2.4.49)

This combination of variables, ĨTI−1
⊥ η − ξ again follows a normal distribution, for which the

covariance is easily seen to be〈
(ĨTI−1

⊥ η − ξ)(ĨTI−1
⊥ η − ξ)T

〉
=
〈

ξξT − 2ĨTI−1
⊥ ηξT + ĨTI−1

⊥ ηηTI−1
⊥ Ĩ

〉
=(Iω − ĨTI−1

⊥ Ĩ) (2.4.50)

Meaning the likelihood ratio is simply the sum the squares of N −M — the number of fixed
dimensions — independent gaussian random variables

−2 log λ ∼ χ2
ν=N−M (2.4.51)

To test the hypothesis that aω are the true parameters, we now simply find the p-value of
getting the particular −2 log λ value for that aω. This p-value is given by

p-value =
∫ ∞

−2 log λ
χ2

ν=N−M(x) dx (2.4.52)

To illustrate this, let’s look at an example.

Constraining a one-parameter linear model Consider drawing from a gaussian
distribution with known variance, say σ = 1, but unknown mean µ. The likelihood is of the
form Eq. (2.4.4), specifically

L(µ) ∝ exp

{
−1

2 ∑
i
(ŷi − µ)2

}
(2.4.53)

and we want to say something about µ given some experimental result. For a particular
outcome of the experiment, say N datapoints, we use Wilks’ theorem in the following way.
We take as Ω the full range of the µ, for which we find the MLE as

µ̂ = N−1 ∑
i

ŷi (2.4.54)

and for every possible value of µ, we take ω as just that µ. Since there are no parameters left,
the restricted MLE in ⊥ is trivial. The p-value is calculated according to Eq. (2.4.52),

p-value(µ) =
∫ ∞

−2 log λ(µ)
χ2

ν=1(x) dx where (2.4.55)

−2 log λ(µ) = −2 log[L(µ)/L(µ̂)] = N(µ− µ̂)2 (2.4.56)

I now choose to look at the values µn = µ̂(1± n/
√

N) for various n. This gives us the
integral, for n = {1, 2, 3},

p-value(µn) =
∫ ∞

n2
χ2

ν=1(x) dx = {0.32, 0.046, 0.0027} (2.4.57)
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Or in words, we can exclude these values with confidence {0.68, 0.954, 0.9973}. Say we want
to be at least 68% confident, then our confidence region is µ̂± µ̂√

N
≡ [µ̂(1− 1√

N
), µ̂(1 +

1√
N
)], ie. no values inside this interval can be excluded with confidence greater than

68%.

Because of the gaussian nature of the likelihood ratio, this limit is usually called the 1-σ
confidence interval, as it is exactly one standard deviation away from the mean, and the
standard deviation is usually denoted σ. We can in the same fashion construct the n-σ
interval for the other ns.

The previous example simply shows the general use of Wilks’ theorem. Another subtle thing
we can do is to eliminate parameters, which are not of immediate interest. Such parameters
are usually called nuisance parameters. To see how this works, we just have to have one more
parameter. The following example is trivially extended to N parameters of which M < N are
nuisance parameters. Unfortunately the 2 dimensional nature of paper only allows for easy
visualisation of 2 dimensions.

Eliminating nuisance parameters Consider a two-parameter linear model with the
general likelihood, in vector notation,

L(a) ∝ exp
{
−1

2
(ŷ− ATa)2

}
(2.4.58)

with a = {a⊥, aω} and y ∈ RN . As stated before, the MLE is given by Eq. (2.4.6),
â = (AAT)−1 Aŷ. First, let’s do the same thing we did before, and let Ω be the entire space
of a, while ω fixes both parameters, ie. Ω = ω. That makes the likelihood ratio

−2 log λ(a) = (a− â)TI(a− â) (2.4.59)

a random χ2
ν=2 variable for which we again calculate p-values according to Eq. (2.4.52).

Now one of the parameters a⊥ is a nuisance parameter. This means that we only fix aω , and
find the constrained maximum over a⊥. So we look at the quantity

−2 log λ̃(aω) = −2 log
L( ˆ̂a⊥, aω)

L(â)
, (2.4.60)

Now, by Wilks’ theorem, this quantity is a random χ2
ν=1 variable. The last two points

are illustrated in Fig. 5. For the sake of illustration, the parameters are taken to be very
correlated.

We see that the question which Wilks’ theorem helps us answer is if we can confidently exclude
some parameters aω for all values of the remaining parameters a⊥. Even if there is just a single set
of parameters {a⊥, aω} such that the p-value is big enough, ie. −2 log λ is small enough, then
aω cannot be excluded. From Fig. 5 we see exactly how for aω =

√
2, we only have − log λ̃ ≤ 1

when a⊥ = 1. This still means aω =
√

2 cannot be excluded at 1σ. Said differently, for every aω

we test the hypothesis that this is the true value, regardless of what the a⊥ parameter is.

2.4.5 Marginalisation

In the previous derivation, I strictly refer to maximisation of likelihoods. Even so, one will
often encounter the term marginalised likelihood. The use of this should be kept to a minimum
outside Bayesian reasoning, which is described briefly in Sec. 2.6. Marginalising the likelihood
in simply integration instead of maximisation. That is, instead of using Lp, we define the
marginal likelihood

Lm(θ) =
∫
L(θ, φ) dφ (2.4.61)



20 statistics
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-2logλ=2.3
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Figure 5: Illustration of confidence regions for two parameters with I⊥ = Iω = 1, Ĩ = 1/
√

2.
The dashed contour shows the 68% confidence region of both parameters, while the dotted lines
are the boundaries of the 68% aω confidence interval, taking a⊥ to be a nuisance parameter.
As shown, these dotted lines mark the extreme aω for which any a⊥ gives −2 log λ ≤ 1. The
number 2.3 is the solution y to the equation

∫ ∞
y χ2

ν=2(x) dx = 1− 0.68. For higher dimensions,
one could also give the boundaries of the joint contour in lower dimensions — here the boundary
would be at ±

√
2.3 instead of 1. It is important though, to remember the difference in meaning.

The bigger one also contains information on the other parameter, while the small one take all
but aω as nuisance parameters.

A trivial exercise is to show that the confidence regions determined from this quantity is
in general not the same as one would get with the profile likelihood. The objection is now
that, obviously, the marginal likelihood is not reparametrisation invariant, ie. for some other
parametrisation of the nuisance parameters Φ = f (φ),∫

L(θ, φ) dφ 6=
∫
L(θ, Φ) dΦ (2.4.62)

The two integrands differ by a jacobian J = dφ/dΦ. This means that when you pick your
parametrisation for the likelihood, you assume in some sense that this is a good parametrisation.
This again reflects the issue that the likelihood is not a pdf of the model — that is why the
meaning of this integral is not immediate.

Now it is an equally easy exercise to convince oneself that the maximisation procedure
is completely free of this caveat. The maximum likelihood for some θ cannot depend on the
chosen parametrisation of φ, so obviously maxφ L(θ, φ) = maxΦ L(θ, Φ).

2.5 monte carlo methods

The previous sections have mostly described linear models, and in one case a very simple
non-linear model, whose answer can be found analytically. This, unfortunately, is not always
the case. For some random variables, it can be impossible to find explicit expressions for their
distributions. When this happens, as is often the case, one way around it is to simply simulate
the distribution. This approach is broadly called Monte Carlo (MC) methods, and underlies
many results of modern physics. The approach can also be applied to numerical evaluation
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Figure 6: Example of MC integration. Each point is drawn at random. In this case,
N = 103, M = 781. This means the 1σ confidence interval for the integral is approximately
(π/4)MC = 0.781± 0.013, compared to the true value, π/4 = 0.7853, we see that this is indeed
a reasonable estimate.

of integrals. To see this, let’s go through the classic example, where we find π ≈ 3.14 by MC
integration.

Estimating π We know the ratio of areas of a unit circle to a square with side length 2
to be π/4. Now as an exercise we want to find the value of this numerically. We look at a
single quadrant, x ∈ [0, 1], y ∈ [0, 1], where the ratio of areas is the same. We now draw N
points inside this region and for every point check if it is inside or outside the circle. So for
every point, check if

√
x2 + y2 ≤ 1. Finally, we count the number inside the circle, call it

M, and divide by N. The ratio M/N estimates π/4 (since the region from which we draw
has unit area).

Now, since we are doing this as MC, the estimate we get has an associated error, which we
must also estimate. Namely, for every point we draw, it has the probability π/4 to be inside
the circle. That means M will be binomial distributed with p = π/4 with N draws. From
our previous calculations (2.3.11)-(2.3.12), we get immediately

〈M〉 = N · π/4 (2.5.1)

σ2
M = N · π/4(1− π/4) (2.5.2)

or, if we look at the quantity M/N, and approximate the binomial with N very large as a
gaussian,

M/N ∼ N (π/4,
√

π/4(1− π/4)/N). (2.5.3)

We see here a very general (approximate) result: the error on the estimate falls off as
√

N
−1

.
So, not surprisingly, the larger we take N, the better the approximation we get. This is
illustrated in Figs. 6 and 7. This technique is in its most naive form extended trivially to
any integral in any number of dimensions. Of course, as the parameter space becomes larger,
computing time increases, but the basic picture remains.
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Figure 7: Errors from the computation of π by MC integration. We see that all the errors are of
expected magnitude (notice that it is plotted on log-log axes). For every N, I perform 10 MC
simulations, simply to show the intrinsic variability in the estimate.

So we can do integrals numerically. This is comforting! As mentioned earlier, we also
might want to find distributions for which we cannot find an analytic expression. This is
heavily used when finding p-values for some non-trivial quantity. What one does is to simulate
an experiment a number of times, say N, and for every simulation find the desired quantity.
The distribution of these simulated quantities then answers the same question as would the
analytic expression, given this model, how (un)likely is the observed outcome, simply by numerical
comparison between the MC results and the real experiment. I will now extend the previous
non-linear model of Sec. 2.4.2 very slightly, and we shall see that we immediately lose the
analytic expression for the estimators. We will then use MC to regain control.

Unequal errors on measurements Take again the estimation of a normal distribution
with (µ, σ2) = (0, 1), but this time add distinct measurement errors, σi, on all x̂is. This
means the likelihood is

L =
N

∏
i
(2π[σ2 + σ2

i ])
−1/2 exp

{
−1

2
(x̂i − µ)2

σ2 + σ2
i

}
(2.5.4)

Looking for the MLE (µ̂, σ̂2) of this model, we get

µ̂ =
∑ x̂i/(σ2 + σ2

i )

∑ 1/(σ̂2 + σ2
i )

(2.5.5)

∑ 1/(σ̂2 + σ2
i ) =∑

(x̂i − µ̂)2

(σ̂2 + σ2
i )

2
(2.5.6)

The appearance of σi in these sums prohibits the nice manipulations we could do before,
and at this point we’re stuck on the analytic side. What we do is to simply solve these
two equations numerically, for a number of simulated experiments and find an empirical
distribution. It is immediate that the distribution of σi has a lot to say about the distribution
of the MLE.

Now let’s do the concrete MC for two different experiments. The only difference between the
two is the distribution of the individual, known errors σi. We will take N = 100 datapoints
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in every experiment, and 104 simulations. The first experiment is just like the old one, we
take all σi = 1 equal. The other has uniformly distributed errors σi ∼ U(0.1, 1.9), and
〈σi〉 = 1.02, ie. almost 1 like the other. The exact distribution is not of huge importance.
Now let’s see what difference this makes. Simulating the experiment 104 times, we get the
distributions shown in Fig. 8. We see that while both are hitting the right answer on average,
the tails are different in the distribution of σ̂2.

0.5 1.0 1.5 2.0
Variance, σ20.0

0.5

1.0

1.5

PDF

Figure 8: Distribution of µ̂ and σ̂2 from 104 MC simulations. Orange shows the original experi-
ment with only the same errors, while blue shows the distribution with errors σi distributed
uniformly between 0.1 to 1.9. We see clearly that while the distribution of the mean is more
or less unchanged, the distribution of σ̂2 is altered, and no longer follows the χ2 distribution
derived earlier. The two histograms have the expected distribution for the original experiment
superimposed.

Another interesting distribution to see from this experiment is the distribution of the
χ2 = ∑(x̂i − µ̂)2/(σ2 + σ2

i ). This is shown in Fig. 9. It is immediate that the χ2

distribution does not describe this distribution very well. We can interpret this as exchanging
variability is the χ2 for variability in the σ̂2. Had we set all σ2

i � σ2, then we end up with
the situation from Sec. 2.4.2, and the χ2 is always perfect, and all variability is in the σ2. If
we instead have σ2

i � σ2, then all the errors are practically fixed and we end up with an
almost linear model, ie. the σ2 does nothing to the fit, and we just fit µ. This gives us a fixed
σ ≈ 0 and a χ2 which is distributed, well, as a χ2. The situation here is a kind of middle
ground, where both are of the same order, and so the χ2 holds some of the variation, while
also the σ̂2 varies.

Most importantly, this shows that when the errors on the datapoints are not equal, the MLE
is not always a perfect fit, ie. χ2 6= N. Even when fitting the error, some variation remains.
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Figure 9: Distribution of χ2 = ∑(x̂i − µ̂)2/(σ2 + σ2
i ) from MC simulations with distinct errors.

Superimposed is a χ2 distribution with 100 degrees of freedom.

These two examples show the very basics of MC simulations, and the types of problems they
solve. This section is by no means exhaustive. It is mostly meant as a very soft introduction to
the subject of stuff we can’t calculate exactly, which unfortunately is a very big one.
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2.6 bayesian statistics

All statistical analysis in our work is frequentist. An objection to what I have shown so far, as I
already mentioned, is that the p-values we get out are not probabilities in the sense we would
like them to be — they do not represent model probabilities. If one is unsatisfied by this, then
we may use Bayes’ theorem to go from the likelihood, which is the pdf of data given a model,
to a posterior pdf, say f (θ|X̂), which is the probability of a certain model given the obtained data.
By Eq. (2.1.2), this is done as

f (θ|X̂) =
L(θ) f (θ)

f (X̂)
(2.6.1)

where, given f (θ), f (X̂) =
∫
L(θ) f (θ) dθ. f (θ) is called the prior, and f (X̂) is called the evidence.

Note however, that using Bayes’ theorem requires a prior, for which we in most cases of interest
in fundamental physics have no idea what should be. In particular, the pdf changes under
change of variables, so if we were to pick something boring, in the sense of being uninformative,
then the very same function in another variable might be very restrictive — recall the discussion
in Sec. 2.4.5.

With Bayesian statistics, we get exactly what we like — a direct measure of the pdf of a
model given the data we see. No hypothesis testing and no ambiguous p-values. The price one
has to pay is the choice of a prior, which in some cases is less trivial than other. In a sense, the
Bayesian method is trying to answer the unanswerable — doing fundamental physics, there
is no way we can pick the true prior, since all our knowledge on any subject is derived from
experience, which again would have to have been interpreted with some prior.



3
C O S M O L O G Y

Today’s cosmological studies are by and large interpreted within the bounds of the so-called
Concordance or Standard cosmological model. In this section, I will give a summary of the
theory with some examples of links to observables and experiments constraining it. I cannot
hope to give a textbook introduction to cosmology, but instead refer to one of the many excellent
books written on the subject, [9–12].

3.1 general relativity

The foundation of modern cosmology is Einstein’s general theory of relativity. Here I aim to
introduce main motivations and concepts necessary for the framework of cosmology1. This
describes not only how matter moves in space and time, but also how matter influences, or
perhaps more famously bends, spacetime.

The geometry of spacetime is described by the metric, which tells the distance between
neighbouring points. We define the proper time interval as

dτ2 ≡ −gµνdxµdxν, (3.1.1)

which defines for us the metric. The equations of motion for a test-particle in spacetime is, in
a freely falling, locally inertial coordinate system, a straight line, or more specifically a curve
of extremal proper time. In this coordinate system, call it ξ, this means we differentiate the
coordinates of the particle two times with respect to the proper time and require it be zero,

∂2ξµ

∂τ2 = 0. (3.1.2)

By reparametrisation invariance — loosely the statement that Nature doesn’t care what co-
ordinates we use — we can translate the coordinates ξ to any coordinate system x we find
convenient, leaving all physics invariant. In particular, the line-element Eq. (3.1.1) doesn’t
change,

−ηµνdξµdξν = −gµνdxµdxν (3.1.3)

In the ξ coordinates, the metric takes the very special form η = diag(−1, 1, 1, 1).2 In the x
coordinates Eq. (3.1.2) takes the form

∂

∂τ

(
∂ξµ

∂xν

∂xν

∂τ

)
=

∂ξµ

∂xν

∂2xν

∂τ2 +
∂2ξµ

∂xν∂xρ

∂xν

∂τ

∂xρ

∂τ
= 0

⇒ ∂2xµ

∂τ2 + Γµ
ρσ

∂xρ

∂τ

∂xσ

∂τ
= 0 (3.1.4)

where the second line follows from multiplying with ∂xλ

∂ξµ and renaming indices. I also introduce
the affine connection

Γµ
ρσ ≡

∂2ξν

∂xρ∂xσ

∂xµ

∂ξν
(3.1.5)

⇒ ∂2ξλ

∂xρ∂xσ
=

∂ξλ

∂xµ Γµ
ρσ (3.1.6)

1 The following derivation follows [12], including his conventions.
2 Note that I omit any factors of the speed of light c. This factor can be restored by dimensional analysis.
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Eq. (3.1.4) is known as the geodesic equation.
There is a subtlety here, which I brushed over. For massless particles — radiation — we cannot

use the proper time as independent variable to label the path, since this vanishes identically.
Instead use the zero-component of the coordinate vector, ξ0. The following derivation is like
before and we end up with

0 =
∂2xµ

∂(ξ0)2 + Γµ
ρσ

∂xρ

∂ξ0
∂xσ

∂ξ0 (3.1.7)

We will need these equations to describe the propagation and properties of particles in the
universe. Before doing that, we must know how spacetime reacts to matter. First, let’s rewrite
the connection. Rewrite Eq. (3.1.3)

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ (3.1.8)

and differentiate with respect to the x coordinates

∂gµν

∂xλ
=

{
∂2ξα

∂xµ∂xλ

∂ξβ

∂xν
+

∂ξα

∂xµ

∂2ξβ

∂xν∂xλ

}
ηαβ

=

{
Γσ

µλ

∂ξα

∂xσ

∂ξβ

∂xν
+

∂ξα

∂xµ Γσ
νλ

∂ξβ

∂xσ

}
ηαβ

= Γσ
µλgσν + Γσ

νλgσµ, (3.1.9)

where line 2 and 3 follow from Eq. (3.1.6) and Eq. (3.1.8) respectively. Next, add three of these
with mixed indices,

∂gµα

∂xν
+

∂gνα

∂xµ −
∂gµν

∂xα
= Γσ

µνgσα + Γσ
ανgσµ

+ Γσ
νµgσα + Γσ

αµgσν

− Γσ
µαgσν − Γσ

ναgµσ

= 2Γσ
µνgσα, (3.1.10)

where I use that the connection is symmetric in the two lower indices, as is clear from the
definition Eq. (3.1.5). Defining the inverse of the metric, gµν,

gµνgνλ = δ
µ
λ (3.1.11)

we multiply Eq. (3.1.10) by gλα and get

Γλ
µν =

1
2

gλα

{
∂gµα

∂xν
+

∂gνα

∂xµ −
∂gµν

∂xα

}
(3.1.12)

This expression is entirely free from the coordinates ξ, and can be readily calculated given the
metric gµν in any coordinate system.

Now we want to write tensors describing the spacetime. Using just the metric and its
first and second derivatives, one can show that the unique tensor which is linear in second
derivatives of the metric, is the Riemann(-Christoffel curvature-)tensor,

Rλ
µνρ =

∂Γλ
µρ

∂xν
+

∂Γλ
µν

∂xρ + Γλ
ρηΓη

µν + Γλ
νηΓη

µρ (3.1.13)

Of course we can also take contractions of this tensor, of which the two we will need are the
Ricci tensor,

Rµν = Rλ
µλν (3.1.14)
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and the curvature scalar

R = Rµ
µ (3.1.15)

In general, a non-vanishing Riemann tensor signifies the presence of a gravitational field. If the
Riemann tensor is strictly zero, then some transformation takes one back to Minkowski space,
which has the metric ηµν. Any non-zero component of the Riemann tensor prohibits such a
transformation. With these tensors, Einstein’s field equations (EFE) take the form3

Rµν −
1
2

gµνR−Λgµν = −8πGTµν, (3.1.16)

⇔Rµν = −8πG
(

Tµν −
1
2

Tλ
λ gµν

)
−Λgµν (3.1.17)

where Tµν is the energy stress tensor, G = 6.67 · 10−11Nm2/kg2 is Newton’s constant and Λ
is the infamous Cosmological Constant. I return to this in Sec. 3.4. The second equation above
follows from tracing the first.

Newtonian mechanics As everyone learned in school, Newton predicted the trajectories
of planets, combining his F ∝ r−2 law of gravity with F = ma. Let’s see how this is the
limiting case of the geodesic equation and a specific geometry — as of course it should be.

The limit we will take is a stationary weak field, and a slowly moving test particle. This
translates to the following expressions

gµν = ηµν + hµν (3.1.18)

|hµν| � 1 (3.1.19)
∂hµν

∂t
= 0 (3.1.20)∣∣∣∣ ∂t

∂τ

∣∣∣∣� ∣∣∣∣∂xi

∂τ

∣∣∣∣ (3.1.21)

Using Eq. (3.1.21), we write the geodesic equation (3.1.4) as

∂2xµ

∂τ2 = Γµ
00

(
∂t
∂τ

)2
(3.1.22)

Calculating the connection, we use that all time derivatives of the metric vanish, and
derivatives only act on the small, h-part. To first order in h we have

Γµ
00 = −1

2
gµν ∂g00

∂xν
= −1

2
ηµν ∂h00

∂xν
(3.1.23)

Putting this into Eq. (3.1.22) we get,

∂2t
∂τ2 = 0 (3.1.24)

∂2x
∂τ2 =

1
2

(
∂t
∂τ

)2
∇h00 ⇒

∂2x
∂t2 =

1
2
∇h00 (3.1.25)

This looks an awful lot like the Newtonian result,

ma = −m∇φ (3.1.26)

where φ is some Newtonian potential. For eg. a spherical mass distribution of mass M,
this takes the familiar form φ = −GM/r. We see that setting h00 = −2φ gives us the

3 Note that sign different conventions for gµν and Rλ
µνρ may lead to different signs here!
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Newtonian solution. To check that our approximation holds for typical potentials, put in
values for the Sun- and Earth-radius and mass,

|φSun| =
GMSun

RSun
= 2.12 · 10−6 (3.1.27)

|φEarth| =
GMEarth

REarth
= 6.95 · 10−10 (3.1.28)

Evidently the approximation is very good even at astrophysical scales!

3.2 the cosmological principle

The EFE are in general very hard to solve. Given Tµν, they describe 10 coupled partial differential
equations for the metric gµν. As such, any exact solution typically has a lot of simplifying
symmetry. The cosmological principle is one such set of symmetries. In short, it states that our
or anyone else’s place and orientation in the universe shouldn’t be special4. Any translation
or rotation must therefore leave the metric invariant. Obviously, the universe isn’t exactly
homogeneous or isotropic. These properties are meant to be approximately true only on
cosmological scales5, meaning when we average matter and geometry over large enough scales,
this description is suitable.

This high degree of symmetry forces the line element (3.1.1) to take the form

dτ2 = dt2 − a(t)2
(

dr2

1− kr2 + r2dΩ2
)

(3.2.1)

where dΩ2 = dθ2 + dφ2 cos2 θ and k ∈ {−1, 0,+1}6. The different signs of k correspond to an
open, flat and closed universe, respectively. The metric is known as the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric. The function a(t) is some so far unspecified function of
cosmic time t, called the scale factor. To find this function, we must solve the EFE. The source
must also be maximally symmetric in space, and so takes the form of a perfect fluid7,

Tµν = pgµν + (p + ρ)UµUν, (3.2.2)

where p and ρ are the pressure and energy density of the fluid, and U is the fluid velocity,
which in the cosmic rest-frame is given by

U0 = 1

Ui = 0,

that is to say, the contents of the universe are, on cosmological scales, relatively quiet. Because
of the high degree of symmetry in the problem, only two independent equations remain of the
EFE. The first is the Friedman equation,

ȧ2 + k =

(
8πG

3
ρ +

Λ
3

)
a2 (3.2.3)

and the second I take as conservation of energy, and write as

d
da

(ρa3) + 3pa2 = 0 (3.2.4)

4 Or stated otherwise, the universe is homogeneous and isotropic.
5 The canonical length scale is 100 Mpc ≈ 3 · 1024 m.
6 Another convention takes a(t0) = 1 and lets k describe the curvature. One can go back and forth by rescaling k, r and a,

leaving invariant the combination ka−2, the curvature of the space, which is a physical quantity — conventions don’t
affect observables. I find it instructive to keep both explicit.

7 Fluid in the sense of fluid dynamics.
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To close the set of equations, we need an equation of state, describing the pressure as a function
of the energy density

p = p(ρ) (3.2.5)

Two equations of state are of particular importance. These are of non-relativistic matter, or dust,
and ultra-relativistic matter, or equivalently, radiation. The two are

pmatter � ρ (3.2.6)

pradiation = ρ/3 (3.2.7)

For the two we find, according to Eq. (3.2.4) the dilution of the energy density is

ρmatter ∝ a−3 (3.2.8)

ρradiation ∝ a−4 (3.2.9)

These factors should not come as a surprise. Thinking in terms of an expanding universe,
matter is simply spread over greater volumes and dilutes as 1/V, whereas radiation is not only
diluted, but also stretched by the expansion. One can in general think of some perfect fluid
with equation of state

p = wρ. (3.2.10)

I will in the following keep the radiation and matter factors explicit, but all calculations can be
made with arbitrary w.8

With these expression for the energy density, we can in principle solve the Friedmann
equation. It is customary to rewrite the equation a bit. First introduce the Hubble parameter
and critical density,

H = ȧ/a, H0 = H(today) = 100h
km

s ·Mpc
(3.2.11)

ρc =
3H2

0
8πG

. (3.2.12)

Dividing Eq. (3.2.3) through by a2 we get

H2 = H2
0

(
ρ

ρc
+

Λ
3H2

0
− k

a2H2
0

)
(3.2.13)

The density ρ can now be matter, radiation or both. Taking into account how the two densities
scale, write

ρ = ρm + ρR =
a3

0
a3 ρm0 +

a4
0

a4 ρR0 (3.2.14)

where a0 = a(t = t0) is the scale factor today. Now define the density parameters Ωi as

Ωm =
ρM0

ρc
, ΩR =

ρR0

ρc

ΩΛ =
Λ

3H2
0

, Ωk = −
k

a2
0H2

0
(3.2.15)

and finally, write the Friedmann equation as

H2 = H2
0

{
Ωm(a/a0)

−3 + ΩR(a/a0)
−4 + ΩΛ + Ωk(a/a0)

−2
}

(3.2.16)

8 There are some subtleties in what values of w are physical. I will not address these issues here.
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Inserting t = t0 we easily see that the density parameters obey the sum rule

Ωm + ΩR + ΩΛ + Ωk = 1 (3.2.17)

Widely accepted, concordance, values for the values of these parameters in the present universe
are ([13])

Ωm ≈ 0.3 ΩR ≈ 0

ΩΛ ≈ 0.7 Ωk ≈ 0

H0 ≈ 70Mpc−1km/s ≈ 1.3 · 10−41GeV (3.2.18)

which is why the current setting is called ΛCDM. Λ for a Cosmological Constant, CDM for
cold dark matter. The actual baryonic matter we are all made of is in this picture a mere 5%,
which is included in the Ωm here.

Single component universes For the sake of intuition, let’s work through some examples
of single component universes. In particular, consider the four immediate possibilities —
matter, radiation, curvature, and Cosmological Constant-dominated universes, with each
of the four density parameters Ωi = 1 and all others 0. This corresponds to solving the
equation

ȧ
a
=

ȧ0

a0

(
a
a0

)−n/2
⇒ ȧ

ȧ0
=

(
a
a0

)1−n/2
(3.2.19)

for n ∈ {3, 4, 2, 0}, respectively. Assume now a power-law form, a ∝ tm. Putting this in
our equation, we get the condition

m =
2
n

, n 6= 0 (3.2.20)

For the Cosmological Constant, this solution fails, but we see immediately for n = 0 the
answer must be an exponential function. For the four different single component universes
we have the following solutions

a(t) = a0 ×



(
t
t0

)2/3
matter dominated (Einstein-de Sitter)(

t
t0

)1/2
radiation dominated

t/t0 curvature dominated (Milne)
exp(H0t) Cosmological Constant dominated (de Sitter)

(3.2.21)

Finally, extrapolating a→ 0, we get the following expressions for the age of the universe in
terms of the present Hubble constant,

ta=0 =
1

H0
×


2/3 matter dominated (Einstein-de Sitter)
1/2 radiation dominated

1 curvature dominated (Milne)
∞ Cosmological Constant dominated (de Sitter)

(3.2.22)

Since we observe neither cosmic time, nor the absolute scale factor, it would be nice to have
a proxy for the two. To this end, we introduce the cosmological redshift,9 denoted z. This is the
fractional amount the wavelength of radiation has been stretched by the universe expanding.
To see how this comes about, place an observer at r = 0 and let a wave crest be emitted at t1

9 Not to be confused with the Doppler redshift.
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propagating radially inwards from some radius r1. For a lightlike test particle, the proper time
is zero, and we have

0 = dt2 − a(t)2 dr2

1− kr2 (3.2.23)

Call the time it is observed t0, we then have the equation∫ t0

t1

dt
a(t)

=
∫ r1

0

dr√
1− kr2

=
1√
k

sin−1(
√

kr1) (3.2.24)

Notice the sign in taking the square root is fixed by the direction of propagation. The next
wave crest is emitted shortly after, follows the same path and obeys the same equation but with
slightly shifted time coordinates,∫ t0+1/ν0

t1+1/ν1

dt
a(t)

=
1√
k

sin−1(
√

kr1), (3.2.25)

where νi is the frequency at ri. For frequencies much larger than H ≈ 3.2 · 10−18hs−1 we get

0 =
∫ t0

t1

dt
a(t)
−
∫ t0+1/ν0

t1+1/ν1

dt
a(t)
≈ 1

a(t1)ν1
− 1

a(t0)ν0

⇒ ν1

ν0
=

a(t0)

a(t1)
(3.2.26)

We now define the redshift as the fractional increase in wavelength,

z =
λ0 − λ1

λ1
=

ν1

ν0
− 1 =

a(t0)

a(t1)
− 1 (3.2.27)

This is a nice quantity to work with because it is readily observable through analyses of spectra.
We can rewrite Eq. (3.2.16) trading t and a for z, giving

H(z)2 = H2
0

{
Ωm(1 + z)3 + ΩR(1 + z)4 + ΩΛ + Ωk(1 + z)2

}
(3.2.28)

3.3 cosmography

On cosmological scales, the intuitive notion of distances fails. Depending on the question you
ask, distances to the same object may differ — by a lot. In this section, I explore the different
measures of distance and try to clarify their meaning.

First, let us connect the r coordinate to the physical redshift. Take an observer and an
emitter, say a galaxy or a supernova, at relative proper distance r1. Emitting a single photon at
t = t1, we observe it at t = t0. The photon follows the path described in Eq. (3.2.23), and upon
inverting Eq. (3.2.24) we get, with a change of variables,10

r1 =
1√
k

sin

(√
k

a0

∫ z

0

dz′

H(z′)

)
. (3.3.1)

Usually though, a single photon is not enough. What we might hope to measure is a stream
of light from a source of known luminosity. Considerations from Euclidian space lead us to
define the luminosity distance, dL as

F =
L

4πd2
L

, (3.3.2)

10 The following expression holds, by analytic continuation of sin, for all k.
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where F is the measured flux from an object of luminosity L. Now we seek the relation between
this definition and the proper distance — and hence the redshift. Note that F and L are
bolometric quantities, ie. integrated over all frequencies. First, consider the area over which the
emitted light is spread. Integrating the angular part of the metric, we get a total area, at time t0
— when the light is observed

A = 4πa(t0)r1. (3.3.3)

Travelling across the universe has its price, though. First, the emitted light is redshifted, which
reduces the energy per observed photon by one factor (1+ z), and second, the distance between
individual photons is increased, also by a factor (1 + z). This means the observed flux is
reduced by a total factor (1 + z)2, giving

F =
L

4πa(t0)2r2
1(1 + z)2

⇒ dL = (1 + z)a(t0)r1. (3.3.4)

Next we look at an object or a feature, which is extended across the sky in some angle
δθ � 1 at proper distance r1. Looking again to Euclidean geometry, we expect the measured
angle to be the length of the object, D, divided by the distance dA,

δθ =
D
dA

(3.3.5)

To find the relation between the angular diameter distance and the proper distance, we arrange
our coordinate system appropriately and integrate only θ in the metric. Doing this we get that
the proper distance between the two ends of the object at t1 is

D = a(t1)r1δθ ⇒ dA = a(t1)r1 = (1 + z)−1a(t0)r1. (3.3.6)

An equivalent definition in terms the solid angle δΩ, filled by an object of proper area δA is

dA =

√
δA
δΩ

(3.3.7)

The transverse comoving distance is defined as the ratio of the proper transverse motion of
a particle to the angular motion we see

dM =
∆D/δt1

δθ/δt0
= dA(1 + z) = a0r1. (3.3.8)

Note that it is not, as the angular diameter distance, the physical length of an object.

Curved space To gain a bit of intuition for curved space, consider measuring dM.
Without looking to the equations, we ask ourselves ”are we going to measure more or less
than we think?”. Recall that in positively curved space, parallel lines get closer and closer,
while in negatively curved space, they grow further apart — the first point is most easily seen
by imagining a 2-sphere, where lines that are parallel at and orthogonal to the equator will
intersect at the poles. Now, we observe some angle, which is to say at our position, the two
lines going to each of the two sources we observe have some incident angle at our position.
As we just argued, the separation between two lines changes in curved space compared to flat
space. This means that in positively curved space, the two lines going to the two sources will
get closer as they go along, and the distance dM is smaller than in flat space. Conversely, in
negatively curved space, the lines get further apart and dM is larger, see Fig. 10. This effect
is exactly the effect of the sin function in the expression Eq. (3.3.1).
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Figure 10: Sketch of lines with equal incident angle at the observer point, propagating in
differently curved spaces. From outside in, the universes have k = −1, 0,+1. This shows how
the distance measured is affected by the curvature of space, as the length between the lines at
the top — at the source position — is changed by the warping of the geodesics.

We see that the angular diameter distance and luminosity distance are not independent
from the proper distance — they satisfy the Etherington reciprocity relation,

dA(1 + z) = dM = dL(1 + z)−1 (3.3.9)

We finally want to know what part of the universe can ever have had an effect at our position,
given that the current dynamics are what have always been at play. That is, at a given time in
the history of the universe, how big was the causally connected part. The proper distance to
this horizon is just the integral of the square root of the radial part of the metric

dH = a(t)
∫ rH

0

dr√
1− kr2

= a(t)
∫ t

0

dt′

a(t′)
(3.3.10)

The horizon problem Consider a matter-dominated universe, which for the following
calculation will simulate the universe we live in. Calculating the distance to the horizon is
straight-forward, and we get

dH,matter =
2

H0
(1 + z)−3/2. (3.3.11)

Watching this horizon on the sky from far away, we expect that any two points further apart
than dH will not be in causal contact — and will not a priori know anything about one
another. Let’s calculate the size on the sky of such a horizon patch. The angular diameter
distance is in the matter dominated universe given by

dA,matter =
2

H0

1− (1 + z)−1/2

1 + z
(3.3.12)

The angular size of the patch for a given redshift is then

δθ = dH/dA (3.3.13)

The cosmic microwave background (CMB) radiation is the leftover thermal bath of photons
from the early universe. The photons decoupled at redshift 1 + z ≈ 1100 and have been free
streaming since then. The size of a horizon patch at this decoupling redshift is

δθ ≈ 1100−1/2

1− 1100−1/2 = 0.031rad = 1.8o (3.3.14)

Note that this is significantly less than 180o. This means that patches on the sky separated
by more than 1.8o should be completely independent — the exact number changes slightly for
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different universes, but the point remains. The great surprise is the fact that the temperature
of these photons is to very high precision constant over the whole sky. This means that
apparently, the entire observed universe has been in causal constant at some point, yet
our calculations show, that given the present expansion of the universe, there is no way it
could have been. This is known as the horizon problem. One solution to this problem —
inflation — is to insert a sudden de Sitter period, which blows up the horizon, while keeping
the Hubble parameter constant. This can leave the observed universe inside the horizon
distance. The problem is of course formulated assuming the metric description holds to t = 0,
in order that the integral (3.3.10) can be calculated.

For distances at low redshift, z � 1, we can expand the expressions previous and do the
integrals. I will illustrate this with the luminosity distance, and on the way introduce the
deceleration parameter. Take the expression Eq. (3.3.4) and taylor expand the integral of in r1.
Since sin(x) = x +O(x3), we can get to second order in z while just considering the expression

H0dL =(1 + z)
∫ z

0

dz′√
Ωm(1 + z)3 + ΩΛ + (1−Ωm −ΩΛ)(1 + z)2

=(1 + z)
(

z− z2

2
(1− q0) +O(z3)

)
, q0 ≡ Ωm/2−ΩΛ (3.3.15)

where q0 is the deceleration parameter, and I have ignored radiation, as is justified in the late
universe. This measures the degree to which the universe is decelerating — named so since
historically it was believed the universe was decelerating and positive numbers are pleasing.
Let’s see how the acceleration of the FRW universe is related to this parameter. We turn to the
expansion of the scale factor around the present time, t− t0 � H−1

0 ,

a(t) = a0 + ȧ0(t− t0) +
ä0

2
(t− t0)

2 +O(t3)

= a0

(
1 + [t− t0]H0 −

1
2

(
− ä0a0

ȧ2
0

)
([t− t0]H0)

2 +O(t3)

)
(3.3.16)

The coefficient in front of the second order term is just what we’re looking for. To see this,
reorder and differentiate the Friedmann equation, (3.2.16) with respect to time,

∂

∂t
ȧ =

∂

∂t
H0a

√
Ωm(a/a0)−3 + ΩΛ + Ωk(a/a0)−2

⇒ ä = H0 ȧ
(√

Ωm(a/a0)−3 + ΩΛ + Ωk(a/a0)−2

+
−3Ωm(a/a0)

−3 − 2Ωk(a/a0)
−2

2
√

Ωm(a/a0)−3 + ΩΛ + Ωk(a/a0)−2

)

⇒ ä0 = H0 ȧ0

(
1 +
−2−Ωm + 2ΩΛ

2

)
= −H0 ȧ0 (Ωm/2−ΩΛ)

⇒ −q0 =
ä0a0

ȧ2
0

. (3.3.17)

We can see q0 as a scale-free measure of the deceleration of the universe — the scale of expansion
is set by H0 and the scale of the universe by a0. Note that q0 only describes the deceleration of
the universe today. Generally, q changes throughout the course of the universe. Only in very
special cases the universe is forever non-accelerating.

3.3.1 Moving emitter and observers

The Doppler effect, being a well established phenomenon, also has to be taken into account
when measuring the universe. Typical peculiar velocities of galaxies, which is to say the velocity
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in excess of the Hubble recession, are expected to be of the order a few hundred kilometers per
second, ie. v ≈ 10−3 in units of the speed of light. This includes both us as observers and eg.
SNe as emitters. The problem I wish to address in the present subsection is what difference
this makes to the light we receive. Now, since these velocities are only mildly relativistic, we
shall only look at the first term in an expansion around zero velocity. The following derivation
follows the work in [14].11

First we realise that the redshift we see is not only redshifted by the expanding universe, but
also by normal relativistic Doppler shifting. Denoting the expected redshift in a completely still
universe by z as before, we write z̄ for the corrected redshift in the universe where everyone is
moving around. By normal Doppler shifting, z̄ is given by

1 + z̄ = (1 + z)(1 + n · [ve − vo]) +O(v2) (3.3.18)

where the vi � 1 are the velocities of the emitter and observer, respectively, and n is a unit
vector point from the observer to the emitter. From here onwards, anything but the first vi
term is neglected. Now, beaming effects also come into play, in particular the solid angle of the
emitter is changed by relativistic beaming as

δΩ→ δΩ(1− 2n · vo) (3.3.19)

Note that this only depends on the observer-velocity, not the emitter. This changes the angular
diameter distance, Eq. (3.3.7), which we can in turn link to the luminosity distance through
Eq. (3.3.9). We see that the changes are the following

d̄A(z̄) = dA(z)(1 + n · vo) (3.3.20)

⇒ d̄L(z̄) = dL(z)(1 + n · vo)
(1 + z̄)2

(1 + z)2 ≈ dL(z)(1 + n · [2ve − vo]) (3.3.21)

We are still not done yet, as this last equation does not relate directly observable quantities. The
redshift we observe is naturally z̄, so we will have to also evaluate dL at this slightly shifted
redshift. What I will do is a simple Taylor expansion of the function. This means we take

dL(z) = dL(z̄) +
∂dL(z̄)

∂z
(z− z̄), (3.3.22)

where we can write z− z̄ = −(1 + z̄)n · [ve − vo], and so we just miss the derivative. From
Eq. (3.3.4) we get

∂dL(z̄)
∂z

=
dL(z̄)
1 + z̄

+
1 + z̄
H(z̄)

cosh
[√

ΩkdC/dH

]
(3.3.23)

Putting this into the former expression we finally have

d̄L(z̄, n) = dL(z̄) [1− n · ve]−
(1 + z̄)2

H(z̄)
cosh

[√
ΩkdC(z̄)/dH

]
n · (ve − vo) (3.3.24)

Ωk=0−−−→ dL(z̄) [1− n · ve]−
(1 + z̄)2

H(z̄)
n · (ve − vo) (3.3.25)

Now, the random movement of emitters will induce an uncertainty of this sort. I return to
this point later. This also means that since the Earth is not completely still in the universe, we
will have to correct for this effect. This movement of the Earth can be estimated by assuming
there is no intrinsic cosmic dipole in the CMB, and then looking at how big the observed dipole
is. This dipole must then be the result of a doppler shift, from which one deduces the velocity
vEarth through space ≈ 369km/s, ([15, 16]). Since this is a constant effect, it is usually subtracted
from data sets before publication.

Effects of this kind in relation to SNe have been addressed in eg. [14, 17–20] regarding both
uncertainty estimation and direct searches for bulk flows.

11 Note that this particular article follows a different notation — the bars are non-bars here and vice versa — and only
treats flat space.
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3.4 the cosmological constant

I will now devote a single section to an unfairly brief discussion of a problem, whose formulation
is maybe more subtle than its answer. The assumed detection of a Cosmological Constant of
order H2

0 , ie. ΩΛ = O(1) is puzzling for many reasons. I will try to sum up the problem, and
refer to some of many reviews on the subject for a deeper analysis, see eg. [21–23] and their
many references.

The first issue with this particular problem is, that it is not immediate what the problem
actually is. We have measured some value of a particular constant in our theory, namely Λ in
ΛCDM — and so what? The first question we might ask ourselves is, why O(1)? How come
that the Cosmological Constant Λ knows about the hubble scale today, and is just about that
value. Now, this may just be a coincidence.12 Even if it were, things are not this simple.

The value of the hubble constant, as we saw in Eq. (3.2.18) is very small compared to energies
of eg. masses of standard model particles, me ≈ 10−3GeV for the electron to heavier particles
like the Higgs, which is mH ≈ 100GeV. Now, the masses of particles come in since the EFE
have both a left and right hand side. The bare Cosmological Constant is the term Λ on the left.
But the stress energy tensor, when considering a quantum field theory living in your theory
of gravity, gets vacuum contributions, which we might denote 〈Tµν〉. By Lorenz invariance of
the vacuum, this contribution must be of the form −ρvacuumgµν — it looks exactly like the Λ
term. Now the problem is not just that the Cosmological Constant has a peculiar value, but that
two distinct physical effects cancel such as to make the sum Λ + 8πGρ ≈ H2

0 . To see why this
seems unreasonable, we have to look at the natural sizes of the individual terms.

The classic tale of ρ is vacuum fluctuations of the Standard Model fields. As free fields in a
quantum field theory are quantized as an infinite sum of harmonic oscillators, for which the
zero-point energy is ω/2, the zero-point energy of a single field is in some sense the sum of
these individual terms. As this sum of course diverges, one may be inclined to put in a cut off,
with the argument that eg. we don’t know what happens above the Planck scale Ep, and so the sum
only goes to energies of order Ep ≈ 1018GeV. This naive argument gives vacuum contributions
of the order ρ ≈ E4

p ≈ 1072GeV4 — one power from the energy of the oscillators, and one
power from each of the spatial dimensions we integrate over. This is to be compared with the
energy ’density’ of the Λ term, which is about the critical value, ρΛ ≈ ρc ≈ 10−46GeV4. The
discrepancy between these two numbers is the famous 72− (−46) ≈ 120 orders of magnitude
between theory and observation.

There is however a flaw in our previous derivation. We introduced an energy cutoff, which
explicitly breaks Lorentz invariance — yet we are trying to calculate a manifestly Lorentz
invariant quantity. This is not so good. Doing the calculation more carefully also shows that
what we did before would lead to an equation of state w = +1/3. It looks like radiation! This
is nothing like what we want. It is immediate that we have to abandon the sharp cutoff. What
we must do is find a Lorentz invariant way to get rid of the UV — the high energy modes,
which we do not know exactly how behave. Taking a clue from particle physics, we can do
dimensional regularization. This is doing the calculation in a general dimension, d. Of course
the original answer will still diverge, but doing the calculation like this, we can exactly see
where and how the infinities occur. That means we can meaningfully subtract an infinity from
our result to get something observable. Doing this calculation, we get that it is not the cutoff to
the fourth power, but the mass of the individual fields to the fourth power, summed, up to some
constants.

12 There is a related problem, called the coincidence problem. This is the observation that living in a universe with
comparable matter and dark energy densities, Ωm ≈ ΩΛ, seems somewhat unlikely. Extrapolating back to, say
recombination, the matter density has since then been diluted by a factor ≈ 109, while the dark energy density is forever
fixed. Yet just now, when we are here, they are almost equal. See [24] for a more precise definition and discussion of
this problem.
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But we’re still not done. Another term contributing to the vacuum energy density is the
zero point of any potential of any particle. There’s only one obvious one in the Standard
Model, which is the Higgs potential — the, now famous, Mexican hat. This has a peculiar effect
attached to it, since its zero point is different in the past, very hot universe and in the present,
cold universe. Namely, when the universe is very hot, the potential does not actually look like a
mexican hat, but like a normal φ2 potential because of thermal effects. This in turn means that
the difference between the potential energies of the vacuum before and after the phase transition
is m4

H/(4λ), where mH is the Higgs mass and λ is the Higgs self coupling. If we interpret the
potential energy as contributing to the vacuum energy density, this means that either before or
after, we are going to have a massive contribution from the Higgs potential. A similar thing
happens when chiral symmetry in QCD13 is spontaneously broken [25]. Inserting standard
model values for these quantities, we get

|ρEW phase transition| ≈ 108GeV4 (3.4.1)

|ρQCD phase transition| ≈ 10−2GeV4 (3.4.2)

Collecting all the terms so far lands us at ([26]),

ρvacuum ≈± |ρEW phase transition| ± |ρQCD phase transition|

+ ρΛ + ∑
SM field degrees of freedom

(−)
m4

i
64π2 (3.4.3)

where the ± show that there is no a priori preference for what should be the zero point of the
phase transition energies, and the minus in the sum is only there for fermion fields. Since the
top is so heavy, this sum evaluates to something negative of the order ∑SM fields ρ ≈ −108GeV4.
Thus, the problem has been ameliorated a bit from the initial 120 orders of magnitude fine
tuning to a mere 8− (−46) = 54 orders of magnitude. Fine tuning here means that we have at
least the four terms in Eq. (3.4.3), maybe more, all of which are very big, and cancel, apparently
not exactly, to 54 decimal places, to give us the value ΩΛ ≈ 1 today. A very long explanation of
all this is found in [23].

This is the Cosmological Constant problem. The apparent almost-cancellation to an unrea-
sonable number of decimal places of quantities that should know nothing about one-another —
eg. why would the Higgs potential know what the hubble scale is, and why would an arbitrary
constant, the Cosmological Constant, know what the top-mass is?

3.5 alternative views

The story of cosmology in text books is fairly straight forward. Here I want to present
some views opposing the very optimistic approach of the perturbed FLRW metric as a valid
description for the entire universe. I hope to summarise the idea behind some select points of
view in recent literature, but this is by no means meant as even a fair introduction to the subjects,
each of which could have been the subject of an entire thesis. As such, I will be skipping
technical details, and simply appeal to the idea behind and intuition about the approaches. The
nature of the different subjects varies a lot, from changing gravity itself to doing more careful
studies of the existing gravity, and the nearby universe.

Because of the large and ever increasing number of cosmological datasets, there is a host of
constraints on any model. I will mostly address issues regarding supernovae, while reminding
that other non-trivial constraints exists.

13 Quantum Chromo Dynamics, the theory of quarks, gluons and their color interactions.
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3.5.1 Changing gravity

To see the start of this approach, we have to reformulate the derivation of the EFE a bit. As
it turns out,14 the field equations can be found from the principle of least action, given the
Lagrange density

L =
1

16πG
R (3.5.1)

We then define the action as S =
∫

d4x
√−gL, and the sourceless EFE follow from requiring

δS
δgµν

= 0 (3.5.2)

By adding a matter term Lm to Eq. (3.5.1) we get the sourced EFE when we identify Tµν =
−2δLm/δgµν + gµνLm. We may also add the constant Λ with proper normalisation, which is
the Cosmological Constant. This means we get the total Lagrange density

L =
R− 2Λ
16πG

+ Lm (3.5.3)

Now inspired by the effective field theory approach of particle physics, we simply consider
adding more R-like terms to the action. Without specifying further, we just have some function
of R, and we have the lagrange density

L =
1

16πG
f (R) + Lm (3.5.4)

from which these kinds of theories derive their name f (R)-gravity. This is fundamentally
changing gravity. Without some great insight, all we are now left with is fitting not just Lm
and Λ, but also the infinite dimensional function f (R), which may or may not be parametrised
in some way. In particular the FLRW metric is still viable, and so this really extends the
Cosmological Constant. Note how in the above Lagrange density, Λ has been absorbed as the
constant part of f (R).

An interesting observation is that Starobinsky inflation ([27]) is an f (R) extension15, which
— although having its own problems — solves problems related to inflation.

Of course, constraints on deviations from general relativity are tight, see eg. [28], so
constraints on reasonable functions f (R) are too. For a comprehensive review of these theories
see eg. [29].

3.5.2 Averaging problem

The following approach questions what it means that the universe is homogeneous and
isotropic on average [30]. The first problem becomes the actual averaging process. It turns out
that averaging anything but scalars is a problem, since in general the average of a tensor field
does not transform as a tensor. What was started in [30] was the study of averaged scalar fields,
in particular the matter density of the universe. One starts by defining the spatial average of a
scalar field over a particular region V of the universe as

〈Ψ(x, t)〉 = 1
V

∫
V

√
det h d3xΨ (3.5.5)

14 I will not do the computation, which is messy and not very enlightening. I instead refer to eg. [10] for a thorough
walkthrough of the results.

15 Although it is hidden away in the original article — the R2 term is put into the Tµν.
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where h is the spatial part of the metric and the volume is given by

V(t) =
∫
V

√
det h d3x (3.5.6)

This allows us to define an effective scale factor for V as

aV (t) =
(
V(t)
V0

)1/3

(3.5.7)

One can now average eg. the Friedmann equations with no Cosmological Constant, which gives(
ȧV (t)
aV (t)

)2

= 8πG〈ρ〉 − 1
2
〈R〉 − 1

2
QV (3.5.8)

On comparison with Eq. (3.2.13), we recognise both the density and R term, which is disguised
as k, but also notice the appearance of a new term QV , which in the simplest case is defined as16

QV = 6(〈H2〉 − 〈H〉2) (3.5.9)

Ie. QV is a measure of the inhomogeneity of the expansion of space, and this term feeds into
the Friedmann equation. As it turns out, looking at the equation of state of this new term17 we
find that it behaves just like a Cosmological Constant, wQ = −1. Furthermore, it also feeds into
the sum rule of Eq. (3.2.17). These points mean that neglecting this term naturally leads to a
biased parameter estimation.

A nice feature of this approach is that the beginning of cosmological acceleration in the
FLRW sense seems to coincide with structure formation. This has an immediate interpretation
in this formalism, since now the inferred acceleration is linked to the inhomogeneous nature of
the universe, [32].

3.5.3 Exact inhomogeneous spacetimes

The Lemâitre-Tolman-Bondi (LTB) metric is an exact general solution to the same questions
as the FLRW metric was, except homogeneity, as found very early in [33] and later again in
[34]. Inspired by the isotropy of the CMB, this was first rediscovered as a physical model of
cosmology in [35]. Actual fitting of mass profiles to various datasets, including SNe, has been
carried out in eg. [36], which also introduces the various concepts I use below in a simple way.
This approach abandons the exact cosmological principle and suggests that our immediate
neighbourhood does not have the same density as the rest of the universe, eg. we could be
living in an underdensity.

The LTB metric is given by, when molded to a suggestive FLRW-like form,

ds2 = −dt2 +
A′2(r, t)
1 + K(r)

dr2 + A2(r, t)dΩ2, (3.5.10)

where A′ ≡ ∂A
∂r . Comparing to Eq. (3.2.1), we notice that putting A = a(t)r and K = −r2k, we

obtain again the FLRW metric, which is of course a special case of the LTB metric.
We can again derive a Friedmann-like equation for this spacetime, by putting in a suitable

matter term in the EFE, and we get(
Ȧ
A

)2

= H0

{
Ωm(A/A0)

−3 + ΩK(A/A0)
−2
}

(3.5.11)

16 In the interest of intuition, I am skipping a lot of definitions, in particular here is a slight abuse of the original notation.
I use here Θµ

µ = 3H instead of 〈Θµ
µ〉 = 3H.

17 It was found in [31] that this can also be interpreted as a scalar field called the morphon.



40 cosmology

for some reasonable definitions of Ωi — which of course reduce to the versions we already
saw in the homogeneous limit. What we are now left to do is determine the properties of the
various functions involved. In particular determining A, which can be thought of as a spatially
varying scale factor.

The intuitive picture of how an inhomogeneous universe might resemble a universe with a
Cosmological Constant can be thought of as follows. What was initially claimed in the SN data
was that the far-away SNe were fainter than what was predicted in cosmologies with no Λ, ie.
they were further away. This was interpreted as a recent onset of acceleration of the expansion
rate, which in FLRW can only be explained by a Λ term. In an inhomogeneous universe, this
accelerated expansion is instead explained as the far away universe simply not having the same
matter densities as the nearby one. This makes it possible to have different expansion rates at
equal times in the universe without invoking a Cosmological Constant.

There have been arguments over the physical validity of the Earth being the centre of the
universe, when taking the zero-point of the LTB coordinates to be us, here, see eg. [37, 38]. This
point though, is taking the LTB too literally, [39, 40]. In its form here, it should still be thought
of as an approximation to what is really going on. This includes the immediate idea that we
are, most likely, not the center of the universe. It might be the case in some average sense, that
an inhomogeneous metric captures the real world better than a perfectly symmetric one, [41].

Other exact solutions exist, like the Szekeres model, [42, 43] and more contrived examples
like patching together FLRW- and LTB-metrics in a kind of Swiss cheese model, [44].

3.5.4 Dark flow

Everything we cannot immediately explain the origin of is called dark. Dark matter is also
dark because we have no evidence that it interacts with light, but dark energy is simply dark
because we have no idea what it is. In the same way, there have been claims that there exists
an unexplained large scale bulk flow — a dark flow — of the nearby universe, see eg. [45, 46].
The first problem is explaining such a large bulk flow in what is supposed to be a very still —
maximally symmetric — spacetime. Assuming this is done, the presence of the dark flow may
mimic cosmic acceleration, [47, 48].

The argument is, that the observed acceleration, originally parametrised by q0, is affected by
a large bulk flow. First of all, one realises that the apparent hubble constant changes according
to the size and magnitude of the bulk flow. This allows one to write the deceleration parameter
in the dark flowing frame — in which we are supposed to reside. Supposing the universe is
only non relativistic matter, the global deceleration parameter is q0 = Ωm/2, while the local
deceleration parameter takes the following form

1 + q̃0 = (1 + Ωm/2)
(

1 +
θ

3H

)−2 (
1 +

θ̇

3H′

)
(3.5.12)

where θ is a measure of the bulk flow. The difference between dots and primes is a change
of frame, but are both time derivatives. The problem now becomes translating from bulk
velocities to these quantities, especially θ and θ̇. In [48], using the most optimistic values for
these parameters, one gets a change in the deceleration parameter as one goes from the still
frame to the bulk flowing one as large as −0.3. More conservative estimates diminish this by
about an order of magnitude. Even if one is just interested in vanilla ΛCDM, this is an effect
one cannot neglect in a proclaimed era of precision cosmology
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S U P E R N O VA E

Studying supernovae (SNe) dates back hundreds, if not thousands of years. If one is lucky, as
were the Chinese and Tycho Brahe at different times in history, these exploding stars can be
seen as clearly as every other star. Indeed the one observed by Tycho was called Stella Nova,
the new star. The first systematic attempt of scientific research with these stars was done at
the Palomar observatory, [49]. Already early on, the SNe were split into different types, I and
II, depending on their primary element abundances. Later, with more data, the types Ia, Ib
and Ic were distiguished, and today many more subclassifications exist, Iax, IIn and IIP, IIL.
See eg. [50] for more on the classification and [51] for the new Iax class. For a history of SNIa
observations, see eg. [52].

What will be the subject of the present section is strictly Type Ia SNe for cosmological
purposes. This class was early on seen to be relatively homogeneous, ie. their absolute
luminosities are very similar. Having a standard luminosity would mean one could map out the
distances in the universe using the relations derived in Sec. 3.3. This can easily be understood.
Take a Euclidean, flat, space and scatter, say 60W lightbulbs in it. Measuring the flux, F, from a
bulb, we easily find the distance to it using F = L/(4πd2). This luminosity distance is exactly
what we found an expression for in Eq. (3.3.2) for a general spacetime. Obviously, there are a
host of complications in this procedure, and here I want to illuminate some problems and their
proposed solutions.

4.1 supernova progenitors

I will not try to review the history of stars here, but simply state that when stars such as our
Sun, a so-called main sequence hydrogen burning star, ends its life, it becomes a white dwarf [53].
The main point we shall consider about white dwarfs is that they are supported against gravity
mainly by electron degeneracy pressure. This is a pressure coming from Pauli’s exclusion
principle — two or more electrons cannot be in the same state, and so if we squeeze electrons
enough, they will fight back. Detailed calculation of a degenerate electron gas shows that the
radius of a white dwarf shrinks as we put more mass in it. This leads us to the limit beyond
which the degeneracy pressure cannot support the star — this is called the Chandrasekar limit
[54]. The numerical value depends on the distribution of mass in the star and the ionisation
degree in the gas, and is around

MC ≈ 2.86 · 1030kg ≈ 1.44 sun masses (4.1.1)

These white dwarfs are what we think is going to be type Ia SNe. The leadup to the SN
explosion is still uncertain, but one story, for which [55] recently found concrete evidence, goes
as follows. Take a system with one white dwarf and another star. The white dwarf may now,
over time, suck in matter from the companion star. This only continues as long as the white
dwarf is stable — at most until the Chandrasekar limit, at which point the white dwarf heats
up, collapses and initiates a thermonuclear reaction, releasing more than enough energy to
blow the white dwarf apart.

The main point of the story is that we have reason to believe that all SNe of this type came
from stars of about equal masses. Now if all the SNe have similar boundary conditions and
similar evolutions, then we might expect that these can be used as our standard 60W bulbs in
the universe, [56].1

1 Of course, this is not the only possible scenario for the progenitor of SNe, and different scenarios might lead to different
energy outputs and evolutions. This is an immensely important point, which I will neglect for the main part of the

41
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The result of this violent explosion is a lot of highly radioactive material flung in every
direction.2 The light from the radioactive decay of this debris is what we observe, and is what
contests entire galaxies in luminosity.

4.2 observing supernovae

Once the hurdle of actually finding SNe is overcome,3 the observation is a timeseries of
photometric measurements, ie. fluxes through various colour filters. These timeseries are called
lightcurves. The classic photometric system is the Johnson-Cousins or UBV (ultraviolet, blue,
visual) system [58]. Many more systems exist today, see eg. [59]. Such a photometric system is a
series of window functions on the allowed frequencies/wavelengths of the observed light. An
example of such an observation in an extended system is shown in Fig. 11.

Figure 11: Optical and near-infrared lightcurves of SN 2007af from the Carnegie Supernova
Project. The mean wavelength of the bandpasses ranges from 350nm (u band) to 1600nm (H
band). The y-axis is in apparent magnitudes, and the time axis is shifted so day 0 is at maximum
B band brightness. Figure is taken from [60].

Now to do cosmological studies, we need a way to convert from the observed fluxes to
distance measurements. To do this, we need three conventional things: a flux, a luminosity
and a distance. These three quantities naturally must obey Eq. (3.3.2). Measuring another flux,
as we do, and assuming this comes from a standard candle, ie. a class of sources of equal
luminosity, as we hope SNe are, we have the following relationship,

F/Fref
L/Lref

=
1

(dL/dL,ref)2 (4.2.1)

analysis. Different unidentified classes of SNe Ia could indeed bias the results of an analysis, which does not identify
them as such [57].

2 Although not necessarily isotropically!
3 This point is naturally very non-trivial, but will not concern us too much.
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We now define the apparent magnitude m = −2.5 log10 F/Fref and absolute magnitude M =
−2.5 log10 L/Lref, which gives us the expression

µ = m−M = 5 log10
dL

dL,ref
(4.2.2)

For historical reasons, dL,ref = 10pc. µ is called the distance modulus. It is now apparent that if
M is the same for all SNe, then measurements of the flux are directly linked to the luminosity
distance, which reveals to us the expansion history of the universe. Of course we don’t expect
the intrinsic scatter in the luminosity to be exactly zero, even if the progenitor scenarios are
similar. The earliest observations of SNe were too scattered for a good cosmological study. But
they did show a remarkable feature — the width of the lightcurve was tightly linked to the
absolute magnitude. This effect is known as the Phillips relation [61], and the very first plot used
just 9 observations, see Fig. 12. Later, Tripp [62] found another correlation with the colours
of the SNe. These two quantities are marked in Fig. 11. The hope is still today that one will
be able to reduce the scatter in the Hubble diagram even further by finding more observables
with significant correlation to the Hubble residuals, see eg. [63, 64] for some examples of this.
Taking the corrections of the absolute magnitude to be linear in the new observables — as is
approximately observed in Fig. 12 and corroborated in later studies, [65] — we have for the
two-parameter model, writing in modern notation x1 for the shape of the lightcurve and c for
the colour correction,

µ = m−M→ m− (M− αx1 + βc), (4.2.3)

where α, β are unknown coefficients — we still have no good theoretical model of what these
should be. This parametrisation of the corrections is the one used by the SALT (Spectral Adaptive
Lightcurve Template) analysis, see [65, 66] for detail about the fitting and the exact meaning of the
parameters x1, c. In short, higher x1 are broader lightcurves, and higher c are redder colours.

This means that we now see the SNe as standardisable candles, their luminosity can be
corrected to be more or less standard (we will see later to what degree they actually are).4

Naturally, these measurements come with some uncertainty due to experimental noise. This
means that our dataset of the maximum B band apparent magnitude, shape and colour
correction, (m∗B, x1, c) comes with some covariance matrix. One part of this is the statistical
uncertainty — the noise — and the other is various systematic uncertainties. Determining these
uncertainties is a big part of any analysis. This also shows up in how surveys are done, since
early time coverage of the SNe is important to precisely determine the parameters, especially
the width of the lightcurve. This means that ideally one wants to take pictures of the sky where
there is no SN, since if there is going to be one in ten days, you want to see the very early time
light — notice how in Fig. 11 the observations start about ten days before maximum brightness.

4.2.1 K-correction

When we derived the luminosity distance, we considered the bolometric luminosity, ie. the
luminosity integrated over all colours of the light. Yet, when calculating the distance estimate
we only have light in certain bands. Now, redshifting the spectrum, but keeping the filters fixed
— for obvious reasons — we introduce a redshift dependent bias in the distance estimate, given
by ([70, 71])

K = 2.5 log10(1 + z) + log10

( ∫
F(λ)S(λ) dλ∫

F(λ/[1 + z])S(λ) dλ

)
, (4.2.4)

4 Other parametrisations exist, most prominently the MLCS(2k2) (Multicolor Light Curve Shapes) [67, 68] and the newer
SiFTO [69]. A more complete list of older methods is found in the introduction of [69].
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Figure 12: The plot from [61], where Phillips noticed the trend that as the lightcurves get
wider, the SNe are brighter. The trend is present in all three bands considered here, but most
prominent in the B band. The x axis, ∆m15(B) is the decline in B band apparent magnitude
after 15 days, ie. small numbers correspond to wide lightcurves. The y axis shows the derived
maximum absolute magnitudes in different bands.
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where F(λ) is the differential flux and S(λ) is the filter response. Now, given F, we can correct
for this by taking instead of the bolometric absolute magnitude,

M→ M + K (4.2.5)

This is usually done beforehand in data releases, and so we do not need to worry about it.

4.3 comparison with the cosmos

As calculated in the previous section, we find for every SN a distance modulus, which we want
to compare to our cosmological model. From Eq. (4.2.2) and (3.3.4) we see that the expected
distance modulus is

µC = 5 log10(dL/10pc) = 5 log10

(
(1 + z)√

Ωk
sinh

[√
Ωk

∫ z

0

H0dz′

H(z)

])
+25− 5 log10 h + 5 log10

(
c

100km/s

)
, (4.3.1)

where the last log evaluates to ≈ 3.477. The take-away here is that when comparing this with
Eq. (4.2.3), both contain unknown constants. The measurement has the absolute magnitude, and
the theoretical expression contains the Hubble constant. Importantly, these combine to a single
constant which factorises completely from the rest of the expression when taking the difference
— as we shall do later. That means we cannot with SNe alone constrain either of these! What
one does is to set the Hubble constant to something reasonable, eg. h = 0.7,5 and then fit the
absolute magnitude. It is important to remember though, that without a direct measurement of
the absolute magnitude or the Hubble constant, we can’t break this degeneracy.6

Let’s now go through some of the cosmological effects adding uncertainty to the measure-
ments.

4.3.1 Peculiar velocities

Deriving the luminosity distance, we assumed that the source was stationary. Using the results
from Sec. 3.3.1, we may estimate the error we commit when doing this. From independent
measurements, we estimate the variance of the isotropic velocity field to be about σv ≈
150km/s.7 By Eq. (3.3.18), this leads to a redshift uncertainty, given in terms of the variance of
the peculiar velocity along the line of sight. This is of course just σv, and so

σz,pecvel = (1 + z)σv (4.3.2)

The (1 + z) term here is usually neglected with the reason that these errors are important only
at low z, when the term is small anyway. Now we just need to convert this redshift uncertainty
to an uncertainty in the distance modulus. This is computed approximately as

σµ,pecvel = σz,pecvel
∂µ

∂z
= σz,pecvel

5
log(10)

∂dL
∂z

1
dL

(4.3.3)

The usual procedure now is to take some cosmology and calculate ∂dL
∂z explicitly. Which

cosmology one choses doesn’t matter much, since they are all similar at low z where the error
5 This choice is manifestly arbitrary, and can always be changed after the analysis.
6 What has been refined for decades is the so-called distance ladder. This is a series of classes of objects, each with its

own defining feature which allows determination of the distance to it. Every class is then a rung on the distance ladder,
see eg. [12]. Putting the SN observations on this ladder allows one to determine the Hubble constant and in turn the
absolute magnitude.

7 Isotropy here is a rather rough approximation, since this is extrapolated down to small scales — another method takes
into account the correlations in the velocity field, see eg. [20]. Here I just aim to illustrate the physics behind the effect.
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is important, [20]. So let us choose the empty universe, Ωm = ΩΛ = 0, which has luminosity
distance

dL,empty =
1 + z

H0
sinh (log(1 + z)) (4.3.4)

⇒ ∂dL
∂z

1
dL

=

(
1

1 + z
+

1
(1 + z) tanh log(1 + z)

)
(4.3.5)

Evaluating tanh log(1 + z) = z(z + 2)/[2 + z(z + 2)] reduces Eq. (4.3.3) to

σµ,pecvel ≈ σz,pecvel
5

log(10)

(
1 + z

z(1 + z/2)

)
(4.3.6)

This is then usually added in quadrature to other errors, since we assume this effect is entirely
uncorrelated to all other errors. This effect is why cosmological datasets usually have a lower
redshift limit. We only want to look at SNe, which are safely in the Hubble flow, ie. where
peculiar velocity effects are not dominant. The exact lower limit varies from analysis to analysis,
but is usually of order 10−2.

4.3.2 Weak gravitational lensing

Gravitational lensing, a subject in its own right [72], also affects SN measurements [73–76].
Light running through the universe is bent by the inhomogeneous large scale structure. This
means that the flux we infer is also contaminated by the distorted image — eg. a demagnified
SN will appear fainter, ie. further away. This effect is greater for far-away SNe, as is intuitively
clear — the further away, the bigger the optical depth, ie. the more lenses to distort the image.

For a precise determination of the lensing effect, one needs not only properties of the
universe, but also of dark matter haloes — the profile of dark matter surrounding galaxy
clusters. These are hard to determine, and so the exact numbers for the lensing uncertainties
vary from work to work. An early study [77] found a linear relation between the noise and
redshift, quoting an error of σlens ≈ 0.088z, while a newer study [76], dedicated to the data of
[78], finds σlens ≈ 0.055z. This is indeed the value used in [78], which we also take. This error is
also added in quadrature, even though the actual lensing bias is not expected to be gaussian.

Future surveys hope to be able to correlate large scale structure with the lensing bias — ie.
to look at the line of sight through which the SN was found and try to determine separately the
expected lensing, and as such make the once uncertainty a new signal. These possibilities will
be explored by eg. the Dark Energy Survey.8

8 Thanks to Tamara Davis for insight on this point.
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Now we combine the last three sections into an analysis of SN data. The ultimate goal of this
analysis is of course to lay out the expansion history of the universe, potentially unravelling the
mysteries of the cosmos. In less grandiose terms, we wish to constrain the parameters Ωm, ΩΛ
of our favourite, maximally spatially symmetric space-time, the FLRW model.

The data I use is the Joint Lightcurve Analysis (JLA) catalogue [78] — a combination of data
from Sloan Digital Sky Survey (SDSS-II), the SuperNova Legacy Survey (SNLS), SNe from the
Hubble Space Telescope (HST) and some low redshift SNe from a selection of other surveys.
See also [79] for description of selection criteria and outlier rejections. In this work, a lot of
issues of combining SN surveys have been adressed, in particular calibration issues between
telescopes and the empirical training of the SALT procedure.

This section follows closely our recent work [1], only in more detail.

5.1 the dataset

All data I use, including covariances, is available through the website of the JLA collaboration.1

Here I wish to give a brief overview of how it looks and feels. Fig. 13 shows the distribution
of the SNe on the sky in equatorial coordinates. The SDSS stripe is about 2.5◦ wide and 120◦

long, while the SNLS samples 4 regions of low galactic extinction with area 1 square degree
each. This distribution on the sky makes the high redshift surveys particularly bad for dipole
searches à la Sec. 3.5.4, since we have information only in very limited sections of the sky —
any multipole expansion of the velocity field of the far away universe will be wildly unstable.
The redshift coverage of the different surveys is shown in Fig. 14. Notice in particular how the
SDSS has filled in a gap around redshift 0.2. This gives some constraining power over the most
naive implementation of void models, where the Hubble parameter would ’jump’ between the
datasets.

Next, let’s have a look at the correction parameters x1, c of the SALT fits. These are presented
in Fig. 15. The superimposed gaussians are simply put there to guide the eye. As of writing
this, I know of no theory of the distribution of these parameters. That is why we assume the
theoreticians dream, that they come from gaussians. This is almost certainly not true, but
will be our first step towards finding out more about these distributions. As we will see, we
absolutely need to deal with these distributions. To see why this is the case, let’s look at the
distribution of the uncertainties of the measurements. The diagonal elements of the covariance
matrix are presented in Fig. 16. For some of these measurements, not only does the intrinsic
error and the experimental one have similar size — the experimental noise may completely
dominate for the most poorly sampled lightcurves. For most of them though, this is not the
case, and the measurement is quite good. The point still remains in principle though, and we
lose nothing — except computing time — by doing a more thorough analysis.

Naturally, one could consider more intricate distributions for these two parameters. This is
simply a matter of introducing more and more parameters to describe them. However, without
any physical motivation to do so, we simply put in gaussians. Even if they are not optimal, they
capture the most prominent feature — they have some spread, which we wish to quantify.

1 http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html
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Figure 13: Mollweide projection of the distribution on the sky of the four sets of SNe. The cyan
line going across the sky is the galactic plane. It is immediately obvious that not many SNe are
seen through the Galactic plane. Notice how the SDSS and SNLS surveys are constrained to
very small regions of the sky, where the observers look over and over again. This helps them
get nice early time coverage of the lightcurves.
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Figure 14: Distribution of SN redshift from different surveys. The right histogram has logarith-
mic redshift axis. From low to high redshift (red, blue, green, purple, same colour coding as
Fig 13) is low-z, SDSS, SNLS, HST.
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Figure 15: Distribution of the measured x̂1, ĉ. A gaussian with matching mean and variance is
superimposed. The approximate standard deviation of these distributions are σx1 ≈ 0.99 and
σc ≈ 0.084. These numbers are guiding, and play absolutely no role in the fitting procedure.
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Figure 16: Distributions in logarithmic bins, of the square root of the diagonal elements of the
covariance matrix for the correction parameters x1, c. These errors are to be compared with
the variance of the distribution in Fig. 15. It is immediately obvious that we cannot neglect
these errors when constructing the likelihood function. Indeed this looks a bit like the example
Unequal errors on measurements in Sec. 2.5 — we have some intrinsic distribution which we
contaminate with experimental uncertainties, so the total error is the intrinsic error and the
experimental error added in quadrature. Where the two errors would be approximately equal
(taken as simply the numbers quoted below Fig. 15 divided by

√
2) is marked by the blue line.

5.2 a statistical model of calibrated standard candles

As stated in Sec. 4.2, the corrected SN distance modulus is taken to be2

µSN = m∗B − (M− αx1 + βc), (5.2.1)

Now we take it to be the true values that obey this relation. Writing down the likelihood for the
dataset (m̂∗B1, x̂11, ĉ1, . . . ) is then straight forward. With a hat on observed values, we have

L = p[(m̂∗B, x̂1, ĉ)|θ] =
∫

p[(m̂∗B, x̂1, ĉ)|(M, x1, c), θ] p[(M, x1, c)|θ]dMdx1dc (5.2.2)

Here I have simply used Eq. (2.1.6) to integrate out my ignorance of the true values of the
observables. I stress that p[(M, x1, c)|θ] is my simple model of the distribution of the correction
parameters — not a (Bayesian) prior. What we need now is just the two expressions for the pdfs
in this equation.

Inspired by Fig. 15 we will take the intrinsic distribution of all the parameters M, x1, c to be
independent,3 gaussian, and redshift independent, giving us the following pdf,

p[(M, x1, c)|θ] = p(M|θ)p(x1|θ)p(c|θ), where: (5.2.3)

p(M|θ) = (2πσ2
M0

)−1/2 exp
{
−
[
(M−M0) /σM0

]2 /2
}

,

p(x1|θ) = (2πσ2
x0
)−1/2 exp

{
− [(x1 − x0) /σx0 ]

2 /2
}

,

p(c|θ) = (2πσ2
c0
)−1/2 exp

{
− [(c− c0) /σc0 ]

2 /2
}

.

All the 6 parameters {M0, σM0 , x0, σx0 , c0, σc0} are fitted along with the cosmological parameters,
since we have no theoretical model for what they should be. To simplify our calculations, we

2 Note that we do not include the newer host galaxy mass correction employed in [78], as it is not of immediate relevance to
the problem we are addressing. The change due to the exclusion of this parameter is negligible.

3 This is easily extended to correlated distributions if one wants to do so — here we simply use the minimal reasonable
amount of parameters
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write this in terms of a vector Y = {M1, x11, c1, . . . MN , x1N , cN}, the corresponding zero-points
Y0, and the covariance matrix Σl = diag(σ2

M0
, σ2

x0, σ2
c0, . . . ),

p[(M, x1, c)|θ] = p[Y|Y0, θ] = |2πΣl |−1/2 exp
[
−(Y−Y0)Σ−1

l (Y−Y0)
T/2

]
. (5.2.4)

Note that this gaussian approximation is just the simplest reasonable model for these data.
Introducing skewness or other such distributions may obviously lead to higher likelihoods. The
main point here is that we desperately need some model, and we have no theoretical motivation for
any one over another — we merely pick the simplest one.

Taking the experimental errors, statistical as well as systematic, to be described by gaussians
as well, gives us the following pdf

p(X̂|X, θ) = |2πΣd|−1/2 exp
[
−(X̂− X)Σ−1

d (X̂− X)T/2
]

, (5.2.5)

where X = {m∗B1, x11, c1, . . . }, X̂ is the observed X, and Σd is the estimated experimental
covariance matrix. To combine the two, we write

X̂− X = (ẐA−1 −Y)A where (5.2.6)

Ẑ = {m̂∗B1 − µC1, x̂11, ĉ1, . . . },

A =


1 0 0
−α 1 0 0
β 0 1

0
. . .

 ,

where the 3-by-3 block repeats all the way down, and all other elements are zero. Hence
p[X̂|X, θ] = p[Ẑ|Y, θ] and we get for the likelihood

L =
∫

p[Ẑ|Y, θ] p[Y|Y0, θ]dY (5.2.7)

= |2πΣd|−1/2|2πΣl |−1/2
∫

dY

× exp
(
−(Y−Y0)Σ−1

l (Y−Y0)
T/2

)
× exp

(
−(Y− ẐA−1)AΣ−1

d AT(Y− ẐA−1)T/2
)

= |2π(Σd + ATΣl A)|−1/2
(5.2.8)

× exp
[
−(Ẑ−Y0 A)(Σd + ATΣl A)−1(Ẑ−Y0 A)T/2

]
.

The gaussian form of the integrand makes this integral very simple. Remember that this
likelihood reflects not just our calibration of the SNe, but also the modelling of the correction
parameters. From this likelihood we will find the MLE and derive confidence limits on
both cosmological quantities, Ωm, ΩΛ, but are also able to place constraints on the absolute
magnitude scatter, the correction coefficients and the distributions of correction parameters. All
these tell us about how good our model is and how well our candles are calibrated — how
standard they really are.

5.3 results of the main fit

In this section I will present the main result of the work — the MLE and confidence regions of
our fit to the latest, greatest catalogue of SNe to date.4 Tab. 1 presents the best fits under specific

4 The code and data used in the analysis is available for the interested at http://nbia.dk/astroparticle/SNMLE/. It
uses Python 2.7 and the scientific library SciPy, both of which are open source.

http://nbia.dk/astroparticle/SNMLE/
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Table 1: MLE under specific constraints, marked in boldface. ∆χ2 here is short for
−2 logL/Lmax. (−2 logLmax = −214.97)

Constraint ∆χ2 Ωm ΩΛ α x0 σx0 β c0 σc0 M0 σM0

None (best fit) 0 0.341 0.569 0.134 0.038 0.932 3.059 -0.016 0.071 -19.052 0.108

Flat geometry 0.147 0.376 0.624 0.135 0.039 0.932 3.060 -0.016 0.071 -19.055 0.108

Empty universe 11.9 0.000 0.000 0.133 0.034 0.932 3.051 -0.015 0.071 -19.014 0.109

Non-accelerating 11.0 0.068 0.034 0.132 0.033 0.931 3.045 -0.013 0.071 -19.006 0.109

Matter-less universe 10.4 0.000 0.094 0.134 0.036 0.932 3.059 -0.017 0.071 -19.032 0.109

Einstein-deSitter 221.97 1.000 0.000 0.123 0.014 0.927 3.039 0.009 0.072 -18.839 0.125

constraints. The parameters are described in the previous section. In particular we see that the
calibration brings the intrinsic (or at least unaccounted-for) variation to 0.108 mag. We also get
out the variances of the correction parameter distribution, which are relatively independent
of the other parameters. Compared to the numbers quoted in Fig. 15 we see that the effect of
experimental uncertainties is most pronounced in the colour correction, c, which might have
been anticipated from Fig. 16.

In the spirit of cosmology, Fig. 17 presents the 1, 2, and 3σ contours of the Ωm, ΩΛ profile
likelihood and the 1 and 2σ contours of the full likelihood, projected to the Ωm, ΩΛ-plane (see
Fig. 5 for how the two differ). From this figure, and the tabulated numbers, we see in particular
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Figure 17: Contour plot of the profile likelihood in the Ωm, ΩΛ plane. 1, 2 and 3σ contours,
regarding all other parameters as nuisance parameters, are shown as red dashed lines. Blue
lines mark the 1 and 2σ 10D contours projected on to the plane (see Fig. 5 — the 2D contours
describe the confidence in only aω, while the 10D are the joint contour of a⊥ and aω, but only
shown in aω space because of the dimensional limitations of paper).
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that the non-accelerating universe is excluded at about 3σ — not overwhelming evidence.5 The
Hubble plot we find is presented in Figs. 18 and 19.

0.2 0.4 0.6 0.8 1.0 1.2
Redshift

32

34

36

38

40

42

44

46

D
is

ta
n
ce

 m
o
d
u
lu

s

Best fit Milne
Best fit ΛCDM

lowz

SDSS
SNLS
HST

Figure 18: Comparison of data and model. The measured distance magnitudes, ˆµSN =
m̂∗B −M0 + αx̂1 − βĉ with different markers depending on the survey. The expected value in
two cosmological models are also plotted. ΛCDM is the best fit accelerating universe, and
Milne is an empty universe expanding with constant velocity. The error bars are the square
root of the diagonal elements of Σl + AT−1Σd A−1, and include both experimental uncertainties
and intrinsic dispersion. These error bars are therefore mildly correlated.

Now we want to assess how good the fit is. We simply put in gaussians as our model before,
now we want to see how well this actually describes the data, along with a determination of
how well the statistical approximations we do are — this is not a linear model, yet we use Wilks’
theorem to find confidence regions. In Fig. 20 are the pulls, defined as the residual, normalised
to the combined expected error,

pull = (Ẑ−Y0 A)U−1, (5.3.1)

where U is the upper triangular Cholesky factor of the estimated covariance matrix, ie. UTU =
Σd + ATΣl A. We see from the figure that while it is not a perfect description, neither is it
obviously invalid. Performing a series of goodness-of-fit tests of the pull distribution to a normal
distribution, we get the p-values in Tab. 2. All four tests here are looking at the cumulative
distribution function in different ways. Looking at more targeted tests may give radically
different answers. In particular the skewness (the third moment) is off, which might have been
anticipated already from the distribution of x1.

We also perform a simple MC test to check that the confidence levels we set by Wilks’
theorem are good. To do so, we simulate 104 datasets, assuming the model to be correct and
taking the best fit parameters of the actual data as the model.6 We keep the z-values, but draw
new M, x1, c values from the predicted distributions. For every one of these datasets we find the
best fit parameters, and in particular the maximum likelihood. Wilks’ theorem now states that
the distribution of the quantity −2 logLtrue/Lmax is a χ2 with 10 degrees of freedom, where
Ltrue is the likelihood of the true parameters. The distribution from MC and the analytic curve
are plotted in Fig. 21. We see that Wilks’ theorem holds true to very high precision, and so we
can indeed trust the confidence levels set by the likelihood ratio.

5 The usual criterion in particle physics is 5σ, or a local p-value of about 5.7 · 10−7, for a rigorous discovery, however see
[80, 81] for a discussion of this convention.

6 This choice is the most relevant, but is not important — we could in principle choose any value.
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Figure 19: As Fig. 18, but with the Milne model subtracted. The Milne model plotted has had
its Hubble constant corrected by changing the zero point slightly to correct for the change in
M0 — see the discussion following Eq. (4.3.1).
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Figure 20: Pull distribution of the best fit model. Pulls are defined as described in Eq. (5.3.1).
According to our very simple model, everything should be gaussian. Therefore we superimpose
a normalised gaussian with the expected Poisson noise (1/

√
N).
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Table 2: p-values from testing the hypothesis that the pull distribution follows a normal
distribution, N (0, 1).

Test statistic p-value
Anderson-Darling 2.528 0.0479

Cramér-von Mises 0.454 0.0522

Kolmogorov-Smirnov 0.0244 0.1389

Kuiper 0.0329 0.1231
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Figure 21: Distribution of the MC likelihood ratio as defined in the text. The expected χ2

distribution is superimposed. The excellent agreement between the two reinforces our trust in
Wilks’ theorem.

5.4 older analyses

To emphasise the strength of the present analysis, it is instructive to look at the exact differences
between this and previous analyses. The previous analyses are mainly in two categories: a
likelihood based one, which I argue is not a good fit, and a residual based one, which in
particular is not a likelihood maximisation, and as such, what we learned in Chap. 2 no longer
applies. Let us first take a look at these other methods and then return to a brief comparison
with the proposed approach.

5.4.1 Residual based method

This method is the most prominent method used in analyses using the SALT method (or other
methods like it) of lightcurve fitting, see eg. [2, 78, 79, 82–84]. The exact procedure varies
slightly, but the main point is that one considers the quantity, which is sometimes called a χ2,
but for pedagogical purposes I will simply call it f ,

f =(m∗B −M + αx1 − βc− µ)[diag(σ2
int) + C(α, β)]−1(m∗B −M + αx1 − βc− µ)

≈∑
∆µ2

σ2
µ + σ2

int
(5.4.1)

where I have written out explicitly the term σint in the covariance matrix C, which I write
schematically as σ2

µ,i = ∑ab(Σd,i)abrarb, where r = (1, α,−β) mixes in the relevant covariances of
x1, c, and Σd is the covariance matrix as used in the previous section. The newest version of this
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type of analysis tries to determine independently the σint ([78]), while most other analyses have
done something curious. First the f is minimised with some plausible value of σint inserted —
typically a guess based on previous analyses. When the minimum is found, one then adjusts the
σint such that f is equal to the number of degrees of freedom, say N. As we saw in Sec. 2.4.2 this is
indeed reminiscent of fitting the unknown intrinsic error (the degree to which SNe are standard
candles). But, as I stress in Sec. 2.5, not even the maximum likelihood estimate satisfies this
exactly, when the errors on the datapoints are unequal. When the f has now been fixed, the
minimum might have moved slightly, so the procedure is iterated until convergence.

The most alarming thing is now, that confidence regions are put in place by Wilks’ theorem
— even though as we just saw, this method is not derived from a likelihood, and as such using Wilks’
theorem is manifestly nonsense. However, as we will see, since the guess f is an educated one, the
limits one sets this way are not completely off.

5.4.2 Simple likelihood

It has been realised, that the previous method was indeed not derived from a likelihood,
see [85–88]. If f is to be interpreted as something like −2 logL, then we have to impose a
normalisation, namely

∫
L d(data) = 1. Taking just the m∗B as the data, we see that the previous

expression (5.4.1) should come from a likelihood, which takes the form

Lw = ∏(2π[σ2
µ + σ2

int])
−1/2 exp

(
−1

2
∆µ2

σ2
µ + σ2

int

)
(5.4.2)

Now we can perform a rigorous likelihood maximisation, and construct confidence regions
using Wilks’ theorem. But let’s first look closer at the likelihood we have constructed. As just
stated, the way I constructed this was by regarding the integral as going over only the m∗B. But
there is no reason why m∗B should enjoy a privileged status compared to x1, c. It is immediate
that trying to integrate over these datapoints will give infinity. So let’s see where we went
wrong. To do so, we need to go back to the basics of constructing the likelihood, Eq. (5.2.2).
Now put in flat distributions of x1, c, ie. instead of all gaussians, we now take

p(x1|θ) ∝ 1

p(c|θ) ∝ 1 (5.4.3)

where in principle we need some compact support for these distributions to have a finite (unit)
normalisation of the likelihood. Putting these distributions into Eq. (5.2.2), with the gaussian
measurement errors and p(M|θ), we have, using the notation of the last section

Lw ∝
1√
|2πΣd|

∫
exp

[
−1

2
(X̂− X)Σ−1

d (X̂− X)T
]

dx1 dc

× (2πσ2
M0

)−1/2 exp
{
−
[
(M−M0) /σM0

]2 /2
}

dM (5.4.4)

Performing first the x1, c integrals simply mixes in the uncertainties and swaps x̂1, ĉ for x1, c in
X̂. We end with, writing for simplicity just a diagonal covariance matrix,

Lw ∝
∫

∏
i

1√
2π ∑ab(Σi)abrarb

exp

[
−1

2
[m̂∗Bi − (µ(zi) + M− αx̂1i + βĉi)]

2

∑ab(Σi)abrarb

]
× (2πσ2

int)
−1/2 exp

{
− [(M−M0) /σint]

2 /2
}

dM (5.4.5)

The error ∑ab(Σi)abrarb here is what we schematically called σ2
µ before. Performing the M

integral now simply adds the σint error and swaps M for M0 in the residual, which gives us
the expected expression, given in Eq. (5.4.2) — up to a constant, which in principle is infinite.
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Putting in compact support of the x1, c distributions complicates the integrals, but provided the
limits are far away from the interesting region, the results will be almost the same. I won’t go
into details about fitting these limits. The main point is that now we know exactly how this
likelihood comes about, and so can say confidently that it is wrong, as we see quite clearly from
Fig. 15, that we have no reason to believe the distributions of x1, c are flat in the full range of
the variables. One can of course impose narrow uniform distributions, but this will still include
two extra parameters in the fit, just as the gaussian distributions do — there is no such thing as
a free distribution.

5.4.3 Comparison with the present analysis

We have already seen how the naive likelihood based method compares to the present analysis.
For the present purposes, let us rewrite the likelihood of Eq. (5.2.8) as

L = |2π(Σd + ATΣl A)|−1/2
(5.4.6)

× exp
[
−(ẐA−1 −Y0)(AT−1Σd A−1 + Σl)

−1(ẐA−1 −Y0)
T/2

]
Taking for simplicity Σd to be diagonal, we see that the combination of every third term in the
expansion of the sum looks just like Eq. (5.4.1), notice the form of the residual here is

ẐA−1 −Y0 = (m∗B −M0 + αx̂1 − βĉ− µ, x̂1 − x10, ĉ− c0, . . . ) (5.4.7)

This means we are more or less fitting the same expressions we were before. The important
thing, which has been left out of the other analyses are the terms linking residuals in x̂1, ĉ to
those of m̂∗B — the off-diagonal terms of AT−1Σd A−1 +Σl . Since these analyses did not consider
residuals of these terms, they obviously cannot include these corrections.

Now, that is not to say that the residual based method will give a wrong result. We just
need to show it by some other means than for the MLE. In particular, since we cannot do
the calculation analytically, we will have to show it by simulations. To do such a simulation
though, we have to assume a distribution from which we draw the values of x1 and c. To show
how well the two methods should agree, I reuse the MC from Sec. 5.3 and now do both a fit
with our MLE method and the residual based method. As a slight correction to the method,
I use for the σint term in the residual method the value I find from the MLE. Now, for every
simulated dataset, I plot the difference in the obtained parameters in Fig. 22. This MC study is
then compared to the obtained values of the actual dataset. Fitting the original dataset by the
residual method, our best fit is

{Ωm, ΩΛ, α, β, M0} = {0.200, 0.591, 0.134, 3.08,−19.07} (5.4.8)

First of all, notice that the two methods actually agree on average! This is somewhat surprising,
but certainly possible. This just means that within this model the two methods agree, more
or less — to the degree of spread in the figure. However, looking at the value of the real
dataset, we see that it doesn’t quite agree. To put this into numbers, I first calculate the sample
covariance of the MC values, Î . Seeing the distribution of MC points as an estimate of the pdf,
Î is the covariance of the 5d approximate gaussian distribution. We can now calculate a χ2 of
the difference we see in the real data, as

∆χ2 = ∆parameters · Î−1 · ∆parameters ≈ 22.73, (5.4.9)

which for a χ2 distribution with 5 degrees of freedom is about 3.6σ. That means, taking into
consideration both fits, it is rather unlikely that they would differ by this much, if the gaussian
model is correct. This fit is explicitly carried out with gaussian distributions — even for the
residual method, which superficially completely disregards this information.
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Figure 22: Correlations between MLE and residual method parameters, for the relevant pa-
rameters. Plotted is MLE−residual estimate. The dashed ellipses show approximate 1, 2, 3σ 2d
profile contours. The blue markers show the value obtained from the real data. We see that in
particular the Ωm, ΩΛ point is off. In total, there are 9945 simulated datasets plotted.
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It is important to realise that any result obtained by the residual based method can only be
validated by a MC study. This does by no means forbid it be a good estimator. What is dangerous
though, is that one cannot extract from this the parameters of the underlying distributions, and
so we lose the ability to eg. plot Fig. 20 in this framework. We lose the ability to assess the
model of correction parameter which I emphasise, we must assume to validate the method, whether
we like it or not. In particular, doing the MLE method, we have made only completely standard
assumptions.



6C O N C L U S I O N

In this thesis I have presented in detail my knowledge of fitting cosmological parameters
with supernovae. I analysed the latest large compilation of supernovae and found a result in
significant contrast to the canonical result. In particular, a non-accelerating universe is only
excluded at 3σ by supernovae alone. This is not to say that supernovae prefer this universe —
the best fit point of this very simple model is still with a significant dark energy contribution! What
we have done is to state explicitly all assumptions that are usually made. These assumptions
will surely change, even in the near future. Preliminary work such as [89, 90] suggests using
more and more contrived versions of the residuals based method due to selection effects, and
a very recent study proposes two populations of supernovae [91]. I have in this analysis not
made any such assumptions or speculations. The result I present has standard assumptions
and models — only we need to state this explicitly, because we have to write down a likelihood.

This effort, I think, has two obvious products. First of all, we now have well defined
confidence regions, readily compared to other analyses. We know at all times exactly what we
are fitting and modelling, because we are forced to write all this down. Secondly, it gives an
avenue to further exploration of the correction parameter distributions. As stated before, it is
hardly believable that the distributions should be exactly gaussian, or that there is no evolution
of supernovae during the evolution of the universe. The method presented here is very easily
capable of dealing with this issue.
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