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Abstract

Black hole mergers is an active area of research in astrophysics with multiple
viable channels. Their merger through gravitational radiation with no interfer-
ence would entail a merger time greater than a Hubble time and which data
from LIGO contradicts. Many mechanisms have been proposed to explain this
discrepancy one of which is that binary black holes could have their orbits sig-
nificantly modified by the interference of a third black hole. Building on the
work done by D’Orazio and Samsing, and their merger probabilities for isolated
3-body systems, the environment of a super massive black hole around which
the 3 bodies orbited was added in order to determine the merger probability as
a function of distance to the super massive black hole. The theoretical frame-
work was worked out from the isolated 3-body system energy distribution and
verified by numerical results taken from 104 simulations for a select distance
to the super massive black hole. From this the theoretical distribution seemed
to be verified and showed that the merger probability decreases along with the
distance to the super massive black hole while quickly approaching the isolated
distribution as the 3-body system is moved away from the super massive black
hole. While this is still a simplified model it does seem to support the 3-body
interactions as a viable source for gravitational waves.
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1 Introduction

In 1916 Albert Einsteins theory of General Relativity predicted the existence of
gravitational waves, ripples in space time propagating at the speed of light due
to the acceleration of suitably massive objects. The first gravitational wave was
detected in 2015 by LIGO (Laser Interferometer Gravitational-Wave Observa-
tory) when they observed what became known as GW150914, a Binary Black
Hole (BBH) with masses of roughly 36M@ and 29M@ respectively undergoing
a merger. This was a huge revelation to the scientific community as it proved
that a BBH merger could occur within a Hubble time tH “ 14.4 GYr.

This is because naively it is assumed that BBHs must come from a massive
Binary Star system undergoing stellar evolution, which involves the expansion
into a red giant becoming up to 200 times its initial radius, and subsequent
type II Super Nova, both of which would destroy a tightly bound binary. It can
however be shown that for a BBH, the vacuum solution for their inspiral and
merger is given as[1]:

tinspiral «
5

256

c5

G3µM2
a40 (1)

with c the speed of light, G the gravitational constant, µ “ m2{M the reduced
mass and M “ m1m2 “ m2 the system mass assuming equal mass binary. From
this we can see that for a merger of stellar mass BBH (m “ 10M@) to occur
within tH due to gravitational wave radiation, must necessitate their separation
to be a0 « 0.09AU which is well within the distance of stellar merger as any
one of the binaries becomes a red giant.

Figure 1: Initial Separation of a BHB as a function of its mass in order for the binary to
merge within a Hubble time tH .

Subsequent BBH mergers were detected in 2016 (GW151226) and seven more

1



between November 2016 and August 2017 making it abundantly clear that
GW150914 was no anomaly and would have to be explained through alter-
native mechanisms than the naive stellar evolution model. Many papers have
been published to explain this paradox with many potential channels for BBH
mergers proposed.

Figure 2: The first observation of gravitational waves observed by LIGO-Virgo in 2016.
Known as GW150914, this event matched the predictions for General Relativity and
was the result of a black hole merger.

This was especially important when GW190521 was observed. This was the
resulting merger of two Black holes with calculated masses being 85 and 66 solar
masses. These were the first clear evidence of Intermediate Mass Black Holes,
that is, their masses were too great to be formed by the collapse of a single
star, meaning they must have acquired mass from their environment, either
through earlier mergers or through accretion. The environment needed could
be that found in the center of galaxies, known as Active Galactic Nuclei (AGN),
where many stellar and intermediate mass black holes could be located in the
gravitational environment of a Super-Massive Black Holes (SMBH), absorbing
mass from the accretion disk surrounding the SMBH and potentially increasing
the number of black hole mergers expected due to the concentration of smaller
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black holes[12].

Figure 3: The gravitational waves observed from the merger GW190521, the first evidence
for intermediate mass black holes, opening up the possibility for AGN disks as a
potential source for Black hole mergers due to the high concentration of black holes
and the gas disk of the SMBH, enabling the black holes to increase in mass without
the need to merger.

This thesis will explore one of these proposed solutions to the BBH merger
paradox. Instead of assuming the BBH merger occurring in isolation, one should
take the environment into account. BBHs formed near Galactic nuclei, orbiting
SMBH would be unable to go through their merger in isolation, as many other
BBHs and single black holes would be located there as well and would distort the
Binary’s orbit by passing at suitable distances. More intriguing is the possibility
that through these single BHs one could imagine a direct encounter in which the
binary and the singlet would interact as a 3 body-system, chaotically interacting
and greatly distorting the resulting binary’s orbital separation and eccentricity.
This 3-body interaction has already been explored by Samsing and D’orazio
[8][3] but has not taken the greater environment of the SMBH into account.
The impact the SMBH, modelled as a simple Newtonian Potential Source, would
have on the merger rate of the 3 body system is the focus of this thesis.
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2 General Relativity

We begin with the assertions of Einstein that no information can be transmitted
faster than the speed of light c, and that as a result our classical notion of space
and time are erroneous when moving at speeds v « c. The entire field of special
relativity follows with the main conclusions involving:

• Space and Time are not distinct entities, but are all part of a unified
space-time x “ pct, x, y, zq

• Every inertial system is equivalent and one can transform from one to
another through translation, rotation, and boost.

• The laws of physics does not change when moving from one inertial system
to another.

The last point is of course a simplification. In truth this is only the case in-
so-far as the physics in question can be expressed covariantly, that is to say, it
is a frame independent geometric relationship of frame independent geometric
objects. In special relativity this geometry in question is flat space time, called
Minkowski-Space.
The objects in question must also be covariant. We define the proper time dτ
and proper distance ds between two events at xµ and xµ ` dxµ as:

ds2 “ gµνdx
µdxν “ ´dτ2

Where gµν is the metric which carries the geometric information of the Space-
time in question. We see that the proper distance between these two events can
have three different values:

• ds2 ą 0: space-like separated events

• ds2 ă 0: time-like separated events

• ds2 “ 0: null separated events

Space-like separated events are causally disconnected since one can find a co-
ordinate system in which these events would happen simultaneously ∆x0 “ 0,
which would mean any connection would have to travel faster than light which
is impossible. Time-like separated events can be causally connected as one can
find a coordinate system where the two events happen at the same spatial point
∆xi “ 0. Null-like separated events can likewise be causally connected but what
is special here is that one can only reach from one to the other if one travels at
the speed of light.

In Minkowski space the metric gµν “ ηµν for cartesian coordinates is given
as:

η “

¨

˚

˚

˝

´1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚
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Special relativity, however, does not account for gravity. There are a lot of
different metrics to account for different gravitational environments and we shall
not go into specifics here. We will for the most part simply use the generic metric
gµν .

Suppose we wished to compute the proper time between two Time-like
separated events. We can parametrize the path travelled by some parameter
λ. For an infinitisimal element of the the time-like curve we need to travel
xµpλq Ñ xµpλ ` dλq, we can express the proper time as:

dτ2 “ ´gµνdx
µdxν “ ´gµν

dxµ

dλ

dxν

dλ
dλ2

Which by integration gives us the proper time for the whole curve:

∆τ “

ż λ2

λ1

dλ

c

´gµν
dxµ

dλ

dxν

dλ

In Minkowski-Space the un-accelerated path is the path that maximises
proper time. A freely falling particle will follow such a path. In General Rela-
tivity we call such a path a Geodesic.

2.1 Equations of motion in General Relativity

Given the time-like curve xµpλq with proper time:

∆τ “

ż λ2

λ1

dλ

c

´gµν
dxµ

dλ

dxν

dλ

Consider the time-like curve xµpλq ` δxµpλq that lies infinitesimally close to our
original curve and matches the end points δxµpλ1q “ δxµpλ2q “ 0. Computing
the difference in proper time:

δ∆τ “ ∆τ rxµpλq ` δxµpλqs ´ ∆τ rxµpλqs (2)

For a geodesic xµpλq maximises proper time and as such any curve lying in-
finitesimally close must have δ∆τ “ 0 to first order in δxµpλq. It can be shown
that this gives:

δ∆τ “

ż λ2

λ1

dτ

„

d2xµ

dτ2
` Γµ

νρ

dxν

dτ

dxρ

dτ

ȷ

gµαδx
α “ 0

Where Γµ
νρ “ 1

2g
µσ pBρgνσ ` Bνgρσ ´ Bσgνρq is the Christoffel symbol. Since

δ∆τ should be 0 for any infinitesimal variation δxα we must have:

d2xµ

dτ2
` Γµ

νρ

dxν

dτ

dxρ

dτ
“ 0

This equation for the motion of freely falling particles as a function of proper
time will become important later when extrapolating the acceleration in the
Post-Newtonian formalism.
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2.2 Weak Gravitational Field limit

In the regime of weak gravitational field we can consider the metric of space
time to be a perturbation of the Minkowski metric of the form:

gµνpxq “ ηµν ` hµνpxq

for which all components of the perturbation obeys |hµν | ! 1 as well as the
Lorentz gauge equation:

Bµ

ˆ

hµν ´
1

2
ηµνη

ρσhρσ

˙

“ 0

Furthermore we demand that our metric be independent of time:

B0g
µν “ 0

In this limit we also have small velocities:
ˇ

ˇ

ˇ

ˇ

dxi

dτ

ˇ

ˇ

ˇ

ˇ

! 1

The geodesic equation for a freely falling particle in this limit to leading order
reads:

d2xµ

dτ2
` Γµ

00

ˆ

dx0

dτ

˙

“ 0

We can see that to leading order we have:

Γµ
00 “ ´

1

2
ηµσBσh00

And for µ “ 0 we see that Γ0
00 “ 0 which means that:

«

d2xµ

dτ2
` Γµ

00

ˆ

dt

dτ

˙2
ff

µ“0

“
d2t

dτ2
“ 0

which means that dt{dτ must be a constant. We can thus write:

d2xi

dt2
“

ˆ

dτ

dt

˙2
d2xi

dτ
“ ´Γi

00 “
1

2
Bih00

Comparing this to the newtonian equation which is:

d2x

dt2
“ ´∇ϕ

leading to:

´2ϕ “ h00

The weak field limit, and this result will be used in the following sections.
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2.3 Einstein field equation

We seek to obtain an analogous equation to the Poisson equations for Newtonian
gravity:

∇2ϕ “ 4πGρ

with ϕ being the gravitational potential, G the gravitational constant, and ρ
the mass density. We know now that the analogue to ϕ would be the metric
and thus our new equation should have a left hand side involving the second
derivatives of gµνpxq.

Let us define the Riemann curvature tensor:

Rρ
σµν “ BµΓ

ρ
νρ ´ BνΓ

ρ
µσ ` Γρ

αµΓ
α
νσ ´ Γρ

ανΓ
α
µσ

With the following symmetries:

Rµνρσ “ ´Rµνσρ “ ´Rνµρσ

Rµνρσ “ Rσνρµ

Rµνρσ ` Rµρσν ` Rµσνρ “ 0

Where Rµνρσ “ gµαR
α
νρσ. We note here that the Riemann Curvature Tensor

obeys the Bianchi-identity.

DαRµνρσ ` DνRαµρσ ` DµRναρσ “ 0

From here we define the Ricci tensor

Rµν “ Rρ
µρν

We notice here that the Ricci tensor is symmetrical Rµν “ Rνµ from this we
can define the Ricci scalar as the trace of the Ricci tensor

R “ gµνRµν

Since both the Ricci tensor and scalar contains the second derivative of
the metric we can construct a general second derivative tensor from a linear
combination of the Ricci tensor and the product gµνR of the metric and the
Ricci scalar. Our general left hand side thus reads:

Rµν ` AcgµνR

Where we set the linear constant of the ricci tensor to 1 for simplicity.
The right hand side must carry some quantitative measure of the energy of

the system in question. For this we define the Energy Momentum tensor Tµν :

T 00 energy density

T i0 density of xi-component of the momentum

T 0,j Energy flux through the surface perpendicular to xj

T ij internal forces per unit area dA
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This tensor is symmetric Tµν “ T νµ and is conserved under the covariant
derivative:

DµT
µν “ 0

We now know that the equation must be of the form:

Rµν ` AcgµνR “ BcTµν

with our two constants still undetermined. Since The right hand side must be
conserved we can write:

DµpRµν ` AcgµνRq “ 0

Here we can utilise the Bianchi identity. We write:

DαRµνρσ ` DνRαµρσ ` DµRναρσ “ 0

gµρgνσpDαRµνρσ ´ DνRµαρσ ´ DµRνασρq “ 0

Dαg
µρgνσRµνρσ ´ Dνg

µρgνσRµαρσ ´ Dµg
µρgνσRνασρ “ 0

Dαg
νσRρ

νρσ ´ Dνg
νσRρ

αρσ ´ Dµg
µρRσ

ασρ “ 0

DαR ´ 2DβRαβ “ 0

Where we have used the symmetries of the Riemann Curvature tensor, the
definitions of the Ricci scalar and tensor the fact that the covariant derivative
of the metric is zeros as well as relabelled the two latter terms. From this we
can relabel and extract the identity:

DµpRµν ´
1

2
gµνRq “ 0

We can subtract our identity from our left hand side to obtain:
ˆ

Ac `
1

2

˙

DµR “ 0

And since the ricci scalar is generally not constant, we have that Ac “ ´1{2.
To obtain our second constant we rewrite our equation:

Rµν “ Bc

ˆ

Tµν ´
1

2
gµνg

ρσTρσ

˙

Here we have used that contracting our original equation with the metric and
taking the trace gave us:

R “ ´Bcg
µνTµν

And simply inserted that. From here we consider the Newtonian limit. Here, the
metric is independent of time, the gravitational field is weak and the velocities in
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question are much smaller than c. For Newtonian matter our Energy momentum
tensor reduces to Tµν “ T00 “ ρ and our equation reduces to:

R00 “
1

2
Bcρ

In the Newtonian limit we furthermore can compute the Ricci scalar:

R00 “ Rµ
0µ0 “ Ri

0i0 (3)

Since the Riemann curvature symmetries implies that R0
000 “ 0.

We see that in our limit the Ricci scalar reduces to:

Ri
0i0 “ BiΓ

i
00 “ ´

1

2
BiB

ih00 “ ´
1

2
∇2

h00

We can compare this to the result for the newtonian limit of the geodesics
equation. Here we find:

R00 “ ∇2ϕ

We can thus write:

∇2ϕ “
1

2
Bcρ

We can compare this to the poisson equation ∇2ϕ “ 4πGρ and since we are in
the weak field limit we realise these should be the same. We can thus see that:

Bc “ 8πG

Putting it all together we have:

Rµν ´
1

2
gµνR “ 8πGTµν

This is the Einstein Field Equation and describe the motion of relativistic par-
ticles in the presence of gravitational fields. Note that this equation is in fact
10 coupled differential equations and is thus not easily solved for any partic-
ular matter distribution. As we shall see later it becomes necessary to make
some approximations to reduce the complexity of the calculations. One of such
schemes, which we shall use is the Post-Newtonian approximation which will be
explained later.

2.4 Gravitational waves

In the weak field limit the Einstein Field Equations is reduced to the much
simpler form:

lhµν “ ´16πG

ˆ

Tµν ´
1

2
ηµνη

ρσTρσ

˙

9



Where l “ BµBµ “ 1
c2

B
2

Bt ´ ∇2 being the d’Alambertian operator, Tµν is the
Stress-Energy Tensor and G the gravitational constant. Considering the vacuum
equation this becomes:

lhµν “ 0

For which one can make an anzats for a wave solution:

hµνpxq “ Aµν exp pikρx
ρq

Since we know that the metric perturbation is symmetric hµν “ hνµ we must
impose this on our solution as well leading to Aµν “ Aνµ. Our solution further-
more must satisfy the Lorentz Gauge condition which imposes the following:

kµAµν “
1

2
kνη

ρσAρσ

Inserting our solution into the vacuum equation we obtain:

lhµν “ 0

BαBαAµν exppikρx
ρq “ 0

i2kαk
αAµν exppikρx

ρq “ 0

´kαk
αhµν “ 0

As hµν is generally non-zero the only way for this equation to be true is if:

kµk
µ “ 0

This corresponds to a monochromatic plane wave propagating at the speed of
light.

One can see that our solution has 16 components, with each unique compo-
nent corresponding to a physical polarisation of the gravitation waves. However
by imposing the following constraints:

Aµν “ Aνµ, Aµ0 “ 0, ηµνAµν “ 0, kµAµν “ 0, kµk
µ “ 0

We are reduced to only two physically distinct wave polarisation.

2.4.1 Binary GW radiation

For non-relativistic sources for GW, like Black hole Binaries, the energy emitted
obeys the Einstein Quadropole formula:

dErad

dt
“

G

5c5

ˆ

d3Iij
dt3

˙2

with Iij being the mass quadropole moment given by the integral of the newto-
nian mass density over a compact region of space:

Iij “

ż

source

d3r

ˆ

rirj ´
1

3
δijr

2

˙

T00pt,xq
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From this it can be shown that for a binary system the average power emitted
is given as[1]:

dErad

dt
“

32

5

G4µ2M3

c5a5
F peq

F peq “ p1 ´ e2q´7{2

ˆ

1 `
73

24
e2 `

37

96
e4

˙

Where e is the orbital eccentricity, µ “ GM and M the total binary mass.
This means that over time the binary will radiate away all its rotational and
gravitational energy in the form of gravitational waves.

It can furthermore be shown that the average angular momentum flux is:

dJrad
dt

“
32

5

G7{2µ2M5{2

a7{2
p1 ´ e2q´2

ˆ

1 `
7

8
e2

˙

With a the semi-major axis (SMA). For a binary orbit we can write the total
energy as:

E “ ´
GMµ

2a

Taking the energy flux of this system we obtain:

dE

dt
“ ´

GMµ

2

d

dt

ˆ

1

a

˙

“
GMµ

2a2
da

dt

And since we know that the only energy lost is due to gravitational radiation
we have:

dE

dt
“ ´

dErad

dt
GMµ

2a2
da

dt
“ ´

32

5

G4µ2M3

a5
F peq

da

dt
“ ´

64

5

G3µM2

a3
F peq

By similar procedure we can obtain the eccentricity flux since we know that:

J “ µ
a

GMap1 ´ e2q

dJ

dt
“ µ

?
GM

˜

c

1 ´ e2

2a

da

dt
`

c

ae2

1 ´ e2
de

dt

¸

“ ´µ
?
GM

˜

c

1 ´ e2

a

32

5

G3µM2

a3
F peq `

c

e
a

1 ´ e2
de

dt

¸

We again notice that the angular momentum flux must be the negative of the
gravitational radiation angular momentum flux.

dJrad
dt

“ ´
dJ

dt

11



Which we can simplify to obtain:

de

dt
“ ´

304

15

G3µM2

a4
ep1 ´ e2q5{2

ˆ

1 `
121

304
e2

˙

from the SMA flux and the eccentricity flux we see that the gravitational waves
drive circularization through inspiral.

Solving the semi major axis equation we obtain:

a0 “

ˆ

256

5
G3µM2F peqtinspiral

˙1{4

We can input the Hubble time to see what the initial distance must be for
two black holes orbiting each other to merge in that time. We obtain that for
tH “ 14.4 GYr two black holes with equal mass M “ 50 M@ in a perfectly
circular orbit should start out at a distance of of the order 0.01 AU which is a
significant problem as binary stars would not be able to form binary black holes
with that distance unassisted.

By combining the two differential equations we can obtain the following
equation:

da

de
“

12

19

a

e

1 ` 73
24e

2 ` 37
96e

4

p1 ´ e2q
`

1 ` 121
304e

2
˘

Solving this equation we obtain:

ż

da

a
“

ż

de

e

12

19

1 ` 73
24e

2 ` 37
96e

4

p1 ´ e2q
`

1 ` 121
304e

2
˘

lnpaq “ ln
`

pe2 ´ 1q´1
˘

` ln
´

e12{19
¯

` ln
´

p121e2 ` 304q870{2299
¯

` ĂC0

apeq “
C0e

12{19

p1 ´ e2q

ˆ

1 `
121

304
e2

˙870{2299

Where C0 is a constant of dimensions of length that is determined by the initial
conditions. From this we can see that when e « 1 our dominating factor becomes
p1´e2q´1. Because of this we expect that in the high eccentricity limit our semi
major axis must change by many orders of magnitude before any significant drop
in eccentricity is expected. This can be seen in figure (4):
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Figure 4: Graph of the analytical solution of the function apeq. Notice the asymptotic be-
haviour around e “ 1 which is to be expected, since in the high eccentricity limit, our
function scales as p1 ´ e2q´1.

These functions will be used to check the simulations for regions of validity
as we should expect these behaviours to hold for any binary. As we shall see
later on, the simulation does conform to this within the region we are interested
in, but diverges for sufficiently small SMA.

2.5 Post-Newtonian Expansion

As previously discussed the weak field approximation we could write the metric
as a perturbation of the Minkowski-metric:

gµν “ ηµν ` hµνpxq

Which resulted in the much simpler Einstein Field equation:

lhµν “ ´
16πG

c4
τµν

with τµν “ Tµν ´ 1
2ηµνη

ρσTρσ being the gravitational source term. Now suppose
our matter distribution Tµν can be expanded as[5]:

Tµν “

8
ÿ

n

1

cn
Tµν

pnq

with pnq being the n’th order of the matter distribution. Since these sources are
slow and weak self gravitating the metric field is generated from very slow matter
v{c ! 1. As such the change in the metric field as a function of time is much
smaller than the change in space. As such we can reduce our D’Alembertian
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operator to a simple Laplacian. Expanding the metric perturbation hµν and
the gravitational source term τµν we get:

hµν “

8
ÿ

n“2

1

cn
hµν

pnq

τµν “

8
ÿ

n“´2

1

cn
τµν

pnq

we can then put all of this together to obtain the recursive formula for the series
expansion:

∇2hµν
pnq

“ 16Gτµν
pn´4q

` B2
t h

µν
pn´2q

And since we know that our equations of motion in general relativity is the
geodesic equation which depends upon the derivatives of the metric, we now
have a formalism for the acceleration of objects in terms of Post-Newtonian
terms.

Expanding in the ratio between the velocity of the object and the speed of
light c we can express the acceleration experienced by an object of mass m1 by
another object m2 as the series:

a “ a0 ` c´2a2 ` c´4a4 ` a5 ` Opc´6q

Where a0 “ Gm2{r212 is the Newtonian potential. The first Post-Newtonian
(PN) term is a2 which, along with a4, account for periastron shift. a5 also
known as the 2.5 PN term is given as[5]:

a5 “
4

5

G2m1m2

r312

„ˆ

1Gm1

r12
´

8Gm2

r12
´ v212

˙

v12

` pr̂12 ¨ v12q

ˆ

52Gm2

3r12
´

6Gm1

r12
` 3v212

˙

r̂12

ȷ

and is very important to our numerical simulations. Looking at the 2.5PN term
for circular binary orbit we have r̂12 ¨ v12 “ 0 meaning our formula reduces
to only the first term. Taking m1 “ m2 “ m we see that our acceleration
contribution becomes:

a5pe “ 0,m1 “ m2 “ mq “ ´
4

5

G2m2

r3

ˆ

6Gm

r
` v2

˙

v

which will be a negative number, acting as a drag force given as:

F2.5PN “ mc´5a5 “
32

?
2

5

G7{2

c5

´m

r

¯9{2

Here we have substituted in the orbital velocity v “
a

2Gm{r.
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In our numerical simulation we will refrain from using the contributions from
lower order corrections, instead relying on the acceleration:

a “ a0 ` c´5a5

The modified acceleration is however only strictly valid for number of objects
N ď 2. However this approach can still be used for N ą 2 objects without
introducing significant error, since our 2.5PN contribution has a much steeper
dependence on the separation than the Newtonian part (a59r´9{2 vs a09r´2).
Thus the closest pair contribution will always dominate.

Since our 2.5PN term is the first Post-Newtonian term that acts like an
energy-sink, ie takes energy away from the system in the form of shrinkage of
the SMA as well as loss of angular momentum resulting in circularisation of the
orbit. As such one should find a general agreement between a simulated binary
and the theoretical behaviour from the Quadropole formalism.

3 Stellar Evolution

This section will cover the different sources for BBH mergers as well as describe
the environment of the Active Galactic Nuclear (AGN) disk which, in a simpli-
fied form, will be the subject of the numerical results obtained later on.

We begin by covering the different evolution channels for BBH formation. As
the topic of this thesis is one particular case of BBH formation this section
will not dwell too much on each channel. Note also that this will not be an
exhaustive list as this is still an active area of research.

3.1 Separate Evolution

The simplest evolution channel is the separate evolution channel. Consider a
Stellar Binary with semi major axis at such a scale that while the two stars are
bound, their evolution from star to black hole can be considered as an isolated
event. These binary black hole formations, while valid, will not produce any
gravitational waves on their own. As we have previously discussed, the energy
loss rate due to gravitational waves is proportional to a´5 meaning that at
distances a " 1 AU the radiation rate is suppressed to the point that nothing
will be detectable in the LIGO VIRGO band.

3.2 Common Evolution

For common evolutions the BBH is directly formed from an existing Stellar Bi-
nary and through different mechanisms are kept together while going through
the stellar evolution, thus being able to undergo a BBH merger in a Hubble time.
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3.2.1 Common Envelope Channel

In the common evolution (CE) channel the distance between the binary stars
is much smaller than the separate evolution channel. As the two stars goes
through their evolution they will inevitably interact with each other.

The binary potential on a test mass m at a distance r from a stable binary
we have:

UBinary “ ´
mµ

r
´

1

2
mω2r2

We can, of course equate this with U “ mΦ where Φ is the effective gravitational
potential. We can thus find a point between the binaries for which.

F “ ´m∇Φ “ 0

known as the Lagrange point L1. This point will be important as it will be
through this that mass can flow from one star to the other. Define the Roche
Lobes as a figure eight shaped surface with each star at the center of each lobe
and the crossing point being at L1. Suppose material passe through the Roche
Lobes at any other point than L1. By the shape of the surface it must now
be located in a lobe with one of the stars at its center. The usefulness of the
Roche Lobes is that once through the surface, the material will have a stronger
gravitational attraction to the star in the lobe than the other, meaning the mass
would inevitably pass to the star at the center of said lobe. The exact shape of
the lobes will not be examined further in this thesis as it it does not have an
analytical solution.

The question now becomes: What happens if one of the stars exceeds its
Roche Lobe? This will happen at some point as, once the star in question has
exhausted its fuel, it will expand becoming a red super giant. As the Roche
Lobe is filled mass will be ejected from the giant, some of which will flow to the
smaller star through L1. For a giant star filling its Roche Lobe with mass MG

and a smaller star with mass M‹ it can be shown that through this mechanism
the orbit evolves as:

9a

a
“ ´2

ˆ

1 ` rβ ´ 1s
MG

M‹

˙

9MG

MG

Where β is the fraction of ejected matter which leaves the system. We can see
from this that for β “ 0, that is when all matter ejected from MG is captured
by M‹ the semi major axis will evolve as:

9a

a
“

$

’

&

’

%

ą 0 for MG ă M‹

“ 0 for MG “ M‹

ă 0 for MG ą M‹

Moving further along in the evolution of the Giant star, it will at some point
undergo a Super Nova (SN) explosion. During this process, it will not only eject
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the majority of its stellar material, leaving behind either a Neutron Star or a
Black hole. The SN explosion is instantaneous compared to the orbital period
of the binary system and in general asymmetric and anisotropic. As such, the
explosion will impart a kick on the remnant in the form of a recoil velocity vkick.
Depending on how one models the distribution of these SN kicks, a portion of the
stellar binaries will be destroyed. This is, however, still an active area of research
and not one that will be the focus of this thesis. Should the binary survive, the
second star will undergo the same evolution becoming a giant. At this point the
mass transfer will shift as the stellar remnant now becomes the receiver of the
mass transfer from the new giant. Inevitably the mass transfer from the giant to
the stellar remnant becomes unstable as the remnant cannot absorb the matter
quickly enough leading to the giant absorbing the stellar remnant in a common
envelope. The CE extracts energy from the binary orbit via dynamical friction
eventually unbinding itself from the system. By considering the energy before
and after the unbinding of the envelope one can show the change in scale of the
orbital radius to be:

af
ai

“
MCore

MG

ˆ

1 `
2

λα

ai
RL

Menv

MSR

˙

Where MCore and Menvis the mass of the core and envelope of the stellar giant,
MSR is the mass of the stellar remnant, and λ and α are dimensionless parame-
ters pertaining to the density profile of the envelope and the efficiency of orbital
energy expenditure. Back of the envelope calculations can show that:

af
ai

„ 10´3 ´ 10´2

At this stage in the common evolution the orbital distance will be so small that
when the second SN kick occurs, most binaries will survive. At this point the
stellar remnant binary will be close enough to merge within a Hubble time[7].

3.2.2 Chemically-Homogenous Evolution Channel

In the Chemically-Homogenous Evolution we instead imagine our two stars in
a binary rotating rapidly around their own axis. This rotation cannot be in
hydrostatic and radiative thermal equilibrium leading to a mixing of the in-
ternal layers of the stars. This can lead to a whole other evolution path than
would be expected. Stars that rotate slowly would tend to form a composition
gradient insides, with a Helium rich core and a Hydrogen rich envelope. As
the core contracts during the evolution, hydrostatic and thermal equilibrium
is maintained by the envelope expanding which, if in a binary, could lead to
an overfilled Roche-Lobe and resulting mass transfer as per previous section.
The rapidly rotating star would instead mix the core and envelope meaning no
gradient would form and the star would instead maintain an almost constant
radius throughout its main sequence evolution. As the Hydrogen is burned up
throughout the star, it will start to contract as it moved to a Helium burning
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star of lower radius. The star will then continually contract as the Helium is
expended eventually contracting to become a stellar mass black hole. This has
been shown to be possible for equal mass stellar binaries if they are sufficiently
massive (object mass M Á 30 M@) and sufficiently high individual rotational
frequency (T À 1 Day)[6][4].

3.3 Dynamical Evolution

While Common evolution dealt with a single binary operating in a vacuum,
dynamical evolution takes the environment into account. This section includes
different evolution channels, but for our purpose we are interested in the Binary-
Single interactions or, the 3-body system as we will refer to it as for the remain-
der of this project.

Figure 5: AGN disk with different merger channels drawn.

Briefly, some of the other channels proposed are:

• Binary Binary Interactions
Two BBHs, one orbiting the other, interact with each-other resulting in
modified SMAs leading to inspiral within a Hubble-time[10]

• SMBH-Perturbation
In the presence of the SMBH the eccentricity and SMA of an otherwise
stable binary can be perturbed leading to inspiral within a Hubble-time

• Dynamical Binary Formation
Two BHs experience a close interaction leading to either a collision and
merger or a new binary with SMA and eccentricity, enabling the inspiral
within a Hubble-time[11]

• Hierarchical Triplets
A binary with a singlet orbiting the binary, enabling perturbation of the
SMA and eccentricity of the BBH leading to inspiral within a Hubble-
time[9]
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These channels are beyond the scope of this project and we will move on to
the 3-body interactions.

3.4 3-Body interactions

3 Body stellar encounters can be divided into three main categories describing
the interactions of compact objects in space which includes BHs.

• Weak Perturbation (WP) in which the singlet passes the binary at
a hyperbolic trajectory at a large distance compared to the binary semi
major axis. The passage time for this encounter is larger than the orbital
period of the binary leading to a weak perturbation of the binary. This is
the most common encounter.

• Strong Perturbation (SP) in which the singlet passes the binary at
a hyperbolic trajectory at a distance comparable to the semi-major axis
of the binary. The passage time here is less than or equal to the orbital
period and should have a greater effect on the binary.

• Close Encounter (CI) in which the singlet will pass the binary at at
distance to the binary center comparable to the binary separation. In this
case all three objects will have similar gravitational strength compared to
one another and the outcome will be chaotic.

In this project we will refrain from looking at the perturbative interactions and
focus solely on CI.

We define CI’s as occurring when a third body passes the binary center of
mass at a distance rCI “ 2mH

M a with mH being the heavier binary element and
M being the total binary mass. From here we see that for our equal mass case
(mH “ m, M “ 2m) this reduces to rCI “ a that is, our third object passing
within a distance comparable to the binary separation itself.

The setup for the third body initial conditions will be expounded upon in a
later section but for now, suffice to say that by treating the binary as as single
object with mass M located at the center of mass of the binary itself the closest
approach of the third body corresponds to an impact parameter b which can be
found by energy and angular momentum conservation to be:

bprminq “ rmin

d

1 `
6Gm

rminv28
(4)

where v8 is the speed of the third object when approaching from infinity and
rmin is the smallest distance between the singlet and the binary center of mass.
We see that any encounter with b “ bprCIq will correspond to rmin ă rCI. From
this we can conclude that all CI’s must happen for rmin ď rCI meaning all
encounters coming from within the area σCI “ πbprCIq

2 must lead to a CI. This
area is defined as the cross-section for CI’s. Expanding it we obtain:

σCI “ πr2CI

ˆ

1 `
6Gm

rCIv28

˙

(5)
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Depending on the relative binding energy of the binary and the kinetic energy
of the third object, we will see that either the first (Geometric) term of second
(Gravitational) term will dominate. From the binary we can extrapolate an
approximate interaction rate. Assuming an isotropic stellar density n with the
average relative velocity ⟨v⟩ “ v8 we have the rate:

Γ » nσCIv8 (6)

Which is the theoretical rate of CIs. We see here that our CI rate depends solely
on the cross section. Much work has been done by Samsing and D’Orazio in [3]
to determine the cross section of the outcomes of 3 body interactions the main
results of which we are interested in is the merger cross section given as:

σmerger “ PmergerσCI (7)

The merger probability is thus the only truly unknown and the one this thesis
strives to determine.

Figure 6: an example of a 3-body merger.
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Figure 7: 3-body merger seen in the COM frame of the 3-body system
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3.5 Derivation of merger probabilities

This thesis only seek to investigate the merger rates for 2D disk interactions.
As such the general 3 body interactions becomes a lot simpler. We have two
different channels for mergers:

• The 2 Body merger in which, after interacting chaotically, a BH is
ejected from the system, and a binary is formed which will inspiral.

• The 3 Body merger in which two BH inspiral while still gravitationally
bound to a BH singlet

We begin by considering the timescale for which an eccentric BBH will merge.
This is shown to be[1]:

tinspiral “
5c5

256G3

a4

µM2F peq
«

5c5

512G3

a4

m3
looooomooooon

tc

p1 ´ e2q7{2 (8)

Where a, e and m are initial semi major axis, eccentricity and black hole mass of
the system. In the last equality we have used the equal mass case m1 “ m2 “ m
and the high eccentricity approximation F peq « p1 ´ e2q´7{2.

For planar restricted 3 body interactions one can show that the distribution
of eccentricities are given as[2]:

P peq “
e

?
1 ´ e2

(9)

Suppose we wanted to know the probability of our eccentricity being larger than
some choice eccentricity e0. For this we have:

ppe ą e0q “

ż 1

e0

P peqde “

b

1 ´ e20 (10)

Since we know the relationship between tinspiral and the eccentricity we can

simply associate
a

1 ´ e20 with some timescale τ to obtain:

pptinspiral ă τq “

ˆ

τ

tc

˙1{7

“

ˆ

512G3τ

5c5

˙1{7

a´4{7m3{7 (11)

This is our probability function for merger of two binary black holes within a
set timescale τ as a function of the initial semi major axis a and mass of each
black hole m.

Substituting in the average interaction time τ “ ti “ 105 Yr and expressing
this in terms of normalised parameters which will be used in this thesis:

p2 « 0.09

ˆ

ti
105 yr

˙1{7 ˆ

m

50M@

˙3{7
´ a

1 AU

¯´4{7

(12)
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For the 3 body merger it has been shown that one can express the chaotic in-
teractions as a series of temporary binary-single states. In order for a merger to
take place it must happen in one of these temporary states, which has the char-
acteristic timescale of the orbital period of the initial binary T “ 2π

a

a30{Gm.
From here we can simply utilise the same logic as before to obtain:

p3 “ N

ˆ

T

tc

˙1{7

“ N

ˆ

1024πG5{2

5c5

˙1{7

a´5{14m5{14 (13)

Where N is the average number of interactions that will be determined numer-
ically. In normalised units this becomes:

p3 “ N ¨ 0.014

ˆ

m

50M@

˙5{14
´ a

1 AU

¯´5{14

(14)

We thus have the probabilities of the 2- and 3-body mergers proportional to the
initial separation of circular orbit binaries to some power. From this we see that
for small enough a our results should be dominated by the 2 body mergers while
for larger initial distance the 3 body mergers will make up the vast majority.
The initial distance ac for this change should be at p2{p3 “ 1 for which we have:

ac “
N´14{3

p2πq2{3
G1{3m1{3t

2{3
i “ 2153N´14{3 AU

ˆ

m

50M@

˙1{3 ˆ

ti
105 yr

˙2{3

(15)

We see here that this critical point is extremely dependent upon the numerical
value of N due to the ´14{3 power. As such the critical point will end up with
an uncertainty spanning multiple orders of magnitude. A value for this has been
found by Samsing to be N “ 20[8] but for now we shall leave this as uncertain
and dependent upon the simulation in question. As such we will obtain our own
later on.

Plotting the probability distributions we get the following figure:
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Figure 8: The probability distributions of the 2 body merger p2 and 3 body merger p3 on a
log log diagram.

We shall use this to verify the functionality of our 3-body simulations in a
vacuum later on. They will furthermore be held up against the results presented
by Samsing et al [8] for similar reasons.
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Figure 9: 3-body merger in an SMBH environment. This is at a distance of 2 tidal radii
with the SMA being 1 AU.

3.6 Super Massive Black Holes

At the center of AGNs we find the gravitational anchor: The Super-Massive
Black Hole. This section will describe the relevant parameters used to implement
the SMBH in our simulation. As can be seen below, the introduction of the
SMBH, changes the trajectory of the 3-body system greatly. Compared to fig.
(??) and (7). Below we see a 3-body merger but the COM motion is significantly
altered compared to the vacuum case:

3.6.1 Newtonian potential

We define ∆R as the initial distance between the BBH center of mass and the
position of the SMBH. For R " ∆a0 can assume to work in a near Newto-
nian environment and as such can simplify to a Newtonian potential with the
acceleration on the i’th body being.

aSMBH,i “ ´
µ

r2i
r̂i (16)

with µ “ GMSMBH. Since our implementation requires our 3 body system to
be in a stable orbit we also define the center of mass velocity to be:

vCOM,SMBH “

c

GMSMBH

R
(17)

Where R is the distance from the center of mass to the SMBH. This distance
is of interest to us as it will be the variable parameter when testing the SMBH
impact upon the 3 body merger probabilities. The distance will be done as a
multiple of the tidal disruption radius which we will now explore.
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3.6.2 Tidal Disruption and regions of gravitational dominance

In order to make sure we do not tear apart the 3 body system we must operate
at some scalar of the systems tidal disruption radius. Tidal disruption is the
phenomenon where a celestial body (e.g. a star) moves sufficiently close to a
SMBH to be pulled apart along the line towards the SMBH. For a body with
radius r3 and mass m3 “ 3 ¨ mBH orbiting a SMBH with mass M , the tidal
disruption radius is approximately given as:

RTidal Disruption « r3

ˆ

M

m3

˙1{3

(18)

in our case the mass of our body is the mass of the 3 body system and the
radius is set to be the distance from the COM to the singlet.

The Tidal disruption radius is, however, mainly useful for compact objects.
For our 3 body system we must bear in mind that as the system evolves the ob-
ject radius will vary. As such we need to understand the radius of gravitational
dominance of our 3-body system. For this we can use the Hill Sphere. Seeing
the 3-body system as an object with mass m3 “ 3 ¨ mBH located at the center
of mass of the system we can calculate the systems Hill Sphere. This is given
as:

rH « RSMBH
3

c

m3

3MSMBH
(19)

Where RSMBH “ n ¨ RTidal Disruption is the distance between our center of mass
and the SMBH given as the tidal disruption radius from before. From here it is
easy to give a formula for our radius of gravitational dominance as a function
of multiples of the Tidal disruption radius:

rH “ nr3
3

c

1

3
(20)

with r3 being the initial radius of the 3 body system set to 5 AU and n the
scalar of the distance.

3.6.3 SMBH probability derivation

It is obvious from the consideration of the Hill Radius that The evolution of the
3 body system can be divided into three ranges based on the distance to the
SMBH: For sufficiently small n we will have rH ă a meaning the entire system
is unstable as not even the initial binary will remain stable. We will not look
at this scale as it is expected that the merger probability should be close to 0.
For a ă rH ă 5 AU we have a semi stable setup where the binary is stable but
the singlet can be unbound from the beginning. For 5 AU ă rH ă 8 we have
the ”free” case in which our distribution should approach the vacuum solution
as the distance approaches infinity. These ”unstable”, ”near”, and ”far” regions
provide a good framework for looking at the probability functions.
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The Near region
The probability function of the Near Region should be dictated by the prob-
ability of the singlet to be shielded from the SMBH in its orientation as well
as the probability that any one object leaves the hill sphere orientated close to
the SMBH. We can see that the probability of our singlet being shielded from
the SMBH potential must be proportional to the area in the shadow of the 3
body hill sphere and it would make sense that this probability should go to 1
as rh Ñ r3. As such we know that this probability is the shadow area divided
by the r3 spheres area. Furthermore the probability that the singlet starts in
an orientation that is stable is proportional to the circumference of the 5 AU
circle we can draw from the center of the binary that is in the shadow of the
hill sphere. working on this intuition we can write:

PCircumference “
αr3
2πr3

“
α

2π
(21)

PArea “
AShadow

πr23
(22)

To find the area we need to specify what we mean by shadow. Drawing two
lines from the SMBH, which are tangent to the hill sphere we define the shadow
as the area of the hill sphere as well as all area between the two tangent lines
and the hill sphere. This is drawn on the figure below.

Figure 10: Schematic for the geometrical probability factors used to modify the SMBH prob-
ability function for the semi stable region.

This area can be divided into 2 sets of three parts: A section of the hill
sphere, a triangle and a section of the r3 sphere.

We can draw a triangle from the SMBH to the center of the hill sphere to the
point between the hill sphere and the tangent line. From this we can calculate
the angle of our hill section. We know that the angle of the tangent line and
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the distance from the SMBH to the hill sphere must be:

θ “ arcsin
rh

RSMBH
“ arcsin

ˆ

m3

3MSMBH

˙1{3

(23)

meaning our hill sphere angle must be π{2 ´ θ. We can thus write our section
area as:

A1 “
π{2 ´ θ

2π
πr2h “ arccos

«

ˆ

m

MSMBH

˙1{3
ff

pnr3q2

2 ¨ 32{3
(24)

Our second area consist of the tangent point to the far intersection of the tangent
line and the r3 sphere to the center of the hill sphere. For this we have the
hypotenuse which is r3 and one leg which is rh. The angle between these two
can be found as:

ϕ “ arccos
rh
R

“ arccosn
r3
R

ˆ

1

3

˙1{3

« 9.42 ¨ n2 (25)

From this we can use the right angle area formula to obtain:

A2 “
1

2
rhR sinϕ “

ˆ

1 ´
n2

32{3

˙1{2
nr23

2 ¨ 31{3
« 2.89

a

9 ´ 4.33n2n (26)

The area of the r3 sphere section is now relatively easy to calculate since we
know the angle must be the remainder of half a sphere subtracting the other
two angles:

λ “
π

2
` θ ´ ϕ “

π

2
` arcsin

ˆ

m3

3MSMBH

˙1{3

´ arccosn
r3
R

ˆ

1

3

˙1{3

(27)

And as before the area is given as:

A3 “
λ

2π
πR2 “

ˆ

arcsin

„

´ m

M

¯1{3
ȷ

` arcsin
” n

31{3

ı

˙

r23
2

(28)

« 19.69 ´ 12.5 arccosp0.69nq (29)

Along this we also need to calculate the arc length but that is easy as we just
found the angle λ which spans the required arc length. We have:

L “ 2λR “ 2

ˆ

arcsin

„

´ m

M

¯1{3
ȷ

` arcsin
” n

31{3

ı

˙

r3 (30)

Taking the sum of the areas gives us half the red area. Multiplying by 2 and
dividing by the area of the r3 sphere will then give us the probability that our
objects are in a safe configuration. The same goes for our circumference as it
simply needs to be divided by the circumference of the r3 sphere. For simplicity
we can expand the probability function around rh “ a which for our case means
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a tidal radius factor n “ 31{3. The expanded functions will be a lot easier to
deal with numerically as well as be accurate within the region of interest, as
probability function is expected to transition to the Far Region when rh Ñ r3.
Our probability functions thus reads:

PApnq « 0.0736n
a

9. ´ 4.3266n2 ` 0.2398n2 ` 0.0012 ` 0.3183 arcsin p0.6934nq

(31)

« 0.0012 ` 0.4412n ` 0.2411n2 ´ 0.0376n3 ` Opn4q (32)

PCpnq « 0.0012 ` 0.3183 ¨ arcsin p0.6934nq (33)

« 0.0012 ` 0.2212n ` 0.0020n2 ` 0.0212n3 ` Opn4q (34)

PApnq is the probability that during one semi ejection the singlet stays within
the region of gravitational dominance of the binary. PCpnq is the probability
that we start our simulation in an orientation that wont dislodge the singlet
instantly. It should be noted that PCpnq only goes to « 50% as rh Ñ r3. This
is simply due to the limitations of the geometric interpretation and will not
become a big problem.

Figure 11: The Near Region probabilities to stay within the shielded area (Blue) as well
as being initially oriented away from the SMBH (Red). Plotted here are also their
Taylor-expansions (Dashed).

The Far Region
For the far region we can make use of the 3-body energy distribution given by
[2]. For planar restricted 3-body interactions one can show that the distribution
of binary absolute energies are given as:

P p|EB |q “ 2
|E0|2

|EB |3
(35)
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From which we can derive the probability that the binary energy is larger than
some choice energy |Ec|:

pp|EB | ą |Ec|q “ 2|E0|2
ż 8

|Ec|

P p|EB |qd|EB | “

ˆ

|E0|

|Ec|

˙2

(36)

All that is left now is to determine this critical energy. Starting out with the
simple 3 body energy and isolating for the binary energy we have:

|EB | “ |E0 ´ ES | (37)

Suppose our system has undergone chaotic motion and settles into a temporary
state, with a binary and a singlet currently ejected with less energy than required
to escape the gravity well of the binary. This is our critical energy as it is at
this point that the addition of the SMBH could dislodge the singlet and end
the 3 body evolution. We know that the singlet is gravitationally bound to the
binary, with ES ă 0. We can write up the energy of the singlet as:

ES “
1

2
mv2s ´ G

2m2

rs
(38)

Since we want the singlet to be bound we know the velocity of our object must
be less than the escape velocity:

vs ď

d

G
4m2

rs
(39)

We also know that the absolute potential energy must be greater than the SMBH
potential:

G
2m2

rs
ě G

mM

R ´ rs
(40)

We can input both to obtain:

ES ď G
2m2

rs
´ G

mM

R ´ rs
“ Gm

ˆ

2m

rs
´

M

R ´ rs

˙

(41)

From here we chose to express the distance rs as some scalar multiple of the
SMBH distance rs “ k ¨ R which will be left as a free parameter for the time
being. Our energy equation becomes:

ES “
Gm

R

ˆ

2m

k
´

M

1 ´ k

˙

(42)

“
Gm

R

ˆ

2mp1 ´ kq

k ´ k2
´

Mk

k ´ k2

˙

(43)

“
Gm

R

ˆ

2m ´ kp2m ` Mq

k ´ k2

˙

(44)
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We can also impose that M " 2m. The probability that the 3-body system
survives one semi ejection thus becomes:

P “
1

ˆ

1 ` Gm
R

ˇ

ˇ

ˇ

ˇ

p2m´kMq

pk´k2qE0

ˇ

ˇ

ˇ

ˇ

˙2 (45)
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3.7 Numerical considerations

3.7.1 Initial conditions

For the 3 body system we can set up the binary in a stable circular orbit
around the origin with the path having some diameter a. We can set up the
initial condition of the third body by examining energy- and angular momentum
conservation at three different points:

Figure 12: Illustration of the theoretical setup for our intial conditions. The binary is placed
at the origin, while the relevant parameters of the singlet are obtained at three
different positions: At infinite distance, at the closest distance with the binary, and
the chosen distance for our simulations. The parameters of the latter is uniquely
determined by the parameters of those at infinity and of the closest distance.

The first point is at infinite distance r8, where the gravitational energy of
the binary can be neglected. Here we assume a linear path for the third body
parallel to the x-axis at some offset b8. The assumption here is that if the
binary is kept stable, the third body will trace out a hyperbolic path with focus
at the origin, passing the x axis at some distance. At infinity we can write up
the equation of energy and angular momentum as:

E8 “
1

2
mv28 (46)

L8 “ mpr8 ˆ v8q “ mb8v8 (47)

Here we have used that the velocity is parallel to the x-axis to simplify the
angular momentum.

The intersection with the x-axis is our second point of interest. At this point
the third body will have the greatest velocity vmax and be at a distance to the
origin rmax. As before we write the energy and angular momentum equations
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to obtain:

Emax “
1

2
mv2max ´ G

mM

rmax
(48)

Lmax “ mprmax ˆ vmaxq “ mrmaxvmax (49)

We have again used that the velocity vector and position vector here are per-
pendicular to each other, simplifying the cross product.

The third point of interest is that from which the simulation will be initiated.
This point is chosen somewhat arbitrarily, and will be fixed later. For now we
denote the distance from the origin rsimulation and the velocity vsimulation. As
before we write the energy and angular momentum equation:

Esimulation “
1

2
mv2simulation ´ G

mM

rsimulation
(50)

Lsimulation “ mprsimulation ˆ vsimulationq “ mbsimulationvsimulation (51)

Here we have simplified the angular momentum by rotating the coordinate sys-
tem around the origin, such that our velocity vector is parallel to the new x-axis
x1.

All that is left is to use these to find the coordinates of the third body
at the start of our simulation. We set the distance to the origin to be some
scalar of the semi-major axis of the binary rsimulation “ K ¨ a and the vector
to be rsimulation “ x ¨ î1 ` bsimulation ¨ ĵ1. By conservation of energy and angular
momentum we can express our y1-component as:

bsimulation “
b8

b

1 ` 2GM
v2

8rsimulation

(52)

Where b8 “ rmax

b

1 ` 2Gm
v2

8rmax
. We can now find the x1-component of our initial

distance:

x “
a

pK ¨ aq2 ´ pbsimulationq2 (53)

all that is left from here is to fix the velocity vsimulation. In our rotated coor-
dinate system, this vector is parallel to the x1 axis and as such we can write:
vsimulation “ ´vsimulation̂i

1. We can fix the speed by using conservation of angu-
lar momentum to find:

vsimulation “ v8

b8

bsimulation
“ v8

d

1 `
2GM

v28rsimulation
(54)

As can be seen, this is not dependant upon the impact parameter at infinity
b8. We intend to randomly vary b8 in the interval t´b8, b8u and if our initial
velocity was sufficiently high there would be a lot of missed CI’s as the impact
parameter approached 0. This is, however, not a major concern here as we have
chosen our velocity such that v8 ! vbinary.
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3.7.2 Termination conditions

In order to end the simulation it is necessary to determine weather the BHs will
merge or not. In order to see if any two objects have merged, we define a new
SMA amerge, such that amerge “ a0{k ă a0 with k being chosen qualitatively.
If two objects are bound in an orbit with a SMA a ď amerge the objects are
deemed to be so tightly bound that they will merge no matter the path of the
third object. To find the SMA of any binary orbit, we use the specific orbital
energy equation:

Ebinary “ ´
µ

2a
(55)

a “ ´
µ

2Ebinary
(56)

with µ “ GM . The criteria thus reads:

a ď
a0
k

(57)

EBinary ě ´
µk

2a0
(58)

This will be our 3 Body merger criteria
This is, however, not the only outcome. The result can also produce a new

binary with SMA a ą amerger and a single object, unbounded from the binary
and its constituents. As such we are want to determine the singlet for which
asinglet ă 0 for all other objects. We can calculate these for the two binary
constituents and for their center of mass. In order to make sure the singlet is
truly unbound, we also impose that it must be further away from the binary
than the initial singlet started rsinglet ą K ¨ a from our initial condition. Once
we have ascertained that we have a new binary singlet state, we can use the
formula for the merger time to determine if we will obtain a 2 body merger
within the an interaction time as described earlier. We also include in our break
condition one that does not allow for two objects to come arbitrarily close to one
another. This is to prevent un-physical behaviour as our 2.5PN approximation
will break down for small enough distances between our objects. As such we
define the minimum distance as some multiple of the Schwarzschild radius:

rmin ” Krsch “
2KGM

c2
(59)

This will be counted as a 3 body merger but turns out to be a very rare case.
As such the overall 3 body code will be executed As shown in figure (13):
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Figure 13: The overall flowchart. The individual criteria (Schwarshield merger, 2-body
merger, 3-body merger) are functions with multiple criteria to be satisfied in or-
der to return a positive result. The simulation itself does not execute these steps
explicitly, as the numpy.solve ivp() function can evaluate the time step and the
criteria on its own through events.
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4 Result

There are a number of choices that needs to be made for our simulation, which
dictates initial setup and termination criteria. These criteria have been chosen
based on qualitative analysis of choice simulations. As such the numerical re-
sults are subject to fluctuations dependent on the choices. For the rest of this
document we will operate with the following choices.

• The scalar used to quantify the singlet initial radius in terms of the SMA
is 5

• The scalar used to determine the cut-off for gravitational merger in terms
of the the Schwarzschild radius is 10

• The scalar used to determine the cutoff for our conventional 3-body merger
is 1

10

• The number of temporary states has been qualitatively found to be 15.

At this point it also becomes necessary to express the initial energy of the
3-body system E0. This is given as:

E0 “
1

2
mv2s ´ G

2m2

rs
`

1

2

m

2
v2b ´ G

m2

rb
(60)

recalling our expression of the initial singlet energy as well as the speed of the
binary we have:

E0 “
1

2
m

ˆ

v28 `
2G2m

rs

˙

´ G
2m2

rs
`

1

2

m

2

2Gm

rb
´ G

m2

rb
(61)

“
1

2
mv28 ´

1

2

Gm2

rb
(62)

4.1 Simulations

In order to verify the validity of the simulated results we started by testing cases
for which we know the results. The results we obtained, while not completely in
agreement with the established result, have proven sufficiently accurate within
the range of interest.

4.1.1 2-Body simulations

We start by analysing 2 body motion and weather we see inspiral for circular
orbits as well as circularisation for high eccentricity orbits. In order to verify
this behaviour we utilise the vis-viva energy equation:

ϵ “
v2

2
´

µ

r
“ ´

1

2

µ2

h2
p1 ´ e2q “ ´

µ

2a
(63)
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to express the initial relative speed of our binary at variable eccentricities. We
obtain:

vpt “ 0q “

c

µ

r
p1 ´ eq (64)

Where µ “ GM and for initial conditions rpt “ 0q “ a. From the same equation
we can extract the eccentricity:

e “

d

1 `
2ϵh2

µ2
(65)

Where h “ |v ˆ r|. The semi-major axis is found to be:

a “ ´
µ

2ϵ
(66)

From earlier we have the theoretical framework for how the semi-major axis
and eccentricity should evolve as a function of time.

As the 2 body system is deterministic, this simulation will not need a large
sample size, and as such, figure (14) will provide an example of the inspiral as
well as the semi-major axis obtained in relation to the theoretical behaviour.

Figure 14: Inspiral for circular binary black hole. Left: The motion of one of the black hole
during inspiral, note the dotted line at the center as we cross the Schwarshield at
which point the behaviour of the inspiral becomes non-physical. Right: The SMA
plotted as a function of time with the theoretical behaviour plotted in dotted orange.
The red dotted line at the bottom is the Schwarshield radius.

As can be seen we have general agreement between theoretical and numerical
result. Note here that we have chosen a sufficiently small initial distance a0
such that inspiral occurs within just a few orbital periods. Furthermore, the

37



simulation also breaks down for sufficiently small distances ∆r ă rsch, which
can be seen by the non-physical behaviour marked in dotted line at the end
of the inspiral. This will, however, not become a problem as our termination
criteria are set well before such behaviour should occur.

For the high eccentricity limit e « 1 we have that the separation distance
becomes rather important in order to obtain the theoretical behaviour. Fur-
thermore there is a tendency for the simulation to exhibit quite un-physical
behaviour as the inspiral circularises the orbit. As can be seen below there
comes a point where the orbit seems to rapidly eccentrify again while the SMA
keeps shrinking. This is a problem that has not been rectified for the rest of the
project but could prove a source for errors. It will however not be a problem
for the initial setup of our orbits as the binary will be circular. We can also see
that the simulated eccentricity oscillates while following the rough theoretical
path. These oscillations seem to increase as the orbit circularises and has been
attested to in [3]

Figure 15: Inspiral for highly eccentric black hole binary. Left: The movement of one of
the black holes during inspiral. Due to the number of orbits needed for inspiral and
circularisation regions have been plotted in red to show the progress for a few orbits
and to note the gradual inspiral and circularisation experienced by the black hole.
Right: The SMA plotted as a funtion of eccentricity with the theoretical distribution
plotted as the orange dotted line. Note the initial adherance to the theoretical
behaviour until about e “ 0.4 where the simulation starts to diverged, but around
e “ 0 the simulation rapidly returns to the theory. The oscillation around e “ 0 is
the result of the limitations of the integration scheme. It can also be seen that at
SMA “ 10´5 AU the eccentricity seems to slowly rise again. This was a problem I
was not able to explain but it did not seem to skew the results in the end.

4.1.2 3-Body simulations

For the 3-body system, we utilise the solve.ivp() function to evaluate the ter-
mination criterion through events. These are conditions set up so that when the
condition value changes parity, the event is recorded and the code terminates.
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As such our termination criterion has to be formulated as step-functions and
for those with multiple parameters reaching certain values, their step-function
transforms has to be summed. Below are the the events as written in the code:

def relativePVfunction(Yin_arr):

Yin_nrobj_posvel = np.reshape(Yin_arr ,(nr_obj ,6))

pos_ij = np.zeros([nr_obj ,3]) # Setup the array for

position difference ij

vel_ij = np.zeros([nr_obj ,3]) # Setup the array for

velocity difference ij

r_ij = np.zeros([1,nr_obj]) # Setup the array for distance

ij

v_ij = np.zeros([1,nr_obj]) # Setup the array for speed

difference ij

for i in range(nr_obj):

j0 = np.mod(i,nr_obj)

j1 = np.mod(i+1,nr_obj)

j2 = np.mod(i+2,nr_obj)

pos_ij[j0,:] = Yin_nrobj_posvel[j1,:3]-Yin_nrobj_posvel

[j2 ,:3] # computing

the relative position

using numpys modular

function to avoid

repeats

vel_ij[j0,:] = Yin_nrobj_posvel[j1,3:]-Yin_nrobj_posvel

[j2 ,3:] # computing

the relative velocity

using numpys modular

function to avoid

repeats

r_ij = np.sqrt(np.sum(pos_ij **2,axis = 1)) # calculating the

distance

v_ij = np.sqrt(np.sum(vel_ij **2,axis = 1)) # calculating the

speed difference

return pos_ij , vel_ij , r_ij , v_ij

def SchwarzschildMerger(t,Yin_arr): # input are time , position

and velocity

__,__,r_ij ,__ = relativePVfunction(Yin_arr) #calling the PV

function to obtain the

distance

return r_ij.min() - 10*PN_gamma*2*M #return the difference

between the smallest

distance and the scaled

Schwarzschild radius

Note that the relativePVfunction() function will be used for the other events
as well but will not be explicitly written.
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def Ejection(t,Yin_arr): # input are time , position and

velocity

pos_ij ,vel_ij ,r_ij ,v_ij = relativePVfunction(Yin_arr) #

calling the PV function

to obtain all desired

values

pos_com = np.zeros([nr_obj ,3])

vel_com = np.zeros([nr_obj ,3])

r_com = np.zeros(nr_obj)

v_com = np.zeros(nr_obj)

# The loop below calculates the COM

#relative speed and distance of each binary

#in relation to the third object for

#each of the three configurations of binary and singlet

for i in range(nr_obj):

j1 = np.mod(i+1,nr_obj)

j2 = np.mod(i+2,nr_obj)

pos_com = 0.5 *(pos_ij[j1,:]+pos_ij[j2,:])

r_com[i] = np.sqrt(np.sum(pos_com **2, axis = 0))

vel_com = 0.5 *(vel_ij[j1,:]+vel_ij[j2,:])

v_com[i] = np.sqrt(np.sum(vel_com **2,axis = 0))

# The COM energy and SMA is calculated relative to the

singlet

E_com = 1/2 * v_com **2 - 3*M/r_com

sma_com = -3*M/(2*E_com)

r_mask = (r_com == max(r_com)) # The greatest distance

between binary and

singlet is found

# Below the criterion for the separation of the binary

# and the singlet is greater than 10 the initial distance

#between singlet and binary as well as the singlet being

#unbound gravitationally from the singlet

r_value = np.heaviside(10*scalefactor*SMA_bin-r_com[r_mask]

,0)

a_value = np.heaviside(sma_com[r_mask],0)

return a_value + r_value

The 2-Body merger criterion will only be checked for once an ejection has oc-
curred and as such it is not an event in and of itself.
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def BodyMerger2(Result ,Yin_arr):

if (Result == 3): # 3 is the tag given to ejection cases

pos_ij ,vel_ij ,r_ij ,v_ij = relativePVfunction(Yin_arr[:,

-1]) # Calling the PV

function

com_arg = np.where(r_ij == r_ij.min()) #find the

closest pair

# Below we calculate the merger time of the bound

binary post ejection

eps = v_ij[com_arg]** 2/2 - mass_binary/r_ij[com_arg]

h = vel_ij[com_arg ,0]*pos_ij[com_arg ,1]-vel_ij[com_arg ,

1]*pos_ij[com_arg ,0]

e = np.sqrt(1+(2*eps*(h **2))/(mass_binary ** 2))

a = -mass_binary/(2*eps)

merger_time = 5/512 * (a** 4)/((0.5*mass_binary)**3) * (

1-(e**2))**(7/2)

# The cutoff merger time is converted to code units

T_GW = (c_SI ** 5/G_new_SI **3 * AU_SI **4 / M_sun_SI ** 3)/(

sec_year) *

merger_time

# Checking weather the merger time is less than the

cutoff merger time

if (T_GW < 10 **5):

return Result+1 # 2-Body mergers are tagged as 4

else:

return Result

else:

return Result

def BodyMerger3(t,Yin_arr):

__,__,r_ij ,v_ij = relativePVfunction(Yin_arr) # Calling the

PV function

E_ij = 1/2 * v_ij **2 - m_bin/r_ij # Calculating the

specific energy of each

binary

sma_ij = -m_bin/(2*E_ij) # Calculating the SMA of each

binary

r_mask = (r_ij == min(r_ij)) #find the two BHs closest to

each other

# The value below is to make sure the binary is in fact

bound as the value will

be >0 for an unbound pair

sma_min = np.heaviside(-sma_ij[r_mask],0)

# The value below is to check if the SMA is smaller than

the desired SMA

sma_max = np.heaviside(sma_ij[r_mask]-SMA_bin/10,0)

# The conditions are added together and if both are true

the returned value is 0

return sma_min + sma_max

To not skew our results, we furthermore made sure to rotate the binary by
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some uniform random rotation. From this we ran 10000 simulations for each
chosen semi major axis. The result of this can be seen below:

Figure 16: Merger probabilities for 3- and 2-body mergers at different initial SMA. Note the
asymptotic behaviour of the 3-body merger as it approaches the theoretical distri-
bution. The explanation for this is twofold and caused by prompt ejections of the
singlet which is not accounted for theoretically as well as the assumption that the
probability can be written as a sum of individual interactions. The 2-body merger
diverges for sufficiently high SMA, which is most likely due to the low amount of
2-body mergers at that scale, leading to a high spread. While not included here,
earlier simulations performed during this project does show a spread, yet general
adherance to the theoretical distributions.

As can be seen from the distribution, we have certain incongruities: The 3-
body merger probability only approaches the theoretical distribution for a ą 102

AU. This is not unexpected and has at least two explanations: In order for the
3-body merger to occur it becomes necessary to enter a resonant state where
the singlet is not promptly ejected, which for smaller a becomes less likely.
Secondly when the theoretical distribution was derived we made the assumption
that it could be written out as a sum of uncorrelated merger probabilities. This
assumption of independence does, however, break down for small a when p3
approaches unity. The 2-body merger distribution seems to have a divergent
behaviour for a ă 10 AU. This is very likely due to the low amount of captures
expected at large SMA. The statistical uncertainty will naturally grow as the
merger probability falls. This has also been observed throughout the project as
earlier merger probabilities have been derived which had much higher simulated
2 merger probabilities for large SMA.

Having verified the general behaviour of the 2- and 3-body system is in
accordance with expected theoretical results, we can move on to the 3 body
interactions generally.
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4.1.3 SMBH integration

For the SMBH implementation we added a 109 solar mass black hole and posi-
tioned the 3-body system at some scalar distance of the tidal radius. We orient
the 3-body system by some uniformly random rotation relative to the SMBH.
The termination criterion are the same as before. Running 10000 simulations
for different tidal radii we obtain the following distribution.

Figure 17: Probability distribution for mergers as a function of SMBH separation in terms
of tidal radii. The yellow zone is the near region while to the right is the far region
and the left, the completely unstable region. We see that for the 3-body merger we
see that when we enter the near region the result starts to deviate from the far region
distribution and starts to follow the near region distribution as expected. For the
2-body merger we see that it follows the far region through almost the entire near
region and only at rhill « a we see that it approaches the near region distribution.
The reason for this is because the near region distribution was made for multiple semi
ejections but for the 2-body merger that need not be the case. A single interaction
between the binary and the singlet before ejection could disturb the binary to the
point of inspiral within the cut-off time.

As can be seen we have a general agreement with the theoretical distribution
for tidal scalars n ą 1 as would be expected. The reason our distributions veer
off for smaller n is most likely due to the indifference to rotation of the 3-body
system. At this scale our geometric distributions should take over, which it
does for the 3-body merger rate, but not for the 2-body case. Here we see an
adherence to the other distribution for a much longer time. The explanation
for this is that while the 3-body merger rate depends on the singlet interacting
with the binary, the 2-body need not be so dependent. Here a single interaction
before ejection could be enough to let the inspiral happen within an interaction
time. As such we only see the divergence when the hill radius rHill « a. It
is also important to note that for this distribution the fitting parameter k has
been found to bek « 105. This does have some unfortunate implications as we
defined rs “ k ¨ R and would make the binary distance much greater than the

43



SMBH distance. This indicates that the assumption made on how to relate rs
and R is faulty. This implies that another assumption might be needed instead,
as the resulting distributions seem to follow the data remarkably well otherwise.

From fig. (18) below we can see that while the ejections criterion in the code,
shown in the COM does not always appear to be justified, as it appears they
could still re-merge, the SMBH frame makes their departure evident.

Figure 18: The ejection of a singlet from 3-body interactions in the presence of a SMBH.
The SMBH is at a distance of 2 tidal radiis and the SMA is 1 AU. Note the binary
and singlet are at a clear distance compared to the binary’s internal distance.

Below can be seen the impact of the SMBH on a particular 3-body system.
The rotation between the singlet and binary is kept constant and the impact
parameter is scaled similarly for each of the different simulations. Each row
shows a different distance from the SMBH to the 3-body system with row one
being the vacuum case at infinite distance to the SMBH while the second to sixth
row get progressively closer to the SMBH, in terms of tidal radii. The columns
represent different binary SMA. For the SMBH simulations the rotation of the
3-body system is such that the singlet is on the far side of the binary. The result
of each simulation is shown in the title of each plot. As can be seen we see a
lot more ejections as we move closer to the SMBH and when the SMA becomes
larger. This is consistent with our distributions and theoretical framework.
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Figure 19: Comparison between 3-body interaction. Each row is a different separation to
the SMBH with the top being the Vacuum 3-body system, second row being at 2000
tidal radii, third row being 200, fourth being 20, fifth being 2, and sixth being 0.2
tidal radii. Each column is a different SMA: First column is 0.005 AU, second being
0.05, third being 0.5, and fourth being 5 AU. The scale of each plot is in AU as well
and the extend of each is shown in the bottom. The result of each simulation is
shown in the title. 45



5 Discussion

While the results presented so far are promising, they obviously diverge from
the analytical solutions in different aspects. In this section we will go through
these inconsistencies and try to analyse their impact on the final result and the
validity of any conclusions drawn from this.

The 2-body simulation showed a discrepancy between the theoretical high
eccentricity behaviour and the numerical behaviour. As explained, this is not
fully understood but might be a facet of the numerical choices made in the sim-
ulation. As the numerical solution seemed to show the circularisation through
inspiral to a point, this was generally deemed sufficiently accurate to proceed,
but the cause has not been determined at time of writing.

There is a number of different aspects of the termination criteria choices that
could be improved upon. The choices made where based on qualitative trial
and error as well as a priori assumptions. The choices of these could be refined
and their cut-off values could be chosen through a more rigorous parameter
optimisation. This, however does not seem to be the biggest detractor from the
general validity of the results, since the effects of the choices only seemed to
have affected the 2-body merger in the original 3-body simulations. The impact
seem to have been that only 1{3 of the expected 2-body mergers seem to have
occurred while the trajectory of the probability as a function of SMA seem to
have been accurate.
The assumption of uniform rotation of the 3-body system with respect to the
SMBH is of course problematic when the SMBH separation becomes sufficiently
small. When R ! r3 constraints should be put on the 3-body rotational angle
as it would not be possible for a singlet to approach from certain angles. This,
however has already largely been accounted for by the geometric probability
factor.
The termination criterion for the SMBH are the same as before, which could
pose a problem with a singlet ejected, which under normal circumstances would
never return, being able to intercept the new binary at some later point due
to still orbiting the SMBH. This assumes, however, that only our three bodies
orbit the SMBH. In Practice due to the real environment of an AGN, the time
it would take these objects to meet again is much greater than the relaxation
time of the AGN objects. As such, when they meet again they will not retain
any information of their previous encounter.

6 Conclusion

In this thesis we set out to analyse the possibility of active galactic nuclei as
producers of black hole mergers as posited by Samsing and D’Orazio [8]. This,
we did by focusing on stable binaries, with separation distances to great for
gravitational inspiral within a Hubble time, disturbed by close interaction with
a third single black hole. First we verified, through simulations, the possibility
of such a 3-body system to be a probable source, with numerical results match-
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ing the theoretical probability distributions, with some restrictions. From here
we showed that introducing the environment of a SMBH at some separation
distance R to the 3-body system, did affect the probability but did so only
for sufficiently small R. For distances resulting in stable 3-body initial setup
(rHill Á r3) the simulation seemed to confirm the theoretical distribution, and
reducing to the simple 3-body system for large separations (R Ñ 8).

This is of course only a simplified model and as such a lot of further mechan-
ics needs to be implemented to verify the validity in the future. One notable
simplification is the absence of an accretion disk which would provide some elec-
trohydrodynamic component to the final probability distribution.

While there are many aspects of the results in this thesis which need further
investigation and optimisation, the results seem to support AGN as a factory
for black hole mergers.
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A Code

Below is the entire code used in the simulations. Note that it output the outcome
of the 3-body interactions as a value between 0 and 4 as well as the time and
position and velocity of the 3 black holes. The simulations are made with the
solve.ivp() function. Earlier odeint() was due to issues when the SMBH
was implemented the numerical solver was updated.

from matplotlib import pyplot as plt

import numpy as np

from scipy.integrate import odeint , solve_ivp

import datetime as dat

import os

from tqdm import trange

# from matplotlib .gridspec import GridSpec

# from body_merger import*

#Units and conversions :

#code units: Rsun , Msun , G=1, ...

c_SI = 299792458.0

#m/s

M_sun_SI = 1.989*(10.** 30.)

#kg

R_sun_SI = 695800000.

#m

AU_SI = 149597871000.

#m

G_new_SI = 6.67*(10.** (-11.))

#Nm2/kg -2

T_SI = np.sqrt(AU_SI **3/(G_new_SI*M_sun_SI))

#Period time in SI units

AU_U = AU_SI/R_sun_SI

#from dist AU to code units (U)

kmsec_U = 1000./np.sqrt(G_new_SI*M_sun_SI/R_sun_SI)

#from vel

km/sec to code units (U)

sec_year = 31536000.

m_parsec = 3.086*(10 ** 16.)

#m

PN_gamma = 9.86719698246e-09

#G_new_SI*M_sun_SI /( AU_SI*c_SI **2
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) useful for swarschild radius

#Functions:

def relativePVfunction(Yin_arr):

Yin_nrobj_posvel = np.reshape(Yin_arr ,(nr_obj ,6))

pos_ij = np.zeros([nr_obj ,3]) # Setup the array for

position difference ij

vel_ij = np.zeros([nr_obj ,3]) # Setup the array for

velocity difference ij

r_ij = np.zeros([1,nr_obj]) # Setup the array for distance

ij

v_ij = np.zeros([1,nr_obj]) # Setup the array for speed

difference ij

for i in range(nr_obj):

j0 = np.mod(i,nr_obj)

j1 = np.mod(i+1,nr_obj)

j2 = np.mod(i+2,nr_obj)

pos_ij[j0,:] = Yin_nrobj_posvel[j1,:3]-Yin_nrobj_posvel

[j2 ,:3] # computing

the relative position

using numpys modular

function to avoid

repeats

vel_ij[j0,:] = Yin_nrobj_posvel[j1,3:]-Yin_nrobj_posvel

[j2 ,3:] # computing

the relative velocity

using numpys modular

function to avoid

repeats

r_ij = np.sqrt(np.sum(pos_ij **2,axis = 1)) # calculating the

distance

v_ij = np.sqrt(np.sum(vel_ij **2,axis = 1)) # calculating the

speed difference

return pos_ij , vel_ij , r_ij , v_ij

def merger(RVA_param):

r_ij = RVA_param[2]

v_ij = RVA_param[3]

E_ij = 1/2 * v_ij **2 - m_bin/r_ij

asma_ij = -m_bin/(2*E_ij)

return (asma_ij), (E_ij)

def func_v_esc(RVA_param):

pos_ij = RVA_param[0]

vel_ij = RVA_param[1]

r_ij = RVA_param[2]
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pos_com = np.zeros([nr_obj ,3])

vel_com = np.zeros([nr_obj ,3])

vel_com_align = np.zeros((1,nr_obj),dtype = ’d’)

vel_align = np.zeros((1,nr_obj),dtype = ’d’)

for i in range(nr_obj):

pos_com[np.mod(i,nr_obj),:] = 0.5*(pos_ij[np.mod(i+1,nr_obj

),:]-pos_ij[np.mod(i+2,

nr_obj),:])

vel_com[np.mod(i,nr_obj),:] = 0.5*(vel_ij[np.mod(i+1,nr_obj

),:]-vel_ij[np.mod(i+2,

nr_obj),:])

vel_com_align = np.sum(vel_ij*pos_ij ,axis = 1)/r_ij

v_esc_com = np.sqrt(2*m_bin/r_ij)

r_com = np.sqrt(np.sum(pos_com **2,axis = 1))

v_esc = np.sqrt(6*M/r_com)

vel_align = np.sum(vel_com*pos_com ,axis = 1)/r_com

v_norm_esc = vel_align/v_esc

v_norm_com_esc = vel_com_align/v_esc_com

return abs(v_norm_esc), abs(v_norm_com_esc), r_com

def merger_time(RVA ,m_bin ,argument):

pos = RVA[0]

vel = RVA[1]

r = RVA[2]

v = RVA[3]

# print(pos ,vel ,r,v)

eps = v[argument] **2/2 - m_bin/r[argument]

h = vel[argument ,0]*pos[argument ,1]-vel[argument ,1]*pos[

argument ,0]

e = np.sqrt(1+(2*eps*(h **2))/(m_bin ** 2))

a = -m_bin/(2*eps)

return 5/512 * (a **4)/((0.5*m_bin)** 3) * (1-(e **2)) **(7/2)

def rot(x,t):

y = np.zeros(len(x))

R = np.array([[np.cos(t),np.sin(t),0],[-np.sin(t),np.cos(t),0],

[0,0,1]])

y = x.dot(R)

return y

def func_dt(RVA_param): #incl masses later on

#reshape:

dt_fac = 1e10
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dt_min = 0

pos_ij = RVA_param[0]

r_ij = RVA_param[2]

v_ij = RVA_param[3]

a_ij = np.sqrt(np.sum (((M/(r_ij.reshape(nr_obj ,1)** 2.))*(pos_ij

/r_ij.reshape(nr_obj ,1)))**2,

axis = 1))

dt_rvra = np.append(r_ij/v_ij , np.sqrt(r_ij/a_ij))

# print(dt_rvra)

min_dt_rvra = min(dt_rvra)

if (min_dt_rvra<=dt_fac):

dt_fac = min_dt_rvra

# print(dt_fac)

if (min_dt_rvra <= dt_min):

dt_fac = dt_min

# print(’this should work yes?’,dt_fac)

return dt_fac

def Init_condition(SMA ,m0,Y0):

#Set b1 and b2 up in a CIRCULAR binary with COM in (0,0,0):

theta = np.random.uniform(0,2*np.pi)

v_redmass = np.sqrt(m_bin/SMA)

if (ROT_bool== True):

b1_posxyz_binCM = rot(np.array([ (m0[1]/m_bin)*SMA ,0,0]

,dtype=object),theta)

b2_posxyz_binCM = rot(np.array([-(m0[0]/m_bin)*SMA ,0,0]

,dtype=object),theta)

b1_velxyz_binCM = rot(np.array([0, (m0[1]/m_bin)*

v_redmass ,0],dtype=object

),theta)

b2_velxyz_binCM = rot(np.array([0,-(m0[0]/m_bin)*

v_redmass ,0],dtype=object

),theta)

else:

b1_posxyz_binCM = np.array([ (m0[1]/m_bin)*SMA ,0,0],

dtype=object)

b2_posxyz_binCM = np.array([-(m0[0]/m_bin)*SMA ,0,0],

dtype=object)

b1_velxyz_binCM = np.array([0, (m0[1]/m_bin)*v_redmass ,

0],dtype=object)

b2_velxyz_binCM = np.array([0,-(m0[0]/m_bin)*v_redmass ,

0],dtype=object)

r_max = SMA

b_theoretical = r_max*np.sqrt(1+2*m_bin/(v_inf **2 * r_max))

b_inf = b_theoretical*np.random.uniform(-1,1)

r_sim = scalefactor*SMA

b_sim = b_inf/np.sqrt(1+2*m_bin/(v_inf **2 *
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r_sim))

v_sim = v_inf*b_inf/b_sim

r_x = np.sqrt(r_sim ** 2-b_sim ** 2)

#IC for b3:

if (nr_obj == 3):

b3_posxyz_binCM = np.array([r_x ,b_sim ,0],dtype=object)

b3_velxyz_binCM = np.array([-v_sim ,0,0],dtype=object)

if(SMBH_bool== True):

b1_posxyz_binCM = b1_posxyz_binCM + r_tidal

b2_posxyz_binCM = b2_posxyz_binCM + r_tidal

if (nr_obj == 3):

b3_posxyz_binCM = b3_posxyz_binCM + r_tidal

b1_velxyz_binCM = b1_velxyz_binCM + v_tidal

b2_velxyz_binCM = b2_velxyz_binCM + v_tidal

if (nr_obj == 3):

b3_velxyz_binCM = b3_velxyz_binCM + v_tidal

Y0[0*6:0*6 + 6] = np.append(b1_posxyz_binCM ,

b1_velxyz_binCM)

Y0[1*6:1*6 + 6] = np.append(b2_posxyz_binCM ,

b2_velxyz_binCM)

if (nr_obj == 3):

Y0[2*6:2*6 + 6] = np.append(b3_posxyz_binCM ,

b3_velxyz_binCM)

return Y0

def func_NBODY_Ydot(t, Yin_arr): #incl masses later on

#reshape:

Yin_nrobj_posvel = np.reshape(Yin_arr ,(nr_obj ,6))

#define:

Ydot_nrobj_posvel = np.zeros((nr_obj ,6), dtype=’d’)

for i in range(0,nr_obj):

a_ij_tot = np.array([0,0,0])

pos_i = Yin_nrobj_posvel[i,0:3]

vel_i = Yin_nrobj_posvel[i,3:6]

for j in range(0,nr_obj):

if (i != j):

mi = m0_arr[i] #

mj = m0_arr[j] #

pos_j = Yin_nrobj_posvel[j,0:3]

vel_j = Yin_nrobj_posvel[j,3:6]

pos_ij = pos_j - pos_i

vel_ij = vel_j - vel_i

#print np.sqrt(np.sum(pos_ij [:]**2.)), i,j

r_ij = np.sqrt(np.sum(pos_ij ** 2.))

v_ij = np.sqrt(np.sum(vel_ij ** 2.))

#Newtonian acc:

acc_ij = (mj/(r_ij ** 2.))*(pos_ij/r_ij)

#2.5PN acc:
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n_ij = pos_ij/r_ij

n_dot_vi = np.dot(n_ij ,vel_i) #

n_dot_vj = np.dot(n_ij ,vel_j) #

a25_ij = -(PN_gamma ** (5./2.))*(4./5.)*(mi*mj/(

r_ij **3))*(vel_ij

*(-(v_ij **2.) + 2

.*(mi/r_ij) - 8.*

(mj/r_ij)) + n_ij

*(n_dot_vi-

n_dot_vj)*(3.*(

v_ij **2.) - 6.*(

mi/r_ij) + (52./3

.)*(mj/r_ij)))

#total acc:

a_ij_tot = a_ij_tot + acc_ij + a25_ij

# print(np.dot(-pos_i ,a_ij_tot))

if(SMBH_bool == True):

pos_jSMBH = pos_SMBH-Yin_nrobj_posvel[i,0:3]

r_jSMBH = np.sqrt(np.sum(pos_jSMBH **2.))

a_jSMBH = (M_SMBH/(r_jSMBH ** 2))*(pos_jSMBH/r_jSMBH)

a_i_tot = a_ij_tot + a_jSMBH

else:

a_i_tot = a_ij_tot

Ydot_nrobj_posvel[i,0:3] = np.ravel(vel_i)

Ydot_nrobj_posvel[i,3:6] = np.ravel(a_i_tot)

Yout_arr = np.ravel(Ydot_nrobj_posvel)

return Yout_arr

def SchwarzschildMerger(t,Yin_arr): # input are time , position and

velocity

__,__,r_ij ,__ = relativePVfunction(Yin_arr) #calling the PV

function to obtain the

distance

return r_ij.min() - 10*PN_gamma*2*M #return the difference

between the smallest

distance and the scaled

Schwarzschild radius

def BodyMerger3(t,Yin_arr):

__,__,r_ij ,v_ij = relativePVfunction(Yin_arr) # Calling the

PV function

E_ij = 1/2 * v_ij **2 - m_bin/r_ij # Calculating the

specific energy of each
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binary

sma_ij = -m_bin/(2*E_ij) # Calculating the SMA of each

binary

r_mask = (r_ij == min(r_ij)) #find the two BHs closest to

each other

# The value below is to make sure the binary is in fact

bound as the value will

be >0 for an unbound pair

sma_min = np.heaviside(-sma_ij[r_mask],0)

# The value below is to check if the SMA is smaller than

the desired SMA

sma_max = np.heaviside(sma_ij[r_mask]-SMA_bin/10,0)

# The conditions are added together and if both are true

the returned value is 0

return sma_min + sma_max

def Ejection(t,Yin_arr): # input are time , position and velocity

pos_ij ,vel_ij ,r_ij ,v_ij = relativePVfunction(Yin_arr) #

calling the PV function

to obtain all desired

values

pos_com = np.zeros([nr_obj ,3])

vel_com = np.zeros([nr_obj ,3])

r_com = np.zeros(nr_obj)

v_com = np.zeros(nr_obj)

# The loop below calculates the COM

#relative speed and distance of each binary

#in relation to the third object for

#each of the three configurations of binary and singlet

for i in range(nr_obj):

j1 = np.mod(i+1,nr_obj)

j2 = np.mod(i+2,nr_obj)

pos_com = 0.5 *(pos_ij[j1,:]+pos_ij[j2,:])

r_com[i] = np.sqrt(np.sum(pos_com **2, axis = 0))

vel_com = 0.5 *(vel_ij[j1,:]+vel_ij[j2,:])

v_com[i] = np.sqrt(np.sum(vel_com **2,axis = 0))

# The COM energy and SMA is calculated relative to the

singlet

E_com = 1/2 * v_com **2 - 3*M/r_com

sma_com = -3*M/(2*E_com)

r_mask = (r_com == max(r_com)) # The greatest distance

between binary and

singlet is found

# Below the criterion for the separation of the binary

# and the singlet is greater than 10 the initial distance
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#between singlet and binary as well as the singlet being

#unbound gravitationally from the singlet

r_value = np.heaviside(10*scalefactor*SMA_bin-r_com[r_mask]

,0)

a_value = np.heaviside(sma_com[r_mask],0)

return a_value + r_value

def Ejectiona(t,Yin_arr):

RVA_parameter = relativePVfunction(Yin_arr)

v_tot , v_com_tot , r_com = func_v_esc(RVA_parameter)

r_mask = (r_com == max(r_com))

r_value = np.heaviside(2*scalefactor*SMA_bin-r_com[r_mask],0)

v_value = np.heaviside(1-v_tot[r_mask],0)

c_value = np.heaviside(v_com_tot[r_mask]-1,0)

# print(r_com[r_mask],v_tot[r_mask], v_com_tot[r_mask ])

return r_value + v_value + c_value

def BodyMerger2(Result ,Yin_arr):

if (Result == 3): # 3 is the tag given to ejection cases

pos_ij ,vel_ij ,r_ij ,v_ij = relativePVfunction(Yin_arr[:,-1])

# Calling the PV

function

com_arg = np.where(r_ij == r_ij.min()) #find the closest

pair

# Below we calculate the merger time of the bound binary

post ejection

eps = v_ij[com_arg]** 2/2 - m_bin/r_ij[com_arg]

h = vel_ij[com_arg ,0]*pos_ij[com_arg ,1]-vel_ij[com_arg ,1]*

pos_ij[com_arg ,0]

e = np.sqrt(1+(2*eps*(h **2))/(m_bin ** 2))

a = -m_bin/(2*eps)

merger_time = 5/512 * (a** 4)/((0.5*m_bin)**3) * (1-(e**2))

**(7/2)

# The cutoff merger time is converted to code units

T_GW = (c_SI ** 5/G_new_SI **3 * AU_SI **4 / M_sun_SI **3)/(

sec_year) * merger_time

# Checking weather the merger time is less than the cutoff

merger time

if (T_GW < 10 **5):

return Result+1 # 2-Body mergers are tagged as 4

else:

return Result

else:

return Result

#Below the events are set to terminate the simulation if they are

fulfilled .

# Furthermore the ejection and three body merger are set to only
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accept

#going from positive to negative values

SchwarzschildMerger.terminal = True

BodyMerger3.terminal = True

BodyMerger3.direction = -1

Ejection.terminal = True

Ejectiona.terminal = True

Ejection.direction = -1

#Boolean parameters

Save_val = True

SMBH_bool = False

print_result = True

ROT_bool = False

nr_obj = 3 #number of objects

dt_scale = 1 # no units

M = 50 #in M_sun

v_inf = 0.01*kmsec_U #speed at infinity for singlet in code

units

scalefactor = 5 # no units

pos_SMBH = np.array([0,0,0])

M_SMBH = 10 **9

m0_arr = M*np.ones(nr_obj , dtype=’d’)

m_bin = 2*M

SMA_bin_tot = np.array([1e1])

TIDAL_SCALAR_tot = np.array([1e2])

Number_iter = 1

for q in range(len(TIDAL_SCALAR_tot)):

if (SMBH_bool == True):

result = np.zeros([len(SMA_bin_tot),Number_iter])

for k in range(len(SMA_bin_tot)):

if (SMBH_bool == False):

result = np.zeros(Number_iter)

SMA_bin = SMA_bin_tot[k]

T_orb_bin = 2.*np.pi*np.sqrt(( SMA_bin **3.)/(3*M))

T_max = 100 * T_orb_bin

if (SMBH_bool == True):

R_t = TIDAL_SCALAR_tot[q]*SMA_bin*(M_SMBH/(3*M))** (1/3)

V_t = np.sqrt(( M_SMBH+3*M)/R_t)

r_tidal = R_t*np.array([1,0,0])

v_tidal = V_t*np.array([0,1,0])

for j in trange(Number_iter):

Y0 = np.zeros(nr_obj*6, dtype=’d’)
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Y0 = Init_condition(SMA_bin ,m0_arr ,Y0)

RVA_parameter = relativePVfunction(Y0)

dt_step = func_dt(RVA_parameter)

#choose dt:

dt_evolve = dt_scale*dt_step

YY = solve_ivp(func_NBODY_Ydot ,(0.0,T_max),Y0 ,method =

’LSODA’, atol=1e-6,

rtol=1e-6, events = [

SchwarzschildMerger ,

BodyMerger3 ,Ejection]

)

Y_final2 = YY.y

t = YY.t

events = YY.y_events

# print(events)

lev = np.zeros(len(events))

for i in range(len(events)):

lev[i] = len(events[i])

if (SMBH_bool == True):

result[k,j] = result[k,j] + (i+1)*lev[i]

else:

result[j] = result[j]+(i+1)*lev[i]

# print(result)

if (SMBH_bool == True):

result[k,j] = BodyMerger2(result[k,j],Y_final2)

if result[k,j] == 3:

RVA_parameter = relativePVfunction(Y_final2[:,-

1])

com_arg = np.where(RVA_parameter[2] ==

RVA_parameter

[2].min())

T_GW = (c_SI ** 5/G_new_SI **3 * AU_SI **4 /

M_sun_SI ** 3)/

(sec_year) *

merger_time(

RVA_parameter

,m_bin ,

com_arg)

# print(T_GW/10**5)

if (T_GW < 10 **5):

# print(’GW inspiral ’)

result[k,j] = result[k,j]+1

else:
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result[j] = BodyMerger2(result[j],Y_final2)

if result[j] == 3:

RVA_parameter = relativePVfunction(Y_final2[:,-

1])

com_arg = np.where(RVA_parameter[2] ==

RVA_parameter

[2].min())

T_GW = (c_SI ** 5/G_new_SI **3 * AU_SI **4 /

M_sun_SI ** 3)/

(sec_year) *

merger_time(

RVA_parameter

,m_bin ,

com_arg)

# print(T_GW/10**5)

if (T_GW < 10 **5):

# print(’GW inspiral ’)

result[j] = result[j]+1
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