
World and Science

a Master’s Thesis by John E. Niclasen

May 1, 2016

1

Contents

1 Introduction 6
1.1 A Bit of History . 6
1.2 The World Programming Language 6
1.3 This Thesis . 10

2 Programming Tasks 11
2.1 Collecting Data . 11
2.2 Research . 11
2.3 Publish . 12

3 Methods 13
3.1 Collecting Data . 13
3.2 Research . 13
3.3 Publish . 14

4 A Project in Astrophysics incl. FITS Files 15
4.1 Loading FITS Files . 15
4.2 Sort and Validate FITS Files . 15

5 Parallel Computing 18
5.1 Bohrium . 18
5.2 helloworld Test . 20
5.3 Minimal Add Test . 22
5.4 Discussion . 22

6 Calculations with Units 24
6.1 Dialects . 24
6.2 gcalc . 25

7 Plotting 28
7.1 Example from ”Spot Life” . 29
7.2 Examples from ”Periodicity of Sea Ice Extent” 31
7.3 Fitting a Line . 34
7.4 Plot with Graphics . 37

8 grafik 38
8.1 Basic Graphical Elements . 38
8.2 Computational Graphics . 39

9 Multitasking 43
9.1 Tasks . 43
9.2 Messages . 44
9.3 Processes . 45
9.4 Interprocess Communication . 45

10 Expanding World 47
10.1 Matrices . 47

2

11 The Future of World 48
11.1 Calling from World . 48
11.2 Calling World . 48
11.3 Compiled Dialect . 48
11.4 NicomDoc, NicomDB, etc. 48
11.5 World/View and Audio . 49

12 Conclusion 50

13 References 51

Appendices 52

A World Functions 53

B World Source for Loading FITS Files 57

C World Source for Bohrium Interface 60

D Spot Life 62
D.1 Introduction . 62
D.2 How to Spot . 62
D.3 Discussion . 63
D.4 Conclusion . 63

E Sea Ice Extent 64
E.1 Early Satellite Data . 64
E.2 Satellite Data 1978-2016 . 65
E.3 A Combined Dataset . 66
E.4 Periodicity . 69

F World Source for Fit Script 71

G Dead Mass 73
G.1 Introduction . 73
G.2 Parameters . 74
G.3 Discussion . 74
G.4 Conclusion . 76

H Lapse Rate Experiment 77
H.1 Theory . 77
H.2 The Experiment . 77

I Matrices 79

3

List of Figures

1 Hierarchy of datatypes and typesets. 8
2 Sort FITS output report example. 17
3 Bohrium function categories. 20
4 Bohrium helloworld test. 21
5 gcalc source. 25
6 convert source. 26
7 The SI values. 26
8 Extended SI conversion table. 27
9 plot help. 28
10 A simple plot. 29
11 A nicer plot. 30
12 The Spot Life plot. 31
13 Northern hemisphere sea ice extent anomaly. 32
14 Comparing the Atlantic Multidecadal Oscillation (AMO) with

northern hemisphere sea ice extent anomaly. 33
15 An example of fitting a line to (in this case) random data and

presenting the plot with logarithmic axes. 34
16 Inner Planets. 37
17 Example output from the World graphical dialect, grafik. 38
18 Example output from the World graphical dialect, grafik, showing

the possibility to produce dialect source code outside the dialect
block and include the code using a parenthesis. 40

19 A horizontal tube of gas. 41
20 A vertical tube of gas. 41
21 Examples of World blocks. 47
22 Our Solar System . 63
23 Northern hemisphere sea ice extent, 1973-1990. 64
24 Southern hemisphere sea ice extent, 1973-1990. 64
25 Northern hemisphere sea ice extent, 1978-2016. 65
26 Southern hemisphere sea ice extent, 1978-2016. 65
27 A comparison of the early and late dataset for the northern hemi-

sphere to verify the adjustment of the early one. 66
28 The combined dataset for the northern hemisphere. 67
29 Northern hemisphere sea ice extent anomaly with a 3-year run-

ning mean. 67
30 A comparison of the early and late dataset for the southern hemi-

sphere to verify the adjustment of the early one. 68
31 The combined dataset for the southern hemisphere. 68
32 Southern hemisphere sea ice extent anomaly with a 3-year run-

ning mean. 69
33 Comparing the Atlantic Multidecadal Oscillation (AMO) with

northern hemisphere sea ice extent anomaly. Notice the y-axis
for the AMO is increasing cold up. A 65-year period sine curve
is overlaid. 69

34 A comparison of the northern and southern hemisphere sea ice
extent anomaly. 70

35 Inner Planets. 75
36 A horizontal tube of gas. 77

4

37 A vertical tube of gas. 78

List of Tables

1 World operators. 9
2 World routines from Bohrium helloworld example. 22
3 Plot keywords. 36
4 Grafik keywords. 42
5 Matrix functions. 47
6 Symbols used . 62
7 Symbols used . 73
8 Inner Planets . 74

5

1 Introduction

1.1 A Bit of History

I have a background in programming. For eighteen years, I worked profession-
ally as a system developer producing software and programming standards for
different companies as well as my own developments. I had a basic education in
programming, and I supplemented it with another higher level IT (Information
Technology) education along the way.

Then in the year 2006, I decided to follow an old dream of studying physics
and astronomy at the Niels Bohr Institute. With my background understanding
of programming method, the usefulness of good standards, and the crucial need
to keep it simple (the K.I.S.S. principle), I was horrified at what I saw at the
university.

As so much science involve computers and data processing in this new mil-
lennium, I saw the need for better tools directed at scientists.

1.2 The World Programming Language

In the year 2009, doing my last bachelor year in physics and astronomy at the
Niels Bohr Institute, I started development of a new programming language
directed at science, and with scientists as the primary target group of users. As
much as I could see others would benefit from better tools, I desperately needed
better tools myself.

Among the problems with existing programming languages, as seen from a
scientist viewpoint, is, that all kinds of technical issues are in the way to achieve
ones goal. The first issue noticed, when a scientist needs to program something,
is the syntax of the chosen programming language. A scientist is used to read
and write mathematical symbols on a blackboard or in a scientific paper and
think in terms of simple pseudo code, when dealing with an algorithm. But
most programming languages require a lot of extra syntax, before the computer
can understand, what is written.

An example could be calling cosine with π as the argument, which in many
languages would be something like

cos (p i) ;

The extra unneeded syntax (the parenthesis and the semicolon) is just extra
work and should be avoided. This is crucial! The problems start with this basic
observation. A scientist (and actually all programmers) should be able to just
write

cos p i

, and the computer should then understand, what to do. If we take the next (a
bit more complicated) example, we can see how the syntax of many languages
leads to bloated code, often lack of readability and therefore lots of future prob-
lems with maintaining code written earlier, or re-use of code written earlier. Let
us raise Euler’s number e to the power of π. In some languages it would be

6

pow(e , p i) ;

If solving this task using a function (pow in this case, which one would maybe
call power for better readability), it should be enough to write

power e p i

Solving the task with an operator, it could be

e ∗∗ pi

, or if one chooses to use the symbol (ˆ) instead of (**), it could be

e ˆ p i

After finishing my bachelor in the winter 2009-2010, I used the next four and
a half year developing a new programming language from scratch, the World
Programming Language, which should solve these syntax issues as well as many
other issues, so it could be a joy also as a scientist to program computers.

Syntax is one issue, datatypes another. Most programming languages have
very few basic datatypes, like integer, float, character, string, etc. Some other
datatypes like a file on disc, or new datatypes, like a URL or an e-mail address,
are then just dealt with using typically a string. The problem with this is, that
the language then needs to define different functions, for example to read data
from a disc file or to read data from a file-server using a URL. Having more
datatypes leads to fewer functions (which is more simple to remember), because
a function can then do different things depending on the type of argument giving
to it. For example one and the same read function could be used to read data
in both of the two cases. This is a huge benefit, which can maybe only fully be
appreciated, when having written code in this language for some time.

The World Programming Language has at the time of writing more than 50
different datatypes defined and more than 10 typesets (which can be seen as
categorization of datatypes). See Figure 1.

7

any−type !
none !
unset !
l o g i c !
s c a l a r !

number !
i n t e g e r !
r e a l !
percent !

complex !
char !
pa i r !
range !
tup l e !
vec to r !
time !

date !
image !
s e r i e s !

any−s t r i n g !
s t r i n g !
binary !
f i l e !
emai l !
u r l !
tag !

any−block !
b lock !
any−paren !

paren !
any−path !

path !
set−path !
get−path !
l i t −path !

l i s t !
l i t −s t r i n g !
map !
datatype !
typese t !
b i t s e t !
any−word !

word !
set−word !
get−word !
l i t −word !
i s s u e !
re f inement !

any−f unc t i on !
operator !
f unc t i on !
r ou t ine !
c a l l ba ck !
task !

any−ob j e c t !
context !
e r r o r !
port !

task−id !
node !
handle !
s t r u c t !
l i b r a r y !
comment !
KWATZ!

Figure 1: Hierarchy of datatypes and typesets.

8

World defines 86 native functions and 170+ mezzanines at time of writing.
Mezzanines are functions defined in the language itself, and they are in use
indistinguishable from native functions. The list is too long to present here,
but it can be found in Appendix A. The language doesn’t have the concept
of keywords known from many other languages. World also defines 17 native
operators and a handful mezzanine operators, which are both listed together in
Table 1.

Table 1: World operators.

Operator Description

** First number raised to the second.
* First value multiplied by the second.
+ Add two values.
- Second value subtracted from the first.
// Remainder of first value divided by second.
/ First value divided by the second.
< True if the first value is less than the se...
<< Bitwise shift left.
<= True if the first value is less than or equ...
<> True if the values are not equal.
= True if the values are equal.
== True if the values are equal and of the sam...
=? True if the values are identical.
> True if the first value is greater than the...
>= True if the first value is greater than or ...
>> Bitwise shift right.
after The place after a value in a series.
and First value ANDed with the second.
before The place at a value in a series.
from Find a value in a series.
is Check if value is series
of Value at the specified position in a compon...
or First value ORed with the second.
xor First value XORed with the second.

It is possible for a user to expand on these functions and operators, and new
user-defined functions and operators are used just like the natives.

The World Programming Language is written in ANSI C to make it as
portable as possible. At time of writing, World is released in a version for Mac
OS X (64-bit), Linux (64- and 32-bit), and Windows (64- and 32-bit). The
executable is around 1MB (one megabyte), and it is very easy to download and
install. The implementation is careful considered and continuously evaluated
to make sure, it is future proof. With new mobile devices, the IT industry has
undergone huge changes in the last decades. I want to be sure, World can be
used in the future too, whatever that will bring us of devices and technological
wonders.

World is mainly based on ideas found in the Rebol programming language
created by Carl Sassenrath, which again is influenced by languages such as Self,

9

Forth, Lisp and Logo. World is different in, that it is geared towards science,
so it has higher level math and datatypes like complex numbers, vectors, etc.,
which is not found in Rebol. World is also influenced by Lua and Stackless
Python.

World has much in common with a human language in written form, more
than most other programming languages. This means the language is a sequence
of values recognized as being of different datatypes - like words, numbers, dates,
URLs, parentheses, and many other - with a minimum of syntax.

World has a homepage at: http://www.world-lang.org

World can be downloaded from: https://github.com/Geomol/World

1.3 This Thesis

In this thesis, I first in section 2 describe some common programming tasks, we
often face in the scientific community. In section 3, I will investigate some of the
methods available to fulfil these programming tasks. Then follow a palette of
examples, where I have used World to solve many different tasks all related to
science. These examples should be seen as a proof of concept. It is to illustrate,
how easy some tasks can be solved with the right tool. At the end I look at
expanding World, point out some of the areas, World could be used in the future,
and ending with a conclusion.

It is my hope, that the reader with this thesis will get some insight into the
areas, that would benefit from a tool like the World Programming Language,
both related to science, but also in a broader perspective.

Complexity is our enemy! Having the right tool can be the difference between
success and failure.

As Frédéric Chopin is quoted:

Simplicity is the final achievement. After one has played a vast
quantity of notes and more notes, it is simplicity that emerges as

the crowning reward of art.

Something along these lines can be said about programming, which has
become such a big part of science. Programmers often refer to the K.I.S.S.
principle as first described by Kelly Johnson, lead engineer at the Lockheed
Skunk Works (creators of the Lockheed U-2 and SR-71 Blackbird spy planes,
among many others). But few seem to really be focused on keeping things
simple, and it is maybe often believed, that keeping things simple means less
advanced tasks can be achieved. This is a misunderstanding and not true. A
LEGO brick is very simple. Look at what advanced creations, kids can make
with such simple building blocks.

10

2 Programming Tasks

To get some insight into the areas, where programming tools are involved in
scientific work inside or outside universities around the world, let us divide the
scientific workflow into three topics.

1. Collecting data

2. Research

3. Publish

An experimental scientist at e.g. CERN collects data from the experiments
running in the large particle accelerator, a biologist might go out into nature
and collect plants, and an astronomer collects data using telescopes. A pure
theoretical scientist might only collect data by reading other scientists published
work.

Much of the time, the scientist is doing research, that is process all the input
from the collected data, thinking, and doing calculations.

Then at some point, the scientist will publish, what has been discovered.
Publishing is both in scientific journals, but also giving talks at conferences,
creating educational material for students, maybe writing internal notes, etc.

All of these areas of work can - and nowadays often do - involve programming
tasks needed to be done by the scientist or co-workers.

2.1 Collecting Data

Much of the data collection is in modern science done by computers or involve
computers. A modern telescope used by astronomers typically involve collecting
photons on a CCD chip connected to a computer. The data collected in this
way ends up on some storage device like a hard disk.

The astronomer is now faced with the challenge of getting the data from the
telescope to his or her own computer or a file-server at the university, which is
possible to get access to. It is necessary to have the data easily available to be
able to do research using the data.

Programming scripts and small compiled programs are used in both collect-
ing the data and in transferring the data from one computer to the next. Much
of this programming is done by the astronomers themselves.

2.2 Research

Doing the research, the astronomer is faced with several different tasks involving
computers and often programming. Astronomical data needs to be reduced. If
the data is image data, it needs to be processed into a final image viewable on
a computer screen or able to be printed out.

Often research involves heavy calculations done with the help of computers.
In many situations, there isn’t a function available just to be called, so the
scientist write their own functions and own programs to do the calculations.

In some cases, it is required to be able to access databases with information
needed in the research. Such databases can reside locally on the astronomers
own computer, or it can be a large database on some external computer. If
plenty and often access is needed to the data, the astronomer might choose

11

to write scripts and programs to ease the task of getting the data from the
database.

2.3 Publish

Publishing research results involve plotting graphs. It might involve making
drawings of e.g. instrument setup. Writing scientific papers is often done in

TEX (or LATEX), which can be considered programming. Doing a presentation
involve producing slides to be shown using a projector.

All of these kinds of publishing in modern science involve computers and
often programming. In some cases, where programming isn’t used today, it
could be a benefit to use programming of small scripts to ease the task - to ease
the workflow.

In the next section, I will look at some of the (programming) methods used
today in more detail.

12

3 Methods

To solve the programming tasks mentioned in the previous section, and tasks
in general involving computers, I will look into some of the methods normally
in use today. I will use the same division of workflow.

3.1 Collecting Data

The challenge of getting data from the telescope to the astronomers own com-
puter or a file-server at the university is being solved using different methods.
If the amount of data is small, a normal e-mail can be sent with the data at-
tached. Often the amount of data is large, and some other method is needed.
The data might be available from a FTP-server (File Transfer Protocol), and
the astronomer can then get the data using a ftp tool in the terminal, or maybe
choose a solution with a graphical interface like FileZilla. The data could be
placed in a way, so a web-browser can be used to get the data.

Data is in recent years also being distributed using web-services like Dropbox.
Problem with such solutions is, that they involve third party companies. If a
larger workflow was implemented using such service, and that company closed,
changed the service or was sold to some other company, ones solution might
not work from one day to the next. One might argue, that as a service like
Dropbox has been around for some years now (since June 2007), and that the
company might go well, such solution is pretty safe. That is not the case in the
IT industry. Large and popular solutions does change ownership, as was the
case with WhatsApp Messenger, a popular messaging application, which was
sold to Facebook for $19 billion after a few years of business.

Solutions with control of both ends of the data transfer, and no stop on the
way, means larger probability of success.

3.2 Research

Once the astronomer has got hold of the data, getting an overview of what is
actually included in the data is the first challenge. Data from one observational
session often contain dozen of for example FITS files. One method to figure
out, what data each FITS file holds, is to load the FITS file into a viewing tool,
where also the FITS header information can be seen. Sometimes the observatory
wrote the wrong information into the header, and then the astronomer must
investigate further and use experience to figure out, what is what.

The astronomer might then want to put FITS files of certain types into sub-
folders with other FITS files of the same type. That can be done in a terminal
using shell commands, or it can be done with a file tool in the graphical interface
of the operating system in use.

It is possible to write scripts to ease this workflow as shall be seen in the
next section of this thesis.

After getting an overview, next step could be producing a final image from
all the different FITS files. This can be done for example using IRAF (Image
Reduction and Analysis Facility), a huge collection of tools and commands.
Often the astronomer wants to get an initial view of the image to judge, if the
observation went ok, and then it can be a struggle to deal with a large software
package like IRAF.

13

Doing the research, calculations are often carried out, and the astronomer
often program their own programs to do certain calculations. Sometimes it is
heavy calculations requiring a supercomputer with parallel computing capabil-
ities. This means more programming - and maybe in another language than
used on ones personal computer.

To get server access can involve setup of an X-terminal session to login on
the server. Some would program a shell script to ease this task.

3.3 Publish

For publishing it is required to be able to produce plots with graphs represent-
ing the scientific data. There are many tools available, and they are often large
software packages with an uncountable amount of features easy to get lost in.
It would be nice now and then with an easy tool, that just do the job. Some
do plots in programming languages or what we could call programming envi-
ronments with main goal different from plotting. Others use tools dedicated to
create plots, but these tools often include some kind of programming language.
It is an old question for programmers, which language is best suited for some
programming task. There are good reasons, why there are so many very differ-
ent programming languages. Some languages are good for certain tasks, others
for other tasks.

To create graphical drawing, one could use a dedicated drawing application.
Often the scientist has certain needs not found in common drawing applications,
so there is room for dedicated tools. One is for example GeoGebra, that I have
used myself. Some might use the drawing capabilities found in Office programs
suites like OpenOffice. Office programs also often include some sort of presenta-
tion application used to make slides with. But they are huge applications, and
you might not find your preferred one on your new tablet.

Then there is the TEX producing software to write scientific papers in.
There exist different solutions, but many ends up writing the .tex document
themselves with a simple text editor. Different tools are then used to produce
a printable document (in PDF or PostScript) from that.

Many of the methods used as described above could benefit from better
and easier to use tools, than what is common available. There is room for
improvement.

14

4 A Project in Astrophysics incl. FITS Files

I was presented a common task for astronomers dealing with FITS files. Flexible
Image Transport System (FITS) is a standard defining a digital file format useful
for storage, transmission and processing of scientific and other images. FITS is
the most commonly used digital file format in astronomy.

A typical astronomical observation produces a number of FITS files, each
with different information related to the observation. There is the scientific
frame (image) or frames, if for example more than one filter was used, and there
are correction frames (known as BIAS and FLAT frames). Some observations
also include spectrum frames. The astronomer receive all these FITS files often
in one and the same file folder, even if different files hold different information
and should be handled accordingly. The astronomer now face at least two tasks:

1. Get an overview of all the different files and sort them according to type
(BIAS, FLAT, SCI, SPECTRUM, ...).

2. Produce a viewable image through some processing of the data in the files.

4.1 Loading FITS Files

To solve the first of these tasks in World, I first needed a way to load FITS files
from within the World language. One way could be to define a routine and call
an external library, that could read the file format (if one such easily available
dynamic link library is found), but I choose to write a function in World, that
would be able to load FITS files.

It turned out, that the full World program code to load FITS files, as well
as a function to call a viewing tool named ds9 is less than 200 lines. The full
source can be found in Appendix B, and it also includes conversion of some
common FITS keywords to more human readable form using a conversion table
implemented as a map! type (the map! datatype in World is used for fast
mapping of values, and it is implemented using a mechanism known as hashing).

The following example shows the use of the load-fits function directly in
the World prompt within a terminal window. It is to show the simplicity of
using such extension to the language. First the FITS extension is included, a
FITS file named ”m51.fits” in the current directory is loaded, and finally some
information from the FITS header is printed in the terminal.

w> i n c lude a s t r o / f i t s
w> f i l e : load− f i t s %m51 . f i t s
w> pr in t [f i l e /Date f i l e /RA f i l e /DEC f i l e / Object]
4−Sep−2014/13:56:36 1 3 : 2 9 : 2 4 . 0 0 4 7 : 1 5 : 3 4 . 0 0 m51 B 600

4.2 Sort and Validate FITS Files

The next step was to sort the FITS files in sub-folders according to type - taking
into account, that sometimes files get wrong attributes set in the headers by the
observatory, so a semi-intelligent judgement according to rules agreed upon with
the astronomer was implemented. The World source for this task turned out to
be a little more than 300 lines of code, an affordable task for one programmer.
The output of this step was twofold:

15

1. The FITS files got sorted into sub-folders.

2. A small result report in the form of a flat text file was presented to the
user on the computer monitor.

The text report holds columns of information, each column explained by
one of the header words: file, type, IMAGETYP, ALAPRTNM, ALGRNM,
TCSTGT, OBJECT, EXPTIME, status, and folder. Some of the more crypti-
cal words here are known to the skilled astronomer and recognized as header
information from the FITS file. This in all gives a good overview of all the
data within a number of FITS files related to one astronomical observation. An
example of the output is shown in Figure 2. (Some lines were removed in the
editing, because the report was too long to fit on one page.)

This was an example of using World to create a very useful tool to go into
the astronomers toolbox, where it will always be at hand without too much
struggle.

16

fi
le

ty
pe

IM
AG
ET
YP

AL
AP
RT
NM

 A
LG
RN
M

TC
ST
GT

 O
BJ
EC
T

EX
PT
IM
E
 s
ta
tu
s

 f
ol
de
r

AL
xh
01
00
01
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
00
02
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
00
03
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
00
04
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

. . . AL
xh
01
00
33
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
00
34
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
00
35
.f
it
s

bi
as

BI
AS

Sl
it
_1
.0

 G
ri
sm
_#
4

-

 a
lf
os
c-
ca
li
bs
 b
ia
s

0.
00
2

 O
K

 b
ia
s/
1x
1/

AL
xh
01
01
21
.f
it
s

fl
at

FL
AT

Op
en

 O
pe
n_
(L
yo
t)

Bl
an
k1
7+
34

 F
LA
T
1

1.
0

 O
K

 f
la
t/
AL
FL
T_
B_
Be
s_
44
0_
10
0_
1x
1/

AL
xh
01
01
22
.f
it
s

fl
at

FL
AT

Op
en

 O
pe
n_
(L
yo
t)

Bl
an
k1
7+
34

 F
LA
T
2

1.
07

 O
K

 f
la
t/
AL
FL
T_
B_
Be
s_
44
0_
10
0_
1x
1/

. . . AL
xh
03
01
25
.f
it
s

fl
at

FL
AT

Op
en

 O
pe
n_
(L
yo
t)

Bl
an
k1
7+
66

 F
LA
T
1

69
.2

 O
K

 f
la
t/
AL
FL
T_
i_
in
t_
79
7_
15
7_
1x
1/

AL
xh
03
01
26
.f
it
s

fl
at

FL
AT

Op
en

 O
pe
n_
(L
yo
t)

Bl
an
k1
7+
66

 F
LA
T
2

93
.7
4

 O
K

 f
la
t/
AL
FL
T_
i_
in
t_
79
7_
15
7_
1x
1/

AL
xh
03
01
27
.f
it
s

fl
at

FL
AT

Op
en

 O
pe
n_
(L
yo
t)

Bl
an
k1
7+
66

 F
LA
T
3

13
8.
08

 O
K

 f
la
t/
AL
FL
T_
i_
in
t_
79
7_
15
7_
1x
1/

AL
xh
03
01
38
.f
it
s

sc
i

-

Op
en

 O
pe
n_
(L
yo
t)

m5
1_
1

 M
51

60
.0

 O
K

 s
ci
/A
LF
LT
_V
_B
es
_5
30
_8
0_
1x
1/

AL
xh
03
01
39
.f
it
s

sc
i

-

Op
en

 O
pe
n_
(L
yo
t)

m5
1_
1

 M
51

10
0.
0

 O
K

 s
ci
/A
LF
LT
_B
_B
es
_4
40
_1
00
_1
x1
/

. . . AL
xh
03
01
96
.f
it
s

sc
i

-

Op
en

 O
pe
n_
(L
yo
t)

m1
7

 m
16

60
.0

 O
K

 s
ci
/A
LF
LT
_i
_i
nt
_7
97
_1
57
_1
x1
/

Figure 2: Sort FITS output report example.

17

5 Parallel Computing

In some scientific applications, heavy calculations are carried out by supercom-
puters. To shorten the time to run such calculations - it could be simulations
of some scientific model - calculations are done in parallel; what is known as
parallel computing. Calculations are done with vectors of numbers using vector
processors, which are CPUs that can execute the same instruction on large sets
of data.

Modern GPUs (Graphics Processing Unit) on the graphics card in our mod-
ern computer (or sometimes directly located on the motherboard beside the
CPU) are co-processors that have been heavily optimized for computer graphics
processing. Computer graphics processing is a field dominated by data parallel
operations - particularly linear algebra matrix operations.

There are several software solutions to do general purpose computation on
GPUs. One such solution is known as Bohrium, which is being developed by
the eScience group at the Niels Bohr Institute.

5.1 Bohrium

Bohrium is an API (Application Programming Interface), and it consists of a
large number of functions, which are accessible through a dynamic linked library.
In World, functions in such libraries are called routines (of type routine!), and
to be able to call the routines, two things are needed:

1. The library needs to be loaded with the load-library function

2. Routines needs to be defined to call the library functions

The following World code define a word, libbhc, and sets the word to the
result of calling load-library. load-library takes one argument, which is the
disk file, that is the actual dynamic linked library, in this case named ”libbhc.so”.

l i bbhc : load−l i b r a r y %/home/ john / . l o c a l / l i b / l ibbhc . so

The Bohrium dynamic library, ”libbhc.so”, is a 4.6MB file on disk.
After having a reference to the library, routines can be defined using this

reference word. The Bohrium function, bh multi array float64 add, is used
to add two vectors of 64-bit floating point numbers together. The function takes
three arguments: out, which is where the result of the addition should end up,
and the two vectors to be added, lhs and rhs. The function has no return value.
The World code to define a routine, bh-real-add, is shown below.

bh−r ea l−add : rou t ine [
” Addit ion . ”
[typecheck]
l i bbhc ” bh mu l t i a r r ay f l o a t 64 add ” [

out [handle !] po in t e r ”Output”
l h s [handle !] po in t e r ” Le f t hand s i d e ”
rhs [handle !] po in t e r ”Right hand s i d e ”

]
void

]

18

As is seen, the code is quite readable. The strings within the definition is used
with the World help function. Having defined the routine as above, it is now
possible to get help for this function at the World prompt:

w> help bh−r ea l−add
Usage :

bh−r ea l−add out l h s rhs

Desc r ip t i on :
Addit ion .
bh−r ea l−add i s a rout ine !

Arguments :
out −− Output [handle !]
l h s −− Lef t hand s i d e [handle !]
rhs −− Right hand s i d e [handle !]

Sp e c i a l a t t r i b u t e s :
typecheck

To be able to add two vectors together using this routine require the Bohrium
workflow to be followed. The vectors has to be defined for Bohrium, and to
access the result, sync needs to be activated. Using Bohrium, the user do these
things and then tell Bohrium to execute all instructions with a flush call.

To figure out how to define all the Bohrium functions to be used as routines
within World, I looked at the C header file, bh c.h, which comes with Bohrium.

C function prototypes

The function prototypes in the bh c.h header file is divided into categories as
listed in Figure 3. There are more than 1600 functions defined in Bohrium,
so it is a rather large library. Many functions come in 8-, 16-, 32-, and 64-
bit versions, both signed and unsigned, and both integer, float and complex
numbers. There are functions operating on 8-bit booleans. There are functions
with lhs (left-hand-side) and rhs (right-hand-side) variations. Many if not most
functions would never be used in an application targeted at astronomy, and I
would not recommend support for all functions as routines in a World interface
for Bohrium. It would be counter-productive to do that. It makes much more
sense to support a selected few functions, and if new functionality is required,
it is a small job to add support for new routines in World, as has been shown
above. It is a benefit using dynamic linked libraries, that it isn’t necessary to
support all the functions within a library. We have the benefit to pick and choose
only the functions, that are required for an application or a field of science and
leave the rest for a possible future use.

19

• Common runtime methods

– Forward definitions

∗ bh multi array float64 new empty

∗ bh multi array float64 set data

∗ bh multi array float64 sync

∗ bh multi array float64 destroy

∗ etc.

• Copy methods

– e.g. bh multi array float64 identity float64

• Binary functions

– e.g. bh multi array float64 add

• Unary functions

– e.g. bh multi array float64 cos

• Reduction functions

– e.g. bh multi array float64 add reduce

• Accumulate functions

– e.g. bh multi array float64 multiply accumulate

Figure 3: Bohrium function categories.

5.2 helloworld Test

The first thing recommended by the Bohrium team is to get their helloworld
test running, and that I did. The test example, ”helloworld.c”, is a 64 line C
source running some basic functionality of Bohrium. I ported this C source to
World, and the World source can be seen in Figure 4.

20

World [
T i t l e : ”Bohrium t e s t ”
Author : ”John Nic la sen ”

]

i n c lude bohrium

shape : vec to r [s i n t 64 2 [3 3]]
s t r i d e : vec to r [s i n t 64 2 [3 1]]

; Sequence o f ones
a : bh−r ea l−new−ones 2 shape

; Range from 0 − 9
r−f l a t : bh−i n t ege r−new−range 9

; Reshaped to 3x3
r−shaped : bh−i n t ege r−new−view r−f l a t 2 0 shape s t r i d e

; Make in to r e a l s
b : bh−r ea l−new−empty 2 shape
bh−r ea l−i d en t i t y−i n t e g e r b r−shaped

; Do ac tua l computation
output : bh−r ea l−new−empty 2 shape
p r in t ” adding ”
bh−r ea l−add output a b

; I s su e a sync i n s t r u c t i o n to ensure data i s pre sent in l o c a l
memory space

p r in t ” sync ”
bh−r ea l−sync output

; Execute a l l pending i n s t r u c t i o n s , i n c l ud ing the sync
command

pr in t ” f l u s h ”
bh−runtime−f l u s h

; Grab the r e s u l t data
p r in t ” get data”
data : as [vec tor ! double 9] bh−r ea l−get−data output

; Pr int out the r e s u l t
p r i n t ”Adding ones to range in 2D:”
repeat i shape /1 [

repeat j shape /2 [
pr in [p ick data (i − 1 ∗ s t r i d e /1) + (j − 1 ∗ s t r i d e

/2) + 1 ””]
]
pr in newl ine

]

; Clean up anything that was a l l o c a t e d
pr in t ” de s t roy ing ”
bh−r ea l−dest roy a
bh−r ea l−dest roy b
bh−r ea l−dest roy output
bh−i n t ege r−dest roy r−f l a t
bh−i n t ege r−dest roy r−shaped

Figure 4: Bohrium helloworld test.

The Bohrium routines defined in World used in this example is listen in Table
2. The full World source needed to define these routines to be able to run the
”helloworld” example is listed in Appendix C.

21

Table 2: World routines from Bohrium helloworld example.

Routine Description

bh-real-new-ones Construct a new one-filled array.
bh-integer-new-range Construct a new array with sequential numbers.
bh-integer-new-view Construct a new array from an existing view.
bh-real-new-empty Construct a new empty array of 64 bit floats.
bh-real-identity-integer Make into floats.
bh-real-add Addition.
bh-real-sync Sync the current view.
bh-runtime-flush Execute all pending instructions.
bh-real-get-data Gets the data pointer from a view.
bh-real-destroy Destroy the array and release resources.
bh-integer-destroy Destroy the array and release resources.

5.3 Minimal Add Test

To illustrate what is required to do any computation with Bohrium, I created
a minimal addition test, which is listed below incl. comments.

i n c lude bohrium

v : make vec tor ! [s i n t 64 2]
v /1 : v /2 : 3 ; Putting some va lues in to the vec tor

a : bh−r ea l−new−empty 2 v ; Create Bohrium vector from v
b : bh−r ea l−new−empty 2 v
output : bh−r ea l−new−empty 2 v ; Create output vec to r
bh−r ea l−add output a b ; Add a and b g iv ing output
bh−r ea l−sync output ; Sync memory
bh−runtime−f l u s h ; Flush commands

data : bh−r ea l−get−data output ; Get output data

bh−r ea l−dest roy a ; Destroy Bohrium vec to r s
bh−r ea l−dest roy b
bh−r ea l−dest roy output

5.4 Discussion

The idea behind Bohrium is really good. Write once and have your heavy calcu-
lations carried out by the GPU on your graphics card, or move your source code
to a supercomputer with vector CPUs, compile it, and get the speed increase
there.

I was never able to run Bohrium on my MacBook Pro under Mac OS X. It
also was not possible with the help of the Bohrium team. I did my tests with the
Bohrium Ubuntu package. Ubuntu is a Linux operating system, and to use it, I
installed it under OS X using VirtualBox, which is software making it possible
to run several operating systems.

The Bohrium API is not as simple as one could wish for. To be able to
do simple calculations like adding two vectors together require multiple calls to
the Bohrium API as shown in the Minimal Add Test. There may not be a way

22

around this at the lowest level, because the calculations are being sent to the
GPU, and that require some work. One idea is to create a dialect in the World
language, that would make it easier for the user. An example of World dialects
is seen in the next section, ”Calculations with Units”.

It would be a benefit from a developer viewpoint to have a strongly reduced
subset of all the 1600+ Bohrium functions. It is a huge task to document so
many functions, and far the most are not necessary for most applications.

23

6 Calculations with Units

Within many fields of science, it is a common task to convert between units. This
is maybe even more profound in the field of astrophysics, where it is common to
be presented with for example solar radius, Astronomical Units, lightyears, and
parsecs as units of length, gram and solar masses as units of mass, gigayears as
unit of time, electronvolt as unit of energy, etc. etc. Not only is the astronomer
required to present the result of a calculation in some exotic unit, but often
each calculation involves a mix of many different units for the same physical
dimension (of e.g. length, mass, time, etc.). Some areas of astronomy intensively
use the cgs (centimetre-gram-second) system of units by tradition, some areas
use a mix of what now is easiest to get a grip on, and while the student is maybe
most familiar with the SI units, it is easy to get lost.

I was faced with these challenges in my studies, and I wanted to do something
about it. It is so easy to make a wrong conversion somewhere in the calculations,
and it is often hard to figure out, that there is an error at all, because many
results, many numbers are astronomical so to speak.

A good and robust solution uses dialects in World.

6.1 Dialects

Dialects are sub-languages of World. They are like languages within the lan-
guage, that the programmer can easily define the rules for. It is possible to
define ones own sub-language and set the grammar rules, and the language
itself utilize this for many of the internal features.

A powerful function to create dialects is the parse function, which parses a
series according to rules. The series is typical a string or a block of values. To
be able to make calculations with units, one would wish to write something like

1pc / 1 ly

to calculate the relation between parsec and lightyears. Maybe one wants to
easily find the conversion between km/ sec and kpc/yr (kilo-parsec per year)
and so on.

Writing such calculations directly within World gives an error, because values
like 1pc is not a valid number. But with the help of the KWATZ! datatype, it is
possible to load such values into the language, and that can be used to develop a
dialect to calculate with units. The lexical analysis within World read in values
and recognize their types based on the syntax. 1 is an integer! type, 3.14 is a
real! type, etc. When World is asked to load a string, a block of values will
be created, and each value within the block is given a type. If the syntax isn’t
recognized (as in the case of e.g. 1pc), that value is given the type of KWATZ!.
It is now possible to parse the block and convert all the values of type KWATZ!
to numbers given a conversion table.

I did that one evening, and gcalc was born. I mention, that this was done
as a little exercise one evening to illustrate the power of dialects, the KWATZ!
datatype, and parse, which is part of the World language. I know of no other
programming language, where I could do this with such little effort.

24

6.2 gcalc

The gcalc solution to the calculations with units challenge consists of two small
functions and a conversion table. gcalc itself is the first function, and the full
source is listed in Figure 5.

gca l c : func [
source [s t r i n g !]
/ in

un i t
/ l o c a l c a l c mark value r u l e s

] [
r u l e s : [

any [
mark :
s e t value KWATZ! (

i n s e r t remove mark convert value
)
| i n to r u l e s
| 1 sk ip

]
end

]
c a l c : load source
parse c a l c r u l e s
e i t h e r un i t [

t ry [(do c a l c) / SI / : un i t]
] [

do c a l c
]

]

Figure 5: gcalc source.

gcalc takes one argument, source, of type string! and return the result of the
calculation, default in SI units. It is possible to ask for the result in some other
unit with the /in refinement and accompanying unit argument. The function
body does the following.

1. defines the rules,

2. load the source into the calc variable,

3. parse the loaded source according to the rules, and

4. finally doing the calculation returning the result.

(If the /in refinement was used and therefore the unit variable is set, the
result is changed into the specified unit before being returned.)

Within the rules, if a value of type KWATZ! is found, that value is changed
into a new value returned by the convert function, which is the second little
function part of the gcalc solution. The full source of the convert function is
listed in Figure 6.

25

convert : func [
va lue
/ l o c a l nonchar un i t

] [
nonchar : make b i t s e t ! ”0123456789. ,”
value : to s t r i n g ! va lue
un i t : p ick load copy next ’ f ind ’ / l a s t va lue nonchar 1
c l e a r value
try [SI / : un i t ∗ pick load head ’ va lue 1]

]

Figure 6: convert source.

The convert function takes one argument, value, in some exotic unit and
return that same value in SI units. To change to SI units, a SI conversion table
is needed, which is shown in Figure 7 for just three units, AU, lightyear, and
parsec.

SI : make map ! [
AU 1.496 e11 ; Astronomical Unit
ly 9.46047145189709 e15 ; L ightyear
pc 3.08567758 e16 ; Parsec

]

Figure 7: The SI values.

This SI conversion table can be extended as one see fit. An example of use is
shown below.

w> i n c lude gca l c
w> gca l c ”1pc / 1 ly ”
== 3.261653074785438

It is possible to make references to user-defined variables, call functions, etc.
within the gcalc dialect. All values not of type KWATZ! will just be skipped
by the conversion, and only KWATZ! values will be converted according to the
SI conversion table.

So for example, if one wishes to calculate the characteristic temperature for
the 21 cm hyperfine line, that is utilized in many astronomical observations, one
could do the following: define the speed of light, c, Planck’s constant, h, and
Boltzmann’s constant, kB, define ”cm” in the SI table, and write

w> gca l c ”c / 21cm ∗ h / kB”
== 0.0685124692207509

To get the result in eV (electronvolt), define it in the SI table, and write

26

w> gca l c / in ”c / 21cm ∗ h” ’eV
== 5.903947197896174 e−06

It is a simple and very useful solution to a very common problem. I know of
no other programming language, that can be extended with such functionality
with so little effort. I am very happy, that I found this solution, as it helps me
a lot in my calculations. An extended SI conversion table is shown in Figure 8.

SI : make map ! [
; Length
am 1e−18 ; Attometre
fm 1e−15 ; Femtometre
pm 1e−12 ; Picometre

AA 1e−10 ; Ångstrøm
nm 1e−9 ; Nanometre
um 1e−6 ; Micrometre
mm 1e−3 ; Mi l l imet r e
cm 1e−2 ; Centimetre
m 1 .0 ; Metre
km 1e3 ; Kilometre
Mm 1e6 ; Megametre
Gm 1e9 ; Gigametre
AU 1.496 e11 ; Astronomical Unit
ly 9.46047145189709 e15 ; L ightyear
pc 3.08567758 e16 ; Parsec
kpc 3.08567758 e19 ; Ki lo Parsec
Mpc 3.08567758 e22 ; Mega Parsec
Gpc 3.08567758 e25 ; Giga Parsec
; Mass
u 1.66053892 e−27 ; Atomic mass un i t
g 1e−3 ; Gram
kg 1 .0 ; Kilogram
t 1e3 ; ton
; Time
ps 1e−12 ; Picosecond
ns 1e−9 ; Nanosecond
us 1e−6 ; Microsecond
ms 1e−3 ; Mi l l i s e c ond
s 1 .0 ; Second
yr 31 ’556 ’736 .0 ; Year in seconds
kyr 3.1556736 e10 ; K i l oyear s in seconds
Myr 3.1556736 e13 ; Megayears in seconds
Gyr 3.1556736 e16 ; Gigayears in seconds
; Energy
eV 1.602 ’176 ’565 e−19 ; E l e c t r onvo l t
keV 1.602 ’176 ’565 e−16 ; Ki lo e l e c t r o n v o l t
MeV 1.602 ’176 ’565 e−13 ; Mega e l e c t r o n v o l t
GeV 1.602 ’176 ’565 e−10 ; Giga e l e c t r o n v o l t
TeV 1.602 ’176 ’565 e−7 ; Tera e l e c t r o n v o l t
J 1 .0 ; Joule
; Sun
m sun 1.989 e30 ; Mass o f Sun
M sun 1.989 e30 ; Mass o f Sun
m Sun 1.989 e30 ; Mass o f Sun
M Sun 1.989 e30 ; Mass o f Sun
r sun 6.9599 e8 ; Radius o f Sun
R sun 6.9599 e8 ; Radius o f Sun
r Sun 6.9599 e8 ; Radius o f Sun
R Sun 6.9599 e8 ; Radius o f Sun

]

Figure 8: Extended SI conversion table.

27

7 Plotting

In the summer of 2015, I decided, it was time to include the ability to do plotting
in World. I had previously done more and more of my own graph plotting in
the R programming language by Ross Ihaka and Robert Gentleman, and I had
done some experimentation of plotting in the Rebol programming language by
Carl Sassenrath using my own plot routines. Beside this, I had some experience
with plotting using tools presented at the university in different courses.

As I use TEX (or LATEX) to write scientific reports, like so many scientists
do, I needed to produce PDF (Adobe Portable Document Format) output from
the plotting, as this format could easily be included in TEX documents. It is
also possible to have tools exporting PNG (Portable Network Graphics) images
from PDF files, so I was good covered.

I already had a dialect written in Rebol to produce PS (Adobe PostScript)
and PDF output, which I had developed years before for other projects. This
software is available online at my physics account at the Niels Bohr Institute at
the address http://www.fys.ku.dk/˜niclasen/postscript/

I ported the PDF part of this Rebol source to World with little effort, as
the two languages are very similar in many ways. This produced a <30kB, 800
lines of World code (as a wpl2pdf function), which can create a PDF document
from a World Page Layout dialect, I designed.

Next step was to write the plot function itself, which should take the user
input and call the wpl2pdf function, that would produce the PDF output. The
plot function is 1500 lines of World source, or ∼ 40kB, so not huge and bloated
as often seen in other languages. Even with its limited size, the plot function
in World is quite capable, as I will show examples of.

The (in the terminal) accessible help for plot is shown in Figure 9.

w> ? p lo t
Usage :

p l o t spec / save−wpl save− f i l e / s i z e plot−s i z e / s t y l e
s ty l e−word / skip−nan / t i t l e plot−t i t l e / font over ru l e
−f ont

Desc r ip t i on :
S c i e n t i f i c p l o t t i n g
p lo t i s a func t i on !

Arguments :
spec −− [b lock !]

Refinements :
/ save−wpl

save− f i l e −− [f i l e !]
/ s i z e

plot−s i z e −− [any−type !]
/ s t y l e

s ty l e−word −− [word ! b lock !]
/ skip−nan
/ t i t l e

plot−t i t l e −− [s t r i n g ! b lock !]
/ font

over ru l e−f ont −− [word ! s t r i n g !]

Figure 9: plot help.

28

plot takes one argument, the spec block, in which the user specify all the
required information to produce a plot. plot also allow several options (the
refinement parameters) to overrule some of the defaults.

7.1 Example from ”Spot Life”

Giving a data file, spot-life.dat, with the following content:

Planet Mr2T4 M1−Ab
1 0.311 0 .052
2 0 .490 0 .082
3 4 .182 0 .694
4 0 .484 0 .080

, writing the following in World:

i n c lude p lo t

p l o t [
%spot− l i f e . dat

]

, and the plot seen in Figure 10 will be produced.

data/1/1

da
ta

/1
/2

1 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4

0.31

0.79

1.28

1.76

2.25

2.73

3.21

3.7

4.18

Figure 10: A simple plot.

If plot is not given any other parameters than the data file, it will first
check, if there is a header line (which there is in this example), skip this and
produce a plot with the 1st column along the x-axis, and the 2nd column along
the y-axis. The axes will be scaled to the minimum and maximum values.

To produce a nicer plot, writing the following in World will produce the plot
seen in Figure 11.

29

p lo t [
5x5
po int
point−width 7
%spot− l i f e . dat
Planet Mr2T4

x−l i m i t 0 5
x−t i c k s 1 4 1
y−l i m i t 0 4 .5
y−t i c k s 1 4 1

x−l a b e l ” Planet ”
y−l a b e l [”M r ” ˆ ”2” ” T” ” e f f ” ˆ ”4”]

]

Planet

M
 r

2 T
ef

f4

1 2 3 4

1

2

3

4

Figure 11: A nicer plot.

The spec argument block to plot contains a dialect with keywords and values.
Some keywords are optional in the cases, where it is given, what is meant by
a certain value. Like the first value, 5x5, in the example above, which sets the
plot size in inches, so 5 inch by 5 inch here. The final size of the plot in the
TEX document can be adjusted, of course, but the plot size influences the size
of text relative to graphics. The next line holds the keyword, point, which tells
plot, that points should be drawn for each data point instead of lines between
data points.

Yet a more advanced and more readable example is shown below with the
resulting plot in Figure 12.

30

p lo t / font [
g r id
s i z e 5x5
point
point−width 7
data %spot− l i f e . dat
x Planet y Mr2T4

x−l i m i t 0 5
x−t i c k s 1 4 1
y−l i m i t 0 4 .5
y−t i c k s 1 4 1

x−l a b e l ” Planet ”
y−l a b e l [”M r ” ˆ ”2” ” T” ” e f f ” ˆ ”4”]

t ext 1 0 .6 ”Mercury”
text 2 0 .8 ”Venus”
text 3 3 .8 ”Earth”
text 4 0 .8 ”Mars”

] ”Times”

Planet

M
 r2 T

ef
f4

1 2 3 4

1

2

3

4

Mercury
Venus

Earth

Figure 12: The Spot Life plot.

This example is taken from my paper with the title ”Spot Life from Planet’s
Effective Temperature”, which is included in Appendix D. That paper hasn’t
been presented before this thesis, and I include it here as an example of scientific
work, where the World plot function can be used.

7.2 Examples from ”Periodicity of Sea Ice Extent”

Figure 13 shows yet some features of plotting in World. Colours and trans-
parency is possible.

31

Northern Hemisphere Monthly Sea Ice Extent Anomaly

Year

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

-3

-2

-1

0

1

2

3-year running mean

Figure 13: Northern hemisphere sea ice extent anomaly.

The World source to produce the graph in Figure 13 is listed below.

p lo t [
8x6
g r id
l i n e−width 1 .0
data %a r c t i c−extent . dat
pdf %a r c t i c−anomaly . pdf
year anomaly

x−l i m i t 1972 2017
x−t i c k s 1975 2015 5
y−l i m i t −3 2
y−t i c k s −3 2 1

l i n e 1 .5 [1972 0 2017 0]

l i n e red 2 .5 running−mean
l i n e red 2 .5 [2003 1 .5 2004 1 . 5]
t ext 2009.5 1 .5 ”3−year running mean”

t i t l e ” Northern Hemisphere Monthly Sea I c e Extent Anomaly
”

text 1994.5 2 .25 ”Anomaly from 1973−2015 mean”
x−l a b e l ”Year”
y−l a b e l [” Sea i c e anomaly [m i l l i o n km” ˆ ”2” ”] ”]

]

The plotting data for the running mean is hold in the running-mean variable,
which is calculated before the plot. It is possible to combine all such kinds of
plotting elements into the final plot.

32

One more example is shown in Figure 14.

AMO and Northern Hemisphere Monthly Sea Ice Extent Anomaly

Year

A
M

O
 A

no
m

al
ie

s
[C

]

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

-2

-1

0

1

2
Atlantic Multidecadal Oscillation

3-year running mean
Sea Ice Extent

3-year running mean

Figure 14: Comparing the Atlantic Multidecadal Oscillation (AMO) with north-
ern hemisphere sea ice extent anomaly.

The World source to produce the graph in Figure 14 is listed below.

p lo t [
8x6
g r id
l i n e−width 2 .5
data %../AMO/run−mean−3. dat
pdf %a r c t i c−anomaly−amo . pdf
year run−mean−3

x−l i m i t 1930 2020
x−t i c k s 1930 2020 10
y−l i m i t 0 .6 −0.6
y−t i c k s 0 .6 −0.6 −0.2

r i g h t [
y−l i m i t −2.76 2 .04
y−t i c k s −2 2 1
y−l a b e l [” Sea i c e anomaly [m i l l i o n km” ˆ ”2” ”] ”]

]

l i n e 1 .5 [1930 0 2020 0]

l i n e red 2 .5 running−mean
l i n e black 2 .5 [1936 −0.5 1938 −0.5]
t ext 1950 −0.55 ” At l an t i c Mult idecadal O s c i l l a t i o n ”
text 1950 −0.5 ”3−year running mean”
l i n e red 2 .5 [1993 −0.5 1995 −0.5]

33

t ext 2007 −0.55 ”Sea I c e Extent”
text 2007 −0.5 ”3−year running mean”

l i n e 100 128 . 128 . 128 . 30 curve

t i t l e ”AMO and Northern Hemisphere Monthly Sea I c e Extent
Anomaly”

text 1994.5 2 .15 ”Anomaly from 1973−2015 mean”
x−l a b e l ”Year”
y−l a b e l ”AMO Anomalies [C] ”

]

The two examples in this subsection is from a work-in-progress paper with the
title ”Periodicity of Sea Ice Extent”, which can be found in Appendix E. In
that work-in-progress can be seen several examples of using the plot function
in World - twelve plots in all.

7.3 Fitting a Line

Figure 15 shows an example of a double-logarithmic plot of some random data
and then fitting a least-square line to the data points. The example also include
the use of a plotting style, in this case named ”navy-blue”, which is defined in
the plot function.

Fitting example

i

i +
 r

an
do

m
 2

0

1 10 102

1

10

102

Figure 15: An example of fitting a line to (in this case) random data and
presenting the plot with logarithmic axes.

34

The full World source of the example script to produce the plot in Figure 15 is
listed below.

World []

i n c lude p lo t

dat : copy []
r epeat i 100 [

append/ only dat reduce [i i + random 20]
]

p l o t [
s t y l e navy−blue
s i z e 8x6
point−l i n e
data dat

log−xy

x−l i m i t 0 .5 5e2
y−l i m i t 0 .5 5e2

t i t l e ” F i t t i n g example”
x−l a b e l ” i ”
y−l a b e l ” i + random 20”

f i t
]

When including the fit keyword in the plot dialect like this, a fit/least-squares
function will be called by plot, and a line will be drawn in the plot. Appendix
F lists the full World source of the fit.w script including the fit context and
the least-squares function. It is an example of how to write code, that can
easily be included in World scripts using the include function.

Table 3 lists all the keywords recognized by the World plot dialect at time
of writing.

35

Table 3: Plot keywords.

Keyword Description

A4 Set plot size to A4 format
A5 Set plot size to A5 format
backdrop Set backdrop colour
color Set colour for lines, crosses, and points
cross Specify crosses as data points
cross-line Data points as crosses with connecting lines
data Specify data source
errorbar Include error bars
fit Fit a line
fit-color Colour of fitting line
fit-limit Limit fit to range of x values
fit-width Specify line-width for fitting line
grafik Include graphics using the grafik dialect
grid Include grid in plot
grid-color Specify grid colour
Letter Set plot size to US letter format
line Include extra line(s) in plot
line-width Specify line-width for plot
log-x Set logarithmic x-axis
log-xy Set logarithmic x- and y-axis
log-y Set logarithmic y-axis
pdf Specify filename for PDF output
point Specify points as data points
point-line Data points as points with connecting lines
point-width Specify width of points in plot
polygon Include extra polygon(s) in plot
right Specify axis in right-side of plot
size Specify plot size
style Specify a plotting style
text Include text in plot
text-color Specify colour of texts
title Set plot title
type Set type of data points (cross, point, line, etc.)
x Specify data values to be used for the x-axis
x-label Set label for x-axis
x-limit Limit x data to range of values
x-ticks Specify ticks along the x-axis
y Specify data values to be used for the y-axis
y-label Set label for y-axis
y-limit Limit y data to range of values
y-ticks Specify ticks along the y-axis

36

7.4 Plot with Graphics

The last plotting example in Figure 16 is from a paper with the title ”On
the Dead Mass Constant” found in Appendix G. It shows how plotting can be
combined with other graphics (in this case an ellipse). Creating graphics with
the grafik dialect is discussed in the next section.

Ab

M
 [

10
23

 k
g]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

Mercury Mars

Earth

Venus

M(1 - Ab) = 8.6 M dead

Mlife

M(1 - Ab) = M

Figure 16: Inner Planets.

37

8 grafik

In scientific writing, it being for publication or for educational purposes, internal
documentation, etc., it is necessary to be able to create graphical illustrations.
It could for example be an illustration of a scientific experiment or graphics
overlain a graph plot of results or other data.

As PDF output is already possible without much effort in World, as shown in
the previous section about plotting, this can also be utilized to create graphical
illustrations.

I have developed a basic World dialect named grafik, which can be used to
create graphical illustrations to be included in TEX or other documents. The
dialect is quite new and not fully developed, but it is mentioned here as a proof
of concept.

8.1 Basic Graphical Elements

Figure 17 shows some of the basic graphical elements, which the grafik dialect
is capable of at time of writing.

Arrows Different fonts

Different fonts

Different fonts

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Lines

Different line-widths Colours Polygons

and Shapes

Figure 17: Example output from the World graphical dialect, grafik.

The powerful concept of dialects using the parse function in World makes
such extensions to the language possible. It can be imagined, how this ex-
tension can be built upon to include new geometric shapes and reuse of more
complicated figures as known from the Logo language.

38

The World source code using grafik to produce the graphics in Figure 17 is listed
below.

i n c lude g r a f i k / pdf

g r a f i k [
s i z e 8x6
l i n e−width 1 .5

; Frame
l i n e 10x10 566 x10 566 x422 10x422 10x10

text 72x400 ”Arrows”
arrow 100 x300 100 x350
arrow 100 x300 70x300
arrow 80x320 70x340

font [Times 15] t ext 288 x400 ” D i f f e r e n t f on t s ”
font [Cour ier 11] t ext 288 x370 ” D i f f e r e n t f on t s ”
font [He lve t i ca 13] t ext 288 x340 ” D i f f e r e n t f on t s ”
font [Symbol 13]
t ext 288 x310 ” abcdefghi jklmnopqrstuvwxyz ”
font [Symbol 13]
t ext 288 x280 ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”

font [He lve t i ca 13] t ext 504 x400 ” Lines ”
l i n e 504 x300 550 x300 480 x360
l i n e 540 x360 490 x330
l i n e 540 x350 490 x320

text 90x200 ” D i f f e r e n t l i n e−widths ”
l i n e−width 0 .5 l i n e 60x160 120 x160
l i n e−width 1 l i n e 60x150 120 x150
l i n e−width 2 l i n e 60x140 120 x140
l i n e−width 3 l i n e 60x130 120 x130
l i n e−width 4 l i n e 60x120 120 x120
l i n e−width 5 l i n e 60x110 120 x110

text 288 x200 ” Colours ”
pen blue l i n e 260 x160 320 x160
pen green l i n e 260 x150 320 x150
pen red l i n e 260 x140 320 x140
pen orange l i n e 260 x130 320 x130
pen purple l i n e 260 x120 320 x120
pen 100 .200 .180 l i n e 260 x110 320 x110

text 504 x200 ” Polygons ”
pen 100 .210 .130
polygon 480 x160 520 x160 520 x120 480 x120
pen orange
polygon 460 x130 490 x100 430 x100
pen gray
polygon 500 x100 510 x90 450 x30 440 x40
pen 2 5 5 . 0 . 0 . 1 2 8
e l l i p s e f i l l 500 x100 40x30

text 200 x40 ”This i s only the beg inning ! ”
]

The grafik dialect itself is a few hundred lines of code.

8.2 Computational Graphics

The grafik dialect supports the ability to compute graphical elements outside
the dialect and include it using code within a parenthesis. An example of this
is listed in the code below.

39

; Creat ing a block named knob to hold g r a f i k d i a l e c t e lements
knob : copy []
; Loop c r e a t e s e i gh t t imes two smal l l i n e s in a semi−c i r c l e
repeat n 8 [

append knob reduce [
’ l i n e

72 + (30 ∗ cos deg n ∗ 30 − 50)
72 + (30 ∗ s i n deg n ∗ 30 − 50)
72 + (33 ∗ cos deg n ∗ 30 − 50)
72 + (33 ∗ s i n deg n ∗ 30 − 50)

’ l i n e
72 + (30 ∗ cos deg n ∗ 30 − 40)
72 + (30 ∗ s i n deg n ∗ 30 − 40)
72 + (33 ∗ cos deg n ∗ 30 − 40)
72 + (33 ∗ s i n deg n ∗ 30 − 40)

]
]
append knob [l i n e−width 4]
repeat n 9 [; This loop c r e a t e s nine dots

append knob reduce [
’ l i n e

72 + (31 . 5 ∗ cos deg n ∗ 30 − 60)
72 + (31 . 5 ∗ s i n deg n ∗ 30 − 60)
72 + (31 . 5 ∗ cos deg n ∗ 30 − 60)
72 + (31 . 5 ∗ s i n deg n ∗ 30 − 60)

]
]

g r a f i k [
s i z e 2x2
l i n e 72x66 72x78
l i n e 66x72 78x72
text 44x44 ”min”
text 100 x44 ”max”
; The block o f code i s inc luded in the d i a l e c t here
(knob)

]

The result of this code is shown in Figure 18. This could for example be part
of an illustration for a scientific instrument with a dial button.

min max

Figure 18: Example output from the World graphical dialect, grafik, showing the
possibility to produce dialect source code outside the dialect block and include
the code using a parenthesis.

40

Figure 19 and 20 show examples of the grafik dialect being used to illustrate
an experimental setup.

g

gasTa T

Figure 19: A horizontal tube of gas.

g
gas

Tg

T

Figure 20: A vertical tube of gas.

In these examples, graphical elements, lines and ellipses, are combined into
figures. The examples are from a work-in-progress paper with the title ”Lapse
Rate Experiment” found in Appendix H.

Table 4 lists all the keywords recognized by the grafik dialect at time of
writing.

41

Table 4: Grafik keywords.

Keyword Description

arrow Draw an arrow
ellipse Draw an ellipse
ellipsefill Draw a filled ellipse
font Specify font for text
landscape Rotate drawing 90 degrees
line Draw a line between two or more points
line-width Specify width of line
pen Specify colour
polygon Draw a polygon between three or more points
rotate Rotate further drawing a number of degrees
size Specify size of drawing (A4, A5, Letter, inches)
text Draw text
translate Translate (move) further drawing
x-limit Specify clipping in x direction
y-limit Specify clipping in y direction

42

9 Multitasking

In some programming situations, we are faced with the requirement to do several
tasks at the same time simultaneously. If we program our computer to just
solve one task at a time before starting the next, we will not have as responsive
systems. In some critical tasks, it is a no-go to finish one task before starting
the next. The astronomer (or any other scientist) might be in a situation,
where data needs to be read across a communication line (over the internet for
example), and then be processed and stored, while the next bunch of data is
available to be received. If the sender produce the raw data faster than we can
receive and process it, the system will become non-responsive and might lead
to buffer overflow and probably crashes.

There are solutions on several layers to solve such situations with the World
programming language.

9.1 Tasks

The World programming language has built-in pre-emptive multitasking includ-
ing a task scheduler, which will manage task switching and give each task a
certain amount of CPU cycles.

It is as easy to define and launch a task as it is to define a function and call
it. To illustrate this, consider two tasks, ping and pong, which will take no
arguments and each print a string ten times. The tasks could be defined as seen
below.

ping : task [] [
loop 10 [

pr in ” ping ”
]

]

pong : task [] [
loop 10 [

pr in ”pong ”
]

]

The prin function used to print the strings will not output a newline, as print
does. The number of virtual machine instructions, each task is allowed to ex-
ecute, can be set with the tasks function using the /tick refinement. So let
us set the number of instructions to 50 and launch both task and see, what is
output. The result of doing this at the World prompt is shown below.

w> ta sk s / t i c k 50
== 50
w> ping pong
ping ping ping pong pong pong ping ping ping pong pong pong

ping ping ping ping pong pong pong pong

It is seen, that each task will run long enough to print their strings 3-4 times.
Changing the argument to tasks/tick to something else than 50 will change
the number of instructions (and therefore the time) each task is allowed to run,

43

before being interrupted by the task scheduler. This way of switching between
tasks is called pre-emptive multitasking.

To make one task hold its execution and let other tasks run, one should call
the wait function with the argument zero. Now the tasks are defined as shown
below.

ping : task [] [
loop 10 [

pr in ” ping ”
wait 0

]
]

pong : task [] [
loop 10 [

pr in ”pong ”
wait 0

]
]

The result of launching these tasks at the World prompt is shown below.

w> ping pong
ping pong ping pong ping pong ping pong ping pong ping pong

ping pong ping pong ping pong ping pong

It is seen, that each task will print once, and then let other tasks run.
Using tasks is an easy way to create programs, where for example compu-

tations will run simultaneously on the same CPU core. We could also imagine
one task reading data from a fileserver, while other tasks do further work on
the data being read. It is then necessary to have the tasks communicate with
each other, and that is done with messages.

9.2 Messages

In the following example, two tasks are defined. task1 takes one argument, sec,
and wait for so long, before sending a message to task2 and quits. task2 goes
into a while-loop, until it receives a message. It then prints the message and is
done. The World source code is shown below.

task1 : task [s ec] [
wait s ec ; wait s ec amount o f seconds
send id2 ”done” ; send a message to id2

]

task2 : task [/ l o c a l msg] [
whi l e [not msg : r e c e i v e] [

p r i n t ” wai t ing . . . ”
wait 0 .2 ; wait 0 .2 sec .

]
p r i n t [” I r e c e i v ed : ” msg]

]

task1 1 ; launch task1 g iv ing 1 as argument
id2 : task2 ; launch task2 and save task−id in id2

44

Running this in the World prompt will produce the output from task2 seen
below.

wait ing . . .
wa i t ing . . .
wa i t ing . . .
wa i t ing . . .
wa i t ing . . .
wa i t ing . . .
I r e c e i v ed : done

As is shown, it takes very little code to define and launch tasks, and to send
messages between tasks. In some applications, it is a benefit to spread the task
load across several CPU cores, either in the same physical computer, or across
several computers linked together. To do this, we needs processes, and this will
be discussed next.

9.3 Processes

An easy way to spread the task load across several CPU cores is to launch the
World programming language several times. The foot-print of World is very
small; the source is just around 1MB. Each entity of World can have several
tasks, as shown examples of above. Tasks have very small memory foot-print,
so many tasks can be launched without running out of memory. Then there
is the issue of communicating between World entities (or processes) - what is
called interprocess communication.

9.4 Interprocess Communication

Communication between processes can be done using the TCP/IP protocol.
The benefit of using TCP/IP is, that each process can be on the same physical
computer, or they can be at each end of the physical world, and the internet
will then be used to do the transfer of information. In other words, there are no
changes to the program, if communicating internal within the same computer
or between computers.

In the client/server example shown here, one process acts as a server, which
will act on two types of messages.

1. time - the server will return the current time

2. quit - the server will close its communication port and quit

When the server task is started, it will create a listening port and wait for
clients to connect to it. In this example, the server will listen on the IP-port
8080.

45

The World source code for the server task is shown below.

s e r v e r : task [/ l o c a l cmd p] [
lp : open tcp : // : 8080
whi le [p : read lp] [

l : to i n t e g e r ! f i r s t read / part p 1
cmd : as s t r i n g ! read / part p l
p r i n t [” s e r v e r : ” l cmd]
switch cmd [

” qu i t ” [
c l o s e p
break

]
” time” [

a : form now/time
wr i t e p to char ! l ength ? a
wr i t e p a

]
]
wait 1
c l o s e p

]
c l o s e lp

]

A client task will then open a communication port to the IP-address, the server
is located at, and send commands. If the server is located at the same computer
as the client, the IP-address, 127.0.0.1, meaning local-host can be used. The
World source code for a client task is shown below.

c l i e n t : task [] [
p : open tcp : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0
wr i t e p to char ! 4
wr i t e p ” time”
l : to i n t e g e r ! f i r s t read / part p 1
answer : as s t r i n g ! read / part p l
p r i n t [” c l i e n t : ” l answer]
wait 1
c l o s e p

]

In this example, both the server and the client task prints to the terminal. An
example of use is shown below.

s e r v e r ; This w i l l launch the s e r v e r task
c l i e n t ; This w i l l launch one c l i e n t task
s e r v e r : 4 time ; The output from the s e r v e r
c l i e n t : 8 13 : 00 : 08 ; The output from the c l i e n t

We can imagine several client tasks spread across several computers sending the
server task the ”time” command and each getting responses in return. Because
the TCP/IP protocol is used to communicate between processes, it is also pos-
sible to communicate with software written in any other language, that must
have support for TCP/IP communication. The server can be closed by sending
the ”quit” command.

It is my hope, the reader with these examples can see, what little effort it
requires in World to have tasks and processes communicate between them, be
it on the same computer or across multiple physical computers.

46

10 Expanding World

We have seen examples of extensions to World in the above with plotting and
graphics among other things. It is seen, that it is possible to get far with
little effort. The reason for this is the powerful combination of dialects, rich
collection of core functions, a large amount of datatypes built in, and minimal
syntax among other strong features of the language.

But how well is the language suited to for example implementing a com-
pletely new datatype? At one point, I had the need to do calculations with
matrices. Matrices is planned for a future release, but they are not implemented
yet. I really needed this functionality, so what should I do?

10.1 Matrices

I choose a solution, where I implemented matrices using another datatype, and
then programmed a set of functions to be used for calculations with matrices.
I include it here to show as a proof of concept, that such a need isn’t a large
problem and a show-stopper in World.

One very commonly used datatype in World is the block! type. A block is
a series of values of different types. Some examples are shown in Figure 21.

[a b lock o f words]
[1 word ” s t r i n g ” [b lock with in block] 1+2 i]
[

name ”John Nic la sen ”
occupat ion ” student ”
l o c a t i o n ” N i e l s Bohr I n s t i t u t e ”

]

Figure 21: Examples of World blocks.

I then defined a matrix as a block, where the first element was a complex number
(of type complex!) with the real and imaginary parts telling the number of rows
and columns in the matrix. The rest of each matrix was filled with rows times
columns number of reals (of type real!).

I then programmed the functions listen in Table 5, which was just the ones
needed for my calculations.

Table 5: Matrix functions.

Name Specification # arguments

mmul Matrix multiply. 2
mT Matrix Transpose. 1
mdet Matrix Determinant. 1
minv Inverse matrix, Aˆ(-1). 1
mdiag Make diagonal matrix. 1
mprint Print matrix. 1

The implementation was less than 200 lines of code. The full World source
is found in Appendix I.

47

11 The Future of World

In this section, I will briefly reflect on some of the directions and ideas, I have
for the World Programming Language. To interface with other technologies,
other languages, there are basic two ways: calling from World to the outside,
and calling World from the outside.

11.1 Calling from World

Dynamic Linked Libraries

It is fairly easy to define routines in World, as has been shown examples of, to be
able to connect with and call functions in libraries programmed in any language,
that support dynamic linked libraries. A lot of software packages support this
way of operation, so it is obvious to utilize this using World. Interfaces for
databases, libcurl (which is a library with a very rich support for all kinds of
network protocols), and many other useful things could be developed and shared
between users of the language.

Web Services

It is also possible to call web services over the TCP/IP protocol, which is avail-
able out-of-the-box with World.

11.2 Calling World

Beside calling World over TCP/IP, we could also imagine World as a dynamic
linked library itself. I have already done some testing with this approach, and
it is a way to include World as a powerful tool with little foot-print into existing
software packages.

11.3 Compiled Dialect

World runs on a virtual machine, which has been developed from scratch for
the language. Source code is being compiled into machine code for this virtual
machine on-the-fly. To have speed like seen in compiled languages (like C,
Fortran, etc.), we could imagine a dialect in World, which would be compiled
to native machine code. I have done some research in this area, but there is not
a decision made yet. The solution needs to be able to work on different CPUs,
as World itself is written in ANSI C with portability in mind.

11.4 NicomDoc, NicomDB, etc.

I have several software solutions, that I initially developed using Rebol. Nicom-
Doc is one, which is a document format to easily create output as HTML and
TEX. This thesis is written using NicomDoc, which can be found at
http://www.fys.ku.dk/˜niclasen/nicomdoc/

It may make sense at some point to port NicomDoc to World, and it will
not be a huge task, as World is closely related to Rebol.

48

In 2004, I finished a thesis about relational databases at Niels Brock. I had
developed a database in Rebol, and it would make good sense to port that to
World too. Maybe it should wait for a compiled dialect to have top performance.

11.5 World/View and Audio

Recently I have been looking into graphics using OpenGL (also GLSL shaders)
and audio with the help of SDL (Simple DirectMedia Layer). SDL is a cross-
platform development library designed to provide low level access to audio,
keyboard, mouse, joystick, and graphics hardware via OpenGL. I have a desire
to use World to visualize scientific data in real-time and in 3D. That would be
possible with this library. There is also the requirement to create simple GUIs
(Graphical User Interfaces) for applications across platforms (like there is the
X Window System).

What the future will bring, we have to wait and see. It depends also on what
connections, I can make with others, who would be interested in technologies,
like what World can offer.

49

12 Conclusion

In this thesis I have presented the World Programming Language, a computer
programming language developed by me since 2009. World is among other areas
specifically geared to science, and doing this thesis I have investigated program-
ming tasks related to science, and how well World would do in completing such
tasks. After giving the background in the introduction, I pointed out program-
ming tasks related to science in general, and astronomy more specific, and what
current methods are used in these programming situations. I find, that World
is very well suited as a programming tool in many of these areas.

Then I presented a small project related to managing FITS files, that I
carried out, before I looked into different areas, where World was tested and
used as a programming tool.

I looked into how well suited World is to be used together with Bohrium, an
API for parallel computing on GPUs and vector CPUs developed by eScience
at the Niels Bohr Institute. I showed, how easy it is to define routines in World
to call functions in the Bohrium dynamic linked library, and I showed examples
of computations in World, that use these routines calling Bohrium.

I showed, how scientific calculations with units can be done in World with
little effort. I presented dialect extensions to World used for scientific plotting
of graphs and to produce graphics in general using the grafik dialect. And
I showed examples of how pre-emptive multitasking and task communication
using a messaging system is an integrated part of World, and how processes and
interprocess communication is possible with World. I gave an example of how
World can be expanded with new functionality, in this case related to a new
datatype and matrix operations.

At the end I briefly mentioned what directions World is heading at in the
future.

In several sections of this thesis, I refer to examples of scientific papers, I
have been working on or are work-in-progress, and where I have used World one
way or the other. These works have not been published before, and they are
found in the appendices: D ”Spot Life”, E ”Sea Ice Extent”, G ”Dead Mass”,
and H ”Lapse Rate Experiment”.

World has come a long way the last year and a half, while I have been working
on this thesis. I have developed many useful tools with World along the way,
and I have released new versions of World with better networking among other
things.

Today I use World every day as my preferred programming language. I use it
in courses at Copenhagen University, and I use it for other development outside
of the university.

It is my wish and my hope, that others will find World useful, and that this
language can help to make scientific (and other) programming easier.

Programming a computer should be a fun and giving thing to do.

50

13 References

Bohrium, http://bohrium.bitbucket.org

CTAN, Comprehensive TEX Archive Network, http://tug.ctan.org

FITS at NASA/GSFC, http://fits.gsfc.nasa.gov

GeoGebra, http://www.geogebra.org

IRAF, http://iraf.noao.edu

Kelly Johnson, K.I.S.S. principle, https://en.wikipedia.org/wiki/KISS principle

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Language,
https://en.wikipedia.org/wiki/The C Programming Language

LaTeX, https://www.latex-project.org

Rebol Language by Carl Sassenrath, http://www.rebol.com

World Programming Language by John Niclasen,
homepage, http://www.world-lang.org
download, https://github.com/Geomol/World

51

Appendices

52

A World Functions

? Pr int in fo rmat ion about words and va lues .
KWATZ? True f o r KWATZ va lues .
abs Absolute value .
ac to r Def ine a task a f t e r the ac tor model .
add Add two va lues .
a l l Evaluate and return at the f i r s t f a l s e or n . . .
and? F i r s t va lue ANDed with the second .
any−block ? True f o r any−block va lues .
any−context ? True f o r any−context va lues .
any−f unc t i on ? True f o r any−f unc t i on va lues .
any−paren ? True f o r any−paren va lues .
any−path ? True f o r any−path va lues .
any−s t r i n g ? True f o r any−s t r i n g va lues .
any−type ? True f o r any−type va lues .
any−word? True f o r any−word va lues .
any Evaluate and return at the f i r s t va lue that . . .
append Append a value to the t a i l o f a s e r i e s .
a r c co s Inve r s e t r i gonomet r i c c o s i n e in rad ians .
a r c s i n Inve r s e t r i gonomet r i c s i n e in rad ians .
arctan Inve r s e t r i gonomet r i c tangent in rad ians .
arg Complex argument
as−pa i r Combine x and y va lues in to a pa i r .
as−range Combine x and y va lues in to a range .
as Coerce a s e r i e s i n to another datatype witho . . .
back ’ Skip s e r i e s to i t s prev ious p o s i t i o n .
back The s e r i e s at i t s prev ious p o s i t i o n .
binary ? True f o r binary va lues .
bind Bind block or func t i on to a s p e c i f i e d conte . . .
b i t s e t Def ine a b i t s e t o f cha ra c t e r s .
b i t s e t ? True f o r b i t s e t va lues .
b lock ? True f o r block va lues .
break Break out o f a loop , l i k e whi le .
c a l l Execute a command to run another p roce s s .
c a l l ba ck Def ine a ca l l ba ck func t i on with given spec . . .
c a l l ba ck ? True f o r ca l l ba ck va lues .
cat Concatenate and pr in t f i l e s
cd Change the a c t i v e d i r e c t o r y path .
change Change a value in a s e r i e s .
char ? True f o r char va lues .
c l e a r Remove a l l va lues from the cur rent index to . . .
c l o s e Close a port .
co Compile a funct ion , operator or block to ex . . .
comment Ignore the argument value .
comment? True f o r comment va lues .
compile Compile a funct ion , operator or block to ex . . .
compiled ? Te l l i f a func t i on or block i s compiled .
complement One ’ s complement .
complex? True f o r complex va lues .
compose Evaluate a block o f expre s s i ons , only evalu . . .
context Def ine a unique , under ived context .
context ? True f o r context va lues .
copy Copy a value .
cos Trigonometr ic c o s i n e in rad ians .
cosh Hyperbol ic c o s i n e in rad ians .
datatype ? True f o r datatype va lues .
date ? True f o r date va lues .
debase Convert a s t r i n g from a d i f f e r e n t base repr . . .
deg Convert degree s to rad ians .
dehex Convert URL−s t y l e hex encoded (%xx) s t r i n g s . . .
detab Convert tabs in a s t r i n g to spaces . (tab s i . . .
d i Trans late a compiled funct ion , operator or . . .
d i r i z e Return a copy o f the path turned in to a d i r . . .
disasm Trans late a compiled funct ion , operator or . . .
d i v id e F i r s t va lue d iv ided by the second .
do Evaluate a block , f i l e , funct ion , or any ot . . .
does Def ine a func t i on that has no arguments .
dt Delta−time −− Time the eva lua t i on o f a b loc . . .
dump−obj Return a block o f in fo rmat ion about a conte . . .
echo Write arguments to the standard output
e i t h e r I f cond i t i on i s true , eva luate the f i r s t b l . . .

53

emai l ? True f o r emai l va lues .
empty? True i f a s e r i e s i s empty .
enbase Convert a s t r i n g to a d i f f e r e n t base r ep r e s . . .
equal ? True i f the va lues are equal .
e r r o r ? True f o r e r r o r va lues .
e x i t Exit a funct ion , re turn no value .
exp Raise Euler ’ s number e to the power .
f i l e ? True f o r f i l e va lues .
f ind ’ Skip to found value in a s e r i e s .
f i nd Find a value in a s e r i e s .
f i r s t F i r s t value o f a s e r i e s .
f o r Evaluate a block over a range o f va lues .
f o r a l l Evaluate a block f o r every value in a s e r i e . . .
f o r each Evaluate a block f o r each value (s) in a s e r . . .
form Convert a value in to a human−readab le s t r i n . . .
f r e e−a l l Free a l i s t o f World r e s o u r c e s .
f r e e Free a World r e sou r c e .
func Def ine a func t i on with given spec and body .
func t i on ? True f o r func t i on va lues .
get−path ? True f o r get−path va lues .
get−word? True f o r get−word va lues .
get Get the value o f a word .
g lob Generate pathnames matching a pattern
greate r−or−equal ? True i f the f i r s t va lue i s g r e a t e r than or

. . .
g r e a t e r ? True i f the f i r s t va lue i s g r e a t e r than the . . .
grep Pr int l i n e s matching a pattern .
ha l t Stop eva lua t i on o f task .
has Def ine a func t i on that has l o c a l v a r i a b l e s . . .
hd Hexadecimal dump
head ’ Skip s e r i e s to i t s head .
head The s e r i e s at i t s head .
head? True i f a s e r i e s i s at i t s head .
he lp Pr int in fo rmat ion about words and va lues .
i f I f c ond i t i on i s true , eva luate the block .
image? True f o r image va lues .
immediate ? True f o r any−word va lues .
i n c lude [’ f i l e [f i l e ! word ! path !]]
index ? Index number o f the cur rent p o s i t i o n in the . . .
input Inputs a s t r i n g from the conso l e .
i n s e r t I n s e r t a value in to a s e r i e s .
i n t e g e r ? True f o r i n t e g e r va lues .
i s s u e ? True f o r i s s u e va lues .
j o i n Concatenate va lues .
k i l l Terminate a task .
l L i s t d i r e c t o r y contents in long format .
l a s t Last value o f a s e r i e s .
l ength ? Length o f a s e r i e s from the cur rent p o s i t i o . . .
l e s s e r−or−equal ? True i f the f i r s t va lue i s l e s s than or equ

. . .
l e s s e r ? True i f the f i r s t va lue i s l e s s than the se . . .
l i b r a r y ? True f o r l i b r a r y va lues .
l i c e n s e Pr int the World/Cortex l i c e n s e agreement .
l i s t ? True f o r l i s t va lues .
l i t −path ? True f o r l i t −path va lues .
l i t −s t r i n g ? True f o r l i t −s t r i n g va lues .
l i t −word? True f o r l i t −word va lues .
ln Natural (base e) logar i thm .
load−l i b r a r y Load a dynamic l i b r a r y .
load Load a f i l e or s t r i n g . Bind block to g l oba l . . .
l og Base 10 logar i thm .
l o g i c ? True f o r l o g i c value .
loop Evaluate a block a s p e c i f i e d number o f time . . .
l owercase Convert s t r i n g o f cha ra c t e r s to lowercase .
l s L i s t d i r e c t o r y contents .
make Construct a value o f a s p e c i f i e d datatype .
map Appl ies func t i on to s u c c e s s i v e s e t s o f argu . . .
map? True f o r map va lues .
max The g r ea t e r o f two va lues .
min The l e s s e r o f two va lues .
mod Remainder o f f i r s t va lue d iv ided by second .
mold Convert a value to a World−readab le s t r i n g .
more Opposite o f l e s s .
more? True i f a s e r i e s i sn ’ t at i t s t a i l .

54

mult ip ly F i r s t va lue mu l t i p l i ed by the second .
nat ive−op Def ine a nat ive operator with given spec an . . .
nat ive Def ine a nat ive func t i on with given spec an . . .
negate Change the s i gn o f a number .
newl ine ? State o f the newl ine marker with in a block .
next ’ Skip s e r i e s to i t s next p o s i t i o n .
next The s e r i e s at i t s next p o s i t i o n .
node Def ine a node
node? True f o r node va lues .
none? True f o r none va lues .
not−equal ? True i f the va lues are not equal .
not Logic complement .
now Local date and time .
number? True f o r number va lues .
open−port Open a port .
open Open a port .
operator Def ine an operator with given spec and body . . .
operator ? True f o r operator va lues .
or ? F i r s t va lue ORed with the second .
pa i r ? True f o r pa i r va lue s .
paren ? True f o r paren va lues .
parse Parse a s e r i e s accord ing to r u l e s .
path ? True f o r path va lues .
percent ? True f o r percent va lues .
p ick Value at the s p e c i f i e d p o s i t i o n in a compon . . .
poke Change a value at the g iven index .
port ? True f o r port va lues .
power F i r s t number r a i s e d to the second .
pr in Output a value with no newl ine .
p r i n t Output a value f o l l owed by a newl ine .
probe Pr int a molded value and return that same v . . .
pwd Return working d i r e c t o r y name .
q Stop eva lua t i on and e x i t World .
query Return in format ion about a f i l e .
qu i t Stop eva lua t i on and e x i t World .
random Random value o f the same datatype .
range ? True f o r range va lues .
read Read from a f i l e , ur l , or conso l e port .
r e a l ? True f o r r e a l va lues .
r e c e i v e Receive a message .
r e c y c l e Recycle unused memory .
reduce Evaluate e x p r e s s i o n s and return mul t ip l e re . . .
r e f inement ? True f o r re f inement va lues .
remove Remove value (s) from a s e r i e s .
r epeat Evaluate a block a number o f t imes .
r ep l a c e Replace the search value with the r ep l a c e v . . .
r e ta in−a l l Retain a l i s t o f World r e s o u r c e s .
r e t a i n Retain a World r e sou r c e .
r e turn Return a value from a func t i on .
r e v e r s e Reverse a s e r i e s .
r o t a t e Bit r o t a t e a value .
round Round a numeric value . Halves round up (awa . . .
r ou t ine Def ine a l i b r a r y rout ine
rout ine ? True f o r rou t ine va lues .
run Run a World s c r i p t at i t s l o c a t i o n .
same? True i f the va lues are i d e n t i c a l .
save Save to a f i l e
s c a l a r ? True f o r s c a l a r va lues .
second Second value o f a s e r i e s .
s e l e c t Find a value in a s e r i e s and return the va l . . .
send Send a message and return the same message .
s e r i e s ? True f o r s e r i e s va lue s .
set−newl ine Set or c l e a r the newl ine marker with in a bl . . .
set−path ? True f o r set−path va lues .
set−word? True f o r set−word va lues .
s e t Set a word or block o f words to s p e c i f i e d v . . .
s h i f t Bit s h i f t a value .
s i n Trigonometr ic s i n e in rad ians .
s inh Hyperbol ic s i n e in rad ians .
skip ’ Skip s e r i e s forward or backward from the cu . . .
sk ip S e r i e s forward or backward from the cur rent . . .
s o r t Sort a s e r i e s .
source Pr int the source code f o r a word .
s p l i t−path S p l i t s a f i l e or URL path . Returns a block . . .

55

s q r t Square root o f a number .
s t a t s System s t a t i s t i c s . Defau l t i s to re turn tot . . .
s t r i c t−equal ? True i f the va lues are equal and o f the sam . . .
s t r i n g ? True f o r s t r i n g va lues .
s t r u c t Def ine a s t r u c t u r e .
subt rac t Second value subtracted from the f i r s t .
swap−bytes Toggle between l i t t l e −endian and big−endian . . .
switch S e l e c t a cho i c e and eva luate the block that . . .
tag ? True f o r tag va lues .
t a i l ’ Skip s e r i e s to the p o s i t i o n a f t e r the l a s t . . .
t a i l The s e r i e s at the p o s i t i o n a f t e r the l a s t v . . .
t a i l ? True i f a s e r i e s i s at i t s t a i l .
tan Trigonometr ic tangent in rad ians .
tanh Hyperbol ic tangent in rad ians .
task−id ? True f o r task−id va lues .
task Def ine a task with given spec and body .
task ? True f o r task va lues .
ta sk s System tasks . Defau l t i s to show a l l t a sk s .
t e s t Run t e s t s .
th i rd Third value o f a s e r i e s .
time ? True f o r time va lues .
to−deg Convert rad ians to degree s .
to−l o c a l− f i l e Convert a World f i l e path to the l o c a l sy s t . . .
to−world− f i l e Convert a l o c a l system f i l e path to a World . . .
to Construct a new value a f t e r conver s ion .
t r a c e Control eva lua t i on t r a c i ng .
trim Remove whitespace from a s t r i n g . Defau l t re . . .
t ry Try to DO a block .
tup l e ? True f o r tup l e va lues .
type ? Value ’ s datatype .
typese t ? True f o r typese t va lues .
unset ? True f o r unset va lues .
u n t i l Evaluate a block u n t i l i t i s t rue .
uppercase Convert s t r i n g o f cha ra c t e r s to uppercase .
u r l ? True f o r u r l va lues .
va lue ? True i f the word has been s e t .
vec to r Def ine a vec tor .
vec to r ? True f o r vec to r va lues .
wait Wait f o r a duration , a c e r t a i n time , ’ messa . . .
whi l e While a cond i t i on block i s true , eva luate a . . .
word? True f o r word va lues .
wr i t e Write to a f i l e .
xor ? F i r s t value XORed with the second .
zero ? True i f a number i s ze ro .

56

B World Source for Loading FITS Files

World [
T i t l e : ”FITS f i l e u t i l ”
Author : ”John Nic la sen ”

]

ds9 : func [
’ f i l e

] [
i f f i l e ! <> type ? f i l e [f i l e : to f i l e ! f i l e]
i f %. f i t s <> sk ip t a i l f i l e −5 [append f i l e %. f i t s]
c a l l append copy ”ds9 − f i t s ” as s t r i n g ! f i l e

]

read−header : func [
f i l e [f i l e !]
/ a l l
/ l o c a l fh l i n e

] [
fh : make port ! f i l e
open fh
l i n e : as s t r i n g ! copy/ part fh 80
whi le [not f i nd / case /match l i n e ”END”] [

i f l i n e /1 <> #” ” or a l l [p r i n t l i n e]
l i n e : as s t r i n g ! copy/ part fh 80

]
i f a l l [p r i n t l i n e]
c l o s e fh

]

keywords : make map ! [
SIMPLE Simple
BITPIX BitPix
NAXIS nAxis
NAXIS1 nAxis1
NAXIS2 nAxis2
EXTEND Extend
EQUINOX Equinox
RADECSYS RaDecSys
CTYPE1 CType1
CUNIT1 CUnit1
CRVAL1 CRVal1
CRPIX1 CRPix1
CTYPE2 CType2
CUNIT2 CUnit2
CRVAL2 CRVal2
CRPIX2 CRPix2
EXPTIME ExpTime
GAIN Gain
SATURATE Saturate
SOFTNAME SoftName
SOFTVERS SoftVers
SOFTDATE SoftDate
SOFTAUTH SoftAuth
SOFTINST S o f t I n s t
AUTHOR Author
ORIGIN Orig in
DATE Date
COMBINET CombineT
OBJECT Object
RESAMPT1 ResampT1
CENTERT1 CenterT1
PSCALET1 PScaleT1
RESAMPT2 ResampT2
CENTERT2 CenterT2
PSCALET2 PScaleT2
CHECKSUM CheckSum

57

DATASUM DataSum
DATA Data

]

load− f i t s : func [
”Load a FITS f i l e . ”
f i l e [f i l e !]
/ header ”Only load header ”
/ l o c a l fh l i n e l i n e s blk word keyword value buf r e s u l t

data−s i z e x y
] [
blk : copy []
fh : make port ! f i l e
open fh
whi le [

l i n e s : 0
;
; Read header
;
whi l e [

l i n e s : l i n e s + 1
l i n e : as s t r i n g ! copy/ part fh 80
not f i nd / case /match l i n e ”END”

] [
i f a l l [

not f i nd / case /match l i n e ”COMMENT ”
not f i nd / case /match l i n e ”HISTORY ”
l i n e /1 <> #” ”

] [
word : f i r s t load copy/ part l i n e 8
keyword : s e l e c t keywords word
append blk to set−word ! e i t h e r keyword [

keyword] [word]
skip ’ l i n e 10
value : e i t h e r l i n e /1 = #”’” [

next ’ l i n e
trim copy/ part l i n e f i nd l i n e #”’”

] [
p ick to block ! copy/ part l i n e 20 1

]
switch word [

DATASUM
DATE
SOFTDATE
SOFTVERS [value : load value]

]
append blk e i t h e r word ! = type ? value [

to l i t −word ! value
] [

va lue
]

]
]
;
; Skip to data
;
i f l i n e s // 36 > 0 [

copy/ part fh 36 − (l i n e s // 36) ∗ 80
]
buf : copy/ part fh 80
f i nd /match as s t r i n g ! buf ”XTENSION= ’IMAGE”

] []
;
; Read data
;
append blk [data : none]
r e s u l t : make context ! blk
i f not header [

e i t h e r r e s u l t /nAxis = 0 [
parse r e s u l t /DetWin1 [

thru ” :” copy x to ” ,”
thru ” :” copy y to ”]”
to end

58

]
x : f i r s t load x
y : f i r s t load y

] [
x : r e s u l t /nAxis1
y : r e s u l t /nAxis2

]
any [

i f r e s u l t / BitPix = 16 [
data−s i z e : x ∗ y ∗ 2
append buf copy/ part fh data−s i z e − 80
r e s u l t /data : as reduce [’ vec to r ! ’ s i n t 16 data

−s i z e / 2] buf
]
i f r e s u l t / BitPix = 32 [

data−s i z e : x ∗ y ∗ 4
append buf copy/ part fh data−s i z e − 80
r e s u l t /data : as reduce [’ vec to r ! ’ s i n t 32 data

−s i z e / 4] buf
]

]
]
c l o s e fh
r e s u l t

]

59

C World Source for Bohrium Interface

World [
T i t l e : ”Bohrium”
Author : ”John Nic la sen ”

]

bohrium : true

l i bbhc : load−l i b r a r y %/home/ john / . l o c a l / l i b / l ibbhc . so

;
; Common runtime methods
;
bh−runtime−f l u s h : r ou t ine [

”Execute a l l pending i n s t r u c t i o n s . ”
l i bbhc ” bh runt ime f lu sh ” []
void

]

; i n t e g e r
bh−i n t ege r−new−range : r ou t ine [

” Construct a new array with s e q u e n t i a l numbers . ”
[typecheck]
l i bbhc ” bh mul t i a r ray u int64 new range ” [

s i z e [i n t e g e r !] u int64
]
po in t e r handle !

]

bh−i n t ege r−new−view : rout ine [
” Construct a new array from an e x i s t i n g view .”
[typecheck]
l i bbhc ” bh mul t i a r ray u int64 new v iew ” [

source [handle !] po in t e r
rank [i n t e g e r !] u int64
s t a r t [i n t e g e r !] s i n t 64
shape [vec to r !] po in t e r
s t r i d e [vec to r !] po in t e r

]
po in t e r handle !

]

bh−i n t ege r−dest roy : r ou t ine [
” Destroy the array and r e l e a s e r e s o u r c e s . ”
[typecheck]
l i bbhc ” bh mu l t i a r r ay u in t64 de s t r oy ” [

s e l f [handle !] po in t e r ”Array”
]
void

]

; r e a l
; I s su e a sync i n s t r u c t i o n to ensure data i s pre sent in l o c a l

memory space
bh−r ea l−sync : r ou t ine [

”Sync the cur rent view . ”
[typecheck]
l i bbhc ” b h m u l t i a r r a y f l o a t 6 4 s y n c ” [

s e l f [handle !] po in t e r ”Array”
]
void

]

bh−r ea l−get−data : r ou t ine [
”Gets the data po in t e r from a view .”

60

[typecheck]
l i bbhc ” b h m u l t i a r r a y f l o a t 6 4 g e t d a t a ” [

s e l f [handle !] po in t e r ”Array”
]
po in t e r handle !

]

bh−r ea l−new−ones : r ou t ine [
” Construct a new one− f i l l e d array . ”
[typecheck]
l i bbhc ” bh mu l t i a r r ay f l o a t64 new one s ” [

rank [i n t e g e r !] u int64 ”Number o f dimensions ”
shape [vec to r !] po in t e r ”Shape o f array ”

]
po in t e r handle !

]

bh−r ea l−new−empty : r ou t ine [
” Construct a new empty array o f 64 b i t f l o a t s . ”
[typecheck]
l i bbhc ” bh mul t i a r ray f l oat64 new empty ” [

rank [i n t e g e r !] u int64 ”Number o f dimensions ”
shape [vec to r !] po in t e r ”Shape o f array ”

]
po in t e r handle !

]

bh−r ea l−dest roy : r ou t ine [
” Destroy the array and r e l e a s e r e s o u r c e s . ”
[typecheck]
l i bbhc ” b h m u l t i a r r a y f l o a t 6 4 d e s t r o y ” [

s e l f [handle !] po in t e r ”Array”
]
void

]

;
; Copy methods
;
bh−r ea l−i d en t i t y−i n t e g e r : r ou t ine [

”Make in to f l o a t s . ”
[typecheck]
l i bbhc ” b h m u l t i a r r a y f l o a t 6 4 i d e n t i t y u i n t 6 4 ” [

out [handle !] po in t e r
rhs [handle !] po in t e r

]
void

]

;
; Binary methods
;
bh−r ea l−add : rou t ine [

” Addit ion . ”
[typecheck]
l i bbhc ” bh mu l t i a r r ay f l o a t 64 add ” [

out [handle !] po in t e r ”Output”
l h s [handle !] po in t e r ” l h s ”
rhs [handle !] po in t e r ” rhs ”

]
void

]

61

D Spot Life

Spot Life from Planet’s Effective Temperature
By John Niclasen

April, 2016

Abstract. I suggest a method to determine, if an Earth-like planet in the hab-
itable zone around a star supports life. Through a few measurable parameters
for extrasolar planets, I give a simple formula, that will do the trick.

D.1 Introduction

There is a boom of newly discovered planets around other stars in the Milky Way
these years. Better space-based and ground-based observatories is the cause of
all these new discoveries, and new observational projects are launched, which
will lead to even more discoveries. Such a project is run by the Stellar Obser-
vations Network Group (SONG), which through the microlensing observation
method can find Earth-like and even smaller planets around other stars.

It is a very interesting question to determine, if these planets support life or
not.

Table 6: Symbols used

Symbol Description

Ab Bond albedo
L Star’s luminosity
M Mass of planet
r Planet’s distance to its star
Teff Planet’s effective temperature
σ Stefan-Boltzmann constant

D.2 How to Spot

There seem to be a simple equation, that holds for planets without life:

M (1−Ab) ≈ constant (1)

That is, the mass of the planet times the amount of absorption of solar
radiation is a constant. The amount of absorption is 1 minus the Bond albedo
for the planet.

If the Bond albedo is not known, it can be found from the effective temper-
ature, which is given as:

Teff =

(
L

4π r2

(1−Ab)
4σ

)1/4

⇔ (1−Ab) =
16πσ r2

L
T 4
eff (2)

Substituting Eq. (2) into Eq. (1) leads to:

M r2 T 4
eff ≈ constant (3)

, as the luminosity, L, is constant for planets around the same star.

62

D.3 Discussion

In Figure 1 is plotted the result for the inner four planets. M is in units of
Earth mass, r in astronomical units (AU), Teff in Kelvin and I multiplied by
10−9 to get values less than 5.

Planet

M
 r2 T

ef
f4

1 2 3 4

1

2

3

4

Mercury
Venus

Earth

Figure 22: Our Solar System

Even if Mercury isn’t in the habitable zone, Eq. (3) still gives a value close
to Venus and Mars, a good test of the formula. Eq. (3) gives a very different
value for the Earth compared to the other inner planets, and that’s because
life has changed the atmosphere on Earth, so its effective temperature is much
higher, than it would be without life.

There is good reason to assume, the same would be the case for planets with
life in other solar systems.

The question now is, if an effective temperature can be determined for ex-
trasolar planets?

D.4 Conclusion

A simple formula was given, that will help determine, if an Earth-like planet in
the habitable zone around a star supports life.

We already know the mass and distance to the star to a good precision for
many exoplanets. Is it possible also to determine an effective temperature, so
the formula can be used?

63

E Sea Ice Extent

Periodicity of Sea Ice Extent
By John Niclasen

April, 2016

E.1 Early Satellite Data

Year

S
ea

 ic
e

ex
te

nt
 (

m
ill

io
n

km
2)

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 23: Northern hemisphere sea ice extent, 1973-1990.

Data source: http://nsidc.org/data/g00917 Listed platforms are: aircraft, ground
stations, ground-based observations, satellites, ships. Listed sensors are: digi-
tizer, visual observations.

Year

S
ea

 ic
e

ex
te

nt
 (

m
ill

io
n

km
2)

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 24: Southern hemisphere sea ice extent, 1973-1990.

64

Data from same source as in Figure 23.

E.2 Satellite Data 1978-2016

Northern Hemisphere Monthly Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1980 1985 1990 1995 2000 2005 2010 2015

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 25: Northern hemisphere sea ice extent, 1978-2016.

Data source: http://nsidc.org/data/g02135. Listed platforms are: DMSP, DMSP
5D-3/F17, NIMBUS-7, satellites. Listed sensors are: SMMR, SSM/I, SSMIS.

Southern Hemisphere Monthly Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1980 1985 1990 1995 2000 2005 2010 2015

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 26: Southern hemisphere sea ice extent, 1978-2016.

Data from same source as in Figure 25.

65

E.3 A Combined Dataset

If pi is an extent value in the early satellite data, and qi is an extent value in
the new 1978-2016 satellite data, then the adjusted extent value in the early
satellite data, ppi, is found using Eq. (4).

ppi = Api +B (4)

, where A and B is given by Eq. (5) and Eq. (6).

A =
〈qmax〉 − 〈qmin〉
〈pmax〉 − 〈pmin〉

(5)

B = 〈qmax〉 −A〈pmax〉 (6)

Northern Hemisphere

The above described method to find the adjustment parameters, A and B, for
the early dataset to combine it with the late dataset into a new full dataset for
the period 1973-2016, gave these results for the norther hemisphere:

A = 1.056941648192076

B = 0.123270757898819

Northern Hemisphere Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

6

7

8

9

10

11

12

13

14

15

16

17

Figure 27: A comparison of the early and late dataset for the northern hemi-
sphere to verify the adjustment of the early one.

66

Northern Hemisphere Monthly Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 28: The combined dataset for the northern hemisphere.

Northern Hemisphere Monthly Sea Ice Extent Anomaly

Year

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

-3

-2

-1

0

1

2

3-year running mean

Figure 29: Northern hemisphere sea ice extent anomaly with a 3-year running
mean.

The date for each calculated value in the running mean is in the middle of
the three years.

Southern Hemisphere

The method to find the adjustment parameters, A and B, for the early dataset
to combine it with the late dataset into a new full dataset for the period 1973-
2016, gave these results for the souther hemisphere:

A = 0.995315462226912

B = −0.336275617355696

67

Southern Hemisphere Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Figure 30: A comparison of the early and late dataset for the southern hemi-
sphere to verify the adjustment of the early one.

Southern Hemisphere Monthly Sea Ice Extent

Year

S
ea

 ic
e

ex
te

nt
 [m

ill
io

n
km

2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 31: The combined dataset for the southern hemisphere.

68

Southern Hemisphere Monthly Sea Ice Extent Anomaly

Year

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

-5

-4

-3

-2

-1

0

1

2

3

4
3-year running mean

Figure 32: Southern hemisphere sea ice extent anomaly with a 3-year running
mean.

The date for each calculated value in the running mean is in the middle of
the three years.

E.4 Periodicity

AMO

Atlantic Multidecadal Oscillation (AMO)
North Atlantic Oscillation (NAO)

AMO and Northern Hemisphere Monthly Sea Ice Extent Anomaly

Year

A
M

O
 A

no
m

al
ie

s
[C

]

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

-2

-1

0

1

2
Atlantic Multidecadal Oscillation

3-year running mean
Sea Ice Extent

3-year running mean

Figure 33: Comparing the Atlantic Multidecadal Oscillation (AMO) with north-
ern hemisphere sea ice extent anomaly. Notice the y-axis for the AMO is in-
creasing cold up. A 65-year period sine curve is overlaid.

69

Bipolar Seesaw

Northern and Southern Hemisphere Monthly Sea Ice Extent Anomaly

Year

S
ea

 ic
e

an
om

al
y

[m
ill

io
n

km
2]

1975 1980 1985 1990 1995 2000 2005 2010 2015

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Northern Sea Ice Extent Anomaly

3-year running mean
Southern Sea Ice Extent Anomaly

Figure 34: A comparison of the northern and southern hemisphere sea ice extent
anomaly.

Only the 3-year running means are shown. The date for each calculated value
in the running means is in the middle of the three years.

70

F World Source for Fit Script

World [
T i t l e : ”Data F i t t i n g ”
Date : 18−Jan−2015
Vers ion : 1
F i l e : %f i t .w
Author : ”John Nic la sen ”
Purpose : {

Linear Regress ion or Least−Squares Fit f o r a l i n e
}

]

i f va lue ? ’ f i t [e x i t]

f i t : context [

a : 0 . 0
b : 0 .0
r2 : 0 . 0
n : 0
sigma−y : 0 .0
sigma−a : 0 .0
sigma−b : 0 .0

l e a s t−squares : func [
” Linear Regress ion , y = A + Bx”
coords [b lock !] ” [x1 y1 x2 y2 . . .] ”
/ qu i e t
/ l o c a l sum−x sum−y sum−x2 sum−xy d mean−y sum−squares

] [
; See Taylor p . 183 and 197−198
sum−x2 : sum−x : sum−y : sum−xy : 0 .0
f o r each [x y] coords [

sum−x : x + sum−x
sum−y : y + sum−y
sum−x2 : x ∗ x + sum−x2
sum−xy : x ∗ y + sum−xy

]
n : (l ength ? coords) / 2
; Delta = N sum xˆ2 − (sum x) ˆ2
d : (n ∗ sum−x2) − (sum−x ∗ sum−x)
; A = {sum xˆ2 sum y − sum x sum xy over Delta}
a : (sum−x2 ∗ sum−y) − (sum−x ∗ sum−xy) / d
; B = { N sum xy − sum x sum y over Delta}
b : (n ∗ sum−xy) − (sum−x ∗ sum−y) / d
; Unce r t a i n t i e s
; s imga y = sq r t ({1 over N − 2} sum (i = 1) ˆN (y i − A −

B x i) ˆ2)
mean−y : sum−y / n
sum−squares : 0 . 0
sigma−y : 0 .0
f o r each [x y] coords [

sigma−y : y − a − (b ∗ x) ∗∗ 2 + sigma−y
sum−squares : y − mean−y ∗∗ 2 + sum−squares

]
r2 : 1 − (sigma−y / sum−squares)
sigma−y : sq r t sigma−y / (n − 2)
sigma−a : sigma−y ∗ s q r t sum−x2 / d
sigma−b : sigma−y ∗ s q r t n / d
i f not qu i e t [

p r i n t [
newl ine
”A, y0” tab tab a newl ine
”B, dy / dx” tab b newl ine
” sigma y” tab sigma−y newl ine
” sigma A” tab sigma−a newl ine

71

”sigma B” tab sigma−b newl ine
” r2 ” tab tab to percent ! round/ to r2 1e−4 newl ine

]
]

]

]

72

G Dead Mass

On the Dead Mass Constant
By John Niclasen

April, 2016

Abstract. The dead mass constant for Earth-like planets without life in the
habitable zone is studied. Universal formulas to calculate the absorption mass
of all Earth-like planets in the habitable zone are sought, both from the Bond
albedo and the effective temperature.

Knowing the absorption mass of such planets can help determine, if there is
life or not.

G.1 Introduction

Table 7 is a list of the symbols used in this study.

Table 7: Symbols used

Symbol Description

Ab Bond albedo
L Star luminosity
L� Solar luminosity
M Mass of planet
Mκ Absorption mass
Mdead Dead mass
Mlife Life mass
M⊕ Mass of Earth
r Planet’s distance to its star
Teff Planet’s effective temperature

In the study ”Spot Life from Planet’s Effective Temperature” (Niclasen,
2013), a formula for a weighted mass was given. This mass can be called ab-
sorption mass, as it is weighted by the amount of radiation absorbed from the
star, and it will be denoted by Mκ.

Mκ = M (1−Ab) (7)

It was argued, that this quantity is a constant for planets without life in the
habitable zone around a star. The present study will specify the constant both
for the Solar System and for Extrasolar Systems, and it will be studied, what
this constant tells us.

73

G.2 Parameters

Table 8 shows some measured and calculated values for the four inner planets
in our Solar System.

Table 8: Inner Planets

Parameter Mercury Venus Earth Mars

M [1023 kg] 3.302 48.685 59.736 6.4185
M [M⊕] 0.0553 0.815 1 0.107
Ab 0.068 0.90 0.306 0.250
(1−Ab) 0.932 0.10 0.694 0.750
Mκ [1023 kg] 3.08 4.87 41.5 4.81
Mκ [M⊕] 0.0515 0.0815 0.694 0.0803
” ∼ 5% ∼ 8% ∼ 70% ∼ 8%

The last line in Table 8 gives the absorption mass, Mκ, in percentage of the
Earth mass, M⊕.

G.3 Discussion

For planets without life in the habitable zone around a star:

Mdead = Mκ ≈ constant (8)

By looking at the two planets without life in the habitable zone in our Solar
System, Venus and Mars, a value for Mdead can be estimated:

Mdead ≈ 4.84± 0.03× 1023 kg (9)

The value of Mκ for the Earth, which has life, is ∼ 8.6 times larger than
Mdead. The atmospheres of Venus and Mars is almost purely carbon dioxide
(∼ 96.5% for Venus and ∼ 95.32% for Mars by latest measures). On the other
hand, Earth, which has had life for billions of years, now has less than 0.04%
carbon dioxide left in its atmosphere. Under assumption, that the Bond albedo
for Earth doesn’t change much more, as long as it can hold life with the little
carbon dioxide left, some boundaries for the absorption mass, Mκ, can be set
for planets with life in planetary systems similar to our own Solar System.

For planets with life:

Mdead < Mlife ≤ 8.6 Mdead (10)

In Figure 36, curves are plotted for the formulas:

M (1−Ab) = Mdead (11)

M (1−Ab) = 8.6 Mdead (12)

The inner planets without life is found near the curve for Eq. (11). The
values for Earth place it at a long distance on the curve for Eq. (12). The
shaded area is a loose estimate for where planets with life would be found in
such a diagram.

74

Ab

M
 [

10
23

 k
g]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

Mercury Mars

Earth

Venus

M(1 - Ab) = 8.6 M dead

Mlife

M(1 - Ab) = M

Figure 35: Inner Planets.

Hypothesis: The longer to the right, a planet with life is placed in the diagram,
the higher Bond albedo it has, and therefore the heavier atmosphere with more
carbon dioxide, and therefore the earlier the state of life is.

Question: Is it possible to set some limits on the mass of and the Bond albedo
for planets with possible life from this diagram?

The Dead Mass Constant

The Dead Mass constant was estimated in Eq. (9) as:

Mdead ≈ 4.84± 0.03× 1023 kg

This should be thought of as a radiation weighted mass of an Earth-like
planet without life in the habitable zone of a star with a luminosity as our Sun.

Planets with life will have radiation weighted masses higher than this con-
stant, up to the radiation weighted mass of the Earth, which is ∼ 8.6 times this
constant.

This is under the assumption, that the Bond albedo for the Earth can’t get
much lower than its current value of ∼ 0.306, because the atmosphere is so
developed, that there is almost no carbon dioxide left.

75

A Universal Formula

If there is just one planet in the habitable zone around a star, and to be able to
directly compare planets from star to star, a universal formula for the absorption
mass, Mκ, is desired. This can be achieved by including the star luminosity, L,
in values of the solar luminosity, L�.

Mκ ≡
M (1−Ab) L�

L
(13)

Now the dead mass constant, Mdead, estimated in Eq. (9) can be used
universally across planetary systems from star to star.

So if a planet with life orbits a less luminous star than our Sun at the
distance of 1 AU , the planet would need to have a smaller mass than the
Earth to have an equal clear and developed atmosphere as the Earth.

If on the other hand a planet with life orbits a more luminous star than
our Sun at the distance of 1 AU , the planet would need to have a larger mass
than the Earth to have an equal clear and developed atmosphere as the Earth.

Knowing the Effective Temperature

If instead of the Bond albedo, Ab, the effective temperature, Teff , is known, a
similar formula can be constructed.

M r2 T 4
eff L�

L
≈ constant (14)

Eq. (14) holds for Earth-like planets without life in the habitable zone.
For further explanation of Eq. (14), see ”Spot Life from Planet’s Effective

Temperature” (Niclasen, 2013).

G.4 Conclusion

The dead mass constant for Earth-like planets without life in the habitable zone
was studied and interpretation was given. Universal formulas to calculate the
absorption mass of all Earth-like planets in the habitable zone was given, both
from the Bond albedo and the effective temperature. It is assumed, the planet
mass and distance to its star is known.

Knowing the absorption mass of such planets can help determine, if there is
life or not.

76

H Lapse Rate Experiment

Lapse Rate Experiment
By John Niclasen

April, 2016

Abstract. This experiment will test if the dry adiabatic lapse rate holds in an
isolated system.

H.1 Theory

Dry Adiabatic Lapse Rate

The 1st law of thermodynamics states

dQ = dU + dW (15)

⇔ dQ = cV dT + P dV (16)

If, in an ideal gas, a parcel of air moves adiabatically, i.e., no heat is ex-
changed between the parcel of air and its surroundings (dQ = 0), the 1st law of
thermodynamics requires that

cV dT = −P dV (17)

cP dT =
1

ρ
dP (18)

Also assuming Hydrostatic Equilibrium means

dP

dz
= −gρ (19)

Substituting eq. (19) into eq. (18) leads to

dT

dz
= − g

cP
(20)

Eq. (20) is the Dry Adiabatic Lapse Rate (DALR), and is often symbolized
by the greek letter known as Γ.

Γd ≡ −
dT

dz
=

g

cP
(21)

H.2 The Experiment

g

gasTa T

Figure 36: A horizontal tube of gas.

77

As shown in Fig. 1, a tube is filled with gas. This can be ordinary air or some
other gas like carbon dioxide to test different effects with different gasses. The
tube is placed in a horizontal position and is well isolated from the surroundings.
After some time, the gas will reach an equilibrium temperature, so

Ta = Tg (22)

Now the tube is rotated 90 degrees:

g
gas

Tg

T

Figure 37: A vertical tube of gas.

If the dry adiabatic lapse rate holds in an isolated system, then when the ver-
tical tube of gas has reached equilibrium, there will be a temperature difference,
e.g.

Ta < Tg (23)

78

I Matrices

World [
T i t l e : ”Matrix Operat ions ”
Date : 31−Mar−2016
Vers ion : 0 . 1 . 0
F i l e : %matrix .w
Author : ”John Nic la sen ”
Purpose : {Direc t matrix ope ra t i on s us ing b locks and

complex ! as dimension (should be pa i r !) .}

Rights : ” Copyright c© 2016 John Nic lasen , NicomSoft”

History : [
0 . 1 . 0 [31−03−2016 JN {Created . }]

]
]

mmul : make func t i on ! [[
”Matrix mult ip ly . ”
A B
/ l o c a l x y z C i j k v AA BB

] [
x : to i n t e g e r ! A/1/1
y : to i n t e g e r ! B/1/2
z : to i n t e g e r ! A/1/2
C: make block ! x
i n s e r t C x ∗ 1+0 i + (B/1/2 ∗ 1 i)
AA: next A
BB: next B
i : 0
whi le [i < x] [

i : i + 1
j : 0
whi le [j < y] [

j : j + 1
k : 0
v : 0 .0
whi le [k < z] [

k : k + 1
v : (p ick AA i − 1 ∗ z + k) ∗ (p ick BB k − 1 ∗

y + j) + v
]
append C v

]
]
C

]]

mT: make func t i on ! [[
”Matrix Transpose . ”
A
/ l o c a l B rows c o l s i j

] [
B: copy []
rows : to i n t e g e r ! A/1/1
c o l s : to i n t e g e r ! A/1/2
i n s e r t B rows ∗ 1 i + c o l s
j : 0
whi le [j < c o l s] [

j : j + 1
i : 0
whi le [i < rows] [

append B pick A i ∗ c o l s + j + 1
i : i + 1

]
]
B

]]

79

mdet : make func t i on ! [[
”Matrix Determinant , only f o r 2x2 and 3x3 matr i ce s so f a r

. ”
A

] [
; A/1 i s dimension , m+ni
e i t h e r A/1 = 2+2 i [

A/2 ∗ A/5 − (A/3 ∗ A/4)
] [

A/2 ∗ A/6 ∗ A/10 − (A/2 ∗ A/7 ∗ A/9) − (A/3 ∗ A/5 ∗ A
/10)

+ (A/3 ∗ A/7 ∗ A/8) + (A/4 ∗ A/5 ∗ A/9) − (A/4 ∗ A/6
∗ A/8)

]
]]

minv : make func t i on ! [[
” Inve r s e matrix , Aˆ(−1) , only f o r 2x2 and 3x3 matr i ce s so

f a r . ”
A
/ l o c a l C d

] [
C: copy []
i n s e r t C A/1
d : 1 / mdet A
e i t h e r A/1 = 2+2 i [

append C reduce [d ∗ A/5 negate d ∗ A/3 negate d ∗ A
/4 d ∗ A/2]

] [; 3+3 i matr i ce s
append C reduce [

d ∗ mdet reduce [2+2 i A/6 A/7 A/9 A/10]
d ∗ mdet reduce [2+2 i A/4 A/3 A/10 A/9]
d ∗ mdet reduce [2+2 i A/3 A/4 A/6 A/7]
d ∗ mdet reduce [2+2 i A/7 A/5 A/10 A/8]
d ∗ mdet reduce [2+2 i A/2 A/4 A/8 A/10]
d ∗ mdet reduce [2+2 i A/4 A/2 A/7 A/5]
d ∗ mdet reduce [2+2 i A/5 A/6 A/8 A/9]
d ∗ mdet reduce [2+2 i A/3 A/2 A/9 A/8]
d ∗ mdet reduce [2+2 i A/2 A/3 A/5 A/6]

]
]
C

]]

mdiag : make func t i on ! [[
”Make d iagona l matrix . ”
v
/ l o c a l D l i j

] [
l : −1 + length ? v
D: copy []
i n s e r t D l ∗ 1 i + l
i : 0
whi le [i < l] [

i : i + 1
j : 1
whi le [j < i] [

j : j + 1
append D 0 .0

]
append D v/(i + 1)
j : i
whi l e [j < l] [

j : j + 1
append D 0 .0

]
]
D

]]

80

mprint : make func t i on ! [[
” Pr int matrix . ”
M
/ l o c a l x y i j

] [
x : to i n t e g e r ! M/1/1
y : to i n t e g e r ! M/1/2
next ’ M
i : 0
whi le [i < x] [

j : 0
pr in ” ”
whi le [j < y] [

j : j + 1
pr in pick M i ∗ y + j
pr in ” ”

]
pr in ”ˆ/”
i : i + 1

]
head ’ M

]]

81

	Introduction
	A Bit of History
	The World Programming Language
	This Thesis

	Programming Tasks
	Collecting Data
	Research
	Publish

	Methods
	Collecting Data
	Research
	Publish

	A Project in Astrophysics incl. FITS Files
	Loading FITS Files
	Sort and Validate FITS Files

	Parallel Computing
	Bohrium
	helloworld Test
	Minimal Add Test
	Discussion

	Calculations with Units
	Dialects
	gcalc

	Plotting
	Example from "Spot Life"
	Examples from "Periodicity of Sea Ice Extent"
	Fitting a Line
	Plot with Graphics

	grafik
	Basic Graphical Elements
	Computational Graphics

	Multitasking
	Tasks
	Messages
	Processes
	Interprocess Communication

	Expanding World
	Matrices

	The Future of World
	Calling from World
	Calling World
	Compiled Dialect
	NicomDoc, NicomDB, etc.
	World/View and Audio

	Conclusion
	References
	Appendices
	World Functions
	World Source for Loading FITS Files
	World Source for Bohrium Interface
	Spot Life
	Introduction
	How to Spot
	Discussion
	Conclusion

	Sea Ice Extent
	Early Satellite Data
	Satellite Data 1978-2016
	A Combined Dataset
	Periodicity

	World Source for Fit Script
	Dead Mass
	Introduction
	Parameters
	Discussion
	Conclusion

	Lapse Rate Experiment
	Theory
	The Experiment

	Matrices

