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Abstract

The identification of electrons in the ATLAS experiment is done using
a likelihood (LH) based method, which is constructed based on Monte
Carlo simulations. In this work machine learning algorithms have
been employed for electron identification, as these are expected to be
more performant.

The first results in this thesis are from implementation of Boosted
Decision trees (BDTs) based on the same variables and the same MC
samples as the LH. This yields an increase in background rejection
compared to the LH. The improvements decrease when testing the
classifier in data. Therefore, a data-driven training method has been
developed. Data from 2016 at

√
s = 13 TeV has been used. The data-

driven method includes a removal of mis-labeled events providing
99% pure samples for training. The removal is done by separating the
discriminating variables into a calorimeter sub-classifier and an inner
detector sub-classifier. They can be used to remove mis-labeled events
for each other. An isolation classifier has also been constructed to aid
in the cleaning process. The data-driven method was implemented
for two different boosting algorithms for the BDTs and for a neural
network. For adaptive boosting, the results at 92% signal efficiency
corresponding to medium LH, gives an improvement in background
rejection of 94%. For gradient boosting, the improvement is 104%.
Using additional variables yielded an improvement of 109%. The
isolation classifier yields improvements of 100-600% compared to
an often used isolation variable. The implementation of the neural
network results in improvements up to 20% in the calorimeter, while
for the inner detector it performed poorly compared to the BDTs.
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Introduction

This thesis is not a thesis specifically in particle physics or in computer
science but in the field between the two fields. The work during the
project has been focusing on the application of machine learning (ML)
in experimental particle physics. The amount of data in experimental
particle, especially from the LHC, is enormous. With the development
of GPUs and ML algorithms that are highly parallelized, the training
time of the algorithms have decreased drastically. This has increased
the complexity of the algorithm that is within reach in reasonable
training time, and therefore more tasks are solvable using ML.

There are two chapters in this thesis, a theory chapter and a
analysis chapter.

The theory chapter is consisting of an introduction to the ATLAS
experiment, a brief overview of the physics detected by ATLAS, a
introduction to the basics of ML, a description of the identification of
electrons at present and, finally, the method used to obtain data.

In the analysis chapter, the results achieved from implementing
BDTs and neural networks are presented together with all the steps
made to get there. Furthermore, a new approach on how to make
training data-driven is presented.



I Theory
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1.1 The ATLAS detector and LHC

The Large Hadron Collider (LHC) was built for proton-proton, proton-
lead or lead-lead collisions with a high center-of-mass (c.o.m.) energy
in order to study new physics, and with a high collision frequency
to study rare processes. Along LHC, four different experiments are
conducted, ATLAS, CMS, ALICE and LHCb. The four experiments
have individual and overlapping scientific interests.

A map of the four experiments and the different accelerators are
shown in Figure 1.1.

Figure 1.1: The CERN Accelerator
Complex. From [1].

Protons are accelerated through a series of accelerators to increase
the energy of the protons before entering LHC. A proton beam is
injected into the LHC in both directions. When the protons enter the
LHC, they have an energy of 450 GeV. The protons are then further
accelerated to obtain a c.o.m. energy of 13 TeV [2]. After reaching
the required energy, the two opposite directed beams are forced into
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collisions at the four experimental sites along the ring. A beam con-
sists of up to 2808 bunches of protons with each bunch consisting
of around 1011 protons. The bunches are at nominal running sepa-
rated by approximately 25 ns. It is only very few protons that collide
when passing a collision site. After a collision, new particles may be
created and either pass through the detector, or decay to something
less exotic which then passes through the detector. In both cases the
identification of the particles are crucial for searching and studying
new physics.

1.1.1 Overview of the ATLAS detector

The ATLAS detector consist of several nested, cylindrical sub-detectors,
all of them with different purposes to measure different quantities.
There are several sub-detectors where the major and essential parts
are the inner detector (ID), the electromagnetic calorimeter (ECAL),
the hadronic calorimeter and the muon spectrometer. The muon
spectrometer detects muons. For electron identification, ID and ECAL
are the most important ones, and therefore only those two will be
presented in details. The hadronic calorimeter plays a minor role in
electron identification and a major role in the measurement of energy
for hadrons. An overview of the detector is shown in Figure 1.2. In
the following diagrams of the detector, cylindrical coordinates are
used due to the geometry of the detector (R, φ) with center in the
interaction point. z is used as the coordinate along the beam-line. For
describing the trajectory of a particle, transformed polar coordinates
are used, φ and η (pseudorapidity) where η = − ln tan(θ/2) [3].

Figure 1.2: The ATLAS detector.
From [3].
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1.1.2 Inner Detector

The inner detector’s main function is to track charged particles. An
axial magnetic field of 2 T originating from a solenoid coil is sur-
rounding the ID allowing measurements of momentum for charged
particles. The ID is composed of three different sub-detectors, the
Pixel detector which is placed closest to the beamline providing the
best hit resolution, the Silicon Microstrip Tracker (SCT) which has a
lower resolution per hit and the Transition Radiation Tracker (TRT)
which again has lower resolution but also provides identification
information for electrons. The first two detectors covers |η| < 2.5 and
the TRT |η| < 2.0 [4]. All three sub-detectors consists of barrel and
end-cap parts. A schematic figure of the ID barrel is shown in Figure
1.3 and the end-cap is shown in Figure 1.4.

Figure 1.3: The barrel of the Inner
Detector. The insertable B-Layer is
not shown in this figure. From [3].

The Pixel Detector

The pixel detector consists of three cylindrical layers of pixel sensors
in the barrel region, and three layers in the two end-caps. There
are a total of 1744 pixel sensors providing approximately 80 million
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Figure 1.4: The endcap of the Inner
Detector. From [3].pixels. The resolution is 10× 115 µm2 in R− φ× z for the barrel and

R− φ× R for the end-caps. For Run 2, another layer was inserted
before the Pixel detector, the Insertable B-layer (IBL), to overcome the
increasing pile-up [5]. The pixel detector usually provides 3− 4 hits
per track.

The Silicon Microstrip Tracker

The SCT consists of four double-barrel layers and nine end-cap layers.
The SCT provides a resolution of 17× 580 µm2 in R− φ× z for the
barrel and R− φ× R for the end-caps. The SCT is the most powerful
tracker in terms of the relative resolution of a track due to the larger
radius. It is placed further away from the beamline compared to the
pixel detector, and it has an average of 8 hits per charged track, and
therefore it contributes more to the relative resolution.

The Transition Radiation Tracker

The TRT is placed furthest away from the beamline. It consists of
tubes filled with either Xenon or Argon gas. It does not provide
information on η for geometric reasons. When a charged particle
traverses the tubes, the gas inside the tubes is ionized. On average a
charged track will have 30− 36 TRT hits. The probability of an X-ray
producing a transition radiation hit in the straws and thereby having
a high threshold hit depends on the γ-factor of the particles, and
since electrons are lighter than other charged particles, the γ-factor is
higher for electrons. In Figure 1.5, the high threshold hit probability is
shown as a function of the γ-factor. The figure shows data from Run 1.
For higher pile-up, the function is shifted slightly upwards which
results in a worse discrimination between electrons and non-electrons.
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The amount of straws with Xenon has decreased due to leakages and
Argon has replaced Xenon since it is cheaper. For straws filled with
Argon, the difference in the onset is much smaller. Finally, the fraction
of high threshold hits compared to the total number of hits are used
in the TRT likelihood for electron identification.

Figure 1.5: The onset curve for
Xenon gas in the TRT. For an in-
creasing γ-factor the probability
of getting a high threshold hit in-
creases. Electrons usually have a
higher γ-factor than non-electrons
like pions. The data is from Run 1.

1.1.3 The Electromagnetic Calorimeter

The ECAL is a liquid Argon calorimeter. The ECAL is accordion-
shaped. This ensures that no transversing electrons or photons will
pass through undetected, see Figure 1.7.

The barrel has four layers: a presampler and a first, second and
third layer. Unlike ID, these are very different.

The presampler is correcting for energy loss upstream due to
material in the solonoid magnet. For charged particles, the material in
the magnet causes a loss of energy while passing through the magnet
coil. The presampler is very thin in order to measure if a charged
particle is passing through, and it is has a small radiation length such
that the particle is depositing a minimal amount of energy in the layer.
Furthermore, it is also made such that the probability of a photon
converting is small. Depending on η, an additional energy term is
added to the measured energy of the charged particle. It only covers
up to |η| < 1.8.

The first layer provides accurate η measurements. It consists
of strips with a granularity of 4.69 mm or ∆η = 0.0031. This is
approximately 1/8 of the granularity from layer two. In Figure 1.7 it
is shown in details.

The second layer measures the main energy deposit of electrons
and photons. The depth of the layer is 16 radiation lengths. The
granularity in ∆η × ∆φ plane is 0.25× 0.245.

The third layer contributes to the measurement of the shower
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development from particles and the energy entering the hadronic
calorimeter. For electrons, the amount of energy entering the hadronic
calorimeter should be small due to the more than 20 radiation lengths
they have passed through.

From 1.37 < |η| < 1.52, the calorimeter changes from barrel to
end-cap, and therefore the calorimeter is not performing as well in this
crack area. In Figure 1.6, an illustration of the calorimeter is shown.
The endcap covers from 1.52 < |η| < 3.2. ECAL has an interaction
length of approximately one. This means that many hadrons do not
interact in the ECAL, which is where most photons and electrons
deposit their energy. This feature provides a good discrimination
between hadrons and electrons and photons. Furthermore, it is
possible to discriminate between electron and photon shower shapes
in the ECAL.

Figure 1.6: The calorimeters of AT-
LAS. From [3].

1.1.4 The Hadronic Calorimeter

The hadronic calorimeter (HCAL) is a tile calorimeter. It consists of
steel as the passive material and plastic scintillators. It has 8− 10 of
hadronic interaction lengths. Its main purpose is to measure energy
from hadrons. For electron identification, it is used to measure the
amount of energy entering the calorimeter. For electrons, all the
energy is usually deposited in the ECAL but for high energy electrons
a small fraction of the energy can enter the HCAL. For jets this fraction
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Figure 1.7: A section of the barrel
electromagnetic calorimeter. From
[3].
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1.1.5 Electron reconstruction

Electron reconstruction for |η| < 2.47 happens in several steps. For
|η| > 2.47, the ID does not provide tracking information and the
procedure is different. The overview of the reconstruction is listed
below with further details following:

• The calorimeter seed-cluster reconstruction is performed.

• Tracks are reconstructed in the ID.

• Tracks loosely associated to a cluster and with more than 3 SCT
hits are refitted using the Gaussian Sum Filter (GSF) [6].

• Matching the track and cluster to an electron.

Seed-cluster reconstruction

A sliding window corresponding to 3 × 5 blocks with each block
being the granularity of the EM calorimeter middle layer (∆η × ∆φ)
is used to search for seed clusters. A tower is defined as the sum of
the energy of all the layers at an η and φ coordinate. A seed cluster
will be a local maximum above 2.5 GeV. After finding a seed cluster, a
clustering algorithm is used to create the cluster [7]. After completion,
an object of cells called a cluster is formed. In Figure 1.16 top left, the
green blocks represents clusters.
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Track reconstruction

Track reconstruction is done in two steps. The first step is finding a
track seed which consists of three hits in the SCT detector. Second,
the seed is extended to a full track using a Kalman Filter [8]. The
Kalman Filter associates all the likely hits to a track and afterwards
the track is fitted with the global χ2 fitter to find the most probable
track from all the hits associated with the track [9].

Electron hypothesis track fit

The reconstructed tracks are matched with the EM clusters using
the distance in η and φ after extrapolation to the middle layer of
the ECAL. If a track is matched to an EM cluster and it has more
than 3 precision hits, the track is refitted using a GFS. The GSF takes
non-linear bremsstrahlung effects into account and it gives better
tracking for electrons.

Electron candidate reconstruction

The refitted tracks are matched to the EM clusters again with more
strict conditions. If several tracks matches a cluster, a primary track is
picked based on algorithm using the distance R and track information.

After a successful reconstruction, the four momentum for the
electron is calculated based on the best track associated to a cluster
and the energy from that cluster. The energy is based on the cluster
information and η and φ is taken from the track.
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1.2 Electrons and other particles in ATLAS

The LHC collides protons, which are ordinarily found in atomic nuclei,
at very high energies, and as a result it produces particles which can
either be part of the Standard Model (SM), such as electrons and
quarks, or could be new yet unobserved ones.

The production rate is approximately 108 events/s, or in particle
physics terms, the cross section is 108 nb.

Not every event produced is of interest. Most events are results of
scattering at low energies, which have already been studied in details
in previous experiments, and are therefore discarded. The decision of
whether to keep an event is done by the ATLAS trigger systems. If
the passes the triggers the event is kept.

The discovery of the SM Higgs particle and the measurement of
it’s properties is arguably the most interesting result from the LHC
so far. New searches are looking for beyond the SM model Higgs
particles, dark matter candidates, supersymmetry, among others. For
most cases, the new particles decay or interact with the known SM
particles, which can be measured by the detectors.

As an example, the discovery of the Higgs particle was through
different channels such as the H → ZZ∗ → llll. Here, each l is a
lepton. Therefore, the ZZ decay could be yielding a pair of muons
and a pair of electrons, or four particles of the same kind. Due
to conservation laws in particle physics, these leptons always come
in particle-antiparticle pairs, such as electron-positron. Final states
containing electrons are useful in many searches and were crucial in
the Higgs boson discovery, therefore the ability to detect electrons
is important. The cross section of the Higgs boson is 14 orders of
magnitude smaller than the total collision cross section. With help
from many different criteria distinguishing a Higgs boson from an
ordinary event, one still needs to be able to reject 1014 events for each
Higgs produced. This example is just to illustrate the task at hand
when finding particles in ATLAS.

Regardless of the search, contributions from electrons in finding
a particle will for almost all purposes come from a W or Z decay.
Electrons originating from those two particle often come isolated,
meaning the energy in the nearby area is low compared to the electron
energy itself and can be used as a criteria when finding W or Z.

The cross section and production rate of different particles from
the SM are shown in Figure 1.8. Around 90% of p-p collisions are
pions, often produced in association with other hadrons (kaons, pro-
tons). One type of pion is the π0, which almost instantaneously decay
into two photons. Photons interact with the detector electromagneti-
cally and therefore give rise to background when detecting electrons
of interest. Photons do not have a track in ID, but can convert into
an electron-positron pair. These will result in those photons being
detected as electrons (the so-called converted photons), which are
not of interest in an analysis looking for electrons. Fortunately, as
mentioned earlier, π0 are produced in association with other hadrons,
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and by requiring the electrons to be isolated within certain criteria,
most of the π0 can be removed from the sample of electrons under
study.

In this work, only electrons coming from a Z are of interest. The
cross section for Z is roughly 102 nb. The decay of a Z to two electrons
happens 3% of the time. That roughly gives a factor of 108 of other
particles to electrons coming from a Z. This requires the electron
identification to be very efficient at rejecting other particles from
electrons. In order to have a pure sample of Z → ee candidates, one
needs to be able to have at least a factor 108 background rejection.
Overcoming this number is a crucial challenge in this thesis. It is
desired to get above 1010 background rejection rate, resulting in a
sample of Z → ee particles with 99% purity of electrons coming from
Z decays. As with the Higgs, there are requirements like two electrons
and that the invariant mass of the particle pair is within the mass of
the Z that aids in the rejection of background.

Another worthy mention is the bottom quark. It can decay to
a W∗ and a c-quark, and with 10% chance the W will decay to an
electron. This is typically not an interesting event and is considered
background in this work, but since the cross section of b-quarks is
large the contribution to mis-labeled electrons from this source is
large. Often the electron coming from the W will not be isolated, and
an isolation cut can remove most of the b-quark events.

Finally, photons are also present in ATLAS. As mentioned in the
previous section, they have similarities in interaction with the ECAL
but not in the ID compared to electrons. They can originate from
many different processes and converted photons are one of the main
contributors to misclassified electrons.
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Figure 1.8: Particle production in
proton-proton collision. The dashed
line furthest to the right is the en-
ergy at which the LHC operates in
run 2. From [10].
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1.3 Machine learning

Machine learning (ML) is the discipline of analyzing data and find-
ing patterns using algorithms without explicitly programming them.
Two types of tasks are often solved using machine learning, namely
classification and regression problems. In this thesis the task has been
a binary classification problem, so only ML related to classification
problems are covered.

1.3.1 Toy data example

In Figure 1.9.a a classical text book case of a classification problem is
shown. The task is to be able to predict whether a data point is an X
or an O. The data are described by two variables, x1 and x2. So given
the data in the figure, create a model that predicts if new data points
are X or O.

Figure 1.9: Toy classification prob-
lem. In a, the data points are shown
with their respective labels, X and
O. In b a line separating X and O
are made.

In Figure 1.9.b the straight red line is a good division of phase
space for separation of Xs and Os, though one O event is placed on
the X side of the line.

One could use a more complex separation line, which would place
all the events correct. But the O that is on the wrong side, might
be a statistical fluctuation and not a general feature of the X and O
distribution. If a more complicated model is used to learn statistical
fluctuation, the model is over trained.

1.3.2 General concepts in machine learning

In this sub-section general concepts of machine learning will be
presented.

Data

Data is the most important part in ML. The quality of the data is
important and in the case of ATLAS data, the preparation and quality
control is very high. The amount of data is also crucial for the amount
of information or patterns that an algorithm can learn. The more
data, the less likely it is that over training occurs and the more subtle
features in data can be learned if present. The data sample can be
split into sub-samples for training and testing to avoid over training.

Input variables

Data is described by variables. The number of variables can vary
from a few to thousands if not millions. Regardless of the number of
variables, they should contribute with information in the process of
predicting an event. Often a transformation of the variables can be
useful. Later, a simple transformation used in this work is described.
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Labels

For each data point a label follows stating if the event is signal or
background. This is called supervised learning. Unsupervised learn-
ing also exists, which is when no label information is present. In this
thesis, each event has a label and therefore methods for supervised
learning are used. It is important that the labels are correct when
training. Some algorithms are more robust against mis-labeled data
compared to others. In this thesis mis-labeled data and the removal of
such has been important in order to use ML for electron identification.

Algorithms

There exists many different algorithms and they all have different
advantages and weaknesses. For each problem different types of
algorithms might be optimal. The choice of algorithm depends on
the complexity and structure of data, the amount of available data,
number of variables and the correlations between the variables. For
this work the data consists of 8− 12 variables and the number of data
points ranges from thousands to a few million events.

For this work, boosted decision trees (BDT) [11] and neural net-
works (NN) [12] have been considered. This was due to earlier work
done in ATLAS, where BDTs and NNs often are seen performing well.
The BDTs have been used for all the cases. The NNs have only been
used for data where the number of events available for training are
high.

A Fisher’s discriminant is also used in this thesis [13]. It is based
on linear correlation analysis. The red line on Figure 1.9.b could have
been based on a Fisher’s discriminant.

Training & Test

In supervised learning the chosen algorithm needs to be trained on
data to learn the features in order to predict the label of data. That
means finding the parameters for the chosen algorithm that predicts
the best without learning statistical fluctuations. The number of
parameters are often too large to scan the whole parameter space.
Therefore a minimization algorithm is chosen to find the optimal
set of parameters that minimizes the cost function (defined below).
Depending on the chosen ML algorithm the minimization algorithm
varies, especially for NN many different minimization algorithms ex-
ists. Often computing time is limited, and a trade-off occurs between
having a minimizer that quickly finds a minimum or a minimizer that
is good at escaping local minima.

The training is often done on one sub-sample of the data. Usually
this part is the largest fraction of data. The other part is called a test
sample. The test sample is used to test whether the algorithm is doing
as well as in the training sample. If there are significant discrepancies
between the performance on the training sample and the test sample,
over training have occurred.
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If there are discrepancies between test and training, a simpler
algorithm e.g. fewer parameters should be employed, or for NN the
number of training iterations or the number of neurons should be
decreased.

Cost functions

The cost function is the function that has to be minimized such the
the ML algorithm performs as well as possible. For different ML
algorithm different cost functions can be useful. In Figure 1.10 three
different cost functions are shown for BDTs. p1 is the probability
of being correct in a given node. In this thesis cross entropy (CE)
were used for NN. The error-rate (E), is defined as the fraction of
mis-classified events out of the total number of events. As an example,
a tree consisting of two end-nodes with Nsig = 400, Nbkg = 200 and
Nsig = 200, Nbkg = 400 and a tree with Nsig = 200, Nbkg = 0 and
Nsig = 400, Nbkg = 600 would yield the same error-rate (0.33) but the
CE cost function would favor the second tree.

Figure 1.10: Cost functions for BDTs.
p1 is the probability of being correct
in a given node. CE is the cross
entropy, G is the Gini index. E is
the error-rate. The first two favors
pure nodes in trees where the latter
only takes the total mis-classified
events into account. From http://

efavdb.com/notes-on-trees/

Evaluation

The evaluation of the algorithm’s performance can be done in several
ways and is usually done on the test data. In this thesis, the end result
is evaluated with a receiver operating characteristic (ROC) curve. An
example of an ROC curve can be seen in Figure 1.11 bottom. For
better separation between the two distributions, the ROC curve will
go towards the (0, 1) corner of the plot. If there is no separation
between two distributions the ROC-curve will be a straight line from
(0, 0) to (1, 1). Other options are the accuracy or some combination
of the error rate for signal and background.

In the case of electrons and non-electrons, the ROC curve describes
the amount of non-electrons that are accepted as electrons for a
specific amount of electron acceptance also called fakes.

Figure 1.11: Example of a ROC
curve. The yellow line corresponds
to the black dot on the ROC curve.
From [14]

1.3.3 Boosted Decisions Trees

The idea behind a binary classification decision tree is to partition
input space into regions where one label is dominant. After one

http://efavdb.com/notes-on-trees/
http://efavdb.com/notes-on-trees/
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partition of input space there will be some mis-classified events. The
boosting algorithm assigns a higher weight to the mis-classified events
according to the boosting method used, and a new tree is trained on
the re-weighted data. After repeating this procedure, a whole bunch
of trees are created that all predicts if an event is signal or background,
and an average prediction is calculated stating if an event is signal
like or background like. In this work the TMVA BDTs were used
[15]. The boosting algorithm used were adaBoost [16] and Gradient
boosting [17].

Decision tree

An example of a simple decision tree is illustrated in Figure 1.12. In
this example data has three input variables, gender, age and number
of spouses or siblings aboard (sibsp) and it morbidly describes the
survival of passengers on Titanic. The first number in each leave is
the percentage of surviving passengers and the second number is the
percentage of passengers in each leave.

Figure 1.12: Decision tree showing
the survival on Titanic. The first
number in each leave is the percent-
age of surviving and the second
number is the percentage of data
in each leave. From [18].

Adaptive Boosting & Gradient boosting

For Adaptive Boosting (adaBoost) the loss function is an exponential
loss function. For each tree all the misclassified events get a higher
weight that is calculated the following way,

αm =
1− err

err
(1.1)

where err is the error-rate of the tree, err = Nmiss/Ntotal . The weights
are then renormalized such that the sum of weights stays constant.
The overall prediction is calculated the following way,

YM(x) =
1
M

M

∑
m=1

ln(αm)ym(x) (1.2)
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Here YM(x) is the output number from the M trees. ym(x) is the
prediction of the m’th tree. The final number, YM(x), is the sum
of all the individual trees, weighted with the same weights as the
misclassified events are assigned with in the training process.

For Gradient boosting in TMVA the loss function is a binomial log-
likelihood function, L(F, y) = ln(1 + exp(−2F(x)y)). The boosting
procedure changes from adaBoost, and will not be presented here.
One advantage with a Gradient boosting compared to adaBoost is
that it is less sensitive to mis-labeled events [15].

1.3.4 Fisher’s discriminant

A Fisher’s discriminant is an analysis of linear correlation between
input variables. In Figure 1.9, the red line could come from a Fisher’s
discriminant. The Fisher discriminant is calculated the following way,

F = w0 + w̄x̄ (1.3)

where the weight vector, w̄, is calculated using the covariance matrix
for signal and background, ∑S(B) and the mean, µS(B). w0 is the bias,
often used to shift the values such that background is below 0 and
signal is above 0.

w̄ = (ΣS + ΣB)
−1 (µS − µB) (1.4)

After calculating F for signal and background, the two distributions
can be used to calculate a ROC curve.

1.3.5 Neural networks

A neural network (NN) is another ML algorithm that can be used for
classification or regression. It was originally inspired by real neurons
and how they communicate. In this thesis only the feed forward NN
was used though other types exist.

A feed forward NN works from left to right as seen in Figure 1.13.
A single neuron gets activated by an input coming from the left and
outputs a single value to the right. This value works as input for all
the neurons in the next layer. The mapping from input to output is
through an activation function. Originally, the activation function was
inspired by real neurons with a sigmoid function. This results in a
neuron having a threshold value for activation. Now, the activation
functions can take many different shapes. The architecture, meaning
the number of neurons and layers, are important for the performance
of a network. The more neurons and layers the more complicated
features can be learned by the network.

An example of a NN

In Figure 1.13 a NN with an input layer, a hidden layer and an output
layer is shown. Each input variable is fed into the input layer. Each
y1

n represent a neuron from the input layer. They then feed their
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activation into all the neurons in the next layer with a weight, w1
i,j,

which can be different. The superscripts describes which layer it
belongs to, i describes from which neuron in the layer the input
comes from and j to which neuron in the next layer that the input
belongs to. For each neuron in the next layer, a sum of all the input is
made, and the result is put into the activation function, which then
outputs a number. This procedure is continued until the output layer
is reached. For a binary classification problem, the output layer is
either a single neuron or two neurons depending on the activation
function used for the output layer.

Figure 1.13: An neural network
with one hidden layer. From [15].

8.10 Artificial Neural Networks (nonlinear discriminant analysis) 99
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perceptron is the input layer, the last one the output layer, and all others are hidden layers. For
a classification problem with nvar input variables the input layer consists of nvar neurons that hold
the input values, x1, . . . , xnvar , and one neuron in the output layer that holds the output variable,
the neural net estimator yANN.

For a regression problem the network structure is similar, except that for multi-target regression
each of the targets is represented by one output neuron. A weight is associated to each directional
connection between the output of one neuron and the input of another neuron. When calculating
the input value to the response function of a neuron, the output values of all neurons connected to
the given neuron are multiplied with theses weights.

Activation functions

There are different activation functions. In this thesis several different
functions have been tried, but the ones with the most success was
Rectified linear unit (ReLu) and softplus.

Figure 1.14: The shape of the ReLu
and softplus activation functions

ReLu is defined the following way,

f (x) =

0 for x < 0

x for x ≥ 0
. (1.5)

Softplus is defined the following way,

f (x) = ln(1 + ex). (1.6)

ReLu is fast to compute, but it’s derivative, which is important for
optimization of the weights is ill defined in 0. The softplus activation
has the same feature as the ReLu activation, and the derivative is
defined in 0. See Figure 1.14.

For the output layer both a sigmoid and softmax activation func-
tion have been used. The softmax generally worked better than the
sigmoid. The softmax is defined the following way,

Fi(x) =
exp(xi)

ΣJ
j=1exp(xj)

(1.7)
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Here xi is the total input to neuron i in the output layer, and the
numerator is the sum of all the output from the neurons in the output
layer. This ensures that the output layer is normalized, such that the
sum of ΣJ

j=1Fi = 1. In the binary classification case there are two
neurons in the output layer for softmax.

Transformation of input variables

For many ML algorithms a transformation of the input variables
can change the performance of the algorithm dramatically. NNs
are sensitive to preprocessing of the input. The simplest way is a
transformation such that the minimum value and the maximum value
is −1 and 1. Other transformations exists, such as changing the shape
of a distribution, but for this work only this transformation was done.

Cost function

The cost function of a NN is important for the performance of a NN.
There exists different cost functions and a preliminary study showed
that the binary cross entropy performed the best. This cost function
is shown in Figure 1.10.

Back-propagation and minimization algorithms

In order to find the optimal weights for a NN different approaches
can be used. To do this a the back propagation algorithm is used. It
is a way of propagating the errors from the output neurons to the
input neurons. This gives a way to update all the weights based on
the gradient of the cost function such that a minimum is found. In
this work a stochastic gradient decent optimizer have been used. This
method is less likely to end in a local minima of the cost function.
Both the adam and nadam optimizers have been tried, where nadam
performed slightly better than adam. Both of them are stochastic
gradient based optimizer. See [19] for further information.
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1.4 The ATLAS likelihood

At present, the electron identification in ATLAS is based on a likeli-
hood (LH) method. It is based on the variables shown in Figure 1.15.
The distribution of the variables will be shown in Section 2.2.

1.4.1 Construction of the likelihood

The LH method is based on one-dimensional Probability Density
Functions (PDFs) for each of the variables originating from histograms.
It does not take any correlations into account. The PDFs are at present
constructed based on MC simulations. It is based on Z → ee and
J/Ψ → ee for signal and JF17 for background1. The background is1 This information comes from private

correspondence with Joey Reichert, but
I have not been able to find any docu-
ments confirming this.

a di-jet called JF17 where 17 is related to energy in GeV. The LH is
constructed in the following way [20],

dL =
Ls

Ls + Lb
, (1.8)

where the Ls(b) is the LH value for signal (background) and is calcu-
lated the following way,

Ls(b) =
n

∏
i=1

Ps(b),i(xi). (1.9)

x̄ is the input vector with all the variables. Ps(b),i is the PDF con-
structed for signal (background). The PDFs constructed from MC are
shifted linearly and the widths are changed to be more consistent
with data. If no correlation between the variables are present, the
LH is under general circumstances the most powerful discriminant
(Neyman-Pearson Lemma [21]).

The LH has some advantages compared to some of the ML al-
gorithms described in the previous section. Firstly, it is simple to
construct and it does not involve any training step apart from creating
histograms. Secondly, it is not as sensitive to smaller data samples,
since only a one-dimensional PDF needs to be created per variable
for signal and background. ML algorithms might exploit more of the
parameter space but consequently also need more statistics to create
effective classifiers.

1.4.2 Binning of the likelihood

As mentioned earlier, the LH method is the most powerful discrimi-
nant if there are no correlation between variables. This is not the case,
but by binning in η and ET the correlations between the variables are
decreasing and thereby the LH becomes closer at being optimal. It
has 14 bins in pT, and 22 bins in eta 2 [20]. For each combination of2 η: (-2.47, -2.37, -2.01, -1.81, -1.52, -1.37,

-1.15, -0.8, -0.6, -0.1, 0, 0.1, 0.6, 0.8, 1.15,
1.37, 1.52, 1.81, 2.01, 2.37, 2.47)
ET : (7, 10, 15, 20, 25, 30, 35, 40, 45, 50,
60, 80, 150)

phase-space (PS), a PDF for signal (background) is constructed.
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Table 1: Definitions of electron discriminating variables.

Type Description Name
Hadronic leakage Ratio of ET in the first layer of the hadronic calorimeter to ET of the EM cluster Rhad1

(used over the range |η | < 0.8 or |η | > 1.37)
Ratio of ET in the hadronic calorimeter to ET of the EM cluster Rhad

(used over the range 0.8 < |η | < 1.37)
Back layer of Ratio of the energy in the back layer to the total energy in the EM accordion f3
EM calorimeter calorimeter. This variable is only used below 100 GeV because it is known to

be inefficient at high energies.

Middle layer of Lateral shower width,
√

(ΣEiη
2
i
)/(ΣEi ) − ((ΣEiηi )/(ΣEi ))2, where Ei is the wη2

EM calorimeter energy and ηi is the pseudorapidity of cell i and the sum is calculated within
a window of 3 × 5 cells
Ratio of the energy in 3×3 cells over the energy in 3×7 cells centered at the Rφ
electron cluster position
Ratio of the energy in 3×7 cells over the energy in 7×7 cells centered at the Rη
electron cluster position

Strip layer of Shower width,
√

(ΣEi (i − imax)2)/(ΣEi ), where i runs over all strips in a window wstot

EM calorimeter of ∆η × ∆φ ≈ 0.0625 × 0.2, corresponding typically to 20 strips in η, and
imax is the index of the highest-energy strip
Ratio of the energy difference between the largest and second largest energy Eratio

deposits in the cluster over the sum of these energies
Ratio of the energy in the strip layer to the total energy in the EM accordion f1
calorimeter

Track conditions Number of hits in the innermost pixel layer; discriminates against nBlayer
photon conversions
Number of hits in the pixel detector nPixel
Number of total hits in the pixel and SCT detectors nSi
Transverse impact parameter with respect to the beam-line d0
Significance of transverse impact parameter defined as the ratio of d0 d0/σd0

and its uncertainty
Momentum lost by the track between the perigee and the last ∆p/p

measurement point divided by the original momentum
TRT Likelihood probability based on transition radiation in the TRT eProbabilityHT
Track-cluster ∆η between the cluster position in the strip layer and the extrapolated track ∆η1

matching ∆φ between the cluster position in the middle layer and the track extrapolated ∆φ2

from the perigee
Defined as ∆φ2, but the track momentum is rescaled to the cluster energy ∆φres

before extrapolating the track from the perigee to the middle layer of the calorimeter
Ratio of the cluster energy to the track momentum E/p

6

Figure 1.15: Variables used for the
likelihood. From [20]. wstot was not
used for the ML. At the beginning
of the project, the list of variables
was taken from Run 1, where this
variable was not included.
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1.5 Event selection

In order to obtain electrons (signal) and non-electrons (background)
for training of the ML algorithms, event selections are needed. The
way of selecting events are the same as for the LH method [20].

As described in Section 1.2, electrons from Z and W are usually of
interest. Therefore, it is desirable to select electrons from the decay
of one of these particles. However, the selection of electrons needs to
be unbiased. Thus, the selection of electrons cannot be based on any
information that is related to identification, e.g. triggers. For each
event there are many reconstructed particles and it is impossible to
find the electrons picking random particles.

In the case of a Z → ee in an event, one electron can be identified
with a tight identification requirement. This leaves the second electron
unbiased, and if this can be found it can be selected. This procedure
is called Tag & Probe (T&P), and it will be explained in further details
later in this chapter. Electrons from the W are produced with almost a
factor 10 more than the Z electrons and therefore provides an electron
source 10 times as high. But it does not have one electron to trigger
on like the Z but only a neutrino. They cannot be measured by the
detector and they are only seen indirectly through missing energy in
events.

For background selection, selection criteria involve vetos against
electron sources namely, Z and W. This will explained further in
Section 1.5.2.

1.5.1 Tag & Probe

For selection of signal the T&P method is applied on each event.
Every electron candidate is tested as a tag particle and as a probe
particle. They are shown below,

Selection criteria for T&P:

1. Veto LAr Error (Event level).

2. Pass Good Runs List (Event level).

3. Number of verticies > 0 (Event level).

4. |η| < 2.47 (Tag and Probe).

5. Veto on 1.37 < |η| < 1.52 (Tag).

6. ET > 25 GeV (Tag).

7. Pass tight LH (Tag).

8. ET > 15 GeV (Probe).

9. Opposite charge of Tag particle (Probe).

10. B jet veto (not implemented).

11. Only one T&P pair within Zm ± 10 GeV.

The first two criteria relate to the functionality of the detector. The
third requires tracks originating from at least one interaction point
(vertex).
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The next step is to look at the electron candidates that have been
constructed for an event. Only electron candidates within |η| < 2.47
are considered due to the coverage of the ID.

The fifth criterion relates to the crack region of the calorimeter. The
calorimeter is not fully equipped in 1.37 < |η| < 1.52, resulting in a
less certain identification.

The next step is an ET > 25 GeV requirement on the tag electron.
For higher ET , the ability to identify electrons increases, and signifi-
cantly so in the calorimeter. The tag electron also needs to pass tight
LH. This ensures that the tag electron almost certainly is an electron.

The probe electron candidate has an ET > 15 GeV requirement.
For ET < 15 GeV, the number of electrons originating from a Z
compared to background rapidly decreases. This of course limits
the identification of electrons to 15 GeV. For lower energies, another
electron source is used (not implemented for the ML algorithms in
this work, but this is the case for the LH).

The next step is demanding that the T&P pair has opposite signs.
Due to conservation laws in physics, this must be fulfilled.

Also, a b-quark veto is applied. As described in Section 1.2, the
b-quark can decay into a c-quark and a W which then further can
decay into an electron. This type of event does not have interest in
terms of electron identification.

Finally, the T&P pair needs to have an invariant mass close to the
Zmass (±10 GeV). If more than one pair fulfills this requirement the
whole event is skipped to avoid getting fake electrons.

To sum up the procedure, most of the criteria are related to detector
constraints. The tight identification of one electron, the opposite sign
and the invariant mass demand is what makes up the selection of
unbiased electrons. This almost ensure that it was a Z initially and
therefore, if it decayed to electrons, the probe electron candidate will
be an electron.

Finally, if the probe also passes the tag cuts, the two candidates
can change roles, and both cases are selected.

In Figure 1.16, an example of Z → ee is shown. The two green
tracks are electrons and the yellow tracks are typically hadrons. The
T&P procedure makes it possible to find one green track given the
other and knowledge about the Z.

1.5.2 Background selection

For the selection of background, the idea is to exclude any electron
sources, namely electrons from Z and W. The selection criteria are
shown below.

Selection for background:

1. Veto LAr Error (Event level).

2. Pass Good Runs List (Event level).

3. Number of verticies > 0 (Event level).

4. MeT < 25 GeV (Event level).
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Figure 1.16: Example of an Z → ee
event in the ATLAS detector. Two
electron tracks in green are shown.
The yellow tracks are other recon-
structed particles. If both particles
pass the tag and probe criteria both,
will be kept. From [22].
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5. |η| < 2.47 (Particle level).

6. Pt > 15 GeV (Particle level).

7. mT < 40 GeV (Particle level) 3. 3 mT =
√

2ET MeT(1− cos θ) , where θ
is the angle between the particle and the
MeT in the transverse plane8. Zm veto,±20 GeV, paired with particle passing medium likeli-

hood (Particle level).

Most of the requirements are the same as for signal. There are
basically two vetos, one against Z particles and one against W.

The Z veto is the last cut. All electron candidates are paired
together to check if any pairs have an invariant mass close to the Zm.

The MeT and mT are W vetos. MeT is the transverse missing
energy. For W decaying to an electron and a neutrino, the ET of the
neutrino will not be measured, but only seen as missing ET therefore
the cut on MeT. The measurement is not very certain though. The
transverse mass veto is also a W veto.

1.5.3 Data sets

For this analysis, data from 2016 was used at
√

s = 13 TeV. The
EGAM1 derivation produced by the EGamma group was used as the
electron sample, which is selected to have Z → ee events [23].

For background events, the EGAM7 derivation was used. It con-
tains events where at least one HLT e/gamma trigger has fired and
at least one electron has been reconstructed [23]. By adding vetos
against Z and W, the electron candidates left will likely be other
objects reconstructed as electrons. The identification task is exactly to
distinguish between reconstructed real electrons and reconstructed
fake electrons.
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Figure 1.17: The Z peak from T&P
for 2016 data. It contains 4.00× 107

electron pairs.

For MC signal samples Z → ee samples have been used. An MC
background corresponding to real background is difficult to achieve.
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As for the LH, JF17 samples have been used as background. In order
to get background events with higher ET , JF35 and JF50 was used
as well. The TRT conditions were not updated for the JF50. This
contributes to the inconsistency between data and MC and between
MC from different files.

For data, the result from T&P selection is shown in Figure 1.17

before the invariant mass cut. From the tails of the distribution it is
hinted that not all of the events are Z → ee. This will be confirmed in
the next chapter.

The T&P and background selection gives 30 million signal and
background candidate events for data. For MC signal 2.8 million can-
didates and for MC background 17 million candidates are selected.

Name

data16_13TeV:data16_13TeV.00304006.physics_Main.merge.DAOD_EGAM1.f716_m1620_p2689/

data16_13TeV:data16_13TeV.00311170.physics_Main.merge.DAOD_EGAM7.f758_m1710_p2840/

mc15_13TeV.361106.PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.AOD.e3601_s2876_r7917_r7676

mc15_13TeV.423300.Pythia8EvtGen_A14NNPDF23LO_perf_JF17.merge.AOD.e3848_s2876_r7917_r7676/

mc15_13TeV.423302.Pythia8EvtGen_A14NNPDF23LO_perf_JF35.merge.AOD.e3848_s2876_r7886_r7676/

mc15_13TeV.423303.Pythia8EvtGen_A14NNPDF23LO_perf_JF50.merge.AOD.e3848_s2608_s2183_r7773_r7676/

Table 1.1: File used for this study.
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2.1 Introduction to the analysis

The identification of electrons in this work has had three main objec-
tives:

• Implementation of ML methods to improve ID of electrons.

• Make an ID tool based on data alone.

• Include additional variables such as η and 〈µ〉.

The identification will be divided into 25 PS bins in η and ET . This
results in 25 classifiers and it makes reporting of every PS bin difficult.
Therefore, four PS bins covering different η and ET are presented in
details for most steps in the analysis. The other PS bins have been
inspected during the analysis but only their final results are reported.

The results will be presented in the following order:

• Performance of BDT based classifiers on MC.

• Performance of BDT based classifiers on data, including a method
to purify data to allow for a data-based training and the improve-
ments of including additional variables compared to the LH.

• Results from implementation of NN on data.

Finally, the results are summarized in a conclusion and the outlook
of the project is presented.
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2.2 Setup

In this section the general setup of the analysis and variables are
presented.

2.2.1 Phase-space binning

As mentioned in Section 1.4, the LH does not take correlations into
account. To decrease the correlation between variables, a binning
of PS in ET and |η| is done. For the same reasons as with the LH,
binning of PS was done for the ML methods but with fewer bins. The
bin boundaries for |η| are listed in Table 2.1.

|η|

0.8, 1.37, 1.52, 2.01, 2.47

Table 2.1: Bin boundaries for |η|.

There are fewer PS bins to increase the statistics, and due to the
fact that the MVA methods can handle correlations, but by having
some PS bin boundaries, the features that the classifiers need to
learn are simpler, and thereby they reach an optimal solution easier.
Furthermore, it is assumed that the detector identical for positive
and negative η. The PS bin boundary values are all contained in the
likelihood bin boundaries. For ET the PS bin boundaries are shown
in Table 2.2.

ET [GeV]

15, 20, 30, 40, 50

Table 2.2: Bin boundaries for ET .

An example of the effect of binning is shown in Figure 2.1. The
left plot shows the correlation between two calorimeter variables, f1

and Eratio, for ET < 20 GeV and |η| < 1.37. The correlations are
significant and non-linear. By adding a bin boundary in |η| = 0.8, the
non-linear correlation is significantly reduced. The middle plot shows
|η| < 0.8 and the right plot shows 0.8 < |η| < 1.37.

The binning of PS results in a different number of events for each
PS bin for training. In Table 2.3, the number of signal and background
events in data for each PS bin are shown. In Table 2.4, the number of
MC events are shown. Note that from MC to data the range of events
is a few thousands to a few millions.
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Figure 2.1: Distributions of f1 and
Eratio. Left: ET < 20 GeV and
|η| < 1.37. Middle: ET < 20 GeV
and |η| < 0.8. Right: ET < 20 GeV
and 0.8 < |η| < 1.37. Note the re-
duction non-linear correlation be-
tween the variables by adding a bin
in |η| = 0.8.
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Phase-space bin Nsig Nbkg

|η| : 0.0-0.8, ET : 15− 20 GeV 469906 1685462

|η| : 0.0-0.8, ET :20-30 GeV 1108839 1818264

|η| : 0.0-0.8, ET :30-40 GeV 1980751 885217

|η| : 0.0-0.8, ET :40-50 GeV 2009917 496354

|η| : 0.0-0.8, ET :> 50 772805 1271295

|η| : 0.8-1.37, ET :15-20 GeV 270343 1208465

|η| : 0.8-1.37, ET :20-30 GeV 667370 1235842

|η| : 0.8-1.37, ET :30-40 GeV 1266422 589155

|η| : 0.8-1.37, ET :40-50 GeV 1251563 329322

|η| : 0.8-1.37, ET :> 50 GeV 472112 891831

|η| : 1.37-1.52, ET :15-20 GeV 69597 390567

|η| : 1.37-1.52, ET :20-30 GeV 162579 390509

|η| : 1.37-1.52, ET :30-40 GeV 274980 172204

|η| : 1.37-1.52, ET :40-50 GeV 281559 92881

|η| : 1.37-1.52, ET :> 50 116749 261649

|η| : 1.52-2.01, ET :15-20 GeV 196565 946920

|η| : 1.52-2.01, ET :20-30 GeV 470203 974158

|η| : 1.52-2.01, ET :30-40 GeV 754292 440165

|η| : 1.52-2.01, ET :40-50 GeV 762926 233544

|η| : 1.52-2.01, ET :> 50 299217 508931

|η| : 2.01-2.47, ET :15-20 GeV 150401 802763

|η| : 2.01-2.47, ET :20-30 GeV 340632 884479

|η| : 2.01-2.47, ET :30-40 GeV 518046 364099

|η| : 2.01-2.47, ET :40-50 GeV 539061 180897

|η| : 2.01-2.47, ET :> 50 210429 340732

Table 2.3: Number of signal and
background events for data train-
ing in each PS bin from T&P and
background selection.
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Table 2.4: Number of signal and
background events for MC training
in each PS bin from T&P and back-
ground selection.

Phase-space bin Nsig Nbkg

|η| : 0.0-0.8, ET :15-20 GeV 9006 276504

|η| : 0.0-0.8, ET :20-30 GeV 49123 236844

|η| : 0.0-0.8, ET :30-40 GeV 117961 81508

|η| : 0.0-0.8, ET :40-50 GeV 124466 27715

|η| : 0.0-0.8, ET :> 50 44665 17340

|η| : 0.8-1.37, ET :15-20 GeV 5570 1208465

|η| : 0.8-1.37, ET :20-30 GeV 28133 174201

|η| : 0.8-1.37, ET :30-40 GeV 73269 62716

|η| : 0.8-1.37, ET :40-50 GeV 78908 21797

|η| : 0.8-1.37, ET :> 50 GeV 27746 14178

|η| : 1.37-1.52, ET :15-20 GeV 1442 50112

|η| : 1.37-1.52, ET :20-30 GeV 6521 48177

|η| : 1.37-1.52, ET :30-40 GeV 15653 19916

|η| : 1.37-1.52, ET :40-50 GeV 17878 7601

|η| : 1.37-1.52, ET :> 50 6674 5404

|η| : 1.52-2.01, ET :15-20 GeV 4603 145905

|η| : 1.52-2.01, ET :20-30 GeV 20031 129039

|η| : 1.52-2.01, ET :30-40 GeV 43631 46221

|η| : 1.52-2.01, ET :40-50 GeV 49300 16057

|η| : 1.52-2.01, ET :> 50 17569 9576

|η| : 2.01-2.47, ET :15-20 GeV 3885 114159

|η| : 2.01-2.47, ET :20-30 GeV 16052 98368

|η| : 2.01-2.47, ET :30-40 GeV 32121 34875

|η| : 2.01-2.47, ET :40-50 GeV 34016 11943

|η| : 2.01-2.47, ET :> 50 11147 6898
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2.2.2 Input variables

The input variables for classification of electrons will be the same as
for the LH to benchmark against the LH. They will be divided into
calorimeter and ID variables. The reasons for that is to obtain two
sub-classifiers that will aid in purification of data. The sub-classifiers
will be combined into one classifier that will be comparable to the
LH. An isolation classifier will also be constructed based on isolation
variables from the calorimeter and ID. The ID variables will be called
track from now on. Finally, additional variables will be included in
the classifiers to enhance the performance further.

All the variables are high-level variables. As an example f 1 de-
scribes the ratio between the energy in the first layer against the
total energy of a particle. It is a characteristic of the shower shape,
and it is discriminating between different particles. It consists of
energy measurements from different strips and cells and reduces
many measurements into one number. It does so with great success,
and with all the other high-level variables the problem of identifying
electrons is reduced to 8 variables from many variables (strip and
cell measurements in the calorimeter). For most ML algorithms, a
much higher number of variables is not a problem. A future study of
electron identification with low-level variables (strip and cell informa-
tion) and high-level variables would possibly improve the calorimeter
sub-classifier.

The calorimeter variables are shown in Table 2.5.

Calorimeter variables

RHad1, RHad, f3, weta2, Rphi, Reta, Eratio, f1

Table 2.5: Calorimeter variables.

The additional calorimeter variables are:

• η, used to provide indirect information about detector geometry
for the ML algorithm.

• averageInteractionPerCrossing, used to provide information about
pileup. For higher pileup, more noise is present in the detector.
The averageInteractionPerCrossing was used instead of actualInter-
actionPerCrossing since this variable had negative values (known
bug).

The tracking variables are shown in Table 2.6.

Track variables

nOfInnermostPixHits, nOfPixHits, nOfSCTHits,

d0, d0Oversigmad0, dPOverP, deltaEta1, deltaPhiRescaled2 , E/p, TRTPID

Table 2.6: Track variables.

The addtional track varaibles are:

• nOfTRTHits (TRT information)
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• nOfTRTXenonHits (TRT information)

The LH variables a described in details in Figure 1.15.
The isolation variables are all based on energy nearby the particle

in the φ× η plane. A cone30 is a distance, R =
√

∆η2 + ∆φ2 < 0.3,
and etcone30 is the sum of energy from all other particles within a
distance of R < 0.3.

Isolation variables:

• etcone20 (Calorimeter isolation)

• etcone30 (Calorimeter isolation)

• etcone40 (Calorimeter isolation)

• etcone20ptCorr (Calorimeter isolation)

• etcone30ptCorr (Calorimeter isolation)

• etcone40ptCorr (Calorimeter isolation)

• ptcone20 (Track isolation)

• ptcone30 (Track isolation)

• ptcone40 (Track isolation)

New isolation variable:

• ptPU30 (Pileup variable)

To account for the increasing pileup, ptPU30 was created. It is calcu-
lated summing over ET for all tracks within a cone30 coming from a
vertex different from the particle’s vertex.

Instead of using one of the variables for isolation, all of them are
combined to determine better degree of isolation including the new
isolation variable.

In the following, the input variables for data for a given PS bin are
shown. In Figure 2.2, the calorimeter variables are shown. In Figure
2.3, the isolation variables are shown. In Figure 2.4, the tracking vari-
ables are shown. All of the variables are shown after event selection.
The linear correlations between the variables for 0.8 < |η| < 1.37 and
30 < ET < 40 GeV PS bin are shown in Appendix A.1. The additional
variables are weighted such that 〈µ〉 and |η| are the same for signal
and background. The reasons are explained in Section 2.4.
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Figure 2.2: Calorimeter variables for
data for 30 < ET < 40 GeV and
0.8 < |η| < 1.37. This is data ob-
tained from event selection. 〈µ〉 and
η are weighted to be identical for
signal and background for reasons
explained later.
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Figure 2.3: Isolation variables for
data for 30 < ET < 40 GeV and
0.8 < |η| < 1.37. This is data ob-
tained from event selection.
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Figure 2.4: Track variables for
data for 30 < ET < 40 GeV
and 0.8 < |η| < 1.37. This
is data obtained from event selec-
tion. numberOfTRTHits and num-
berOfTRTXenonHits are weighted
with same weight used for 〈µ〉 and
η.
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2.3 MC signal and MC background

In this section the implementation of BDT based classifiers trained on
MC is presented. The variables used for the classifier are the same as
for the LH.

2.3.1 Method

The work-flow for construction of a BDT based classifier trained on
MC is shown in Figure 2.5.

First, a signal sample is created based on T&P on Zee simulation
including all the noise (pile-up) that is present in data. No truth
matching is done, originally in order to keep it as close to data as
possible, but missing all the background present in the signal sample
for data, this was in retrospect a poor choice. A background sample
is created using the background selection on JF17/35/50 simulations
with no truth matching as well. The samples created after the event
selections are called Ntuples. The LH was constructed based on these
signal and background simulation and therefore this is good starting
point for comparison of the LH and BDTs based method.

Figure 2.5: Diagram for construc-
tion of a classifier for electron iden-
tification. The BDTs are trained on
three groups of variables, calorime-
ter, isolation and track variables.
Finally, the calorimeter and track
scores are combined with a Fisher’s
discriminant to create one classifier.

After obtaining the Ntuples, three different BDTs are trained on the
calorimeter, isolation and tracking variables on 80% of the Ntuples.
The number of events for training is shown in Table 2.4. Afterwards,
the BDTs are applied on the last 20% of the Ntuples. The reason for
splitting up the variables into calorimeter, isolation and track is due
to the data-driven method and will be explained later.

The last step is to combine the sub-classifiers into one classifier to
compare with the LH. This has been done for the calorimeter BDT
scores and the tracking BDT scores with a Fisher’s discriminant. For
reasons explained in section 1.4, the isolation is left out of the Fisher’s
such that the LH and the BDT based classifier can be compared on
equal terms.

2.3.2 BDT configuration in TMVA

The settings for the training of the BDTs are the same for each PS bin
and for all three sub-classifiers. Ideally, the hyper-parameters for the
BDTs should be optimized for each classifier and for each PS bin in
|η| and ET . The options chosen for training are the default options in
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TMVA for BDTs with exception of the number of trees, the minimum
amount of data in each node of the BDT and the maximum depth of
the trees [15].

The number of trees have been chosen based on training and test
for the |η| < 0.8, 20 GeV < ET < 30 GeV PS bin.

In Figure 2.6, ROC curves from several different NTrees options are
shown. The blue curve is 50 trees, magenta is 100 trees, red is 200 trees
and green is 400 trees. It shows that there is almost no improvements
from adding more trees, but specially from 200 to 400 there is no
gain. Therefore, 200 trees has been picked. In this particular PS bin
the amount of events to train on is of average size. For PS bins with
fewer events, fewer trees might be optimal, but as seen, more trees
than needed does not degrade the ROC curve. The black curve shows
the ROC curve from a Fisher’s discriminant based on the calorimeter
input variables. The Fisher’s performs significantly worse than the
BDTs, as expected. It is included to show the gain in performance
when using a classifier that takes non-linear correlations into account
(BDTs) compared to a linear-correlation classifier (Fisher’s).

The other options for the BDTs were optimized in preliminary
studies with MinNodeSize=4 and MaxDepth=4 being optimal.

In the following sections, the results from the calorimeter, isolation
and track BDTs are presented.
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Figure 2.6: The ROC curves for the
test sample after training are shown
for the |η| < 0.8 and 20 GeV <

ET < 30 GeV bin. The black curve
is a Fisher, the blue is a BDT with
50 trees, magenta 100 trees, red 200

trees, green is 400. All BDTs per-
form well in terms of separating
electrons from non-electrons.

2.3.3 Calorimeter BDT

In Figure 2.7, the distributions of the calorimeter BDTs for four chosen
PS bins are shown. For |η| < 0.8 and ET < 20 GeV, there is a
small peak in the background region indicating that the signal is not
completely pure. For the crack region the tail from background is
long within the signal region due to the lower discrimination power
of the calorimeter in the crack region.
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Figure 2.7: Distribution of the
calorimeter BDT scores for four dif-
ferent bins. For low energy and cen-
tral electrons, the signal sample is
not completely pure.
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The corresponding ROC curves are shown in Figure 2.8. The ROC
curve is shown as, Bkg acc. = 1− Bkg rej. (Figure 2.6), on the y-axis.
This will be the case throughout this thesis.

Notice how the small subset of mis-labeled events gives the ROC
curve a different shape for the |η| < 0.8 and ET < 20 GeV case. The
actual background acceptance for that PS bin is smaller than what
the ROC curve shows due to the mis-labeled events. Also, the lacking
performance of the calorimeter in the crack region is clear.

Figure 2.8: The corresponding ROC
curves for Figure 2.7. Notice how
the background contamination in
the signal sample changes the shape
of the ROC curve for low energy
central electrons. For signal effi-
ciencies above 0.85, the ROC curve
gives a conservative value for back-
ground acceptance.

Signal efficiency
0.7 0.75 0.8 0.85 0.9 0.95 1

B
ac

kg
ro

un
d 

ac
ce

pt
an

ce

3−10

2−10

1−10

1
 Work in progressATLAS

Calo BDT MC
|<0.8ηEt < 20 GeV, |

| < 1.37η40 GeV < Et < 50 GeV, 0.8 < |
| < 1.52η30 GeV < Et < 40 GeV, 1.37 < |
| < 2.01η20 GeV < Et < 30 GeV, 1.52 < |



analysis 41

2.3.4 Isolation BDT

In Figure 2.9, the results for the isolation BDTs are shown. As with
the calorimeter scores the isolation also shows that there are mis-
labeled events in signal for |η| < 0.8 and ET < 20 GeV. The isolation
distributions are not as smooth as the calorimeter distribution. This
can be due to some of the variables often being zero. Figure 2.10

shows the corresponding ROC curves. The isolation performance in
the crack region does not suffer as the calorimeter performance.
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Figure 2.9: Distribution of the iso-
lation BDT scores for four different
PS bins. For low energy and central
electrons, the signal sample is not
completely pure.
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Figure 2.10: The corresponding
ROC curves for Figure 2.9. Notice
how the crack (green) is slightly bet-
ter than the end-cap (blue). This is
opposite for the calorimeter because
of the crack.
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2.3.5 Track BDT

In Figure 2.11, the results for the track BDTs are shown. In Figure
2.12, the corresponding ROC curves are shown. The ROC curves
shows that the inner detector has less discriminating power than the
calorimeter except in the crack region. For the top right plot, the
background has two slight peaks. It is not clear why, but the mix
of JF17/35/50 can be the cause of this. As mentioned in section 1.5,
the TRT (track related variable) conditions are different for the JF50
simulation compared to the two others.

Figure 2.11: Distribution of the
track BDT scores for four different
bins. For low energy and central
electrons, the signal sample is not
completely pure. Note two slight
peaks for background in top right
plot.
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Figure 2.12: The corresponding
ROC curves for Figure 2.11. No-
tice how the separations are worse
compared to the calorimeter and
isolation. This shows that the inner
detector is less powerful than the
calorimeter at detecting electrons.
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2.3.6 Combining calorimeter and track BDTs

After construction of the 3 classifiers, the calorimeter BDT and the
track BDT are combined with a Fisher’s discriminant. The distribu-
tions of the two BDT scores for two selected bins are shown in Figure
2.13 for signal and background. The correlations between the two
variables varies for the signal (positive BDT score) and background
(negative BDT score) region depending on the PS bin, but as no signif-
icant non-linear features are visible it is reasonable to use a Fisher’s
discriminant to combine the two. For background 40 < ET < 50 GeV
and 0.8 < |η| < 1.37, the two slight peaks are seen with the track
score but not with the calorimeter.
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Figure 2.13: Distribution of the
calorimeter and tracking BDT
scores. The correlations in signal
and background region are small
and linear.

The distribution of the Fisher’s scores are shown in Figure 2.14.
The corresponding ROC curves are shown in Figure 2.15. The ROC
curves for the LH for each of the four PS bins are shown with a
dashed line. For the low energy and central bin, the combined BDTs
perform worse than the LH, possibly due to mis-labeled signal events
and yields a conservative background acceptance above 85% signal
efficiency. For the crack region the relative improvement is the largest.
Since the crack region has a more complicated geometry, more non-
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linear effects are expected. This is the reason for the BDT based
classifier to perform relatively better in the crack region.

Figure 2.14: The distribution of the
Fisher’s discriminant.
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Figure 2.15: The corresponding
ROC curves for the Fisher distri-
butions from Figure 2.14 with the
LH ROC curves in dashed for the
same bins. For |η| < 0.8 and ET <

20 GeV, the LH is doing better than
the Fisher’s. The biggest improve-
ments are in the crack region.
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2.3.7 Results

The results for all 25 PS bins are shown in Figure 2.16, and they
are shown as relative performance improvements. The ROC curves
are evaluated at 92% signal efficiency, and the relative performance
improvements are ratios between background acceptance for the LH
and Fisher’s. It approximately corresponds to the average medium
likelihood efficiency [20]. This is how most results will be reported
throughout this thesis. The crack region sees the largest improvements.
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Most low energy BDTs perform slightly better than the LH. Since the
final goal of electron identification is finding electrons in data, the MC
based classifiers have been tested in data. In Figure 2.17, the results
from applying the classifier in data are shown. The method of how to
apply the classifier in data is presented in Section 2.4. For most PS
bins, there are a decrease in performance and specially for the crack
region. To overcome this effect data based training has to be used.
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Figure 2.16: Performance of the
BDT based classifier relatively to the
the LH performance at 0.92 signal
efficiency in MC. The performance
is calculated as the ratio of back-
ground acceptance of the LH com-
pared to the Fisher’s.
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2.4 Data-driven

In this section, a method to make the training process data-driven is
presented. The motivation for doing so is the minor inconsistencies
between MC and data in the tails of the variable distributions and
however much work was put into the MC, it is difficult to get the
tails and correlations right in a many dimensional space. As seen
in Section 2.3, the MC based classifiers applied in data show some
decrease in performance compared to the LH.

For T&P selection, specially for low-energy electrons, many mis-
classified events are present in the training sample. The main chal-
lenge of the data-driven method is to purify the samples such that an
ML algorithm can train on the data and discriminate electrons from
non-electrons.

2.4.1 Method

In Figure 2.18, an illustration of the implementation strategy for the
data-driven method using BDTs is shown. The EGAM1 (Z → ee) and
EGAM7 (fake electrons) samples, derived from data taken during
2016, are used.

Figure 2.18: Diagram for implemen-
tation of BDTs on data is shown.
Note how the MC trained BDTs are
used for purification. See text for
further explanation.

The BDTs trained on MC from section 2.3 are applied on the
data Ntuples created from event selection. That gives a calorimeter,
isolation and track BDT score for each event based on the MC trained
BDTs. From these scores, it is possible to cut on two of them to create
a more pure data sample for training of the third sub-classifier. This
is done for each sub-classifier. One further iteration where the data
trained sub-classifiers are applied on data for purification would be of
interest to check if the methods converges in the number of electrons
and background events seen by the sub-classifiers in each sample.
This was not done in this thesis though. Another approach similar to
[24] could be used. Instead of training on labeled data, samples where
the average number of signal and background events are known, can
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be used for training. This method yield almost as good results as
fully supervised learning methods and mis-labeled events are of no
concern.

For example, for training of the calorimeter BDTs in data, if both
the track and isolation BDTs indicates the particle at hand in the signal
(background) sample is an electron (non-electron), it is likely that
the particle is signal (background). If this is not the case, the event
will not be part of the training sample, and thereby most mis-labeled
events are removed from the signal (background) samples and only
few correctly labeled events are lost. Ideally, no bias is introduced
in the electron and background samples when cutting on the BDT
scores. A bias could be introduced if the BDT scores are correlated.
The correlations and the effects of cutting on two sub-classifiers will
be studied later in Section 2.4.9.

After training of the data BDTs, they are applied on a different
data Ntuple. Before training of the Fisher’s discriminant, a cut on
the data BDT isolation score is applied to purify the samples. The
calorimeter BDT and track BDT are then combined into a Fisher’s.
Since the Fisher’s contains both the calorimeter BDT and track BDT,
only isolation is left to use for purification. When only cutting on the
isolation BDT, the purity will not be as high as before, but a Fisher’s
discriminant is likely to be less sensitive to mis-classified events.

2.4.2 Purification of data

The cut values for the purification of data on the MC trained BDT
scores have been picked for every bin and for every classifier to be
cs = 0.025 for signal samples and cb = −0.03 for background samples.
These values have been optimized to give clean samples without
cutting hard on the sub-classifiers. If the cut is too tight, statistics are
lost and the effect from cutting in terms of biasing the sample, if any,
is increased.

The invariant mass of the T&P pair is shown in Figure 2.19 before
cutting on the Z mass (T&P cut 11).
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Figure 2.19: Distribution of the in-
variant mass of the T&P pair in
data before and after cutting on the
BDTs scores from MC for different
PS bins.
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For |η| < 0.8 and ET < 20 GeV, the number of mis-labeled events
is large. Notice the difference from the first to second cut is small and
from the second to the third cut is very small. This implies that cutting
on two classifiers is sufficient to get very clean samples. In Figure
2.20, the distributions of the BDT scores from MC trained classifiers
applied on data are shown, before and after cutting on the two other
BDT scores for |η| < 0.8 and ET < 20 GeV. In the signal case, the two
cuts remove the background events from signal, leaving out the signal
peak. For background, the cuts remove the peak in the calorimeter
case, and removes most of the tails towards the signal region for the
two other cases. The background sample in the calorimeter has a peak
in the signal region before cutting, but for isolation and track no peak
is seen. This can be explained by converted photons which becomes
electrons and therefore behave like electrons in the calorimeter, but
do not have electron-like tracks through all of the ID, and the origin
of the photons can be from non-isolated events.
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Figure 2.20: Distribution of the MC
trained BDT scores for |η| < 0.8
and ET < 20 applied on data. The
dashed line is the distribution of sig-
nal and background before cutting
on the two sub-classifiers. The full
line is after the cuts.

Purities & Efficiencies

For each PS bin, estimates of the purities of signal and background
samples are presented. For one PS bin, the number of signal events
in a signal sample is calculated the following way,

Nsig,sig =
Nsig,sig

3cuts

ε
sig,sig
calo ε

sig,sig
iso ε

sig,sig
track

, (2.1)

where, ε
sig,sig
calo is the signal efficiency of the calorimeter sub-classifier

on a signal sample. It is calculated as the amount of signal that is
kept when cutting on the calorimeter after cutting on the two other
sub-classifiers. Nsig,sig

3cuts is the number of events after cutting on all
three sub-classifiers. As seen in Figure 2.20, and in Figure 2.19, the
purities of signal and background are high after applying two cuts.
Thus, it can be assumed that after two cuts, the samples are close at
being pure. The number of mis-labeled events in a signal sample is
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calculated the following way,

Nbkg,sig = Nsig − Nsig,sig. (2.2)

Nsig is the number of events in a signal sample. The amount of signal
and background in a signal sample for training a sub-classifier can
be calculated using the efficiencies of the sub-classifiers. The total
number of signal events in a signal sample is,

Nsig,sig
calo = Nsig,sigε

sig,sig
iso ε

sig,sig
track . (2.3)

The amount of background in a signal sample is estimated using the
acceptance calculated for background at cb = 0.025. The estimated
number of background events in a signal sample is,

Nbkg,sig
calo = Nbkg,sig(1− ε

bkg,sig
iso )(1− ε

bkg,sig
track ). (2.4)

The same procedure is used to estimate the purities in the back-
ground samples but with a cut in cb = −0.03.

Nbkg,bkg =
Nbkg,bkg

3cuts

ε
bkg,bkg
calo ε

bkg,bkg
iso ε

bkg,bkg
track

, (2.5)

Nsig,bkg = Nbkg − Nbkg,bkg, (2.6)

Nbkg,bkg
calo = Nbkg,bkgε

bkg,bkg
iso ε

bkg,bkg
track , (2.7)

Nsig,bkg
calo = Nsig,bkg(1− ε

sig,bkg
iso )(1− ε

sig,bkg
track ). (2.8)

Figure 2.21 shows the purities from the selection of signal and back-
ground and the obtained purities after cleaning the samples for train-
ing of the sub-classifiers. The purities reached are > 99% for most
bins for signal and background. Except the crack region with low
energy where the purity for signal is (95%). That PS bin could be
treated separately with cuts optimized for that region to gain higher
signal purity. This has not been done to keep uniformity of the anal-
ysis. In Figure 2.22, the efficiencies for signal and background for
each sub-classifier are shown. For most bins, the efficiencies are high
(85− 95%) and they also result in pure samples. For the crack region,
the efficiencies are lower.

A study of the impact on the performance of the sub-classifiers
from mis-labeled data would be interesting. This could be done by
truth matching candidates in MC demanding the signal to be electrons
and add different amounts of background into the signal sample and
train the sub-classifier for each level of impurity. Depending on the
results, the purities for training could be optimized by changing the
cut values, if the study shows that the sub-classifiers suffer at present
levels of mis-labeled events.
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Figure 2.21: Top: Signal purity from
T&P (first column) and the purities
for training of each sub-classifier
(next three columns) for each ET
bin. Bottom: Background purities
with the same structure. For signal
ET < 20 GeV and 1.37 < |η| < 1.52,
the purity for training of isolation
and track is low (95%). They suf-
fer from the lack of discriminat-
ing power of the calorimeter in the
crack region. For the rest of the
cases the purities for signal and
background are > 99%. Note dif-
ferent scales.
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Figure 2.22: Top: Efficiency of the
three sub-classifiers for signal (%).
Bottom: Efficiency of the three sub-
classifiers for background (%). Note
different scales.
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2.4.3 BDT configuration in TMVA for data training

As for the MC case, the training configurations of the BDTs for the
data case are the same for each sub-classifier and for each PS bin. The
only option that differs from the MC case is the number of trees. In
Figure 2.23, the performances of different trees are shown. From red
to cyan is 100, 200, 400, 800 and 1600 trees, respectively. There is no
difference in performances from 800 to 1600 trees and therefore the
800 trees option is chosen.

Figure 2.23: For |η| < 0.8 and
20 GeV < ET < 30 GeV, the ROC
curves for test samples after train-
ing. The black curve is a Fisher’s,
red is a BDT with 100 trees, green
200 trees, blue 400 trees, magenta
800 trees and cyan 1600 trees. All of
them perform well in terms of sepa-
rating electrons from non-electrons.
No improvement is seen from 800

trees to 1600 trees.
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Different types of boosting with and without bagging1 has been1 Bagging is a technique that samples a
random subset of data to train each tree.
It is a technique to avoid over-training
[15].

examined. In Figure 2.24, the results are shown. Both bagging and
random (UseRandomisedTrees option in TMVA [15]) has been tried
with different boosting algorithms. The UseRandomisedTrees option
uses a subset of the input variables for the training of each tree instead
of all variables. The gradient boosting (green) performs equally well
with the random gradient boosting, and has therefore been used for
the entire analysis together with adaBoost. The results from gradient
boosting will be shown later. The following presented results are
based on adaBoost.
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Figure 2.24: Performance of dif-
ferent boosting configurations for
|η| < 0.8 and 20 < ET < 30
GeV. The red curve is adaBoost.
The green curve is Gradient boost-
ing, magenta is gradient combined
with bagging and cyan is gradient
with UseRandomisedTrees. Blue
is UseRandomisedTrees combined
with adaBoost. The green is beneath
the cyan, and is performing equally
well. Based on that, gradient boost-
ing without bagging or the use of
random subset of variables has been
implemented for the analysis.
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2.4.4 Calorimeter BDT

In this section, the results of the calorimeter BDTs are presented. After
applying the isolation and track cuts, the calorimeter data BDTs are
trained for each PS bin. The results are shown in Figure 2.25 for four
different bins after cutting on the two other sub-classifiers data based
values. For 1.37 < |η| < 1.52 and 30 < ET < 40 GeV, the calorimeter
is not separating electrons from non-electrons well due to the crack
region. For all four PS bins, the tail from the background is long and
ends well within the signal region. For the MC case, the tails were
smaller and not as electron-like as with background from data.

Figure 2.25: Distribution of the
calorimeter BDT scores for four dif-
ferent bins. They are shown after
cutting on the isolation and track
BDT data based scores.
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The corresponding ROC curves are shown in Figure 2.26. The
crack region is performing poorly relatively to the other PS bins as
expected.

2.4.5 Isolation BDT

In Figure 2.27, the results for the isolation BDTs are shown the same
way as for the calorimeter BDTs. The distributions have spikes due to
the isolation variables often being zero. In Figure 2.28, the correspond-
ing ROC curves are shown. The ROC curve for high ET is separating
better than any of the sub-classifiers, indicating the isolation criteria is
a better discriminator for electrons from non-electrons. However, this
is likely an artifact of high energy electrons being more clean already.

2.4.6 Track BDT

In Figure 2.29, the results for the track BDTs are shown the same
way as for the calorimeter BDTs. In Figure 2.30, the corresponding
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Figure 2.26: The corresponding
ROC curves for Figure 2.25. The
ROC curve from the crack region is
performing poorly compared to the
other bins.
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Figure 2.27: Distribution of the data
trained isolation BDT scores for
four different bins. They are shown
after cutting on the calorimeter and
track BDT data based scores.
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Figure 2.28: The corresponding
ROC curves for the distributions in
Figure 2.27. For high energy the
isolation BDTs becomes more dis-
criminating.
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ROC curves are shown. The variation in performances are smaller
compared to the calorimeter and isolation performances.

Figure 2.29: Distribution of the data
trained track BDT scores for 4 dif-
ferent bins. They are shown after
cutting on the calorimeter and iso-
lation data trained scores.
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2.4.7 Combining calorimeter and track BDTs

After applying the three sub-classifiers on a new Ntuple with data
(test sample) and cutting on the isolation score, the calorimeter and
track BDT scores are combined with a Fisher’s discriminant as in the
MC case. The distribution of the calorimeter and track BDTs in two
bins are shown in Figure 2.31 for signal and background, after cutting
on the isolation data BDT with same cut values as described earlier
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Figure 2.30: ROC curves for the dis-
tributions in Figure Figure 2.29. The
ROC curves have less variation than
for the two other classifiers.

for signal and background.
Combining the two scores with a Fisher’s is reasonable given the

signal and background distributions. The distributions of the Fisher’s
discriminants are shown in Figure 2.32. The corresponding ROC
curves are shown in Figure 2.33. The isolation cut is not providing
samples with the same high purities as for training of the three sub-
classifiers. Specially for the low energy cases this is the case. As
mentioned earlier, training of the Fisher’s should not suffer from
mis-labeled events but this has not been tested.

2.4.8 Results

The results for every PS bin are shown in Figure 2.34. For every
PS bin, except 0.8 < |η| < 1.37 and ET < 20 GeV, the classifiers
are performing better than the LH. The performances are measured
at 92% signal efficiency corresponding to medium LH. Figure 2.35

shows results from the gradient boosting based training. In Figure
2.36, the results from adaBoost with additional variables are shown.
Later, further details on how to include more variables are presented.
Comparing adaBoost and adaBoost with additional variables, a few
PS bins show lower performances for the additional variables case
which is surprising. The gradient boosting classifier is performing
better in the crack region where most mis-labeled events are present.

For all cases, the overall pattern for increasing ET and |η|, is in-
creasing relative performances compared to the LH. While the latter
was expected, the former was a surprise.

A total measure of improvements is obtained by transforming the
signal and the background distributions such that they have a mean of
1 and −1, respectively. This transformation does not change the ROC
curve for a particular PS bin. It can be done with two parameters,
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Figure 2.31: Distribution of
calorimeter and track scores for
signal and background. For both
bins, a linear cut is reasonable.Figure 2.32: Fisher’s distribution
for signal and background for four
different bins after cutting on iso-
lation. The samples are not com-
pletely pure, especially for lower
energies.
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Figure 2.33: The corresponding
ROC curves for the distributions
from Figure 2.32. The dashed line
is the LH for the corresponding bin.
The improvement is biggest for the
crack-region.
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Figure 2.34: The performance of
the combined calorimeter and track
BDTs in a Fisher’s for every bin
based on the adaBoost trained
BDTs.
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Figure 2.35: The performance of
the combined calorimeter and track
BDTs in a Fisher’s for every bin
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trained BDTs.



60 electron identification using machine learning in the atlas experiment with 2016

data

Figure 2.36: Results from adaBoost
using additional variables where
the events are weighted such that
〈µ〉 and η are the same for signal
and background. Note that for a
few of the PS bins the performances
are slightly worse than the classi-
fiers without the additional bins.
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namely,

1 = B(A + Fsig), (2.9)

−1 = B(A + Fbkg). (2.10)

where,

A =
1
B
− Fsig, (2.11)

B =
2

Fsig + Fbkg
, (2.12)

with Fsig (Fbkg) being the average of the distribution from the classifier
for signal (background). This ensures that every bin has a signal and
background mean at the same value, and therefore the distributions
can be stacked across different PS bins. The stacked distributions from
the transformed adaBoost are shown in Figure 2.37. The correspond-
ing ROC curve is shown in Figure 2.38. The figure also contains the
ROC curve from the stacked LH distributions, gradient boosting and
adaBoost with additional variables. The ROC curves show that for a
signal efficiency at 92%, the total improvement is 94% for adaBoost
and 104%for gradient boosting. adaBoost with additional variables
has a gain of 109%. The improvements are relatively flat for tighter
signal efficiencies. This can be translated into signal efficiency gain of
4-5% at the same background acceptance.

This transformation is the simplest way of adding the distributions
for all the PS bins. And for a different transformation a different
ROC curve might be obtained. Another way could be to change the
distribution such the 92% of signal would be at 1. The first one was
chosen for its simplicity. The total ROC curve can vary depending on
the chosen transformation.
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Figure 2.37: Stacked distribution for
each PS bin transformed such that
the mean for signal and background
is 1 and −1, respectively.
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2.4.9 Effects of correlations between sub-classifiers

The linear correlation between the sub-classifiers for each PS bin
shown in Figure 2.39 after purification in data. The linear correlation
between calorimeter and track, and track and isolation are small. For
calorimeter and isolation the correlations are larger.

|eta| 0.0-0.8 Et 15-20 

|eta| 0.0-0.8 Et 20-30 

|eta| 0.0-0.8 Et 30-40 

|eta| 0.0-0.8 Et 40-50 

|eta| 0.0-0.8 Et > 50

|eta| 0.8-1.37 Et 15-20 

|eta| 0.8-1.37 Et 20-30 

|eta| 0.8-1.37 Et 30-40 

|eta| 0.8-1.37 Et 40-50 

|eta| 0.8-1.37 Et > 50

|eta| 1.37-1.52 Et 15-20 

|eta| 1.37-1.52 Et 20-30 

|eta| 1.37-1.52 Et 30-40 

|eta| 1.37-1.52 Et 40-50 

|eta| 1.37-1.52 Et > 50

|eta| 1.52-2.01 Et 15-20 

|eta| 1.52-2.01 Et 20-30 

|eta| 1.52-2.01 Et 30-40 

|eta| 1.52-2.01 Et 40-50 

|eta| 1.52-2.01 Et > 50

|eta| 2.01-2.47 Et 15-20 

|eta| 2.01-2.47 Et 20-30 

|eta| 2.01-2.47 Et 30-40 

|eta| 2.01-2.47 Et 40-50 

|eta| 2.01-2.47 Et > 50

Li
ne

ar
 C

or
re

la
tio

n 
F

ac
to

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sig
Bkg

 Work in progressATLAS

Data
Calo-Iso

|eta| 0.0-0.8 Et 15-20 

|eta| 0.0-0.8 Et 20-30 

|eta| 0.0-0.8 Et 30-40 

|eta| 0.0-0.8 Et 40-50 

|eta| 0.0-0.8 Et > 50

|eta| 0.8-1.37 Et 15-20 

|eta| 0.8-1.37 Et 20-30 

|eta| 0.8-1.37 Et 30-40 

|eta| 0.8-1.37 Et 40-50 

|eta| 0.8-1.37 Et > 50

|eta| 1.37-1.52 Et 15-20 

|eta| 1.37-1.52 Et 20-30 

|eta| 1.37-1.52 Et 30-40 

|eta| 1.37-1.52 Et 40-50 

|eta| 1.37-1.52 Et > 50

|eta| 1.52-2.01 Et 15-20 

|eta| 1.52-2.01 Et 20-30 

|eta| 1.52-2.01 Et 30-40 

|eta| 1.52-2.01 Et 40-50 

|eta| 1.52-2.01 Et > 50

|eta| 2.01-2.47 Et 15-20 

|eta| 2.01-2.47 Et 20-30 

|eta| 2.01-2.47 Et 30-40 

|eta| 2.01-2.47 Et 40-50 

|eta| 2.01-2.47 Et > 50

Li
ne

ar
 C

or
re

la
tio

n 
F

ac
to

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sig
Bkg

 Work in progressATLAS

Data
Iso-Track

|eta| 0.0-0.8 Et 15-20 

|eta| 0.0-0.8 Et 20-30 

|eta| 0.0-0.8 Et 30-40 

|eta| 0.0-0.8 Et 40-50 

|eta| 0.0-0.8 Et > 50

|eta| 0.8-1.37 Et 15-20 

|eta| 0.8-1.37 Et 20-30 

|eta| 0.8-1.37 Et 30-40 

|eta| 0.8-1.37 Et 40-50 

|eta| 0.8-1.37 Et > 50

|eta| 1.37-1.52 Et 15-20 

|eta| 1.37-1.52 Et 20-30 

|eta| 1.37-1.52 Et 30-40 

|eta| 1.37-1.52 Et 40-50 

|eta| 1.37-1.52 Et > 50

|eta| 1.52-2.01 Et 15-20 

|eta| 1.52-2.01 Et 20-30 

|eta| 1.52-2.01 Et 30-40 

|eta| 1.52-2.01 Et 40-50 

|eta| 1.52-2.01 Et > 50

|eta| 2.01-2.47 Et 15-20 

|eta| 2.01-2.47 Et 20-30 

|eta| 2.01-2.47 Et 30-40 

|eta| 2.01-2.47 Et 40-50 

|eta| 2.01-2.47 Et > 50

Li
ne

ar
 C

or
re

la
tio

n 
F

ac
to

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Sig
Bkg

 Work in progressATLAS

Data
Track-Calo

Figure 2.39: Linear correlation
between sub-classifiers after cut-
ting on all three sub-classifiers.
Top: Linear correlation between the
calorimeter BDT score and isolation
BDT scores. Middle: Linear corre-
lation between isolation and track.
Bottom: Linear correlation between
calorimeter and track.

The effect from the purification process and the correlations be-
tween the sub-classifiers can be studied in MC for signal and back-
ground, where the truth of the particles are known. The method from
Figure 2.5 (MC method) and Figure 2.18 (data-driven method) have
both been applied on MC to see the differences in performance. If
the performances of the two cases are the same, it implies that the
purification process does not introduce any biases, and specially that
the correlations between the calorimeter and isolation sub-classifiers
does not change the results. The results of the two methods are shown
in Figure 2.40. It is shown for the additional variables case and it is
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the background acceptance at 92% signal efficiency.
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Figure 2.40: Background acceptance
at 92% signal efficiency for a classi-
fier following the pure MC method
from section 2.3 (no cuts) and a
classifier following the data-driven
method from section 2.4 (with cuts).
Both of them are trained on MC.
The results are similar, and the per-
formances of the classifiers does not
change significantly, implying that
cutting on two sub-classifiers do not
have an effect on the results when
the samples are clean.

The background rejection at 92% signal efficiency is similar for
the two methods. For 10/25 PS bins the performances improve
when following the data-driven method, and for 10/25 PS bins the
performances decrease. 5 of the PS bins have the same background
acceptance. It does not make a significant changes in performances
whether the MC method is used or the data-driven method is used.
Ideally, it should be tested in the data-data case. The very reason for
using the purification process, impurities in signal and background,
is not allowing a study of the effects in data, since it is not possible to
train on mis-labeled training samples if the mis-labeling is too large.
Also, when too many mis-labeled events are present the final ROC
curves do not show the actual separation.

2.5 Additional variables

In order to include η and 〈µ〉, a re-weighting of signal and background
for the two variables are needed such that they are the same for
signal and background. They do not discriminate in themselves and
therefore they need to be weighted such that they are the same for
signal and background. That ensure that the ML algorithms does not
gain additional discrimination due to the variables themselves but it
allow them to possibly increase the discriminating power of the other
variables.

2.5.1 Re-weighting

For the calorimeter sub-classifier, the additional variables are η and
〈µ〉. They can contribute to the discrimination of electrons to non-
electrons with information on the activity in the detector (〈µ〉) or the
exact detector geometry (η) for an event.

For the track classifier, additional information from the TRT is in-
cluded. For both variables, numberOfTRTHits and numberOfXenon-
Hits the distributions are the same for signal and background.

In section 2.2, η and 〈µ〉 are shown re-weighted. In Figure 2.41, the
weight distribution is shown together with η and 〈µ〉.
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Figure 2.41: Blue is signal and red
is background. Left: Weight dis-
tribution. Middle: |η| distribution.
Right: 〈µ〉. All are shown for 30 <

ET < 40 GeV and 0.8 < |η| < 1.37
bin. Note no huge weights.

2.5.2 Performance as a variable of eta, mu and Et

One concern doing electron identification, is the performance as a
function of different variables. The ever increasing luminosity of LHC,
forces the classifiers to be as flat as possible in 〈µ〉. It is also desirable
to have a classifier which is efficient in |η| and ET . The behavior of the
classifiers has been studied with adaBoost, adaBoost with additional
variables and for the LH.

Figure 2.42 shows the performance as a function of |η|, 〈µ〉 and
ET . For |η| the shape of the performance curve is the same as for
the LH. The adaBoost with additional variables performs slightly
better compared to the adaBoost with LH variables as expected. For
higher |η| the distribution is much more flat compared to the LH.
The increasing improvement with increasing |η|, shown earlier is
also seen in the figure. For 〈µ〉, the performance is decreasing with
increasing 〈µ〉 which is expected since increasing 〈µ〉 results in more
activity in the detector. The performance curve is more flat than the
LH, and with the increasing 〈µ〉 in the LHC the relative performance
of a BDT based classifier would increase more than reported here.
The ET performance curve follows that of the LH.
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Figure 2.42: performance check.
Top: Performance as a function of η.
The BDT classifier is more flat then
LH. Middle: Performance as a func-
tion of 〈µ〉. Curve is more flat than
the LH. This is very desirable due
to the increasing 〈µ〉 in the LHC.
Bottom: Performance as a function
of ET . The shape is the same as the
LH.
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2.6 Isolation

In many analyses, searching for new particles involve isolated elec-
trons. The isolation is typically based on a cut in the etcone30 variable
[20]. In this section the gain of combining all the isolation variables is
presented. It is only shown for the data case and for adaBoost. The
distributions of the isolation BDTs can be seen in Section 2.4 and the
distribution of etcone30 is shown in Section 2.2.

The results are shown in Figure 2.43. The figure shows the relative
improvement of the isolation BDT compared to etcone30 at 92% signal
efficiency. This is after purifying data using the calorimeter and track
data trained BDTs. As expected the relative performances are much
better, and using an isolation BDT instead of etcone30 would decrease
the background significantly when searching for new particles with
ATLAS.

Figure 2.43: The relative perfor-
mance of the data isolation BDT
compared to the etcone30 variable.
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2.7 Neural networks

The training of the NN follows the same scheme as the one presented
in section 2.4, Figure 2.18. The BDTs trained on MC have been used
to purify the data samples. Afterwards, three NNs have been trained
in data with the calorimeter, isolation and tracking variables. Only
the NNs trained in the calorimeter and track are presented.

The architecture of the NNs are the same for each sub-classifier
and for each PS bin. The number of neurons in the first layer is equal
to the number of input variables with ReLu activation. The second
layer has 20 neurons with ReLu activation. The third layer has 20
neurons with softplus activation and, finally, the output layer has
two neurons with softmax activation. The loss function is a binary
cross entropy. The optimizer used is nadam [19]. In preliminary stud-
ies, different architectures were tried with more layers with varying
number of neurons, fewer layers and different optimizers. Ideally,
the optimization would be done for each sub-classifier and for each
PS bin. The NNs require more tuning for optimal solutions than the
BDTs do, but due to limited time this was not done.

In Figure 2.44, the distributions of the calorimeter and track NNs
for the 40 < ET < 50 GeV and 0.8 < |η| < 1.37 PS bin are shown for
both training and test. Training and test for signal and background
should have the same shape. The distributions are not normalized,
but the shapes are similar for training and test, and the corresponding
ROC curves are shown in Figure 2.45. The ROC curves are similar for
training and test which shows that the shapes of the distributions are
the same and indicates no over training. Note the track distributions
are less separated than the calorimeter distributions.

In Figure 2.46, the relative performances of the calorimeter NN
compared to the calorimeter BDT at 92% signal efficiency are shown.
The comparison is between the adaBoost data trained BDTs. The
relative performances are the ratios between the BDT background
acceptances compared to the NN background acceptances. For most
PS bins except the crack region, the NNs have a higher performance
than the BDT. In the crack region the performances are worse, and
one possible explanation is the statistics being relatively low in the
crack region.

In Figure 2.47, the relative performances of the track NNs compared
to the track BDTs are shown. The track NNs are performing poorly to
compared to the calorimeter NNs. In general the calorimeter variables
are more continuous and less categorical. The track variables consists
of more integer variables which can be one explanation for the poor
performances of the track NNs. An optimization of the architecture
and the activation functions of the neurons could be one way to
overcome the lack of performance.

The combination of the calorimeter NNs and track NNs into a
Fisher’s does not yield good results. This is due to the lack of perfor-
mance from the track NNs. A combination of the calorimeter NNs
and track BDTs would likely perform better than the pure BDT based
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classifiers. This was not done in this study.
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Figure 2.44: Distribution of the NN
output from the calorimeter and
track for both the training sample
and the test sample for 40 < ET <

50 GeV and 0.8 < |η| < 1.37. It is
shown after cleaning using the MC
trained BDTs following same proce-
dure as presented in Figure 2.18.
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Figure 2.45: Distribution of the NN
output from the calorimeter and
track for both the training sample
and the test sample for 40 < ET <

50 GeV and 0.8 < |η| < 1.37. It is
shown after cleaning using the MC
trained BDTs following same proce-
dure as presented in Figure 2.18.
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2.8 Concluding remarks

2.8.1 Summary

This thesis has presented results from implementing machine learning
in electron identification in the ATLAS experiment.

Results from implementing a BDT based classifier trained on Monte
Carlo (MC) yields improvements compared to the current likelihood
(LH) based identification method. The gain in performance decreases
when evaluating the classifier on data. To overcome this effect, a
data-driven training method has been developed.

In data, the number of mis-labeled electrons and non-electrons
from event selections are significant, and a method to remove mis-
labeled events in data is needed. The removal is done by splitting
up the identification into two sub-classifiers, one for the calorimeter
and one for the inner detector. Also, an isolation classifier has been
constructed based on isolation in the calorimeter and inner detector.
When training one sub-classifier, the two other sub-classifiers are used
to remove mis-labeled events, producing data samples with purities
above 99%. This step involved using the MC trained classifiers from
previously.

After purification, the sub-classifiers are trained on data. Finally,
the calorimeter and track BDTs are combined with a Fisher’s dis-
criminant into one classifier. The BDTs trained on data have been
tested with two different boosting algorithms, adaptive boosting and
gradient boosting. The results from the adaptive boosting BDT based
classifier gives an improvement compared to the LH of 94% more
background rejection at 92% signal efficiency corresponding to 4%
increased signal efficiency at the same background rejection. The gra-
dient boosting based classifier gives an improvement of 104% more
background rejection. Adding more variables to the classifiers gives
an improvement of 109% for the adaptive boosting based classifier.

Implementing neural networks (NN) gives the best calorimeter
sub-classifier performance but a poor track sub-classifier performance.
The NN calorimeter classifiers perform up to 20% better than the BDT
calorimeter classifiers. Except in the crack where they perform 15%
worse.

2.8.2 Outlook

This work opens up many different possibilities related to electron
identification in ATLAS. The data-driven training method allows
for more complicated machine learning algorithms to be used for
electron identification. The minor differences in MC and data turns
out to decrease the performance gained from implementing machine
learning on MC for electron identification.

To obtain a complete ML identification for electrons, lower energy
and forward electrons need to be included in the analysis.

For lower energy electrons, the background increases drastically
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compared to the signal. The method presented in this thesis to
remove mis-labeled events will probably not be sufficient. Though,
this method together with [24] which allows for mis-labeled events
could solve the issue. Otherwise, a pure MC implementation is an
option.

For the forward region, the challenge is different. The method
presented in this thesis is based on option of using the inner detector
to purify when training the calorimeter sub-classifier, but this is
not possible for the forward region since no tracking information
is available. An inspection of the calorimeter variables could aid
in a division of the calorimeter variables, such that two calorimeter
classifiers were constructed enabling a purification scheme similar to
what has been presented in this thesis.

In my opinion, the biggest improvements will be gained from
including low-level variables e.g. in the NN implementation for the
calorimeter. Based on [25], NN performs better when using both high-
level and low-level variables, and given that the NN implementation
already performed better with only high-level variables, the classifier
should be much better.
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A.1 Correlation between variables in data

Figure A.1: Correlation between
the calorimeter variables for signal
from data for 0.8 < |η| < 1.37 and
30 < ET < 40 GeV.
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Figure A.2: Correlation between
the calorimeter variables for back-
ground from data for 0.8 < |η| <
1.37 and 30 < ET < 40 GeV.
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Figure A.3: Correlation between the
isolation variables for signal from
data for 0.8 < |η| < 1.37 and 30 <

ET < 40 GeV.

100−

80−

60−

40−

20−

0

20

40

60

80

100

p_etcone20

p_etcone30

p_etcone40

p_etcone20ptCorrection

p_etcone30ptCorrection

p_etcone40ptCorrection

p_ptcone20

p_ptcone30 

p_ptcone40

p_ptPU30

p_etcone20

p_etcone30

p_etcone40

p_etcone20ptCorrection

p_etcone30ptCorrection

p_etcone40ptCorrection

p_ptcone20

p_ptcone30 

p_ptcone40

p_ptPU30

Correlation Matrix (background)

100  91  83  37  37  35   3

 91 100  95  38  44  44   6

 83  95 100  36  44  47   7

100  99  98   1   2   2   2

 99 100  99   2   2   2   2

 98  99 100   1   2   2   2

 37  38  36   1   2   1 100  93  88  24

 37  44  44   2   2   2  93 100  95  27

 35  44  47   2   2   2  88  95 100  27

  3   6   7   2   2   2  24  27  27 100

Linear correlation coefficients in %

Figure A.4: Correlation between the
isolation variables for background
from data for 0.8 < |η| < 1.37 and
30 < ET < 40 GeV.
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Figure A.5: Correlation between the
track variables for signal from data
for 0.8 < |η| < 1.37 and 30 < ET <

40 GeV.
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Figure A.6: Correlation between the
track variables for background from
data for 0.8 < |η| < 1.37 and 30 <

ET < 40 GeV.
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