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Tobias Særkjær

Abstract

Simulations of materials with properties interesting for applications in quantum
computing has so far been mostly focused on understanding the electronic struc-
tures and associated phenomena in the presence of interfaces. While this is indeed
of utmost importance, the strict requirements for uniformity in nanowire (NW)
structures emphasizes the importance of understanding and control of morphologi-
cal parameters in NW systems.
This thesis shows modelling of nanowire morphologies from selective area growth
(SAG) in two different "domains".
First, the overall distribution of crystal volume is examined by way of coupled diffu-
sion equations describing the steady state adatom density during growth, including
incoming beam flux, incorporation and desorption. The model reliably reproduces
the trends from analyses of final mass distribution in experiments.
Second, the shaping of crystal volumes is modelled by way of constrained Wulff
shaping (CWS), equilibrium shapes minimizing the surface energy under constraints
imposed by the chosen SAG lithography.
Finally, in the last section we examine the changes in chemical potentials associated
with growth of crystal volume for a generalized shape, setting up the framework for
dynamic modelling of crystal growth.

Resumé

Simulationer af materialer med egenskaber relevante for brug i kvantecomputere
har indtil nu primært været fokuseret på forståelse af den elektroniske struktur og as-
socierede fænomener nær grænseflader. Dette er yderst vigtigt, men de strenge krav
for ensformighed i nanowire-strukturer understreger nødvendigheden for forståelse
af og kontrol over de morfologiske parametre i nanowire-systemer.
Dette speciale viser modeller for nanowire-morfologier fra selective area growth
(SAG) i to forskellige "domæner".
Først undersøges den overodnede fordeling af krystalvolumen via koblede diffusions-
ligninger, der beskriver statisk fordeling af adatomer under vækst, inklusiv indkom-
mende stråleflux, inkorporation og desorption. Modellen reproducerer på pålidelig
vis trends fra analyser af endelige massedistributioner fra eksperimenter.
Dernæst simuleres udformningen af krystaller via betingede Wulff former (CWS),
ekvilibriumsformer som minimerer overfladeenergi under betingelser forbundet med
SAG-litografien.
I det sidste afsnit undersøger vi ændringer i kemiske potentialer forårsaget af krys-
talvækst for generaliserede former, og lægger fundamentet for dynamiske simula-
tioner af krystalvækst.
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1 Introduction

In 2003 Kitaev [1] published a seminal paper on quantum computing, which opened
a research path followed to this day. In short, the basic idea of Kitaev’s proposal is
topological protection of the quantum states used in calculations performed by manip-
ulation of qubits. Systems without topological protection experience decoherence due
to interactions with their environment, and must go to great lengths in order to safe-
guard and error-correct data across multiple qubits. Topologically protected systems
would inherently address this problem and yield increases to qubit efficiency of several
orders of magnitude [2], by eliminating the need for error correction. The implications of
achieving reliable and scalable production of topologically protected qubits are difficult
to overstate, and the academic interest in this field is well warranted.

One promising platform for topologically protected qubits is the Majorana Fermion
or Majorana Zero Mode, the emergence of which could be realized in Semiconductor-
Superconductor Nanowire (NW) Heterostructures [3]. This design rests on Zeeman split-
ting of spin states without exceeding the critical field for the superconductor. Materials
such as the III-V semiconductors InAs or InSb are interesting for NWs, due to their high
spin-orbit coupling and low band gap, which makes them viable as transport channels
with proximity induced superconductivity.

In terms of architecture, the designs proposed by Karzig et. al. [4] in order to realize
a qubit which meets the necessary requirements for operations and measurements share
a key feature: arrays of parallel semiconductor NWs (see figure 5). This sort of design
almost calls for Selective Area Growth (SAG), which shows great promise in terms of
both control and scalability of devices. With SAG the NW material of choice is grown
in lithographically defined patterns onto a substrate, which is typically another III-V
semiconductor with a larger band gap, such as GaAs or InP. While certain combinations
of substrate/NW materials are approximately lattice matched, one typically can grow a
"buffer" of the substrate material to allow the NW some additional freedom for relaxation
of misfit strain in order to minimize misfit dislocations [5].

SAG is well understood in terms of masking of growth patterns, controlling tem-
peratures and fluxes for selectivity [6], and alloying materials in an attempt to obtain
desirable material properties. However, cross-sectional analyses of SAG structures show
a surprising variety of morphologies, as well as dislocations, associated strain fields,
and complicated material distributions for ternary alloys. A necessity for better under-
standing the actual kinetics of crystal growth arises with the extreme requirements for
uniformity for applications in quantum computing.

The theoretical framework of this thesis falls into two main parts. The first part ap-
plies Fick theory of diffusion in an examination of the large scale distribution of adatoms
across different parts of the SAG pattern. The second part employs constrained Wulff
shaping (CWS) in a study of NW shape evolution as a function of available crystal
volume. Along the way, both parts are compared to experimental observations, demon-
strating the generality of methods and tranferability across geometries and material com-
positions. The primary work is carried out for NWs grown along the [110] direction on a

4



Tobias Særkjær

(001) substrate, but the method is directly transferable to other directions and substrate
types.

In total, the theoretical framework developed serves to explain some of the overall
trends observed in crystal growth by way of Molecular Beam Epitaxy (MBE), from the
distribution of crystal volume on larger scales, to the faceted structures of NWs that
emerge as a final result. Finally, an initial framework for further studies of the kinet-
ics through dynamic modelling is established through considerations of surface excess
chemical potentials.
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2 Basics of SAG in MBE

Any effort to predict dynamics of SAG growth in MBE must start from a basic under-
standing of the system in question. We will start with a basic description of the workings
of the MBE, the system of machinery in which the crystal is grown. This is followed by a
general description of crystal growth in terms of transitions between generalized states,
since diffusion of material can be described as the transition between initial and final
positional states, and crystal growth is the transition into the solid phase. Subsequently
we will provide a basic description of SAG, masking, lithography and tuning of selectiv-
ity to obtain crystal growth on select parts of a masked substrate. Together these three
parts outline the central features of how crystalline structures such as NWs are grown in
MBE.

2.1 Basics of Molecular Beam Epitaxy (MBE)

MBE is the method of choice for growing nanosize crystal structures due to the level
of control that is obtainable. The workings of an MBE system is a science in and of
itself, and a more detailed description of the intricate mechanisms involved in the design
and operation of MBE can be found in literature [7]. While these details are interesting
indeed, they are also mostly unnecessary for the theoretical work in this thesis, most of
which relies on quite a simple model.

Figure 1: Schematic of MBE with indications of components. a) Rotating substrate
holder and heater. b) Effusion cells. c) Vacuum pump(s). d) Cryo shrouds. e) Load
lock. f) RHEED gun. g) RHEED screen.

The key components of the MBE are shown in figure 1. The sample, in this case our
lithographically patterned substrate, is attached to the sample holder (a), which keeps
the sample at a controlled temperature during growth, and rotates throughout to ensure
an even distribution of atoms incoming from the effusion cells. Once atoms from the
incoming beam reach the sample, they adsorp onto the surface and become adatoms
available in the system.

The effusion cells (b) are the sources of materials (e.g. In, Ga or As atoms) chosen
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for a given growth. The workings of the effusion cells vary from material to material, but
effectively the effusion cells can be thought of as a bombarding the substrate with atoms
of the chosen element. The flux of incoming atoms can be controlled separately for each
species by setting the temperature of the material or adjusting the valve opening, and
shutters in front of each effusion cell ensures the ability to shut off the supply with high
precision timing, allowing formation of atomically sharp boundaries between different
crystals.

The vacuum pumps (c) ensure that the entire MBE is kept at an ultra high vacuum
(UHV) to avoid unwanted atoms contaminating the sample grown or interacting with
atoms from our effusion cells. Different systems of pumps are available, and typically
one pump brings the system to high vacuum, at which point another system of pumps
kicks in to bring the pressure down to the UHV range of 10−9 − 10−11 Torr. The cryo
shrouds (d) further help to lower the pressure by thermally trapping stray atoms, and
access to the system is gated by the load lock (e), which acts as a preparatory vacuum
chamber with initial degassing.

The Reflection High-Energy Electron Diffraction setup (f and g) emits high-energy
electrons at a very shallow angle and detects the diffraction coming from the surface of
the growing crystal. Diffraction intensity will fluctuate depending on the roughness of
the topmost growth layer, which allows for real-time tracking of the exact number of
monolayers (MLs) grown measured by RHEED oscillations [8, 9] as well as extraction of
other information about the material.

2.2 Basics of Crystal Growth

This section follows the formalism laid out by Krogstrup et al. (2013) [10] for III-V NW
growth, in this case applied to SAG. While the growth is for a III-V material, in the
following we shall consider the kinetics of the group III adatoms only (we will describe
the adatom state below). The reason for this simplification is adequate overpressure of
the corresponding group V beam (see section 2.3). In short, we assume the group V
adatoms to be present whenever needed1. This is a typical growth regime, where the
group V species, such as As in the case of GaAs, is constantly supplied from the effusion
cells. At substrate temperatures of roughly 500◦C As atoms do not stick to the surface
to build an As layer, but quickly desorp. Without continuous As overpressure in the
MBE chamber, As would desorp from the substrate, damaging the original substrate or
undoing the growth.

We shall consider four main types of states for the element type grown:

1. (f) beam flux incoming from the effusion cells. This is an effective beam flux after
subtrating the desorption.

1This assumption is kept in order to simplify our model, although experimental observations indicate
that group V overpressure is not simply saturated under typical growth conditions. A more detailed
model would include inter-diffusion of both groups III and V species and interactions between these,
which is outside the scope of this thesis.
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Figure 2: Different phase transitions relevant for SAG growth. Mask marked by grey,
trench without mask in the middle. From the top is a uniform beam incoming from
effusion cells (see section 2.1) adsorbing into adatoms (red circles) available across the
geometry. Some growth has already occurred in the trench (marked in gold), and one
adatom (gold circle) is about to undergo transition from adatom to solid to contribute
to growth. On the right another adatom is about to undergo desorption back to vapor
phase and disappear from the system. All adatoms undergo random walk. Not shown is
the initial nucleation of the growth in the trench.

2. (a) adatom phase. Atoms incoming from the beam undergo adsorption, and become
adatoms available for diffusion (see section 3.1), desorption or incorporation into
the crystal. Adatoms are "loosely" bound to the surface, not yet incorporated into
the crystal but on the crystal surface.

3. (s) solid state or crystal phase. The state in which the atom has incorporated and
contributed to growth of the crystal. We can think of this as the "final" phase,
although transitions from the crystal phase to adatom or vapor phase (desorption)
are in principle available.

4. (v) vapor phase. When an adatom transitions into vapor phase, it desorbs and
leaves the system.

Our actual interest is transitions between these main types of states. For clarity we
shall give a short description of the main types of transitions between states, and our
treatment of these transitions going forward (see section 3.2). The following describes
net transition rates as the difference between gross transition rates.:

1. (f → a) Incoming beam flux is converted into adatom phase. Any conversion factor
between the two can be absorbed, so the effective beam flux, f , can be thought of
as the incoming amount of adatoms (per unit time per unit area). As such, this
transition will be treated as just a term for adatoms being spontaneously created
by way of beam flux (in equation 8) uniformly across the geometry. Since incoming
beam flux is distinguished from desorbing vapor phase, there are no transitions
to state f . Note that incoming beam flux is also often phrased in terms of a
corresponding growth rate of monolayers per second (ML/s) for "planar" growth
of a large film.
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2. (a → a′) The diffusion of adatoms (see section 3.1) is in principle the transition
from the adatom state in one lattice site to the adatom state in another lattice site.
This transition will be treated with a Fickian diffusion term (see section 3.1 and
equation 8).

3. (a→ s) The incorporation of adatoms into the crystal is the transition from adatom
to solid state. Selectivity (see section 2.3) and our picture of net rates as the
difference in gross rates (explained further below) means that there is effectively
no net transition from state s to state a.

4. (a→ v) The desorption of an adatom is the transition from adatom to vapor state.
Vapor state atoms could in principle re-adsorb and become part of the system, and
we shall treat this as a correction yielding a net transition rate in section 3.2.

To shorten our expressions going foward, the transition p→ q will from here on out
be shortened to pq, implicitly referring to states of the group III atoms in states either
on the mask or in a trench. Figure 3 depicts the energetic landscape in Gibbs free energy
for a generalized pq transition.

Figure 3: Energetics of phase transitions. The horizontal axis denotes states, and the
vertical axis the Gibbs free energy. The dashed black line indicates the energy of the
equilibrium reference state.

All our energies are defined with respect to an equilibrium reference state (ERS),
which can conveniently be chosen to be the bulk solid of the given semiconductor [10].
The energy of this ERS is marked as µERS in figure 3. The energy of state p is thus:

δµp−ERS = µp − µERS (1)

with a corresponding expression for q. The energetic barrier mentioned above for the
pq transition is the quantity:

δgTSpq = δgTS,ERSpq − δµp−ERS 6= δgTSqp (2)
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where the last inequality is included to highlight that the energetic barrier for tran-
sition pq is in general different from that for the transition qp, which should also be
evident from the difference in "levels" on the left and right sides of figure 3. Note that
the energetic landscape in figure 3 shows a reversible transition, in that the Gibbs free
energy of the transition state is the same for pq as for qp.

In general the expression for the transition probability pq is an exponential:

Ppq ∝ exp

(
− δgTSpq /kBT

)
(3)

and thus the gross transition rate for pq is given as:

Γpq = Ξpqρp exp

(
− δgTSpq /kBT

)
(4)

where Ξpq is the attempt rate or knocking rate per atom in state p with any factor
of proportionality from equation 3 absorbed, and ρp is the density of atoms in state p.
Since we are interested in net transition rates, the expression for the net transition rate
pq becomes a bit more involved:

∆Γpq = Γpq − Γqp = Ξpqρp exp

(
− δgTSpq /kBT

)
− Ξqpρq exp

(
− δgTSqp /kBT

)
(5)

While equation 5 has quite a complicated form, we shall apply some simplifying
assumptions for transitions relevant for our system in section 3.2. First we will need to
review some key features of SAG.

2.3 Basics of Selective Area Growth (SAG)

As an initial step for SAG, a substrate is prepared to serve as a basis for the growth. In
the simple case of homoepitaxial growth, the substrate is prepared from the same III/V
material as the crystal that is about to be grown. A pattern is designed, depending on the
desired geometry, and masking out trenches is achieved by a combination of deposition of
masking material, deposition of resist, lithography and etching. Each of these steps can
be achieved in a variety of ways, depending on which methods are compatible with the
choice of materials. The result is a substrate that is entirely covered by a masking agent,
except for the "trenches" where the substrate is exposed. The NWs will eventually grow
in these trenches, so regions are labeled as NW or trench regions interchangeably, always
as opposed to mask regions (see figures 5 and 6).

As mentioned in section 2.2 above, we can simplify our conceptual model by adequate
group V overpressure. While the actual physical system has a complex process of both
groups III and V species, the overpressure lets us assume that the necessary group V
atoms are present whenever needed. Thus the availability of the group III species becomes
the relevant factor.

Since some parts of the substrate are directly exposed in the NW regions, while other
parts are covered by the masking agent, an atom on a surface will be subject to very
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different conditions, depending on the region in which it is located. This corresponds
to transition rates ∆Γpq from equation 5 with two different sets of states pq and p′q′,
depending on NW or mask region. In section 3.2 we shall denote this with a superscript:
∆Γmpq with m denoting the material as either NW or mask region. The available transi-
tions are the same in both types of regions, but the different energetic landscapes cause
large differences in the transition rates, as outlined in section 2.2.

In general a group III type atom incoming from the molecular beam, will adsorb on
to on a surface of the sample, either NW or mask region or mask, and thus become an
adatom available in the system. From here, the adatom ultimately has two possible fates.
The adatom can end up incorporating as part of the crystal, either in a NW or mask
region by transition with the rate ∆Γmas , where as means adatom to solid (see section
2.2). Alternatively the adatom can end up not contributing to growth, by desorption
back to vapor (av) from either a NW or mask region with transition rate ∆Γmav .

However, between an atom starting it’s life as an adatom and ending it by incorpo-
ration or desorption, the adatom can undergo a long series of events. Very importantly,
the adatom undergoes transitions governed by the rate ∆Γmm

′
aa′ , which is non-zero unless

states a and a′ share material region and have equal densities ρa and ρa′ (see equation
5). These transitions are responsible for adatom diffusion, as we shall see in section 3.1.
Note that these transitions can cross material boundaries between NW and mask regions,
which is the reason for the double superscript mm′ above.

Figure 4: Schematic of 4-arrays of NWs (dark grey) on part of a larger mask (light
grey). Box indicates zoomed region shown as SEM in figure 5. Black NWs correspond
to those depicted in the schematic in figure 6. Dashed vertical lines indicate planes of
mirror symmetry, allowing for examination of 1-dimensional axis indicated by arrow. The
distance between 4-arrays is much larger than the length of NWs, LNW .
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For practical reasons the pattern studied in this thesis is a general pattern consisting
on 4 NWs surrounded by a mask (see figures 4 and 5). The geometry is reduced by
planes of mirror symmetry, since the overall pattern is symmetric. With this type of pat-
tern, large amounts of experimental data is available to the author for comparison, since
this type of masking has been used extensively for growths available through Microsoft
Quantum Materials Lab (MQML) Lyngby due to relevance for realizing topologically
protected qubits as mentioned in section 1.

Figure 5: SEM image of 4-array of NWs grown in 4 trenches with surrounding mask. The
dashed line indicates one plane of mirror symmetry, the other one being located outside
the picture (see figure 4). The red arrow indicates part of the 1-dimensional axis in the
problem, assuming axial translational symmetry. Dimensions are labeled with pitch as
the spatial periodicity of NWs, and width and LNW being the dimensions of individual
NWs. The NWs in this SEM image are approximately 5µm long.

While areas closer to the ends are subject to more complicated effects, the middle
sections can be viewed as essentially a 1-dimensional system with translational symmetry
along the length of the NWs (assuming LNW � pitch), comparing figures 5 and 6 with
the axis marked by the red arrow. For the entirety of this thesis we shall be concerned
with this "bulk" or middle part of the NWs. We note that this 1-dimensional approach
hinges on the relative dimensions in the geometry, and becomes increasingly vulnerable
with increasing pitch, width or diffusion length (λ), or decreasing LNW .

The features of the chosen pattern are consistent throughout this thesis (4 regions
labeled as NWs or trenches, surrounded by a masked region), but it should be noted
that the entire framework developed is valid for other patterns, assuming translational
symmetry allowing for a reduction to a 1-dimensional problem.
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Figure 6: The 1-dimensional geometry for a 4-array of NWs. The dashed vertical lines
indicate planes of mirror symmetry, with the two other NWs positioned to the left,
mirrored in the leftmost plane. The red arrow indicates the direction of the same axis
as marked in figure 5, where the plane x0 is also shown. The dashed mask part on the
right indicates a very large distance half way towards the next NW array (see figure 4).

In summary, for the purposes of the SAG MBE model in this thesis, the most impor-
tant features of SAG are:

• We start from substrate covered by a masking agent apart from NW/trench re-
gions. NW trenches and mask regions have different conditions for incorporation,
desorption and diffusion (see figure 5).

• The relevant part of the geometry in question shows approximate translational
symmetry, which allows for a 1-dimensional statement of the setup (compare figures
5 and 6).

• Atoms incoming from the beam adsorb onto a surface, becoming adatoms which
undergo random walk governed by diffusion equations (see section 3.1).

• Adatoms end their random walk by either incorporation with contribution to growth
or desorption back to vapor phase with no contribution to growth.

We will gather these features in coupled differential equations for diffusion in section
3.2 below.

13



Tobias Særkjær

3 Adatom Density from Diffusion Equations

Author’s note: An edited version of this section is included in reference [11] by M.
Espiñeira, A. W. Christensen, et.al. (2020).

3.1 Basics of Diffusion

As described in section 2.2 the crystal growth in MBE occurs due to adatoms making
transitions between different states across the mask and the substrate. Each available
lattice site can be thought of as a positional state with transitional states between lattice
sites. The transitions are stochastic, and each adatom essentially undergoes a random
walk, moving from one site to the other, from adsorption until eventual incorporation
(transition to the solid phase) or desorption (transition back to the vapor phase). The
different types of states are illustrated in figure 2.

It is well known, that particles undergoing random walks follow diffusion equations
[12, 13] for mass distribution as a collective or for probability density for any given single
particle. Diffusion equations have been successfully employed in other studies of MBE
growth [10, 14], for e.g. vapor-liquid-solid growth (VLS) of free standing NWs.

The classical framework for diffusion is that of Fick diffusion [15], the essence of which
can be stated in Fick’s 1st and 2nd laws (for a 1-dimensional system). Fick’s 1st law is
often stated as:

J = −Ddn
dx

(6)

where n is the count of the diffusing species, J (units in 1D: [count/time]) is the dif-
fusive flux of this species in the direction of positive x, and D (units in 1D: [length/time])
is the diffusivity of the species2. The negative sign shows the general and intuitive trend,
that the diffusing species moves from regions with higher concentration to regions with
lower concentration. This is often phrased as diffusion "down the slope of the gradient".

Fick’s 2nd law states:

∂n

∂t
= D

∂2n

∂x2
(7)

relating the change over time to the distribution of the concentration. From differ-
entiation of equation 6 we see that the right side of equation 7 is negative the spatial
derivative of a flux; concentration increases for an area with more incoming flux than
outgoing. This is essentially an expression of mass conservation, where a gradient of the
flux must lead to an accumulation. The concept is illustrated in figure 7.

Here we should note the setup for Fick’s laws: Fick studied the diffusion of salt in a
solvent [15], a closed system in the sense that the total amount of salt is kept constant,

2Units of diffusivity and flux depend on dimensionality and the diffusing quantity. In 3 dimensions
the flux, J , of a concentration, c, can be phrased with units of [number/(time × area)], where the flux
is in the direction of positive x passing through the plane normal to x. The units of diffusivity are then
[area/time], since the concentration has "inherent" units of [number/volume].
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Figure 7: Diffusion of mass into and out of the small grey region of width wb between x1
and x2. Two observations follow directly from conservation of mass: In case of J(x1) >
J(x2) we must have an accumulation of mass in the grey region, since more mass enters
than leaves. In the limit of wb → 0 we must have J(x2) → J(x1), since mass cannot
accumulate in a infinitely narrow region.

and only the distribution is changed. In our MBE system the total amount of adatoms
available in the system changes due to all the transitions mentioned in section 2.2, and
we have a steady influx of new adatoms via the beam from the effusion cells. As such we
must tweak our version of equation 7 accordingly.

3.2 1D SAG Diffusion Equations

As described in section 2.1, the effusion cells of the MBE bombard the masked substrate
with a steady beam of atoms, which adsorb and undergo diffusion, until they end up
either contributing to growth or desorbing from the system. In our simplified model, the
diffusing substance is the group III species of adatoms.

The total change in adatom density per unit time is caused by diffusion, desorption,
growth and incoming beam flux (see figure 2) - or in equation form, adapted from equation
7:

∂ρ(x)

∂t
= D

∂2ρ(x)

∂x2
−∆Γav(x)−∆Γas(x) + fIII(x) (8)

In equation 8 above, ρ(x) is the adatom density, D is the diffusivity, ∆Γsav/as denotes
the net transition rates from adatom to vapor/solid (see section 2.2 and equation 5),
and fIII(x) is a rate of incoming group III adatoms from the molecular beam. The first
term on the right denotes the rate of change in adatom concentration due to diffusion,
as we would expect from equation 7. The next two negative terms are adatoms lost to
desorption and incorporation, and the last term is adatoms gained by impinging beam
from the effusion cells.

Assuming that the crystal prefers to grow in trenches over growing on the surface of
the mask (good selectivity), we note a low probability for desorption in NW regions due
to a high binding energy in the crystal phase:

ΓNWsa � ΓNWas (9)
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We also note that for steady state the density of atoms in the vapor phase should be
proportional to the density of adatoms times the transition probability av:

ρv ∝ ρa exp
(
− δgTSav

)
(10)

Using equations 9 and 10 with equation 5 allow us to recast the rates ∆Γav(x) and
∆Γas(x), and an assumption of a uniform beam from the effusion cells lets us restate
equation 8 in steady state as:

0 = Dm
∂2ρ(x)

∂x2
− ρ(x)

(
νmav + νmas

)
+ f (11)

where νmav and νmas are now the desorption (adatom-to-vapor) and growth (adatom-to-
solid) rates per adatom on material m. We have renamed our beam flux fIII(x) to just
f for simplicity, since it is uniform. We note that our choice of steady state is for sake
of simplicity; we know that the NWs grow over time, and thus the geometry underlying
the problem is constantly evolving. However, a steady state solution might still serve to
enlighten the problem and show trends.

Equation 11 looks deceptively simple, but the sub-/superscript m is a reminder that
a material dependent version of this equation must hold simultaneously on each material
region of figure 6, with diffusivities and transition rates being functions of region. This
makes the problem a multi-point boundary value problem (mpbvp). We note that we
can treat equation 11 with "exploratory" values for Dm, νmav, νmas in order to examine the
trends produces for a variety of diffusivities and transition rates.

The mpbvp stated in equation 11 above can be solved numerically for the geometry
outlined in figure 6 by mpbvp solvers, given appropriate boundary conditions. The
boundary conditions in question are:

1. Zero flux (∂ρ(x)/∂x = 0) at external boundaries x0 and x5 due to the symmetries
in the problem and Fick’s first law. Since all parameters are mirror symmetric
across the boundary, the net flux of adatoms across the boundary is zero.

2. Flux continuity at internal boundaries x1 through x4. Adatoms exiting one region
must enter the next region. This is illustrated in figure 7 with wb = 0.

3. Continuity of adatom density at internal boundaries x1 through x4.

3.3 Solutions to 1D SAG Diffusion Equations

Our choice mpbvp solver is the ’bvp5c’3 from MATLAB [16] (for code see appendix
section 8.4.1). While the "inner workings" of this solver are interesting from a math-
ematical or programming perspective, we shall resort to just utilizing the solver as a
tool for this thesis. Each region of the geometry in figure 6 is defined with a separate
set of differential equations corresponding to equation 11, with material parameters kept

3Documentation for ’bvp5c’: https://www.mathworks.com/help/matlab/ref/bvp5c.html
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constant in regions of the same type. The solver computes a solution which satisfies
the differential equations on a mesh across all regions simultaneously, while obeying the
boundary conditions on each boundary. Leaving NW pitch, width (see figure 6) and rates
as variable parameters allows for an examination of the steady state adatom density as
a function of these. As commented in section 3.2 above, we can explore the parameter
space of different values for Dm, νmav, νmas dependent on material region.

Figure 8: The steady state adatom density is plotted across part of the 1-dimensional
geometry for a 4-array of NWs. The "o/i ratio" displayed is the ratio of the adatom
density summed across the outer NW and the inner NW. In this case the desorption rate
on the mask is 2.5 times higher than the incorporation rate in the trenches.

One such solution generated through the use of ’bvp5c’ with exploratory values is
shown in figure 8, with the desorption rate on the mask being 2.5 times the incorporation
rate in the trenches (see more examples in section 8.1.1). We note a clear trend in
figure 8 with more adatoms towards the inner NW compared to the outer NW. We
label this "source behaviour", where the NWs act as sources of adatoms in terms of
diffusion. The diffusion is driven by adatoms disappearing more rapidly on the mask
due to desorption than on the NWs due to growth. The dynamics of crystal growth are
much more complex than this simplified picture, but our "source model" shows that some
experimentally observed trends (see below) can be caused by diffusion during growth.
This is, of course, through an assumption of a positive correlation between steady state
adatom density and final crystal volume.

Figure 9 shows experimental data by Anna Wulff Christensen [17], which displays
growth volume for 4-arrays of NWs measured by atomic force microscopy (AFM). The
data shows two trends: inner NWs show more volume that outer NWs, and all NWs grow
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Figure 9: Experimental data of 4-arrays of NWs measured by Anna Wulff Christensen
[17], showing a consistent trend of higher growth rates on inner NWs than outer NWs, as
well as growth rates decreasing with increasing pitch. Labels on top show NW directions.
"Interwire distance" on the x-axis is pitch, and the y-axis shows average cross sectional
area.

less rapidly with increasing pitch. Both trends are well explained by the present model
of source behaviour for the steady state adatom density (see section 8.1.2). In simplified
terms, inner NWs have a higher steady state adatom density, and thus grow more rapidly,
since they have two neighbor sources, while outer NWs have just one. Increasing pitch
increases the distance between source NWs and thus more adatoms undergo desorption
while travelling between NWs, decreasing the overall growth rate.

The source behaviour also explains experimental observations that the incorporation
rate in masked SAG growth is experimentally significantly lower than the corresponding
growth rate for planar 2D growths [11, 17]. Here we see a lifetime limiting mechanism in
SAG, which is not present in planar growth: adatoms from a NW region can diffuse onto
the mask, where the higher desorption rate offers an easier means of escape. The growth
rate is lower in the masked SAG case compared to planar growth, since the adatoms can
desorp through this two step process.

These two observations (and no growth on the mask) confirm that the adatom lifetime
on the mask is desorption limited, as expected. Since the desorption probability in the
SAG trenches should be the same as for planar growth (assuming equal conditions), there
must be a net flux of adatoms from the trenches to the mask, causing the lower growth
rate. A net flux from the trenches onto the mask must be caused by a negative gradient
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in adatom density, and desorption must be the cause of this since incorporation on the
mask is prohibited.

We should clarify what "source behaviour" means: the adatoms lost from the NWs
due to diffusion are more than offset by the incoming beam, and as such the crystal
volume in NW regions still grows over time. However, in terms of diffusion the NWs can
act as if they have a negative collection area (that is, area of negative collection); during
growth, the NWs can spew out adatoms in an area around them.

We must be cautious when attempting to quantitatively tie the steady state adatom
density to a final volume for a given growth, for several reasons. There is no guaran-
tee that the growth occurs primarily with steady state adatom distribution. Thus the
final volume can be a complicated function of adatom density and other factors. The
growth rate can easily vary even locally throughout growth, and the magnitude of the
"source behaviour" can vary with it. This will be the focus of our attention when we
examine driving forces much later in section 5. For now we will settle for the qualitative
explanation of the experimentally observed trends.

While figure 8 shows a solution with source behaviour, this behaviour depends strongly
on the transition rates in question. Further study of the steady state adatom distribution
as function of the rates on the regions shows that the "source behaviour" can change to
"sink behaviour" (where the net flux of adatoms is from mask regions to NW regions) if
the incorporation rate on the mask is higher than the desorption rate on the mask. The
rates can effectively be changed by a growth parameter such as temperature or pressure,
as we saw in section 2.2. This rate-dependence of the source- or sink-behaviour is exam-
ined further in the appendix section 8.1.1. We note that a change from "source" to "sink
behaviour" should be accompanied by a corresponding change in growth rate from lower
than planar growth rate to higher.

Lastly we note that while figure 8 shows a clear variation of adatom density across a
single NW domain, the specific distribution inside any given NW domain is assumed to
depend not on the adatom density function but instead - at least as a first approach -
on equilibrium shaping of the crystal volume inside a given domain. While the adatom
density function tells us about trends in the distribution of crystal volume across the
SAG geometry, the shaping or faceting of said volumes inside a NW region is treated in
section 4 below.
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4 Faceting of Crystal NWs

With the previous section 3.3 explaining the experimentally observed volume distribution
across the SAG geometry, the next issue is faceting: the specific cross sectional shapes
with quite clearly defined sharp edges seen in e.g. figures 5, 11 and 12. Other studies
find similar clearly defined facets with variations depending on, among other parameters,
substrate and NW orientation and of course the materials in question. The possible facets
can be deduced via crystallography and basic linear algebra (the dot product between the
Miller indices of the NW direction and any possible facet showing translational symmetry
along the NW axis must be zero), and summarized in stereographic projections.

Figure 10: Part of a stereographic projection for zincblende on a (001) substrate with
focus on the [110] type NW. The figure only shows the main directions and facets in
the 〈110〉 type directions for increased readability. The [110] direction is upwards with
allowed facets indicated by the normal directions perpendicular to the NW direction,
marked by the shaded area. The angle with respect to the (001) substrate starts from
0◦ in the center and increases linearly to 90◦ at the perimeter.
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The stereographic projection in figure 10 shows the high-symmetry facets for zincblende4

for the 〈110〉5 type NW directions on a (001) substrate, which will be relevant for our
further studies. In principle a much wider range of directions could have been included
in the same figure at the cost of readability. A similar projection for the 〈100〉 type NW
directions on a (001) substrate can be found in the appendix section 8.2. We will focus
our attention on the [110] type NWs with main facets indicated by red in figure 10 and
summarized in table 1, but the method from here on out is directly transferable to other
NW orientations and substrate types.

Figures 11 and 12 show two different growths of III-V semiconductor NWs in the
[110] direction, specifically InAs on InP substrates. For "MQML115" in figure 11, one
buffer of ternary alloy InGaAs was grown before InAs. The boundary between the buffer
and NW layers is barely visible in figure 11b. In the case of "MQML190", two ternary
alloyed InGaAs buffers were grown before the InAs NW. Both cases should obey the
stereographic projection shown in figure 10, and clear faceting in correspondance with
the expectation is observed. These types of observations together with the stereographic
projection allow us to "pick" the facets for our study. First we need to review the basics
of Wulff Construction.

4.1 Wulff Construction

Wulff Construction is best described as an algorithm for determining crystal facets based
on an underlying γ-function. The γ-funcion is generally 3-dimensional and can be phrased
in terms on spherical coordinates: γ(r, θ, φ). It is expressed such that the radial value, r,
of the γ-function is proportional to the surface energy density associated with the facet
normal to the vector with angular coordinates θ and φ [19]. The γ-function must obey
the bulk crystal symmetries, since equivalent planes must have equal surface energies.
While the γ-function is explicitly phrased in terms of the spherical coordinates, it is of
course implicitly also a function of the materials in question and the crystal environment.

To obtain a faceted crystal shape from the γ-function, we must proceed along the
following steps (see figure 13):

1. Plot the γ-function with value r for each set of values (θ, φ).

2. At each point on the γ-function, draw the plane normal to the radial vector. The
set of points defined by these planes constitutes our Initial Wulff Shape (IWS).

4The III-V compounds used for NWs in this thesis grow in zincblende structure on (001) substrates.
The zincblende structure consists of two interpenetrating FCC structures offset by a

4
[111]. This means

that symmetry considerations of the FCC do not directly carry over to the zincblende structure. This
shows up in experiments, e.g. in a large discrepancy in diffusion lengths observed experimentally along
the two directions.

5While [110] and [110] type NWs are equivalent in terms of which facets can theoretically exist, the
reconstructions of these facets may differ due to the difference between FCC and zincblende as explained
in previous footnote. For generality we will stick with 〈110〉 directions whenever possible, and note that
experimental observations shown in this thesis are from the [110] direction.

21



Tobias Særkjær 4.1 Wulff Construction

Figure 11: Cross sectional TEM images by Martín Espiñeira of a NW growth in regime
1, viewed in the [110] zone axis. "MQML115" is an internal growth ID with InP (001)
substrate, InGaAs buffer and InAs NW. a) Overview of 4-array. b) Image of the single
NW indicated in panel a. A very slight change in contrast is visible, indicating the
InGaAs-InAs boundary. c) Zoom of section of single NW in panel b showing faceting.
d) Another zoom section of single NW from panel b. Dashed lines are guides to the eye,
indicating expected angles for the labeled facets.

3. Further restrict the IWS such that for every value of (θ, φ), we keep only the point
in IWS with the lowest r-value.

4. The remaining points now constitute the Wulff shape.

The Wulff shape emerging from the algorithm described above constitutes the equi-
librium crystal shape, in the sense that the shape minimizes the surface energy for a
free floating crystal. It can be shown, that the Wulff shape is always convex [19, 20, 21],
which allows us to draw a schematic representation of the allowed facets. Figure 13 shows
a 2-dimensional example of the Wulff construction described above.

The bulk energy density is irrelevant for the shape, since the bulk contribution is
equal for shapes of equal volumes. One immediate implication of this is, that the Wulff
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Figure 12: Cross sectional TEM images by Martín Espiñeira of a NW growth across
regime 1 into regime 2, viewed in the [110] zone axis. "MQML190" is an internal growth
ID with InP (001) substrate, two InGaAs buffers and InAs NW. a) Overview of 4-array.
b) Image of the single NW indicated in panel a. c) Zoom of section of single NW in
panel b showing faceting. d) Another zoom sections of single NW from panel b. Dashed
lines are guides to the eye, indicating expected angles for the labeled facets.

shape is size independent6; a crystal of a larger volume has the same equilibrium shape
just scaled to size. We also notice that a proportional rescaling of the surface energy
densities does not change the shape. A scaling the plot of the surface energies just
results in a rescaled γ-plot, which in turn produces a rescaled Wulff construction of the
same shape. This means, that only the ratios of the surface energies matters, as opposed
to the actual numerical values7. Another notable feature is, that the Wulff shape obeys
the same symmetries as the underlying crystal, since that is the case for the γ-function.
Another study notes that "the equilibrium shape rarely contains faces with indexes higher
than three" [22].

6With a few additional assumptions of negligible contributions from edges, vertices and strain as
explicitly stated later in section 5.

7We will exploit this feature later in section 4.4.5 when we attempt to deduce ratios of surface energy
densities for e.g. ternary alloys from models of equilibrium shape evolutions.
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Figure 13: 2-dimensional example of Wulff construction from made up example of a γ-
function (red). We will show the γ-functions for GaAs later in section 4.3. The dashed
arrows show some selected radial vectors with normal planes drawn as solid lines at
distance r. The gold colored planes show the Wulff shape after restriction of the IWS.
Note that only the planes drawn in gold end up contributing to the final shape.

4.2 Surface Energy Densities from DFT

As seen in section 4.1, the surface energy densities (SED, proportional to the radial
distance in figure 13) end up determining the Wulff shape. The SED values used for
calculations of equilibrium shapes throughout this work are those for a [110] type GaAs
NW displayed in table 1. These are obtained by Yeu et. al. (2019) [23] and Jenichen
(2013) [24], based on first principles calculations (density functional theory, DFT) re-
sulting in stability diagrams for different surface reconstructions. While numerous other
studies have performed calculations of surface energy densities for GaAs and other III-V
semiconductors [27, 28, 29], most of them do calculations of either an average surface or
just one facet type. In contrast, the aforementioned study [23] is conducted for exactly
the types of facets we need for [110] type NWs, and extensive work is done to include
corrections and examine the role of both growth temperature and As pressure. While
these additional T- and P-dependencies are interesting and important, they comprise an
entire study in and of themselves. The interested reader should consult the source texts
for additional details [23, 24]. We note two important facts: we can use calculated values
for the surface energy densities, and these do show some dependence on both temperature
and pressure.

Regarding the {112} facet type shown in table 1, we quote the conclusion, that "For
(112)A and B surfaces faceting into inverted-pyramidal depressions with (110), (111)
and (113) facets is more stable than the plane reconstruction patterns" [24]. In short, for
GaAs the {112} facets are predicted to be energetically unstable. This is also reflected in

24



Tobias Særkjær 4.3 γ-plot for GaAs in the [110] Zone Axis

Label Type Angle SED (γ)

GaAs
t {001} 0◦ 60 meV/Å2

i {113}A 25.24◦ 56 meV/Å2

m∗ {112}A 35.26◦ 70 meV/Å2

o {111}A 54.74◦ 53 meV/Å2

v {110} 90◦ 51 meV/Å2

r {111}A 54.74◦ 53 meV/Å2

InAs
t {001} 0◦ 48 meV/Å2

i {113}A 25.24◦ 44 meV/Å2

m† {112}A 35.26◦ 70 meV/Å2

o {111}A 54.74◦ 40 meV/Å2

v {110} 90◦ 40 meV/Å2

r {111}A 54.74◦ 40 meV/Å2

Table 1: One set of surface energy densities for GaAs and InAs from Yeu et. al. (2019)
[23]. The asterisk∗ denotes that the value for {112} facet type is obtained from Jenichen &
Engler (2013) [24] and translated for comparison with those from Yeu et. al. (2019), since
the methods of calculation differ, and Yeu et. al. (2019) does not include calculations for
the {112} facet type. The translation is by linear interpolation from points of comparison.
The dagger† denotes that no value was found, and this value was chosen to exclude facet
m for InAs as in the case of GaAs. Angles are with respect to the (001) substrate indicated
in e.g. figures 19 and 30. Values for GaAs are used in calculations of equilibrium shape
evolutions throughout this work. Values depend on temperature and pressure.

the high SED value seen in table 1 and the resulting γ-plot excluding this facet in figure
14. The {112} facet type will nevertheless become relevant, when we explore qualitative
fitting of SED ratios in section 4.4.5.

4.3 γ-plot for GaAs in the [110] Zone Axis

The previous section 4.1 shows how to obtain a size independent equilibrium crystal
shape from surface energy densities associated with different crystal facets, and table 1
shows these values obtained from literature. From these inputs we can construct the γ-
plot for GaAs to gain some insight into the expected faceting for this very studied binary
alloy, to complement what we observe in experiments and read out from the stereographic
projections.

The functional form of the γ-function (which is, in general 3-dimensional) can be
described in terms of the angular coordinates θ and ω which together cover 4π [10]:

γvs(θ, ω) = γvs0 −
∑
hkl

chkl
Ihkl

1 +
(
φhkl(θ, ω)/whkl

)2 (12)
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The hkl-index runs across all the high symmetry facets, the quantity γvs0 denotes the
maximum surface energy density, and Ihkl denotes the "dip" in intensity at facet hkl,
that is: Ihkl = γvs0 − γhkl. The quantity φhkl describes the angular distance to the high
symmetry facet hkl, and whkl (not to be confused with the angular coordinate, ω) is the
width of the dip around facet hkl. Since "dips" from several nearby high symmetry facets
can overlap, the constant chkl can be adjusted from the default value close to unity to
account for this. The values of γvs0, chkl and whkl are empirically adjustable parameters,
which allow for visualization of the γ-function (see figure 14).

We will concern ourselves with the faceting of a NW viewed in cross section, and as
such we only need a 2D slice of the 3D γ-function. We can simplify equation 12 to a
2-dimensional version, only dependent on the angle θ which now covers 2π:

γ(θ) = γmax −
∑
hkl

chkl
Ihkl

1 +
(
(θ − θhkl)/whkl

)2 (13)

The hkl-index runs the chosen facets (those displayed in table 1), which in principle
neglects "dip" contributions from nearby angles outside our slice. This could be absorbed
in the chkl parameter, but is to some extent desirable since the chkl parameter is meant to
counteract overlapping "dips". The remaining quantities are as explained below equation
12. The angular distance φhkl(θ, ω) is now straight forwardly evaluated as θ − θhkl.

Figure 14: Example γ-plots for GaAs in the [110] zone axis, generated from the function
in equation 13 with the hkl-indices running the facets shown in table 1. Two different
examples are shown, since γmax is variable, as well as the parameters chkl and whkl.
The resulting Wulff shape is indicated in gold, and facets are labeled. Note that the
{112} facet is energetically unfavored but included for sake of completion, since this is
sometimes observed in growths with e.g. surfactants. For relatively low values of γmax
(72 meV/Å2, right figure) a cusp around the {112} facet is barely present, and in any
case this facet is excluded from the final Wulff shape due to the high associated SED.
Units are meV/Å2 but unimportant for the shape.

We can now plot the angular dependence of the γ-function in cartesian coordinates,
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in a manner similar to that seen in figure 13. The result is shown in figure 14. With
the basic Wulff construction and experimental observations showing the available facets,
we are now ready to apply the principles of Wulff construction for our case of [110] type
SAG NWs.

4.4 Constrained Wulff Shaping (CWS)

We have shown how Wulff construction results in a Wulff shape for a "free floating"
crystal8. However, in our case the NW crystal shape is grown on a masked substrate,
and is thus subject to a lithographic constraint, which is the mask opening. Just like
the Wulff shaping minimizes surface energy, the guiding principle for CWS is surface
energy minimization, now under constraints. Note that the equilibrium shape in CWS
can no longer be independent of volume, since the crystal can no longer scale freely to
accomodate a change in volume; the part of the crystal bound to the trench has the
trench width as a set dimension.

Our SAG NW model is assumed 1-dimensional, that is, it shows translational sym-
metry along the [110] axis of the NW (see section 3.2). As a consequence, we can
examine volume by considerations of cross sectional area, specifically the cross sectional
2-dimensional Wulff shape of the NW grown in a trench. We will use "volume" and
"area" interchangably where there is no risk of confusion. The width of the NW is ini-
tially fixed to the width of the mask opening. We will assume homoepitaxial growth
throughout, so there are no complications due to strain arising from lattice mismatch.

Figure 15 (top) shows the initial condition for CWS. At the beginning of MBE growth,
the NW trench is "empty", and the trench fills up layer-by-layer during the first stages
of growth. Once the trench is filled, the crystal volume available for CWS can be viewed
as that which exceeds the flat filled trench as shown in figure 15 (bottom). The point of
our investigation is now the shape of this additional volume displayed in gold.

Sticking with the principles for Wulff construction outlined in section 4.1 above, the
equilibrium shape for a given volume or cross sectional area will now be that, which
minimizes the surface energy. Note that the boundary marked by the dashed line in
figure 13 bottom has no surface energy contribution, since the boundary is merely a
marker for our convenience; the dashed line is inside a homoepitaxial "bulk". In other
words, much of the crystal shape is already determined; only the additional volume in
figure 15 undergoes equilibrium shaping while maintaining the bulk boundary towards
the part already grown in the NW trench.

4.4.1 3-facet Equilibrium NW Model

For reasons outlined earlier in section 4 we consider only the facets listed in table 1. To
start with a simple model, we restrict ourselves to a choice of 3 facet types. It turns out

8"Free floating" means with all surfaces being towards the same type and phase of material. The
values quoted in table 1 are for surfaces in an environment with a certain As pressure. However, the
method would apply equally well to a crystal forming in e.g. a liquid solution, given surface energy
densities calculated for this type of liquid environment.
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Figure 15: Top: Mask displayed in grey, no growth in trenches at the very beginning.
Mid: The NW trenches fill up, here shown leaving a flat surface (red). Bottom: Once
the trench is filled, any additional volume (gold) must be distributed by CWS, since
growth on mask is not allowed by selectivity. Regardless of whether the trench initially
fills up flat or not, the interesting volume for CWS becomes that which exceeds the filled
trench: the volume displayed in gold. Note that both domains red and gold consist of the
same NW material. For our purposes the zone axis is [110], but similar considerations
would be valid for any other NW direction assuming translational symmetry.

that this simple model can be solved analytically for the minimum surface energy.

Figure 16: Schematic cross section of a [110] type NW with {001}, {113} and {111}
facets labeled t, i and o, respectively. The figure is conceptual, as the facet lengths will
vary, depending on width, crystal volume and surface energy densities. Subscripts are
kept general, but shown angles correspond to those of the chosen facets. Note that the
convex requirement for the Wulff shape fixes the order of the facets: facet angles increase
moving from the symmetry plane (middle) towards the outside (right): θi < θo. Insert
shows NW cross section in partial schematic from figure 15 for clarity.

While figure 16 shows only dimensions for one half of a NW cross section (assuming
a bulk lower boundary towards the substrate), the vertical symmetry plane means that
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all facet lengths and the cross sectional area just doubles for the full cross section (see
equations 14, 15 and 16 below). Thus finding the equilibrium shape for this half model
corresponds to the equilibrium shape for the full cross section of a single NW through
symmetry. From the schematic in figure 16 we can proceed analytically as follows:

1. Three facet types translates to three degrees of freedom.

2. Eliminate one degree of freedom by expressing the cross sectional area of the NW
in terms of the lengths of the facets (equation 14).

3. Eliminate another degree of freedom by expressing the width of lower bulk boundary
in terms of the length of the facets (equation 15).

4. Express the surface energy in terms of the last remaining degree of freedom and
minimize by setting the derivative with respect to the last degree of freedom equal
to zero.

5. This yields the value for one degree of freedom at minimum energy. Equations 14
and 15 yield the remaining two.

Expressing the area of the half cross section in figure 16 is straight forward:

Ahalf =
1

2

[
Lt + Lt + Li cos(θi)

]
Li sin(θi)

+
1

2

[
Lt + Li cos(θi) + Lt + Li cos(θi) + Lo cos(θo)

]
Lo sin(θo)

(14)

where the terms are in order of areas labeled a and b in figure 16. Expressing the half
width:

w/2 = Lt + Li cos(θi) + Lo cos(θo) (15)

The (half) surface energy associated with figure 16 is:

Ehalf = Lx

[
γtLt + γiLi + γoLo

]
(16)

with γk being the surface energy density for facet k ∈ {t, i, o} in figure 16, and Lx
is the NW length. The surface energy densities in equation 16 (proportional to the γ-
function from section 4.1) can be varied for a qualitative match to an observed NW cross
section, or they can be fixed from e.g. DFT calculations for predictive analysis. The
CWS results presented in this section and sections 4.4.2 and 4.4.3 are obtained from the
values presented in table 1.

Through elimination of variables, the equations for facet lengths expressed in terms
of each other, total area and constrained width become quite long. The same goes for the
subsequent minimization of surface energy, all of which is best treated with a symbolic
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solver. The exact equations are less important than their general form and the fact that
they can be solved symbolically. The equations have 2nd order polynomial components
(as evident from equation 14), which produce both negative and imaginary solutions for
facet lengths. Under any circumstances the solutions can be grouped into self-consistent
sets, which can be sorted to keep the facets lengths real and positive. The curious reader
with too much spare time can examine these analytic solutions in the appendix section
8.3.

Figure 17: The cross sectional, simplified shape evolution of a homoepitaxial GaAs [110]
type NW from CWS in steps of 10% of "full" volume, with "full" volume being the
maximum size of the crystal under the constraint on width and on available facets. This
figure is produced with analytic minima to the surface energy function as outlined in
section 4.4.1 and solved for in the appendix section 8.3. The surface energy densities
are shown in table 1, obtained from another DFT study of the allowed GaAs facets [23].
The final triangular cross section marks the "full" volume, which is also the transition
between regimes 1 and 2. Black diamonds along the bottom mark the lithographic
constraint imposed by the trench width.

This analytic solution can be evaluated for a fixed width and a varying set of volumes
to produce a visualization of the shape evolution of the NW as function of volume. Figure
17 shows the shape evolution of the CWS under the given constraint on bottom width of
the NW and the allowed facets in set steps of volume. The final shape is just the maximum
crystal volume (or equivalently cross sectional area) that can be accommodated with the
available facets and a constrained width, in this case a fully {111}-faceted NW. In general
we will denote the cross sectional area of a fully {111}-faceted morphology on a (001)
substrate as the "full" area:

Vfull ∝ Afull ≡
w2

4
tan(θ) ' 0.3536w2 (17)

where w is the width of the NW trench and θ is the angle of the {111} planes relative
to the (001) substrate.

We label the stage of the crystal growth shown in figure 17 as "regime 1". This raises
the obvious question: how do we conduct a similar analysis in the case of overgrowth,
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when the crystal has to accommodate more volume than what is possible with this
configuration?

4.4.2 4-facet Equilibrium NW Model

If we want to allow for overgrowing additional volume ("regime 2"), we need to include
another type of facet in the model. We could allow for overgrowth by breaking the
constraint on the bottom width in cases of a volume exceeding the maximum allowed.
However, this would mean crystal growth on the mask region next to the NW trench,
which we have restricted by selectivity as described in section 2.19.

Instead we can include another facet of a type which already exists due to crystal
symmetry, and which allows for unlimited growth: The NW schematic in figure 18 in-
cludes another {111} type facet, still obeying the crystal symmetry and the translational
symmetry of the NW. Note that the angles and surface energies of the "new" facets (la-
beled r) are equal to those of the other {111} facet (labeled o). While the bottom width
is still contrained to the width of the trench, the crystal can now grow to arbitrary size.

Figure 18: Schematic cross section of [110] type NW with {001}, {113}, {111} and {111}
facets labeled t, i, o and r, respectively, now allowing for overgrowth. Insert shows NW
cross section in partial schematic from figure 15 for clarity. Since only the bottom width
is fixed lithographically, the crystal can now grow to arbitrary size. Note that θr = θo
and γr = γo due to the symmetries of the crystal viewed in the [110] zone axis. The
order of the facets is still fixed due to the requirement of a convex shape.

The additional facet introduces an additional degree of freedom in the system, and
9In actual NW growth we sometimes do see growth on the mask next to the NW trench. For now we

will keep the model simple and include additional volume by means of additional facets.
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the procedure outlined by bullet points in section 4.4.1 compounds in complexity, since
eliminating two variables still leaves us with a parameter space of the remaining two and
no guarantee that the derivative of the surface energy function with respect to any of
the facets lengths will be zero for a real and positive value. We note that the analytic
solutions for the 3-facet case are already quite lengthy (see appendix section 8.3), and
another method is desirable.

We can minimize the surface energy by a numerical solver instead of by analytic
expressions. Our choice of solver is the ’fmincon’10, again from MATLAB [16] (for code
see appendix sections 8.4.3 and 8.4.4), which exactly minimizes a multivariable function
under a set of constraints. Once again we will refrain from a further examination of the
numerical solver and merely utilize it as a tool. However, the solver can in principle be
used for more general models. The only requirements are the ability to express the area
and constraints in terms of the facet lengths and known quantities. We shall utilize this
below and skip directly to a model with one (and subsequently two) additional facet(s).

4.4.3 5-facet Equilibrium NW Model

Using a numerical solver makes e.g. the addition of a "vertical" {110} facet (see figure
19) as trivial as adjusting a few lines of code, compared to compounding complexity if
we were to seek an analytic solution.

With the morphology in figure 19, we adjust our expression for the half area:

Ahalf =
1

2

[
Lt + Lt + Li cos(θi)

]
Li sin(θi)

+
1

2

[
Lt + Li cos(θi) + Lt + Li cos(θi) + Lo cos(θo)

]
Lo sin(θo)

+

[
whalf + Lr cos(θo)

]
Lv

+
1

2

[
whalf + whalf + Lr cos(θo)

]
Lr sin(θr)

(18)

The half width is given as:

w/2 = Lt + Li cos(θi) + Lo cos(θo)− Lr cos(θr) (19)

The energy function is:

Ehalf = Lx
∑
k

γkLk (20)

where the k-indices now run all the chosen facets: k ∈ {t, i, o, v, r}.
Using ’fmincon’ we minimize the energy function in equation 20 under the con-

straints given by equations 18 and 19, and additionally require all facet lenghts to be
10Documentation for ’fmincon’: https://www.mathworks.com/help/optim/ug/fmincon.html
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Figure 19: Schematic cross section of [110] type NW with {001}, {113}, {111}, {110}
and {111} facets labeled t, i, o, v and r, respectively, allowing overgrowth and a vertical
facet. Insert shows NW cross section in partial schematic from figure 15 for clarity. Once
again the order of the facets is fixed for a convex shape. The convexity only pertains to
the non-constrained part.

real and positive (or zero)11. Once again we can vary volume for a fixed width. Figure
20 shows the shape evolution of the CWS under the given constraint on bottom width of
the NW, but this time with facets allowing for overgrowth and solved numerically with
’fmincon’.

Comparing figures 17 and 20, we see that for the chosen set of surface energy densities,
the crystal grows almost without utilizing the "overgrowth"-facets (labeled v and r in
figure 19), at least until near full volume is reached. It is not surprising, that the 5-
facet model with option for overgrowth employs the additional degree of freedom before
growing the full volume into a peak shape like in figure 17. As the growth approaches
the peak, very little volume is added by paying the energetic cost of elongating the outer
{111} facets (labeled o). At some point more volume can be added by growing another
small {110} facet (labeled v) and adding a thin layer on the outside of the shape instead.
The predicted equilibrium shape evolution is compared to experimental observations in
section 4.4.5.

Varying the surface energy densities for different facets and rerunning the shape
evolution shows some trends. Since the guiding principle of CWS is surface energy

11The code includes an additional {112} facet labeled m for generality as explained in section 4.4.4
below.
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Figure 20: Left: Figure 17 shown here for comparison. Right: The cross sectional
shape evolution of a homoepitaxial GaAs [110] type NW from CWS in steps of 10% up
to 200% of "full" volume. The crystal overgrows and surpasses the original constraint
on volume. The surface energy densities are shown in table 1, obtained from another
DFT study of the allowed GaAs facets [23] and equal to those used in the 3-facet model
shown in figure 17. Note that the models show similar shapes for the first ∼ 70% of "full"
volume. Black diamonds along the bottom mark the lithographic constraint imposed by
the trench width. Note that the SED values in table 1 are dependent on temperature
and pressure, and subsequently the equilibrium shapes are as well.

minimization, the general trend shows rapid elimination of a given facet with increasing
surface energy density for said facet. As outlined in section 4.1 the studies additionally
show, that in the case of equal surface energy densities for different facets, the facet
with lower Miller indices is more prevalent. Generally the CWS simulation is able to
reproduce the faceting observed experimentally.

Finally a few tweaks to the model would let us model another NW direction, e.g.
[100]. Notably the bulk FCC in [100] zone axis shows different symmetries from [110],
which is to be taken into account (see stereographic projection for [100] in the appendix
section 8.2).

Our ability to construct plots of time evolution of equilibrium faceting like the one in
figure 20 from essentially only a stereographic projection and ratios of SEDs hints at the
possibility of "reverse engineering": deducing SED ratios from qualitative matching of
predicted shapes to those observed in experiments - assuming equilibrium shapes during
growth. This could prove valuable as an alternative to involved DFT calculations, which
would be very complicated for e.g. different surface reconstructions of ternary alloys.
This should of course be exercised with caution, and has some limitations. We discuss
this in section 4.4.5.
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4.4.4 6-facet Equilibrium NW Model

As a small addition, we include a {112} type facet labeled m in our model, since this
sometimes shows up in growths, e.g. GaAs grown with Sb surfactant, denoted GaAs(Sb).
We will only show an updated schematic of the facets, and update equations for the half
area and half width. The energy function is unchanged except for the inclusion of the
new m facet in the k-indices.

Note that for e.g. pure GaAs, the SED associated with this type m facet is so high,
that it is excluded from the Wulff constructions as shown in section 4.3. In this case the
length of facet m is just found to be zero from the numerical solver. We include this facet
for generality, since it is used for qualitative fitting for GaAs(Sb) buffers in section 4.4.5.
The general solvers provided in the appendix sections 8.4.3, 8.4.4 and 4.4.1 include this
{112} type facet m.

Figure 21: Schematic cross section of [110] type NW with {001}, {113}, {112}, {111},
{110} and {111} facets labeled t, i, m, o, v and r, respectively. Insert shows NW cross
section in partial schematic from figure 15 for clarity. Once again the order of the facets
is fixed for a convex shape. The convexity only pertains to the non-constrained part.

With the morphology in figure 19, we adjust our expression for the half area:

35



Tobias Særkjær 4.4 Constrained Wulff Shaping (CWS)

Ahalf =
1

2

[
2Lt + Li cos(θi)

]
Li sin(θi)

+
1

2

[
2Lt + 2Li cos(θi) + Lm cos(θm)

]
Lm sin(θm)

+
1

2

[
2Lt + 2Li cos(θi) + 2Lm cos(θm) + Lo cos(θo)

]
Lo sin(θo)

+

[
whalf + Lr cos(θo)

]
Lv

+
1

2

[
2whalf + Lr cos(θo)

]
Lr sin(θr)

(21)

And the expression for the half width now becomes (compare to equation 19):

w/2 = Lt + Li cos(θi) + Lm cos(θm) + Lo cos(θo)− Lr cos(θr) (22)

Both of these adjustments are, as mentioned in section 4.4.2 merely adjustments to
a few lines of code. Both of these updates are included in the codes provided in the
appendix sections 8.4.3 and 8.4.4.

4.4.5 CWS Fitting of Equilibrium Shapes

In this section we will tentatively explore qualitative fitting of equilibrium shapes pre-
dicted by CWS to experimental observations - assuming that the observed shapes repre-
sent equilibrium. First we will present results for the case of GaAs.

Figure 20 shows our prediction for the equilibrium shape evolution of a homoepitaxial
[110] type GaAs NW grown without use of surfactants, based on the SED values listed
in table 1. A similar prediction for InAs is shown in figure 22 with the GaAs prediction
for comparison. The two predictions look roughly similar, with the InAs version showing
a smaller top facet.

Since these predictions show a wide range of time steps, they can be compared with
shapes observed in growths across a wide range of volumes. Note that the SED values
in table 1 are dependent on temperature and pressure, and subsequently the equilibrium
shapes are as well.

An example comparison with AFM data from experiment is shown in figure 23, with
arrows highlighting an interesting discrepancy between the model and the observation.
The discrepancy consists mainly of the regions on the outside of the {113} facets marked
by arrows, where the model predicts continuation of growth by elongation of {111} facets.
The four different AFM scans shows different stages of growth due to a change in pitch
(which effectively cause a change in growth rate, see section 3.3), and the emergence of
the less defined region on the outside of the {113} facets is apparently accompanied by a
variety of angles. We note that any given facet should have a fixed angle, purely dictated
by crystallography.
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Figure 22: Side by side comparison of GaAs and InAs equilibrium cross sectional shape
evolutions for homoepitaxial [110] type NWs with SEDs shown in table 1. Both predic-
tions are dependent on growth conditions such as temperature and pressure.

Figure 23: Left: Equilibrium cross sectional shape evolution of GaAs values in table 1
with growth stage marked at 40% of "full". Note the beginning growth of {111} facets in
the model at the marker. Right: Colored lines show data from experiment obtained by
atomic force microscopy (AFM) line scans of four GaAs buffers on GaAs (001) substrate
from MQML091. The four buffers have different pitches in the range 0.5− 2.0µm, which
results in different incorporation rates as shown in sections 3.3 and 8.1.2 and thus slightly
different stages of growth. Each plot is averaged over 80 lines, and dashed lines show
the 40% of "full" GaAs shape from left panel, offset for comparison. Arrows indicate
discrepancies. From visual inspection it is obvious, that the morphology on the outside
of the {113} facets does not match the expected. Growths by Daria Beznasyuk, AFM
data by Anna Wulff Christensen.

This discrepancy could in part be caused by our data treatment, where each AFM
plot is averaged over 80 line scans. Each line scan could show more well defined facets,
but small variations between line scans could create features in the overall average. This
is shown conceptually for the initial formation of {111} planes in a fully {113} faceted
NW in figure 24. We see that the averaging produces a smearing of the outer {113} facet
boundary, and different distributions for averaging produces a variety of angles. This
indeterminable region does, however, seem to also show up in some single line scans.
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Figure 24: Top row: Artificially generated data for fully {113} faceted NW, transition-
ing to growth by elongation of {111} facets. Red lines indicate more entries of either
lower (left) or higher (right) cross sectional areas. Bottom row: Corresponding aver-
ages produced by "lower" and "higher" distributions. Different distributions produce a
"smearing" of the outer boundary of {113} planes, a region with a less defined faceting,
and a different angles in the resulting region.

Another possible explanation is the decomposition of {112} facets mentioned in sec-
tion 4.2 [24]. What looks somewhat similar to {112} facets in AFM could be alternating
depressions of {111} and {113} facets as shown in figure 25. This could also explain
the apparent range of angles shown in figure 23, since a decomposition could consist of
segments of varying length and thus a variation of angles. In short the observed mor-
phology could be a less clearly faceted part of the morphology. We note that alternating
depressions of {111} and {113} facets break the assumption of a convex CWS for an equi-
librium shape. Additional experiments are desirable if we want to examine this transition
further.

If we turn our attention away from pure GaAs, examples such as GaAs with Sb
surfactant, GaAs(Sb) as well as the ternary InGaAs show some promise for use in buffers
for NW growths. The addition of Sb and In complicates calculations of SEDs from DFT.
With the CWS method established above we can attempt to qualitatively fit observed
shapes to a set of SED ratios. This method can be directly generalized for equilibrium
shapes across different materials, substrates and NW orientations.

The procedure of finding SED ratios from fitting rather than predicting equilibrium
shapes from DFT calculations suffers from a few noticable drawbacks. Nevertheless we
can attempt to examine the ratios as shown in figure 26, which shows the result of the
estimated SED values listed in table 2. With CWS fitting of equilibrium shapes we are
able to approximately reproduce the shape of the GaAs(Sb) buffer as well as the InGaAs
section shown in figure 26, which tentatively suggests approximately correct ratios of
estimated SEDs. This concludes the example of CWS fitting of equilibrium shapes, and
once again additional experiments are desirable.

1. The procedure is largely qualitative, as the fits are currently conducted visually.
This could probably be improved by a more rigorous fitting procedure.

2. Growths with relatively low volumes often do not employ all facets, and some values
are therefore irrelevant when fitting to some shapes.
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Figure 25: {112} facets shown along with {111} and {113} with arrows marking bound-
aries between planes. Boxes indicate base sections of the given facets with group III
(Ga) in purple and group V (As) in green. Facets are shown as A-variants with group III
termination. Composite boxes on {112} show the decomposition of a {112} base section
into part {111} and part {113} base sections. For the fixed angle expected for {112}
(θm = 35.26◦) the reconstruction could look like the composite shown here [24]. Longer
or shorter {111} and {113} segments would give rise to angle variations. Figure produced
with VESTA [25].

3. The shapes are not guaranteed to be unique. In other words, several sets of ratios
could in principle produce similar shapes, at least within a certain range of volumes.

4. Since the shapes only rely on ratios, the actual values are out of reach for this
method, unless some of the values are known. The actual values may be important
for studies of driving forces (see section 5).

5. As soon as the growth is no longer homoepitaxial, we expect an energy term from
strain due to lattice mismatch (see equation 24 in section 5). This will affect the
minimization of free energy, unless the contribution is negligible.

6. The method relies on surface energy minimization, and as such all predicted shapes
are equilibrium shapes. If kinetics play a large role, this method will not be suitable
for estimating SED ratios.

7. The version of shape evolution presented in this work assumes growth from a flat
trench. Growth on top of an existing buffer could proceed differently, because the
buffer to transport channel interface is associated with an interface energy, and
because strain considerations could be substantial in heterostructures. Further
examination is left for future work.
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Figure 26: a) Equilibrium shape evolution of GaAs(Sb) from qualitatively fit values
estimated in table 2 with three different growth stages marked at 30%, 35% and 50%
of "full". b) Colored lines show AFM data of two GaAs(Sb) buffers on GaAs (001)
substrate from MQML014. Each plot is averaged over 80 lines, and dashed lines show
the 30% of "full" GaAs(Sb) shape from panel a offset for comparison. c) Another set
of SED values shown in table 2 produces a possible shape evolution for InGaAs with
select growth stages shown for use in panel e. d) and e) EELS images show material
compositions for MQML210 and MQML218. Both growths are GaAs (001) substrates
with identical GaAs(Sb) buffer growth conditions and subsequently four and seven layers
of InGaAs with GaAs markers between (with three and six GaAs markers, respectively).
For MQML210 an inner NW is shown, while an outer NW is shown for MQML218. The
difference in growth rates between inner and outer NWs (see section 3.3) is clearly seen
with two different stages of buffer growth. White dashed lines show 50% (MQML210,
inner NW) and 35% (MQML218, outer NW) of "full" GaAs(Sb) buffer from panel a.
Black dashed lines show the shape evolution from panel c superimposed on MQML218,
which implies the assumption that growth on the existing GaAs(Sb) buffer evolves as
if grown from a flat trench. Growths by Daria Beznasyuk, AFM data by Anna Wulff
Christensen, images by Sara Martí-Sánchez and Jordi Arbiol.

This concludes our investigation of CWS for predicting morphology. The remainder
of this thesis will explore crystal growth driving forces by changes in chemical potentials
during growth.
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Label Type Angle SED (γ)

GaAs(Sb)
t {001} 0◦ 44 meV/Å2

i {113}A 25.24◦ 46 meV/Å2

m {112}A 35.26◦ 46 meV/Å2

o {111}A 54.74◦ 48 meV/Å2

v {110} 90◦ 66 meV/Å2

r {111}A 54.74◦ 48 meV/Å2

InGaAs
t {001} 0◦ 60 meV/Å2

i {113}A 25.24◦ 56.5 meV/Å2

m {112}A 35.26◦ 54 meV/Å2

o {111}A 54.74◦ 43 meV/Å2

v {110} 90◦ 51 meV/Å2

r {111}A 54.74◦ 43 meV/Å2

Table 2: Surface energy density estimates for GaAs(Sb) and InGaAs from qualitative
fitting of model shapes to experimental observations. Note that the fitting relies only on
ratios, and that values are tentative. Some values (e.g. for GaAs(Sb) {110} and {111}
types) are much less impactful, since they are just high enough that the associated facet
does not appear in shapes as shown in figure 26. We remark that the fit shape evolution
for InGaAs compares shape evolution from a flat trench (model) to growth on an existing
GaAs(Sb) buffer (experiment) directly.

5 Crystal Growth Driving Forces

This section follows the formalism laid out by Krogstrup et al. (2015) [26] for growth
kinetics, here applied to a SAG structure with a generalized faceting.

In the previous section 4.4 we investigated the driving force for the crystal shaping:
the minimization of surface energies. The driving force for the crystal growth, the tran-
sition from adatom to crystal phase is the difference in chemical potentials between the
phases. The adatom phase is often called the ’mother phase’ and the crystal phase the
’daughter phase’, since the latter derives from the former:

∆µas = δµa − δµs (23)

In general both the terms on the right hand side are dependent on both materials
and existing facets, as well as growth conditions such as temperatures and fluxes. We
can evaluate the term δµs as the excess chemical potential relative to a bulk, which
is just a surface excess. For the general framework we let X be a set of independent
parameters, which fully describe the crystal shape (see examples in sections 5.1 and 5.2).
The chemical potential associated with the incorporation of an additional III-V pair of
crystal volume into the solid phase is via change in the specific parameter Xβ then [26]:
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δµXb
=
∑
α

γα
∂Aα
∂Xβ

∂Xβ

∂N
+ δµb + δε (24)

In equation 24 the first sum-term is a surface energy contribution, γα is the surface
energy density associated with a surface of type (facet) α, Aα is the surface area of that
facet, and N is the number of III-V pairs in the crystal volume (4 pairs per unit cell). The
second term, δµb is the chemical potential associated with the bulk crystal phase, and the
third term δε is an energy contribution due to strain. For completeness we should include
contributions from edges and vertices but we will ignore them since they are one and two
dimensions smaller than the surface contribution, at least for crystals of a certain size12.
Since the bulk contribution will be the same for any shape of the same volume, and
we assume the strain contribution to be negligible (at least in homoepitaxial growth),
different crystal shapes will differ only in terms of their surface energies described by the
first term:

δµs,Xb
=
∑
α

γα
∂Aα
∂Xβ

∂Xβ

∂N
(25)

The additional s-subscript denotes that we are describing just the surface energy
contribution. The excess chemical potential in equation 25 denotes a change to the Gibbs
free energy of a generalized state like the ones described back in section 2.2, illustrated in
figure 3. From equations 2, 3, 4 and 5 it is obvious, that a change in chemical potential
associated with growth on different parts of the crystal impacts the transition rates.
After section 5.2 we will be able to quantify this impact.

As an example we will first describe a simple case with a single parameter Xβ fully
parametrizing growth, and a sufficiently simple crystal shape which follows. We will
again assume translational symmetry along the [110] NW axis.

5.1 3-facet Chemical Potential Model

The simple model allowing for easy parametrization of growth is shown in figure 27.
We initially consider growth in regime 1, that is before overgrowth, and assume for the
crystal growth to only proceed by increasing h1, until the cross sectional shape is a full
triangle. While this behaviour is not expected in an actual physical system, it serves as
a simple example. We will turn our attention to a system with a closer resemblance to
an actual growth system in section 5.2.

From figure 27 we express the relevant quantities in terms of our constraint w and
the parameter h with Lx being the NW length:

Lo = h1/ sin(θ) (26)
12The edge contribution could be significant for very small systems such as ours. In the following we

will assume that this is negligible, and leave further examination of edge energy contributions for future
work. Note also, that vertices are non-existent in the case of translational symmetry.
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Figure 27: Schematic of NW with flat [001] top facet and {111} side facets, the stage of
growth labeled regime 1 (before overgrowth). The growth proceeds increasing h1, until
Lt is eliminated and the cross section is a full triangle at h1 = w tan(θ). All quantities
are kept in terms of the right side half of the NW.

Lt = (w/2)− cos(θ)Lo = (w/2)− cot(θ)h1 (27)

Ao = LxLo = Lxh1/ sin(θ) (28)

At = Lx

[
(w/2)− cot(θ)h1

]
(29)

Equations 28 and 29 let us determine the derivatives:

∂Ao
∂h1

= Lx/ sin(θ) (30)

∂At
∂h1

= −Lx cot(θ) (31)

Now the cross sectional area and thus total crystal volume:

Acs = h1
1

2

[
(w/2) + Lt

]
= h1(w/2)− h21

2
cot(θ) (32)

V = LxAcs = Lx

[
h1(w/2)− h21

2
cot(θ)

]
= NΩ (33)

where Ω is the volume of a III-V pair, and N is the total number of these.

N =
Lx
Ω

[
h1(w/2)− h21 cot(θ)

]
(34)
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∂N

∂h1
=
Lx
Ω

[
(w/2)− cot(θ)h1

]
(35)

From equation 25 we can now evaluate the excess chemical potential (assuming
(∂h1/∂N) = (∂N/∂h1)

−1) due to surface energy contributions with α ∈ {t, o} for the
facets. We find for regime 1:

δµs,h1 =

Ω

[
γo − γt cos(θ)

]
sin(θ)

[
(w/2)− cot(θ)h1

] (36)

We will examine this solution further, but first we need to repeat the procedure for an
adequately simple model of regime 2, once the crystal starts overgrowth. This model is
shown in figure 28. In our simplified model overgrowth occurs by increasing the thickness
of the additional layer marked by d, or equivalently by τ in figure 28. We have chosen to
parametrize by the quantity h2, and the overgrowth is constrained to two types of {111}
side facets.

Figure 28: Schematic of NW with two types of {111} side facets in the stage of growth
labeled regime 2 (overgrowth). All quantities are kept in terms of the right side half of
the NW.

l =
(w/2)

cos(θ)
(37)

τ = h2 cos(θ) (38)

h2
2

= d sin(θ) (39)
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With the surface area (every facet is {111} type and has the same angle θ):

Ao = Lx
(
l + 2d

)
= Lx

[
(w/2)

cos(θ)
+

h2
sin(θ)

]
(40)

And the derivative:

∂Ao
∂h2

= Lx/ sin(θ) (41)

For the two cross sectional areas acs and bcs we have:

acs = dτ/2 =
h22
4

cot(θ) (42)

bcs = lτ = h2(w/2) (43)

which results in a total crystal volume of:

V = Lx
(
acs + bcs

)
= Lx

[
h2(w/2) +

h22
4

cot(θ)

]
= NΩ (44)

And the derivative:

∂N

∂h2
=
Lx
Ω

[
(w/2) +

h2
2

cot(θ)

]
(45)

We can now express for regime 2:

δµs,h2 =
Ωγo

sin(θ)

[
(w/2) + h2

2 cot(θ)

] (46)

From equations 36 and 46 we can plot the excess chemical potential per unit cell
volume incorporated in the crystal due to surface energies for a crystal growth forced to
follow the simple model outlined by figures 27 and 28.

The result is shown as the grey plot in figure 29 for θ = 54.74◦, which correspods
to {111} facets. As remarked back in section 4.4.1 the energy cost of growing the full
triangular cross section increases dramatically towards the end of regime 1. This suggests
that overgrowth will be preferred before the full triangular cross section is formed. As
expected, we find that the change in chemical potential diverges, as we approach the
transition between regimes (dashed red line).

The black plot in figure 29 shows a similar investigation, assuming growth by equi-
librium CWS as described in section 4.4.3. In this case the derivative in equation 25 is
taken numerically, that is by evaluating the total surface energy for each volume value,
then dividing the change in energy by the change in volume and factoring out the volume
for a III-V pair, assuming 4 pairs per unit cell. We note that the investigation shown is
carried out for a NW of trench width 120nm, and that this is somewhat size sensitive;
the same kind of investigation relative to "full" cross sectional area will yield different
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Figure 29: The excess chemical potential due to surface energy per III-V pair incorporated
into the crystal for GaAs and a NW trench width of 120nm. The "3-facet model analytic"
follows the growth procedure outlined in figures 27 and 28. The "5-facet model numerical"
grows by equilibrium surface energy minimization as described in section 4.4.3, and the
differentiation in equation 25 is done numerically. The dashed line marks the "full"
volume at 0.3536 stw, which is also the transition between regimes 1 and 2 for the 3-
facet model. Surface energy density values are those for GaAs shown in table 1, against
which these plots can also be compared. The transitions marked are commented on in
the main text.

results for a different trench width. This will become more apparent in the upcoming
section 5.2, when we derive the analytic expressions for these changes in surface excess
chemical potentials for the 5-facet model.

For the equilibrium solution (black plot in figure 29) we note three obvious tran-
sitions associated with three different "modes" of growth. From figure 20 we see that
initial growth is by increasing the {113} facet lengths up to roughly 30% of "full" cross
sectional area, followed by elongation of the {111} facets, marking the first transition.
At approximately 70% of "full" the growth starts utilizing the vertical {110} facets, sec-
ond transition, which continues until approximately 180% of "full" where the inverted
{111} facets labeled r start showing up as the third transition. Just for clarity we must
again stress that the numerical solution displayed in black in figure 29 is an equilibrium
solution.
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5.2 5-facet Chemical Potential Model

For a more in-depth treatment of the kinetics, we turn to the same NW model as the
one in section 4.4.3 (see figure 30), where the crystal is free to grow by a flat {001} top
facet as well as {113}, {111}, vertical {110} and inverted {111} facets. Note that we are
returning to the 5-facet model (excluding facet m for now), and our constraint on trench
width (see equation 19) means that the 5 facet lengths correspond to only 4 degrees of
freedom. For our parametrization of the cross sectional NW shape we will choose the
facet lengths Lj with j ∈ {i, o, v, r} as our independent parameters (Xβ ’s in equation
25), noting that Lt will be completely determined from equation 19.

Figure 30: Schematic of NW with {001}, {113}, {111}, {110} and {111} facets labeled
t, i, o, v and r, respectively, allowing overgrowth and a vertical facet. This figure is the
same as figure 19, with different partitions for easier evaluation of the cross sectional area
(see equations 48 and 49).

As in section 5.1 we will express all our quantities in terms of the half volume of a
NW of length Lx and half cross section as shown in figure 30:

V = LxAcs = NΩ ⇒ N =
Lx
Ω
Acs (47)

Starting with the cross sectional area of the lower part of the cross section from Lr
and Lv:

Acs↓ = Lv
w

2
+ Lr

w

2
sin(θr) + LvLr cos(θr) +

1

2
L2
r cos(θr) sin(θr) (48)

Turning to the upper half we again note that we can express the area without reference
to Lt, as expected:
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Acs↑ = Lo sin(θo)

[
w

2
+ Lr cos(θr)−

1

2
Lo cos(θo)

]
+ Li sin(θi)

[
w

2
+ Lr cos(θr)− Lo cos(θo)−

1

2
Li cos(θi)

] (49)

We obviously have the total (half) cross sectional area as:

Acs = Acs↓ +Acs↑ (50)

and taking the derivatives with respect to our parameters:

∂Acs
∂Lr

=
w

2
sin(θr) + Lv cos(θr) + Lr cos(θr) sin(θr)

+ Lo sin(θo) cos(θr) + Li sin(θi) cos(θr)

(51)

∂Acs
∂Lv

=
w

2
+ Lr cos(θr) (52)

∂Acs
∂Lo

= sin(θo)

[
w

2
+ Lr cos(θr)− Lo cos(θo)

]
− Li sin(θi) cos(θo) (53)

∂Acs
∂Li

= sin(θi)

[
w

2
+ Lr cos(θr)− Lo cos(θo)− Li cos(θi)

]
(54)

Since our parameters are independent, we get:

∂Aj
∂Lk

= Lxδj,k (55)

for j, k ∈ {i, o, v, r} with δj,k as the Kronecker delta, noting that any interdependence
between facet lengths can be expressed as a change to Lt. This is how we ensure that
the parameters are independent. We still need to evaluate how At = LxLt, the surface
area of the remaining facet, changes with respect to our parameters. Again, since our
parameters are independent, this is pretty straight forward trigonometry:

∂At
∂Lr

= Lx cos(θr) (56)

∂At
∂Lv

= 0 (57)

∂At
∂Lo

= −Lx cos(θo) (58)

∂At
∂Li

= −Lx cos(θi) (59)
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Using equations 47 with 51-54 together with 55-59 lets us evaluate the sum in equation
25. For good measure we include the full expressions for the δµs’s. Aα’s are surface areas
for facets in an NW of length Lx, the Lj ’s are our shape parameters, i.e. the facet lengths
viewed in cross section with j ∈ {i, o, v, r}, and the s-subscripts are reminders, that the
derivatives are due to surface energy excesses:

δµs,Lj =
∑
α

γα
∂Aα
∂Lj

∂Lj
∂N

(60)

Given our observations above, we can evaluate the quantity in equation 60 for each
of the 4 independent parameters:

δµs,Lr =

[
γr
∂Ar
∂Lr

+ γt
∂At
∂Lr

]
∂Lr
∂N

=

Ω

[
γr + γt cos(θr)

]
[
w
2 sin(θr) + Lv cos(θr) + Lr cos(θr) sin(θr) + Lo sin(θo) cos(θr) + Li sin(θi) cos(θr)

]
(61)

δµs,Lv =

[
γv
∂Av
∂Lv

+ γt
∂At
∂Lv

]
∂Lr
∂N

=
Ωγv[

w
2 + Lr cos(θr)

] (62)

δµs,Lo =

[
γo
∂Ao
∂Lo

+ γt
∂At
∂Lo

]
∂Lo
∂N

=

Ω

[
γo − γt cos(θo)

]
[

sin(θo)
[
w
2 + Lr cos(θr)− Lo cos(θo)

]
− Li sin(θi) cos(θo)

] (63)

δµs,Li =

[
γi
∂Ai
∂Li

+ γt
∂At
∂Li

]
∂Li
∂N

=

Ω

[
γi − γt cos(θi)

]
[

sin(θi)
[
w
2 + Lr cos(θr)− Lo cos(θo)− Li cos(θi)

]]
(64)

We note that the denominator in equation 64 is just sin(θi) multiplied by Lt, expressed
in terms of the independent parameters.
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Given an existing crystal shape, we can measure the facet lengths Lα with α ∈
{t, i, o, v, r}, and from equations 61-64 we can evaluate δµs,Lj with j ∈ {i, o, v, r}. This
describes the additional cost incurred for crystal growth in terms of surface excess chem-
ical potential for increasing each parameter.

In section 5.1 we described the change in chemical potential due to surface energy
contributions from adding a single unit cell of volume to the crystal phase given an
assumption of a specific shape evolution, either that described by figures 27 and 28 or
equilibrium shape evolution depicted in figure 20. With the framework established in
this section we can remove the simplifying constraint of a specific shape evolution and
outline the steps necessary for dynamic shape evolution as iterative process.

5.2.1 Adding Crystal Volume on Facet t

For the purposes of a dynamic simulation we want to associate growth on a given facet
with a cost in surface excess chemical potential. The reason is, that quantities such
as an adatom density will be phrased on given facets (as back in section 3.2), rather
than in terms of the shape parameters (the facet lengths), and we want to associtate
the adatom density with growth directly. The framework in the previous section does
allow such an association, but in a convoluted way through growth of shape parameters.
In short, growth by increasing a shape parameter does not necessarily have a direct
correspondance to growth on any given facet, as we are about to see. First we note
the negative relationship between increasing a parameter, e.g. growth by increasing Lt
and growth of additional crystal volume on the associated facet t. In short, growing
additional crystal volume on a given facet decreases the associated parameter.

This is illustrated in figure 31. We can express the infinitesimal height of the addi-
tional layer added to facet t as:

yt = sin(θi)δLi,t = − tan(θi)δLt,i (65)

where δLi,t denotes the change to the parameter Li on the side towards facet t
(inclined gold facet), and the minus sign is caused by Lt decreasing in length. The
volumetric change, ∆Vt, from growth on facet t can be expressed in terms of the change
in number of III-V pairs, ∆N , and the length of the translationally symmetric NW, Lx:

∆Vt = ∆NΩ = LxLtyt ⇒ yt =
∆NΩ

LxLt
(66)

We still need to be able to describe the change in shape parameters caused by this
growth. By setting ∆N = 1 in equation 66 and inserting into equation 65 we can evaluate
the change to the facet lengths associated with the growth of one additional III-V pair
on facet t:

∆Lt,t = − Ω

LxLt tan(θi)
(67)

∆Li,t =
Ω

LxLt sin(θi)
(68)
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Figure 31: Schematic of NW showing infinitesimal volumetric change with growth on
facet t, affecting the dependent parameter Lt and the independent parameter Li. The
original shape is shown in black, with the change marked in gold.

where ∆Li,t denotes the change to facet length Li associated with growth on facet t,
and ∆Lt,t is the change to Lt that follows. The signs correctly show that Lt decreases
with growth on facet t, and we note that the change diverges, as the facet vanishes,
much like what we saw for "completing the triangular cross section" in figure 29, which
was indeed elimination of a flat top facet towards the end of regime 1. In a physical
system the facet length is quantized in units of the lattice parameter (multiplied by
some constant dependent on orientation), so the divergence only exists in a continuum
derivation, and will be finite in an atomistic treatment. We note that the contributions
from edges and vertices will be more significant for very short facet lengths, but we will
continue to ignore them for simplicity.

In summary growth of one additional III-V pair on facet t causes the changes in
independent shape parameters described by equations 67 and 68, and thus changes the
chemical potential by the amounts:

∆µs,t = Lx
[
γt∆Lt,t + γi∆Li,t

]
=

Ω

Lt

[
− γt

tan(θi)
+

γi
sin(θi)

]
(69)

Since the length of facet Lt is quantized in terms of the lattice parameter, there is an
upper limit on the surface excess chemical potential associated with growth on facet t.
We note that the constraint on width (equation 15) lets us recast Lt to obtain equation
64. This is expected, since growth on facet t is just equivalent to growth by increasing
Li as seen in figure 31. However, growth on a facet is not always directly translated to
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growth of a single shape parameter, as we are about to see.

5.2.2 Adding Crystal Volume on Facet i

In similar fashion we treat the addition of crystal volume to facet i as depicted in figure
32. The overall method will resemble that outlined in the previous section, and will be
repeated for the facet o and v.

Figure 32: Schematic of NW showing infinitesimal volumetric change with growth on
facet i, affecting the dependent parameter Lt and the independent parameters Li and
Lo. The original shape is shown in black, with the change marked in gold.

The infinitesimal height of the additional layer is:

yi = sin(θi)δLt,i

= − tan(θi)δLi,t

= sin(θo − θi)δLo,i
= − tan(θo − θi)δLi,o

(70)

where δLt,i again denotes changes to Lt associated with growth on facet i, as in the
previous section. This time around Li,t denotes the change to Li towards facet t. The
first two lines of equation 70 are from considerations towards facet t, and the last two
lines from considerations towards facet o. The volumetric change from growth on facet
i, ∆V , can be expressed in terms of the change in number of III-V pairs, ∆N :

∆Vi = ∆NΩ = LxLiyi ⇒ yi =
∆NΩ

LxLi
(71)
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We again set ∆N = 1 in equation 71 and insert into equation 70 to track changes to
the parameter Li through changes in both ends, that is the sum of the following two:

∆Li,i = − Ω

LxLi

[
cot(θi) + cot(θo − θi)

]
(72)

Changes to the other parameters are:

∆Lt,i =
Ω

LxLi sin(θi)
(73)

∆Lo,i =
Ω

LxLi sin(θo − θi)
(74)

We can now evaluate the change in chemical potential from growing the volume of a
III-V pair, Ω, specifically on facet i in the same way we did in the previous section:

∆µs,i =
Ω

Li

[
γt

sin(θi)
− γi

[
cot(θi) + cot(θo − θi)

]
+

γo
sin(θo − θi)

]
(75)

5.2.3 Adding Crystal Volume on Facet o

The addition of crystal volume to facet o is shown in figure 33.

Figure 33: Schematic of NW showing infinitesimal volumetric change with growth on
facet o, affecting the parameters Li, Lo and Lv. The original shape is shown in black,
with the change marked in gold.

The infinitesimal height of the additional layer on facet o is:

53



Tobias Særkjær 5.2 5-facet Chemical Potential Model

yo = sin(θo − θi)δLi,o
= − tan(θo − θi)δLo,i
= cos(θo)δLv,o

= − cot(θo)δLo,v

(76)

The first (last) two lines relate to the vertex towards facet i (r). The appearance of
cos and cot here might seem surprising, since earlier corresponding expressions have only
contained sin and tan. However, this is caused by the vertical facet v with θv = 90◦, and
cos(θo) is actually just a substitute for sin(θv − θo) and cot(θo) for tan(θv − θo). This
shows the obvious equivalence with equation 70. Continuing as before we find:

∆Vo = ∆NΩ = LxLoyo ⇒ yo =
∆NΩ

LxLo
(77)

Setting ∆N = 1 in equation 77, inserting into equation 76 we find the change to the
parameter Lo with addition of one III-V pair grown on facet o:

∆Lo,o = − Ω

LxLo

[
cot(θo − θi) + tan(θo)

]
(78)

Changes to the other parameters are:

∆Li,o =
Ω

LxLo sin(θo − θi)
(79)

∆Lv,o =
Ω

LxLo cos(θo)
(80)

The change in chemical potential from growing the volume of a III-V pair on facet o
is then:

∆µs,o =
Ω

Lo

[
γi

sin(θo − θi)
− γo

[
cot(θo − θi) + tan(θo)

]
+

γv
cos(θo)

]
(81)

From the considerations following equation 76 we note that the general form (for
θi < θo < θv) is:

∆µs,o =
Ω

Lo

[
γi

sin(θo − θi)
− γo

[
cot(θo − θi) + cot(θv − θo)

]
+

γv
sin(θv − θo)

]
(82)

5.2.4 Adding Crystal Volume on Facet v

The addition of crystal volume to facet v follows figure 34.
The infinitesimal height of the additional layer on facet v is:
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Figure 34: Schematic of NW showing infinitesimal volumetric change with growth on
facet v, affecting the parameters Lo, Lv and Lr. The original shape is shown in black,
with the change marked in gold.

yv = cos(θo)δLo,v

= − cot(θo)δLv,o

= cos(θr)δLr,v

= − cot(θr)δLv,r

(83)

We proceed to find:

∆Vv = ∆NΩ = LxLvyv ⇒ yv =
∆NΩ

LxLv
(84)

We set ∆N = 1 in equation 84, inserting into equation 83 we find the changes to the
parameter Lv caused by growing one additional III-V pair on facet v as:

∆Lv,v = − Ω

LxLv

[
tan(θo) + tan(θr)

]
(85)

Associated changes to the other parameters are:

∆Lo,v =
Ω

LxLv cos(θo)
(86)

∆Lr,v =
Ω

LxLv cos(θr)
(87)
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The change in chemical potential from growing the volume of a III-V pair on facet v
is:

∆µs,v =
Ω

Lv

[
γo

cos(θo)
− γv

[
tan(θo) + tan(θr)

]
+

γr
cos(θr)

]
(88)

This is consistent with the general form in equation 82 with θv = 90◦.
We also note that growth on facet r is not possible in our framework, since that would

require growth on to the mask next to the NW trench. This goes to show, that the four
degrees of freedom parametrizing the crystal shape by Li, Lo, Lv and Lr correspond to
four degrees of freedom describing crystal growth on facets t, i, o and v.

In summary, for any given crystal shape parametrized by our shape parameters (Li,
Lo, Lv and Lr), we can describe growth of an additional III-V pair on any allowed facet
(t, i, o or v) in terms of the changes to our shape parameters (equations 67, 68, 72, 73,
74, 78, 79, 80, 85, 86 and 87) as well as the change in surface excess chemical potential
from those changes (equations 69, 75, 81 and 88).
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6 Future Work: Dynamic Modelling

The picture of adatom density outlined in section 3 is of course simplified with effective
transition rates being only dependent on material region, and the resulting adatom distri-
bution being steady state. Crystal growth in MBE is known to be an out-of-equilibrium
process, and there is no reason to expect a simple relationship between the steady state
adatom density and the final mass distribution after growth.

Similarly, shape evolution by CWS described in section 4 is simplified in the sense that
it produces equilibrium shapes. These equilibrium shapes represent energetic minima for
varying crystal volumes under constraints, but crystal growth is expected to occur not
only in the one energetically optimal position but instead across the morphology.

In a more general picture the transition rates are at all times functions of a variety of
factors. Immediately obvious factors are thermodynamic parameters such as temperature
and pressure, but the energy of a given state which directly impacts transition rates, also
depends both on facet type and the current crystal shape through the change in chemical
potentials seen in section 5.

The sort of shape dependent evolution of chemical potentials with changes in shape
parameters described in the latter sections above and the resulting shifts in adatom
density which would follow, together call for a dynamic model, where adatom density,
faceting of crystal shape and transition rates are all dynamically updated in very short
time steps throughout growth. While some kinks will still need to be ironed out, we can
draft a to-do-list for this type of model. Actually setting up the dynamic model with
thermodynamic data is, unfortunately, outside the scope of this thesis but an obvious
point for future work.

We need to establish a general setup for the dynamic model. In principle we want a
continuum simulation, but we can achieve an approximation by a simple 1-dimensional
finite element method (FEM). In practice this means that we seek solutions on a mesh
of discrete points, and if necessary, interpolate the solutions between mesh points. This
is exactly what we did in section 3.3, only we did it for steady state and with transition
rates dependent only on region, trench or mask.

For any given simulation NW width, pitch and distance between NW arrays are fixed
quantities, exactly like in section 3. We can also restrict ourselves to one NW direction
per simulation, e.g. [110], and a list of allowed facets akin to the method in section 4. If
we define our 1-dimensional axis, x, to run along the surface of the crystal morphology
(see figure 35), we can now fully describe the morphology with an array, B, of boundary
points. The boundary points are the x-values for all boundaries between regions, with
regions now describing not just the difference between mask and trench but also different
crystal facets. We can also describe the adatom density across the entire morphology by
the function ρ(x). Note that the length of the x-axis will vary from step to step, and we
will need to adjust our adatom density ρ(x) accordingly (see figure 35d).

With the basic definition of our axis x as well as B, and ρ(x) in place, we can describe
the calculations required for each time step (dt) passing in simulation. The list is ordered
chronologically with each step depending on the previous steps. The first iteration should
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Figure 35: Schematic showing the 1-dimensional geometry for a dynamic model of crystal
growth. a) The mask and current NW morphology. Left-most boundary is the mirror
symmetry plane in the middle of the 4-array. b) The 1-dimensional axis runs along
the mask (black) as well as the current NW facets (gold). c) The 1-dimensional axis is
shown as "flattened", along with the adatom density, ρ. Small markers indicate boundary
points. d) Adding a time step changes the faceting and thus the dimensions of the axis
x, creating complications for keeping quantities between time steps.

be able to run from any valid morphology including a "blank slate" with empty trenches.

1. Current 1-dimensional axis along facets is x, current adatom density is ρ(x), and
current boundary points is B.

2. Calculate transition rates Γas(x), Γav(x), Γsa(x) and Γva(x) from current quantities
across x.

Every transition rate is a function of chemical potentials of different phases,
facet type at x and current crystal shape parametrized by B.

3. Subtract desorption and growth from the adatom density ρ(x) with the term
−dt

[
Γas(x) + Γav(x)− Γsa(x)− Γva(x)

]
.

4. Add growth to crystal shape with the term +dt
[
Γas(x)− Γsa(x)

]
.

5. Update x→ x∗ and B → B∗ according to the growth calculated above.

6. Update ρ(x)→ ρ∗(x), rescaling according to B → B∗, with the total adatom count
on any given facet obeying previous count with the subtraction calculated above.

7. Add beam flux to ρ∗(x) to obtain ρ∗b(x).
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8. Calculate diffusion rate from ∇
(
D∇ρ∗b(x)

)
and update ρ∗b(x)→ ρ∗d(x) from adatom

density after beam to adatom density after diffusion.

9. Advance time by dt and use latest versions of x∗, ρ∗d(x) and B∗ as current version
for next step.

The list outlined above looks deceptively simple, but especially the second point,
coupling all transition rates to chemical potentials of different phases and facets makes
this procedure much more involved than what meets the eye.

In principle the necessary quantities are available in literature together with the
framework of section 5, but the task itself is left for future work.
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7 Conclusion

This thesis shows the potential of modelling crystal growth, based on two theoretical
"domains": an examination of the steady state diffusion behaviour of adatoms during
growth, resulting in an overall distribution of crystal volume available for growth, and
equilibrium shape evolution of the resulting crystal volume during growth by constrained
Wulff shaping.

In both domains the models proposed in this thesis reliable reproduce the trends
observed in experiments for SAG NW growth. While much further work is desirable, the
methods in this thesis represent a basic understanding of the morphologies produced in
SAG.

The framework of changes in chemical potentials associated with growth outlined
in the last sections sets the stage for dynamic modelling with transition rates being a
function of existing facets and chemical potentials changing dynamically during growth.
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8 Appendix

8.1 Diffusion Solutions for Steady State Adatom Density

In the following subparts of this appendix we will examine different solutions to the
steady state adatom density for comparison with experimentally observed trends [17].
The "default" parameters are listed in the code, section 8.4.1.

8.1.1 Diffusion Solutions and Rates

In the first study we will vary the desorption rate, Γav, on the mask (through a variation
of νav, see equation 11) to see how the source behaviour is caused by a higher rate of
desorption on the mask than rate of incorporation in the trenches. In the code, section
8.4.1, this is a variation of the parameter nu_SiOav. The results are shown in figure 36.

We notice the clear trend that the size of the Γ-ratio controls the behaviour as source
or sink; Γ-ratio > 1 leads to source behaviour, and Γ-ratio < 1 leads to sink behaviour.
Additionally we see that a lower Γ-ratio significantly increases the steady state adatom
density across the geometry, as we would expect. As such, source behaviour is tied to a
lowered adatom density and presumably a lower growth rate.

Figure 36: Steady state adatom density shown for 5 different ratios of desorption rate on
mask divided by incorporation rate in the trenches (Γ-ratio). Inner NW region is shown
in dark grey, outer NW in light grey. The desorption rate on the mask is varied, while
all other quantities are kept constant. A clear trend is seen with Γ-ratio > 1 resulting
in source behaviour and Γ-ratio < 1 resulting in sink behaviour. The "strength" of the
source or sink behaviour scales with the size of Γ-ratio.
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8.1.2 Diffusion Solutions and Nanowire Pitch

Next we will examine how the dependence on pitch, to demonstrate the lowering of steady
state adatom density with increasing pitch. In the code, section 8.4.1, this is a variation
of the parameter p, not to be confused with the general state p. Since changing the pitch
changes the 1-dimensional axis, the solutions ρ(x, p) are not easily plotted together. We
have chosen instead to plot this average value of ρ(x) across the outer and inner NW
regions as a function of pitch.

Figure 37: Steady state adatom density shown for 5 different values of pitch. Note that
the y-axis does not go to zero. With increasing pitch we clearly see that the overall steady
state adatom density decreases, and the ratio between outer and inner NW averages tends
towards unity; the source behaviour becomes "weaker" with increasing pitch.

8.2 Stereographic Projection for [100] type NWs

Since 〈100〉 and 〈110〉make up the main high symmetry directions for the (001) substrate,
the stereographic projection for the 〈100〉 type zincblende NW is included here in figure
38. A similar version for the 〈110〉 is found in the main text section figure 10.

8.3 3-facet Model Analytic Solutions for CWS

As mentioned in section 4.4.1 the analytic solutions for the facet lengths Lk with k ∈
{t, i, o} under CWS for a given cross sectional area can be expressed in terms of the
known quantities of area, width, the facet angles and surface energy densities. While
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Figure 38: Part of a stereographic projection for zincblende on a (001) substrate with
focus on the [100] NW type. The figure only shows the main directions and facets in
the 〈100〉 type directions for increased readability. The [100] direction is upwards with
allowed facets perpendicular to the NW direction, marked by the shaded area. The angle
with respect to the (001) substrate starts from 0◦ in the center and increases linearly to
90◦ at the perimeter.

this analytic solution is possible, the numerical method for solving the CWS (see section
4.4.2) seems prefereable both in terms of efficiency and range of validity.

Nevertheless the analytic solutions for CWS in the case of the 3-facet model as shown
in figure 16 are included here for the sake of completion and to serve as proof of the
method. Throughout A and W will denote the half area and half width from figure 16,
respectively.

The expression for Lo is quite esoteric, and multiple sub-expressions are necessary:

Lo =
NoaNob

√
So +NofNog

Do
(89)
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Equations 93, 94 and 95 are to be inserted into equation 92 (in the square root),
equation 97 is to be inserted into equation 98, and finally equations 90, 91, 92, 96, 97,
and 98 are to be inserted into equation 89.

The numerator of equation 89 carries SI-units of [J2/m], and the denominator [J2/m2],
which makes the units for Lo come out as length [m] as desired. We show the different
terms and analyze units below:

Noa =
(
Et cos (θi) + Ei

)
cos (θo)− Eo cos (θi) (90)

Nob =
√

2
(

sin (θi) cos (θo) + cos (θi) sin (θo)
)

(91)

We note that Noa has units of energy density [J/m] and Nob has no units.

So = sin (θi) cos2 (θo)

[
Noc cos (θo) sin (θo)−Nod cos2 (θo) cos2 (θi) + cos (θo)Noe cos (θi)

− 2 cos2 (θo)

(
− 1

4
EiW

2
(

cos (θo)− 1
)(

cos (θo) + 1
)

sin (θi)

+A cos (θo)
(
− Et cos (θo) + Eo

))
Ei

]
cos2 (θi)

(92)

This shows that So carries units of length squared times energy density squared [J2]
(it will become obvious below, that Noc, Nod and Noe carry units [J2]).

Noc =
1

2
W 2
(
− Et cos (θo) + Eo

)2
cos3 (θi)

−

(
A
(
− Et cos (θo) + Eo

)
sin (θi) +W 2Ei cos (θo)

)(
− Et cos (θo) + Eo

)
cos2 (θi)

+

[
2AEi cos (θo)

(
− Et cos (θo) + Eo

)
sin (θi)−

1

2
W 2

((
Ei

2 + Et
2
)

cos2 (θo)

− 2EoEt cos (θo)− Ei2 + Eo
2

)]
cos (θi)

+ cos (θo)
(
A sin (θi)Ei cos (θo) +W 2 (−Et cos (θo) + Eo)

)
Ei

(93)

67



Tobias Særkjær 8.3 3-facet Model Analytic Solutions for CWS

Nod = A
(
− Et cos (θo) + Eo

)2
cos3 (θi) + 2

(
− Et cos (θo) + Eo

)
×

[
− 1

4
W 2
(

cos (θo)− 1
)(

cos (θo) + 1
)(
− Et cos (θo) + Eo

)
sin (θi) +AEi cos3 (θo)

]
(94)

Noe = EiW
2
(

cos (θo)− 1
)(

cos (θo) + 1
)(
− Et cos (θo) + Eo

)
sin (θi)

+ cos (θo)A
( (
Ei

2 + Et
2
)

cos2 (θo)− 2EoEt cos (θo)− Ei2 + Eo
2
) (95)

Equations 93, 94 and 95 show that Noc, Nod and Noe have units of length squared
times energy density squared [J2] as claimed above.

Nof = 2 cos (θo)W

[
− sin (θi)

(1

2
Et cos (θi) + Ei

)
Et cos2 (θo)

+
(

cos (θi)EoEt sin (θi) + EiEo sin (θi)−
1

2
Ei

2 sin (θo)
)

cos (θo)

− 1

2
Eo

2 sin (θi) cos (θi)

] (96)

This determines Nof as having units of energy density squared times length [J2/m]

Nog =
(

cos (θi)− cos (θo)
)(

cos (θi) + cos (θo)
)

cos (θi) (97)

We note that Nog has no units.

Do = 2 cos2 (θo)

[
− sin (θi)

(1

2
Et cos (θi) + Ei

)
Et cos2 (θo)

+
(

cos (θi)EoEt sin (θi) + EiEo sin (θi)−
1

2
Ei

2 sin (θo)
)

cos (θo)

− 1

2
Eo

2 sin (θi) cos (θi)

]
Nog

(98)

We find that Do has units of energy density squared [J2/m2].
This concludes the terms of equation 89 and thus determines Lo from known quan-

tities. We are now in a position to find the other two facet lengths. We start with the
Li:

Li =

√
−2Ni cos2 (θi) sin (θi) +

(
− Lo cos (θo) +W

)
sin (θi) cos (θi)

sin (θi) cos2 (θi)
(99)
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Equation 100 is to be inserted into equation 99 to obtain the full expression for the
facet length Li in terms of known quantities. We note that Li has units of length as
expected (since Ni has units of length squared [m2], shown below).

Ni =

(
1

2
Lo

2 sin (θo) cos (θo)− Lo sin (θo)W +A

)
cos (θi)

− 1

2
sin (θi)

(
− Lo cos (θo) +W

)2 (100)

This shows that Ni has units of length squared [m2]. Finally we can obtain the last
facet length in a straight forward fashion:

Lt = −Li cos (θi)− Lo cos (θo) +W (101)

This concludes the analytic solution for facet lengths under the CWS displayed in
figure 16 for a given cross sectional area.
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8.4 MATLAB codes

The MATLAB codes used to generate results shown throughout the thesis are included
here for sake of completion. All codes are compatible with MATLAB version 2019a.
Some sections are copy/pasted between different codes and thus duplicate lines/sections
may appear across different codes. Code functionality is guaranteed but comments inside
the code have not been proof-read.

8.4.1 fourarray_bvp5c

This code generates the steady state adatom density plots displayed in section 3.3. This
calls the MATLAB-internal function ’bvp5c’, which solves multi-point boundary value
problems.
The long expression in line 44 is from analytic solution to the simpler problem of an
infinite array of NWs, solving for the steady state adatom flux across the NW-mask
boundary. This was obtained via a symbolic solver (not included).

1 %% Save plots or not?
2 plotsave = 0;
3 plotshow = 'on';
4 %% Defining geometry
5 d = 10000; % inter−array distance
6 w = 150; % NW width
7 p = 450; % NW pitch
8 %% Derived important points in geometry
9 x0 = 0; % boundary points, used for BC's and merging plots

10 x1 = (p−w)/2;
11 x2 = (p+w)/2;
12 x3 = (3*p−w)/2;
13 x4 = (3*p+w)/2;
14 x5 = d/2;
15

16 xresolution = 1; % resolution for x−array, mainly for plotting
17 xarray = linspace(0,d/2,1+(d/2)*xresolution); % for 4−array
18 %% Defining thermodynamic parameters
19 global D_NW nu_NWav nu_NWas F_NW D_SiO nu_SiOav nu_SiOas F_SiO nuNWoverSiO
20 F_beam = 100; % uniform rate of adatoms from beam
21

22 % for NW
23 difflength_NW = 200; % diffusion length on NW
24 nu_NWav = 0; % adatom to vapor rate factor on NW
25 nu_NWas = 10; % adatom−to−solid from adatom−to−vapor
26 D_NW = (nu_NWav + nu_NWas) * difflength_NW^2; % diffusion constant on NW
27 beammulti_NW = 1;
28 F_NW = F_beam * beammulti_NW; % rate of beam flux onto NW
29

30 % for SiOx
31 difflength_SiO = 2000; % diffusion length on SiO
32 nu_SiOav = 25; % adatom to vapor rate factor on SiO
33 nu_SiOas = 0; % adatom to solid rate factor on SiO
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34 D_SiO = 10 * 0.01 * (nu_SiOav + nu_SiOas) * difflength_SiO^2; % ...
diffusion constant on NW

35 beammulti_SiO = 1;
36 F_SiO = F_beam * beammulti_SiO;
37 %% Form initial guess (4−array)
38 xmesh = sort(cat(2,xarray,[x1 x2 x3 x4]));
39 yinit = [1; 1];
40 sol = bvpinit(xmesh,yinit);
41 %% Solving differential equation with bvp5c (4−array)
42 sol = bvp5c(@(x,y,r) f(x,y,r), @bc, sol);
43 %% Flux in simple 1D infinite array Maple model
44 JNW2SiO = −D_NW * (−(nu_NWav + nu_NWas) ^ (−0.1e1 / 0.2e1) * D_NW ^ ...

(−0.1e1 / 0.2e1) * exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / ...
0.2e1) * w / 0.2e1) * sqrt(D_SiO) * sqrt(nu_SiOav) * ...
(exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) − ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1)) / ...
(exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) ...

* nu_SiOav ^ (0.3e1 / 0.2e1) * sqrt(D_SiO) + exp(sqrt(nu_SiOav) * ...
D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * exp(−sqrt(nu_SiOav) * ...
D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * exp(−sqrt(nu_NWav + ...
nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * nu_SiOav ^ ...
(0.3e1 / 0.2e1) * sqrt(D_SiO) − exp(−sqrt(nu_SiOav) * D_SiO ^ ...
(−0.1e1 / 0.2e1) * p / 0.2e1) * exp(sqrt(nu_SiOav) * D_SiO ^ ...
(−0.1e1 / 0.2e1) * w / 0.2e1) * exp(sqrt(nu_NWav + nu_NWas) * D_NW ...
^ (−0.1e1 / 0.2e1) * w / 0.2e1) * nu_SiOav ^ (0.3e1 / 0.2e1) * ...
sqrt(D_SiO) − exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / ...
0.2e1) * exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * ...
w / 0.2e1) * nu_SiOav ^ (0.3e1 / 0.2e1) * sqrt(D_SiO) + ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) ...

* sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav − ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav + ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) ...

* sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav − ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav) * (F_NW ...

* nu_SiOav − F_SiO * nu_NWas − F_SiO * nu_NWav) + (nu_NWav + ...
nu_NWas) ^ (−0.1e1 / 0.2e1) * D_NW ^ (−0.1e1 / 0.2e1) * ...
exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * sqrt(D_SiO) * sqrt(nu_SiOav) * (exp(sqrt(nu_SiOav) * ...
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D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * exp(−sqrt(nu_SiOav) * ...
D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) − exp(−sqrt(nu_SiOav) * ...
D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * exp(sqrt(nu_SiOav) * D_SiO ...
^ (−0.1e1 / 0.2e1) * w / 0.2e1)) / (exp(sqrt(nu_SiOav) * D_SiO ^ ...
(−0.1e1 / 0.2e1) * p / 0.2e1) * exp(−sqrt(nu_SiOav) * D_SiO ^ ...
(−0.1e1 / 0.2e1) * w / 0.2e1) * exp(sqrt(nu_NWav + nu_NWas) * D_NW ...
^ (−0.1e1 / 0.2e1) * w / 0.2e1) * nu_SiOav ^ (0.3e1 / 0.2e1) * ...
sqrt(D_SiO) + exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / ...
0.2e1) * exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * ...
w / 0.2e1) * nu_SiOav ^ (0.3e1 / 0.2e1) * sqrt(D_SiO) − ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) ...

* nu_SiOav ^ (0.3e1 / 0.2e1) * sqrt(D_SiO) − exp(−sqrt(nu_SiOav) * ...
D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * exp(sqrt(nu_SiOav) * D_SiO ...
^ (−0.1e1 / 0.2e1) * w / 0.2e1) * exp(−sqrt(nu_NWav + nu_NWas) * ...
D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * nu_SiOav ^ (0.3e1 / 0.2e1) ...

* sqrt(D_SiO) + exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p ...
/ 0.2e1) * exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w ...
/ 0.2e1) * sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav − ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav + ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / 0.2e1) ...

* sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav − ...
exp(−sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * p / 0.2e1) * ...
exp(sqrt(nu_SiOav) * D_SiO ^ (−0.1e1 / 0.2e1) * w / 0.2e1) * ...
exp(−sqrt(nu_NWav + nu_NWas) * D_NW ^ (−0.1e1 / 0.2e1) * w / ...
0.2e1) * sqrt(nu_NWav + nu_NWas) * sqrt(D_NW) * nu_SiOav) * (F_NW ...

* nu_SiOav − F_SiO * nu_NWas − F_SiO * nu_NWav));
45 % positive J means NW act as sources rather than sinks
46 %% Extracting and plotting rho(x) (4−array)
47 ymulti = 1.2; % used for plotting lines indicating wire boundaries
48 yplotmax = ymulti*max(sol.y(1,:));
49

50 fontsmall = 14;
51 fontlarge = 16;
52

53 innersum = sum(sol.y(1,1+x1*xresolution:1+x2*xresolution)); % "sums" ...
rho(x) on inner wire [x1 x2]

54 outersum = sum(sol.y(1,1+x3*xresolution:1+x4*xresolution)); % "sums" ...
rho(x) on outer wire [x3 x4]

55 oiratio = outersum/innersum; % calculates outer/inner ratio
56

57 fignow = figure('visible', plotshow);
58 hold on
59 % nanowire boxes
60 NW1box = fill([x1,x2,x2,x1],[0,0,yplotmax,yplotmax],[0.4 0.4 ...
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0.4],'EdgeColor','none','DisplayName','Inner NW');
61 NW2box = fill([x3,x4,x4,x3],[0,0,yplotmax,yplotmax],[0.6 0.6 ...

0.6],'EdgeColor','none','DisplayName','Outer NW');
62 % symmetry lines
63 midline = line([0 0], [0,yplotmax], 'LineWidth',2, 'Color', ...

[0.8500, 0.3250, 0.0980],'DisplayName','Inner symmetry plane');
64 outline = line([x5 x5], [0,yplotmax], 'LineWidth',2, 'Color', ...

[0.9290, 0.6940, 0.1250],'DisplayName','Outer symmetry plane');
65 % adatom density
66 rholine = plot(sol.x,sol.y(1,:),'−','LineWidth',2,'Color',[0, ...

0.4470, 0.7410],'DisplayName','\rho(x), adatom density');
67 % legend
68 mylegend = legend([rholine NW1box NW2box ...

midline],'Location','SouthEast','FontSize',11);
69 mylegend.Title.String = {['o/i ratio = ...

',num2str(oiratio,'%.3f')]};
70 mylegend.FontSize = fontsmall;
71 % plot title
72 ttl = title({['NW width: ',num2str(w),' | NW pitch: ',num2str(p)],...
73 ['NW rate: ',num2str(nu_NWav + nu_NWas),' | Mask rate: ...

',num2str(nu_SiOav + nu_SiOas)]});
74 ttl.FontSize = fontlarge;
75 % axes settings
76 xlb = xlabel('Position, x');
77 xlb.FontSize = fontsmall;
78 ylb = ylabel('Adatom density, \rho(x)');
79 ylb.FontSize = fontsmall;
80 xlim([0 3*x4]) % choose x−range for plotting
81 ylim([min(0,yplotmax) max(0,yplotmax)])
82 if plotsave == 1
83 saveas(fignow,'ada_density_ex.png')
84 end
85 %% Setting up derivatives (4−array) − see ...

(https://se.mathworks.com/help/matlab/math/ ...
solve−bvp−with−multiple−boundary−conditions.html)

86 function dydx = f(¬,y,region) % equations being solved − y(1)=rho, ...
y(2)=drho/dx

87

88 global D_NW nu_NWav nu_NWas F_NW D_SiO nu_SiOav nu_SiOas F_SiO nuNWoverSiO
89

90 dydx = zeros(2,1); % pre−allocate and define first derivatives from ...
diff. equations

91 dydx(1) = y(2); % y(1) = rho, y(2) = drho/dx
92

93 switch region % 5 regions, mid is first
94 case 1 % x in [x0 x1] − SiO1
95 dydx(2) = (1/D_SiO)*(y(1)*(nu_SiOav + nu_SiOas) − F_SiO);
96 case 2 % x in [x1 x2] − NW1
97 dydx(2) = (1/D_NW)*(y(1)*(nu_NWav + nu_NWas) − F_NW);
98 case 3 % x in [x2 x3] − SiO2
99 dydx(2) = (1/D_SiO)*(y(1)*(nu_SiOav + nu_SiOas) − F_SiO);

100 case 4 % x in [x3 x4] − NW2
101 dydx(2) = (1/D_NW)*(y(1)*(nu_NWav + nu_NWas) − F_NW);
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102 case 5 % x in [x4 x5] − SiO3
103 dydx(2) = (1/D_SiO)*(y(1)*(nu_SiOav + nu_SiOas) − F_SiO);
104 end
105 end
106 %% Setting boundary conditions (4−array) − implied equal to zero
107 function res = bc(YL,YR)
108

109 global D_NW D_SiO nuNWoverSiO
110

111 res = [YL(2,1) % drho/dx = 0 at x=0
112 YR(1,1) − YL(1,2) % continuity of rho at x=x1
113 D_SiO*YR(2,1) − D_NW*YL(2,2) % continuity of flux at x=x1
114 YR(1,2) − YL(1,3) % continuity of rho at x=x2
115 D_NW*YR(2,2) − D_SiO*YL(2,3) % continuity of flux at x=x2
116 YR(1,3) − YL(1,4) % continuity of rho at x=x3
117 D_SiO*YR(2,3) − D_NW*YL(2,4) % continuity of flux at x=x3
118 YR(1,4) − YL(1,5) % continuity of rho at x=x4
119 D_NW*YR(2,4) − D_SiO*YL(2,5) % continuity of flux at x=x4
120 YR(2,5)]; % drho/dx = 0 at x=x5=d/2
121 end

8.4.2 gamma_plot

This code generates 2D plots of the γ-function from section 4.1.

1 %% Choose plotting options
2 plotshow = 0; % show plots yes/no
3 plotsave = 1; % save plots yes/no
4

5 fontsmall = 10;
6 fontlarge = 14;
7 %% Angles of facets
8 theta_t = 0;
9 theta_i = 25.24 * pi/180; % angle of 113−plane w.r.t. 001 substrate

10 theta_m = 35.26 * pi/180; % angle of 112−plane w.r.t. 001 substrate
11 theta_o = 54.74 * pi/180; % angle of 111−plane w.r.t. 001 substrate
12 theta_v = 90 * pi/180;
13 theta_r = −theta_o; % angle of raised facet − another 111 in this case
14 % t is always flat top, v is always vertical side
15 %% Composition of ternary alloy
16 Infrac = 0; % set fraction of Indium in InGaAs
17 %% Surface energy densities
18 % Values taken from Yeu 2019:
19 % https://www.nature.com/articles/s41598−018−37910−y − units ...

[meV/angstrom^2]
20 % −−−−− GaAS −−−−−: Yeu et. al. 2019: GaAs 973K (\mu=−5.9eV)
21 GaAs_E_t = 60; % 60(100)
22 GaAs_E_i = 56; % 56(113A) or 60.5(113B)
23 GaAs_E_m = 71.5; % 71.5 (112A) or 70.0 (112B) − translated from ...

Jenichen2012
24 GaAs_E_o = 53; % 53(111A) or 45(111B) − surface vibration corrected
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25 GaAs_E_v = 51; % 51(110) − cutoff near 54.5
26 GaAs_E_r = 53; % 53(111A) or 45(111B) − surface vibration corrected
27 % −−−−− InAs −−−−−: Yeu et. al. 2019: InAs 773K (\mu=−5.65eV)
28 InAs_E_t = 48; % 48(100)
29 InAs_E_i = 44; % 44(113A) or 49(113B)
30 InAs_E_m = 70; % insert for functionality
31 InAs_E_o = 31; % 40(111A) or 31(111B) − surface vibration corrected
32 InAs_E_v = 40; % 40(110) − cutoff near 37.5
33 InAs_E_r = 31; % 40(111A) or 31(111B) − surface vibration corrected
34

35 % In_{Infrac}Ga[1−Infrac}As
36 Gafrac = 1−Infrac;
37 E_t = Infrac*InAs_E_t + (Gafrac)*GaAs_E_t;
38 E_i = Infrac*InAs_E_i + (Gafrac)*GaAs_E_i;
39 E_m = Infrac*InAs_E_m + (Gafrac)*GaAs_E_m;
40 E_o = Infrac*InAs_E_o + (Gafrac)*GaAs_E_o;
41 E_v = Infrac*InAs_E_v + (Gafrac)*GaAs_E_v;
42 E_r = Infrac*InAs_E_r + (Gafrac)*GaAs_E_r;
43

44 Emax = 75; thetatol = 4; % constant for overlap compensation, maximum ...
SED, angular tolerance for cusp

45

46 ct = 0.95; ci = 0.75; cm = 0.75; co = 1; cv = 1; cr = 1; % c_hkl ...
constants from eq. 20 (Krogstrup 2013) − assume unity

47 wt = thetatol*pi/180; wi = 0.5*thetatol*pi/180; wm = ...
0.5*thetatol*pi/180; wo = thetatol*pi/180; wv = thetatol*pi/180; ...
wr = thetatol*pi/180; % w_hkl constants from eq. 20 (Krogstrup ...
2013) − assume unity

48 %% Angle vector
49 thetavec = linspace(0,pi/2,1000);
50 % thetavec = [theta_v, theta_o, theta_i, 0]
51 tterm = ct*(Emax − E_t) ./ (1 + ((thetavec−theta_t)/wt).^2);
52 iterm = ci*(Emax − E_i) ./ (1 + ((thetavec−theta_i)/wi).^2);
53 mterm = cm*(Emax − E_m) ./ (1 + ((thetavec−theta_m)/wm).^2);
54 oterm = co*(Emax − E_o) ./ (1 + ((thetavec−theta_o)/wo).^2);
55 vterm = cv*(Emax − E_v) ./ (1 + ((thetavec−theta_v)/wv).^2);
56 rterm = cr*(Emax − E_r) ./ (1 + ((thetavec−theta_r)/wr).^2);
57

58 gammavec = Emax − (tterm + iterm + mterm + oterm + vterm + rterm);
59 %% Plotting
60 ku_red = [144, 26, 30] * 1/255;
61 ku_gold = [204, 166, 119] * 1/255;
62

63 xs = gammavec .* sin(thetavec);
64 ys = gammavec .* cos(thetavec);
65

66 figgamma = figure('Visible',plotshow);
67 hold on
68 grid on
69 pltg = plot(xs,ys,'Color',ku_red,'LineWidth',2);
70 plti = plot([0 Emax*tan(theta_i)],[0 Emax],'−−k');
71 pltm = plot([0 Emax*tan(theta_m)],[0 Emax],'−−k');
72 plto = plot([0 Emax*tan(theta_o)],[0 Emax],'−−k');
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73 xlim([0 Emax])
74 ylim([0 Emax])
75

76 if plotsave == 1
77 namecomp = strcat( 'gammaplot_Emax_', num2str(Emax),'_thetatol_', ...

num2str(thetatol),'.png' );
78 saveas(figgamma, namecomp)
79 end

8.4.3 wulff_caller_timovr

This code generates equilibrium shape evolutions shown in sections 4.4.3 via a call of the
function "wulff_func_timovr".
For high values of the surface energy density associated with facet m (introduced in
section 4.4.4), this caller with associated function will produce plots as if the model was
effectively 5-facet (as in section 4.4.3), since the m-facet will be excluded from the Wulff
construction as shown in section 4.3.
For all intents and purposes this 6-facet model is more general, as is included the 5-facet
model.

1 %% Choose plotting options
2 plotshow = 1; % show plots yes/no
3 plotsave = 0; % save plots yes/no
4

5 fontsmall = 10;
6 fontlarge = 14;
7 %% Angles of facets
8 theta_i = 25.24 * pi/180; % angle of 113−plane w.r.t. 001 substrate
9 theta_m = 35.26 * pi/180; % angle of 112−plane w.r.t. 001 substrate

10 theta_o = 54.74 * pi/180; % angle of 111−plane w.r.t. 001 substrate
11 theta_r = theta_o; % angle of raised facet − another 111 in this case
12 % t is always flat top, v is always vertical side
13 %% Composition of ternary alloy
14 Infrac = 0; % set fraction of Indium in InGaAs − naively assumin ...

linear interpolation
15 %% Surface energy densities
16 % Values taken from Yeu 2019:
17 % https://www.nature.com/articles/s41598−018−37910−y − units ...

[meV/angstrom^2]
18 % −−−−− GaAs −−−−−: Yeu et. al. 2019: GaAs 973K (\mu=−5.9eV)
19 GaAs_E_t = 60; % 60(100)
20 GaAs_E_i = 56; % 56(113A) or 60.5(113B)
21 GaAs_E_m = 71.5; % 71.5 (112A) or 70.0 (112B) − translated from ...

Jenichen2012
22 GaAs_E_o = 53; % 53(111A) or 45(111B) − surface vibration corrected
23 GaAs_E_v = 51; % 51(110) − cutoff near 54.5
24 GaAs_E_r = 53; % 53(111A) or 45(111B) − surface vibration corrected
25 % −−−−− InAs −−−−−: Yeu et. al. 2019: InAs 773K (\mu=−5.65eV)
26 InAs_E_t = 48; % 48(100)
27 InAs_E_i = 44; % 44(113A) or 49(113B)
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28 InAs_E_m = GaAs_E_m; % inset for code functionality − needs ...
literature value

29 InAs_E_o = 40; % 40(111A) or 31(111B) − surface vibration corrected
30 InAs_E_v = 40; % 40(110) − cutoff near 37.5
31 InAs_E_r = 40; % 40(111A) or 31(111B) − surface vibration corrected
32

33 % In_{Infrac}Ga[1−Infrac}As
34 Gafrac = 1−Infrac;
35 E_t = Infrac*InAs_E_t + Gafrac*GaAs_E_t;
36 E_i = Infrac*InAs_E_i + Gafrac*GaAs_E_i;
37 E_m = Infrac*InAs_E_m + Gafrac*GaAs_E_m;
38 E_o = Infrac*InAs_E_o + Gafrac*GaAs_E_o;
39 E_v = Infrac*InAs_E_v + Gafrac*GaAs_E_v;
40 E_r = Infrac*InAs_E_r + Gafrac*GaAs_E_r;
41 %% Begin Volume loop (to show time evolution)
42 FullWidth = 120; % trenchs width
43 FullVolume = tan(theta_o)*(FullWidth/2)^2;
44

45 xmid = 0; % x−midpos of NW for plotting
46 yoff = 0; % y−basepos of NW boundaries for plotting
47

48 Vlow = 0.10 * FullVolume; % choose sweep parameters for volume − min ...
volume

49 Vhigh = 1.50 * FullVolume;
50 Vstep = 0.10 * FullVolume;
51

52 Vpercent = 100*Vhigh/(FullVolume);
53

54 nVstep = 1; % current step
55 nVsteps = 1 + ceil((Vhigh−Vlow)/Vstep);
56

57 L_t = zeros(1,nVsteps); % preallocate vector for t−facet lengths
58 L_i = zeros(1,nVsteps);
59 L_m = zeros(1,nVsteps);
60 L_o = zeros(1,nVsteps);
61 L_v = zeros(1,nVsteps);
62 L_r = zeros(1,nVsteps);
63

64 xti = zeros(1,nVsteps); % preallocate vector for t−i boundary
65 yti = zeros(1,nVsteps);
66 xim = zeros(1,nVsteps);
67 yim = zeros(1,nVsteps);
68 xmo = zeros(1,nVsteps);
69 ymo = zeros(1,nVsteps);
70

71 Esols = zeros(1,nVsteps);
72

73 Volumes = zeros(1,nVsteps); % tracks widths for overgrowth
74 Widths = zeros(1,nVsteps);
75

76 for Volumevalue = Vlow:Vstep:Vhigh % sweep for volume
77 %% Define volumes and widths, then call
78 Volumes(nVstep) = Volumevalue; % save volume for plotting
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79 HalfVolume = Volumevalue/2; % adjustments for all code written on ...
right half side

80 HalfWidth = FullWidth/2;
81

82 B = HalfVolume;
83 W = HalfWidth;
84 Widths(nVstep) = 2*W; % save width for plotting (constant unless ...

overgrowth)
85

86 % Solve minimum energy function, output facet lengths
87 Lsols = wulff_func_timovr(HalfVolume, HalfWidth, theta_i, ...

theta_m, theta_o, theta_r, E_t, E_i, E_m, E_o, E_v, E_r);
88 L_t(nVstep) = Lsols(1); L_i(nVstep) = Lsols(2); ...

L_m(nVstep) = Lsols(3); L_o(nVstep) = Lsols(4); ...
L_v(nVstep) = Lsols(5); L_r(nVstep) = Lsols(6);

89 Esols(nVstep) = E_t*L_t(nVstep) + E_i*L_i(nVstep) + ...
E_m*L_m(nVstep) + E_o*L_o(nVstep) + E_v*L_v(nVstep) + ...
E_r*L_r(nVstep);

90

91 nVstep = nVstep + 1; % next step of volume sweep
92 end % Ends volume loop
93 %% Plot boundary evolution
94 % total lengths of facets: −−−−−−−−−− REDO FROM HERE TO INCLUDE V FACET!
95 Lx_t = L_t;
96 Ly_t = zeros(1,nVsteps);
97

98 Lx_i = L_i * cos(theta_i); % horizontal length of i−facet
99 Ly_i = L_i * sin(theta_i); % vertical length of i−facet

100

101 Lx_m = L_m * cos(theta_m);
102 Ly_m = L_m * sin(theta_m);
103

104 Lx_o = L_o * cos(theta_o);
105 Ly_o = L_o * sin(theta_o);
106

107 Lx_v = zeros(1,nVsteps);
108 Ly_v = L_v;
109

110 Lx_r = L_r * cos(theta_r);
111 Ly_r = L_r * sin(theta_r);
112 %% Plotting sample solution
113 %(k, nVstep)
114 xt = [zeros(1,nVsteps); L_t]; % x goes 0 to t
115 yt = [Ly_t+Ly_i+Ly_m+Ly_o+Ly_v+Ly_r; Ly_i+Ly_m+Ly_o+Ly_v+Ly_r]; % y ...

goes timovr to imovr
116

117 xi = [L_t; L_t+Lx_i]; % x goes t to ti
118 yi = [Ly_i+Ly_m+Ly_o+Ly_v+Ly_r; Ly_m+Ly_o+Ly_v+Ly_r]; % y goes imovr ...

to movr
119

120 xm = [L_t+Lx_i; L_t+Lx_i+Lx_m]; % x goes ti to tim
121 ym = [Ly_m+Ly_o+Ly_v+Ly_r; Ly_o+Ly_v+Ly_r]; % y goes movr to ovr
122
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123 xo = [L_t+Lx_i+Lx_m; L_t+Lx_i+Lx_m+Lx_o]; % x goes tim to timo
124 yo = [Ly_o+Ly_v+Ly_r; Ly_v+Ly_r]; % y goes ovr to vr
125

126 xv = [L_t+Lx_i+Lx_m+Lx_o; L_t+Lx_i+Lx_m+Lx_o+Lx_v]; % x goes timo to timov
127 yv = [Ly_v+Ly_r; Ly_r]; % y goes vr to v
128

129 xr = [L_t+Lx_i+Lx_m+Lx_o+Lx_v; L_t+Lx_i+Lx_m+Lx_o+Lx_v−Lx_r]; % x goes ...
timov to timovr

130 yr = [Ly_r; zeros(1,nVsteps)]; % y goes r to 0
131 %% Do figure
132 strcomp = strcat( 'Growth of In_{', num2str(Infrac),'}Ga_{', ...

num2str(Gafrac),'}As' );
133

134 if plotshow == 1
135 figshow = 'on';
136 elseif plotshow == 0
137 figshow = 'off';
138 end
139

140 lw = 1;
141

142 fig_tiovr = figure('Visible',figshow);
143 hold on
144 grid on
145 set(gca,'DataAspectRatio',[1 1 1])
146

147 plot(xt+xmid,yt+yoff, 'k', 'LineWidth', lw) % plots right sides
148 plot(xi+xmid,yi+yoff, 'k', 'LineWidth', lw)
149 plot(xm+xmid,ym+yoff, 'r', 'LineWidth', lw)
150 plot(xo+xmid,yo+yoff, 'k', 'LineWidth', lw)
151 plot(xv+xmid,yv+yoff, 'k', 'LineWidth', lw)
152 plot(xr+xmid,yr+yoff, 'k', 'LineWidth', lw)
153 plot(−xt+xmid,yt+yoff, 'k', 'LineWidth', lw) % plots left sides
154 plot(−xi+xmid,yi+yoff, 'k', 'LineWidth', lw)
155 plot(−xm+xmid,ym+yoff, 'r', 'LineWidth', lw)
156 plot(−xo+xmid,yo+yoff, 'k', 'LineWidth', lw)
157 plot(−xv+xmid,yv+yoff, 'k', 'LineWidth', lw)
158 plot(−xr+xmid,yr+yoff, 'k', 'LineWidth', lw)
159 scatter([−FullWidth/2+xmid FullWidth/2+xmid],[0+yoff 0+yoff],'kd', ...

'filled') % Width markers
160

161 if plotsave == 1
162 filenameex = ['/shapes/wulff_reprod_timovr.png'];
163 saveas(fig_tiovr, [pwd filenameex])
164 end

8.4.4 wulff_func_timovr

This code minimizes surface energies under constraints via the MATLAB-internal func-
tion ’fmincon’ which minimizes a given function under a set of constraints.
"wulff_func_timovr" is called by "wulff_caller_timovr" and "excesses_dGdN".
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1 function Lsols = wulff_func_timovr(volume, width, theta_i, theta_m, ...
theta_o, theta_r, E_t, E_i, E_m, E_o, E_v, E_r)

2 %% Define geometry
3 W=width; V=volume;
4 Et=E_t; Ei=E_i; Em=E_m; Eo=E_o; Ev=E_v; Er=E_r;
5 thetai=theta_i; thetam=theta_m; thetao=theta_o; thetar=theta_r;
6 %%
7 funE = @(L) Et*L(1) + Ei*L(2) + Em*L(3) + Eo*L(4) + Ev*L(5) + ...

Er*L(6); % Energy function to be minimized, Lt=L(1), Li=L(2), ...
Lm=L(3), Lo=L(4), Lv=L(5), Lr=L(6)

8 L0s = [W/2, W/4, W/8, W/4, 0, 0]; % initial guesses for lengths
9

10 A = []; % linear inequality constraints − none, since bound are ...
set by "lb" and "ub"

11 b = [];
12 Aeq = []; % linear equality constraints − none
13 beq = [];
14

15 lb = [0,0,0,0,0,0]; % all length values must be 0+
16 ub = [];
17

18 options = optimoptions('fmincon','Display','off'); % suppresses ...
large text output for each iteration of solution

19

20 Lsols = fmincon(funE, L0s, A, b, Aeq, beq, lb, ub, @nonlinconstr, ...
options);

21 %% L(3)cal functions used
22 function [c,ceq] = nonlinconstr(L) % c's are inequalities implied ...

less than or equal to zero, ceq's are equalities implied equal ...
to zero

23 c = []; % no inequality constraints
24 ceq(1) = V − ((1/2)*(L(1) + L(1) + ...

L(2)*cos(thetai))*L(2)*sin(thetai) ...
25 + (1/2)*(L(1) + L(2)*cos(thetai) + L(1) + L(2)*cos(thetai) ...

+ L(3)*cos(thetam))*L(3)*sin(thetam) ...
26 + (1/2)*(L(1) + L(2)*cos(thetai) + L(3)*cos(thetam) + L(1) ...

+ L(2)*cos(thetai) + L(3)*cos(thetam) + ...
L(4)*cos(thetao))*L(4)*sin(thetao) ...

27 + (L(1) + L(2)*cos(thetai) + L(3)*cos(thetam) + ...
L(4)*cos(thetao))*L(5) ...

28 + (1/2)*(W + W + L(6)*cos(thetar))*L(6)*sin(thetar)); % ...
volume equality − implied equal to zero

29 ceq(2) = (W + L(6)*cos(thetar)) − (L(1) + L(2)*cos(thetai) + ...
L(3)*cos(thetam) + L(4)*cos(thetao)); % width equality

30 end
31 end

8.4.5 excesses_dGdN

This code generates figure 29, in part via a call of the function "wulff_func_timovr" and
subsequent numerical differentiation.
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1 %% Choose plotting options
2 plotshowdEdN = 1; % show plots yes/no
3 plotsave = 1; % save plots yes/no
4

5 fontsmall = 11;
6 fontlarge = 12;
7 %% Angles of facets
8 theta_i = 25.24 * pi/180; % angle of 113−plane w.r.t. 001 substrate
9 theta_m = 35.26 * pi/180; % angle of 112−plane w.r.t. 001 substrate

10 theta_o = 54.74 * pi/180; % angle of 111−plane w.r.t. 001 substrate
11 theta_r = theta_o; % angle of raised facet − another 111 in this case
12 % t is always flat top, v is always vertical side
13 %% Composition of ternary alloy
14 Infrac = 0; % set fraction of Indium in InGaAs
15 volstep = 0.01;
16 finalVmulti = 2.25; % final step is finalmulti times full pyramid
17 %% Surface energy densities
18 % Values taken from Yeu 2019: ...

https://www.nature.com/articles/s41598−018−37910−y
19 % −−−−− GaAS −−−−−: Yeu et. al. 2019: GaAs 973K (\mu=−5.9eV)
20 GaAs_E_t = 60 * 100; % 60(100) − 0.01 factor conversion [meV/AA^2] −> ...

[meV*/nm^2]
21 GaAs_E_i = 56 * 100; % 56(113A) or 60.5(113B)
22 GaAs_E_m = 71.5* 100; % 71.5 (112A) or 70.0 (112B) − translated ...

from Jenichen2012
23 GaAs_E_o = 53 * 100; % 53(111A) or 45(111B) − surface vibration corrected
24 GaAs_E_v = 51 * 100; % 51(110) − cutoff near 54.5
25 GaAs_E_r = 53 * 100; % 53(111A) or 45(111B) − surface vibration corrected
26 % −−−−− InAs −−−−−: Yeu et. al. 2019: InAs 773K (\mu=−5.65eV)
27 InAs_E_t = 48 * 100; % 48(100)
28 InAs_E_i = 44 * 100; % 44(113A) or 49(113B)
29 InAs_E_m = GaAs_E_m; % inset for code functionality − needs ...

literature value
30 InAs_E_o = 40 * 100; % 40(111A) or 31(111B) − surface vibration corrected
31 InAs_E_v = 40 * 100; % 40(110) − cutoff near 37.5
32 InAs_E_r = 40 * 100; % 40(111A) or 31(111B) − surface vibration corrected
33

34 % In_{Infrac}Ga[1−Infrac}As
35 Gafrac = 1−Infrac;
36 E_t = Infrac*InAs_E_t + Gafrac*GaAs_E_t;
37 E_i = Infrac*InAs_E_i + Gafrac*GaAs_E_i;
38 E_m = Infrac*InAs_E_m + Gafrac*GaAs_E_m;
39 E_o = Infrac*InAs_E_o + Gafrac*GaAs_E_o;
40 E_v = Infrac*InAs_E_v + Gafrac*GaAs_E_v;
41 E_r = Infrac*InAs_E_r + Gafrac*GaAs_E_r;
42

43 Omega = (1/4) * (Infrac*0.60583^3 + Gafrac*0.565325^3); % 4 pairs ...
per unit cell

44 gammat = Infrac*InAs_E_t + Gafrac*GaAs_E_t;
45 gammao = Infrac*InAs_E_o + Gafrac*GaAs_E_o;
46

47 epsilon1 = 0; % strain contributions
48 epsilon2 = 0;
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49 %% Begin Volume loop (to show time evolution)
50 FullWidth = 120; % trenchs width
51 FullVolume = tan(theta_o)*(FullWidth/2)^2;
52

53 Vlow = volstep * FullVolume; % choose sweep parameters for volume
54 Vhigh = finalVmulti * FullVolume;
55

56 Vstep = volstep * FullVolume;
57 Vpercent = 100*Vhigh/(FullVolume);
58 %% 2−facet ∆−mu calculations (<111> and <001>)
59 num = 50; % number of intervals for plots
60 h_max = (FullWidth/2) * tan(theta_o); % max height of pyramid
61 h1array = linspace(1,num,num) * h_max / num;
62 h2_max = ...

(sqrt(4*cot(theta_o)*(finalVmulti−1)*(FullVolume/2)+FullWidth^2) − ...
FullWidth) / cot(theta_o);

63 h2array = linspace(1,num,num) * h2_max / num;
64

65 csa1 = FullWidth .* h1array − cot(theta_o).*h1array.^2;
66 csa2 = (FullWidth/2) * h_max + 2 * ( h2array.*(FullWidth/2) + ...

h2array.^2*cot(theta_o)/4 );
67 %% Preallocating for volume loop
68 nVstep = 1;
69 nVsteps = 1 + floor((Vhigh−Vlow)/Vstep);
70

71 L_t = zeros(1,nVsteps); % preallocate vector for t−facet lengths
72 L_i = zeros(1,nVsteps);
73 L_o = zeros(1,nVsteps);
74 L_v = zeros(1,nVsteps);
75 L_r = zeros(1,nVsteps);
76

77 L_t_e = zeros(1,nVsteps); % preallocate vector for t−facet lengths
78 L_o_e = zeros(1,nVsteps);
79 L_r_e = zeros(1,nVsteps);
80

81 xti = zeros(1,nVsteps); % preallocate vector for t−i boundary
82 yti = zeros(1,nVsteps);
83 xio = zeros(1,nVsteps);
84 yio = zeros(1,nVsteps);
85

86 Esols = zeros(1,nVsteps);
87 Esols_e = zeros(1,nVsteps);
88

89 Volumes = zeros(1,nVsteps); % tracks widths for overgrowth
90

91 for Volumevalue = Vlow:Vstep:Vhigh % sweep for volume
92 %% Wulff caller (V, Ea, Ev) with first facet being most horizontal
93 Volumes(nVstep) = Volumevalue; % save volume for plotting
94 HalfVolume = Volumevalue/2; % adjustments for all code written on ...

right half side
95 HalfWidth = FullWidth/2;
96

97 % full 6−facet model
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98 Lsols = wulff_func_timovr(HalfVolume, HalfWidth, theta_i, ...
theta_m, theta_o, theta_r, E_t, E_i, E_m, E_o, E_v, E_r);

99 L_t(nVstep) = Lsols(1); L_i(nVstep) = Lsols(2); ...
L_m(nVstep) = Lsols(3); L_o(nVstep) = Lsols(4); ...
L_v(nVstep) = Lsols(5); L_r(nVstep) = Lsols(6);

100 Esols(nVstep) = 2*( E_t*L_t(nVstep) + E_i*L_i(nVstep) + ...
E_o*L_o(nVstep) + E_v*L_v(nVstep) + E_r*L_r(nVstep) );

101

102 if Volumevalue ≤ FullVolume % treats the restricted case regime 1
103 hnow = ( FullWidth − sqrt(FullWidth^2 − ...

4*cot(theta_o)*Volumevalue) ) / (2*cot(theta_o));
104 Esols_e(nVstep) = 2* ( E_t * (HalfWidth−cot(theta_o)*hnow) ...

+ E_o * (hnow/sin(theta_o)) );
105 elseif Volumevalue > FullVolume % treats the restricted case ...

regime 2
106 hnow = ( sqrt(4*cot(theta_o)*HalfVolume + FullWidth^2) − ...

FullWidth ) / cot(theta_o);
107 l = FullWidth/(2*cos(theta_o)); d = hnow/(2*sin(theta_o));
108 Esols_e(nVstep) = 2*E_o*( l+2*d );
109 end
110 nVstep = nVstep + 1; % next step of volume sweep
111 end % Ends volume loop
112 %% Analytic solutions for <111> and [001] facet model
113 ∆mu_s_h = ( Omega*(gammao − gammat*cos(theta_o)) ) ./ ( sin(theta_o)*( ...

HalfWidth − cot(theta_o)*h1array ) ) + epsilon1;
114 ∆mu_s_h2 = ( Omega*gammao ) ./ ( sin(theta_o)*( HalfWidth + ...

h2array*cot(theta_o)./2 ) ) + epsilon2;
115

116 nAtoms = Volumes ./ (Omega); % number of atoms in volume − half ...
because of symmetry used throughout

117 dEdnA = diff(Esols) ./ diff(nAtoms);
118 volcut = Volumes([1:end−1]);
119 %% Plot boundary evolution
120 % total lengths of facets
121 Lx_t = L_t;
122 Ly_t = zeros(1,nVsteps);
123

124 Lx_i = L_i * cos(theta_i); % horizontal length of i−facet
125 Ly_i = L_i * sin(theta_i); % vertical length of i−facet
126

127 Lx_o = L_o * cos(theta_o);
128 Ly_o = L_o * sin(theta_o);
129

130 Lx_v = zeros(1,nVsteps);
131 Ly_v = L_v;
132

133 Lx_r = L_r * cos(theta_r);
134 Ly_r = L_r * sin(theta_r);
135 %% Plotting sample solution
136 %(k, nVstep)
137 xt = [zeros(1,nVsteps); L_t];
138 yt = [Ly_t+Ly_i+Ly_o+Ly_v+Ly_r; Ly_i+Ly_o+Ly_v+Ly_r];
139
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140 xi = [L_t; L_t+Lx_i];
141 yi = [Ly_i+Ly_o+Ly_v+Ly_r; Ly_o+Ly_v+Ly_r];
142

143 xo = [L_t+Lx_i; L_t+Lx_i+Lx_o];
144 yo = [Ly_o+Ly_v+Ly_r; Ly_v+Ly_r];
145

146 xv = [L_t+Lx_i+Lx_o; L_t+Lx_i+Lx_o];
147 yv = [Ly_r; Ly_v+Ly_r];
148

149 xr = [L_t+Lx_i+Lx_o; L_t+Lx_i+Lx_o−Lx_r];
150 yr = [Ly_r; zeros(1,nVsteps)];
151 %% Setup for figures
152 c1 = [0, 0, 0];
153 c2 = [0.20, 0.20, 0.20];
154 c3 = [0.40, 0.40, 0.40];
155 c4 = [0.60, 0.60, 0.60];
156 c5 = [0.80, 0.80, 0.80];
157

158 plotnamecomp = strcat( 'excesses_regimes_In', num2str(Infrac), '_Ga', ...
num2str(Gafrac), '_As.png' );

159 strcomp = strcat( 'Growth of In_{', num2str(Infrac), '}Ga_{', ...
num2str(Gafrac), '}As' );

160

161 if plotshowdEdN == 1
162 figshowdEdN = 'on';
163 elseif plotshowdEdN == 0
164 figshowdEdN = 'off';
165 end
166

167 lw = 2;
168 %% Do figures
169 % strcomp = [];
170

171 fig_dEdN = figure('Visible',figshowdEdN);
172 hold on
173 grid on
174 reg1 = plot(csa1, ∆mu_s_h, 'Color', c4, 'LineWidth', lw, ...

'DisplayName', '3−facet model analytic');
175 reg2 = plot(csa2, ∆mu_s_h2, 'Color', c4, 'LineWidth', lw);
176 tiovr = ...

plot(volcut,dEdnA,'Color',c1,'LineWidth',lw,'DisplayName', ...
'5−facet model numerical');

177 xlb = xlabel('Cross sectional area [nm^2]', 'FontSize', fontsmall);
178 ylb = ylabel('\∆\mu_{s} [meV]', 'FontSize', fontsmall);
179 ylim([0, 0.5/1000]);
180 lgd = legend([reg1 tiovr],'FontSize', fontsmall, 'Location', ...

'SouthEast');
181

182 if plotsave == 1
183 filename_dEdN = strcat('tiovr_dEdN_In', num2str(Infrac), 'Ga', ...

num2str(Gafrac), 'As.png');
184 saveas(fig_dEdN, filename_dEdN)
185 end
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