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Abstract

In this thesis I will show that it is possible to 1) derive all the physical
properties of the gas in clusters of galaxies from the dark matter distribution
alone, and 2) that it is possible to use this to determine the dark matter
density profile from the surface brightness alone. When the dark matter
density profile is known, then other radial profiles of the gas properties, such
as temperature or density, can be computed and compared to observations
to check if the result is consistent with the assumptions. Besides assuming
the validity of the Jeans equation and hydrostatic equilibrium we also assume
that there is a linear relation between the density slope and anisotropy (γ ∼ β
relation) and a constant relation between the dispersions of the dark matter
and the gas (the dark matter temperature relation) which both have been
confirmed through numerical simulations.
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Chapter 1

Introduction

Throughout history mankind has looked up to the heavens and tried to an-
swer the question: ”What is out there?” This question is still one of the most
central questions for any astronomer and much has been learned since the
time of the first Greek astronomers. We have among other things discovered
the existence of dark matter in the Universe.

In this thesis I will primarily focus on how to determine properties of the
dark matter in clusters of galaxies. Galaxy clusters are the biggest gravi-
tationally bound systems in the Universe, but still relatively simple as they
primarily only contain gas and dark matter, whereas the stellar component
is negligible.

1.1 History

The history of astronomy is almost as old as the history of mankind itself.
Every culture from which we have written accounts in some way or another
have tried to make sense of the heavens. Among the oldest cultures from
which we have written accounts are the Egyptians and the Mesopotamians,
and whereas most astronomy of that time would be classified as mythology
today, the old Babylonians1 started a custom that would become the foun-
dation of science: They founded their ideas on logic and what they could
observe. This tradition was carried on by the early Greeks who are the
founders of modern day astronomy.

1Babylon was one of the main cities in Mesopotamia
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Hipparchus was one of the early Greek astronomers and he invented the
magnitude scale of the stars that (with modifications) is still used today. He
would call the brightest stars in the night sky ”stars of the first magnitude”
and the faintest stars that are visible with the naked eye ”stars of the sixth
magnitude”. Today we have flux measurements of the stars that Hipparchus
looked at and we can therefore find an empirical relation between the flux
and the magnitude of a star. Therefore the modern definition is,

M = −2.5 log

(
F

F0

)
, (1.1)

where F0 is a reference flux that defines the zero-magnetude. The magnitude
scale is a logarithmic scale where a difference of 2.5 magnitudes equals a
factor of 10 in flux. It is also worth noting that the scale is reversed in the
sense that, faint stars have large positive magnitudes and bright stars have
low even negative magnitudes. The Greeks not only gave us the magnitude
system but also one of the first rational models of the Universe. They believed
in the perfection of geometry and that this (divine) geometry also governed
the heavens. This led them to believe that the Universe was made up of
crystal spheres whereupon the planets revolved, but as the observations of
the movements of the Sun, Moon and planets got more extensive they had
to modify their model of the Universe. The Greeks believed that the Earth
was the center of the Universe and that the Sun, Moon and planets revolved
around the Earth in perfect circular orbits. This turned out not to predict
the planets’ retrograde movement correctly, so they tried to explain this by
introducing epicycles, which means that the planets had to move in a small
circle as they orbits the Earth. This world model is called Ptolemaic after
the Greek/Roman astronomer Ptolemy. All the world views that put the
Earth at the center of the Universe are called geocentric.

By the medieval period an astronomer named Galileo Galilei had gotten
the idea to construct a telescope to aid him in his investigation of the heavens.
He constructed his first telescope after hearing of a practical set of theater
binoculars invented in the Netherlands. With the aid of a telescope Galileo
found that Venus is not orbiting the Earth, by studying the faces of Venus.
He also found the four inner Moons of Jupiter (called the Galilean Moons
in his honor) and thereby proved that not everything revolves around the
Earth. This discovery lead to the development of other world models where
the Sun was in the center, the so called heliocentric world model. There were
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different models with a varying number of planets orbiting either the Sun or
the Earth.

The next evidence against the Greek model came from the Danish as-
tronomer Tycho Brahe who around the time of Galileo was a very productive
observer. He made countless measurements of the night sky. In 1572 he ob-
served a new star in the constellation of Cassiopeia. It was explained as being
an object in the atmosphere, but Tycho showed that it had to be situated be-
yond the Moon and thereby proved that the heavens are not unchanging and
eternally the same. In 1577 Tycho observed a comet that he could show had
passed through the crystal spheres that the Greeks had postulated existed.

Although Tycho did not believe in a heliocentric Universe his student
Johannes Kepler did. Kepler used Tycho’s observations of the planets to
derive his three laws of planetary motion. These laws broke with one of the
last characteristics of the Greek world model: The orbits of the planets are
not circular but elliptical. With these laws Kepler could explain the motion
of the planets much more accurately and without the use of epicycles. It
would be almost a century before Sir Isaac Newton formulated his law of
gravity and the laws of Kepler could be explained from a more fundamental
theory. Newton’s law of gravity also made an impact on the world view,
because now the heavens where governed by the same laws that applied on
the Earth.

As telescopes got better astronomers began to observe the annual parallax
of the nearest stars which enabled them to calculate their distances by simple
geometry. These observations put a new minimum size on the Universe.
Newton even argued that since gravity is an attractive force and the fact that
all matter is not concentrated in one point has to imply that the Universe is
infinite.2

1.2 Cosmology Today

The next major change came in 1905 to 1915 when Albert Einstein published
his special and general relativity theories. Einstein reintroduced the idea
that the Universe was governed by geometry, not in three dimensions but
four. Space-time describes the Universe in four dimensions, treating time as
a fourth ”space” dimension and Einstein general relativity theory explains

2Newton did not take into account that the Universe might have a finite age.
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how mass3 curves space-time. In space-time gravity is not a force but a
geometric property of space itself. This means that all objects have to follow
the shortest path4 in space-time like marbles on a rubber sheet. So if there
is a massive object in the vicinity the shortest path can become a closed
orbit around the massive object. Even light, although massless and thereby
unaffected by gravity in Newton’s description, has to follow the shortest path
which means it can be deflected by heavy objects. This was proven during
a solar eclipse where a small deflection of a star near the solar disc was
observed, thereby confirming general relativity.

General relativity is the framework of modern cosmology and in general
relativity the Universe can have three kinds of morphologies or shapes: Open,
flat or closed. An open Universe means that the Universe is infinite and if we
draw big triangles it would be like drawing triangles on a saddle, that is, the
sum of the angles is less than 180◦. Another interpretation would be that
two rays of light that are perfectly parallel would in time get further and
further apart from each other. The opposite is true for a closed Universe:
Parallel rays eventually cross and big triangles have a sum of angles larger
than 180◦, like the triangles on the surface of a sphere.

Where Einstein made it possible for us to understand the nature of the
Universe through space-time it was Edwin Hubble who brought the next piece
of evidence that would change our knowledge of the Universe. He showed
that the further away an object is, the faster it travels away from us, like if
we were sitting in the middle of an explosion. This spawned the Big Bang
theory which states that the Universe has a finite age. We know today that
the age of the Universe is approximately 13.7 billion years old.

Another piece of our current understanding of the Universe came in 1964
when the two astronomers Arno Penzias and Robert Wilson discovered that
there was a constant radio signal from any direction in the sky. This was
named the Cosmic Microwave Background (or CMB for short), and has the
spectrum of a perfect blackbody with a temperature of 2.7K. Later observa-
tions of the CMB has shown minute fluctuations in the temperature of the
order of δT/T ∼ 10−5.

The last few decades has revealed to us that not only are we5 in the center
of a huge ”explosion”, but also that the major part of our Universe consists

3Mass and energy are two manifestations of the same thing
4The technical term for shortest path is ”geodesic”
5Actually every point in space is ”at the center” of the explosion.
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of ”dark” components: Dark matter and dark energy.
Dark matter was discovered by looking the velocity dispersion in galaxy

clusters and at rotation curves of galaxies. Measurements showed that the
galaxies and stars were moving faster than they should be able to, this implied
that there has to be extra matter present to keep them from flying apart. The
other ”dark” component is dark energy which acts as a force against gravity
on large scales. The first candidate for explaining this was the cosmological
constant that Einstein introduced in his general relativity. This constant
can be interpreted as a non-zero vacuum energy that, when gravity becomes
weak enough over long distances, takes over and exerts force on the Universe
which leads to accelerated expansion. This is what supernova observations
have showed. Our Universe is not only expanding it is also accelerating its
expansion.

1.3 The concordance model(s)

There are many theories that describe different aspects of the Universe on
a cosmological scale, some theories explain the early Universe, some explain
the formation of structures in the Universe. In this section I will go through
the theories that is believed to best describe our current knowledge of the
Universe. These theories are: Inflation, big bang nucleosynthesis, and lambda
cold dark matter, among others. I will refer to this group of theories as the
concordance models of the Universe.

The first theory is inflation-theory. Inflation is an early epoch right after
the Big Bang where the Universe grew approximately e60 ∼ 1026 times in
size. This epoch explains why the Universe is so close to being perfectly flat
and how the seed of large scale structures formed from quantum fluctuations.
These quantum fluctuations can also be seen in the CMB as small tempera-
ture fluctuations. Big Bang Nucleosynthesis (BBN for short) describes how
the elements in the Universe were produced from the radiation in the young
hot Universe and it precisely gives the abundances of hydrogen, helium and
trace amounts of heavier elements.

Maybe the most important member of the concordance models in the
field of dark matter is the Lambda Cold Dark Matter (or ΛCDM) model.
Within the framework of general relativity this model can give a quantita-
tive description of the Universe at the present time. As described above
observations have shown that the Universe contains a component that acts
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against gravity on large scale and the cosmological constant, (denoted Λ,) is
a force that does that, hence the Λ in ΛDCM.

Figure 1.1: Observational constraints on ΩΛ and Ωm from the CMB, Super-
nova standard candles and the matter in clusters of galaxies (see [17]). On
the x-axis the amount of matter in the Universe, on the y-axis the amount of
cosmological constant (dark energy). Best fit point: Ωm ≈ 0.27, ΩΛ ≈ 0.73

ΛCDM characterize the Universe by the components it contains and the
amount of them. These components are: radiation, baryons, dark matter, a
cosmological constant (or other types of dark energy) and even curvature if a
non-flat Universe is considered. The amount of one component is calculated
as the energy density of the component compared to a critical energy density6,
which is denoted Ωr, Ωb, Ωdm, ΩΛ, and Ωk respectively for the components
mentioned above. Observations primarily from the CMB have shown that
the present day values of Ωr and Ωk are very small, that is, we live in a flat

6The critical energy density is the density that is required to keep the Universe (space-
time) flat.
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Universe with only negligible amounts of radiation energy density today. It
is customary to combine Ωdm and Ωb to a total matter component Ωm where
the dark matter component is the dominant of the two. This means that
our Universe can essentially be expressed by two parameters: Ωm and ΩΛ.
Astronomers today try to determine the values of Ωm and ΩΛ with better
precision, and the values that best fit the data are approximately Ωm ≈ 0.27
and ΩΛ ≈ 0.73 (see figure 1.1).

The ΛCDM model has taught us how structure formation takes place as
small over-densities in the young Universe gathers mass. The dark matter
clusters together earlier than the baryonic component because dark mat-
ter does not exert a repulsive pressure to resist the self-gravity of the over-
densities. So by the time the baryons collapse the dark matter has already
created a considerable potential well, that the baryons fall into. The dark
matter is thus not only the dominant gravitational component but also the
dominant factor in the determining the distribution of matter. That is why
it is a good approximation only to consider the dark matter when we want
to understand the overall structure of the Universe.

We divide the Universe in different domains depending on what scale we
are looking at. The term galaxy scale is used when we are looking at an
individual galaxy. The term cluster scale is used when we look at entire
clusters of galaxies and last the term cosmological scale is used for scales
much larger than the biggest galaxy clusters. For each step we go up or
down in scale we have to use different kinds of physics: On cosmological
scale we need only to know the dark matter distribution and the expansion
of the Universe, as described above. On cluster scale (inside a cluster halo)
we do not need to take the expansion of the Universe or the individual stars
into account, but here gas physics becomes important. Similarly on galaxy
scales some physics become unimportant and other physics has to be taken
into account, like radiation of gas and star formation.
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Chapter 2

The basics

In this section I will introduce all the mathematics and observational concepts
that are needed to understand the physics and the observations involved. For
that we need some basic definitions of what a cluster is made of.

Clusters of galaxies consist of three constituents: Dark matter, gas, and
stars (in galaxies). The most important constituent is dark matter because
it is dominating the gravitational potential, the second most dominant con-
stituent is the gas, whereas the stellar component only has negligible mass.
The gas component is called the Intra-Cluster Medium (or ICM for short),
and consists mostly of primordial gas from the Big Bang. It is mostly hydro-
gen, eventually enriched with the gas ejected from the galaxies. The galaxies
might have a higher metallicity due to metal enrichment from supernova ex-
plosions. The gas is very hot and therefore fully ionized (that is, plasma)1.
The gas is also very dilute with a number density of the order 10−3 atoms per
cubic cm which gives a mean free path of the order 1016 meters (one third
parsec). So in the absence of magnetic fields the ICM can very well be ap-
proximated by an ideal gas. From the gas we observe thermal bremsstrahlung
which we use to infer the properties of the gas.

2.1 Hydrostatic Equilibrium

In this section I will give an introduction to fluid mechanics. I will just go
through what is required for the treatment of the ICM. For a more in-depth
treatment of fluid mechanics see [18].

1The proper term would be ”plasma” but the term ”gas” is widely used in the literature.
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We will start by considering a small volume of fluid, dV , a so-called fluid-
element. The force acting on a surface-element d $A = $n dA is,

−p d $A = −p$n dA , (2.1)

where $n is a unit vector pointing out of the fluid element whereas the force is
pointing inwards, hence the sign. If we integrate the force over the surface of
the fluid-element we get an integral that via Green’s theorem can be turned
into,

−
∮

p d $A = −
∫

$∇p dV , (2.2)

where $∇ is the del operator (vector differential operator), and −$∇p has the
unit of force per unit volume. This force per unit volume can be inserted
into the fluid equivalent of Newton’s second law,

ρ
d$v

dt
= −$∇p , (2.3)

where ρ is the density, and d!v
dt the acceleration. d!v

dt is, however, not a simple
vector because the fluid-element is not a rigid or point like element. There-
fore, we have to take the variation of all the coordinates into account:

d$v = dt
∂$v

∂t
+ dx

∂$v

∂x
+ dy

∂$v

∂y
+ dz

∂$v

∂z
. (2.4)

We divide by dt and substitute dxi
dt = vi,

d$v

dt
=

∂$v

∂t
+ vx

∂$v

∂x
+ vy

∂$v

∂y
+ vz

∂$v

∂z
. (2.5)

The last three terms look like a vector dot product between the velocity and
the $∇ operator. This can then be simplified to,

d$v

dt
=

∂$v

∂t
+ ($v · $∇)v . (2.6)

The same consideration has to be made for every time derivative on a fluid
element not just when we want to differentiate $v, this is why it is customary
to define the operator,

d

dt
=

∂

∂t
+ ($v · $∇) , (2.7)
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which is called the material or substantial derivative. This derivative also
appears in the conservation-of-mass law,

dρ

dt
=

∂ρ

∂t
+ ($v · $∇)ρ = 0 . (2.8)

The first derivative can be interpreted as the derivative in the comoving
frame, that is, the density has to be constant in the comoving frame, where
as the other terms say that the change in density has to be balanced by what
flows in or out of the fluid-element.

We want to use the definition of differentiation on a fluid-element to
restate equation (2.3) as,

ρ

(
∂$v

∂t
+ ($v · $∇)v

)
= −$∇p + $fext , (2.9)

where $fext are the external forces that act on the fluid element. Equation
(2.9) is called the Euler equation2 after Leonhard Euler who derived it for the
first time. In this treatment I will only consider one external force, gravity,

$fext = ρ$g = −ρ
GM(r)

r2
$r , (2.10)

where M(r) is the mass interior to the radius r from the center of a spherical
potential and $r is the radial unit vector. We insert this into equation (2.9),

∂$v

∂t
+ ($v · $∇)v = −1

ρ
$∇p− GM(r)

r2
$r . (2.11)

This equation will serve as one of our main equations. It will be rewritten
in many forms, but it serves as the theoretical background for many of the
properties we derive for the ICM.

We now want to rewrite this equation to give us the mass. We make
the simplification that our mass is spherically distributed and at rest. We
thereby get rid of the left hand side (the velocity terms) of equation (2.11)
and $∇ becomes d

dr because there can only be a gradient in this direction due
to spherical symmetry:3

1

ρ

dp

dr
= −GM(r)

r2
. (2.12)

2The Euler equations (plural) are actually a set of equations, but when referred to in
the singular this equation is implied

3Equation (2.12) is called hydrostatic equilibrium. It states that pressure and gravity
has to be balanced out.
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As described in the introduction to this section we know that the ICM
can be described very well by an ideal gas, and for ideal gasses the pressure
is given by

p =
kTN

V
=

kTρ

m
(2.13)

where k is Boltzmann’s constant and N is the number of particles with a
mass m, in volume V . It is customary to write the particle mass as a mean
molecular weight µ times the proton mass m = µmp.

We insert equation (2.13) into equation (2.12) and get

1

ρ

d

dr

(
kTρ

µmp

)
=

k

µmpρ

d(Tρ)

dr
= −GM(r)

r2
. (2.14)

Now we rewrite this by using the definition of the logarithmic derivative
dlny
dlnx = x

y
dy
dx to get

kT

µmp

dln(Tρ)

dlnr
= −GM(r)

r
. (2.15)

The logarithmic derivative makes it possible to expand a product to a sum
like the ordinary logarithm. Now we isolate M and expand the product to
obtain,

M(r) = − kT

G µmp
r

[
dlnT

dlnr
+

dlnρ

dlnr

]
. (2.16)

This is the mass equation derived from the hydrostatic equilibrium, in as-
trophysical context this equation is often just called hydrostatic equilibrium.
It is also one of the main ways of weighing a galaxy cluster since the total
matter M(r) is given from the gas properties alone (see e.g. [29]), as both
temperature and density of the gas can be derived from X-ray observations.
Even if the assumptions are broken by some perturbation of the cluster, this
equation just becomes an estimator of the mass. The estimate will in gen-
eral be of the same order as the true mass distribution (see [24]). If we had
rewritten equation (2.11) and kept the velocity terms we would had ended
up with,

M(< r) = − kT

G µmp
r

[
dlnT

dlnr
+

dlnρ

dlnr

]
+

r2vr

G

dvr

dr
− r v2

rot

G
, (2.17)

where only spherical symmetric velocity terms can enter due to spherical
symmetry.4

4This equation is actually oversimplified as the mass interior to r, M(< r), is also
dependent on the angular coordinates in any real scenario involving velocities.
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The impact of bulk motion and inclusion of the velocity terms has been
treated thoroughly and independently be Kasper Schmidt (see [28]) and Joel
Johansson (see [15]).

2.2 Observations

When we want to know something about the ICM we start by taking a
spectrum in X-rays. This spectrum will in the general case look like figure 2.1.
The form of the spectrum can be characterized by a smooth curve with added
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Figure 2.1: A sample X-ray spectrum showing the Intensity as a function
of energy. The spectrum can be split up into the emission lines (the spikes)
which gives the gas density and the continuum (the smooth curve) which
gives the temperature

spikes. The smooth part is called the continuum part and goes like e−T , which
can be used to give us the temperature. The spikes are the emission lines
from the atoms in the ICM when they reemit a photon. The height of the
emission lines gives us the density of the gas. When we then have both the
density and the temperature for different radii we can use the mass equation
(2.16) to derive the mass distribution and thereby weigh the cluster.
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2.3 Phase-space and the Jeans Equation

As dark matter is collisionless and only interacts via gravity, we could in prin-
ciple solve Newton’s equations for all the individual particles. This would,
however, be an overwhelming task, instead we take a continuum approach
like for the ICM. The formalism of a collisionless continuum is the phase-
space ($xi,$vi) and the distribution function f($xi,$vi, t). For a more in-depth
treatment on collisionless systems see [1].

Phase-space is the combined space of position and velocity. A particle
with position $x = (x, y, z) and velocity $v = (vx, vy, vz) would have the coordi-
nate $w = ($x,$v) = (x, y, z, vx, vy, vz) in phase-space. A distribution function,
f , gives the probability of finding a particle in a volume d6V = d3x d3v so
the probability of finding a particle inside a volume V is,

P =

∫

V

f($x,$v, t) d3$x d3$v . (2.18)

Like the conservation of mass for gasses we need also a conservation law that
insures us that our collisionless fluid does not disappear. In collisionless sys-
tems this becomes the conservation of probability. They are both equivalent
to the conservation of the total number of particles. In index notation this
conservation law becomes,

df

dt
=

∂f

∂t
+

∂wi

∂t

∂f

∂wi
= 0 (sum over i) , (2.19)

where wi = {x, y, z, vx, vy, vz}. If we rewrite the last term on the left hand
side in three dimensional real-space coordinates instead of six dimensional
phase-space coordinates and use the Hamiltonian formalism the equation
becomes:5

df

dt
=

∂f

∂t
+ vi

∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi
= 0 (sum over i) , (2.20)

where xi = {x, y, z}, vi = {vx, vy, vz} and Φ is the gravitational potential.
We have used the fact that the acceleration is given by the gradient of the po-
tential. This is the collisionless Boltzmann equation which is the underlying
governing equation for collisionless systems.

5The thorough derivation can be seen in [1] p. 276-277.
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It is, however, not an easy task to find the distribution function of a par-
ticular system, but it turns out that if we take the zeroth and first momentum
of equation 2.20, we end up with quantities that can be either directly ob-
served or by other means observationally inferred.

We find the first moment by integrating equation (2.20) over all velocities
to get

0 =

∫
df

dt
d3$v =

∂

∂t

∫
f d3$v +

∂

∂xi

∫
vif d3$v − ∂Φ

∂xi

∫
∂f

∂vi
d3$v

︸ ︷︷ ︸
. (2.21)

We define the probability density at x as ν(x) =
∫

f dv and the mean velocity
at x as v̄i(x) = ν−1

∫
vif dv. To get rid of the marked integral we use the

fact that no particle moves with infinite velocity. Then we can rewrite the
equation as,

∂ν

∂t
+

∂νv̄i

∂xi
= 0 . (2.22)

This equation looks like the conservation of mass equation for fluids and
can be interpreted in the same way as the particle density is conserved. It
is worth noting that the zeroth moment of the Boltzmann equation, which
deals with phase-space, gives a ”conservation law” in real-space.

Next we look at the first moment of equation (2.20):

∫
vj

df

dt
d3$v = 0 (2.23)

The same arguments as for the zeroth moments are used together with equa-
tion (2.22) to bring this equation into the following form6

ν
∂v̄j

∂t
+ νv̄i

∂v̄j

∂xi
= −

∂(νσ2
ij)

∂xi
− ν

∂Φ

∂xj
(2.24)

where σ2
ij = vivj − v̄iv̄j is the velocity-dispersion tensor. This equation is

the collisionless equivalent of the Euler equation (2.9) and is called the Jeans
equation,7 where ν → ρ, v̄j → $v and νσ2

ij → p. The thing to note here is

6The thorough derivation can be seen in [1] p. 348.
7The term ”Jeans equations” (plural) is the term for all the moments of the collisionless

Boltzmann equation, but if it is referred to as ”the Jeans equation” in the singular then
equation (2.24) is implied.
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that whereas pressure for fluids is a scalar quantity, its equivalent in collision-
less systems is a tensor quantity. This stems from the collisionless nature of
equation (2.20), as the pressure in gasses can be described by a single distri-
bution function (given by the temperature), whereas for collisionless systems
the transfer of energy and momentum cannot happen by collision, so the
distribution function can be different for the different directions.

Like the Euler equation the Jeans equation can be rewritten in a form
that directly can give the matter distribution and this form is the most used
in the astronomical literature.

We start by rewriting the Jeans equation in spherical coordinates and
switch notation:8

∂ρσ2
r

∂r
+ 2β

ρσ2
r

r
= −ρ

GM(< r)

r2
, (2.25)

where we have substituted −∂Φ
∂r →

GM(<r)
r2 , ν → ρ, v2

r → σ2
r and introduced

the velocity anisotropy as β = 1 − σ2
t

σ2
r
. We now divide by ρσ2

r
r and solve for

M to get,

M(r) = −σ2
rr

G
·
(

dlnσ2
r

dlnr
+

dlnρ

dlnr
+ 2β

)
. (2.26)

This looks almost identical to the mass formula for the ICM with the small
difference that the anisotropy parameter enters. This is again because of the
collisionless nature of the dark matter.

The original equations with ν and v2
r were derived to be used in star

counting observations because stars are essentially point particles and there-
fore collisionless in the potential of a galaxy. At that time it was still be-
lieved that the stars dominated the potential. It was before ”the missing
mass” problem that lead to the introduction of dark matter (see [32]), but
the validity still holds since the stars can be thought of as test-particles to
infer the shape of the potential. Figure 2.2 shows such an application of the
Jeans equation for the Draco dwarf spheroidal (a dwarf galaxy) that orbits
the Milky Way. Draco is clearly visible as a horizontal feature moving at
almost 300 m/s towards us. From figure 2.2 it is clear that the number of
stars (that is ν) and the width (that is σ2) decreases with radius. This can
be put into the Jeans equation and has revealed that Draco dSph contains
almost 400 times more dark matter than luminous matter (see e.g. [16]).

8See [1] p 350.

18



Figure 2.2: Velocity chart for Draco dSph, which is clearly visible at the
bottom (see [30]). The x-axis is the radius from the center of Draco dSph,
the y-axis is the recession speed (negative means coming towards us). The
top is the galactic background stars. Each point is an AGB-star

2.4 Density models

In theoretical treatments in general there is a need to parameterize a given
observational quantity with analytical functions, to be able to use the data in
the theory. That is done by fitting a proposed function to the observations of
e.g. the surface brightness, density, or temperature profile. In the treatment
of dark matter the quantity that has received the most attention is the radial
density profile.

The most used density model for dark matter is without doubt the NFW
model (see [22]) that Navarro, Frenk and White got from investigating nu-
merical simulations. They saw that the density profile of different halos
possessed the same features, that is, a universal inner slope that gradually
changed to a steeper but equally universal outer slope. They summarized
that to a universal density profile of,

ρ(r) =
ρ0

r
r0
·
(
1 + r

r0

)2 , (2.27)
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a b c Model
1 3 1 NFW
1 4 1 Hernquist
2 2 - SIS*
0 2 2 King
0 5 2 Plummer
2 4 1 Jaffe

Table 2.1: List of the different double power law density models. The Singular
Isothermal Sphere (SIS) is actually only a single powerlaw but is always used
in the same context as the other models.

where ρ0 and r0 are scaling quantities for the individual dark matter halo.
This is called a double power law because it behaves like a power law with
slope −1 for r & r0 and a slope of −3 at r ' r0.

In connection with the NFW profile, the concept of concentration should
be introduced. Concentration is observed as a tighter clustering of the mass
in heavy clusters, that is, heavy clusters have a bigger part of their mass
closer to the center, whereas less heavy clusters have their mass distributed
further from the center. There is a relation between the mass of the cluster
and the concentration (see e.g. [5]) where more massive clusters have higher
concentration and less massive have lower concentration.

Many density models can actually be put in the category of a double
power law, by generalizing the power law to

ρ(r) =
ρ0

(
r
r0

)a (
1 +

(
r
r0

)c) b−a
c

, (2.28)

where −a is the inner slope, −b is the outer slope and c is the strength of
the transition between inner and outer (see [13] and [31]). We are able to
summarize the double power law models by a, b, and c. A few density models
are listed in table 2.1 All the models with an inner slope, a, of zero are called
cored and those with an inner slope different from zero are called cusped.

The double power law models are not the only candidates for the density
profile on the market. A model that has to be mentioned in the same context
as NFW is, the Sersic or Einasto profile. The Sersic profile is a generalization
of the de Vaucouleurs profile that is used to fit surface brightness profiles of
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elliptical galaxies,

I(r) = I(re) exp
(
−b(x1/n − 1)

)
, x =

r

re
, (2.29)

where an index of n = 4 would correspond to the de Vaucouleurs profile.
The Estonian astronomer Jaan Einasto suggested that this profile could be
used for the radial density profile as well. The big difference is that surface
brightness is a quantity in the plane of the sky whereas the density is a
quantity in three dimensional space, and the Sersic density profile does not
convert into the Sersic surface brightness. The idea of using a rolling slope
density profile has turned out to fit well with numerical simulations (see e.g.
[23]).

Simulations find that the index n ∼ 1− 10 for all reasonable dark matter
halos, it even turns out that the index correlates with mass such that small
halos like dwarf galaxies have index of n ∼ 6 − 7 and large galaxy clusters
have n ∼ 5 (see e.g. [20] and [8]). This is because more massive halos are
more concentrated then less massive ones.

The final answer to what the universal shape of the dark matter halo
should be or even if the shape is a universal quantity is not settled in the
scientific community.
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Chapter 3

Kappa

From the Jeans equation and hydrostatic equilibrium, introduced in the last
chapter, we can find the distribution of matter in a dark matter system if we
know either the temperature T and gas density ρg, or the density, ρdm, and
velocity dispersion, σ2

r , of the dark matter. There are, however, potentially
a lot of factors that can bias the results in some form or the other. The
first is that we can only infer quantities in the plane of the sky, such as the
temperature and density. These quantities have to be deprojected before
they can be inserted into the Jeans equation or the hydrostatic equilibrium
with,

f3d(r) = − 1

2πr

∫ ∞

r

df2d(R)

dR

1√
r2 −R2

dR , (3.1)

which can be sensitive to small perturbations and uncertainties in the mea-
surements, especially since the integral is taken from infinity and inwards.
That means that small uncertainties in the outer region can propagate and
accumulate inwards.

That is why I want to turn this around and try to model the dark matter
halo, so I can calculate the physical properties directly. In that case the
uncertainties don’t have to be propagated through the equations. I will in
the following treatment try to only make assumptions that are also made
in the standard analysis of observational data i.e. spherical symmetry, that
hydrostatic equilibrium holds, and that the Jeans equation holds. The two
mass equations are remarkably similar and an obvious thing to do is to equate
them,

M = − kT

G µmp
r

[
dlnT

dlnr
+

dlnρg

dlnr

]
= −σ2

rr

G
·
(

dlnσ2
r

dlnr
+

dlnρdm

dlnr
+ 2β

)
. (3.2)
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In this equation there are five variables: T , ρg, ρdm, σ2
r , and β. Of these

some can be calculated from the others. The dark matter density, ρdm, can
be calculated from the mass given by hydrostatic equilibrium if we assume
that the dark matter is the dominant component. The dispersion, σ2

r , can
also be calculated because when we know M and ρdm we can solve the Jeans
equation for,

σ2
r(R) = − 1

ρ̃(R)

∫ ∞

R

GM(r) ρ̃(r)

r2
dr , (3.3)

where ρ̃(r) is a function that satisfies the following equation: dlnρ̃
dlnr = dlnρ

dlnr +2β.
This still means that we have to know three things about our system: ρg, β,
and T .

In this treatment we would like the three free parameters to be ρdm, β,
and T because this lets us compute all the quantities from the dark matter
density if we can find two connections between dark matter – anisotropy and
dark matter – temperature. From numerical simulations such two relations
have appeared.

3.1 The Hansen-Moore relations

The first connection that we want to include as an assumption is a proposed
relation between the density slope, γdm = dlnρdm

dlnr , and the anisotropy, β, that
was first proposed by Hansen and Moore in 2006. This has been investigated
further and has been confirmed by various numerical simulations (see [9], [10]
and [12]).

The relation is valid in the range −γ ≈ 1− 3, because in the very central
parts of the dark matter simulation where γ ≈ −1, we approach the softening
length of the simulation, which introduces numerical noise into the equation.
As we go out to the outer parts of the dark matter structure where, −γ ≈ 3,
we reach the parts of the structure that is not yet in equilibrium. Analysis
of many dark matter simulations have revealed the current best fit to be:
β = −0.2(γdm + 0.8) with a scatter in β of ±0.05.

3.2 DM temperature

To find the second fundamental relation we would like to look at how gas and
dark matter interact. Gas interacts with itself as the gas particles collide and
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exchange momentum and energy and thereby settle into an equilibrium con-
figuration. This is called thermalization and has the effect that the velocity
distribution becomes isotropic, and we can derive a well-defined temperature
from the velocity distribution. Dark matter on the other hand is collisionless
which means that it cannot thermalize so the velocity distribution for differ-
ent directions do not have to be equal and hence the total three-dimensional
velocity distribution can be anisotropic. That is why β enters in the equa-
tions derived from the Jeans equation.

For a particle to stay inside the gravitational potential it needs to have
a velocity that is lower than the escape velocity of the potential. If this is
the case the particle will stabilize in an orbit corresponding to its energy.
That on the other hand implies that when the potential has settled down
into equilibrium, the average kinetic energy at a given radius should be of
the same order, independent of particle type. This is why the gas dispersion
should be of the same order as the average dark matter dispersion,

σ2
dm = 1

3(σ
2
r + σ2

φ + σ2
θ) = σ2

r(1− 2
3β) , (3.4)

where σ2
φ and σ2

θ are the dispersions along the two tangential directions and
σ2

r is the velocity dispersion along the radial direction.
All this implies that if the gas does not receive or lose energy through

other channels the dark matter makes the gas follow the average velocity
distribution of the three directions in the dark matter. We will parameterize
this by κ, which is the ratio between the dark matter and the gas dispersions,

κ =
σ2

dm

σ2
gas

. (3.5)

For the sake of convenience we can define a dark matter ”temperature” al-
though the velocity distribution does not give a well defined temperature in
the classical sense. We use the equation that relates temperature and dis-
persion to define a ”temperature” from the average dark matter dispersion,

kTdm

µmp
= σ2

dm = σ2
r(1− 2

3β) . (3.6)

This makes it possible to write κ in the form,

κ =
σ2

dm

σ2
gas

=
Tdm

Tgas
. (3.7)
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This is also why the molecular weight, µ, in equation (3.6) is the mean
molecular weight of the gas and not the dark matter, in order to make κ
take the value one. The κ = 1 relation is called the dark matter temperature
relation, and has been confirmed in numerical simulations (see [14]).

If κ > 1 then heat is removed from the gas, maybe through cooling flows1

and κ < 1 implies that heat is added to the gas for example via ram pressure
from infall or merger or heating from a central AGN.

Ideas like this are not new. Back in 1986 Craig L. Sarazin stated the same
point in his review paper [26]. It was at that time believed that the galaxies
were dominating the gravitational potential, so he stated as a prediction that
σ2

gas ∼ σ2
gal, as the galaxies can be considered collisionless because the stars

do not collide, only the gas gets striped from the galaxies.

3.3 The closed set of equations

Different people have tried different approaches for closing the set of equa-
tions. One approach has been to assume the phase-space density ρσ−3

r is a
perfect power law and then derive everything else from this (see [6]), but the
validity of that assumption has been questioned (see [27]). Alternately one
could also start with assuming that the entropy profile has a particular shape
and derive the rest from that (see [3]), but there is not a general consensus on
the shape of the gas entropy profile or whether there exist a universal shape.
In this work we will, however, be working with the two above mentioned
assumptions: γ ∼ β and κ = 1.

With this set of closed equations I will now try to derive all the physical
quantities and thereby show that the system is fully determined, given a
density profile. We start by combining the DM temperature relation (κ = 1),
hydrostatic equilibrium, and the Jeans equation to get our main equation,
the gas equation:

γg = Fβ ·
[
γ + 2β + 2

3β
d ln σ2

r

d ln r
− 2

3

dβ

d ln r

]
, (3.8)

where Fβ is shorthand for the fraction Fβ = 1
1− 2

3β
which equals one when β

is zero. For the derivation see appendix A.1.

1The gas is constantly radiating of energy via bremsstrahlung
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Figure 3.1: Gas density (left) and slope (right) as a function of radius cal-
culated from equation (3.8). The different curves show the effect of varying
the anisotropy relation.

This equation gives us the link between the dark matter and gas, because
equation (3.8) only contains dark matter (and derived quantities of that)
on the right hand side and only the gas shape on the left hand side. This
equation in loose terms states: ”Dark matter dictates the gas where to be.”

In appendix A.4 the precise computation from a given dark matter profile
to the gas profile is given, together with the numerical methods used. The
in-depth treatment of this topic can be read in the article appended in the
appendix, which is submitted to The Astrophysical Journal for publication,
and is currently in the process of peer review.

Here I want to go through some of the results of the calculations. I have
assumed that the dark matter is distributed as an NFW profile for illustrative
purposes. Figure 3.1 (left) shows the density profile of the gas compared to
the dark matter. The upper curve is the dark matter density and the three
lower ones are the gas densities derived with the gas equation. There is
not much difference between the three gas curves, which means that the gas
density is not that sensitive to the shape of the β profile. If we look at
the slope of the gas density in figure 3.1 (right) we see a little more detail.
The difference becomes a little clearer but overall the three profiles show the
same shape. The dark matter slope would coincide with the β = 0 curve,
which means that the gas density profile in general would tend to be more
shallow (flat) than the dark matter if anisotropy is present. The data points
are taken from[7] and [29] and show the average values of the gas slope to
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Figure 3.2: The velocity dispersion as a function of radius from equation
(3.3), used to calculate the temperature profile with the DM-temperature
relation. The different curves show the effect of varying the anisotropy rela-
tion.

give an idea of the general shape of the gas slope. The inner data-point is
an average inner gas slope of 16 relaxed nearby clusters, whereas the outer
data points are the estimates derived from the surface brightness of the outer
region of 11 clusters, both data sets are obtained with Chandra.

The dispersion is also easily computed from equation (3.3) and is shown
in figure 3.2. Again the overall shapes are similar but this time curve number
three (β = −0.13γ) differs towards the center. This is because the anisotropy
in the center is larger for that curve (β = 0, 0.04, and 0.13, respectively for
the three curves in the center). If the DM temperature relation holds the
temperature profile should follow the dispersion profile. This is in general
the case since we usually see a rise in temperature from the center out to a
certain radius after which it falls down to the temperature of the ambient
surroundings2. This case is defined as a Cool Core cluster (or CC) whereas if
the maximum temperature is in the center it is called a Non-Cool Core cluster
(or NCC). This can probably be explained by a central AGN injecting energy

2The ambient temperature is 3 K if there are no structures nearby
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Figure 3.3: The three different beta profiles used in the analysis. Left: β vs
radius. Right: β vs γ.

into the gas, which would makes κ smaller than unity. Another possibility is
that a big cD galaxy is sitting in the center of the cluster and perturbs the
cluster which could make κ both larger or smaller than unity.

We have not limited ourselves to only the best fit choice of the γ ∼ β
relation, we have chosen three candidates to show the effect of variation of
the β profile (see figure 3.3).

The first profile, β = 0, is a common choice because it makes the Jeans
equation and the Hydrostatic Equilibrium look the same and thereby simpli-
fies the equations and the physics involved. We know from the γ ∼ β relation
(i.e. numerical simulations) that β is negligible in the center but only there
as the velocities further out are radially dominated, with β ≈ 0.5. (see [14])

The second β profile is the current best fit from numerical simulations (see
[9]) which shows the small values in the center and the value of approximately
one half in the outskirts.

The third profile is an attempt to derive the shape of the γ ∼ β relation
analytically by analyzing the velocity distribution function. This is a first
attempt to understand the γ ∼ β relation and future research will hopefully
give more insight into the nature of β (see [9]).
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3.4 A prediction

As shown above most of the quantities are not very sensitive to the shape
of the β profile. There is, however, one key prediction I want to show: It is
possible to distinguish between isotropic and anisotropic velocity dispersions
in structures. If β = 0 then equation (3.8) will reduce to,

γg = γdm , (3.9)

which means that the dark matter and gas has to have the same shape. When
the shapes of the dark matter profile and the gas profile are equal then the
difference between the density profiles will only be a multiplicative factor,
which in turn gives the prediction that the gas fraction should be a constant:

β = 0 ⇒ fg = const . (3.10)

The reverse is also true. γg = γdm can only be fulfilled if the fraction Fβ =
1

1− 2
3β

equals one. That is to say:

β *= 0 ⇒ fg *= const . (3.11)

There have been observations of many clusters with a non constant gas frac-
tion (see e.g. [29]). Figure 3.4 shows a gas fraction where the different curves
show different choices of the β profile, and it is clear that the β = 0 and the
two non-zero profiles are very different. The β = 0.2(γ + 0.8) curve has
β = 0.04 towards the center which gives a more shallow gas fraction then the
other curve which has β = 0.13 near the center.

This makes a compelling point against the assumption of β = 0, but I
am not saying that the assumption of zero anisotropy should be completely
abolished. In the center of relaxed clusters where we know that the anisotropy
is small the assumption of β = 0 is still valid, but to assume that this is true
for the structure as a whole is seldom a good approximation.
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an NFW profile. Different curves are different β profiles. Note how β = 0
differs from the other two.
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Chapter 4

Clusters of Galaxies

The method described in the last chapter together with the density profile for
the dark matter forms a complete description of the gas in a galaxy cluster.
I will use this fact to model the dark matter and predict observational quan-
tities of the gas, which can be compared to observations. I will assume that
the underlying dark matter profile can be parameterized by a Sersic/Einasto
profile (described in section 2.4) or a generalized NFW (here after gNFW)
with the inner slope as a free parameter. It is then possible to infer which
choice of parameters and model (gNFW or Sersic) best fit the observations
from the gas.

For illustrative purposes I will go through the treatment assuming a
gNFW profile, but the full analysis was done both with a gNFW and a
Sersic profile. The gNFW profile is given by,

ρ(r) = 23−γ ρ0

xγ (1 + x)3−γ
, where x =

r

r0
. (4.1)

The fitting parameters are the two scaling quantities r0, ρ0 and the shape
parameter γ which controls the inner slope of the profile.

4.1 Case Study: Abell 1689

The Abell 1689 Cluster (A1689 for short) is one of the clusters where we have
excellent X-ray data and long exposure observations. Lensing observations
have, however, shown that there is some clumping in the center of this cluster
(see [19]), potentially departing from our assumption of spherical symmetry.
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The usual way of determining the physical properties of a cluster is by
observing the hot intra cluster gas in X-rays as described in sections 2.2.
From the X-ray spectrum it is possible to find the temperature T and the
density ρ of the gas. It is then possible to use the hydrostatic equilibrium
equation

M(r) =
k T r

Gµmp

[
d ln T

d ln r
+

d ln ρ

d ln r

]
(4.2)

to find the total mass profile. When we have the total mass we can find
the total density with ρ = 1

4πr2
dM
dr , which will be dominated by dark matter,

ρtot = ρg + ρdm + ρ∗ ≈ ρdm.
This would be the classic reduction method to determine the properties

of the cluster from gas but we will here take another approach: We calculate
an observable quantity from a proposed dark matter density, in this case
surface brightness, and compare with observations. If the calculations do not
fit the observations, we propose another dark matter density, until a good
fit is found. This gives much better constraint on the parameters because
we will be fitting to an observable with small error-bars and a high radial
sampling. A general surface brightness profile will have 20-40 radial bins
where a temperature profile will only have approximately 5-10 radial bins.
The error-bars on the temperature profile will in general also be much larger
and non trivial to improve, whereas the error-bars on the surface brightness
are simply calculated via counting statistics (Poisson statistics).

The surface brightness is connected to the emissivity of the gas. The
emissivity can be calculated from the gas properties and as shown in the
previous chapters the gas properties are determined entirely by the dark
matter distribution. For more details on that see the article in the appendix
and for the detailed computation of the individual quantities see appendix
A.4. Given a dark matter density we start by computing the mass profile,
M(r), and the slope, γdm(r), of the density. From the slope we can determine
the anisotropy β(r) and when we have M , ρ and β we can compute the
dispersion, σ2

r(r). It is the dispersion that can give us the gas temperature
via

k Tg = κ µmp σ2
dm = κ µmp σ2

r(1− 2
3β) = κ

µmp σ2
r

Fβ
(4.3)

where kT is the temperature in units of keV and Fβ is the beta factor (see
appendix A.1). To continue we use the gas equation (3.8) to first give us the
shape (slope) of the gas and then by solving a simple differential equation
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(dlnρ
dlnr = γ), we get the gas density, ρg. This gas density has to be converted

into the electron number density, ne, by

ne =
ρg

µemp
where µe =

2

1 + X
. (4.4)

where µe is the electron mean molecular weight (see [4]), and X is the hydro-
gen abundance (just like Y is the helium abundance and Z is the abundance
of heavy elements). This equation is valid as long as the gas is fully ionized.

When we have these quantities we can use the MeKaL model (see [21])
to compute how much each cm3 is radiating. This radiance is computed
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temperature, used to calculate how much each cm3 is radiating. The lower
curve is for zero metallicity and the upper is for solar metallicity. The points
mark the tabulated values used in the program.

like ε = Λ(T ) n2
e where Λ(T ) is called the cooling function and tells you have

much energy the gas is emitting depending on the temperature. The gas emits
across the entire electromagnetic spectrum, but any scientific instrument is
only able to register the radiation in some energy interval, so for our purpose
we are only interested in the part that is emitted in the energies that our
instrument is sensitive to, (for the extraction of Λ(T ) at specific energies
see A.3). I extracted the profile by using an energy band pass like that of
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the instrument of our observation in this case Chandra (see figure 4.1). The
drawback of this approach is that Λ(T ) has to be updated each time the
instrument or band-pass is changed because of the great sensitivity towards
parameter (see appendix A.3).

When we have the emissivity profile, ε3d(r), we first have to project our
3d model on to the sky plane. That is done with the projection integral, that
looks like

ε2d(R) =

∫ ∞

R

ε3d
r√

r2 −R2
dr (4.5)

where R is the projected radius on the sky plane and r is the 3d radius.
Now we have how much one cm2 on the sky emits. This quantity has to be
converted to an observable surface brightness, Σ, with the equation,

Σ =
dF

dΩ
= 3.74 · 10−12 ε2d

(1 + z)4
, (4.6)

which has the unit of erg s−1 cm−2 arcsec−2. For the derivation see appendix
A.2. Figure 4.2 shows the surface brightness of Abell 1689, kindly provided
by Signe Riemer-Sørensen (see [25]).
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Figure 4.2: The surface brightness profile of Abell 1689, given in
count s−1 cm−2 pix−1 as a function of radius on logarithmic scale.
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4.2 Results

The observational data that I have stems from [25]. In that paper the lower
south-eastern half of the cluster is analyzed by itself because of the presence
of some structure in the north-western half. The surface brightness data that
we use is twice the south-eastern half, as shown in figure 4.2.

When given a density profile, we want to ensure that the radial profiles
used internally in the method do agree with observations. This is part of a
consistency check which let us gauge if the calculated surface brightness can
be trusted. We will be using the NFW fit that was deduced in [25] as our
input dark matter density for the dark matter. The fit is in general agreement
with the results for A1689 from other people. We then compute the mass
and temperature profile and compared this with the mass and temperature
profile from the paper, as shown in figure 4.3 and 4.4. The mass profile agrees
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Figure 4.3: Left: The calculated mass profile from the fit given in [25]. Right:
The mass profile derived in [25]. The y-axis is in solar masses, the x-axis is
in kpc.

very well with the mass profile determined in the paper, but the temperature
does not.

As seen in figure 4.4 the calculated temperature is to low compared to
the observations. The temperature profile in the left panel is calculated with
κ = 1 so the temperature profile reflects both the gas and the dark matter
temperature.

Here there is observable evidence saying that κ *= 1 for this cluster. But
we can remedy that by recalling the definition of κ = Tdm

Tg
and adjusting

it to the value dictated by the observational data. One could ask if this
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Figure 4.4: Left: The calculated temperature profile from the fit given in
[25]. Right: The mass profile derived in [25]. The y-axis is the temperature
in keV and the x-axis is in kpc.

low calculated temperature could be due to the breaking of one of the other
assumptions, but as shown in chapter 3 the γ ∼ β does not affect the height
of the temperature profile. A braking of the spherical symmetry assumption
is only important in the central region and not at intermediate radii. Only
an increase in the density will be able raise the temperature, but that would
be inconsistent with the mass profile.

The departure from the DM temperature assumption implies that there is
an energy source/sink. Since the dark matter temperature is lower than the
gas temperature it means that there is an input of energy to the gas that does
not comes from the dark matter. The explanation is probably connected to
the X-ray feature in the north-western half of the cluster. This could either
be a source emitting energy directly into the gas1 or it could be some sort
of merging structure exerting a ram pressure on the cluster thereby heating
the gas. Both these scenarios would make κ < 1 as is observed here.

We remedy this by adjusting κ = 0.7 according to the observation which
will enable us to continuing our analysis of the cluster.

The calculated surface brightness given κ = 0.7 is shown in figure 4.5. It
is worth noting that this is not a fit to the surface brightness. The proposed
dark matter density profile is a generic NFW fit obtain through a classical
reduction of X-ray data (see [25]).

The next step will be to device a fitting program to fit the surface bright-

1A source like an AGN or such would probably already had been identify as a such,
which makes this explanation the least likely of the two.
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Figure 4.5: The surface brightness profile of Abell 1689, given in
count s−1 cm−2 pix−1 as a function of radius on linear scale. The solid line is
the calculated surface brightness from the NFW fit in [25]

ness with the gNFW and Sersic profile, it is my plan to do so in the future.
If this turns out to be successful I would like to extend the program to take a
free density profile with as many discrete data point as the surface brightness
profile.

I was able to manage a preliminary investigations by doing simple fitting
by hand. This revealed that the generated surface brightness profiles where
not flat enough towards the center. Only for cored (or very mildly cusped)
density models the slope of the surface brightness approached the slope of
the observational data.

If a general surface brightness resembles a beta model (see [2]) it will
be flat towards the center. There are three ways of making the surface
brightness flat: The simples way is to have a cored density profile, but this
would imply that a great fraction of the observed clusters would have a cored
or only mildly cusped dark matter density. If a cored dark matter density is
not the explanation then it is possible to make the surface brightness more
flat by putting less (the is negative) β in the center, whereby the dispersion
becomes tangentially biased. This is potentially in conflict with numerical
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simulations. The last way of making the surface brightness flat is by letting
κ depart from unity.

These concerns towards a flat surface brightness in a cusped dark matter
potential have to be investigated in the future, through X-ray observations
of relaxed spherical unperturbed clusters.
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Chapter 5

Summary

5.1 Conclusion

I have in this thesis introduced a new method for determining the properties
of galaxy clusters. With this method it is possible to derive the dark matter
density from the gas properties, in particular the surface brightness profile.
Other people have looked at similar approaches, like assuming that the phase-
space density is a perfect power law (see [6]) but it is doubted whether the
phase-space density is a universal power law (see [27]). Others again have
assumed that the gas entropy profile has a certain shape (see [3]), but there
is in the scientific community not yet consensus on the shape of the entropy
profile or whether it is universal or not.

The approach in this thesis is relying on four assumptions. The first two
are The Jeans equation and the hydrostatic equilibrium which are both very
well tested. The two other assumptions come from numerical simulations
where a linear correlation between the dark matter density slope, γ, and the
velocity anisotropy, β, (the γ ∼ β relation), has been confirmed (see e.g.
[12]). The last assumption is the dark matter temperature relation, where it
has been shown that κ = σ2

dm/σ2
g is very close to unity (1.0 ± 0.1, see [14]).

I show in chapter 3 that given a dark matter density all the physical
properties of the gas can be computed from the dark matter distribution
alone. I also show that the different choices of γ ∼ β do only influence the
different radial profiles to a small degree.

In chapter 4 this knowledge is turned into a fitting method. The advan-
tage of this method is that I am able to fit to an observable where the error
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bars are small and the sampling is large. The surface brightness profile will
typically consist of 20-40 radial bins as opposed to the temperature profile
which typically only have 5-10 bins, so an increase of the radial sampling of
at least three times is not unusual. The error-bars on the surface brightness
can be improved by taking longer exposures as oppose to the temperature,
where improving the error-bars is harder. Since the temperature, gas den-
sity and gas fractions profiles can be considered side effects of the method
they can be used to check if the assumptions hold and for that a high radial
resolution is not needed. In chapter 4, I demonstrated how this consistency
check can improve the assumptions if a particular cluster is inconsistent with
the data. Here the problem was the κ assumption, where an adjustment
(κ = 0.7) resulted in an fairly acceptable alignment to the data.

It is important to note here that this new method is not intended to re-
place current models and methods. This method is intended to give better
constraint on the shape of the dark matter density shape by reducing system-
atic errors in the reduction process. It is also worth noting that this method
only works properly on relaxed spherically symmetric cluster.

5.2 Outlook

Now my plan is to run a Monte Carlo code trough the parameterized density
models to determine the best fitting density profile and expand my analysis
to more clusters. For example to investigate if a cluster has a core or a cusp
or to see if a Sersic or a gNFW is a better fit. This analysis can then be
extended to a free density profile that should contain as many discrete point
as the surface brightness profile and thereby give a radial density profile free
of any density model interpretation. All the other radial profiles that can be
calculated from the dark matter density can also be inferred in this way.

But there is also the opportunity to investigate the assumptions further.
If we analyze clusters where we know all the radial profiles with high enough
precision we can investigate if the γ ∼ β relation really behaved as in the
simulations or if κ really is close to unity as we approach the center. The
opportunity for confirming a result seen in numerical simulation by observa-
tional means is present.

Also the behavior of κ in the presence of a cD galaxy or AGN engine in
the center and how it correlates with the properties of those would be of high
scientific value.
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As a last notion I want to mention that when the dark matter density
profile is known then this can be compared to independent methods like lens-
ing or even kinematic studies of the line-of-sight velocities of the individual
galaxies.
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Appendix A

Equations

Through out this thesis equations are used extensively. Therefore, I have put
the derivations into the appendix on the following pages.

A.1 The gas equation

In this section I will derive the main equation in chapter 3, the gas equation.
The two most important governing equations in this treatment is the Jeans
equation and the Hydrostatic Equilibrium. These exist in many forms, but
the form used here clearly shows how similar they are:

GM(< r)

r
= − kBT

Gµmp
·
[
d ln ρg

d ln r
+

d ln T

d ln r

]
+

r2vr

G

dvr

dr
− r · v2

rot

G
, (A.1)

GM(< r)

r
= −σ2

r ·
[
d ln ρm

d ln r
+

d ln σ2
r

d ln r
+ 2β

]
(A.2)

Here M(< r) is the mass interior to r, ρg is gas density, ρm is total matter
density, vr is radial bulk motion (in-fall negative, outflow positive), v2

rot =
v2

φ + v2
θ is bulk rotation. We start by rearranging the equation like this

kBT

Gµmp
·r·

[
d ln T

d ln r
+

d ln ρg

d ln r

]
=

σ2
r · r
G

·
[
d ln ρm

d ln r
+

rvr

σ2
r

dvr

dr
− v2

rot

σ2
r

+
d ln σ2

r

d ln r
+ 2β

]
,

(A.3)
to collect all the non pressure terms. From this we define a new parameter,
the effective density slope γe as

γe =
d ln ρm

d ln r
+

rvr

σ2
r

dvr

dr
− v2

rot

σ2
r

. (A.4)
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Which gives

kBT

µmp
·
[
d ln T

d ln r
+

d ln ρg

d ln r

]
= σ2

r ·
[
γe +

d ln σ2
r

d ln r
+ 2β

]
(A.5)

The motivation for introducing this new parameter is that all the terms con-
cerning rotation, radial in-fall and other non-pressure terms are now confined
to this one parameter. In the customary derivation of the hydrostatic equi-
librium it is assumed that the system is not rotating and radial in-fall (or
outflow) is negligible.

I have hereby shown that the case of non-vanishing bulk motion can be
transformed into the case of no bulk motion and only thermal pressure by
absorbing the non-vanishing terms into the density parameter. This trick,
however, is purely theoretical because γe no longer represents the shape of
the dark matter density.

From this point on I will assume that all the non-thermal and bulk motion
terms are negligible and continue in the classical treatment, whereby γe =
γdm ≡ γ.

Now we continue with the introduction of the dark matter temperature,
which is defined as

σ2
dm = κ · σ2

gas , where σ2
dm = 1

3(σ
2
r + σ2

θ + σ2
φ) or (A.6)

Tdm = κ · Tgas , where
kBTdm

µmp
= σ2

dm . (A.7)

This is then inserted into equation (A.5) to cancel out the gas temperature
like this:

σ2
dm

κ
·
[
d ln κ−1σ2

dm

d ln r
+

d ln ρg

d ln r

]
= σ2

r ·
[
γ +

d ln σ2
r

d ln r
+ 2β

]
. (A.8)

After some algebra and use of the definition of the σ2
dm = σ2

r(1 + 2
3β) the

above equation becomes

γg =
d ln ρg

d ln r
=

1

1− 2
3β

[
κ(γ + 2β) + (2

3β + κ− 1)
d ln σ2

r

d ln r
− 2

3

dβ

d ln r

]
+

d ln κ

d ln r
.

(A.9)
From [14] we know that κ can be approximated very well with a constant of
1.0 ± 0.1, so I will assume κ = 1 which simplifies the above equation to

γg =
1

1− 2
3β

[
γ + 2β + 2

3β
d ln σ2

r

d ln r
− 2

3

dβ

d ln r

]
. (A.10)
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The fraction in the front turns up a few times in the equations so I will define
a shorthand, which I will call the beta factor

Fβ =
1

1− 2
3β

. (A.11)

The interpretation of Fβ can be summarized like this:

β Fβ Description
1 3 Radial dominated
0 1 Isotropic
−∞ 0 Tangential dominated

This makes the final gas equation look like this

γg = Fβ ·
[
γ + 2β + 2

3β
d ln σ2

r

d ln r
− 2

3

dβ

d ln r

]
. (A.12)

A.2 Surface brightness

Here I give the derivation of how to convert emissivity to surface brightness,
where surface brightness is defined as flux per solid angle,

Σ =
dF

dΩ
. (A.13)

Beside the definition of surface brightness we also need these three basic
definitions:

dA = d2
a dΩ (A.14)

dL = 2 ε2d dA (A.15)

dF =
dL

4π d2
l

(A.16)

where ε2d is the 2d emissivity, da and dl is the angular diameter and luminosity
distance respectively. dL is the luminosity that we receive as flux dF per area
dA from the solid angle dΩ. The reason for the constant ”2” in equation A.15
is that after the emissivity has been projected we only receive the photons
that are sent towards us and not away from us, so the total luminosity will be
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twice the amount in our direction. We now put the three equations together
to gives us:

dF =
2 ε2d dA

4π d2
l

=
2 ε2d d2

a dΩ

4π d2
l

(A.17)

This is then inserted in the definition of surface brightness, but we also need
the fact that

dl

da
= (1 + z)2 . (A.18)

Using this fact makes the surface brightness independent of distance and cos-
mology and therefore an intrinsic property of the source. The final equations
looks like:

Σ =
ε2d

2π (1 + z)4
. (A.19)

This has the same unit as ε2d times rad−2. If we want to convert it to arcsec−2

we have to divide by 606265 arcsec/rad to give:

Σ = 3.74 · 10−12 ε2d

(1 + z)4
. (A.20)

If the surface brightness is calculated per pixel we can convert this if we
know the pixel-size, Lpix. If Lpix is measured in arcsec/pix then the surface
brightness becomes:

Σ = 3.74 · 10−12 ε2d

(1 + z)4
L2

pix . (A.21)

A.3 The MeKaL model

The name MeKaL is an acronym for Mewe-Kaastra-Liedahl. Rolf Mewe et
al. calculated the atomic data for a hot optical thin plasma in 1985, Jelle
S. Kaastra then wrote the first code for fitting from these data in 1992 and
Duane A. Liedahl et al. improved the data for the Fe lines in 1995. This
model is one of the most used models when fitting spectral data today and
is a standard model in software packages like Xspec.

The MeKaL model that is used in this thesis is the Xspec implementa-
tion and it takes a number of input parameters like: temperature, heavier
elements abundance, hydrogen density and a normalization factor. I will call
the set of input parameters, par = {nH , Z, z, Norm, (E0, E1)}, which also
contains the energy interval of the observation.

45



The amount of radiation that a volume of gas outputs is given by the
emissivity ε = Λ(T ) n2, where n2 is the number density of the gas inside the
volume we are looking at. The functional form Λpar(T ) that I want to extract
must be a function of temperature alone. That means that i need to fix the
input parameters par, so that Xspec will output Λ(T ) and so that the values
makes sense for the specific combination of instrument and source. But first
we take a look at the definition of Λ:

Λ =
L

n2
e

, (A.22)

which has the unit of energy per second times volume or erg cm3 s−1 or even
photons cm3 s−1. Xspec calculates the flux from a model spectrum M(E)
like,

F =
1

E1 − E0

∫ E1

E0

M(E) dE . (A.23)

This has the unit of either erg cm−2 s−1 or photons cm−2 s−1. And now we
want to turn flux into luminosity pr electrons squared:

Λpar =
L

n2
e

=
4π d2

l F

n2
e

(A.24)

For a specific combination of parameter par Xspec calculated the flux like:

Fpar =
Norm

E1 − E0

∫ E1

E0

f(E) dE . (A.25)

where Norm and E0, E1 are the normalization and energy band parameters
in par = {nH , Z, z, Norm, (E0, E1)} and f(E) is the functional form of the
spectrum that Xspec calculates. In the documentation of Xspec it is stated
how Norm should be interpreted:

Norm =
10−14

∫
nenH dV

4πd2
a(1 + z)2

. (A.26)

Inserting that into equation (A.24) gives:

Λpar = 10−14(1 + z)2

∫
nenH dV

n2
e

∫ E1

E0
f(E) dE

E1 − E0
(A.27)
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where I have used that dl
da

= (1 + z)2. Let us have a closer look at the three
factors. The factor

10−14(1 + z)2 (A.28)

is a constant factor and the redshift dependence. We set the redshift to zero
as we want to know how much a cubic centimeter radiates in the local frame.
The factor ∫

nenH dV

n2
e

≈ nH

ne
∆V =

2X

1 + X
∆V (A.29)

contains all the density terms. As we are only interested in a small volume
lets say ∆V = 1cm3 the approximation turns this term into a ratio. This
ratio can be rewritten by using nH = X ρ

mp
and ne = ρ

mp

1+X
2 to give the

last expression, where X is the abundance (in mass) of Hydrogen (like Y is
for Helium and Z is for the heavier elements). This term is 0.80 − 0.88 for
X = 0.66− 0.80. The last term

∫ E1

E0
f(E) dE

E1 − E0
(A.30)

is the MeKaL models dependence on energy. This is the integral we need to
let Xspec do over all the energy range that our instrument can observe. It is
actually this integral that makes the shape of Λ(T ) instrument dependent,
and this is why we have to extract a new Λ(T ) if we change instrument.
This integral depends on the energy band chosen and even on the response
function of the individual instrument if we use photon as the energy unit.

After this thorough discussion, we are able to choose a suitable set of
parameters to extract Λ(T ) from the Xspec MeKaL model: Temperature is
the free parameter that we want the functional dependence of. E0, E1 will
depend on the instrument used (and maybe even on the reduction method
if hard energy cuts have been used). The redshift we need to put to zero
and the normalization parameters Norm = 0.8 · 10−14 for almost all realistic
choices of hydrogen content. For the metallicity dependence it turns out that
it scales like,

Λ(T, Z) = Λ(T, 0)

(
Λ(T, Z%)

Λ(T, 0)

)Z/Z"

. (A.31)

From this equation we se that we only need Λ(T, Z%) and Λ(T, 0) to get
Λ(T ) for any metallicity. So by choosing these particular parameter we
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Figure A.1: The Λ(T ) function extracted from Xspec’s MeKaL model. Up-
per curves are for solar abundance gas lower curves are for gas with zero
abundance. The points marked are the values extracted. The intermediate
points are interpolated. Left: Energy unit, erg cm3 s−1. Right: Energy unit,
photons cm3 s−1.

make Xspec output Λ(T, Z%) or Λ(T, Z%) directly in the unit erg cm3 s−1

or photons cm3 s−1.
The shape of Λ(T ) is shown for the Chandra satellite in the energy interval

0.3− 10keV in the two different energy units in figure A.1. The two curves
in each plot show Λ(T ) for two different metallicities. The lower one is
for zero metallicity where all the emissions from the gas comes from the
continuum (bremsstrahlung), whereas the upper one is for solar metallicity
and shows features especially at the low temperatures, which stems from
the larger fraction of emission from the emission lines. All intermediate
metallicities Λ(T ) will lie between the two curves (see equation (A.31)). A
typical metallicity for clusters will be a third solar, which gives that a typical
Λ(T ) will lie a third way up from the lower curve.

A.4 IDL-implementation

The problem in dealing with equations like those that arise from the Jeans
equation and the logarithmic slopes is that they are seldom nice functions or
at least analytical. So often we are forced to do all calculations numerically.
In this thesis I will be doing most of the numerical analysis in the IDL
language.
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Figure A.2: Calculation flow diagram. Left are the DM-quantities, right the
gas quantities.

The diagram below shows what quantities will be calculated in what order
(left to right).

This method takes a density profile as input and calculates all other
quantities from that. The density will be stored as an array of 1000 floating-
point numbers. Together with a radius array this makes out the density
profile. The radius is logarithmically spaced over four orders of magnitudes
from 10−2r0 to 102r0, where r0 is a reference radius. The radius interval
contains only intermediate radii and does not go all the way to zero.

In the next paragraphs I will go through each step indicated in figure A.2
and describe how each quantity is compute. The general notation is that xi

will represent an element in the radius array, yi = y(xi) is an input profile
like the density, mass or slope profile and fi = f(xi) will be the output profile
that the particular calculation will return.

First the logarithmic density slope, γ, is calculated numerically from
the density profile via the equation,

γ =
d ln ρ

d ln r
. (A.32)

I discretize the derivative by using the point in front and behind the current
point to calculate the slope,

d ln y

d ln x

∣∣∣∣
i

=
ln yi+1 − ln yi−1

ln xi+1 − ln xi−1
=

ln yi+1

yi−1

ln xi+1

xi−1

. (A.33)

This is a second order method1. At the endpoints i have to use i instead of
i ± 1.

1”Second order” means that increasing the number of points x times makes the error
go down by x−2.
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The mass, M , is also calculated numerical from the density profile with
the integral,

M(r) =

∫ r

0

4πr̃2ρ(r̃) dr̃ . (A.34)

This integral is discretized like

fi = f(xi) =

∫ xi

x0

y(x̃) dx̃ = fi−1 + 1
2(yi + yi−1)(xi − xi−1) (A.35)

which is the trapezoid method and also a second order method. Our radius
does not go all the way to zero, so our problem lies in finding the initial
condition f0 = f(x0) which starts the sequence. And for that I assume that
the first few point of f should follow a power-law (i.e. a straight line on
log-log-scale). This then gives the following form for f0

f0 = f(x0) =
y0 x0

γ0 + 1
where γ =

d ln y

d ln x
(A.36)

The derivation can be seen in appendix A.5. This has the advantage that if
the input profile does not have any features outside our radial interval, then
we don’t need to know the value of the integral outside our interval.

The velocity anisotropy, β, is calculated from the density slope, given
a γ ∼ β relation (see [9], [11], and [12]),

β(r) = Aγ(r) + B , (A.37)

where the constants A and B are determined from numerical simulations of
halo formation. If nothing else is mentioned I use the values: A = 0.2 and
B = 0.16 (see [12])

To calculate the radial velocity dispersion σ2
r we rewrite the Jeans

equation to

σ2
r(r) =

1

ρ̃(r)

∫ ∞

r

G M(r̃) ρ̃(r̃)

r̃2
dr̃ where

d ln ρ̃

d ln x
= γ + 2β (A.38)

If the velocity anisotropy had been zero ρ̃ would equal the density ρ. But
since β is generally nonzero we have to correct for that with ρ̃. To find ρ̃ we
have to solve the equation

d ln f

d ln x
= y (A.39)
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by discretizing the derivative like in equation (A.33). After some rearranging
it looks like this

fi+1 = fi−1

(
xi+1

xi−1

)yi

(A.40)

The choice of f0 will only be a multiplying factor and since ρ̃ appears both
in the numerator and the denominator of equation (A.38) any multiplying
factor will cancel out. So any choice of f0 on ρ̃ will never affect the calculation
of σ2

r . For the numerical calculation of the integral I swap the boundaries
and reuse the algorithm from equation (A.35) with the same choice of f0.

The calculation of the gas density slope, γg is straight forward insertion
in the definition of γg

γg =
1

1− 2
3β

(
γdm + 2β +

2

3

d ln σ2
r

d ln r
+

2

3

dβ

d ln r

)
(A.41)

where the derivatives are calculated as in equation (A.33)
The gas density, ρg is calculated like ρ̃, by solving d ln ρg

d ln r = γg, where
the choice of f0 will give a multiplicative factor. This translate physically to
how much gas is in the system.

The gas fraction, fg is given by the definition

fg =
Mg

Mtot
=

Mg

Mdm + Mg
(A.42)

and is a calculable quantity, since Mg and Mdm is known from above.

A.5 Numerical integration

The following integral comes up during the calculations of some of the quan-
tities, but because the radial interval is not going all the way from zero to
infinity like some of the integrals that are to be evaluated, I have to ”guess”
the value of the part of the integral that is outside our interval.

fi = f(xi) =

∫ xi

x0

y(x̃) dx̃ = fi−1 + 1
2(yi + yi−1)(xi − xi−1) (A.43)

If the wrong f0 is chosen the first fi’s will be off, until the sequence catches
up and is no longer dominated by the first few (wrong) term. For that reason
i need to guess f0 close enough to the true value the integral would have had
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if we had taken the part outside our interval into account. I have chosen the
condition that the first few fi’s should follow a power law because this is not
to far from what we se in the plots of these quantities.

To calculate what f0 has to be if f(x) is a power law we assume that the
first few points of yi follow a power law. This is a good first approximation
for the majority of the quantities in the calculations.

y ≈ xγ for x ≈ x0 (A.44)

Then we solve the integral straight-forward:

∫
xγ dx =

xγ+1

γ + 1
=

y x

γ + 1
(A.45)

because xγ+1 = xγ x = y x. So now we have a guess for f0 like this:

f0 =
y0 x0

γ0 + 1
(A.46)

where γ0 is an estimate of the log-slope of yi at x0. So even if yi is not a
powerlaw the approximation still makes sense, as long as γ is only slowly
changing inside a small enough interval around x0.
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Appendix B

Article

The following pages contain an article that has been submited to The Astro-
physical Journal. The article is as of April 30, 2009 in second peer review,
after a positiv first referee report.
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Determining all gas properties in galaxy clusters from the dark
matter distribution alone

Teddy F. Frederiksen†, Steen H. Hansen†, Ole Host†, Marco Roncadelli‡
† Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen,

Juliane Maries Vej 30, 2100 Copenhagen, Denmark
‡ INFN, Sezione di Pavia, Via A. Bassi 6, 27100 Pavia, Italy

ABSTRACT
We demonstrate that all properties of the hot X-ray emitting gas in galaxy clusters are

completely determined by the underlying dark matter (DM) structure. Apart from the condition
of hydrostatic equilibrium for the gas and the Jeans equation for the DM, our proof is based on
two simple relations which have recently emerged from numerical simulations: the equality of the
gas and DM temperatures, and the almost linear relation between the DM velocity anisotropy
profile and its density slope. For DM distributions described by the NFW or the Sersic profiles,
the resulting gas density profile, the gas-to-total-mass ratio profile, and the entropy profile are all
in good agreement with X-ray observations. Our result allows us to predict the X-ray luminosity
profile of a cluster in terms of its DM content alone. As a consequence, a new strategy becomes
available to constrain the DM morphology in galaxy clusters from X-ray observations. Our
results can also be used as a practical tool for creating initial conditions for realistic cosmological
structures to be used in numerical simulations.

Subject headings: dark matter, galaxies: clusters: general, X-rays: galaxies: clusters

1. Introduction

Galaxy clusters are the largest equilibrated
structures in the Universe, consisting mainly of
dark matter (DM) and hot ionized gas in hydro-
static equilibrium in the overall potential well.
Observations of this X-ray emitting gas allow for
an accurate determination of the properties of
the dominating DM structure, which can then be
compared with the results of numerical N-body
simulations.

More specifically, the strategy can be outlined
as follows. In the first place, the equation of hydro-
static equilibrium can be used to infer the DM den-
sity profile from X-ray data (Fabricant et al. 1980).
Application of this technique in conjunction with
present-day observations (Voigt & Fabian 2006;
Pointecouteau et al. 2005) yields density profiles
which are in excellent agreement with those emerg-
ing from numerical simulations of structure forma-
tion (Navarro et al. 1996; Moore et al. 1998; Die-

mand et al. 2004; Stadel et al. 2008; Navarro et
al. 2008). Moreover, using a very simple connec-
tion between the gas and DM temperatures which
has been confirmed by numerical simulations, the
equation of hydrostatic equilibrium can be com-
bined with the Jeans equation for the DM to de-
rive both the DM radial velocity dispersion and
the velocity anisotropy profile (Hansen & Piffaretti
2007; Host et al. 2009). Again, the resulting pro-
files turn out to be in excellent agreement with
numerical simulations (Cole & Lacey 1996; Carl-
berg et al. 1997).

Measurements of the gas temperature profile
have demonstrated its virtually universal prop-
erties (De Grandi & Molendi 2002; Kaastra et
al. 2004; Vikhlinin et al. 2005; Pointecouteau et
al. 2005; Voigt & Fabian 2006). This universal-
ity appears surprising since the temperature pro-
file should encode information about the violent
gravitational processes taking place during the
cluster formation, as well as any additional en-
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ergy input, e.g. from a central heat engine, and
these processes are expected to differ significantly
from structure to structure. The gas density pro-
file also exhibits a roughly universal behaviour,
which has allowed observers to fit remarkably sim-
ple forms, e.g. a beta-profile (Cavaliere & Fusco-
Femiano 1976; Sarazin 1986), to the data.

A natural question arises as to whether the
properties of the hot X-ray emitting gas in galaxy
clusters can be predicted from first principles start-
ing from the cluster DM distribution alone. At-
tempts in that direction have been performed in
the past (Makino et al. 1997; Suto et al. 1998),
under the assumption that the gas can be treated
either as isothermal or polytropic. Unfortunately,
later observations have shown that these assump-
tions are incorrect.

Below, we will show how the gas density pro-
file can be obtained directly from the underlying
DM profile, by combining the equation of hydro-
static equilibrium for the gas and the Jeans equa-
tion for the DM. Besides the above-mentioned re-
lation between the gas and DM temperatures, our
derivation rests upon a very simple connection be-
tween the DM velocity anisotropy and the slope
of its density profile, which has recently emerged
in numerical simulations (Hansen & Moore 2006;
Hansen & Stadel 2006). We thereby demonstrate
that the gas density profile is completely deter-
mined once the gravitationally dominant DM den-
sity profile is given. Since the gas temperature
profile is also known, it turns out that the DM dis-
tribution dictates all the gas properties uniquely.
Besides conceptually relevant in itself, this fact al-
lows to predict the X-ray luminosity profile of a
cluster in terms of its DM content alone. So, a new
strategy becomes available to constrain the DM
morphology in galaxy clusters from X-ray obser-
vations. Moreover, our findings can be employed
as a practical tool for creating initial conditions
for realistic cosmological structures to be used in
numerical simulations.

2. Background

We start by recalling some basic information
which will be instrumental for our analysis. We
restrict our attention throughout to regular clus-
ters, which are supposed to be spherically sym-
metric and relaxed. The condition of hydrostatic

equilibrium for the X-ray emitting gas can be writ-
ten as

kBTg

µmp

(
d ln ρg

d ln r
+

d lnTg

d ln r

)
+

GMtot(r)
r

= 0 , (1)

where ρg(r) and Tg(r) are the gas density and
temperature profiles, respectively, µ ! 0.61 is the
mean molecular weight for the intracluster gas, mp

is the proton mass and Mtot(r) represents the to-
tal mass inside radius r. Two conditions have to
be satisfied in order for Eq. (1) to hold. First, it
should be applied to a region considerably larger
than the gas mean free path, so that local thermo-
dynamic equilibrium is established. Second, the
cooling time in that region should be larger than
the age of the cluster, so that no bulk motion oc-
curs. The latter condition is generally met outside
the central region, where the presence of a cooling
flow often requires Eq. (1) to be replaced by the
Euler equation (with the velocity term playing a
nonnegligible role). Because of collisional relax-
ation, the gas velocity distribution is isotropic and
its temperature can be expressed in terms of the
one-dimensional velocity dispersion σ2

g as

Tg =
µmpσ2

g

kB
. (2)

Assuming complete spherical symmetry for the
DM distribution, the two tangential components
of the DM velocity dispersion, denoted by σ2

t , are
necessarily equal, but they are generally allowed to
differ from the radial component σ2

r , since DM is
supposed to be collisionless. It is usual to quantify
the DM velocity anisotropy by

β ≡ 1− σ2
t

σ2
r

(3)

and we find it convenient to introduce the mean
DM one-dimensional velocity dispersion σDM2 as

σ2
DM ≡

1
3

(
σ2

r + 2σ2
t

)
=

(
1− 2

3
β

)
σ2

r . (4)

Moreover, in analogy with the case of a gas, we
also define the DM temperature as Hansen & Pif-
faretti (2007)

TDM ≡
µmpσ2

DM

kB
=

µmp

kB

(
1− 2

3
β

)
σ2

r . (5)
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Of course, the collisionless nature of DM prevents
any definition of temperature in the thermody-
namic sense and in fact TDM is simply meant to
quantify the average velocity dispersion over the
three spatial directions. Any completely spher-
ically symmetric and relaxed DM configuration
obeys the Jeans equation

σ2
r

(
d ln ρDM

d ln r
+

d lnσ2
r

d ln r
+ 2β

)
+

GMtot(r)
r

= 0 ,

(6)
where ρDM(r) denotes the DM density profile
(Binney & Tremaine 1987).

3. The temperature profile

Early studies of the X-ray emission from regu-
lar clusters were based on the assumption of an
isothermal gas distribution, simply because the
Einstein observatory and ROSAT were unable to
determine the cluster temperature profiles. The
observed X-ray emission is produced by thermal
bremsstrahlung (Sarazin 1986), so for Tg = const.
it follows that ρg(r) is proportional to the square
root of the deprojected X-ray surface brightness.
In such a situation, a good fit to the data was
provided by the beta-model (Cavaliere & Fusco-
Femiano 1976; Sarazin 1986)

ρg(r) =
ρg(0)

[
1 +

(
r

aX

)2
]3βfit/2

, (7)

where aX < 0.5 Mpc is the X-ray core radius. Note
that βfit has nothing to do with the DM velocity
anisotropy. Typically, most of the emission comes
from the region r > 0.5 Mpc, and so Eq. (7) can
be approximated by the power-law

ρg(r) ! ρg(0)
(

r

aX

)−3βfit

. (8)

Now, by inserting Eq. (8) and Tg = const. into
Eq. (1), we find

Mtot(r) =

(
3βfitσ2

g

G

)
r , (9)

where Eq. (2) has been used. As is well known, un-
der the assumption of isotropic velocity distribu-
tion (β = 0), a mass profile of the form M(r) ∝ r
describes a singular isothermal sphere (SIS) model

in which the velocity dispersion is everywhere con-
stant (Binney & Tremaine 1987). Denoting by σ
the one-dimensional velocity dispersion, we explic-
itly have M(r) =

(
2σ2/G

)
r. Owing to the fact

that the leading contribution to Mtot(r) comes
from DM, it follows that Mtot(r) ! MDM(r). As
a consequence, Eq. (9) can be rewritten as

MDM(r) !
(

2σ2
DM

G

)
r (10)

and the comparison of Eqs. (9) and (10) entails in
turn

σ2
DM ! 1.5 βfit σ2

g . (11)

Observations performed with the Einstein obser-
vatory and ROSAT yield 0.5 < βfit < 0.9 with a
median βfit ! 0.67 (Bahcall & Lubin 1994). Thus,
on average we get

σ2
DM ! σ2

g , (12)

which implies
TDM ! Tg , (13)

thanks to Eqs. (2) and (5).
Only with the advent of the ASCA and Beppo-

SAX satellites did it become possible to measure
the cluster temperature profiles, which turned out
to be described by a polytropic gas distribution
to first approximation. Higher-quality data are
currently provided by Chandra and XMM-Newton
satellites, which have shown that the gas temper-
ature profiles possess a very simple and nearly
universal behaviour (see Vikhlinin et al. (2006)
for a thorough discussion). Basically, it increases
rapidly from a small (possibly non-zero) value
in the centre, to a maximum at a radius about
0.1 r180, and then declines slowly by a factor of
2 − 3 at (0.6 − 0.8) r180. Here, r180 is defined as
the radius within which the mean total density is
180 times the critical density at the redshift of the
cluster. The necessary X-ray background subtrac-
tion makes it very difficult to accurately measure
the temperature further out.

As mentioned above, our main goal is the de-
termination of the gas density profile ρg(r) once a
specific dark matter distribution MDM(r) is given.
Supposing as before that Mtot(r) !MDM(r), it is
evident that ρg(r) follows from Eq. (1) provided
that Tg(r) is specified. Previous studies (Makino
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et al. 1997; Suto et al. 1998) accomplished this
task by assuming

Tg(r) !
GµmpMDM(r)

3kBr
, (14)

which was claimed to formalize the condition that
the gas temperature is close to the virial temper-
ature of the DM. However, the virial theorem is
a global relation that characterizes a cluster as a
whole – it just arises by integrating the Jeans equa-
tion over the system – and so it makes no sense
physically to assume its local validity, as Eq. (14)
would instead presuppose.

As a matter of fact, this stumbling block can be
side-stepped in a remarkably simple fashion. Be-
cause of the equivalence principle, the velocity of a
test particle in an external gravitational field is in-
dependent of the particle mass. This circumstance
leads to the guess

TDM(r) = κ Tg(r) . (15)

This relation was tested against numerical sim-
ulations (Host et al. 2009), which demonstrated
its validity with κ = 1 to a very good approxi-
mation. These numerical simulations (Kay et al.
2007; Springel 2005; Valdarnini 2006) are reliable
only on scales greater than ∼ 0.1 r2500, while the
best X-ray observations are sensitive to a radius
which is almost a factor 3 smaller. It is there-
fore possible that heating or cooling may shift κ
away from unity in the very centre. Hence, out-
side that region κ = 1 is expected. Actually, a look
back at Eq. (13) confirms the remarkable fact that
κ = 1 holds regardless of the actual shape of the
DM velocity anisotropy profile β(r). As we shall
see, starting from a specific underlying DM density
profile ρDM(r), one can evaluate TDM(r) and then
get the gas temperature profile Tg(r) uniquely.

Before closing this section, a remark is in order.
Observations show that some clusters lack a cen-
tral cooling flow. In such a situation, hydrostatic
equilibrium is expected to hold all the way down
to the centre. Actually, for typical central values
of the electron number density ne ! 1cm−3 and
temperature T ! 108 K ! 8.5 keV (Sarazin 1986),
the scattering time turns out to be tscat ∼ 102yr,
which is much smaller than the corresponding gas
cooling time tcool ∼ 107yr, so that local hydro-
static equilibrium is indeed fulfilled outside a cen-
tral spherical region of radius ∼ 1 pc. Assuming

further that the gas temperature is roughly con-
stant in the inner cluster region, the gas density
profile cannot be cuspy as long as MDM(r) ∝ ra

with a > 1 for r → 0. This is at odds with blind
extrapolations of fitting formulae for the temper-
ature and density such as those used in Vikhlinin
et al. (2006).

4. The density profile

We now proceed to the actual derivation of the
gas density profile ρg(r) from the properties of the
dominating DM distribution.

As a preliminary step, we notice that Eqs. (1)
and (6) can be trivially combined to yield

kBTg

µmp

(
d ln ρg

d ln r
+

d lnTg

d ln r

)

= σ2
r

(
d ln ρDM

d ln r
+

d lnσ2
r

d ln r
+ 2β

)
. (16)

Owing to Eqs. (5) and (15) with κ = 1, straight-
forward manipulations permit to recast Eq. (16)
into the form

γg =
1

1− 2
3β

(
γDM + 2β + 2

3β
d lnσ2

r

d ln r
+

2
3

dβ

d ln r

)
, (17)

where we have defined the density slopes γDM(r)
of the DM and γg(r) of the gas as

γX(r) ≡ d ln ρX

d ln r
, (18)

with X standing for either DM or g. We stress that
Eq. (17) captures a crucial point of the present
investigation: only the gas density slope appears
on its left-hand side, whereas only quantities per-
taining to the DM appear on its right-hand side.
It should be appreciated that this result merely
relies upon the equality of gas and DM tempera-
tures and – unlike in previous studies (Cavaliere &
Fusco-Femiano 1976; Makino et al. 1997; Suto et
al. 1998) – no assumption is being made about the
actual gas temperature structure (e.g. isothermal
or polytropic).

Next, we use the fact that the DM anisotropy
profile β(r) turns out to be almost linearly related
to the slope of the DM density profile γDM(r).
This result has been obtained from numerical sim-
ulations and holds with a scatter of about 0.05
(Hansen & Moore 2006; Hansen & Stadel 2006).
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Fig. 1.— The derived gas density profile, as-
suming that ρg/ρDM = 10% at r0, which is the
scale length of the NFW profile. The upper curve
(black) is the DM density, and the 3 lower lines
show gas profiles modelled with extreme varia-
tions in the possible DM velocity anisotropy (green
dot-dashed is isotropic (β = 0), red solid is using
β = − 0.2 (γ + 0.8) (Hansen & Stadel 2006), and
blue dashed is using β = − 0.13 γ (Hansen 2008)).

It has recently been confirmed by high-resolution
numerical simulations (Navarro et al. 2008) and
moreover it has been derived analytically (Hansen
2008) (see also Zait et al. (2008); Wojtak et al.
(2008); Salvador-Solé et al. (2007)).

Getting the gas density profile ρg(r) now in-
volves a few simple steps. Our only input is the
DM density profile ρDM(r), like e.g. an NFW pro-
file. Thanks to Eq. (18), we rewrite the Jeans
equation (6) as

r
dσ2

r

dr
+ σ2

r

(
γDM(r) + 2β(r)

)
+

GMtot(r)
r

= 0 ,

(19)
whose solution is easily found to be

σ2
r(r) =

G

B(r)

∫ ∞

r
dr′

B(r′) Mtot(r′)
r′2

, (20)

with

B(r) ≡ ρDM(r) exp
{
− 2

∫ ∞

r
dr′

β(r′)
r′

}
. (21)

Using the relation between β(r) and γDM(r), we
finally obtain the gas density profile from Eqs. (17)
and (18).
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Fig. 2.— The derived slope of the gas density pro-
file, assuming an NFW profile for the DM. Same
notation as in Figure 1. The inner point is taken
from Vikhlinin et al. (2006) and the three outer
points are taken from Ettori & Balestra (2008).

In practice, such a procedure can be imple-
mented iteratively. In first approximation, we as-
sume that the gas mass contribution is negligible,
so that we have Mtot(r) = MDM(r). In the next
iterations, we include the gas mass in the calcula-
tion of σ2

r(r). Although the gas mass is taken into
account perturbatively, any desired accuracy can
be achieved by a sufficient number of iterations.

An example of the application of this strategy
is shown in Figure 1, where the DM density is as-
sumed to follow an NFW profile (black solid line).
The three lower lines are the gas density profiles
obtained with a range of different possible DM ve-
locity anisotropy profiles. The details of the gas
density profile are easier seen in the slope, which
is shown in Figure 2. Note that for an inner DM
slope of about 1 (in agreement with the observa-
tions (Voigt & Fabian 2006; Pointecouteau et al.
2005)) the inner gas slope should also be close to
1. This is in good agreement with the fits from
Vikhlinin et al. (2006), which have an average of
0.8 for the extrapolated inner slope. Also the
slopes found by Ettori & Balestra (2008) agrees
with an NFW profile.

A widely used alternative to the NFW profile
is the Sersic (or Einasto) profile, which generalizes
the de Vaucouleurs profile traditionally used to fit
the optical surface brightness of elliptical galaxies.
It has been shown that the Sersic profile models
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Fig. 3.— The slope of the gas density profile, as-
suming a Sersic profile with n = 5 for the DM.
Same notation as in Figures 1 and 2.

the deprojected DM density at least as well as the
NFW (Navarro et al. 2004; Merritt et al. 2006;
Salvador-Solé et al. 2007). This profile contains
3 free parameters: two scaling constants for the
density and the radius – ρ0 and r0 respectively –
and one shape parameter n

ρ(r) = ρ0 exp

[
− bn

((
r

r0

) 1
n

− 1

)]
. (22)

The constant bn is a function of the index n and is
tabulated e.g. by Mazure & Capelato (2002). The
radial velocity dispersion σr derived from the Ser-
sic profile has, like the NFW profile, the property
of reaching its maximum near r0 where the slope
is γ = 2. In Figure 3 we present the gas density
slope, assuming a Sersic profile for the underly-
ing DM density. There is not sufficient statistical
power in the data to discriminate between the un-
derlying DM density and/or velocity anisotropy
profiles from this analysis.

Both the NFW and the Sersic profile are con-
sistent with observations because they have the
appropriate slope in the inner and outer observed
region. Since we cannot exclude one or the other
by relying upon their shape, we choose the NFW
model for the underlying DM in the rest of our
treatment.

Since the gas density profile differs from the un-
derlying DM density profile, there will also be a
radial variation in the local and cumulative gas

fractions, which are defined as

φg(r) =
ρg(r)
ρtot(r)

(23)

and
fg(r) =

Mg(r)
Mtot(r)

, (24)

respectively. In order to test this in more detail,
we used the 16 clusters analysed in Host et al.
(2009), which is a selection of highly relaxed clus-
ters at both low and intermediate redshifts (Kaas-
tra et al. 2004; Piffaretti et al. 2005; Morandi et
al. 2007) observed with XMM-Newton and Chan-
dra. Under the assumption of hydrostatic equi-
librium, we find the local gas fraction exhibited
in Figure 4. The local gas fraction clearly in-
creases as a function of radius, which demonstrates
that the DM velocity anisotropy cannot vanish
(green dot-dashed line in Figure 4). The gas den-
sity fraction roughly increases as a power-law in
radius and we have approximately fg(r) ∼ r0.5.
The solid (red) and dashed (blue) lines are for
NFW DM profiles, with different radial DM ve-
locity anisotropies. From Figure 4 there is a clear
difference between the data and the predictions
in the outer region, which may be due to an un-
derestimation of the total mass due to breakdown
of hydrostatic equilibrium (Piffaretti & Valdarnini
2008).

It is important to keep in mind that these pro-
files do not contain any free parameters. Every
quantity is calculated from the dark matter distri-
bution alone.

The agreement in the inner region is better and
it should be kept in mind that different DM den-
sity and velocity anisotropy profiles give rise to
different curves. It may therefore be possible to
use the shape of φg(r) to recover these DM pro-
files in the future.

As a further step, we discuss some of the im-
plications of our main result. Indeed, with a full
description of the gas that is directly derived from
the dark matter distribution, we can predict addi-
tional observable quantities besides the gas frac-
tion described above.

One of these quantities is the entropy, which is
often characterized by the adiabatic coefficient Kg

of the gas

Kg =
kBT

µmp
ρ−2/3 = σ2

g ρ−2/3 . (25)
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Fig. 4.— The observed φg from 16 relaxed galaxy
clusters. We have scaled the gas mass fraction
with free parameters, to make the radial variation
more visible. There is a rough trend that the gas
mass fraction increases as r0.5, which is in clear
disagreement with the assumption that the DM
velocity anisotropy should vanish. The 3 curves
all assume an NFW density profile, and different
assumed connections between the DM slope and
velocity anisotropy, as in Figure 1.

Our previous results entail that these profiles are
almost perfect power laws regardless of the β pro-
file. The slope changes slightly for the different
β profiles (between 1.1 and 1.3). This theoretical
prediction is in good agreement with the X-ray
observations, which generally produce power-law
entropy profiles (Piffaretti et al. 2005; Pratt, G.
W. & Arnaud, M. 2005; Donahue et al. 2006).

Another quantity that we are able to predict is
the gas X-ray emissivity ε. As a matter of fact,
ε can be estimated either analytically – because
ε ∝ n2T

1
2 – or by numerical codes like MeKaL

(Mewe et al. 1985) in order to include the line
emission contribution. The latter strategy is es-
pecially well suited for cooler clusters, because a
substantial amount of their luminosity stems from
emission lines. On the other hand, the luminosity
of hotter clusters is dominated by the continuum
emission. In either case, the surface brightness can
be inferred from a given DM profile and this can
in turn be compared with observations. In this
way, it is possible to construct an algorithm that
adjusts the proposed DM profile until the surface
brightness best-fits observations and thereby sin-

gle out the optimal DM profile.
Whereas numerical simulations have demon-

strated that the gas and dark matter temperatures
are equal in large parts of a galaxy cluster, they
cannot probe the very centre of the clusters. It
is therefore possible that κ in Eq. (15) departs
from unity as r → 0 if there is significant cooling
or heating. However, in our derivation of the gas
density profile we have assumed κ = 1 everywhere.

It goes without saying that we can turn the
argument around and use the observed gas profile
to determine κ. Basically, we can insert Eq. (15)
into Eq. (16) and solve for κ. Furthermore, since
we are now interested in the central region where
β is likely to be vanishingly small, we discard all
terms involving β in the resulting equation. So, in
place of Eq. (17) we presently get

κ =
γg + d lnσ2

r/d ln r

γDM + d lnσ2
r/d ln r

, (26)

which in principle allows to measure κ directly
from X-ray observations. Such measurement can
be used or tested in future numerical simulations
when the increased particle number will allow sim-
ulations to probe closer to the cluster centre.

5. Conclusions

We have shown that all properties of the hot X-
ray emitting gas in galaxy clusters are completely
determined by its underlying DM structure. Apart
from the condition of hydrostatic equilibrium for
the gas and the Jeans equation for the DM, our
derivation rests upon two simple relations which
have recently emerged from numerical simulations.
One is the equality of the gas and DM tempera-
tures. The other is an almost linear relationship
between the DM velocity anisotropy profile and its
density slope. For DM distributions described by
the NFW or the Sersic profiles, the resulting gas
density profile, the gas-to-total-mass ratio profile
and the entropy profile are all in good agreement
with X-ray observations. We feel that our result is
conceptually relevant in itself. Moreover, it allows
to predict the X-ray luminosity profile of a clus-
ter in terms of its DM content alone. Therefore,
a new strategy becomes available to constrain the
DM morphology in galaxy clusters from X-ray ob-
servations (Frederiksen et al. 2009). This strategy
may constrain morphology parameters better be-
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cause of the tighter errors on surface brightness,
but requires the structure to be very relaxed and
thus cannot be used on every cluster. Our results
can also be used as a practical tool for creating ini-
tial conditions for realistic cosmological structures
to be used in numerical simulations. We plan to
come back to the latter issues in great detail else-
where.
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Appendix C

Source Code

C.1 kappa1.pro

This is the driver-program for producing all the plot in chapter 3. The
program calculates all the quantities from a dark matter density.

pro kappa1

;--- Print output to file? ---
PRN=0
if (PRN eq 1) then begin

set_plot, ’PS’
device, filename=’kappa1.ps’

endif

;--- Define arrays ---
Num = 1000
M = dblarr(Num)
Mgas = dblarr(Num)
sigma2 = dblarr(Num)
flip = -indgen(Num) + Num-1

; --- Generate legends ---
d = !d.name
set_plot, ’PS’
p = !p.font
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!p.font = 0
legendtext = textoidl([’\beta = -0.13 \gamma’, ’\beta = -0.2 (\gamma + 0.8)’, ’\beta = 0’])
legendx = textoidl(’Radius (r / r_0)’)
legendgamma = textoidl(’-\gamma(r)’)
legendbeta = textoidl(’\beta(r)’)
legendsigma2 = textoidl(’\sigma^2_r(r)’)
legendgasslope = textoidl(’-\gamma_{gas}(r)’)
legendrhogas = textoidl(’\rho_{gas}(r)’)
legendrhodm = textoidl(’\rho_{DM} profile’)
legendMgas = textoidl(’M_{gas}(r)’)
legendMdm = textoidl(’M_{DM}’)
legendfgas = textoidl(’f_{gas}(r)’)
legendfgas2 = textoidl(’\phi(r)’)
legendentropy = textoidl(’K_{gas}(r)’)
legendentropydm = textoidl(’K_{dm}(r)’)

!p.font = p
set_plot, d

;--- Initialize ---
p = .05d ; gas fraction
xmin = -2.
xmax = 2.
x = 10^( dindgen(Num)/Num * ( xmax - xmin ) + xmin )

; +++++++++++++++++++++++++
; ++++ Density-profile ++++
; +++++++++++++++++++++++++

NFWprofile = 1
if (NFWprofile eq 1) then begin

; -- Double-powerlaw --
Inner = 1
outer = 3
bend = 1.
rho = 1 / ( x^Inner * ( 1 + x^Bend )^((Outer - Inner)/Bend) )
prefix = ’_nfw’

endif else begin
; -- Sersic-profil
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n = 5.
dn = 9.6687 ; for n=5
rho = exp( -dn * ( x^(1./n) - 1. ) )
rho = rho/rho[Num/2]
prefix = ’_sersic’

endelse

; ++++++++++++++++++++++++++++++++
; ++++ End of Density-profile ++++
; ++++++++++++++++++++++++++++++++

; calc M from rho
M = 4*!pi*intloglog( x, x^2 * rho )

; --- calc rho from M ---
rho = dydx(x,M)/(4*!pi*x^2)
rho = rho/rho[Num/2]

; --- calc gamma from rho ---
gamma = dlnydlnx( x, rho )

; --- calc beta ---
beta1 = -.13 * gamma
Beta2 = .2 * ( -gamma - .8 )
beta3 = 0 * gamma

epsplot, x, beta1, beta2, beta3, /xlog, $
yrange=[-.5,1], $
xrange=[0.01,10], $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick=3, $
xtitle=legendx, $
ytitle=legendbeta, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
file=’beta’+prefix+’.eps’
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epsplot, -gamma, beta1, beta2, beta3, $
yrange=[-.5,1], $
xrange=[1,3], $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick=3, $
xtitle=legendgamma, $
ytitle=legendbeta, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
file=’gammabeta’+prefix+’.eps’

; --- calc sigma from rho, M and beta ---
r = intloglog2(x,gamma + 2*beta1) ; rho-tilde
y = M*r/x^2 ; the integrand
sigma1 = intloglog( x[flip], -y[flip] )
sigma1 = sigma1[flip]
sigma1 = sigma1/r
sigma1 = sigma1/sigma1[Num/2]
r = intloglog2(x,gamma + 2*beta2)
y = M*r/x^2
sigma2 = intloglog( x[flip], -y[flip] )
sigma2 = sigma2[flip]
sigma2 = sigma2/r
sigma2 = sigma2/sigma2[Num/2]
r = intloglog2(x,gamma + 2*beta3)
y = M*r/x^2
sigma3 = intloglog( x[flip], -y[flip] )
sigma3 = sigma3[flip]
sigma3 = sigma3/r
sigma3 = sigma3/sigma3[Num/2]
epsplot, x, sigma1, sigma2, sigma3, $

/xlog, /ylog, $
xrange=[0.01,10], $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick=3, $
xtitle=legendx, $
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ytitle=legendsigma2, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
file=’sigma2’+prefix+’.eps’

; --- calc derivativ of sigma ---
logdydx1 = dlnydlnx( x, sigma1 )
logdydx2 = dlnydlnx( x, sigma2 )
logdydx3 = dlnydlnx( x, sigma3 )

; --- calc d(beta)/dlnr ---
dbdr1 = x*dydx(x, beta1)
dbdr2 = x*dydx(x, beta2)
dbdr3 = x*dydx(x, beta3)

; --- The Gas equation ---
gasslope1 = ( 1.5*gamma + 3*beta1 + beta1*logdydx1 + dbdr1 ) / ( 1.5 - beta1 )
gasslope2 = ( 1.5*gamma + 3*beta2 + beta2*logdydx2 + dbdr2 ) / ( 1.5 - beta2 )
gasslope3 = ( 1.5*gamma + 3*beta3 + beta3*logdydx3 + dbdr3 ) / ( 1.5 - beta3 )

; --- data point from Ettori&Balestra and Vikhlinin ---
err = [[0.4*6, 0.7*6, 1.0*6, 0.02], $

[ 2.04, 2.39, 2.62, 0.8], $
[ 0.23, 0.35, 0.43, 0.2], $
[ 0.23, 0.35, 0.43, 0.4] ]

epsplot, x, -gasslope1, -gasslope2, -gasslope3, $
/xlog, $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
th = 3, $
xrange=[0.01,10], $
yrange=[0,4], $
xtitle=legendx, $
ytitle= legendgasslope, $
points = err, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
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file=’gasslope’+prefix+’.eps’

; --- calc Mgas from gas-slope ---
rhogas1 = intloglog2(x, gasslope1)
rhogas2 = intloglog2(x, gasslope2)
rhogas3 = intloglog2(x, gasslope3)

epsplot, x, rho, (p*rhogas1), (p*rhogas2), (p*rhogas3), $
/xlog, /ylog, $
xrange=[0.01,10], $
yrange=[1e-4, 1e3], $
color=[0, 3, 1, 2], $
linestyle=[0, 2, 0, 3], $
th = [1, 3, 3, 3], $
xtitle=legendx, $
ytitle=legendrhogas, $
xylegend=[0.25, 0.25], $
legend=[legendrhodm, legendtext], $
file=’rhogas’+prefix+’.eps’

; --- Rescaling ---
Mgas1 = intloglog(x, rhogas1*x^2)
Mgas1 = Mgas1 / Mgas1[Num/2] * M[Num/2]
Mgas2 = intloglog(x, rhogas2*x^2)
Mgas2 = Mgas2 / Mgas2[Num/2] * M[Num/2]
Mgas3 = intloglog(x, rhogas3*x^2)
Mgas3 = Mgas3 / Mgas3[Num/2] * M[Num/2]
epsplot, x, (p*Mgas1), (p*Mgas2), (p*Mgas3), M, $

/xlog, /ylog, $
xrange=[0.01,10], $
color=[3, 1, 2,0], $
linestyle=[2, 0, 3, 0], $
th = [3,3,3,1], $
xtitle=legendx, $
ytitle=legendMgas, $
legend=[legendtext, legendMdm], $
xylegend=[0.25, 0.75], $
file=’Mgas’+prefix+’.eps’
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fgas1 = p*Mgas1/M
fgas2 = p*Mgas2/M
fgas3 = p*Mgas3/M
epsplot, x, fgas1, fgas2, fgas3, $

/xlog, $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick = 3, $
xrange=[0.01,10], $
yrange=[0, 0.15], $
xtitle=legendx, $
ytitle=legendfgas, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
file=’fgas’+prefix+’.eps’

fgas1 = p*rhogas1/rho
fgas2 = p*rhogas2/rho
fgas3 = p*rhogas3/rho
epsplot, x, fgas1, fgas2, fgas3, $

/xlog, $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick = 3, $
xrange=[0.01,10], $
yrange=[0, 0.15], $
xtitle=legendx, $
ytitle=legendfgas2, $
xylegend=[0.25, 0.75], $
legend=legendtext, $
file=’fgas2’+prefix+’.eps’

epsplot, x, $
(sigma1/rhogas1^(2./3.)), $
(sigma2/rhogas2^(2./3.)), $
(sigma3/rhogas3^(2./3.)), $
/xlog, /ylog, $
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xrange=[0.01,10], $
yrange=[1e-4,1e4], $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick = 3, $
xtitle=legendx, $
ytitle=legendentropy, $
file=’entropy_gas’+prefix+’.eps’

; Label Hack:
; xyouts, 0.70,0.50, ’NFW’, /normal, charthick=2
; xyouts, 0.55,0.65, ’Sersic’, /normal, charthick=2

epsplot, x, (sigma1/rho^(2./3)), (sigma2/rho^(2./3)), (sigma3/rho^(2./3)), $
/xlog, /ylog, $
xrange=[0.01,10], $
color=[3, 1, 2], $
linestyle=[2, 0, 3], $
thick = 3, $
xtitle=legendx, $
ytitle=legendentropydm, $
ytickformat=’("K", e5)’, $
xylegend=[0.25, 0.25], $
legend=legendtext, $
file=’entropy_dm’+prefix+’.eps’

; --- Close output file if necessarry ---
if (PRN eq 1) then begin

device, /close
set_plot, ’X’

endif

end
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C.2 intloglog.pro

;
; Returnes the integral of y from x0 to x
; The relative error goes like 1/N^2
;
function intloglog, x, y

Num = min( [ n_elements(x), n_elements(y) ] )
if (Num lt 10) then begin

Print, ’INTLOGLOG: Not enough data’
return, !values.f_NaN

endif

ret = dblarr(Num)

; Initial guess
a = alog(y[4]/y[2])/alog(x[4]/x[2])
ret[0] = x[0] * y[0] / (a + 1)

; --- Trapez-methoden ---
for i = 1, Num-1 do $

ret[i] = ret[i-1] + .5d * ( y[i] + y[i-1] ) * ( x[i] - x[i-1] )

return, ret

end
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C.3 intloglog2.pro

;
; solves the equation dln(f)/dlnx = y
; f = f(x) and y = y(x)
; returning f
;
function intloglog2, x, y

Num = min( [ n_elements(x), n_elements(y) ] )
if (Num lt 2) then begin

Print, ’INTLOGLOG2: Not enogh data points’
return, !values.f_NaN

endif

Ret = dblarr(Num)

Ret[0]=1
Ret[1]=Ret[0]*(x[1]/x[0])^y[0]
for i = 2, Num-1 do $

Ret[i]=Ret[i-2]*(x[i]/x[i-2])^y[i-1]

Ret = Ret/Ret[Num/2]

return, Ret
end
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C.4 dydx.pro

;
; This function returns the slope of y
; (the relative error goes like 1/N^2 )
;
; ret = d(y) / d(x)
;
function dydx, x, y

Num = min( [ n_elements(x), n_elements(y) ] )
if (Num lt 2) then begin
Print, ’Not enough data to calc derivative’
return, !values.f_NaN
endif

Ret = dblarr(Num)

for i = 1, Num-2 do $
ret[i] = (y[i+1]-y[i-1])/(x[i+1]-x[i-1])
ret[0] = ret[1]-(x[1]-x[0])/(x[2]-x[1])*(ret[2]-ret[1])
ret[Num-1] = ret[Num-2]-(x[Num-2]-x[Num-1])/(x[Num-3]-x[Num-2])*(ret[Num-3]-ret[Num-2])

return, ret

end
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C.5 dlnydlnx.pro

;
; This function returns the log-slope of y
; (the relative error goes like 1/N^2 )
;
; ret = dln(y) / dln(x)
;
function dlnydlnx, x, y

Num = min( [ n_elements(x), n_elements(y) ] )
if (Num lt 2) then begin

Print, ’Not enough data to calc derivative’
return, !values.f_NaN

endif

Ret = dblarr(Num)

for i = 1, Num-2 do $
ret[i] = alog(y[i+1]/y[i-1])/alog(x[i+1]/x[i-1])

ret[0] = ret[1]*(ret[1]/ret[2])^(alog(x[1]/x[0])/alog(x[2]/x[1]))
ret[Num-1] = ret[Num-2]*(ret[Num-2]/ret[Num-3])^(alog(x[Num-2]/x[Num-1])/alog(x[Num-3]/x[Num-2]))

return, ret

end
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