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Abstract

A novel use of multivariate methods has been developed for searches for new physics in
high-energy particle physics. Through the use of Principal Component Analysis a range of
input kinematic and event-observables are transformed into linear uncorrelated principal
components. The resulting principal components are ranked by variance associated to the

degree of information they contain. The potential usage of this transformation on both data
and model expectations is presented and it is shown how the highest ranked principal

component can be used in a composite likelihood fit of data to model expectation, combining
much more of the available information than any one original observable could provide.

The independence of the principal components is tested using the Mutual Information
measure. Principal components found to be independent are combined to add an even larger

amount of information to the fit and improve separation power to new physics. This is
applied in both tests of the Standard Model and a search for new physics. As a benchmark

model upper limits are set on the Type III seesaw mechanism.

The method is shown to hold significant potential for use in both searches for new physics
and in testing the Standard Model.

Resumé

En ny anvendelse af multivariate metoder er blevet udviklet til at søge efter nye fysik
fænomener i højenergi partikelfysik. Ved at anvende Principal Component Analysis kan en

række kinematiske og begivenhedsbaserede observabler transformeres med lineært
ukorrelerede principielle bestanddele til følge. Disse principielle bestanddele bliver rangeret

efter varians forbundet med mængden af information de indeholder.
Anvendelsesmulighederne på data og model-forventninger bliver præsenteret og det vises
hvordan den højest rangerende principielle bestanddel kan bruges i et likelihood-fit af

model-forventning til data og på den måde inkludere en langt større del af den oprindelige
information end det kunne opnås med en enkelt af de oprindelige observabler.

Uafhængigheden de principielle bestanddele imellem udregnes vha. Mutual Information
målet. De bestanddele, der er uafhængige, kombineres så en endnu større grad af
information opnås i likelihood-fitted. Dette giver ydermere mulighed for bedre at

diskriminere mellem forventning og bidrag fra ny fysik. Metoden anvendes i både test af
partikelfysikkens Standardmodel og til at lede efter ny fysik. Type III seesaw mekanisme
bruges som benchmarkmodel, hvor der sættes øvre grænser på produktionstværsnittet.
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Foreword

Through my PhD I have had the change to get involved in several exciting projects. In the
initial phase Kristian Grekersen, Jørgen Beck Hansen and I developed an extension to the
analysis framework SFrame [1] that allowed for sequential addition of object selectors and
event tools. The code including documentation is openly available at:
http://sourceforge.net/projects/cyclesequencer/reviews.

During all three years I have been involved in the work on the Transition Radiation Tracker in
ATLAS; with performance studies and lately with the development of a common data format
to help improve and speed up the many performance studies. The work has been documented
in the relevant groups but as it is not a direct part of what I consider my main work on
this thesis I have not included it here. The following will present my work on the usage of
multivariate methods in searches for new physics in three-lepton final states using data from
2012 recorded at the ATLAS experiment.

Challenging the current views

The Standard Model of particle physics is one of the most successful models in physics if not
all of science. With the discovery in 2012 [2, 3] of a particle consistent with the long sought
Higgs, the Standard Model became consistent and even with the degree of precision it has
been tested to, no significant signs of anything beyond it have been observed. It might seem
futile to further test it but this is by no means the case. The Standard Model is an effective
model and not a fundamental theory and it has several deficiencies. Furthermore there is
theoretical motivation for physics beyond the Standard Model to occur in data from the LHC.

To search for new physics, data is compared to expectations based on simulation of the
Standard Model processes. To be able to conclude anything selections are performed on the
data to get phase-spaces with predictable background contribution. The phase-spaces are
typically tested in one or a few select observables. The approach is often to look for new
physics with selections specific to new models but a model-independent approach can also be
taken. The result has so far been strict limits on many types of new physics in the available
energy ranges.

To really test the Standard Model it would be ideal to compare the measured data to the ac-
tual theoretical predictions it gives. This would mean comparing the event kinematics directly
to the matrix elements, that constitute the core of the simulation. This however does not give
a meaningful result. Collision events are measured through detectors, that per construction
have limited resolution and all event-kinematics have to be reconstructed and particles identi-
fied using sophisticated tracking and energy reconstruction software. The reconstruction leads
to overall smearing and the Standard Model expectation should be simulated accordingly.

One way to fully compare an event to expectation is by using a large set of observables to
simultaneously look for discrepancies. This has not been done to large extent before, as fitting
data to expectation in many observables demands that either all observables are independent
or that their correlations are known.

This thesis introduces a novel method where Principal Component Analysis is used to
map a list of observables into linearly uncorrelated variables by maximising the signal-to-noise
ratio. Two approaches are shown to be possible using Principal Component Analysis that
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allow for a significant addition of information to the fits.



1
Theory

1.1 Our current view - the Standard Model of Particle physics

The discovery of the Higgs particle was the last brick needed for the Standard Model of particle
physics to be consistent. It is perhaps one of the most successful scientific models or effective
theories to this date and it explains the dynamics of our universe at the most fundamental scale
with extreme precision. It describes the existence of a set of fundamental matter particles;
the fermions and three of the four fundamental forces of nature with associated force carrying
particles - the gauge bosons. In the following a brief overview of the central points are
presented. It is an attempt at making the absolute minimal introduction for the reader
already familiar with quantum mechanics and field theory as the theoretical foundation of the
Standard Model is not part of this thesis. The interested reader is referred to the excellent
textbook descriptions in [4], [5] or [6].

1.1.1 Quantum field description

The Standard Model is based on a quantum field theory subject to SU(3)C x SU(2)L x U(1)Y
gauge symmetries. Central to it is the electroweak theory and the theory of strong interac-
tions, the quantum chromo dynamics. The electroweak theory came to be through the work
of Sheldon Glashow, Steven Weinberg and Abdus Salam in the ’60’s. All three were rewarded
with a Nobel prize for the work in ’79. The theory combines the phenomena of electromag-
netism and the weak interactions under one description. Quantum chromo dynamics is the
description of the strong force governing the structure and constituents of the atomic nuclei.

1.1.2 Gauge invariance

In the framework of quantum field theory, particles can, contrary to the point-particles of
classical mechanics, be described as the quantised excitations of fields. The description of
fields is most commonly recognised from the description of light: the photon exhibiting both
wave- and particle-properties.

In classical mechanics the fundamental quantity is the action, S. It contains all the infor-
mation needed to determine the dynamics and kinematics of a system, and is found by time
integrating the Lagrangian. The Lagrangian is here the spatial integral of the Lagrangian

3
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density, L.

S =

∫
Ldt =

∫
Ld4x =

∫
(T − V )dt, (1.1)

where T is kinetic energy and V is potential energy of the system. The term gauge refers to
an excess degree of freedom in the Lagrangian. Transformation between different gauges form
a symmetry group called the gauge group of the theory. The transformations are called gauge
transformations. Basically gauge invariance means that if the physical predictions of a theory
remain unaltered by a local or global transformation, then the theory is gauge invariant. A
gauge invariant Lagrangian is thus invariant under

ψ(x)→ eiαψ(x), (1.2)

where ψ is an arbitrary field and α its phase. α is unmeasurable and can be chosen arbitrarily
but as soon as it is fixed, it is specified for all points in space-time and it forms a global gauge
transformation. If α is dependant on space time e.g. α(x), it forms a local gauge symmetry.

Principle of least action

In classical mechanics a system making a transition from one state to another does so along
the path in configuration space, where the action is a minimum. This principle is called the
principle of least action. In other words, the classical system will always take the shortest
path in space-time. The extremum is found by varying the action with regard to a field like
the above ψ(x), with the demand, that these variations vanish for a given set of boundary
conditions, that correspond to the inherent physics. This gives the Euler-Lagrange version of
the equation of motions for that field ψ(x). This principle is not necessarily true when moving
to quantum mechanics. The classical path is only one of the paths, and in principle all other
paths are allowed. The classical path is however often the dominant path but those close to
it, e.g. quantum fluctuations can influence the results significantly. We can probe these small
fluctuations and get a new form of our Lagrangian.

The dynamics of a fermion field like the electron, ψ(x) are expressed by the Dirac La-
grangian1 :

LDirac = ψ̄(x)(iγµ∂µ −m)ψ(x) (1.3)
= iψ̄γµ∂µψ︸ ︷︷ ︸

kinetic part

− mψ̄ψ︸ ︷︷ ︸
mass term

It is interesting to try to make a gauge transformation on this equation. The partial derivative
will transform as

∂µ → Dµ = ∂µ − iqAµ, (1.4)

where Aµ is the gauge field. Dµ is the referred to as the gauge covariant derivative. This must,
due to gauge invariance, transform along with ψ(x) by a phase transformation (see e.g. [4]
page 482)

ψ(x)→ eiα(x)ψ(x) and Aµ(x)→ Aµ(x) +
1

e
∂µα(x), (1.5)

1This is the Lagrangian density, but as is customary in the field’s notation, it is henceforth referred to as
the Lagrangian.
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Here e is the elementary charge. When this is done, the Dirac Lagrangian changes form and
can be written as

L = ψ̄(x)(iγµ∂µ −m)ψ(x)− Lint, (1.6)

where Lint is the interaction part of the Lagrangian given by

Lint = −eψ̄(x)γµψ(x)Aµ (1.7)

The field Aµ can be interpreted as the photon field, but it cannot propagate in its current
form, as it has no kinematic degree of freedom. To give the field the ability to propagate
as desired, we impose terms containing first order derivatives in time to our Lagrangian. By
requiring only gauge invariance this gives a series of terms which is unsatisfactory, but by
requiring also P parity symmetry, we are left with one allowed term [4]

L = −1

4
FµνFµν (1.8)

for the electromagnetic field strength tensor

Fµν = ∂νAµ − ∂µAν (1.9)

The addition of a mass term is not allowed by the demand of gauge invariance so this is the
final form of the quantum electrodynamic Lagrangian given in full by

LQED = ψ̄(x)(iγµDµ −m)ψ(x)− 1

4
FµνF

µν (1.10)

QED embodies the imposition of a U(1) gauge symmetry on a field theory of fermionic
fields. The gauge field is the electromagnetic field and the symmetry of the group demands
electric charge conservation and, as it is part of the Standard Model, it means charge must
always be conserved in particle interactions.

The mass term here is the fermion mass term introduced by the Dirac Lagrangian. It has
not been explained and is indeed put in by hand without explanation of its origin.

1.1.3 The electroweak sector

The work presented in this thesis will concern three-lepton final states to which the electroweak
sector is of special relevance.

The electroweak part of the Lagrangian is formed by interactions that have SU(2)L×U(1)Y
structure. This is broken into the U(1)EM symmetry by electroweak symmetry breaking as
will be explained. Y is weak hypercharge, IW is weak isospin and I3

W its third component.
They are related to the electric charge by

Q =
Y

2
+ I3

W (1.11)

With respect to the weak isospin, fermions can be arranged in left-handed doublets like leptons
and neutrinos or up-type and down-type quarks. Right-handed fermions are invariant under
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rotations in weak isospin space, which means they do not possess weak-isospin, and are there-
fore singlets under SU(2)L.2 They both, however, possess weak hypercharge. This equation
is central for the understanding of the Standard Model interactions. Weak hypercharge is
defined as follows

Y ≡ B +X, (1.12)

where B is the quantum number called baryon number and X represents a set of quantum
numbers for each type of quark. There is a similar quantum number for the leptons demanding
conservation of electron, muon and tauon numbers e.g. Le ≡ N(e−)−N(e+)+N(νe)−N(ν̄e).
Along with the lepton number [7], these numbers govern the possible decays and production
mechanisms of all particles.

The bosons of the electroweak interactions stems from the description of the SU(2)L ×
U(1)Y by a massless isotriplet W 1,2,3

µ , and a massless isosinglet, Bµ. Special unitary groups
like the SU(2) are described by the so called Lie algebra [8]. The group has generators, Ta
that are proportional to the Pauli matrices σa:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1.13)

Because the Pauli matrices do not commute with each other the Wµ field tensors have, in
addition to their kinetic energy, a contribution from their self-interaction [9]

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (1.14)

and εabc are the structure constants of SU(2) and g is the coupling constant of the left handed
fermions weak isospin to W 1,2,3

µ . It is related to g’ - the coupling of the weak hypercharge to
Bµ via the weak mixing angle θW and the elementary charge, e, by

g · sin θW = g′ cos θW = e. (1.15)

For the Bµ field there exist no self-interactions and the field tensor is described by

Bµν = ∂µBν − ∂νBµ. (1.16)

Electroweak Lagrangian

Using the U(1) gauge field Bµ and SU(2) gauge fieldsW a
µ (a=1,2,3) the electroweak Lagrangian

is defined as:

LEWgauge = − 1

4
W a
µνW

aµν − 1

4
BµνB

µν︸ ︷︷ ︸
W±, Z, γ field part

. (1.17)

2The term handedness is used due to transformation properties of the left and right-handed fermions. Left-
handed massless fermions will have spin opposite the direction of momentum whereas right-handed massless
fermions will have spin in the same direction. Massive fermions will transform under rotation θ and boost β
as (see e.g. [4] page 44): ψL → (1− iθ · 0.5σ − β · 0.5σ)ψL and for right-handed the sign in front of the boost
will change.
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The W±,Z0 and γ bosons are related through the transformations:

Aµ = cosθWBµ + sinθWW
3
µ (1.18)

Zµ = sinθWBµ − cosθWW 3
µ

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ)

(1.19)

The W and Z field can achieve mass by including the terms:

m2
WW

+
µ W

−µ +
1

2
m2
ZZµZ

µ, (1.20)

but this would explicitly break the invariance under the U(1) gauge transformation in equation
1.5 resulting in a non-normalisable model.

The interaction between the gauge boson and fermions can be generally described as:

Lf = iψ̄L,i /DψL,i + ψ̄R,i /DψR,i,

where the Dirac notation /D ≡ γµDµ has been introduced. The Lagrangian will contain terms
from both the quarks and leptons and the subscript i will run over the three generations of
fermions. For the leptons this will be the left-handed doublet and right handed singlet electron
fields.

1.1.4 Spontaneous symmetry breaking

To generate masses a scalar field φ is added to the Standard Model. This is the Higgs field,
introduced by Peter Higgs3 in 1964 [10]. The fundamental understanding is that the universe
was initially in a higher vacuum state and the symmetry was broken by the transition to the
(local) lowest asymmetric state.

In the Lagrangian, it contributes with a term of the form

Lψ = |Dµφ|2 − V (φ) (1.21)

=

∣∣∣∣(i∂µ − g ~T · ~Wµ − g′
Y

2
Bµ

)
φ

∣∣∣∣2 − V (φ),

describing the kinetic energy and interaction term of the scalar field φ with W 1,2,3 and Bµ
fields. ~T are the SU(2) generators related to the Pauli matrices by Ti = 1

2σi see equation 1.13.
The potential is given by

V (φ) = µ2φ†φ+ λ(φ†φ)2 (1.22)

3the Higgs mechanism was in general developed by different people independently and could also be referred
to as the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism. The application of the Higgs mechanism
was in fact done by Steven Weinberg and Abdus Salam. Furthermore, Gerard ’t Hooft showed that the
Standard Model was renormalisable with the Higgs-mechanism.
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The Lagrangian still has to be gauge invariant and it has to break the SU(2)L × U(1)Y
symmetry so masses are generated. This means, that the ground state must have non-vanishing
values for hypercharge and weak isospin but cannot be electrically charged e.g. 0 = Y

2 + I3
W .

The simplest choice is a scalar with weak hypercharge Y = 1 and weak isospin I3
W = −1

2

φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.23)

Considering equation 1.22, λ has to be positive as the energy of the ground state should be
finite. Choosing µ2 > 0 the potential will have a minimum at φ = 0 which will not allow for
the generation of mass terms, so µ2 has to be negative.

This will give an infinite number of equally likely states at lowest energy. These states will
have non-vanishing expectation value, ν, with ν2 = −µ2/λ. The final choice of ground state
is assumed to be randomly selected by Nature to be one of the minima of the potential. The
idea is represented in figure 1.1. After the selection of ground state, the symmetry is broken.
The ground state has to yield the correct mass relations and break symmetry as well as be

Figure 1.1: The Higgs potential depicted in two degrees of freedom. The φ = 0 state of the field
is not stable and a ground state is only found after Nature "rolls the ball to side" e.g. selects one
of the minima of the potential as physical ground state, thus breaking the symmetry.

invariant under the U(1)EM symmetry. One choice that fulfils this is

φ0 =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
0

=
1√
2

(
0
ν

)
(1.24)

Transforming this under SU(2)L, φ→ eiαiσi/2φ results in:

φ(x) =

√
1

2

(
0

ν + h(x)

)
ei~σ·

~θ(x)/ν , (1.25)

where h(x) is the Higgs field and θ are Goldstone bosons - excess degrees of freedom. They
are absorbed by the gauge bosons, W 1,2,3

µ through what is known as the Higgs mechanism.
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This is described in [4] chapter 20. The result is the relations of equation 1.18 and the gauge
bosons receive the mass terms:

mW =
1

2
νg (1.26)

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

with mass mA = 0

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

with mass mZ =
1

2
ν
√
g2 + g′2

After the Higgs field acquires a vacuum expectation value the fermion masses are generated
by Yukawa interactions of the form gf ψ̄φψ, with gf being proportional to the fermion mass.

From the Lagrangian to the three-lepton final state.

The final-state probed in this thesis includes four leptons with three of them being any com-
bination of electrons and muons. The fourth is a neutrino but as the neutrino has such a low
interaction probability with other matter it will not be detected and the final-state is called
a three-lepton final state. The cross-section for a process is a measure used to estimate how
often we will see an event of that type in a particle collision. If a quark and an anti-quark
collide the rate at which they result in e.g. three electrons or muons and a neutrino would be
denoted σ(qq̄ → lll + ν), where l is e or µ. Here the charge of the leptons have been left out
for simplicity but the process must conserve lepton numbers.

The amplitude of the process can be calculated using quantum field theory (using the |M2|
method described in e.g. [4]). This is related to the cross-section through(

dσ

dΩ

)
CM

=
1

2Ea2Eb|νa − νb|
|p1|

(2π)24Ecm
|M(pa, pb → p1, p2)|2, (1.27)

where dΩ is sin θdθdφ with
∫
dΩ = 4π, |νa−νb| is the relative velocity of the incoming particles

in the laboratory frame, the subscripts 1 and 2 the outgoing particles and E and p, their energy
and momentum, with ECM being the total initial energy. The equation has the assumption
that the incoming particles can be seen as coming from an infinite past, while the resulting
particles are in the infinite future i.e. that anything happening before or after can be factorised
away.

These calculations can be illustrated by Feynman diagrams where a type of line is drawn
representing each kind of particle (the propagator) and each vertex represents the coupling
between the particles meeting in that vertex. An example of a Feynman diagram can be
seen in figure 1.2. Here the t-axis represents displacement in time while the s-axis represents
displacement in space. The figure shows the scattering of two fermions described by the inter-
action part of the Lagrangian in equation 1.10 when interpreting ψ(ψ̄) as the representation
of the electron (positron) and Aµ as the photon.

In the Standard Model the only process contributing to a final-state of exactly three
leptons and a neutrino is the decay of a W and a Z boson produced through qq̄ (proton-
proton) collisions. By Z we actually refer to the quantum mechanical mixture of the two fields
as seen from eq. 1.26. The label Z is used for simplicity but refers to Z/γ*. The Feynman
diagrams for this process is presented in figure 1.3.
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Figure 1.2: A Feynman diagram of the scattering of two fermions each described by a Lagrangian
like in Eq. 1.10.

(a) (b) (c)

Figure 1.3: The production mechanism for WZ in the Standard Model. Equivalent diagrams exist
for γ*.

The Standard Model botanics

The Standard Model assumes that we know all existing particles at fundamental scale and
that they are elementary particles meaning they at least from the view of the Standard Model
contain no substructure. Furthermore all interactions are described by the Lagrangian and
the symmetries involved. The botanics of the Standard Model are shown in figure 1.4.

1.2 Beyond the Standard Model

The minimal description presented above gives the most basic overview of the Standard Model.
It is a very successful model but it is not a fundamental theory. The Standard Model assumes
all particles to be point-like particles in the effective model. This might be true but there
might be a more fundamental understanding like proposed in for instance String Theory where
particles are thought of as vibrating strings. The Standard Model combines the description
of three of the four fundamental forces, but does not include gravity. It might be that gravity
is not relevant at these scales, but if the four forces originate from one fundamental force at
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Figure 1.4: The particle botanics of the Standard Model - Image credit: Gordon Kane, Scientific
American, May 2003.

the birth of the universe, gravity must be part of the fundamental theory describing these
dynamics.

The universe as astronomers observe it consists almost entirely of matter and very little
anti-matter is observed. Way to little to be consistent with the proposed model for the
Big Bang and the evolution of the universe. Basically matter and anti-matter must always be
created in nearly equal amounts following the Standard Model. Several effects can explain this
anomaly but they all lie outside the Standard Model - some even requiring a new fundamental
theory.

Another open question in the Standard Model is the origin of the mass of the neutrinos
and the ultra-light scale of it. If all Standard Model particles get their mass from the Higgs
mechanism why would the electron neutrino be 105 times lighter than the electron? In other
words why does the neutrinos couple so lightly to the Higgs field. As there exist no right-
handed neutrinos in the Standard Model they do not gain mass from the Yukawa coupling.
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With the discovery of neutrino oscillation (see e.g. [11]) it became clear that at least two of the
neutrinos had a mass. This is not a problem for the Standard Model as the neutrino mass can
be added within gauge invariance. It is however a widespread assumption among physicists
that it is unnatural with the large difference in mass scale without a underlying explanation.
A possible explanation will be discussed in section 1.4.

1.3 New Physics

As it stands today no clear hints of new physics exist. Several experiments have made 3σ
observations of new physics including the proposed signal from Dark Matter in the form of
sterile neutrinos [12] and the much debated BICEP2 claim [13] of discovery of primordial
B-waves that in short would be an indication or even proof of quantised gravity. Common
to them all is that none have stood their ground and made it into a discovery (of which the
statistical requirements are set higher than to claim an observation) and at the moment the
physics community does not know at what energies new physics will occur. We do know,
however, that it will - if not before at least at the Planck scale where quantum field theory
breaks down in its current form. The metastability of the Higgs, due to the measured mass
just above 125 GeV, could mean that there exists a state with lower vacuum expectation value.
It is not yet clear at what energy scale this physics will be present. In principle the current
universe could be in a local minimum and could go through another phase transition e.g.
tunnel to an even lower state at much higher energies. We would not be there to experience
the new state but fortunately this is not something that should keep you awake at night as
the metastability is at a level where this is not expected to happen [14].

1.3.1 Model Independence VS. specific searches

The search for new physics is commonly done by optimising the analysis for a given model
but one can also adopt a model-independent approach where the search looks for general
signatures of new physics. The model independent search has several advantages one of them
being it tries to be as unbiased towards a specific type of new physics as possible. This is a
logical way to attack the problem when it is unclear where the new physics might occur.

The practical implementation of this is not always as easy though. Complete model in-
dependence can easily result in a search with little sensitivity to any kind of new physics.
Assumptions must be made to the final state to be probed and the expected decay-modes, the
resulting particles originate from.

1.3.2 Exotic models resulting in multilepton final states

Several types of exotic models exist that try to encompass one or more of the problems or
inadequacies of the Standard Model. Common to most of them is that their contribution
to the Standard Model Lagrangian must still leave it gauge invariant although some of the
symmetries of the Standard Model are allowed to be broken. This might even be the purpose
of the model in the case of e.g. models trying to explain the matter-anti-matter asymmetry.
It is of interest to this thesis that multilepton final states are a common denominator for many
of the widely accepted possible extensions to the Standard Model.
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SUSY

Supersymmetry has been and still is one of the major types of exotic models being probed,
partly because it has candidates for Dark Matter particles. Numerous distinct variations exist
excellently described in [15]. They all add fields to the Standard Model resulting in more than
one Higgs particle but equally importantly in a supersymmetric spin-half partner to all of the
existing bosons. An example from SUSY resulting in lepton final states, which are of special
interest to the work presented here, is the decay of sleptons - the supersymmetric partner
of the leptons - which will happen through the decay to leptons and lighter SUSY particles
reconstructed as missing energy.

Gravity and extra spatial dimensions

Extra spatial dimensions (ED) is not as such a theory but a phenomenon needed for several
types of exotic models including fundamental String Theory. One of the features of extra
dimensions is that it allows for more than one graviton - the hypothesised information carrying
boson associated with quantised gravity - to exist effectively allowing gravity to grow in
strength at small distances depending on the specific model for extra dimensions see e.g [16],
[17] and the more recent [18]. Some of the main final states for ED are heavy Standard Model
particle partners (Kaluza-Klein particles) and microscopic black holes both of which can decay
to multilepton final states.

More generally a range of models lead to heavy (excited) particles that will decay to known
particles and as many of them will couple to the electroweak force they will have final states
consisting of leptons.

1.4 Seesaw mechanism as a benchmark model

The work presented in this thesis will include a test for physics beyond the Standard Model.
As this will serve as a benchmark test it could in principle be any new physics model. The
choice fell on a model that explains the generation of masses for neutrinos by introducing a
type of heavy right-handed partners. The model was chosen as it has final-states involving Z,
W and leptons.

1.4.1 Seesaw mechanism

The principle behind seesaw mechanisms can be illustrated with a 2x2 matrix:

X =

(
0 M
M Y

)
, (1.28)

where Y is much larger than M. The eigenvalues of it will be:

λ± =
Y ±

√
Y 2 + 4M2

2
(1.29)

λ+ is approximately Y but λ− will be approximately M2/Y by taylor expansion. The two
eigenvalues are inversely proportional so if one goes up the other goes down. This feature has
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let to the name "seesaw". By imagining there exist a right handed neutrino which is a singlet
under weak isospin, ψR = νR, mass terms can be added to the Lagrangian as:

Lseesaw,mass = −1

2
(ν̄Lν̄

c
R)M

(
νcL
νR

)
− 1

2
(ν̄cLν̄R)M

(
νL
νcR

)
(1.30)

whereM is a mass-mixing matrix for the neutrinos much like eq. 1.28:

M =

(
mL
M mD

mD mR
M

)
. (1.31)

The off-diagonal elements mD are Dirac mass terms that are only allowed after spontaneous
symmetry breaking. After this mD terms are generated via the Yukawa interactions with the
Higgs field:

L = gνψRψLH ∗+... (1.32)

where ψL is the lepton isospin doublet. The diagonal terms are the Majorana mass terms and
the neutrinos will get their mass according to the interaction illustrated in figure 1.5.

Figure 1.5: The (type I) seesaw mechanism for generating mass to the neutrinos.

Type III seesaw mechanism

Several models exist for seesaw mechanism. Common to them is the existence of heavier
right-handed partners that interact with the left-handed neutrinos to give them mass. The
model used in this thesis is the so called Type III seesaw mechanism. It was chosen as it
is the most promising for searches in high-energy particle collisions. It is unfortunately also
the most complex of the models so the following description of it will only serve to give an
overview.

As described in [19] the Standard Model can be extended by the addition of a fermionic
triplet. The triplet is introduced under the form of a heavy charged lepton N± and a heavy
neutral lepton N0 being its own antiparticle. They all have zero weak hypercharge.

The interest to the work presented here is not the underlying theory but the phenomenology
the model represents. The fermions Na which has the three components, N0 := N3 with zero
charge and N± := (N1 ∓ iN2)/

√
(2) with charge ±1, decay to observable particles. As

explained in detail in [19] the lightest triplet including both N± and N0 will couple to the
Standard Model leptons and Z and W.



1.4. Seesaw mechanism as a benchmark model 15

At the LHC (see description later) the dominant processes are through pair production
of the triplets in qq̄′ → W±l∓W±ν [20] illustrated in figure 1.6. The final states will have
large contributions from either 3 leptons + missing energy (and jets) or 2 same-sign leptons
+ missing energy and jets [20]. The processes have been included in table 1.1. The first of
these two constitutes an excellent final state for a benchmark model to be used in the work
presented here. It should be noted that for each process involving a decay to a Z there exist an
identical process but with the Z exchanged by a Higgs-particle at a lower branching ratio [20].

Figure 1.6: The dominant production and decay of type III seesaw triplets at LHC.

Table 1.1: Seesaw triplet production and decay
pp→ N0 +N± → l±W∓ + l±Z
pp→ N+ +N− → l−Z + l+Z
pp→ N+ +N− → l+Z + νlW

−

pp→ N+ +N− → νlW
+ + l−Z

pp→ N0 +N± → νlZ + νlW
±

pp→ N0 +N± → νlW
± + l±W∓
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2
Simulating the world

The accurate simulation of the expectations of the Standard Model in a given final-state is
absolutely critical to any particle physics analysis. If deviations from the Standard Model
are to be measured, it is imperative to have very precise predictions for the signature of the
Standard Model expectations. This is not a simple task. The cross-section for WZ production
can, as described in the theory section, be calculated. The step from the theoretical cross-
section to the full detector simulation will be described in the following chapter with emphasis
on generators for the processes relevant for this study.

2.1 The Monte Carlo generation method

Monte Carlo methods rely on computer algorithms that use repeated random sampling to
compute particle interaction probabilities in particle physics. Monte Carlo generators are
written to perform the task of simulating realistic events of entire collisions. It is an absolutely
central assumption that the calculations can be factorised. This means every step can be
calculated independently and later combined.

The simulations of events can be split up into four different parts: 1. The hard process,
2. Parton Showering 3. Hadronisation and final decays and 4. the Underlying Event. They
have been illustrated pictorially for a hadron collision in figure 2.2 and are described below.

2.1.1 The hard process

The cross-section calculated from theory is σ(qq̄ → WZ) with the possibility of adding the
decay of the W and Z to leptons through multiplication of their branching ratios. But colliders
accelerate hadrons or leptons and not individual partons. This means the first step in a
simulation of a WZ event is to know the probability of obtaining a quark and an anti-quark
from the initial colliding hadrons at given energies. The functions describing this probability
is known as parton distribution functions and several groups are developing these in parallel.
Two of the major groups are CTEQ [21] and MRST (MSTW) [22]. These groups extract
specific tunes of the parton distribution functions from fits to large datasets and tunes are
updated as new data becomes available. The contribution of anti-quarks in the structure
function can be obtained from the collisions of e.g. two protons with large energy as some of
the energy will result in the creation of quark-anti-quark pairs; the sea-quarks.

17
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The total cross-section for WZ will have the form:

σ(p(Pi)p(Pj)→WZ → lll + ν) =

∫ 1

0
dxi

∫ 1

0
dxj

∑
q

fq(xi)fq̄(xj) · σ(qq̄ →WZ → lll + ν),(2.1)

where xi is the momentum fraction the i’th parton takes from the hadron it is produced in (Pi)
and fq(q̄)(xi) is the parton distribution function describing the probability to draw a quark
(anti-quark) from the distribution for a given energy. The integral over all partons sum to
one.

Figure 2.1: The Parton D istribution Functions, f(x) are a description of the proton constituents
behaviour governing the collisions. The functions f(x) describe the probability of a given parton to
carry a momentum fraction, x, of the proton momentum. The cross-section for a given interaction,
σ̂, is dependant on these functions.

The initial particles of the process have momentum transfer, Q2 between them, determined
by the hard process. For collisions involving high Q2 all processes will happen within short
distances, and the calculations can be done perturbatively using matrix elements. If the
calculations are done at tree-level it is called leading order, LO. Corrections can be made
to these calculations but if loop diagrams and virtual particles are taken into account, the
calculations are next to leading order, NLO.

2.1.2 Parton Showers

The large momentum transfer in the hard process means the partons are accelerated to a
degree where they emit gluons just like accelerated electrons emit photons. As the gluons
have colour charge they can radiate further resulting in what is known as parton showers of
quarks and gluons. The partons can in principle be thought of as higher order corrections to
the hard process but instead of calculating these exactly (which is not feasible) an approach
is taken where splittings are assumed to be collinear and/or gluon emissions soft in energy.

The terms initial- and final state radiation are often used to describe different origins of
the parton showers. The initial state radiation consists of the gluons and quarks radiated off
before the hard scattering and final state radiation the gluons and quarks emitted after the
hard scattering. If there are no outgoing partons from the hard process no final state radiation
will be present so for the production of WZ only initial state radiation is present.

After the initial hard process the parton showers are evolved until the partons reach the
energy threshold of the pertubative description. This is around 1 GeV where the strong
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Figure 2.2: The simulation of a hadron collision is factorised into different parts. This is a necessity
as the different parts cannot all be calculated analytically. The figure illustrates the complexity of
event simulation. The figure is courtesy of [23] - the labels are added by the author.
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coupling constant becomes large. [24,25] There is a subtlety that need to be described. If for
instance the process containing a Z and 1 parton in the final state is calculated the following
parton showering might result in partons almost identical to the parton from the NLO diagram.
Figure 2.3 illustrates the subtlety. The first row represents the calculation of the matrix
element to leading order and with all radiation coming from parton showering illustrated by
the diagrams going towards the right. Alternatively the matrix elements, ME, can also be
calculated to NLO and then both LO and NLO diagrams can be evolved via the Parton
Showers. This is illustrated by the following rows. There are overlaps between the diagrams
with gluons from the initial matrix elements and the gluons from parton showering. The
difference between the two will lie in the momentum or the angle of the emitted gluon. For
the matrix elements, the gluon will have energy of the order of the transferred momentum. The
radiation from parton showering will have to be either collinear or soft, so for all transverse
showers, gluons will be soft. The difference between the calculations is however small. As
a consequence a careful matching and merging of the diagrams must be performed which is
done by dedicated matching algorithms.

Figure 2.3: The evolution of parton showers can result in overlap between diagrams produced in
the hard process and diagrams resulting from parton showering. The matching and selection of
which diagrams to use, is performed by matching algorithms. The colour codes are: blue for matrix
elements and red for parton showers.

Calculations to NLO has the strong advantage over LO, that matching and merging has
only to be done between the NLO matrix element diagram and corresponding one parton,
Parton Shower diagram. Calculation of NLO diagrams is an ongoing theoretical discipline
and many processes have not yet been calculated to NLO and very few to higher orders.

2.1.3 Hadronisation and decays

As the Parton showers reach the pertubative threshold the particles can no longer be described
as asymptotically free and theoretical calculations are no longer possible. At this point the
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showers will hadronise. The colour confinement of the quarks dictates that no free quarks
can exist after an interaction. The quarks and gluons emerging from a collision therefore
have to be merged into colour neutral objects by the algorithm performing the hadronisation.
Hadronisation is performed differently for the different generators but can be split into three
different generic types [26]: Independent fragmentation, string fragmentation, and cluster
hadronisation.

Independent fragmentation does not take into account the colour connections and has not
been used for any of the generators used in this study.

String fragmentation give better agreement with data so far but also contain a lot of
parameters to describe the flavour composition.

Cluster hadronisation is the main alternative to string fragmentation. It has fewer param-
eters but also has more difficulties in simulating some parts of data correctly.

Lastly, unstable particles created during previous steps, like heavy hadrons or taus, will
have to be decayed after hadronisation. The decays are governed by the branching ratios
and can be calculated theoretically, making it a relatively well understood part of the event
generation process.

2.1.4 Underlying event

The underlying event consists of the rest of the partons originating from the protons colliding.
They must of course also become colour neutral but distances to the hard process are large
enough that there is generally no colour exchange between these beam remnants and the hard
process. The underlying event however depends on the hard process and the evolution is done
by following the steps of parton showering and hadronisation.

It may happen in colliders that more than one pair of protons collide in an event. This
is referred to as pile-up. These interactions are far enough away from each other in terms
of time scales involved that pile-up is simulated by adding events on top of each other. It is
also possible to have multi-parton interactions in a given event where several pairs of partons
collide. Apart from the effect of other collision in the event, out-of-time pile-up exist. This is
the effects of remnants from earlier collisions in the detector. All pile-up simulation is handled
by dedicated Pile-up tools as described in section 6.2.5.

2.2 The generators

The combination of these four parts into a Monte Carlo generator is done in many different
ways. Often different programs will be used to perform each specific part of the tasks. These
can be combined via the Les Houches Accord. Programs exists that can calculate all four parts
themselves, e.g. that can be used as standalone Monte Carlo generators. These constitute the
backbone for generating events, but will often be interfaced to other programs to perform one
or more of the four parts of the calculation. Pythia [27], HERWIG [28] and Sherpa [29] are
examples of programs that generate full events that can be used directly in physics analysis or
interfaced to detector simulation. The work in this thesis uses Monte Carlo samples generated
using both Pythia and Sherpa and HERWIG to generate parton showers and hadronisation
for some processes.
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Figure 2.4: The calculation of 2 → n processes would not be possible in generators for n much
higher than 2 if not for the method of factorising the event. In this way different parts of the process
can be calculated independently and merged afterwards, to a complete numerical calculation. The
figure shows the factorisation of a 2→ 2 process with both ISR and FSR. From [25].

2.2.1 PYTHIA

Pythia [27] is one of the most widely used generators, as it is a standalone generator for
everything from few-body hard processes to complex multihadronic final states through parton
showering and hadronisation. All main aspects of the events are simulated, such as hard-
process selection, initial- and final-state radiation, beam remnants, fragmentation, decays,
etc. It uses the CTEQ 5L [21] parton distribution function as default but can be used with
others.

Pythia has the limitation that it only calculates 2 → 2 or 2 → 1 interactions of the hard
process, which means that all further particles will have to be created by parton showering.
2 → n final states can, however, be created this way. The method is based on the already
described factorisation and is shown in figure 2.4. If other programs are used for the calcu-
lations of matrix elements, a matching and merging of diagrams arising from those and the
Pythia parton showering is performed.

The hadronisation is done by string fragmentation, followed by the decays of unstable
particles. The method used, is the Lund string model that relies on a description of the QCD
field lines as compressed tubelike regions for large charge separation. These field lines are
represented as gluon strings that, when stretched long enough, break up into quark-antiquark
pairs, which form up with the existing quarks forming colour neutral mesons. This part is
almost completely non-perturbative, and so requires extensive modelling and parametrisation
from existing data. Pythia has also the ability to simulate effects of the underlying event.
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2.2.2 HERWIG

Herwig [28] works in many ways like Pythia. There is, however, a wider range of programs
that can be interfaced to Herwig for calculating e.g. matrix elements for 2 → n processes,
with n greater than 2. Calculation with Herwig alone will like in Pythia, only be to lowest
nontrivial order without e.g. loop corrections.

For hadronisation Herwig does cluster hadronisation. Colourless clusters are formed from
colour connected quarks. They consist of quark-antiquark (meson-like clusters), quark-diquark
(baryon-like), or antiquark-antidiquark (antibaryon-like) pairs. The basic idea of the model
is that the clusters decay according to the phase space available to the decay products. In
other words, the initial partons are merged into colourless clusters, that are then decayed to
hadrons.

The newer Herwig++ handles simulation of the underlying event whereas the older version
needs to be interface with a program called JIMMY [30]. JIMMY focuses on the impact of
multiple parton interactions (from e.g. beam remnants) on the event.

2.2.3 SHERPA

Sherpa separates itself from the previous two by being able to perform hard processes going
beyond 2 → 2. Sherpa uses a fully automated matching and merging of multi-leg tree-level
matrix elements 2 → n with the parton shower. The underlying idea for Sherpa is to split
the kinematical range of parton emission by a k⊥ algorithm [31] into either a regime of jet
production covered by the appropriate matrix elements or a regime of jet evolution covered by
cluster hadronisation like for Herwig. The matrix elements are reweighted through Sudakov
form factors and any hard emissions in the parton shower are vetoed if they would lead to a jet
in the phase space covered by the matrix element calculation. In this way Sherpa resembles
full leading order calculations quite well and can be used for central processes with better
results than Herwig or Pythia standalone.

The diboson hard processes, WZ, ZZ and WW have been generated using Sherpa with the
CT10 parton distribution functions [32] optimised for the energy and luminosity of the LHC
2012 data. These are benchmark samples used in many of the Standard Model and exotic
searches involving multilepton final states in ATLAS.

2.2.4 Generators for the hard process

For several of the samples used in this thesis, the matrix elements have been calculated by
interfacing Pythia or Herwig to a dedicated generator of the hard process. The programs
are optimised for a specific process, either with speed or precision in mind. As the event is
stored in the Les Houches accord format, the task of interfacing is made much simpler. The
calculation of the hard process is still done with different approaches each having their own
advantages.

The program MC@NLO does multi-leg matrix elements with next-to-leading-order QCD
matrix elements [33]. It is a package that allows linkage between HERWIG and next to leading
order calculations of rates for QCD processes. Although matching between matrix elements
and Parton Shower diagrams still has to be done, only NLO and not LO diagrams have to be
evolved with parton showering, so fewer diagrams have to be matched.

MC@NLO includes a range of production mechanisms spanning Higgs boson, single vector
boson, vector boson pair, heavy quark pair, single top (with and without associated W or
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charged Higgs), lepton pair and associated Higgs+W/Z production in hadron collisions. The
generator is used in this thesis to simulate events where proton collisions produce leptons
through single- and pair-production of top quarks.

The calculation of Z and W plus partons, have been done with ALPGEN [34]. ALPGEN
is specialised in multi parton processes. It is based on calculations using tree-level matrix
elements, but has been developed especially with multi-jet events in mind. It calculates
matrix elements to LO, with a fixed number of additional partons in a process. This is a
better approach for events with high jet multiplicities with large pT than the Parton Shower
method, where additional partons (with respect to the initial 2 → 2 process) are generated
only during the shower evaluation. The Parton Showers and hadronisation and the following
matching will be done by Pythia with the distinct P2011C tune [35].

Triboson events, ZZZ, ZWW, WWW and tt̄ + W/Z/WW have all been generated using
MadGraph [36]. MadGraph performs NLO hard process calculations and Pythia has been
used for the rest of the event generation. For reference the parton distribution function used
is AUET2BCTEQ6L. CTEQ6 also used in the P2011C tune of Pythia is not optimal for the
8 TeV 2012 data but the sample constituted the best available at the time of writing. As the
processes using the slightly older parton distribution functions are background processes with
relatively small expected events in three lepton final states as will be shown later, the impact
on the final results is excepted to be small.



3
Measuring physics at the LHC

3.1 The Large Hadron Collider

The Large Hadron Collider, LHC is the largest particle accelerator in the world. It is lo-
cated at the border of Switzerland and France. It has been built by the international research
organisation CERN (Conseil Européenne pour la Recherche Nucléaire - The European Organ-
isation for Nuclear Research) which include 21 member states and several thousand scientists
associated.

The LHC has been built to accelerate protons to unpredecented centre-of-mass energies
and has peaked in 2012 with mean energies of 4 TeV per proton resulting in a centre-of-mass
energy of 8 TeV. This is the highest energy ever recorded for a man-made proton collider.
LHC is built underground with depths ranging from 50 to 175 metres and the circumference
of the tunnel is approximately 27 kilometres.

It is designed to accelerate both protons and lead ions depending on the physics of interest.
For this study proton collisions are considered. In the accelerator two beams of protons are
accelerated inside beam pipes in the tunnel in opposite directions. The protons in the beams
are held in position, focused and squeezed tighter together by appropriate magnets along the
beam pipes. Particles are initially accelerated by various smaller accelerators before entering
LHC and from that point on electric fields will accelerate the protons up to a speed only
3 metres per second slower than the speed of light, 0.999999991c. Superconducting dipole
magnets are used to hold them in place.

At four points on the LHC ring, the beam pipes cross to allow for collision of protons from
the oppositely moving beams. At these points the four major experiments at the LHC are
situated: ALICE, ATLAS, CMS and LHC-b.

The rate of events produced at ATLAS is given by N = Lσ, where σ is the total cross-
section and L is the instantaneous luminosity given in cm−2s−1. The luminosity is a measure
of the number of collisions per unit of area and time. For data recorded over a period the
number of events is given by the time integral of the luminosity, denoted L. The unit used
for cross-section is barns and it is customary to present the integrated luminosity in inverse
femtobarns, fb−1.

The total integrated luminosity collected by the ATLAS experiment has been increasing
drastically each year of running as the beam intensity has been ramped up. The result is that
over 20 fb−1 was recorded in 2012 alone at 8 TeV. The amount of data delivered in 2012 can
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be seen in figure 3.1 and it should be noted that ATLAS has recorded only slightly less data.
The data delivered is the total luminosity delivered by LHC whereas the recorded data is the
data as seen by the detector (when the detector was fully online). The high-luminosity will
result in several protons colliding on top of each other and to illustrate how significant this is
the average interactions per event is shown in figure 3.2.

Figure 3.1: Total Integrated Luminosity for the LHC and the amount recorded by the ATLAS
experiment during the periods of running in 2012.

3.1.1 A collider designed to look for new physics

The LHC is no ordinary experiment. It is the absolute state-of-art and it needs to be as
its design purpose is to push the boundaries for our understanding of the most fundamental
dynamics of our universe.

With the discovery of the Higgs, the first goal of the LHC has been achieved, but LHC
was all along designed for more. It is currently in shut-down while upgrade work is being
performed to increase energy and luminosity of collisions. The cross-section for many new
types of physics are quite low, so they can only be fully probed with this higher energy and
luminosity, but many of these can already be searched for in the current data.
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Figure 3.2: The average number of interactions per crossing of the proton-beams for ATLAS in
2012 data.

Figure 3.3: The LHC is buried many metres underground to screen the experiments from cosmic
radiation and other possible external disturbances. The idea for the ATLAS detector stems from the
1980’s and to run and analyse the data collected by ATLAS around 3800 scientist are participating
from over 30 countries.
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3.2 The ATLAS detector

The ATLAS [37] (A Toroidal LHC Apparatus) is a multipurpose detector designed to cover a
wide range of physics including tests of the Standard Model and physics beyond the Standard
Model. It consists of several parts, referred to as sub-detectors, each designed and optimised
for special tasks. The sub-detectors allow for the sophisticated reconstruction of objects that
are essential for the work presented in this thesis. The following will describe the sub-detectors
used for the reconstruction of objects in the data-events presented in this thesis.

Figure 3.4: The ATLAS detector with name tags on the different sub-detectors.

3.2.1 Inner Detector

The inner detector consist of three different detectors. The pixel detector, the semiconductor
tracker (SCT ) and the transition radiation tracker (TRT). All three are arranged into central
barrel parts and two end-cap parts composing the forward detector.

Pixel detector

The pixel detector is a silicon pixel detector with a very high granularity which provide high
precision measurements of tracks as close to the interaction point as possible. The innermost
part is called the b-layer and this is used to provide the first couple of points to extrapolate
the particle track from. The innermost part of the tracking is important as it helps establish
if particles originate from the primary vertex or from particles that travel a distance before
decaying in the detector.
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(a) (b)

Figure 3.5: The ATLAS inner detector.

SCT

The SCT is similar in construction and function to the pixel detector but differs by having
long narrow strips rather than small pixels. This enables it to cover a larger area giving more
sampled points and with this roughly the same accuracy as the pixel detector. The strips
are read out one-dimensionally opposed to the pixel detector, where each pixel gives a signal
(readout) with two-dimensional information. The SCT is designed to provide eight precision
measurements per track in the intermediate radial range. Together with the silicon detector
this enables exact determination of where the interaction occurred (the vertex position), how
much momentum a particle has (due to its curvature in the magnetic field) and secondary
vertices and impact parameter. This helps understand the process and is central in the tagging
of jets stemming from bottom quarks.

TRT

The transition radiation tracker is the outermost of the three inner detectors. It is a detector
made of straws containing gas with a wire at the centre to detect electron avalanches. When
a particle crosses a straw, the atoms of the (Xenon) gas are ionised resulting in free electrons.
As the central wire carries an electric potential, the electrons will drift towards the centre.
The drift of electrons creates secondary ionisation which results in an avalanche of electrons
reaching the wire. This allows for a readout of the signal giving a drift time measurement,
that gives a spatial resolution of O(100) µm per straw.

Additionally the material between the straws, called the radiator, is composed of materials
with different dielectric constants. This causes ultra-relativistic particles to radiate off photons
in the X-ray region. Xenon is chosen as it is particularly sensitive to absorbing those photons
resulting in massive ionisation and a much larger signal readout. This type of signal is called a
high threshold signal while signal from only ionising charged particles is called low threshold.
This is used to separate electrons that cause transition radiation from particles like the pion.
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3.2.2 The Magnet system

ATLAS has two different magnet systems, the Solenoidal magnet and the Toroidal magnets.
The solenoidal magnet is a superconducting magnet made from a composite that consists of
a flat superconducting cable located in the centre of a rectangular aluminium stabiliser. The
magnet is designed to provide a 2 T magnetic field parallel to the beam axis. It is placed
so the magnetic field surrounds the inner detector while the radial thickness and field in the
calorimeters are minimal. The magnetic field causes particles to bend according to their charge
and momentum, so these quantities can be determined in offline analysis. This bending also
means that particles below roughly 400 MeV are curved to a degree where they will loop
repeatedly in the field and are less likely to be measured. This helps to reduce the noise of
the irrelevant low pT particles.

The Toroidal magnet system is made of eight very large air-core superconducting coils
forming a barrel, symmetric around the beam axis, and two end-cap parts rotated with respect
to the barrel so the coils interleave. It is situated outside the calorimeter and within the muon
systems. For the barrel, each coil has its own cryostat, with the coils connected together to
form a rigid cold mass which contains the large magnetic forces acting radially inwards.

The toroid system creates a magnetic field around 4 T which is strong enough to bend
particles (muons) with energy up to 1 TeV, poorly measured by the inner part of the detector
alone, so their momentum and charge can be determined.

3.2.3 The Calorimeters

There are two different calorimeter systems in the ATLAS detector. The electromagnetic-
(EM) and hadronic- calorimeter. They are both sampling calorimeters which means they
alternate layers of high density absorbing materials and active sampling layers, which collect
the signal from the resulting particle shower. The energy of the passing particles can be
inferred from these showers. The physics governing the two calorimeters are however not the
same.

EM calorimeter

The electromagnetic calorimeter is a Liquid Argon calorimeter with interlacing layers of lead
and stainless steel. To keep the argon in its liquid state a cryostat surrounds the entire EM
calorimeter. Lead is chosen for the interlacing plates, as it has a short radiation length which
means electrons or photons moving through the calorimeter will shower and create a cascade
of photons within short distances. The secondary electrons will ionise the argon in the narrow
gaps. An electric field results in the electrons drifting in the gas-gaps and being readout by
copper electrodes. The size of an electromagnetic shower depends linearly in units of radiation
length X0 of the calorimeter material. Figure 3.6a illustrates the electromagnetic calorimeter.
The calorimeter can be split into four layers.

• The presampler is a single layer of argon without any lead in front. The sole purpose
of this layer is to correct for the energy loss in the inner detector, the solenoid magnet
and the cryostat wall.

• The 1st sampling has a layer of 4.3 radiation lengths in depth. The readout is done
from thin strips positioned in the η direction (see figure 3.6a) which provide good reso-
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lution in this coordinate for photon/π0 separation. The magnetic field causes photons
to produce showers similar to the π0 in the φ direction.

• The 2nd sampling is with its 16 radiation lengths of material the largest layer in the
EM calorimeter and it is here the largest part of the energy is deposited. All clusters
with energy below 50 GeV are contained within the second sampling [38].

• The 3rd sampling is a layer that will only be reached by the most energetic particles
and the cell sizes have been doubled in η without loss of resolution, as the energetic
particles reaching this layer will give a much wider shower.

The end-cap regions are split into two. Out until |η| = 3.2 the structure is the same as for
the barrel but without the presampler and with less material. From there out to |η| = 4.9 the
calorimeter is made from copper and tungsten. This choice was made to limit the width and
depth of showers from high energy jets close to the beampipe and to contain particles from
the forward region.

The overlapping region between the barrel and the end-cap calorimeters result in a "dead
area" with poor energy resolution but this area has been made as small as possible with room
still for the cables and cooling pipes for the inner detector. Electrons from this part of the
detector are vetoed in the selection.

Hadronic calorimeter

The hadronic part of the calorimeter in ATLAS is situated outside the cryostat of the EM
calorimeter. It is a tile calorimeter build of a steel frame with plastic scintillators inserted as
tiles. An outgoing slice of the calorimeter can be seen in figure 3.6b. The scintillator material
emits blue light from ionising particles in the hadronic showers. The blue light is sent via
wavelength-shifting fibres to the outside of the calorimeter where photomultipliers read out
the now longer wavelengths from the fibres.

Unlike the electromagnetic showers, that have a rather constant shower-energy to particle-
energy ratio, the energy deposited by hadrons in the hadronic calorimeter varies much. Neutral
pions decay to photons like in the EM calorimeter while secondary π± , neutrons etc. from the
nuclear processes, caused by incoming particles interacting with the material in the hadronic
calorimeter, give large variations in the estimate of their energy. The size of hadronic showers
depends linearly on the interaction length λ of the material which is always longer than the
radiation length. [38]

In order to compensate for the variations of the hadronic showers, the ratio of the EM- and
the hadronic- calorimeter, e/h, is measured. For a good energy resolution this value should
be as close as possible to one.

3.2.4 The Muon detector

The last and outermost detector is the muon detector designed to catch the muons that have
otherwise deposited little energy in the inner parts of the detector. The principle for the
detector is like for the inner detector. The magnetic field from the toroid bend the muons,
so their momentum and charge can be identified and most tracks in the muon detectors can
be considered muons, as few other particles make it through the calorimeters to the muon
detector.
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(a) (b)

Figure 3.6: The ATLAS Calorimeters. Figures from [38].

The typical signals in the ATLAS detector for different particles is drawn in figure 3.7.
For multilepton final states electrons and muons are important, but as is clear from the above
no part of the detector could be left out. The force of the many sub-detectors lie both in their
individual specialisations but certainly also in their combinatorial possibilities.

3.3 The triggering and data acquisition systems

To round off the experiment section, a few words about the triggering and data distribution-
and analysis- systems are needed.

3.3.1 The trigger-system

When LHC is running at peak design luminosity, the interaction rate will be of the order of 1
GHz with a bunch crossing rate of around 40 MHz. This means that approximately 40 million
proton bunches collide every second. Each collision results in an event with raw data. If all
these events were to be stored, the total amount of data from the ATLAS experiment alone
would be in sizes of terabytes or even Petabytes each second. It is impossible to store such an
amount and luckily not all events are equally interesting. The cross-sections for production of
quarks and gluons in the initial collisions are much higher than for creating Z bosons, and for
many searches, the quark events are not as interesting and can be filtered away. To do this a
set of triggers have been developed to select only events with interesting physics. The triggers
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Figure 3.7: The signal from various particles as seen in the ATLAS detector. Different particles
leave signals in different parts of the detector and can be identified from this.

can be split into two major groups. Level 1 (L1) triggers, and high level triggers (HLT).
The L1 triggers are based on hardware implemented logic decisions in the detector and get

their information from the various parts of the ATLAS detector that have fast readout rates.
They use this information to select regions in the detector, that might contain interesting
physics and does so within microseconds. Events with no interesting regions are immediately
thrown away and anaylsis is performed on the next event. This step reduces the rate to around
75 KHz.

The regions of interest, ROI, are then passed on to the HLT. The HLT consist of two
steps. The Level 2, L2, trigger and the Event Filter, EF. The L2 trigger runs more thorough
algorithms on the ROI’s and reconstructs data in those regions to see whether it is interesting.
As the rate of events from the L1 trigger is lower, there is more time to decide whether the
event in question is interesting and the algorithms can be more complex. If interesting physics
is found, the event is passed on with a rate around 1 KHz.

Finally the event is sent to the EF where reconstruction algorithms are run to find particles
in the entire detector or just the regions of interest. If the event is found to be of interest in
the end, it is sent to be recorded and is now ready for further analysis.

There are many different triggers spanning from triggers that demand a reconstructed
electron of a specific pT to triggers demanding jets and various other processes. For triggers
like the electron trigger, there are often an entire range of triggers demanding electrons with
different minimum pT or with different degree of certainty in the identification, called tightness
or even isolation requirements.
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Figure 3.8: The triggering system can be split into the low-level Level 1 trigger and the high-level
Level 2 and Event Filter triggers. Level 1 triggers are hardware based and use only very fast
algorithms while the high-level triggers use more advanced algorithms and incorporate larger part
of the detector.

The triggers have been systematically deployed for the conditions present in different
periods of data-taking.

3.4 Reconstruction

To reconstruct a collision in the ATLAS detector all sub detectors are used to combine their
respective signals into objects. A series of sophisticated algorithms, much like those of the
event filter triggers, help determine what particles where present in the event. An energy
deposit in the calorimeters would for instance have to be paired to a track in the inner detector
and the muon detector to be considered a muon. The same is true for simulated events. Their
response to the detector system is simulated and the reconstruction is run on the events just
like on data including all trigger systems. The following section describes the details.

3.4.1 Detector simulation

Before an event generated by the Monte Carlo generators can be compared to experimental
data, a simulation of the detector-system must be performed. In ATLAS this can be done with
two official programs, ATLFAST II [39] and Geant4 [40]. ATLFAST II combines full simulation
of some parts of the detector with faster simulations and retains the storage format and naming
convention of real reconstructed data. It is much faster and retains a high degree of detail
compared to full simulations of the detector. If the full detail is however desired GEANT4 can
be used. Geant4 is a program for simulating particle movement through all kinds of material
and is used in ATLAS to simulate the entire detector. It contains information on the weight
of each screw and bolt in the detector down to a precision in grams. For a detector of over
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1000 tons, this is astonishing. The datasets used in this thesis have been generated with the
generators described above and have all gone through full detector simulation.

3.4.2 Electron reconstruction

The electron is reconstructed from the trackers and the calorimeters. Different degrees of
tightness are being used as default: Loose++, Medium++ and Tight++ 1. They denote
different degrees of discrimination of the electron against objects that could resemble it in the
detector. The amount of parameters and parts of the detector used to identify the electrons
vary with each degree of tightness. An overview of the different variables can be seen in figure
3.10 from [41]. The loose++ identification is based on calorimeter information and inner
detector and takes advantage of the most basic assumptions to reconstruct electrons. The
medium++ electron identification tightens hit requirements in the inner detector including
the TRT and adds a cut on the transverse impact parameter that describes the distance from
the track origin to the primary vertex. The TRT ratio of high-threshold hits to total hits is
especially useful for separating electrons from pions. A tight++ electron adds track-cluster
matching and tightens cuts on track quality and photon conversion rejection. The efficiency
of the electron selection depends on both the η of the electron, pT and the number of tracks in
the detector and number of reconstructed primary vertices. The last two are highly correlated.
Figure 3.9 shows the dependence of the electron reconstruction efficiency on number of primary
vertices.

Figure 3.9: The electron reconstruction efficiency as a function of number of reconstructed primary
collisions (corresponding to the number of proton-collisions per event). The same plot for 2012
data is not yet public but the dependence on number of collisions is comparable [41].

1The ++ is to separate the definitions from the 2011 tightness definitions that resemble that of 2012 but
have looser cuts due to the different pile-up conditions.
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Figure 3.10: The loose, medium and tight electron identification cuts [41].
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3.4.3 Muon reconstruction

Several groups exist that develop the muon reconstruction algorithms. They are divided into
three main groups, STACO, MuTag [42] and Muid [43] . During 2013/2014 these have been
merged into one common container, but the data samples used in this study did not yet have
this container and therefore the STACO algorithms have been used. The STACO algorithm
combines an inner detector track with a muon spectrometer track using a statistical method.
On top of that two other algorithms are used: Muonboy and Mutag [42]. Muonboy starts
from hit information in the muon spectrometer and produces standalone segments and tracks
that are extrapolated to the interaction vertex. Mutag associates inner detector tracks with
Muonboy segments. To clarify only inner detector tracks not combined in STACO will be
used. The same counts for muon spectrometer only tracks that have not been combined with
an inner detector track in STACO. More specifically the principle of the STACO method is
the statistical combination of two independent measurements by means of their covariance
matrices. A χ2 test is made to determine how good the matching is [42]. The combination of
inner detector tracks with the outer parts of the detector has lead to the "isCombined" tag
used in selection. The efficiency of the muon reconstruction for both the STACO, Muonboy
and Mutag are shown in figure 3.11.

Figure 3.11: Efficiencies as function of |η| from standalone and combined µ reconstruction algo-
rithms, obtained on a single muon simulated sample of pT = 100 GeV / c. [44]. The drops in
efficiency is from regions where the Muon Spectrometer coverage is thin.

3.4.4 Missing transverse energy

Besides leptons the final state presented in this work contain neutrinos that will not be mea-
sured in the detector. Missing transverse energy, /ET is calculated from the energy deposited
in the calorimeters as well as from the muon detectors in ATLAS. The ATLAS cryostat - the
container that hold the liquid argon needed for the EM calorimeters - causes a loss of energy
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that is corrected for when reconstructing /ET . There are a set of different reconstruction
methods depending on how the energy is read out from the calorimeter cells and what types
of noise suppression methods are used [45].

When constructing the /ET , calorimeter cell readouts are associated with a parent object
- a reconstructed, identified high-pT object - in a chosen order: electrons, photons, muons,
hadronically decaying tau-leptons, b-jets and light jets. A refined calibration of these objects
are then used instead of the initial global calibration of cells allowing for a more accurate
calibration and thus a better /ET reconstruction.

This refined /ET measure thus contains the sum of /ET calculated from both interacting
particles as well as muons that will generally not interact much in the calorimeters and from
known detector effects.
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Statistical procedure

4.1 Introduction

The statistical approach is important when finer details have to be studied. By finer details
we could for instance refer to the small deviation from the Standard Model due to a new
signal. It is very feasible that new physics will be at very low cross-sections which means
statistical methods must be optimised for this, either by cutting away events characterised as
background to the signal or by being able to separate the signal from background in one or
more observables. The aim of this thesis is to fit the prediction of a range of Standard Model
processes in several observables to data simultaneously in order to look for small deviations
from the expected. The following chapter describes the statistical methodology used in the
thesis.

4.2 Modelling of simulated processes

In any quantum theory, the observables characterising a particle physics reaction (e.g. A
+ B → X) will be stochastic variables. In order to predict their distribution, Monte Carlo
methods are used for integrating elementary differential cross-sections over the relevant phase-
space, but also for modelling the random perturbations from detector smearing. In this way,
any physics process contributing to an observable will get an associated probability density
functions (p.d.f.) of that observable, at least to the extent that quantum interference effects
can be ignored.

4.2.1 Functional description

For some processes a simple analytical expression is available. The dilepton mass spectrum
from Drell-Yan [46] is one such example well approximated by an exponential function (It,
however, needs modifications to take into account detector effects [2]). In most cases a func-
tional description of the process in a given observable is not available or is too time-consuming
to calculate and other methods are used to model the data.
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4.2.2 Histograms

One of the most widely used methods of creating a p.d.f for a process is to bin it as a histogram
in one or more observables. Depending on the amount of data, the bin size of the histogram
can be decreased to the limit where, given enough statistics, the histogram will resemble the
actual functional description of the process if such a description exist. The fluctuations of
each bin is expected to be Poissonian and well approximated by Gaussian fluctuations for
more than 10 counts in the bin. In cases with low statistics or with large variations from bin
to bin, histograms will not perform particularly well at modelling the process.

4.2.3 Kernel estimation - keys p.d.f’s

Modelling of samples can in some cases be improved with the use of kernel estimation. This
study utilises the ROOT RooKeysPdf [47] class to perform this modelling. The principle
behind, is that a number of convoluted Gauss functions are used to model the process. The
width and height of each Gauss function is proportional to the number of events it describes
for a given volume step - in other words, they describe the density of the process. The number
of Gauss functions needed to model the process is decided dynamically from a definition of
what the minimal number of events per Gauss function is. The result is that volume steps
with many events, e.g. a large density will have high and narrow Gauss functions that have a
high impact on the overall functional description, whereas volumes with few events will have
small and wide Gauss functions with a lower impact on the overall functional description. The
RooKeysPdf has the option of using adaptive bandwidth i.e. width of the Gaussians to ensure
optimal modelling and minimal bias.

This method is particularly interesting for the study of low statistics samples where im-
provements over binned histograms can be achieved.

4.3 Hypothesis Testing

In the end all analyses aim to test a given hypothesis. This can be of a specific model with
a well modelled signal that can be searched for or it can be with a more general approach to
look for deviations from a reference model. The use of well-understood and robust statistical
methods are central to all of these. For the discovery of a new particle one would test the
contributions from the reference model only, H0 or null-hypothesis, against an alternate H1

hypothesis involving new particles1. After a measurement one has to decide whether to reject
or accept H0. For model-independent searches the test is of the null-hypothesis alone.

4.3.1 Type I and II errors

To define the goals of a hypothesis test the Type I and Type II errors are introduced with
the definition in figure 4.1a. It is meaningful to treat the two hypotheses asymmetrically as
the null hypothesis is the "current best model" so the approach is normally to fix the allowed
rate of Type II error, α. The well defined goal is then to maximise the power, (1-β), where β
is defined as the rate of Type I error. The meaning of a "5σ" discovery would correspond to
α = 2.87 · 10−7. In other words there is a very small chance that the H0 (i.e. the Standard

1The alternative model could equally well describe changes in amplitudes of known processes or changes to
kinematic distributions due to e.g. the spin deviating from the expected.
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Model) is rejected by mistake. The sensitivity of a measurement to new physics depends on
the expected signal to background ratio in the given region and the ability to separate the two.
Using counting experiments in one observable (see figure 4.1b) it is easy to determine which
regions are sensitive but this is not always the case in higher dimensions. Figure 4.2 shows
a few examples of distributions of two hypotheses in higher dimensions and the attempts to
separate them by finding suitable discrimination criteria.

The Neyman-Pearson Lemma

There exist several approaches to determining whether a given hypothesis should be kept
or rejected given observed data. One such hypothesis test is the Neyman-Pearson Lemma
[48], states that the most powerfull test, the one maximising 1 − β among other alternative
hypothesis tests, is based on the likelihood ratio:

λ(x) =
P (x|H0)

P (x|H1)
≤ kα (4.1)

=
L(θ0|x)

L(θ1|x)
≤ kα,

where x represents the data and θ an estimator taking the value θ0 under the null hypothesis
and θ1 under H1. The test which rejects H0 in favour of H1 is:

λ(x) ≤ η, (4.2)

where η is chosen such that:

P (λ(x) ≤ η|H0) = α. (4.3)

The region Ω that minimises the probability of wrongly accepting H0 is just a contour of
this likelihood ratio and any other region of the same size will have less power. The intuitive
understanding of the Neyman-Pearson lemma can be understood from looking again at figure
4.1b. Imagine the Gaussian distribution to the left is the H0 and the Gaussian to the right
is H1. If we observe x=160 in the given observable, it makes sense to reject H0. The critical
region Ω in this one-observable case is simply the interval of x required to give the rate of
rejection α so P (x/∈Ω|H0) = α. Several other test-statistics exist, that summarise data in
real-valued functions and the choice of test depends on the goal of the analysis.

4.4 Maximum likelihood estimation with multiple observables

This thesis will compare the modelled distributions of a series of processes resulting in lepton
final states to data. This will be done for all processes and in more than one observable
simultaneously. The rate of each process will be a parameter in the fit, that can be allowed
to float and each kinematic distribution an observable in the probabilistic description of the
process. To perform this fit the maximum likelihood estimate is used.

The probability of n events to appear in e.g. a given bin of a histogram can be described
by the Poisson function:

Pois(n|ν) = νn
e−ν

n!
. (4.4)
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The likelihood of ν given n is the same equation evaluated as a function of ν:

L(ν) = Pois(n|ν). (4.5)

It is a continuous function but not a probability distribution function as the name might
otherwise hint. It is commonly plotted as −2ln(L) as can be seen in figure 4.3. The resulting
function is related to the χ2 distribution and the global minimum of −2ln(L) corresponds to
the best fit of expectation to observation. In this example the only parameter allowed to float
in the fit, would be the total number of excepted events, ν.

An important feature of the log-likelihood is that it is additive for independent measure-
ments. Specifically the probability of a measurement in two independent observables is treated
as two completely independent datasets so Ptot(x) = P (xobs1) · P (xobs2) and the likelihood
becomes

ln(Ltot) = ln(Lobs1) + ln(Lobs2). (4.6)

4.4.1 Multiple processes

Imagine the case where several processes contribute to the number of events in a given ob-
servable. Each process will be described by a p.d.f in that observable henceforth referred to
as the template of that process in a given observable. The total number of predicted events in
a given observable, is the sum of the total number of expected events for each template. The
probability will be given by:

P (n|ν0 + ν1 + ...+ νp), (4.7)

where νi is the expected number of events from the i’th template. When this is expanded to
observables, {o1, ..., oM} it can be described by what is normally referred to as the marked
Poisson [50]. The term marked refers to the fact, that at each step (bin/event) the probability
is build from a sum of distinct sources in a discriminating variable. The probably takes the
form:

P (n|ν0 + ν1 + ...+ νp) = Pois(n|
p∑
i=0

νi) ·
M∏
j=0

ν0 · f0(oj) + ...+ νp · fp(oj)
ν0 + ...+ νp

, (4.8)

where fi(oj) is the probability density function of process νi in observable oj . Taking the
logarithm and rewriting, the likelihood function becomes:

lnL = ln

(
Pois(n|

p∑
i=0

νi)

)
+

M∑
j=0

ln

(∑
νi · fi(oj)∑p
i=0 νi

)
, (4.9)

The first term is what is referred to as the extended part. The actual implementation of the
negative log-likelihood has been done in two different ways: A version, where both data and
background templates are binned and an unbinned method where the probability of each event
in the data is calculated from finely binned templates.
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Introducing the fit parameters

Each process will be associated with a fit parameter that will determine the contribution from
the process in all observables. The parameters will be defined as:

αi∑p
i=0 αi

·Nexp,tot = νi, (4.10)

such that αi represent the fraction of total expected events (Nexp,tot) process i is contributing
with. The sum over parameters should be one when the number of observed events is equal
to the number of expected. It results in a unit probability when introduced in the last term
of eq. 4.9:

M∑
j=0

ln

(∑
νi · fi(oj)∑p
i=0 νi

)
(4.11)

→
M∑
j=0

ln

(
Nobs

p∑
i=0

αi · fi(oj)∑p
i=0 αi

)
,

where fi(oj) are the templates normalised to unity. The probability in each observable is
calculated per bin or event as described in the following:

Binned likelihood implementation

The binned likelihood is calculated using a Poisson for each bin. It has to take into account
the different templates in each observable. As these are independent measurements they can
be added in the log-likelihood, which takes the form:

lnL = ln

(
Pois(n|

p∑
i=0

νi)

)
+ . . . (4.12)

. . .+
M∑
j=0

ln

[
bins∑

Pois

(
Nobs,bin, Nobs,bin ·

p∑
i=0

αi · νo,i,bin∑p
i=0 αi

)]
,

where νo,i,bin is the number of expected events in the given bin in the template of the i’th
process in the o’th observable. Nobs,bin is introduced to remove any dependence on overall
normalisation and simply fit the shape of templates to the observed. The binning of the
template will affect the result quite significantly and a large number of bins is desirable to the
extent that the bins are still adequately filled. Any bin with zero expectation will be excluded
from the fit so any data points ending up in a bin with zero expectation will be removed in
the fit, resulting in a loss of information, which leads to larger fit errors.

Unbinned likelihood implementation

In the unbinned likelihood the probability is calculated per event instead of per bin. The
probability of each data-event to originate from either of the processes in a given observable
is simply given by:

P (event|oj) =
bins∑ p∑

i=0

αi · fi(oj)bin∑p
i=0 αi

,
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and the likelihood takes the form:

lnL = ln

(
Pois(n|

p∑
i=0

νi)

)
+ . . . (4.13)

. . .+
M∑
j=0

ln

[
events∑

Nobs,bin ·
p∑
i=0

αi · fi(oj)bin∑p
i=0 αi

]
,

where fi(oj)bin is the template p.d.f representing the probability for the data-event to originate
from the i’th process in the bin it ends up in in the o’th observable.

4.4.2 Nuisance parameters

All processes will be affected by a range of systematic uncertainties in collider experiments.
These uncertainties can be represented in the fit by what is generally referred to as nuisance
parameters - additional parameters in the fit, that are allowed to vary to simulate a given
uncertainty on the construction of a template. To put it simple, the likelihood becomes a
function of both the parameters associated with the process in question, α and the nuisance
parameters θ. The nuisance parameters must be constrained in order not to completely domi-
nate the fit. It is assumed that the measured value of a given nuisance parameter, m, known to
within ±1σ, is expected to fluctuate about θ, the estimated value of the nuisance parameter.
The implementation is therefore done by adding Gaussian constrained nuisance parameters
to the likelihood function:

P (x|ᾱ)→ P (x|ᾱ(θ̄)) ·G(v̄|θ̄, σ̄) (4.14)

When performing fits that contain several processes, sometimes referred to as composition
fits or composite fits, the fit results can be arbitrary if there is little or no separation power
between the different processes in a given observable. In this case it is customary to con-
strain some of the process strengths, α, to be within experimental uncertainties of external
measurements of these quantities.

4.5 p-value test of data to model expectations

One of the most simple, yet very effective, tests of the observed data to model expectations is
the p-value test. It is a test of the data against a null hypothesis. In its most simple form in
particle physics it can be used to test the number of observed events in each bin of a binned
model p.d.f. The probability of n being equal to or greater than the number of observed
events, nobs is then:

p(n ≥ nobs) =
∞∑

n=nobs

f(n; νN.P. = 0, νsm) = 1−
nobs−1∑
n=0

f(n; νN.P. = 0, νsm) (4.15)

= 1−
nobs−1∑
n=0

νnsm
n!

e−νsm ,

where νN.P./sm is the excepted number of events from new physics phenomena divided by the
contribution from the Standard Model. The last equal assumes each bin is Poisson distributed.
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Notice that no knowledge of a signal expectation is needed as the test is of the likeliness of
the null (Standard Model ) to fluctuate to the observed value or above. This very simple test
is a powerful tool for discovering deviations from the Standard Model expectations in data
although the interpretation of a deviation might not be straightforward. It is also closely
related to the approach for setting limits on a given model.

4.6 Claiming discovery and setting limits with likelihood ratios

A test statistic that maximises the power was in section 4.3.1 claimed to be the likelihood
ratio of two hypotheses. The goal of all searches is to quantify the significance of any observed
excess or set limits on new physics. If the signal strength of a hypothesised new signal is
denoted µ, with µ = 0 being the Standard Model and µ = 1 the nominal signal strength of
the new physics process, the profile likelihood ratio can be constructed as:

qµ = −2 · ln(λ(µ)) = −2 · ln

(
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)

)
, (4.16)

where L(µ̂, θ̂) corresponds to the overall best fit (i.e. that maximises the likelihood) of signal,
background and nuisance parameters and L(µ,

ˆ̂
θ) the best fit for a given, fixed µ. This follows

the ATLAS recommendations as elaborated in [51]. The use of q as the likelihood ratio test-
static will be kept for the rest of the thesis. λ(µ) will take on values between zero and one with
values near one implying good agreement between data and hypothesised value of µ. This
means the test-statistic qµ will grow with increased discrepancy between data and model.

In statistics, a test statistic independent of nuisance parameters is referred to as a pivot.
The profile likelihood ratio satisfies this in the asymptotic limit which in the case of this
thesis means having enough data to probably fill out the phase space probed. Willks’ theorem
[52] states that in the asymptotic limit the distribution of the test-statistic will follow a χ2-
distribution with n degrees of freedom, equal to the dimensionality of the tested parameter.
For the signal strength µ this is one:

f(qµ) = f(−2 · ln(λ(µ))) = χ2
Dim(µ), (4.17)

Wilks’ theorem only holds for µ = µ̇ i.e µ equal to the true value, µ̇. It can be shown (see [51]
for the intermediate steps) that for the special case of µ = µ̇ in the asymptotic limit, the
cumulative distribution of qµ is:

F (qµ|µ) = 2Φ(
√
qµ)− 1, (4.18)

where Φ is the cumulative standard normal distribution (zero mean, unit variance). It is
implicitly understood that Φ(x) is the integral from minus infinity to x. The p-value of µ for
the observed qµ follows to be:

pµ = 1− F (qµ|µ) = 2(1− Φ(
√
qµ)), (4.19)

and the significance of the observed signal strength µ:

Sµ = Φ−1(1− pµ) = Φ−1(2Φ(
√
qµ)− 1). (4.20)
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The requirements for a discovery to be claimed in particle physics demands a significance
of S = 5 corresponding to a p-value of the null-hypothesis only of p = 2.87 · 10−7 whereas
exclusion of a possible new signal is done at 95% confidence level corresponding to a p-value
threshold of the signal of p = 0.05 and S = 1.64. With this definition a discovery is based
on the improbability of the null-only hypothesis and the degree of belief in the discovery
should be dependent on the feasibility and impact of the hypothesised new physics. If the new
model/theory drastically alters our view of the world a more stringent requirement should be
set on the significance.

4.6.1 Testing the null-hypothesis

To test for a discovery the special case of µ = 0 is important. Basically the test of disagreement
with the null-hypothesis can be used as a test for a new signal, so testing if a given signal is
likely to have zero signal strength can determine if it can be excluded. With a test-statistic
q0 defined for µ = 0 as:

q0 = −2 · ln(λ(0)) = −2 ·

(
L(0,

ˆ̂
θ)

L(µ̂, θ̂)

)
, (4.21)

with q0 = 0 for µ̂ < 0, as this test-statistic only concerns deviations due to an upward
fluctuation in events. If a χ2distribution is assumed for the likelihood then (using eq. 4.19
and 4.20) the p-value is defined as (see [51] again):

p0 = 1− F (q0|0) = 1− Φ(
√
q0), (4.22)

with corresponding significance:

S0 = Φ−1(1− p0) =
√
q0. (4.23)

These can both be calculated analytically in the asymptotic limit, i.e.. if the test-statistic is
χ2 distributed. If not the distribution of the test-statistic must be generated through pseudo
experiments, sampling the expected values and calculating the likelihood ratio. The p-value
can then be calculated from the more general definition:

pµ =

∫ ∞
qµ,obs

f(qµ|µ)dqµ, (4.24)

where qµ is the value of the test-statistic for the observed µ and f(qµ|µ) the probability density
function of qµ for the given µ.

4.6.2 Upper limits on µ

The limit on µ can be defined in several ways. It is meaningful to find limits within a given
probability of the null to be true. The standard is to find the 95% upper limit - the limit
where the p-value of the tested model is still above 0.05 for the given µ. The definition of the
test-statistic will be the same as for q0 with the exception that it is now set to 0 for µ below
the best fit value as only upper limits are tested. With that definition the 95% upper limit
on µ is found by finding the µ95% where

pµ95% =

∫ ∞
qµ,obs

f(qµ95% |µ95%)dqµ95% = 0.05. (4.25)
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The distribution of qµ should in principle be sampled (generated using pseudo-experiments)
for each value of µ to calculate the p-value. If the p.d.f of the test-statistic can be shown to
follow a χ2 distribution for one value of µ it is customary to assume it will for other values of
µ. If this is the case eq. 4.19 can be used to calculate the p-value of qµ for the tested µ and
the 95% upper limit found with significant less computation. The actual implementation will
be to iterate to find the expected µ95%. A qualified guess for the starting value is the observed
µ95%.

4.7 Principal Component Analysis

The most widespread approach is to base fits on distributions in one observable. If a fit is done
multidimensionally or in several event-observables simultaneously, however, it will potentially
give a much more stringent comparison. The following describes a procedure for finding
independent variables and introduces the Principal Component Analysis (PCA) method to
generate linearly uncorrelated observables.

4.7.1 Correlation of observables

The correlation between two variables is a measure of the dependence of one on the other.
Observables like the energy and momentum of a particle are sharing a large amount of infor-
mation especially if the mass of the particle is low compared to the total energy. Treating
the two as independent observables will likely result in erroneous fits as the same information
enters twice in the fit and any differences are thus artificially enhanced. To combine several
observables in a fit the observables will have to be independent or the degree of dependence
known.

Variance

The variance is a measure for the spread of a set of discrete measurements. It is defined as
the sum of squared deviations from the mean:

V ar(x) =
1

n

n∑
i=1

(xi − x̄)2 = σ2, (4.26)

where x̄ is the mean of the sample and σ is the standard deviation. The covariance between
two discrete measurements x and y is given as2:

cov[x, y] =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ), (4.27)

Linear correlation

The linear dependence between two variables x and y is commonly described by the Pearson
product-moment correlation [54] coefficient or simply correlation coefficient defined for a series

2The factor n in the denominator should actually be n-1 if the data in question is a subsample of a larger
population but it is left as n here for simplicity.
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of measurements of x and y as:

ρxy =
cov[x, y]

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)

σxσy
. (4.28)

ρ = 1 means that the observables are completely correlated whereas ρ = 0 means they are
linearly independent. Figure 4.4 show the correlation of a range of distributions.

4.7.2 Variance as a measure of information

The variance plays a central role in understanding the degree of information that can be
obtained from an observable. The assumption valid for many experiments is that the axis
in data, that has the largest variance, contain the largest amount of information. Imagine a
two-dimensional sample as the one in figure 4.5. The variance calculated for the projection to
the x axis will be roughly equal to the variance for the projection on the y axis. In the given
distribution it is possible to define a new axis with much larger variance. The assumption valid
for many experiments is that this axis will contain most of the signal, whereas the orthogonal
axis after the new definition can be thought of as noise. With this definition of signal variance,
σ2
signal and noise variance, σ2

noise the signal-to-noise-ratio (SNR) for a given observable, defined
as

SNR =
σ2
signal

σ2
noise

, (4.29)

is high for the axes that most precisely describe the measured space. In other words the
directions in data with largest variance should correspond to fundamental axes of interest
with a large degree of information and low noise. Figure 4.5 is an example of data where an
axis exists, that clearly describes the data much more precisely than one of the x and y axes.

Redundancy

Two measurements of the thickness of all chips (crisps) in a bag done with one ruler with
distances in inches and the other in centimetres will in principle be independent. The distri-
bution of one plotted against the other should, if noise is low enough, result in a very narrow
straight line. In other words the two variables are completely correlated and no or very little
new information is added by adding the second measurement. This is referred to as mea-
surements with a high degree of redundancy equivalent to a high ρ. Measuring the thickness
and diameter of chips could likely yield results similar to the distribution in the top centre of
figure 4.4. Here there is a low degree of correlation and a low degree of redundancy as both
the thickness and diameter of a chip carries information highly independent of the other.

Covariance matrix and Principal Component Analysis

The covariance can be generalised to n measurements of N variables. For each variable i the
n measurements are described by the vector Xi. Let’s define the matrix:

A =


X1

X2
...
XN

 (4.30)
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where each row contains the n-measurements of the deviation of variable N from its mean
value, or in other words, each column is a set of measurements from one trial. The i,j’th entry
of the covariance matrix will be:

CA,i,j := cov[Xi, Xj ] =
1

n

n∑
event=1

(Xi,event − X̄i)(Xj,event − X̄j) (4.31)

redefining X to be the relative distance:

X =
X − X̄
X̄

, (4.32)

the short hand notation is

CA ≡
1

n
AAT . (4.33)

CA will be a symmetric N x N matrix with the diagonal being the variance of particular
types and the off-diagonal terms the covariance between measurements which will be zero for
independent variables. The aim of a Principal Component Analysis is to find a matrix of the
form in equation 4.33 where the off-diagonal elements are zero.

4.7.3 Principal Component Analysis

If the covariance matrix was calculated based on figure 4.5 the eigenvectors of the covariance
matrix the off-diagonal entries would be positive, showing that the two variables increase
together. The eigenvalues would hold information of the variance in the direction of the
eigenvectors. This alone is actually enough to explain the principle of Principal Component
Analysis - to find the eigenvectors of the covariance matrix with highest variance and use these
to transform data from the original pattern space to a resulting feature space.

The covariance matrix CA can be diagonalised by a matrix UA such that:

UTACAUA =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 0 λN

 (4.34)

with

UA = (~ve,1, ~ve,2, · · · , ~ve,N ) (4.35)

where ~ve,i are the eigenvectors corresponding to the eigenvalues λi. The final step in Principal
Component Analysis is to order these after the values of the eigenvalues so the first principal
component is the eigenvector with largest eigenvalue. The use of the relative distance defined
in equation 4.32 means that the Principal Component Analysis is independent of dynamic
scales so it can compare observables in e.g. MeV and GeV without problems.



50 Chapter 4. Statistical procedure

4.7.4 Test for non-linear correlations

Figure 4.4 illustrates how linearly uncorrelated observables can still be highly dependent. All
distributions in the bottom row have clear symmetries and for several the actual functional
dependence of one variable on the other can be guessed. Imagine the measurement of the
height, y of a wave at a certain point for equal waves moving along the x-axis. If this was
plotted against the time of the measurement a distribution similar to that bottom left in figure
4.4 could be achieved e.g. a sine or cosine distribution. There is no obvious linear correlation
between the variables but it is not easy to decide the degree of redundancy either. The reason
is of course that the passing wave’s heights at given times are best described by a function, that
cycles in time. The simple linear description is not adequate and PCA will most likely not give
anything that better describes the data. There exist many types of non-linear correlations
that can potentially spoil the positive effects of a PCA transformation. The following will
describe a method to test for non-linear correlations that is used in this thesis.

Mutual Information

A more general notion of correlation comes from Mutual Information (MI) defined as (see
e.g. [56]:

IX,Y =
∑
i,j

pi,j log

(
pi,j

pi(X) pj(Y )

)
. (4.36)

Here pi(X) is the probability of X = xi, the probability density function of X. pj(Y ) is
the probability density function of Y and pi,j that of the combined distribution of X and
Y. This could for instance be the binned one-dimensional histograms of X and Y and the
two-dimensional histogram of (X,Y). The MI-measure will be described in more detail later
where results are generated for a series of non-linearly correlated variables. For now it should
be noted, that MI can be defined both for discrete and continuos distributions and could be
extended to higher orders, referred to as generalised redundancy, although this is computa-
tionally more demanding. The definition is on a p.d.f basis and the value of the MI measure is
not directly comparable to linear correlation defined on an event-basis. It will, however, serve
fine as an independent test of correlations.
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(a) The definition of error types in hypothesis testing. (b) A number-counting experiment. Figure from talk
by G. Cowan at CERN statistics forum.

Figure 4.1: The Type I and II error definitions and a simple counting experiment.

Figure 4.2: Hypothesis testing in higher dimensions challenges the method used for separating
background and signal. Figure from talk by G. Cowan at CERN statistics forum.
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Figure 4.3: The likelihood of ν (µ) plotted as −2ln(L) from [49].

Figure 4.4: The figure shows the correlation between variables with varying degrees of linear
correlation. A set of variables that are clearly not independent but with a correlation coefficient of
0 is shown. These all have non-linear correlations that are not described by Pearson’s correlation
coefficient. From [53].
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Figure 4.5: Simulated data of a camera measuring the movement of a spring. The camera is
rotated, so neither the x nor y axis corresponds to the movement of the spring. For this case the
axis describing the signal best, is the axis with greatest variance and largest signal to noise ratio.
From [55].
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4.7.5 Usage of Principal Component Analysis for Standard Model pro-
cesses

The central approach for this thesis will be the transformation of simulated and real data
using Principal Component Analysis. The transformation matrix will be generated once and
applied to all processes including data. It can in principle be generated from any number of
simulated processes and even from data but the choice affects the results significantly as will
be discussed later in detail. In short the principal components’ independence depends on the
input to the Principal Component Analysis. The hypothesis is that data is transformed into
a feature space that optimally characterises the given process. For the Principal Component
Analysis transformation based on WZ, the same transformation on data will result in observ-
able distributions that are optimised for fitting the WZ "part" of data or more generally for
fitting any signal with three real, isolated leptons.

A note on likelihood implementation for Principal Component Analysis

Assuming the variables resulting from the transformation are independent they can be treated
as independent measurements and all resulting variables can be fitted simultaneously. The
likelihood functions described for both the binned and unbinned case remain as described
earlier and both will work with Principal Component Analysis transformed events. It was
however found during the studies that the unbinned likelihood is significantly slower to cal-
culate. This is not surprising as all calculations are performed on a per-event basis opposed
to the binned likelihood, which only calculates the likelihood contribution in each bin. For
e.g. 20 bins compared to 2000 data-events it is easily more than a factor 100 in difference in
the calculation time. As the unbinned approach was not found to improve results the binned
likelihood will be used throughout this study.



5
Testing the fit procedure

5.1 A proof of concept with simulated data

Although Principal Component Analysis is not a new method, fitting Monte Carlo to data
through the use of principal components, is a novel approach. It is therefore essential to
test the robustness of the method. The following will describe a case study using simulated
Standard Model processes. The first subsection will present the distribution of the principal
components based on well understood Monte Carlo samples along with some measures to help
illuminate the composition and information in the principal components. As the final goal
is to fit model-expectation to data using principal components, a section is dedicated to the
behaviour of fits in principal components.

5.1.1 Comparing original observables to principal components

The first benchmark test is made using two fully simulated ATLAS samples generated with
Sherpa, one with WZ and the other with ZZ in the final state, normalised to 2600 events
corresponding to the total number of data-events expected for an integrated luminosity of
20fb−1. The available Monte Carlo statistics are a factor 10 higher. A selection of three
prompt leptons (electrons or muons) with a high degree of isolation has been performed leaving
1611 WZ and 989 ZZ events. The selection details will be presented in section 6.2 describing
the signal region. The selection criteria are optimised for selecting leptons produced through
electroweak decays or very similar processes. WZ is expected to be the largest Standard Model
contribution to such a three-lepton final state and ZZ the second largest. As ZZ events also
have three prompt, isolated leptons the ability to separate it from WZ is important if the
contribution from each or either of the processes is to be correctly estimated through a fit to
data.

Figure 5.1 shows the distribution of the missing transverse energy (/ET ) and pT of leading
lepton 1 for the the WZ and ZZ samples. The bottom panel shows the ratio of the two
samples both normalised to unity. The two observables are chosen to have one (/ET ) with
strong separation power and the other with weaker separation power2. The linear correlation

1Ranked by pT
2The separation power referred to here is the linear separation power found from a linear (Fisher) discrim-

inant.
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between the two observables is 29% so a Principal Component Analysis will result in a first
principal component, that combines information from both. The actual implementation is done
through the use of ROOTs TPrincipal class [57]. The eigenvalues of the resulting principal
components are plotted in figure 5.2. It shows the first principal component holds roughly 67%
of the variance in the two input observables and the second the remaining 33%. As described
in section 4.7.2 the variance is closely related to the information in a given observable and the
word information will be used in this context henceforth.

(a) The transverse momentum of the lepton with largest transverse
momentum plotted for the two samples.

(b) The missing transverse energy in the event, based on energy re-
constructed in calorimeters and corrected for energy in reconstructed
objects.

Figure 5.1: The distributions of two observables in the WZ and ZZ samples. The bottom panel
shows the ratio of the two samples both normalised to unity.

The transformation matrix to go from the original pattern space to the feature space,
resulting from the Principal Component Analysis, consists of the eigenvectors and is given by:

ve,1 ve,2 (5.1)[
0.873 0.487
0.487 −0.873

]
with eigenvalues 0.670 and 0.330 respectively. The original data has the values of the leading
lepton pT as the first row. The distributions of the resulting principal components are plotted
in figure 5.3.

5.1.2 Fitting with PCA

In order to understand the behaviour of principal components, pseudo-data was sampled from
the combined WZ and ZZ sample. A model with two processes, WZ and ZZ, is fitted to the
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Figure 5.2: The eigenvalues resulting from performing a Principal Component Analysis on a sim-
ulated WZ sample. As described in section 4.7.3 the size of the eigenvalues correspond to the
amount of variance associated to information from the original pattern space, the corresponding
principal component spans.

pseudo-data with the fraction of WZ events as a free parameter. The full Monte Carlo statistics
were used to determine the binned templates of the two processes. Two fits were performed,
one minimising the total negative log-likelihood of eq. 4.12 and another minimising only the
shape part. The results are in table 5.1. Of the two original observables, /ET has the larger
separation power and the fit to this observable using only the shape-part of the likelihood
leads to a smaller statistical error on αWZ , than the corresponding fit to the leading lepton
pT (The numbers in parentheses indicate the insignificant digit to be rounded). A fit to
the highest ranking principal component yields a statistical uncertainty slightly lower, but
comparable with the uncertainty from the /ET fit. The smallest uncertainty, still using only
the shape-part of the likelihood, is achieved by a combined fit to p1 and p2. It is worth
noticing that the fit parameters, α, are defined such that their sum can deviate from one
hence αWZ is not given by fixing the expected contribution from ZZ. If only the extended
part of the negative log-likelihood is minimised while keeping ZZ fixed at its expected (true)
contribution, the uncertainty becomes 0.62 ·

√
2600/1611 = 0.02 as returned by the fit. The fit

including the overall normalisation has uncertainty dominated by this extended uncertainty
and the reduction in statistical uncertainty from the shape-part does not affect the significant
digits. In order to test the parameter estimate and assignment of uncertainties the pseudo-
data bin contents are Poisson fluctuated around their expectation value and the fit repeated
as described in the following section.



58 Chapter 5. Testing the fit procedure

(a) The highest ranked principal component. (b) The second principal component.

Figure 5.3: The principal components of the WZ sample with the same transformation performed
on the ZZ sample plotted on top. The first and highest ranked principal component representing
the linear component with the largest variance is p1.

Binned shape-fit in 50 bins
observable(s) αWZ σαWZ

leading lepton pT 0.62 ± 0.08(4)
/ET 0.62 ± 0.05(2)
p1 0.62 ± 0.05(0)
p2 0.62 ± 0.09(3)

p1 & p2 0.62 ± 0.04(4)

Fit of overall normalisation alone
any 0.62 ± 0.02(0)

Extended, binned fit (including overall normalisation).
leading lepton pT 0.62 ± 0.01(9)

/ET 0.62 ± 0.01(8)
p1 0.62 ± 0.01(8)
p2 0.62 ± 0.01(9)

p1 & p2 0.62 ± 0.01(8)

Table 5.1: The fit values and associated uncertainties for WZ fitted to pseudo-data in a WZ + ZZ
sample. αWZ is the fraction of WZ events in the sample and σαWZ the associated uncertainty in
the fit. The expected αWZ is 0.62.
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5.1.3 Pull distributions

The pull distribution is a useful measure to test the behaviour of a fit. It is defined as:

αfit − αtrue
σfit

, (5.2)

and should result in a unit Gaussian if the parameter and error estimation is sensible. When
using ROOTs TMinuit [58] package to calculate fit uncertainties, the parabolic error estimate
from the likelihood is returned per default. As described in [59, 60] the asymmetric errors
calculated through MINOS in TMinuit represent a more correct estimate and they have been
used for the following estimates.

To plot the pull distributions and test the fit 10000 pseudo-datasets were generated. Each
time the overall normalisation was determined from a Poisson around the total 2600 expected
events. The distribution of data in each observable was then sampled, assuming Poisson-
statistics in each bin, with the normalisation fixed to the total number of events determined
for each pseudo-dataset. This means that the principal components are fully uncorrelated per
construction and the results will quantify the behaviour under that condition.

The resulting pull distributions are plotted in figure 5.4. The fits are made without the
extended term concerning the overall normalisation. If the fit behaves correctly the distribu-
tions should be Gauss distributed around zero, with a width of 1. The pull-distributions for
/ET , shown in figure 5.4a, is a unit Gaussian within uncertainties but the fit in leading lepton
pT , seen in figure 5.4b, is slightly skewed. The pull-distributions for the fits using p1 and p1

and p2 combined also agree with expectations but p2 in figure 5.4d is slightly off with a mean
of 0.04± 0.01 and width 1.017± 0.007. The ratio of WZ to ZZ is flat in p2 except for the tail
to the left of the peak, where ZZ has limited statistics. This means the two distributions will
be very difficult to separate in the fit.

Figure 5.5 show the distribution of fitted αWZ from the pseudo-data samples. The width
represents the uncertainty on the parameter estimate in the given observable. Figure 5.5b and
5.5d show that the parameter estimate in leading lepton pT and p2 do not follow a Gaussian
distribution very well. The deviation in the pull distribution is ∼ 1%. The behaviour of the
fit using both principal components is very sensible.

The extended part of the fit, which only concerns overall normalisation, is also fitted for
the pseudo-data resulting in a mean of αWZ = 0.619± 0.020.

5.1.4 Input observables

The two observables used for the study of fit results using the WZ and ZZ sample were
somewhat arbitrarily chosen and a vast number of possible observables can be constructed in
ATLAS data. The relevant observables, however, depend on the final state in question and the
requirement that they must be suited as input for a Principal Component Analysis. As this
thesis will concern final states with exactly three prompt and isolated leptons, the observables
must characterise this type of events including possible jets and missing energy in the event.
A series of observables have been tested in the multilepton group and found to be sensitive to
a range of new physics phenomena (see e.g. [61, 62]). The following is a combination of these
along with several other kinematic variables used to characterise events. Common to all of
them is that, if they are to be used as input to a Principal Component Analysis, they must
be continuous and defined everywhere.
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(a) The pull-distribution of αWZ in /ET (b) The pull-distribution of αWZ in pT of leading lepton

(c) The pull-distribution of αWZ in p1 (d) The pull-distribution of αWZ in p2

(e) The pull-distribution of αWZ in p1 and p2

Figure 5.4: Pull distributions for binned shape-fits.
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(a) The distribution of αWZ in /ET (b) The distribution of αWZ in pT of leading lepton

(c) The distribution of αWZ in p1 (d) The distribution of αWZ in p2

(e) The distribution of αWZ in p1 and p2

Figure 5.5: Fitted αWZ distributions for the different observables and the associated uncertainty
assuming a Gaussian distribution.
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Leptons

The first obvious choice is the kinematic information of the leptons. The pT of each lepton is
used and defined by the leptons ranked by pT as with the leading lepton pT observable already
presented. To have an observable sensitive to resonances from new physics the transverse mass
of the three leptons is included. Through the work in the multilepton group leading to [61]
it was found that the invariant mass of two same-flavour leptons with opposite sign (charge)
(SFOS) closest to the Z-mass is also sensitive to a range of new physics. It effectively separates
events with a Z-like particle from events without. To ensure continuity the definition is the
invariant mass of either 2 SFOS leptons or all three leptons closest to the Z-mass. This ensures
continuity in both the case where a SFOS pair is not present and in the extreme case where
three electrons or muons with at least one opposite charge are present in the event.

The angular information regarding the leptons constitute numerous observables, if the
information from the objects are combined, but not all information is equally interesting. The
tradition in ATLAS is to define the angular separation between objects, ∆R as:

∆R =
√

∆η2 + ∆φ2, (5.3)

where ∆η is the difference in η between the two objects and ∆φ the φ difference. This holds
much more information than the individual angles. The smallest angular separation between
leptons is especially interesting as it holds information that characterise the two leptons from
the Z and clearly separates these from a range of other possible production mechanisms. For
this reason the smallest ∆R between leptons has been used as angular observable in this study.

Jets

Jets can be present in the events either from initial- or final state radiation in WZ events or
from other processes. There will, however, not be a requirement on the number of jets, so
the kinematic observable concerning individual jets cannot be used. The total number of jets
and summation of energy of jets can be used as these will be continuous distributions and the
sum of jet transverse momenta (Hjets

T ) was chosen as this contains information on both the
momentum and the number of jets.

Furthermore an observable describing the probability for a b-jet to be present is used.
This is the maximum value of the ATLAS MV1 variable. The MV1 variable is a combined
probability constructed from several individual jet-observables using boosted decision trees
and has a value between 0 and 1 for each jet. It will be continuous down to 0 which is also
the value events without jets will be given.

Missing energy

The final object-type in the event, is the calculated missing energy. The observable used for
this is simply the transverse component of the missing momentum vector.

Event observables

Besides the kinematic observables concerning the objects in the event, the total number of
tracks from the primary vertex is included. This was chosen for its possible separation power
between diboson events and the boson-jet background as well as its possible sensitivity to
high-multiplicity new physics like black holes in extra spatial dimensions.
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5.1.5 PCA with all observables

The correlation between input observables is shown in figure 5.6a. The clear correlations seen
indicates that a linear combination should be able to include much of the information in a
fewer number of principal components. Performing a PCA based on the WZ sample results in
principal components with the eigenvalues in figure 5.6b. The first principal component, p1 has
36% of the total information of the 10 input observables. The following principal components
contain from 13% down to a few % of the total information. The eigenvectors are:

ve,1 ve,2 ve,3 ve,4 ve,5 ve,6 ve,7 ve,8 ve,9 ve,10 (5.4)

0.43 0.12 −0.16 0.11 0.08 −0.13 0.35 −0.51 −0.09 0.59
0.39 0.21 −0.05 0.04 0.05 −0.35 −0.48 0.57 0.02 0.35
0.26 0.02 0.47 −0.50 −0.18 0.43 0.30 0.28 0.12 0.23
0.31 −0.38 0.24 −0.13 −0.08 0.19 −0.66 −0.45 −0.07 −0.03
0.11 −0.49 0.29 0.24 0.74 −0.02 0.18 0.18 0.02 0.00
0.19 −0.19 −0.58 0.26 −0.05 0.67 −0.02 0.24 −0.11 0.05
0.14 0.42 0.43 0.63 −0.01 0.34 −0.15 −0.08 0.22 0.15
0.13 −0.48 0.18 0.43 −0.63 −0.28 0.22 0.14 0.03 −0.01
0.47 0.12 −0.15 0.02 0.05 −0.04 0.09 −0.09 0.72 −0.45
0.43 0.32 0.19 0.13 0.01 0.01 0.12 0.04 −0.62 −0.50


for the input observables:[
plepT,lead plepT,second plepT,third Hjet

T MV 1max /ET ∆R nTracksvertex MSFOS
inv M3lep

T

]
The distribution of WZ and ZZ in the resulting principal components is shown in figure 5.7
and 5.8.
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(a) The correlation coefficient between calculated for each pair of input observables.

(b) The eigenvalues resulting from performing a Principal Component Analysis on a simulated WZ sample with 10
input observables. As described in section 4.7.3 the size of the eigenvalues correspond to the amount of information
from the original pattern space, the corresponding principal components spans.

Figure 5.6: Correlation of input observables in the WZ sample and eigenvalues of resulting principal
components.
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(a) PC 1 (b) PC 2

(c) PC 3 (d) PC 4

(e) PC 5

Figure 5.7: The first 5 principal components of the WZ sample constructed from the 10 input
observables. The same transformation is performed on the ZZ sample which is plotted on top.
The first and highest ranked principal component is p1.
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(a) PC 6 (b) PC 7

(c) PC 8 (d) PC 9

(e) PC 10

Figure 5.8: The last 5 principal components of the WZ sample constructed from the 10 input
observables. The same transformation is performed on the ZZ sample which is plotted on top.
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5.1.6 Fitting with all principal components

Pseudo-data was again generated 10000 times and the fraction of WZ events fitted for each
pseudo-sample, both for the individual principal components and the combination of them.
The pull-distributions were generated, as was the fitted parameter values and uncertainty. The
pull distributions are included in appendix A and summarised here. The fit of one principal
component at a time is the most stringent test of the behaviour of the fit. If separation
between the two processes is not possible in the given variable, the returned fit uncertainty
should be large. For p5,p7,p9 and p10 this is to some extent the case. The pull-distributions
are asymmetric with a tail towards larger values. The overall fit results in widths close to
1 and mean 0 but when the Gaussian peak is fitted alone the width is smaller than one by
14%,10%,6% and 4.5% respectively. The uncertainty returned is quite large for all these four
principal components. Looking at figure 5.7 and 5.8, the ratio of WZ to ZZ in p5,p7,p9 and
p10, are all close to constant for the bulk of the distributions. This means that any separation
between the two processes must be found in the limited statistics of the tails which are sensitive
to fluctuations causing the pull-distributions to deviate from a unit Gaussian.

For each principal component the mean value and 1-sigma width of the distribution of
αWZ returned by the fit was calculated and the numbers are given in table 5.2. This was done
both for the one principal component at a time and for the combination of several principal
components. Furthermore the normalisation was first left out, to study the effects of fitting
the shape of the two samples in several distributions. The last part of the table is of the
combined fit of principal components including information of both the shape and the overall
normalisation.

The fit uncertainty from the 10000 fitted pseudo-data samples is plotted in figure 5.9 for
fits without overall normalisation. First it should be noted how the uncertainty, as expected,
is reduced with the addition of each new principal component. As each principal component
contains less new information the reduction of uncertainty should be smaller with each step.
This is indeed the case. The fit-uncertainties are of course affected by the separation power
between the two samples in each variable and not only by the eigenvalue of the given principal
component. The variance of a weighted sample mean, X̄ is given as:

σ2
X̄ =

n∑
i=1

ω2
i σ

2
i . (5.5)

In the case of complete independence and 100% new information (i.e. identical variance and
eigenvalue) in each observable, the weights must be equal and it follows that

σX̄ =
σ√
n
. (5.6)

The red line in figure 5.9 is the expected uncertainty assuming equal weights and complete
independence. The actual fit uncertainties are larger as the first principal component has the
majority of information in the fit.

Sum of square residuals - a distance measure

Another way to quantify the effects of the Principal Component Analysis is to look at a
distance measure between the original data and the space spanned by the principal compo-
nents, the sum of square residuals, SQR. The value is calculated as the ’distance’ from a space
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Shape-fit of one principal component at a time
PC 1 2 3 4 5
αWZ 0.622 0.641 0.649 0.628 0.689
σWZ ± 0.056 ± 0.159 ± 0.177 ± 0.097 ± 0.321

6 7 8 9 10
αWZ 0.626 0.668 0.630 0.676 0.674
σWZ ± 0.0808 ± 0.242 ± 0.110 ± 0.283 ± 0.297

Shape-fit of principal components combined
# PCs 1 2 3 4 5
αWZ 0.622 0.622 0.622 0.622 0.622
σWZ ± 0.0557 ± 0.052 ± 0.049 ± 0.044 ± 0.043

6 7 8 9 All 10
αWZ 0.622 0.621 0.621 0.622 0.621
σWZ ± 0.038 ± 0.037 ± 0.035 ± 0.035 ± 0.034

Fit of shapes and overall normalisation for principal components combined
# PCs 1 2 3 4 5
αWZ 0.619 0.619 0.620 0.620 0.620
σWZ ± 0.0188 ± 0.0182 ± 0.0182 ± 0.0180 ± 0.0180

6 7 8 9 All 10
αWZ 0.620 0.620 0.620 0.620 0.620
σWZ ± 0.0175 ± 0.0174 ± 0.0172 ± 0.0169 ± 0.0170

Table 5.2: Fit values for a shape-fit without overall normalisation to first one principal component
at a time and secondly to the combined principal components. The values are obtained from the
mean and width of the parameter distribution from 10000 fits to pseudo-data. An extra digit has
been included for the combined fit to see changes with each new principal component.



5.1. A proof of concept with simulated data 69

Figure 5.9: The uncertainty found through fits to 10000 pseudo-data samples for the combina-
tion of several principal components using the shape information in each variable but not overall
normalisation.

spanned by a subset of principal components to the original data and it effectively describes
how much phase-space is not described by the principal components. The definition is as
follows for each event. For a total of P parameters and N = P principal components the
distance between the space spanned by the m ≤ N principal components is defined for the
data vector X as:

Em =
P∑
i=1

(
Xi −X ′i

)2
, (5.7)

where X ′ is the value in original patternspace obtained from performing the inverse transfor-
mation from feature space, based only on m principal components.

X ′i =

m∑
j=i

piei,j , (5.8)

Em is calculated for each event and the sample average for the WZ sample is shown in figure
5.10. The X-axis denotes the number of principal components included in the calculation of the
SQR and ranges from 1 to 9 of the 10 principal components. A large distance measure indicates,
that there is still a significant amount of the data not described by the space spanned by them
principal components. The Y-axis is the Em sum of all events in the sample normalised to the
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Figure 5.10: The sum of squared residuals - a measure of the distance from the original data to
the space spanned by the m ≤ N principal components.

number of entries. The SQR is useful for reduction of dimensionality and figure 5.10 shows
that the inclusion of p2 and p3 both results in a significantly smaller SQR, while the next
large reduction is with the inclusion of p6 and especially p7. The last principal components,
however, have small eigenvalues and will likely not improve the fit significantly as supported
by the results in table 5.2.
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5.2 A study of the method in real data

The pseudo-data generated from Monte Carlo samples will resemble the simulated data quite
closely even after sampling. It is, however, interesting to see how an analysis using Principal
Component Analysis behaves when detector smearing and model inaccuracies enter the equa-
tion. To test this a region of data, not overlapping with the final signal region, has been used.
The region must be one, where new physics overlapping with the signal region are not believed
to occur. For a signal region of three prompt leptons, highly isolated and with high pT , one
orthogonal region is the region with exactly two leptons that satisfy all the same selection cuts
on the leptons with the additional requirement that the leptons must have same flavour and
charge to suppress processes that can produce three lepton final states 3. To suppress potential
new physics (resonances as e.g. doubly-charged Higgs [63] or right-handed leptons from the
seesaw [19]) the sum of jet pT is required to be below 500 GeV and the transverse mass of
the two leptons to be below 150 GeV. Furthermore the transverse mass of the two leptons is
required to be above 60 GeV to avoid low-mass resonances and Drell-Yan background. This
will also reduce the amount of events with leptonic τ -decays as the mass peak for e.g. Z → ττ
lies below 60 GeV resulting in a more pure sample of prompt leptons.

The following section is intended as a study of the use of Principal Component Analysis on
real data to create independent observables and to show that these will give sensible fit results.
It is not intended as a test of the Standard Model in the control region. Some Standard Model
process contributions should preferably be calculated using data-driven methods and the final
analysis presented in this thesis will use data-driven methods to properly model fakes. For
this initial study only Monte Carlo samples have been used to model the expected number
of events. A range of corrections for known reconstruction- and detector problems will be
applied in the signal region but these are not included here.

5.2.1 Selecting e±e± and µ±µ±

As charge must be conserved in any Standard Model hard process, the creation of a lepton
pair with same flavour, e.g., two electrons or two muons and with same electric charge is in
principle ruled out. But since the processes have to be measured, some processes can create
such a signal, by having e.g. a jet being (mis)reconstructed as a lepton. The Monte Carlo
samples in table 5.3 have been used to model the Standard Model contribution to the SFSS
control region. The k-factor is the correction to the dataset cross-section known from higher
order theoretical calculations where such exist. Reference to k-factors for the given samples
are found in [64].

To select these same-flavour, same-sign (SFSS) events the following selection has been
performed on the Monte Carlo samples and for real data.

Event Selection

The event-selection is developed in the multilepton group [61] and identical to the lepton
selection in the signal region while the event requirements are for exactly two SFSS leptons.
The data is obtained from two data streams. The ’Muons’ stream and the ’Egamma’ streams.
These include all events that have triggered at least one muon and/or one electron. All events

3There will be a small overlap between the regions as e.g. tt̄ and Z/W + jets can produce same-sign dilepton
and three-lepton events.
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Table 5.3: Monte Carlo datasets for 8TeV 2012 SFSS data-modelling
Process type dataset id number k-factor

Single boson processes
Z → ll + jets 117650-117674 1.18
W → l + jets 147774-147776 1.019

Diboson processes
WZ 126893 1.05
ZZ 126894 1
WW 126892 1.05

top related processes
tt̄ 110001 1.2177

top + bosons
tt̄+W (+jet) 119353-119354 1.17
tt̄+ Z(+jet) 119355-119356 1.35

selected must pass a trigger match, e.g., one electron or muon in the event must match a
triggered object. The triggers used for both data and Monte Carlo are:

• Muon stream

– pass EF_e24vhi_medium1 || EF_e60_medium1 || EF_mu24i_tight || EF_mu36_tight

• Egamma stream

– pass EF_e24vhi_medium1 || EF_e60_medium1

– fail EF_mu24i_tight and EF_mu36_tight,

where e/muXX refers to the minimum momentum threshold in GeV, i is an isolation re-
quirement and medium or tight are reconstruction algorithms deciding the degree of tightness
required of the object to be reconstructed.

The reasoning behind the choice of two triggers is as follows. The lowest unprescaled pT
threshold triggers for all 2012 data has been selected as the primary trigger. These triggers
have requirements on the isolation of the leptons that leads to inefficiencies for high pT leptons.
To compliment the low threshold triggers, the lowest unprescaled triggers without isolation
requirements are also used.

• the event must pass the ATLAS standard jet cleaning requirements [65].

• Real data must pass the ATLAS GoodRunsList, guaranteeing that all relevant detectors
of the ATLAS experiment were operational and data has been correctly stored.

• The sum of transverse momenta for all reconstructed jets in the event must not exceed
500 GeV.

Finally, exactly two leptons with same flavour and same charge must be found satisfying:
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Electron pair selection

The electrons are required to both fulfil the following requirements:

• ID class: Tight++

Forward and soft electrons are vetoed (author 1 and 3).

• Leading/Triggered lepton: ET ≥ 26GeV

• Subleading lepton: ET ≥ 15GeV

• Acceptance: (| η |< 1.37) || (1.52 ≤| η |< 2)

Requiring η ≤ 2 ensures TRT coverage ensuring better identification and pion and
conversion rejection.

• Calorimeter Isolation: The ET sum based on calorimeter readout in a cone of ∆R ≤
0.3 around the electron divided by electron transverse energy - TopoEtCone30

ET
< 0.10

• Track Isolation: The pT sum of tracks in a cone of ∆R ≤ 0.3 around the electron
divided by electron transverse energy - ptcone30

ET
< 0.10

• Vertex: | Z0sin(θ) |< 0.5mm

• Impact parameter significance: | d0
σ(d0) | < 3

Muon pair selection

The muons are required to both fulfil the following requirements:

• ID class: Identification Combined tight with:

1. a B-layer hit (if expected)

2. ≥1 pixel hits (including dead sensors)

3. ≥ 5 SCT hits (including dead sensors)

4. < 3 holes in the SCT and Pixels combined

5. if 0.1 <| η |< 1.9, then TRT hits + outliers > 5 require outliers
all hits < 0.9

6. if | η |≤ 0.1 or | η |≥ 1.9 and TRT hits + outliers > 5 require outliers
all hits < 0.9

• Leading/Triggered lepton: ET ≥ 26GeV

• Subleading lepton: ET ≥ 15GeV

• Trigger acceptance: (| η |< 2.4)

• Acceptance: (| η |< 2.5)

• Author: The muons are required to be combined muons with track segments both in
the inner tracker and muon detectors.

• Calorimeter Isolation: The ET sum based on calorimeter readout in a cone of ∆R ≤
0.3 around the muon divided by muon track transverse momentum - EtCone30

pT
< 0.10
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• Track Isolation: The pT sum of tracks in a cone of ∆R ≤ 0.3 around the muon divided
by muon transverse energy - ptcone30

ET
< 0.10

• Vertex: | Z0sin(θ) |< 0.5mm

• Impact parameter significance: | d0
σ(d0) | < 3

Exactly two same-charge electrons or muons passing the object selection are required to
be present in the event and to have transverse mass between 60 and 150 GeV. These are both
required not to overlap with other reconstructed objects. The forward region of the ATLAS
detector has more non-detector material and a weaker solenoid magnetic field. This means that
more conversions are present and that both charge and momentum reconstruction is poorer
especially for electrons. This is especially true for the region outside the TRT η range, so to
reduce the impact of these objects in the event reconstruction an additional veto on electrons
with η ≥ 2.0 is imposed. The result is 4897 data events passing the selection, with a total of
4995 ± 82 (stat) expected of which 4945 events are V + jets. The modelled background does
not contain dedicated bb̄ and cc̄ samples which is likely to cause a slight deviation. Even more
importantly no data-driven background estimate of light-flavour jet contribution, conversions
and charge mis-reconstruction has been performed.

5.2.2 Distribution of processes

All other relevant processes have been included and the distributions of data and Monte
Carlo are shown in figure 5.11 for a selection of observables. The general agreement is good
although smaller deviations are seen. These are likely to originate from incomplete modelling.
Performing the two standard tests Kolmogorov-Smirnov and a χ2, on data compared to total
expectation, shows that the agreement between model expectations and data is not good
everywhere. The normalisation difference before fitting is likely to affect the χ2 probability
as is the non-negligible number of bins with less than 10 events. The shape is seen to agree
reasonable well in most observables with reasonable KS values. Besides this, it is evident that
V + jets completely dominates this region. For W + jets this is expected as W can decay
leptonically to a lepton and a neutrino and the jet can fake a lepton with same charge. Z +
jets contributes if the Z decays to leptons where one is not reconstructed. Again, the other
lepton must come from a jet. In principle the charge of a lepton could be misidentified also,
but the contribution from this is small for the required η range. Conversion of photons can
also add reconstructed leptons to the final state, but as the photon has no track in the inner
detector the rejection is good.

PCAV+jets to fit expectation to data

As V+jets so clearly dominates the region a Principal Component Analysis based on V+jets
has been chosen. The eigenvalues and sum of square residuals is plotted in figure 5.12 for
the PCA-transformation based on V + jets. As a reference the eigenvectors are included in
appendix B along with the list of input observables. To understand the eigenvalues we need to
know the correlation between observables in the pattern space. They are plotted for V + jets
in figure 5.13. Correlation up to above 60% exists and a Principal Component Analysis should
be able to combine much of this in the highest ranked principal component. As expected, the
resulting eigenvalues of the principal components for V+jets, fig. 5.12a show that p1 combines
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The distribution of processes contributing to the SFSS dilepton final state. It is clear
that the W/Z + jets completely dominates this region, contributing to the vast majority of the
observed events.
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roughly 45% of the information from the correlated observables into one parameter. The
second and third are at roughly 17% and 13%. Figure 5.12b shows the distance measure for
the principal components. It shows that the space is not fully spanned until the inclusion of
p6 after which a very small distance remains. The measure is here again for the entire sample
and normalised to number of observed events.

(a) The eigenvalues of the eigenvectors of the covariance matrix
of V + jets.

(b) The distance measure, Em, for principal components for the
entire V + jets sample.

Figure 5.12: The eigenvalues and sum of squared residuals resulting from the transformation of
the four observables in fig. 5.11 using Principal Component Analysis for V + jets and 2012 SFSS
data.

The final comparison of distributions is shown in fig. 5.14 and 5.15. Here all principal
component distributions are plotted for data and Standard Model expectation. The errors here
are purely statistical. Before the fit of the Standard Model expectation to data in the SFSS
region is presented we return to the question of independence of the principal components .
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Figure 5.13: The linear correlation between input observables in V + jets for the SFSS selection.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: The principal components of the SFSS expectations and data. The first and highest
ranked principal component representing the linear component with the largest variance is P1 and
lowest rank is P6.



5.3. Mutual information and fitting real data with PCA 79

Figure 5.15: The last principal component of the SFSS sample.

5.3 Mutual information and fitting real data with PCA

If templates in several principal components are to be fitted simultaneously without han-
dling correlations, the principal components must be independent to provide sensible errors.
Two questions arise. Principal Component Analysis ensures linear independence but does not
guarantee non-linear independence. Secondly the transformation matrix only guarantees inde-
pendence for the process it is generated from, so the resulting principal components for other
Standard Model processes might not be independent. To test whether principal components
have non-linear correlations the Mutual Information (MI) method as defined in eq. 4.36 is
used. The implementation can be done in several ways. The most straightforward is through
binned distributions but as described in [66] and [67] the usage of kernel density estimation to
model distributions removes the dependence on origin and binning, giving a better estimate.
The kernel estimate of ROOT’s RooKeysPDF has been used to model the distributions for the
mutual information measure here. RooKeysPDF uses kernel estimation to get a functional de-
scription of a given distribution (by convoluting Gaussians). The widths of the Gaussians are
through an ’adaptive mode’ to better model data and minimise bias. For multi-dimensional
kernel estimates the associated RooNDKeys class ensures that the kernels are constructed to
reflect the correlation coefficient between the observables in the input dataset.

MI for varying degree of dependences

To study what the benchmark value should be for linearly uncorrelated variables to be con-
sidered independent a series of correlated functions have been studied. Common to them are
that they have non-linear correlation between variables. A completely independent sample
was generated using a random number generator [68] to get random number between 0 and 1
in variables x and y. The seed for the generator made the two series completely independent.
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For studying non-linear correlations three functions with non-linear correlations were used:

y = cos(x), (5.9)
y = sin(x)2

y =
√

(x− 0.11) · (x− 0.11)− 0.1 + 0.1.

To test the effect of partial correlations on the mutual information measure the fraction of
correlated and independent data points in a final dataset was varied from 0 to 100%. The
result is plotted in figure 5.16. It shows the plot of the MI value as a function of degree of
correlation of the two variables x and y. The plotted points have approximately 50% errors.

For illustrative reasons a second degree polynomial has been fitted to each of the three
distributions. The conclusions from the figure is that the value of mutual information is non-
zero even for independent series, it rises slowly for low percentage of correlated datapoint and
faster for higher percentage of dependent events. The rise seems to follow a second degree
polynomial but this feature is not probed further here. MI is not expected to give exactly 0
as statistics influence the value [56] [66], so a non-zero start value is acceptable. This should
be considered when considering whether a given set of principal components are independent.
From fig. 5.16 it seems that for the given functions, an MI measure of 0.1 will correspond to
samples with less than 30% correlated data points, despite the type of correlation.

Figure 5.16: The measure of mutual information as a function of percentage of correlated generated
data for three different non-linear correlations. Even for two completely independent generated
datasets the MI measure still has a small value. High degrees of non-linear correlation between
observables quickly gives rise to higher values of MI.
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Figure 5.17: Mutual information between two independent observables for samples with 300 and
600 entries per datapoint in the mutual information calculation.

5.3.1 MI dependence on number of entries

To probe the spread as a function of number of data points in the calculation of each MI
measure, a series of events with 300 entries per datapoint and 600 entries per datapoint have
been generated. The two variables are have been generated to be independent per construction.
The MI has been calculated for each datapoint and plotted in fig. 5.17. The number of entries
clearly influence the spread significantly. Both distributions have tails of events with larger
than average MI. It falls off fast but the sample with 600 events per datapoint reaches values
up to 0.03. The sample with 300 entries per datapoint have values as high as 0.07 even though
the two observable are completely independent by construction.

The MI for principal components from V + jets in SFSS region

The mutual information was calculated for all combinations of principal components in 600
events from the V + jets sample. No combinations had an MI value above 0.05 and the highest
value found was MIV+jets = 0.027. The threshold was chosen from the above result on MI
as a function of events and the MI measure is not sensitive to anything below 0.05 as this
corresponds to the upper fluctuation expected from 600 events in independent variables. The
resulting number is so low that it is more than fair to assume non-linear correlations does not
exist and the principal components in V + jets are indeed completely independent.

The other question regarding independence of the principal components was associated



82 Chapter 5. Testing the fit procedure

to processes other than V + jets used to generate the transformation matrix. The MI was
also calculated for data and for the other Monte Carlo processes as well. No combinations of
principal components were above 0.05 in data. WZ is the largest background but still only has
33 events expected so the MI measure is likely to be above the threshold for any combination
of principal components. It was found to be especially large forMIWZ

2,3 = 0.12, MIWZ
2,4 = 0.08,

MIWZ
2,6 = 0.09 and MIWZ

5,7 = 0.11 with several other above 0.06. The transformation matrix
only guarantees linear independence in data-points that resemble4 the sample used to generate
the transformation matrix. The two SFSS leptons from WZ likely deviate so much from the
SFSS leptons in V + jets that the transformation matrix does not generate independent
variables.

The dependence on the number of entries actually means that MI does not give meaningful
values for processes with very few events in the signal region. This will be discussed later. The
conservative approach for the final result will be to look at the two-dimensional distributions
of all principal component pairs that are above threshold of 0.05 per 600 events in the sample
under study.

Correlations between principal components in data and WZ

As the MI measure clearly indicated correlations, between several of the principal components
in WZ, it is interesting to take another look at the linear correlations in data and WZ. The
linear correlation is zero between all principal components in V + jets per construction but
fig. 5.18a shows the linear correlation of the same principal components in the 2012 SFSS
data sample. The correlation is below 20% for all principal components in data and several
are close to 0. In WZ several combinations exist with low correlation, however, the correlation
coefficient between p2 and p3 is below −60% and not in any way independent. The principal
components p2 and p3 where also found to have a high MI value in WZ. The electroweak
Monte Carlo processes represented by WZ in fig. 5.18b all have high correlation between p2

and p3 but due to their small contribution to total number of expected events the correlation
is not found in data.

The dependence of the observables means that they cannot be combined in the fit without
taking into account correlations. This is strictly true for electroweak Monte Carlo but the V +
jets component of data could still be fitted if the other Standard Model contributions are fixed
as the principal components where seen to be independent in data too. The next subsection
will fit V + jets using Principal Component Analysis and present the results for all principal
components whereas the final results for this thesis will discuss dependence of processes in the
signal region further. All other processes will be fixed to their expected value.

5.3.2 PCA fit results in SFSS signal validation region

Like for the purely Monte Carlo based test of the fit method in section 5.1 a series of fits have
been performed in the SFSS validation region. The result of the fits are shown in table 5.4.
All quoted errors are the MINOS errors returned by TMinuit in the fitting routine. The first
results are for the fit of each individual principal component alone and the second part is of
the combination of principal components. To compare the results, a fit has been performed
in /ET , chosen as it was found to have the largest discrimination power between V + jets and

4In principle the independence is only strictly guaranteed for the sample used to generate the transformation
matrix
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(a) Linear correlation in data.

(b) Linear correlation in WZ.

Figure 5.18: The linear correlation between principal components in data and in WZ. The trans-
formation matrix was generated from V + jets Monte Carlo.
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data using a Fisher discriminant in TMVA [69]. The result was αV+jets = 0.979± 0.014(14).
The fit-uncertainties have been presented with extra digits in the table to hint at the effect
of the shape on the fit, but as was the case with WZ and ZZ Monte Carlo the uncertainty
associated with the extended part dominates.

Extended and shape-part fit - individual principal components fitted
principal component 1 2 3 4

αV+jets 0.97 0.97 0.97 0.97
σfit ± 0.01(4) ± 0.01(4) ± 0.01(4) ± 0.01(4)

principal component 5 6 7
αV+jets 0.96 0.96 0.97
σfit ± 0.01(4) ± 0.01(4) ± 0.01(4)

Extended and shape-part fit - combining principal components in fit
# principal components 1 2 3 4

αV+jets 0.967 0.966 0.963 0.961
σfit ± 0.013(99) ± 0.013(98) ± 0.013(96) ± 0.013(96)

principal component 5 6 7
αV+jets 0.948 0.940 0.934
σfit ± 0.013(85) ± 0.013(79) ± 0.013(75)

Table 5.4: Fit values in the SFSS region.

The fit using only overall normalisation resulted in αV+jets = 0.97 ± 0.014. Fitting in both
the highest ranked principal component and the original observable, results in fit uncertainty
and value very close to the extended alone. This indicates that the fit is driven by the nor-
malisation and very little information is gained from the shape. The fit of individual principal
components supports this claim as very little variation is seen. The fit in combined principal
components shows a slight decrease in the fit-uncertainties hinting the same behaviour as seen
in the Monte Carlo study. The effect is not significant for the given region.

5.3.3 Conclusions for the SFSS region study

One of the most noteworthy points of this chapter has been to clarify the challenge of depen-
dent principal components. The transformation matrix only guarantees linear independence
for the V + jets sample and even in data, where this process constituted the vast majority
of events, the principal components where not all linearly independent. The choice of a not
so well modelled region (e.g., without dedicated b-samples and data-driven estimates) is a
worst case scenario but as several processes are significant in the final signal region the study
of dependence will be even more essential. The MI measure was shown to find the principal
components with linear correlation in WZ but also showed that no non-linear correlations
existed between principal components in V + jets and data. This validated that the prin-
cipal components in V + jets are indeed completely independent and that the independence
generalises to data in this very pure V + jets region.

The fit of V+jets in the region showed that the method worked and resulted in fits compa-
rable to the original observables. The fit-uncertainty decreased with the addition of principal
components although the effect is in the insignificant digits and does not fully validate the
behaviour. It is important to stress that the fit does not exclude the Standard Model. The
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modelling is known to deviate and the region simply cannot be described probably without
data-driven estimates. The intent of the SFSS study was not to test the Standard Model but
to illuminate the challenges and features of the method concerning dependence and sensibility
to deviations.
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6
Standard Model expectation in three-lepton final states

6.1 Standard Model processes

In this thesis we have chosen the final state consisting of three leptons selected according
to the characteristics of a prompt electroweak lepton to look for new physics. By prompt
electroweak we refer to muons or electrons produced in the prompt decay of a W or a Z boson
or of similar characteristics, that is real leptons with little hadronic activity in their vicinity.
In the simplest form these leptons will be high-pT , well isolated and well characterised by the
sub-detectors of ATLAS i.e. all electrons for instance passing the tight++ selection criteria.
This final-state is chosen, as it is one of the cleanest, so any deviation caused by new physics
are likely to result in a clear signal.

In the Standard Model the only hard interaction contributing to a final state with exactly
three electroweak, prompt leptons is the production of a W and a Z boson and their decay
to three leptons. In reality three-lepton events will be the events we reconstruct as having
three electroweak and prompt-like leptons and to do this properly a series of cuts have to be
imposed including minimum pT of the leptons, isolation requirements and matching of hits or
tracks to energy deposits in the calorimeters. The result is that hard interactions with more
than three leptons in the final-state will contribute if one of the leptons fail the selection.

Other hard interactions with three lepton final states will contribute even though the
leptons might not be prompt electroweak in origin. The decay of a heavy quarks through
a W to an electron or muon is one of the major contributors to this type of real non-promt
leptons. Specifically hard interactions involving top-quarks and bosons result in non-negligible
contribution to three-lepton final-states. The conversion of a photon into two electrons is
another source of real leptons and will contribute noticeably when produced along with a
Z-boson. Furthermore non-leptonic objects can be mis-reconstructed as leptons and several
processes will contribute as so-called fakes.

The following chapter will describe the selection developed in the multilepton group at
CERN for three-lepton final-states and present the expected number of events from Standard
Model processes.

87
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6.2 Signal event selection

6.2.1 Event based selection

To select events with three prompt, electroweak leptons both event-level and object based
selections have been imposed. To ensure the event is a hard process and to reduce fake and
pile-up related effects, a cut on the number of tracks from the primary vertex with highest
summed transverse momentum of tracks has been imposed:

• 3 or more tracks must be associated to the vertex with largest
∑
p2
T,track

As badly reconstructed jets can mimic a range of objects and have a significant impact on
the reconstruction and understanding of an event, all events have undergone the ATLAS
jet-cleaning requirements.

• Event must pass ATLAS jet-cleaning requirements [65] or the entire event is discarded.

As all data is recorded using triggers to store only interesting physics events, a requirement that
the relevant triggers have fired is imposed. The choice of triggers are the unprescaled triggers
with lowest pT requirements for electrons and muons. The triggered events are recorded in
two streams that will have overlapping events. To avoid overlap all events with a triggered
muon- or electron-object was used from the muon stream while events were only used from
the electron (Egamma) stream if they contained a triggered electron- and no triggered muon-
objects. The exact definition used is:

• Muon stream

– pass EF_e24vhi_medium1 || EF_e60_medium1 || EF_mu24i_tight || EF_mu36_tight

• Egamma stream

– pass EF_e24vhi_medium1 || EF_e60_medium1

– fail EF_mu24i_tight and EF_mu36_tight

As already mentioned in section 5.2.1 the reason for having an OR between two triggers,
is that the isolation requirement (i for isolated) on the lowest unprescaled trigger leads to
inefficiencies for leptons with higher pT [61]. To ensure efficiencies are correctly modelled at
least one of the leptons in the event is required to match the triggered object. The efficiency
of the lepton triggers depends on the pT the lepton. The trigger matched lepton is required
to have pT ≥ 26 GeV to ensure they are selected in the efficiency plateau of the trigger, i.e.
where trigger efficiencies are close to 100%. Muons matched to the trigger object are further
required to have |η| ≤ 2.4 to avoid uninstrumented regions.

Finally the ATLAS detector is required to be fully functional and have all relevant detector
subsystems active for the given event, so the information can be trusted. This is taken care
of by the ATLAS GoodRunsLists that contain all relevant status-flags.

• Real data must pass the ATLAS standard StandardGRL_All_Good GoodRunsList, guar-
anteeing that all subdetectors of the ATLAS experiment were operat ional and data has
been correctly recorded.
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6.2.2 Electron Selection

As the electron selection should favour prompt, electroweakly produced electrons the object
requirements can be very strict regarding object reconstruction, centrality, origin and isolation.
The requirements for an object to be accepted as an electron are:

• ID class: Tight++

Including a requirement of the electrons to originate from the barrel or end-cap and

to be above a pT threshold (author 1 or 3)

• Leading/Trigger: ET ≥ 26GeV

• Subleading: ET ≥ 15GeV

• Acceptance: (| η |< 1.37) || (1.52 ≤| η |< 2.47)

• Calorimeter Isolation: TopoEtCone30
ET

< 0.10

• Track Isolation: ptcone30
ET

< 0.10

• Vertex: | Z0sin(θ) |< 0.5mm

• Impact parameter significance: | d0
σ(d0) | < 3

The identification of the electron is required to agree very well with the expected signature
of a real electron following the ATLAS electron tight++ identification. This alone results in
a significant rejection of especially light hadrons faking electrons. As the search in this thesis
will be sensitive predominantly to high pT physics, the electron pT is required to be above
15 GeV for all electrons and at least 26 GeV for the triggered electron. Note that the trigger
matched electron does not have to be the leading but the trigger matched electron must also
have pT of at least 26 GeV. The difference is very subtle - the trigger matching is performed
before energy and momentum corrections 1 so the matched lepton could in principle be below
the cut after corrections. The leading lepton cut ensures this does not happen.

The author requirement rejects forward and soft (low-pT ) electrons and the vertex and
impact parameter requirements rejects photon conversions and helps ensure that the recon-
structed object originates from the hard process.

The η requirements on the electron is to avoid detector regions with problematic recon-
struction and to be within coverage of the relevant detectors. As this search aims to be sensitive
to prompt isolated electrons, like electrons from W and Z leptonic decays, strict requirements
are imposed on the electron isolation. The isolation criteria significantly rejects electrons orig-
inating from in-flight decays of hadrons and heavy quark decays to some extent. As electrons
will naturally radiate bremsstrahlung with increased momentum, the requirements are taken
as the ratio of transverse energy or momentum in a cone (∆R = 0.3) around the object to the
total transverse energy deposited by the object.

1It has to be as the trigger algorithm uses the uncorrected values to identify the trigger object.
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6.2.3 Muon selection

Much of the reasoning behind the muon selection is equivalent to the reasoning for the electron
selection cuts. Prompt high pT muons are expected to deposit little energy in the inner parts
of the detector and must reach the muon chambers. They are expected to be well isolated and
are as such one of the objects that are not easily faked by other objects if selected correctly.
To ensure this the following selection has been performed:

• ID class: Combined tight (author 6)

1. a B-layer hit (if expected)
2. ≥1 pixel hits (including dead sensors)
3. ≥ 5 SCT hits (including dead sensors)
4. < 3 holes in the SCT and Pixels combined
5. if 0.1 <| η |< 1.9, then TRT hits + outliers > 5 and outliers

all hits < 0.9

6. if | η |≤ 0.1 or | η |≥ 1.9 and TRT hits + outliers > 5, require outliers
all hits < 0.9

• Leading/Trigger: ET ≥ 26GeV

• Subleading: ET ≥ 15GeV

• Trigger acceptance: (| η |< 2.4)

• Acceptance: (| η |< 2.5)

• Calorimeter Isolation:

– pµT < 100GeV : EtCone30
pT

< 0.10

– pµT ≥ 100GeV : EtCone30 < 10GeV + 0.01 · pµT
• Track Isolation:

– pµT < 100GeV : PtCone30
pT

< 0.10

– pµT ≥ 100GeV : PtCone30 < 10GeV + 0.01 · pµT
• Vertex: | Z0sin(θ) |< 0.5mm

• Impact parameter significance: | d0
σ(d0) | < 3

Apart from the cuts already described for leptons a set of inner detector requirements on
the muon-track has been imposed to help with identification. The track is required to have
adequate hits matching expectations from simulated muons in both pixel detectors and in
the TRT. Furthermore a hard limit is set on the number of holes allowed on the track and
on outliers for the TRT. Outliers are hits used in the track reconstruction where either the
central wire or edge of the TRT straw was hit. The number of outliers and holes on a
track significantly impacts the reconstructed track, so imposing these requirements ensures
tracks are well reconstructed and increases probability of reconstructing momentum and charge
correctly.

The muon isolation efficiency was found to be dependent on pT and the cuts have been
optimised by redefining the cut for muons with pT above 100 GeV.
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Jet reconstruction

Jets have been selected using the anti-kT algorithm for a cone ∆R=0.4 based on topological
clusters in the calorimeter with corrections from both the electromagnetic calorimeter and jet
energy-scale. The requirement for a jet to pass object-selection is pT larger than 25 GeV and
η ≤ 4.5. Furthermore a jet-cleaning has been performed where jets ending up in areas in the
Liquid Argon calorimeter known to have holes are discarded. Finally, the jet is required to
originate from the primary vertex with a given probability (|JVF| > 0.75).

6.2.4 Overlap removal

A series of objects will be reconstructed on top of each other. Electrons will for instance very
often be reconstructed as jets. These objects do not constitute true individual objects but
are artefacts of the reconstruction procedure and overlapping objects need to be handled by
storing only the objects believed to be the true object. A set of standard overlap removal cuts
are imposed to ensure this:

If there are two electrons within ∆R < 0.1, remove the electron with lower pT

If there is an electron and jet within ∆R < 0.2, remove the jet

If there is still a jet within ∆R < 0.4 of the electron, remove the electron

If there is a muon within ∆R < 0.1 of an electron, remove the electron

If there is a muon within ∆R < 0.4 of a jet, remove the muon

Finally exactly three reconstructed leptons passing all cuts are required for an event to
pass the signal region selection. If any of these are within ∆R = 0.2 of each other the event
is discarded.

6.2.5 Corrections applied to Monte Carlo samples

Several corrections to Monte Carlo distributions are recommended by ATLAS. These have to
do with discrepancies between data and Monte Carlo that originate from simulation flaws or
incomplete modelling/understanding of the detectors.

A scale shift has been observed in Z → l+l− events with regards to simulated data [70,71].
To correct for this the magnitude of transverse energy of electrons and transverse momentum
of muons has been smeared in Monte Carlo samples according to the recommendations from
ATLAS. The corrections are typically below 1%. A calorimeter response disagreement is cor-
rected by scaling electron energies with corrections typically below 0.5% Muon and electron
identification and reconstruction is also known to need corrections and the ATLAS recom-
mended scale factors have been applied here. Scale factors have also been applied to account
for a disagreement between the single lepton trigger efficiencies in data and Monte Carlo and
for a mis-modelling of the track impact parameters d0 and z0 and track isolation. The lepton
efficiency, reconstruction and identification scale factor systematics sum to an averaged 1.19
% for all processes and the track isolation and impact parameter corrections another 1.55 %.
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For nearly all events recoded in 2012 several proton pairs collided simultaneously. The
collisions are separated in space, so the impact on the hard process is negligible but it affects
a range of parameters in the event including number of tracks in the event. To model this
correctly Monte Carlo samples have been generated with pile-up (multiple events on top of
the hard process) but to properly resemble the actual conditions a dedicated pile-up tool is
used to reweigh Monte Carlo events [72].

6.3 Irreducible processes

The majority of events passing the selection is expected to originate from the Standard Model
processes, that naturally decay to three-lepton final-states with WZ being by far the dominant
process. To include all possible irreducible processes, the selection was run for all Monte
Carlo samples listed in table 6.1. Furthermore contributions from triboson and tt̄ + WW and
singletop samples where tested and found to be negligible. W/Z + jets are included in the table
as the samples have been used in the thesis but for the final results these will be estimated as
a reducible (fake) background. The k-factors represent corrections to the process cross-section
when calculations to higher-order than those used in the specific generator matrix elements
exists. The corrections are from various sources all referenced in [64] - for the central diboson
samples the correction is found through the use of MCFM [73] that performs next-to-leading
order calculations of cross-sections.

Selection implementation

The selection described in 6.2 was implemented in several steps. A preselection with the jet
cleaning and number of tracks from the primary vertex was the first cut followed by the demand
that one of the chosen triggers had fired for the given event. After the object selection was
run and after all overlap removal and corrections were applied, a demand of three leptons was
imposed. Finally the cut on ∆R between the final leptons was applied. The actual efficiency
of the object selection cuts varies from process to process. The selection optimisation has
not been done by the author but in parallel with the CERN multilepton group. The cutflow
histograms for object selectors have been included though, for some of the main processes, in
appendix C and table 6.2 lists the cutflow values for the Monte Carlo processes used. The total
integrated luminosity of the recorded 2012 data-stream used in this thesis is 20.28± 0.56fb−1

and the last column lists the expected number of events scaled to this luminosity.
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Table 6.1: Monte Carlo datasets for 8TeV 2012 data-modelling
Process dataset id σgen · εfilter εfilter K Gen. Int. lumi.
type number (pb) Factor (fb−1)

Diboson processes - Sherpa
WZ 126893 9.75 1 1.05 263.7
ZZ 126894 8.74 1 1.00 467.6
WW 126892 5.5 1 1.05 434.9
Z → ee+ γ 145161 32.3 1 1.23 269.5
Z → µµ+ γ 145162 32.3 1 1.23 269.3

Single boson processes - Alpgen + Pythia P2011C tune
Z → ee no partons 117650 711.8 1 1.23 9.3
Z → ee+ 1 parton 117651 155.2 1 1.23 8.6
Z → ee+ 2 partons 117652 48.75 1 1.23 8.3
Z → ee+ 3 partons 117653 14.23 1 1.23 7.7
Z → ee+ 4 partons 117654 3.76 1 1.23 8.0
Z → ee+ 5 or more partons 117655 1.095 1 1.23 9.1
Z → µµ no partons 117660 712.1 1 1.23 9.3
Z → µµ+ 1 parton 117661 154.8 1 1.23 8.6
Z → µµ+ 2 partons 117662 48.91 1 1.23 8.3
Z → µµ+ 3 partons 117663 14.25 1 1.23 7.7
Z → µµ+ 4 partons 117664 3.784 1 1.23 8.0
Z → µµ+ 5 or more partons 117665 1.115 1 1.23 9.1
Z → ττ no partons 117670 711.8 1 1.23 9
Z → ττ + 1 parton 117671 155.1 1 1.23 9
Z → ττ + 2 partons 117672 48.80 1 1.23 8
Z → ττ + 3 partons 117673 14.16 1 1.23 8
Z → ττ + 4 partons 117674 3.774 1 1.23 8
Z → ττ + 5 or more partons 117675 1.116 1 1.23 9

top related processes - McAtNlo + Jimmy
tt̄ + jets 110001 207.78 1 1.2177 39.5
t (Wt-channel) 108346 0.207 1 1.0825 44692

top + bosons - MadGraph + Pythia
tt̄+W 119353 0.1041 1 1.17 3284
tt̄+Wj 119354 0.0534 1 1.17 6406
tt̄+ Z 119355 0.0677 1 1.35 4377
tt̄+ Zj 119356 0.0454 1 1.35 6532
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Table 6.2: Cut-flow values for the signal region
Monte Carlo data

process #events Preselection Trigger 3-lep Scaled to
requirement selection 20fb−1

WZ 2699893 2686091 599216 16712 1239
% 100.000 99.489 22.194 0.619
ZZ 3799491 3779408 1014732 10206 461.1
% 100.000 99.471 26.707 0.269

WW 1390000 1382085 820036 18 0.8481
% 100.000 99.431 58.995 0.001

tt̄ + V 799993 799862 269185 2912 14.03
% 100.000 99.984 33.648 0.364

t (Wt-chan) 999799 999590 263873 4 0.0025
% 100.000 99.979 26.393 0.0004

tt̄+jets 200000 199954 131062 21 8.115
% 100.000 99.977 65.531 0.011

Z → ll+γ 18033252 17844170 10676526 452 31.19
% 100.000 98.951 59.205 0.003

Total number of expected events from Monte Carlo: 1755 ± 42 (stat)
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6.4 Reducible processes

As already mentioned the reconstruction of event kinematics means that three-lepton final-
state events can originate from a range of hard-processes which do not involve prompt elec-
troweak leptons. The leptons are called fake leptons as a general term but the characteristics of
these differ. Prompt electroweak electrons can be faked by either semi-leptonic heavy flavour
decays, like the decay of a top quark through a W to a lepton, neutrino and a b-quark, or
from misidentified light hadrons and conversions. Pions will for instance resemble an electron
quite a lot and even with the proposed isolation and identification criteria some light hadrons
will be identified as electrons. Photon conversions will typically create an electron pair in
the beam-pipe and either one or both the electrons can be reconstructed as prompt electrons.
Muon fakes originate from decays of b- and c-hadrons [74] and to some extent also from Pion
and Kaon decays or punch-through, where particles reach the muon detectors and deposit
energy like a muon would. The amount of fakes to be expected in the signal region cannot
be probed using Monte Carlo samples, as the fake dynamics are not well enough modelled.
Instead a data-driven method, where scaling factors are calculated for the different fake types
in a region orthogonal to the final signal region, is used.

6.4.1 Data-driven methods

Defining a numerator object, N, with selection identical to the signal region object of the type
(e.g. electron/muon) and a denominator object that pass most selection criteria for the object
but fail a selected few, D, the fake-factor is simply the ratio:

f =
N

D
. (6.1)

The principle of the fake-factor method is to estimate this scaling factor in a control region
orthogonal to the signal region and apply it to events in the signal region, where one or
more of the three selected leptons fail nominal cuts but pass the denominator cuts, to get the
total number of nominator objects expected in the signal region. In the perfect denominator
selection of the fake control region no nominator objects are present. For this reason the
contribution from simulated processes with real leptons have been subtracted from the fake-
factor control region. The nominator and denominator selection criteria are described in the
following sections and the combinatorics leading to the final estimate in 6.4.2.

Electron denominator definition

The fake electron selection must allow semi-leptonic heavy flavour decays and misidentified
light hadrons to pass. The impact parameter significance is an excellent observable for en-
hancing semi-leptonic heavy flavour decays as the heavy (b-)quarks will travel a measurable
distance before decaying. The electrons from a semi-leptonic heavy flavour decay and from
conversions are real electrons, but they are not prompt electroweak electrons and are there-
fore both labelled fakes. Another source of electron fakes is misidentified light hadrons. These
objects are not electrons but hadrons that have been identified as an electron. The electron
identification algorithm Tight++ is specifically designed to reject these misidentified hadron,
so loosening the tightness of this algorithm greatly enhances number of misidentified hadrons
in the sample. The same applies to electrons from conversions which are also highly suppressed
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by the identification criteria. The inverted cuts are shown in table 6.3. These have been devel-
oped in the multilepton group and optimised with respect to fakes in the three-lepton signal
region. The electron denominator objects must pass inverted cuts but candidates that fail
both nominator criteria are rejected as they are too far from the nominator objects.

Electron fake selection
Cut isEM ID tightness Impact parameter significance

Numerator Tight++ |d0|
σd0

< 3

Denominator Loose++ 3 ≤ |d0|σd0
< 10

Table 6.3: The nominal and inverse selection of electrons used to measure fake-factors.

Muon denominator definition

The primary source of non-prompt muons are semi-leptonic heavy flavour decays [74]. These
will have larger impact significance parameters just like the electrons from semi-leptonic heavy
flavour decay. Muons from hadrons like Pions and Kaons and misidentification from punch-
through will all have significantly poorer isolation than prompt muons and these can be
selected by loosening the isolation requirements for the object. The inverted cuts for muon
fakes can be seen in table 6.4. The muon denominator objects must fail at least one nominator
selection cut and pass both of the inverted cuts.

Muon fake selection
Cut track isolation calorimeter isolation

for pµT < 100GeV :
Numerator EtCone30

pmuT
< 0.10 PtCone30

pmuT
< 0.10

Denominator EtCone30
pmuT

≥ 0.10 PtCone30
pmuT

≥ 0.10

for pµT ≥ 100GeV :
Numerator EtCone30 < 10GeV + 0.01 · pµT PtCone30 < 10GeV + 0.01 · pµT
Denominator EtCone30

pmuT
< 2.0 PtCone30

pmuT
< 2.0

Cut Impact parameter significance
Numerator |d0|

σd0
< 3

Denominator 3 ≤ |d0|σd0
< 10

Table 6.4: The nominal and inverse selection of muons used to measure fake-factors.

During the studies it was found that the amount of high-pT muon fakes was too low to
give proper fake-factor estimates. One of the cuts reducing the number of muons was the
∆R requirement between muons and jets. As muon fakes from semi-leptonic heavy flavour
decays are expected to be close to or within jets this requirement was removed for muons with
pT above 40 GeV. This has been studied in detail in the multilepton group and is described
in [62]. The requirement is loosened in both control regions for the fake factor estimate to give
the correct final estimate. The muons are set to fail isolation if either or both of the isolation
cuts fail.
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6.4.2 Fakes in three-lepton finale states

For an event with three reconstructed leptons either one, two or three leptons could potentially
be fake leptons. The three nominator leptons are however not identical, as the triggered
lepton is required to have pT above 26 GeV and is affected by the trigger algorithms. For both
the lowest unprescaled electron and muon trigger, isolation criteria are applied significantly
enhancing the probability of the lepton to be real. The combinatorics are:

lNtrigl
N lN = lRtrigl

RlR + lFtrigl
RlR + lRtrigl

F lR + lRtrigl
RlF + lFtrigl

F lR (6.2)

+ lFtrigl
RlF + lRtrigl

F lF + lFtrigl
F lF

where lR are real leptons and lF fake. Including leptons from the denominator selection and
using the fake-factor definition:

f1 · lDtriglN lN = lFtrigl
RlR + lFtrigl

F lR + lFtrigl
RlF + lFtrigl

F lF (6.3)

f2 · lNtriglDlN = lRtrigl
F lR + lRtrigl

RlF + lFtrigl
RlF + lRtrigl

F lF + lFtrigl
F lR + lFtrigl

F lF

f1 · f2 · lDtriglDlN = lFtrigl
F lR + lFtrigl

RlF + lFtrigl
F lF

Inserting equations 6.3 into eq. 6.2 results in:

lNtrigl
N lN = lRtrigl

RlR + f1 · lDtriglN lN + lRtrigl
F lR + lRtrigl

RlF + lRtrigl
F lF (6.4)

= lRtrigl
RlR + f1 · lDtriglN lN + f2 · lNtriglDlN − lFtriglF lR − lFtriglRlF − lFtriglF lF

= lRtrigl
RlR + f1 · lDtriglN lN + f2 · lNtriglDlN − f1 · f2 · lDtriglDlN

The last line can better be understood by defining the regions: DNN where the triggered
lepton fail the nominal selection object, NDN where one of the non-triggered leptons fail
nominal selection and DDN where both the triggered and one of the non-triggered leptons
fail nominal selection requirements. With this definition, the total number of fakes in the
three-nominal-lepton final-state is:

N3l
fakes = f1 ·NDNN + f2 ·NNDN − f1 · f2 ·NDDN , (6.5)

where NX is the number of events in the X’th region. In practice the f1 and f2 fake-factors
will be estimated separately for electrons and muons and applied as appropriate to the flavour
of the denominator object.

6.4.3 Fake-factor control region

To estimate f1,e/µ and f2,e/µ in eq. 6.5 a region orthogonal to the signal region must as
mentioned be used. It should preferably have the same ratio of heavy- to light flavour fakes as
the signal region. One region shown to work especially for muons [62,75,76], is the region with
two same-flavour same-sign leptons. The same sign requirement helps to greatly enhance the
number of fake candidates and suppress prompt leptons especially from W/Z + jets events.
The region was found to work well for electron fakes as well and has been used for both electron
and muon fake factor estimates. The regions allows for both f1 and f2 to be determined as
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there is a triggered and a non-triggered lepton in the event. To reduce the amount of prompt
leptons in the sample the Monte Carlo contribution from WZ, ZZ, WW, tt̄ + jets, singletop
and tt̄ + V has been subtracted from both nominator and denominator objects using the
datasets shown in table 6.1. W and Z + jets have not been subtracted. The contribution
from both will be estimated as part of the fake estimate. The inadequate modelling of V+jets
seen in section 5.2 could be improved by including dedicated heavy flavour samples but as the
third lepton in Z + jets in the signal region will be a fake, it is appropriate to included the
contribution from V + jets in the fake estimate.

If fake-factors were independent of energy/momentum and geometry an average fake-factor
could be used but during this study the fake-factors were found to be dependent on pT . The
electron fake-factors as a function of pT can be seen for the triggered denominator objects in
figure 6.1a and for the non-triggered objets in 6.1b and for the muons in figure 6.2a and 6.2b.
The bins size is variable defined as [15-35,35-55,55-100,100-250,250+] in GeV to compensate for
the falling statistics with higher pT . The last bin has a large uncertainty but the contribution
from fake objects at pT above 250 GeV in the signal region is very small.

(a) Estimated electron fake-factors as a function of the pT of the
trigger-matched electrons.

(b) Estimated electron fake-factors as a function of the pT for
non-triggered electrons.

Figure 6.1: Bins defined as [15-35,35-55,55-100,100-250,250+] in GeV. It is worth recalling that
the lowest unprescaled trigger for electrons has isolation criteria up until 60 GeV.
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(a) Estimated muon fake-factors as a function of the pT of the
trigger-matched muons.

(b) Estimated muon fake-factors as a function of the pT for non-
triggered muons. It is worth recalling that the lowest unprescaled
trigger for muons has isolation criteria up until 36 GeV.

Figure 6.2: Bins defined as [15-35,35-55,55-100,100-250,250+] in GeV.

Fakes in the signal region

The fake contribution to the signal region is estimated from a region identical to the signal
region but with the requirement that at least one of the three leptons is a denominator lepton.
Again the MC contribution is subtracted for all processes except V + jets. The resulting
number of events in the triggered/non-triggered regions are shown in table 6.5.

nDNN nNND nDDN
data 378 11988 705
Monte Carlo 92.4 4103.6 148.6

Total after subtraction
286 7884 556

Table 6.5: The number of events with either- or both a triggered and non-triggered denominator
object for the fake estimate.

To get the fake contribution in the signal region, 286 DNN events, 7884 NND events and
556 DDN events are stored with the appropriate weights following equation 6.5. The weight
of the event is determined by the associated fake-factor dependent on flavour, region and the
pT bin the objects falls in. This results in a total of 857 ± 45 (stat) fakes in the signal region.
The uncertainty is calculated as the quadratic sum of the errors defined by the error on the
fake-factor. This includes the contribution from Z (and W) + jets.
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Improvements to the method

The method used here gives an estimate of the number of fakes, but as it has not been the
main focus of this study, it can be improved. A thorough study of the composition of heavy
and light flavour fakes in the control regions and signal region would reveal whether the ratio
of fake types is correct. Furthermore, the estimate might gain from increased statistics for the
triggered fake-electrons by the inclusions of pre-scaled triggers with a lower pT threshold or
the use of another control region. The extensive study of an improved fake-estimate is worthy
of a PhD. in itself and has not been investigated further here. The fake-factor estimate is of
course associated with systematic uncertainties that will be summarised in section 6.5.

6.5 Systematic uncertainties

When analysing ATLAS data and fitting Monte Carlo distributions to it, the result will
be influenced by a range of systematic uncertainties. Some constitute overall normalisation
uncertainties whereas others are for objects like electrons and muons and other again are
specific to a given process. Systematic uncertainties that have been calculated by other studies,
have been used in this study, if they can be directly applied. Other uncertainties have been
calculated for this analysis specifically. The source has been clearly cited if the uncertainties
are taken from another source.

How systematic uncertainties are summed depends on their correlation. Uncorrelated
systematic uncertainties are added in quadrature whereas fully correlated uncertainties are
added linearly. The determination of correlation between systematics is a huge study in itself.
For the work presented in this thesis all systematic uncertainties are assumed to be either
fully correlated or completely independent, as other ATLAS analyses do.

6.5.1 Global systematics

The global systematics refer to all systematic uncertainties that influence the total number of
events. This involves uncertainty on integrated luminosity as well as cross-section of simulated
processes.

• The ATLAS official uncertainty on the integrated luminosity is ± 2.8%. It is derived,
following the same methodology as that detailed in [77], from a preliminary calibration of
the luminosity scale derived from beam-separation scans performed in November 2012.
This affects all data distributions and is reflected in an uncertainty in the total number
of events, but not on the shape of the distribution.

• The uncertainty on the cross-section of Monte Carlo samples comes from two sources: the
parton distribution function, PDF uncertainty and the renormalisation scale uncertainty.
The uncertainties have been summarised in table 6.6.

– Z+jets and W + jets uncertainties have both been taken from [78]. The total
uncertainty follows the PDF4LHC [79] standards, as does the following uncertain-
ties quoted. This means combined uncertainty is the scale and PDF uncertainties
added in quadrature.

– For tt̄ + V the uncertainties have been calculated by the top working group. The
scale and PDF uncertainty is taken from [80] as the final quoted uncertainties



6.5. Systematic uncertainties 101

for both tt̄ + W (j) and tt̄ + Z(j). This choice is driven by the larger, and more
conservative, scale variation range and also the consistent PDF variation which is
not quoted in [81]. Although [80] does not quote these uncertainties for ttbar+Z the
top group concluded from [81] that the scale uncertainties are of the same size for
ttbar+W and ttbar+Z and therefore quote the same uncertainty for both processes.
The largest uncertainty is taken per variation and symmetrised, resulting in a 21%
scale uncertainty and 8% PDF uncertainty. Adding these in quadrature gives the
total uncertainty on the cross-section of 22%.

– For ZZ and WZ (and WW) the cross-section uncertainties are also given in [78] for
the MCFM generator but have been specifically studied for the sherpa generator
and with jets in [61] appendix A.5. The uncertainties from the dedicated study are
close to the uncertainties in [78] but slightly lower. The uncertainty of [61] quoted
for sherpa has been used for ZZ and WZ and the total is the scale and PDF added
in quadrature.

– tt̄ and single-top have rather discrepant uncertainties listed in various studies with
the result in [61] being the largest known to the author. The quoted total 10% is
therefore used for both process types.

Systematic uncertainties on cross-section of Monte Carlo samples
Sample Scale uncertainty (%) PDF uncertainty (%) Total uncertainty (%) Reference
Z + jets (+4.5, -3.9) (+3.3, -3.8) (+5.6,-5.4) [78]
W + jets (+4.5, -3.9) (+3.3, -3.8) (+5.6,-5.4) [78]
tt̄+ V ± 21 ± 8 ± 22 [80] and [81]
WZ ± 6.6 ± 3.8 ± 7.6 [61]
ZZ - - ± 4.3 [61]
WW - - ± 5 [61]
tt̄ - - ± 10 [61]

single top - - ± 10 [61]
Z → ll + γ - - ± 17 [82]

Table 6.6: The systematic uncertainties associated to the Monte Carlo samples used for Standard
Model expectation modelling. The PDF and scale constituents of the total uncertainty are given
where available.

All global systematics are assumed to be uncorrelated from process to process, with the
exception of luminosity that is 100% correlated between processes. The uncertainties are
implemented by allowing the total number of events expected to float in the fit within the
Gaussian constraint described in section 4.4.2. As table 6.6 shows some uncertainties are
asymmetric. This has been implemented by using a two-sided Gaussian with sigma on each
side set to the quoted value.

6.5.2 Fake systematics uncertainties

The fake or reducible background estimate has uncertainties associated to both the estimate
of fake events and the fake-factors. The MC subtraction of nominator and denominator
objects is affected by the uncertainty from the MC samples used. A 10% uncertainty is used
consistent with the cross-section uncertainty on tt̄. The MC subtraction varies from 20 to 35%
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on average between the NDN, DNN and DDN regions. As the final number of estimated fakes
is, however, dependent on the weights associated with each region, an uncertainty associated
to the migration between regions is needed. As a test of the effect the number of events in
the DNN and NDN regions was varied up and down by 10% respectively. The result was
a difference between bins ranging from 0 to around 10% and an overall variation in events
of 10%. This indicates a linear dependence so a 10% uncertainty on the MC subtraction
of 30% results in at least up to 3% variations in both the final total number of estimated
fakes and bin-to-bin variations. The statistical uncertainty on the number of events falling in
the triggered/non-triggered regions will result in a similar contribution. The largest value is
obtained from the low stat DNN region which results in 5% uncertainty on the final estimate.
These contributions are all added as one total uncertainty of 10% assumed to be fully correlated
across bins.

The fake-factors were seen to vary with pT for both electrons and muons. The errors have
been calculated by propagating the fractional uncertainty from the nominator and denomi-
nator objects to an uncertainty on the weight for each event. The effect is generally below
10% and resulted in a total uncertainty of 45 events. The contribution to each bin in the final
fake distributions is the quadratic sum of uncertainty on weights for events falling in that bin.
These are assumed to be fully correlated across bins. Charge flips and conversions are not
included as a systematic uncertainty in the fake studies as there are no requirements on the
charge composition in the signal region while photons from bremsstrahlung are included in
the fake-factor estimate.

Finally the fraction of fakes from heavy- and light flavour sources was assumed to be
identical in both control regions and the signal region. The normalised distributions of the
MV1 b-tagging variable is plotted in figure 6.3a for the µ±µ± control region and for the µµµ
subsample of the three lepton control region. The first bin is completely dominated by c
and lighter flavour jets and the last bin is dominated entirely by b-jets. As a reference the
composition of b- and c-jets in D-meson decays is included in figure 6.3b. The difference in
the first bin is 16% and 32% in the last bin. Clearly the composition of flavours in the jets
are not identical for the two regions and a systematic uncertainty should be introduced to
describe this. Ideally this should be done by a detailed Monte Carlo study but this has not
been within the scope of this thesis. The distributions agree much better for electrons where
variations are below 1% for all high-statistics bins. As a consequence a systematic uncertainty
of 30% has been added on the fake events with a MV1 value above 0.7 if the event contains
at least one muon and a 16% uncertainty if the MV1 tag is below 0.7.

6.5.3 Event, object identification and reconstruction systematics

There is a set of systematic uncertainties resulting from corrections of object- or event-
reconstruction. All scale factors mentioned in section 6.2.5 could affect the shape of the
distributions. The lepton ID and reconstruction correction scale factors affect the total num-
ber of reconstructed leptons passing the selection requirements and the uncertainty on the
correction therefore constitute a central systematic uncertainty. Energy measurement correc-
tions also affect the efficiency for leptons close to the threshold and as such the uncertainty on
the correction constitutes a systematic uncertainty on the total selection efficiency. Likewise
the energy scale correction and trigger efficiency have systematic uncertainties associated. As
the aim of this study is to fit the distributions resulting from the Principal Component Anal-
ysis any systematics distorting the shape of these distributions, could directly influence the
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(a) The maximum value of the b-tagging variable MV1 for muon
events in the two control regions.

(b) D-meson decays in ATLAS as reference for the MV1 compo-
sition of b- and c-jets [83].

Figure 6.3: MV1 b-tagging values.

final result. The Principal Component Analysis is a linear composition of the input observ-
ables so any principal component used in the final fit should conservatively be assumed to be
correlated to all input variables.

Event weight uncertainties

Some of the uncertainties are on the scale-factor or weight applied to each event. This is the
case for trigger efficiency, lepton isolation and impact parameter corrections and the lepton
reconstruction and identification scale-factors. The scale-factors are applied as an event weight
and the tools provide the error associated with each weight. The uncertainties provided by the
official ATLAS tools are based on underlying distributions typically in pT and η resulting in
bin-to-bin correlations. The uncertainties are therefore assumed to be fully correlated across
bins. They are furthermore assumed to be correlated to each other and are implemented using
one common nuisance parameter. The effect on overall number of events passing selection is
seen in table 6.8.

A test of shape dependence of remaining systematics

For energy smearing, momentum corrections and energy scale corrections it is customary to
quantise the effect as an overall up- or downwards fluctuation in number of selected events,
but the shape of distributions of principal components could be influenced by these.

The full selection has been run twice for each of the energy and momentum corrections.
Each time the systematic effect is varied up or down one sigma using the errors on the correc-
tion provided by the official tools, as recommended by ATLAS. Figure 6.4 shows the distri-
butions of these variations in the highest ranked principal component for a range of processes
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and uncertainties2. Below each plot is the variation percentage from the nominal defined as:

∆up(down)

Nnominal
· 100%, (6.6)

where ∆up(down) is the difference between the nominal selection and the selection with the
systematic varied up or down one standard deviation and, Nnominal, the number of events
passing the selection with the given smearing applied. The variation % has only been cal-
culated for bins with at least 10 events and the following results are based on these. If the
bin-uncertainties, for the given variation, are correlated the behaviour of the bins when vary-
ing up and down are expected to be coherent e.g. to appear synchronised. In other words
the variation % of a bin varied up is expected to be approximately equal to the variation %
of the bin varied down. This is to some extent the case for the distributions in Figure 6.4
but to further test if an actual shape shift occurs the variation % up has been fitted with a
first degree polynomial. A shift of the shape would likely result in a slope on the line, but
this is not observed. Z → ee + γ and tt̄ + W does not fit a straight line very well, but the
combined samples, Z → ll + γ and tt̄ + V agree within uncertainties. The variation % has
furthermore been fitted with a zero degree polynomial and the results are in table 6.7 for the
highest ranked principal component. The probabilities are in general very close to one and the
systematic uncertainties can be treated as an overall uncertainty on the normalisation. WW
and tt̄ + jets have so few events passing selection even before scaling that the distributions are
completely dominated by statistical fluctuations and they have not been presented in table
6.7.

Obtaining the overall process normalisation

The overall normalisation to be applied to each process has been obtained from the performed
fits to a flat line. The fitted constant gives the value of the deviation in % of the 1 σ
variation up or down. As the normalisation should affect the distributions in each principal
component equally the mean has been taken to avoid vastly overestimating the uncertainty
due to statistical fluctuations. The results are presented in table 6.8.3

2MS is an abbreviation for Muon Spectrometer and ID for Inner Detector and the pT smearing is performed
on each separately.

3The energy scale correction was found not to alter the number of events passing selection and hence no
uncertainty is added from it. WW and tt̄ have not been assigned systematic uncertainties due to smearing as
the distributions are completely dominated by statistical fluctuations.
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(a) 1. polynomial fit to first principal component for WZ with pT
smearing MS.

(b) 1. polynomial fit to first principal component for ZZ with
energy smearing.

(c) 1. polynomial fit to first principal component for tt̄+W with
energy smearing.

(d) 1. polynomial fit to first principal component for tt̄+ Z with
energy smearing.

(e) 1. polynomial fit to first principal component for Z → ee+ γ
with energy smearing.

(f) 1. polynomial fit to first principal component for Z → µµ+ γ
with energy smearing.

Figure 6.4: Distributions for energy and pT smearing varied up and down one standard deviation
for the central processes. In general small effects are observed. The blue line in the ratio plots is
the fit to the variation % for upwards variations.
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Process principal component probability of χ2 χ2

NDF p0 error
energy smearing
ZZ 1 0.59 0.90 -0.03 ±0.05
tt̄ + W 1 1.00 0.26 0.00 ±0.08
Z γ 1 0.97 0.44 0.14 ±0.12
tt̄ + Z 1 0.97 0.46 -0.00 ±0.06
WZ 1 0.93 0.60 0.01 ±0.02
pT smearing ID
ZZ 1 0.99 0.40 -0.00 ±0.00
tt̄ + W 1 1.00 0.16 -0.00 ±0.05
Z γ 1 1.00 0.19 0.00 ±0.00
tt̄ + Z 1 0.98 0.40 0.00 ±0.00
WZ 1 0.99 0.40 0.00 ±0.01
pT smearing MS
ZZ 1 1.00 0.38 -0.00 ±0.04
tt̄ + W 1 1.00 0.19 0.21 ±0.70
Z γ 1 1.00 0.26 0.00 ±0.00
tt̄ + Z 1 0.99 0.35 0.00 ±0.01
WZ 1 0.98 0.49 -0.00 ±0.00

Table 6.7: The results of a straight line (zero’th polynomial) fit to the variation % upwards for
each varied systematic effect.
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Effect/correction σup (%) σdown (%)
Lepton ID, reconstruction, isolation
and impact parameter scale-factors 2.6 2.6
Trigger efficiency 0.4 0.3
Energy scale 0 0
Total 2.63 2.62

Effect/correction σup,mean (%) σdown,mean (%)
WZ
Energy smearing 0.2 0.2
Momentum smearing ID 0.1 0.1
Momentum smearing MS 0.05 0.1
σtot (including theoretical) 8.0 8.0
ZZ
Energy smearing 0.42 0.46
Momentum smearing ID 0.01 0.01
Momentum smearing MS 0.04 0.05
σtot (including theoretical) 4.7 4.7
WW

tt̄+ jets
Energy smearing <0.01 <0.01
Momentum smearing ID <0.01 <0.01
Momentum smearing MS <0.01 <0.01
σtot (including theoretical) 5.0 5.0
tt̄+ V
Energy smearing 0.09 0.05
Momentum smearing ID 0.01 <0.01
Momentum smearing MS 0.03 0.03
σtot (including theoretical) 22.1 22
tt̄+ jets
Energy smearing <0.01 <0.01
Momentum smearing ID <0.01 <0.01
Momentum smearing MS <0.01 <0.01
σtot (including theoretical) 10 10
Z → ll + γ

Energy smearing 1.34 1.29
Momentum smearing ID 0.01 0.01
Momentum smearing MS 0.12 0.13
σtot (including theoretical) 18.5 18.4

Table 6.8: The object, reconstruction and calibration systematic uncertainties. The values pre-
sented are the mean effect over all observables for each distribution.
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6.6 The use of Principal Component Analysis for final fits

So far the Principal Component Analysis transformation has been described as "a near perfect"
method to create independent variables from any input observable but the test of the method
in the two-lepton SFSS control region revealed that this is not always the case. Principal
Component Analysis correctly transforms a dataset with N observables into a maximum of N
new linearly uncorrelated observables. Now the first issue has to do with the generalisation
of the transformation matrix. In principle the transformation matrix only guarantees linear
independence for the dataset used to generate the matrix. In reality the transformation works
on a more general basis and it is possible to transform other similar datasets resulting in still
nearly uncorrelated variables.

6.6.1 Multiple principal components for final fits.

If the resulting principal components are to be used in a fit they must be independent or at the
least with negligible correlations for all fitted processes. This might not be true for the rather
complicated situation where several processes exist that all contribute to the three-lepton
signal region, each with slightly different characteristics. Furthermore the result of any such
test depends on the data used to generate the transformation matrix. Even if all simulated
data is used to construct the matrix, it will be largely determined by the dominant processes
and linear dependence might still exist for processes with low contribution.

One can to some extent get around this by fixing parameters for processes where the given
PCA-matrix does not yield independent eigenvectors. That is, if the parameters for WZ, ZZ
and fakes are the only free parameters in a fit, the principal components generated for e.g Z
+ jets are not required to be independent. This can be thought of as a noise reduction where
the expected number of events from a set of fixed background processes are removed before
performing the fit with the remaining floating parameters and processes.

To test the use of multiple principal components, a transformation matrix was generated
using only WZ Monte Carlo and the covariance matrices were constructed for all resulting
principal components in all processes. WZ was chosen following the idea that any transfor-
mation used should model well the three-lepton signal region and should be able to catch real
prompt leptons from new physics which resembles WZ. The observables used as input to the
generation of the PCAWZ matrix affect how independent the resulting principal components
are for other processes. By trial and error the input observables resulting in lowest correlation
between principal component in processes other than WZ where found to be:[

H lep
T Hjets

T
/ET ∆R nTracksvertex M3lep

T

]
The correlation matrix for WZ is of course zero for all entries outside the diagonal per con-
struction. The resulting correlation matrices for ZZ, fakes and real data are shown in figure
6.5. The scales are different but it is clear that neither have exact zero correlation between
all principal components. The correlation is, however, very low for most of the principal com-
ponents. The resulting principal components in data have correlations close to zero for the
first three components. The highest correlation is seen for p2 and p4 which are roughly 20%
anti-correlated and p1 and p5 close to 20% correlated. For fakes the first two components
are highly uncorrelated and the correlation between the first and third is below 20%. Higher
correlations are present for principal components after the third. For ZZ p1 and p2 and p1

and p3 are approximately 15% anti-correlated. Effects like random fluctuations and statistics
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of the sample influence the correlation value. The first three principal components have been
assumed to be independent for now and will go through the mutual information test to test
this. For all tt̄ + V and Zγ the first three principal components also have correlations below
20%. WW and tt̄ + jets have too low statistics for proper values of correlation coefficient to
be found. They will be kept fixed in final fits.

A similar test was done using data, ZZ and Zγ to generate the Principal Component
Analysis matrix and perform the transformation. The results were very comparable for data
but for other processes the linear dependence increased.

6.6.2 Test of mutual information in the signal region

The test for mutual information (MI) was performed on all resulting principal components
for each process, one process at a time. The final transformation used in this thesis is the
Principal Component Analysis based on the WZ Monte Carlo that should maximise the ability
to describe final states with three real, prompt leptons. Using WZ to generate the PCA-matrix
and a threshold of 0.05 (see description of statistical influence on the MI measure in section
5.3) resulted in just two distributions above the threshold: fakes p2 vs. p5 and Zγ also p2 vs.
p5. To be even more conservative, distributions in p1 through p3 with linear correlation above
0.2 was also found if the MI was above 0.01 and the results are shown in figure 6.6. The value
in the upper right corner is the linear correlation. In data no distributions were found with
mutual information above 0.01. It should be noted that for data and MC processes with more
than 600 events the MI has only been calculated for 600 events. For this sample size even
completely independent distributions could result in MI above 0.01 so the threshold should
catch distributions even with very low correlation of any type.

The distributions do not show any clear correlations, neither linear nor non-linear (i.e.
donut shapes or other clear non-linear structures). p2 and p5 have some linear structure
resembling anti-correlation for both fakes and ZZ. Both plots have correlations factors of
below -20% and some dependence is likely to exist. Focusing on just the first three principal
components, p1 and p3 has a linear correlation of ≈ 20 % for fakes and tt̄ + V but this is
not clear from the distribution in figure 6.6. p1 and p2 for ZZ has some structure but no
clear dependence. As already mentioned more clear (linear) correlations existed for p4 and up
(lower ranked) and these will not be included in fits for final results. It is worth noticing that
no correlations were found in data even using a lower threshold of 0.01 and studying the first
three principal components.

For the final results in this thesis p1, p2 and p3 are assumed to be completely independent
for all processes.
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(a) Correlation matrix for 2012 8TeV ATLAS data

(b) Correlation matrix for ZZ

(c) Correlation matrix of fakes

Figure 6.5: The linear dependence of principal components in the other major processes after
applying a transformation based on a matrix generated using WZ Monte Carlo. Notice the different
scales.
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(a) The mutual information of fakes p1 vs. p3. (b) The mutual information of fakes p2 vs. p5.

(c) The mutual information of tt̄ + V p1 vs. p3. (d) The mutual information of tt̄ + V p2 vs. p4.

(e) The mutual information of ZZ p1 vs. p2. (f) The mutual information of ZZ p2 vs. p5.

Figure 6.6: The principal component pairs found by the mutual information test as defined in
section 4.7.4 to be above the threshold of 0.05 or 0.01 if linear correlation around 20% or more
are known to exist. Further correlation exist for p4 and above. As a reference the linear correlation
between the two components, ρ, has been plotted.
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6.6.3 Separability of processes in principal components

It is not straightforward to illustrate separation in a multidimensional space, but figure 6.7
attempts to do it by presenting the 2-dimensional distributions of the three most significant
processes and data against each other for some of the principal components resulting from
the PCAWZ transformation. All distributions have been normalised to unity to focus on
the shape and not their overall contribution. The processes have been plotted two and two
to show their distinct separation. Figure 6.7a through 6.7c show that separation between
Standard Model processes is indeed possible to some extent. Figure 6.7d is included to show
that several principal components contain separation power between data and WZ. This is
essential if anything but WZ must be measured although it is no guarantee that a new signal
can be clearly separated. Figure 6.8a shows the 3-dimensional distribution of WZ, ZZ and
fakes - the three most dominant processes - here in three principal components. Figure 6.8b
shows the projection in the p1 vs. p2 plane. The plots illustrate that there is clear separation
potential in adding additional principal components even though all processes undergo the
same WZ PCA-matrix transformation.

6.7 p1 as an optimal (multidimensional) observable

Even without the use of multiple principal components in the fit, Principal Component Anal-
ysis will be able to deliver a much larger portion of information to the fit than any one-
observable fit. The transformation maximises the variance as described in section 4.7.3. The
highest ranked principal components is therefore the component with the largest information
from the original pattern space and it combines information from numerous observables. It
will be multidimensional in the sense that the one dimensional principal component, will con-
tain information from several of the dimensions of the original pattern space. If correlated
observables are added to the pattern space, the eigenvalue and information contained in p1

will increase.4

Including all 10 observables described in section 5.1.4 results in principal components with
the eigenvalues shown in figure 6.9a. Close to 40% of all information in the eigenvectors are
described by the first principal component alone. This really is one of the strongest points of
the method. A single variable fit using the highest ranked principal component will contain
much more information than any single observable in the original pattern space. The highest
ranked principal component has been plotted in figure 6.10. The two plots in normal and
logarithmic scale, respectively, show that the fit will be dominated by WZ, ZZ and fakes. tt̄ +
V, WW and Zγ have very small contributions but will affect the fit in the second, third and
fourth bin.

4To the extent that adding 100% correlated observables will of course not add new information.
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(a) Separation in p1 and p2 between WZ and ZZ. (b) Separation in p2 and p3 between WZ and fakes.

(c) Separation in p1 and p2 between data and WZ. (d) Separation in p1 and p3 between data and WZ.

Figure 6.7: The distribution of highest ranked principal component made from WZ Monte Carlo
for the different Standard Model processes contributing to the signal region. Each template is
normalised to unity.
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(a) The 3D distribution of p1, p2 and p3 for WZ, fakes and ZZ.

(b) The projection to the p1,p2 plane.

Figure 6.8: Separation potential in higher dimension.
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(a) The eigenvalues of the principal components of a PCAWZ transformation based on 10 input
observables maximising variance in one principal component.

(b) The eigenvalues of the principal components of a PCAWZ transformation based on 6 input
observables used for fits combining principal components. This combination maximises independence
between principal components in all subprocesses.

Figure 6.9: The eigenvalues of the PCAWZ based on 10 and 6 observables respectively.
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(a) The distributions in 50 bins allow for some separation while keeping the number of empty or low-content
bins low.

(b) Plotting on logarithmic scale help illustrate the difference in shapes of the processes.

Figure 6.10: The distribution of highest ranked principal component of the PCAWZ transformation,
constructed from the 10 input observables. All Standard Model processes contributing significantly
to the signal region are included.
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6.7.1 Seesaw neutrinos as a benchmark model.

To test the fit method on a search for new physics, the signal originating from the possible
existence of type III seesaw heavy leptons is used as a benchmark model. The signal has been
generated using madgraph for production and decay of the new signal and initial- and final
state radiation is simulated using Pythia, which also handles the decay of the resulting W and
Z bosons. The sample is generated with a filter for at least three leptons. The datasets used
for the Type III seesaw mechanism heavy leptons are:

Table 6.9: Datasets used for Type III seesaw
dataset mass of new particle Generated Luminosity
(MC) ID [GeV] [fb−1]
158693 95 3020
158694 100 476
158695 120 288
158696 160 749
158697 200 5331
158698 300 17590
158699 500 97559

The simulation was done using the AU2CTEQ6L1 parton density function, which is not
as recent as CTEQ10 but for the purpose of benchmark testing it is adequate.

Characteristics of the type III seesaw in PCA

Figure 6.11 presents the distribution of the Standard Model processes along with the distribu-
tion for type III seesaw triplets with mass 95,160 and 500 GeV. The observable is the highest
ranked principal component, p1 constructed from WZ Monte Carlo using 10 input observables.
It is very interesting to see how well the first principal component alone, separates the signal
from the Standard Model processes for the 95 GeV mass-point.
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(a)

(b)

Figure 6.11: The expected signal in p1 of the 10 observable PCAWZ for the Type III seesaw triplet
with mass 95,160 and 500 GeV.



7
Results using 20 fb−1

√
s = 8 TeV ATLAS data from 2012

The final chapter will present the results made using 20.28 fb−1 of ATLAS data recorded in
2012. The methodology applied is central to the thesis, so to summarise the procedure:

• The full selection has been run to select events with exactly three leptons, reconstructed
with a large probability to be real and highly isolated as described in section 6.2. In this
final state the contribution of each process is described by an associated fit parameter,
α. When several principal components are used in the fit, α is determined from the
distribution of the process in each principal component simultaneously, as described in
section 4.4.

• The implementation of systematic uncertainties is described in detail in section 6.5.
Briefly summarised each processes has an associated uncertainty calculated as the quadratic
sum of the lepton identification and reconstruction uncertainties including the uncer-
tainties associated with reweigthing, as well as the theoretical PDF, renormalisation
and factorisation scale uncertainties. If constrained, the associated fit parameter is con-
strained to be within the Standard Model expectation by a unit Gaussian with width
σsys. Nuisance parameters also enters for luminosity and energy and momentum correc-
tion. The last is incorporated in the individual processes when systematic uncertainties
are quoted. Signal parameters are not constrained. The total uncertainty quoted in
distributions in this section, is the quadratic sum of the systematic uncertainties and
the Monte Carlo statistical uncertainty.

• The Principal Component Analysis will be constructed from a transformation of WZ
Monte Carlo and the resulting transformation will be applied to all other processes,
to construct their principal components. One of two sets of input observables will be
used for the construction of the principal components. 1) for the use of p1 as one
multidimensional observable, 10 input observables will be used as described in section
6.7. 2) When several principal component are fitted the 6 input observables described in
section 6.6.1 are used to construct the principal components that minimises correlations
in subprocesses.

119
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7.1 Best fit to the Standard Model using PCAWZ

To see how well the Standard Model agrees with data, a fit in the highest ranked principal
component was performed. All processes where constrained to their Standard Model expec-
tation. A total of 2563 events are observed. After the fit the total number of expected events
is 2569 ± 108 (total). The signal strength, µ, calculated from the resulting parameter values,
are shown in table 7.1. The total uncertainty includes statistical and systematics uncertain-
ties profiled through the inclusion of nuisance parameters and against other processes. The
systematic uncertainty used to constrain the parameter is given for reference. All parameters
agree with Standard Model expectations within their uncertainty. The last four processes are
dominated by low statistics as reflected by the uncertainty. For both WW, tt̄ + jets and tt̄
+ V the fit did not converge correctly (parameter hit lower limit) and the quoted statistical
uncertainty is overestimated. The distribution in p1 resulting from the fit is shown in figure
7.1. A Kolmogorov-Smirnov test (KS) between data and fitted expectations results in a value
of 1.00 indicating a good agreement.

Table 7.1: Best fit values
µ =

Nfit,process
Nexp,process

σstat σsys Nfit,process
µWZ = 1.02 ±0.04 ±0.08 1259
µZZ = 0.99 ±0.09 ±0.05 455

µfakes = 1.00 ±0.05 ±0.10 854
µZγ = 1.00 ±0.67 ±0.19 30

µWW = 1.00 - - 1
µtt̄+V = 1.00 - - 14

µtt̄+jets = 1.00 - - 8
αlumi = 0.98 ±0.02 ±0.03

The correlation between fit parameters is listed in table D.1 in appendix D. Correlation be-
tween parameters are in general 5% or less with the exception that the luminosity is correlated
to the three major processes. To test the effect of the four low-stat processes an additional
fit was performed with the contribution for the four processes fixed to their expectation. This
had no influence on the results for the major processes and the result was exactly as quoted
in table 7.1.

7.1.1 Goodness-of-fit

To test the goodness of fit both a χ2 test and a Kolmogorov-Smirnov test have been calculated.
The KS value of 1.00 indicates a good agreement between data and Standard Model predictions
and the χ2 test supports this with a probability of 0.992 indicating a very good agreement. To
look for local deviations the p-value was calculated in each bin and all deviations were found
to be below 1σ.

Looking at table 7.1 again, it is interesting to note that all electroweak processes are well
within their uncertainty of expectation. The luminosity is correlated to WZ, ZZ and fakes (all
dominant processes) so fixing it, to the nominal value in the fit, as one would do in a cross-
section measurement, would predominantly decrease these three processes. To fully test the
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Figure 7.1: The distributions in the highest ranked principal component p1 for the Standard Model
expectation fitted to 2012 data from ATLAS. The principal components have been generated from
the 10 input observables to create one optimal observable.

agreement of the dominant Standard Model contribution, WZ, to data, a fiducial cross-section
measurement of WZ will be presented as the next result.
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7.2 WZ three-lepton fiducial cross-section

The Standard Model has been so well tested, that most agree that a new fundamental theory
should encompass it one way or another. In reality this means that many of the new types
of physics we expect to see are likely first to be observed as deviations from the Standard
Model. A way to find such deviations is by testing the known extensively and the use of
one or more principal components could prove very useful for this. The first most general
deviation (albeit small) will be seen in the cross-section of a process, and so a measurement
of σWZ(pp → lll + X) for the given acceptance of this study was performed, with X being
anything but leptons. The cross-section measurement of WZ is special in the sense that the
requirement of independence between principal components, is only relevant for WZ and data
and not the other Standard Model processes as these enters as a fixed background. Figure
6.5a showed that linear correlation was below 20% between any of the 6 principal components
in data and no non-linear correlations where found for data nor WZ. For the benefit of testing
the method the WZ cross-section has been found in fits including from one to all six of the
principal components described in section 6.6.1. The only parameter allowed to float in the
fit was αWZ . A fit in the highest ranked principal component of the 10 observable PCAWZ

has also been performed as well as a fit in the original observable H lep
T . The results are shown

in table 7.2 and the distributions for the fit in principal components is shown in figure 7.2. It
should be noted that the 6-principal components results are only correct under the assumption
that the correlations are negligible.

Table 7.2: σWZ(pp→ lll +X)
n PCs αobs = ( σobsσSM

) σobs [pb]
Fit in principal components from 6 observable PCAWZ

1 0.92(7) ± 0.03(8) 9.5 ± 0.4 (stat.) ± 1.4 (syst.)
2 0.95(7) ± 0.03(8) 9.8 ± 0.4 (stat.) ± 1.4 (syst.)
3 0.97(8) ± 0.03(7) 10.0 ± 0.4 (stat.) ± 1.4 (syst.)
4 0.99(6) ± 0.03(6) 10.2 ± 0.4 (stat.) ± 1.4 (syst.)
5 0.99(8) ± 0.03(5) 10.2 ± 0.4 (stat.) ± 1.4 (syst.)
6 1.00(5) ± 0.03(5) 10.3 ± 0.4 (stat.) ± 1.4 (syst.)

Fit in p1 of the 10 observable PCAWZ .
1 0.987 ± 0.038 10.1 ± 0.4 (stat.) ±1.4 (syst.)

Fit in original HlepT
- 1.014 ± 0.040 10.4 ± 0.4 (stat.) ±1.4 (syst.)

The WZ theoretical NLO cross-section has been calculated for WZ using MCFM with
PDF MSTW2008NLO to be 10.2 pb for the lνll final state [84]. The reference is for ATLAS
members only but MCFM is publicly available. Both the fits in pattern space and feature
space agree with the theoretical prediction. From table 7.1 it is evident that the statistical
uncertainty can be reduced with the addition of principal components while it is dominated
by the overall normalisation just as it was the case in the Monte Carlo study of WZ + ZZ
alone in section 5.1.
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7.3 Goodness-of-fit

The goodness-of-fit is not easily determined in multiple dimensions as the multidimensional
bin content will often be too low for a χ2 test and alternative methods can be extremely time-
demanding. The goodness-of-fit in distributions projected to one dimension can, however,
give an indication of the overall agreement, as a deviation will signify a disagreement in
the multidimensional space. This is not perfect for p2 and especially poor for p3 in the 6
observable PCAWZ seen in figure 7.2 as can be inferred from the KS and χ2 probabilities
shown with the plots. The original distributions and the eigenvector of the PCAWZ are
included in appendix D table D.2 and figure D.1. These show that the number of tracks from
the primary vertex and min∆R between leptons are significant constituents of the second and
third principal component. The distribution of these in data clearly deviate from the model
expectations. The cause of this is either new physics or mis-modelling. In the case of number
of tracks this is very likely due to mis-modelling and not new physics. The number of tracks is
extremely dependent on pile-up and although some corrections are performed to account for
mis-modelling these are known not to be perfect. It should be noted that the deviations are
all within the uncertainties with the exception of a few low-statistics bins. The KS-probability
is actually lower for p1 in the fit of both the first two (KS = 0.25) and first three principal
components (KS = 0.28) than in the fit in p1 alone (KS = 0.423). The p-value, calculated
for each bin of the distributions, are included in appendix D figure D.2. A KS-test has been
performed on histograms with the fraction of events in p1 falling in each bin in p2. A total
of 50 such slices resulted in KS-test values ranging from 0.001 to 0.995 with a mean of 0.30
confirming that the goodness-of-fit is not perfect in p1 and p2. The choice of transformation
could have been reconsidered to optimise Standard Model modelling. This was not done as
the choice of observables illustrates both one of the great strengths and weaknesses of using
principal components to fit model expectation to data. The high-ranked principal components
can be, and are in this case, very sensitive to deviations in any of the constituent observables.
This is highly desirable in searches for new physics but obviously constitutes a challenge with
regard to modelling of input-observables.
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(a) Highest ranked principal component. (b) Second principal component.

(c) Third principal component. (d) Fourth principal component.

(e) Fifth principal component. (f) Sixth principal component.

Figure 7.2: The distributions resulting from the fit of σWZ in 6 principal components. The KS-
probability is quoted for fits performed only in the given principal component.
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7.4 Type III seesaw mechanism

The final result of the fit-method using Principal Component Analysis is a search for the
type III seesaw mechanism described in section 1.4. Seven different masses of the resulting
heavy lepton are tested. For each hypothesised mass-point the distribution of observed and
expected 95% upper limits on the signal strength are found through the construction of the
likelihood ratio as described in section 4.6. For the expected limits 1000 pseudo-experiments
were generated in each mass point and the power constrained limits (PCL) [85,86] were found.
The test statistic was found to be χ2 distributed for one µ and assumed to be for all other.

Figure 7.3 show two things: The resulting observed upper limit on the signal strength of
the model translated into a cross-section and the median expected upper limit on the signal
strength with 1σ and 2σ confidence bands assuming the null-hypothesis (SM). The limits have
been set in both the p1 resulting from 10 input observables and the sum of lepton momenta,
H lep
T . H lep

T is chosen as it possesses the best linear separation power between the Standard
Model and the seesaw signal in most mass-points. The cross-section presented is the fiducial
cross-section of the three-lepton final state with the given selection. A zoom-in of the 95 GeV
mass point is presented in figure 7.4.

The observed limit is above for a few mass-points in H lep
T although within the 2-σ band,

while it agrees better with the expected limits in p1. The expected limits are close to identical
for the two. With the poor goodness-of-fit found for especially p3 in the 6 observable PCAWZ

an observed limit is not very trustworthy. The expected limits, however, has been calculated
and it is shown along with the other two in figure 7.5. While p1 and the H leps

T lie close, the
combined fit of p1, p2 and p3 results in a much lower expected limit for all mass points. This
clearly illustrates the potential of combining principal components in a multidimensional fit.
It is especially clear for the mass points from 100 to 200 GeV where the difference exceeds
200 fb. The observed limit for the fit combining 3 principal components with poor Standard
Model goodness-of-fit has been included in figure D.4 in appendix D.3.

7.5 Discussion

The results presented in this section has illustrated the potential of the method for fitting
in a much larger phase-space resulting in much more stringent tests of the Standard Model.
When searching for new physics with very low cross-section, very tight cuts in phase-space
are needed resulting in regions with few events. In these final-states a method that reduces
statistical uncertainty is essential and the use of Principal Component Analysis can fulfil this,
especially when the statistical uncertainty of the overall normalisation is not dominant.

It is clear that the approach is highly sensitive to any deviations from the Standard Model.
In the light of this the approach, however, also comes with a word of warning. The increased
sensitivity will catch any deviations and the higher precision must come with a demand for
even more precise understanding and modelling of the known physics.
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(a) The highest ranked principal component generated using 10 input observables.

(b) Fitted in the sum of lepton momenta observable of the original pattern space.

Figure 7.3: The 95% confidence intervals set on the cross-section of the excited seesaw lepton at
various masses.
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(a) p1 from 10 observables. (b) Hlep
T .

Figure 7.4: A zoom-in on the 95 GeV mass point limits.
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(a) The independent p1, p2 and p3 from the 6 input observables.

(b) A zoom of the 95 GeV region.

Figure 7.5: Comparing the expected limits of H leps
T and p1 from 10 observables to the expected

limits from combining the three highest ranked principal components from the 6 observable matrix
minimising correlation in subprocesses. The combination of principal components is seen to hold
significant potential for setting tighter limits on new physics.
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Summary and outlook

The work performed in this PhD. thesis has led to a novel fit procedure based on Principal
Component Analysis. By diagonalising the covariance matrix of the original list of observ-
ables, linearly uncorrelated principal components are constructed. The Principal Component
Analysis transforms this list of original observables into a new set of variables - the principal
components. This has several interesting features:

• It has been shown that independent principal components can be found, such that several
can be combined simultaneously in a likelihood fit.

• The use of the highest order principal component - the eigenvector with the largest
variance in the original pattern space - can be used as a multidimensional observable.
It combines information from several of the observables from the original pattern space.

• Both approaches can potentially reduce the total statistical error on the fit.

• The principal components have been shown to have the potential of separating Standard
Model processes individually and in general finding deviations from expectation which
could be new physics.

A measurement of the Standard Model expectations in the signal region resulted in 2563
observed events and a total of 2569 ± 108 (total) expected events. No significant deviations
were found. Following this a measurement of the fiducial cross-section of WZ was performed.
Using 6 principal components in the fit the result was:

σWZ(pp→ lll +X) = 10.3± 0.4(stat.)± 1.4(syst.) pb, (8.1)

in agreement with the theoretical prediction of 10.2 pb. The statistical uncertainty is 3.4%.
The current latest WZ cross-section measurement is from [87]. The result is for the three-
lepton final state but with different phase-space cuts using 13 fb−1 2012 data recorded with
ATLAS. The absolute value of the results are not comparable but the fractional uncertainties
can be compared. The result is:

σWZ(pp→ lll + ν)reference = 20.30.8
−0.7(stat.)+1.2

−1.1(syst.)+0.7
−0.6(lumi.) pb, (8.2)
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with a 3.9% statistical uncertainty based on 1094 candidate events and 277 background ex-
pectation.

The statistical error was seen in general to be smaller for the highest ranked principal
component compared to the best discriminating original observable. It was also shown to fall
with the inclusion of additional principal components but the total uncertainty was dominated
by overall normalisation for the scenarios tested in this thesis. As a final result the use of the
procedure on a benchmark model for new physics involving right-handed massive neutrinos
was performed. The observed and expected upper limit for the cross-section was calculated
in 7 mass-points. The expected limits were seen to be almost identical for p1 generated from
10 input observables and H lep

T effectively giving a much more stringent test of the Standard
Model. The use of several principal components was seen to significantly decrease the expected
limits proving the potential of the approach for not only a more stringent test of the Standard
Model but also better limits on new physics for a given amount of data. A slight excess within
the 2-σ band was observed in H lep

T but was not found in p1.

The method as an alternative to cutting on background processes.

It is important to stress that a main motivation for the development of the procedure is the
expected ability to discriminate between processes by using several principal components. This
is fundamentally different from any cut-based separation, as there is no need to remove events,
resulting in larger statistics in the signal region.

The final results revealed some deviations from the Standard Model expectations although
none where significant. The use of the much larger phase-space, that is the result of fitting
in the highest ranked or combining several principal components, will constitute a much more
stringent test of the Standard Model.

The near future

By 2015 upgrade work on the LHC will have concluded and ATLAS will be able to record
collisions at even higher energy and integrated luminosity. This will be an excellent oppor-
tunity to apply the fit procedure. With the ability to combine several principal components
the procedure will be able to test Standard Model expectations to great detail. For dedicated
searches it might hold potential for separation of the new physics and could be used simply to
generate optimal observables. For general searches a much larger phase-space can be probed
enhancing the chances of finding deviations without prior knowledge (or bias) of their char-
acteristics. Time will tell what we find but there is no one in the physics community, who
believe we have seen everything there is to see.
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142 Chapter A. Pull distributions for MC-study

(a) Pull distribution for PC 1 (b) Pull distribution for PC 2

(c) Pull distribution for PC 3 (d) Pull distribution for PC 4

(e) Pull distribution for PC 5

Figure A.1: The pull distribution based on 10000 pseudo-samples for the first 5 principal compo-
nents of the WZ sample constructed from the 10 input observables.
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(a) Pull distribution for PC 6 (b) Pull distribution for PC 7

(c) Pull distribution for PC 8 (d) Pull distribution for PC 9

(e) Pull distribution for PC 10

Figure A.2: The pull distributions for the last 5 principal components of the WZ sample constructed
from the 10 input observables.



144 Chapter A. Pull distributions for MC-study

(a) Pull distribution for PC 5 including overall normalisa-
tion.

(b) Pull distribution for PC 7 including overall normalisa-
tion.

(c) Pull distribution for PC 9 including overall normalisa-
tion.

(d) Pull distribution for PC 10 including overall normali-
sation.

Figure A.3: The pull distributions for p5, p7, p9 and p10 when normalisation is included in the fit
along with shape information. The PCA is constructed from WZ using 10 input observables. The
fit is to WZ while ZZ is kept fixed. The agreement with unit Gaussians is good.



B
SFSS

B.1 SFSS eigenvector and eigenvalues for PCAV+jets

PCAV+jets eigenvector matrix :

ve,1 ve,2 ve,3 ve,4 ve,5 ve,6 ve,7 (B.1)

0.512 0.030 0.027 −0.240 0.092 −0.146 −0.805
0.183 −0.589 −0.233 0.734 0.054 0.054 −0.136
0.503 0.017 0.044 −0.115 −0.093 0.826 0.195
0.084 0.561 −0.804 0.169 0.044 0.009 0.000
−0.454 0.006 −0.001 −0.019 0.734 0.422 −0.276
0.149 0.571 0.543 0.583 0.115 −0.032 −0.019
0.463 −0.098 −0.017 −0.137 0.652 −0.335 0.467


for the input observables:[

plepT,lead plepT,second Hjets
T

/ET ∆R nTracksvertex M3lep
T

]
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C
Object selection

C.1 Cutflow histograms for object selection

The selection of prompt electroweak electrons and muons has been optimised by the multi-
lepton group at CERN for the 2012 8TeV ATLAS data. The efficiency of the various cuts
is expected to vary for different Standard Model processes and the outflow histograms for
the object selectors are included in this appendix for reference to other studies. Besides the
electron and muon objects, jets have to be identified to handle overlap removal and for use in
input observables for the final fitting.
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(a) The cutflow for the jet-object selector for WZ (b) The cutflow for the jet-object selector for ZZ

(c) The cutflow for the jet-object selector for Z → ee + jets (d) The cutflow for the jet-object selector for tt̄ + jets

(e) The cutflow for the jet-object selector for Z → µµ + jets (f) The cutflow for the jet-object selector for Z → ll + γ

Figure C.1: The jet object selector cutflow diagrams for various processes.
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(a) The cutflow for the muon-object selector for WZ (b) The cutflow for the muon-object selector for ZZ

(c) The cutflow for the muon-object selector for Z → ee + jets. Log-
scale is used here due very low efficiency on the pT cut.

(d) The cutflow for the muon-object selector for tt̄ + jets

(e) The cutflow for the muon-object selector for Z → µµ + jets (f) The cutflow for the muon-object selector for Z → ll + γ

Figure C.2: The muon object selector cutlow diagrams for various processes.
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(a) The cutflow for the electron-object selector for WZ (b) The cutflow for the electron-object selector for ZZ

(c) The cutflow for the electron-object selector for Z → ee + jets (d) The cutflow for the electron-object selector for tt̄ + jets

(e) The cutflow for the electron-object selector for Z → µµ + jets (f) The cutflow for the electron-object selector for Z → ll + γ

Figure C.3: The electron object selector cutlow diagrams for various processes.



D
Final results

D.1 6 obs PCAWZ for fitting mulitple principal components

PCAWZ eigenvector matrix :

ve,1 ve,2 ve,3 ve,4 ve,5 ve,6 (D.1)

0.59 −0.23 0.15 −0.15 −0.20 0.72
0.45 0.20 −0.22 −0.13 0.83 −0.07
0.27 0.34 0.42 0.80 0.01 −0.03
−0.20 −0.66 −0.35 0.54 0.27 0.21
0.24 0.34 −0.79 0.19 −0.40 0.01
0.53 −0.49 0.05 −0.01 −0.21 −0.66


for the input observables:[

H lep
T Hjets

T
/ET ∆R nTracksvertex M3lep

T

]
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(a) Plot of Hlep
T before fitting MC to data. (b) Plot of Hjets

T before fitting MC to data.

(c) Plot of /ET before fitting MC to data. (d) lot of min∆R before fitting MC to data.

(e) Plot of nTracksvertex before fitting MC to data. (f) Plot of M3lep
T before fitting MC to data.

Figure D.1: The observables used as input for the 6 observable PCAWZ . The distributions for
Standard Model expectations are the initial distributions before fitting to real data.
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(a) Highest ranked principal component. (b) Second principal component. The large deviation is in a low-
statistics bin.

(c) Third principal component. (d) Fourth principal component.

(e) Fifth principal component. (f) Sixth principal component. The two large deviations are in low-
statistics bins.

Figure D.2: The p-value calculated per bin in each of the principal components. Several deviations
are present although none are above 5 σ after accounting for systematic uncertainties as indicated
by the blue dots as opposed to the black indicating the deviation without accounting for the
systematic uncertainty.
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Figure D.3: The profile likelihood ratio for the expected µ for WZ using p1 and p2 combined in
the fit, generated using 10.000 pseudo-experiments.



D.2. 10 observable PCAWZ for fitting in highest ranked principal component 155

D.2 10 observable PCAWZ for fitting in highest ranked principal
component

The eigenvector matrix as also presented in section 5.1.5 is:

ve,1 ve,2 ve,3 ve,4 ve,5 ve,6 ve,7 ve,8 ve,9 ve,10 (D.2)

0.43 0.12 −0.16 0.11 0.08 −0.13 0.35 −0.51 −0.09 0.59
0.39 0.21 −0.05 0.04 0.05 −0.35 −0.48 0.57 0.02 0.35
0.26 0.02 0.47 −0.50 −0.18 0.43 0.30 0.28 0.12 0.23
0.31 −0.38 0.24 −0.13 −0.08 0.19 −0.66 −0.45 −0.07 −0.03
0.11 −0.49 0.29 0.24 0.74 −0.02 0.18 0.18 0.02 0.00
0.19 −0.19 −0.58 0.26 −0.05 0.67 −0.02 0.24 −0.11 0.05
0.14 0.42 0.43 0.63 −0.01 0.34 −0.15 −0.08 0.22 0.15
0.13 −0.48 0.18 0.43 −0.63 −0.28 0.22 0.14 0.03 −0.01
0.47 0.12 −0.15 0.02 0.05 −0.04 0.09 −0.09 0.72 −0.45
0.43 0.32 0.19 0.13 0.01 0.01 0.12 0.04 −0.62 −0.50


for the input observables:[
plepT,lead plepT,second plepT,third Hjet

T MV 1max /ET ∆R nTracksvertex MSFOS
inv M3lep

T

]

Table D.1: Correlation between parameters in fit.
process GLOBAL fakes WZ ZZ WW tt̄ + V Zγ tt̄ + jets lumi
fakes 0.21 1.00 -0.05 -0.037 0.00 0.00 -0.01 0.00 -0.11
WZ 0.69 -0.05 1.00 -0.04 0.00 -0.05 0.00 0.00 -0.65
ZZ 0.32 -0.04 -0.04 1.00 0.00 0.00 -0.03 0.00 -0.20
WW 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
tt̄ + V 0.07 0.00 -0.05 0.00 0.00 1.00 0.00 0.00 0.00
Zγ 0.10 -0.01 0.00 -0.03 0.00 0.00 1.00 0.00 -0.06

tt̄ + jets 0.014 0.00 0.00 0.00 0.00 0.00 0.00 1.00 -0.01
Luminosity 0.70 -0.11 -0.65 -0.20 0.00 0.00 -0.06 -0.01 1.00

D.3 Observed limits on seesaw benchmark model combining 3
principal components

The observed and expected upper limits (PCL) on the seesaw signal, based on the the likeli-
hood ratio combining 3 principal components. The goodness-of-fit to the Standard Model was
shown to be poor for p3 while better for p2. The downwards fluctuations in mass-points 100-
160 GeV is due to a downwards fluctuation in data compared to Standard Model expectations
in two bins central to the mass peak of all three seesaw mass-points in p1. This originates
from two bins in H leps

T and M3lep
T , the main contributors to p1. This is seen in figure D.5.
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Table D.2: Selection efficiency for the seesaw mass points
Mass Events in signal region sample size efficiency
95 1250 100000 1.25 %
100 1324 100000 1.32 %
120 4103 100000 4.10 %
160 5760 100000 5.76 %
200 3159 50000 6.32 %
300 3420 50000 6.84 %
500 2798 39000 7.17 %
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(a) The three highest ranked principal components generated using 6 input observables minimising correlation
between principal components in subprocesses. The dotted line indicates the observed limit before imposing the
power constraint as recommended by ATLAS [85,86]

(b) p1, p2 and p3 combined for 95 and 100 GeV seesaw mass points.

Figure D.4: The 95% confidence intervals (PCL) set on the cross-section of the excited seesaw
lepton at various masses.
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(a)
∑leptons
i=0 piT with seesaw signal at 100 GeV mass-point.

(b)
∑leptons
i=0 piT with seesaw signal at 160 GeV mass-point.

Figure D.5: The sum of lepton pT and seesaw signal overlaid for two of the mass points with
downward fluctuations. As seen, data has a downwards fluctuation compared to Standard Model
expectation for two of the bins central to the seesaw signal in both distributions. The same is true
for the 120 GeV mass-point and for the distributions in transverse mass.
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