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Abstract

The research of light and matter interactions is the most fascinating and
powerful tool in advancing our understanding of both atomic and light
physics. From the pioneering work of Niels Bohr in devising a model for
the atom to recent research in manipulation of single atoms, light matter
interaction are the window to the underlying quantum world. It is no
surprise then that there has always been push to find more, and gain bet-
ter control over systems in which this interaction can be studied. In the
past two decades, this end was further motivated as applications were en-
visioned to coherent control of matter. These include applications such as
efficient photon collection, single-photon switching and transistors, and
long-range optical coupling of quantum bits for quantum communica-
tions. However, generating and controlling strong coherent interaction
between otherwise very weakly interacting light and quantum emitters
proves a difficult task. Current days solutions range from cavities, atomic
ensembles, photonic band gaps structures, ion traps and optical latices
are all being improved and studied but none has yet to emerge as supe-
rior.

Recently, another proposal for such a strong coupling system has been
put forward. By exploiting the strong confinement of light in a surface
plasmon mode, a cavity-free, broadband tool can be designed to engineer
the light-emitter interaction in the vicinity of metallic nano-structures.
These surface plasmons, hybrid waves of light and electronic oscillations
propagating on the surface of metals have been shown to be useful in
coupling to quantum dots, nanodiamond NV-centers defects and other
quantum emitters. However, being lossy these modes too need to be effi-
ciently coupled out to photons in order to facilitate experimental control
of the system. This have proved to be the Achilles heel of this application.

In this thesis we study the interaction of surface plasmons on nanometal-
lic structures and light. We suggest two configurations in which efficient
coupling to the surface plasmon modes can be achieved on the nanoscale,
allowing to transfer single photons from one mode to the other. The
first, applicable to plasmonic guides, exploits the phenomena of adia-
batic following to transfer the plasmonic excitation to an adjacent pho-
tonic waveguide by slowly tapering the plasmonic guide into and then
out of resonance with the photonic guide. For this end we develop a
general perturbative description for guides of arbitrary cross section, and
go on to apply it to slab guides showing up to 90% coupling efficiencies
for realistic experimental parameters. The second coupling configuration
suggested is a plasmonic coupling lens, constructed around the emit-
ter in a proximity to a metallic interface. Concentric grating rings then
couple light propagating normal to the surface to a inward propagating
plasmons, showing coupling efficiencies of 70% and enhancement of the
emitters decay rate by up to 45 times that of the isolated emitter’s decay
rate.

Finally, we explore a nonclassicality criterion for the state of a continu-
ous variable, local system. This is done by inferring the breakdown of
classical models from quadrature measurements, expressed as the lack of
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a proper distribution function of the underlying generalized coordinates.
This provides a useful tool in characterizing new candidate systems for
quantum applications and by its simplicity, also furthers the understand-
ing of the quantum-classical transition.

Sammendrag

Forskningen i vekselvirkningen mellem lys og stof er et fascinerende
og kraftfuldt værktøj til at forstå både atomfysik og optisk fysik. Fra
Niels Bohrs banebrydende arbejde med at udtænke en model for atomet
til nutidens forskning i at manipulere enkelte atomer, har lys-stof vek-
selvirkninger været vinduet til den underliggende kvanteverden. Det
er ikke overraksende, at man altid har stræbt efter at få bedre kontrol
over eksisterende systemer samt at finde nye systemer til at studere disse
vekselvirkninger med. I de seneste to årtier er motivationen for dette
blevet styrket, idet nye anvendelsesmuligheder for kohærent kontrol af
stof er blevet udviklet. Disse anvendelser er effektiv fotonopsamling,
enkelt-foton opererede kontakter og transistorer samt langtrækkende, op-
tiske koblinger mellem kvante-bits, der bruges til kvantekommunikation.
Det har dog vist sig at være særdeles udfordrende at skabe og kon-
trollere stærke kohærente vekselvirkninger mellem normalt meget svagt
vekselvirkende lys og kvante-emitters. Nutidens løsninger tæller optiske
kaviteter, atomare ensembler, fotoniske båndgabsstrukturer, ionfælder og
optiske gitre. De er alle blevet nøje studeret og forbedret, men ingen har
endnu vist sig som den ideelle løsning.

For nylig blev et nyt forslag til et stærk-kobling-system foreslået. Ved at
udnytte den meget stærke indespærring af lys i en plasmonisk overflade-
tilstand, kan man udvikle et kavitets-fri, bredbåndet værktøj til at designe
lys-emitter vekselvirkninger nær ved metalliske nanostrukturer. Disse
plasmoner, hvilket er hybridbølger mellem lys og elektroniske svingin-
ger som bevæger sig på overfladen af metaller, har vist sig at være nyt-
tige til at koble kvante-dots, nanodiamant NV-center defekter og andre
kvante-emittere. På grund af tab skal plasmonerne dog kobles effektivt
til fotoner for at give eksperimental kontrol over systemerne. Dette har
vist sig at være forslagets Achilleshæl.

I denne afhandling undersøger vi vekselvirkningen mellem overflade-
plasmoner på nanometalliske strukturer og lys. Vi foreslår to konfigura-
tioner, hvor effektiv kobling til overflade-plasmonerne kan opnås på nanoskala,
hvilket muliggør overførsel af enkel-fotoner fra en tilstand til en anden.
Den første konfiguration, anvendelig for plasmonisk bølgeledere, udnyt-
ter fænomenet adiabatisk følgen til at overføre plasmoniske eksitationer
til en tilstødende fotonisk bølgeleder ved langsomt at bringe den plas-
moniske bølgeleder ud og ind af resonans med den fotoniske bølgeleder.
I forbindelse med dette, udvikler vi en generel pertubativ beskrivelse af
bølgeledere med arbitrært tværsnit og ved at anvende denne på plane
bølgeledere, viser vi op til 90% koblingseffektivitet for realistiske eksperi-
mentelle parametre. Den anden koblingskonfiguration, som vi foreslår, er
en plasmoniske koblingslinse konstrueret omkring emitteren i nærheden
af en metalliske grænseflade. Koncentriske, indridsede ringe kobler lys,
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der bevæger sig vinkelret på overfladen til indadgående plasmoner med
koblingseffektiviteter på 70% og en forbedring af emitterens henfaldsrate
med op til 45 gange i forhold til en isoleret emitters henfaldsrate.

Til sidst undersøger vi et kriterium for ikke-klassisk beskrivelse af til-
standen af et lokalt, kontinuært-variabel system. Dette gøres ved at udlede
de klassiske modellers sammenbrud ud fra kvadraturmålinger, der udtrykker
en manglende fordelingsfunktion for de underliggende generelle koordi-
nater. Dette giver et nyttigt værktøj til at karakterisere nye anvendelige
kvantesystemer, og dets enkelthed giver bedre forståelse for grænsen
mellem kvantemekanik of klassisk fysik.
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Chapter1

Introduction

1.1 Motivation

That Quantum mechanics is quite different in its predictions is by now
well understood. Recent years have seen the ideas and limits of quan-
tum mechanics implemented in a wide range of system no one has envi-
sioned. From nanomechanical devices through gravitational interferome-
try to precise measurement, the gain earned by the constant improvement
of both scientific and technological control over coherent processes seems
to be increasing steadily. This has also drove the search for ever new,
and bigger system manifesting quantum behavior. The past decade saw
numerous candidates systems emerging. Plasmonic systems ([Zayats03]),
photonic crystals ([Sakoda05]), tapered optical nanofibers ([Tong03]), and
metamaterials ([Smith04]) are all being actively studied for their potential
to manipulate light-matter interactions.

As these proposals accumulate, their actual implementation does at time
encounters more difficulties than was is suggested by the initial idea.
These difficulties require a more detailed research into the specific sys-
tems and are often a opportunity to examine both the underlying physics
of the actual experimental setup, and the and the foundations of the ab-
stract idea to be implement. From it first proposal as a candidate for
the research of light matter interaction in the strong coupling regime
in the middle of the last decade ([Chang06, Akimov07]), through re-
search efforts in implementations (e.g., [Huck09, Falk09, Kolesov09]) and
suggested future directions of research([Dzsotjan10, Gonzalez-Tudela11]),
quantum plasmonics seems yet to have reached the full potential as a re-
search tool in the field of quantum optics. It is the aim of this work
to examine one of the problems in this field, namely that of the surface
plasmon-light coupling, and to suggest ways to overcome it.

1.2 Surface plasmon polaritons

When considering the response of the free electrons in a metal to elec-
tromagnetic waves, one interesting result is they respond out of phase
to the driving of electric field. This can be seen, for example, from the
Drude model considering the electrons equation of motion with a damp-
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2 Introduction

ing force:

ε(ω) = 1−
ω2

p

ω2 + iΓω
, (1.1)

with ω2
p = 4πne2/me being plasma frequency at the equilibrium density

n. This means that the real part of the dielectric constant is negative.
This has two interesting results: the first, as is well known, is that the
electromagnetic cannot penetrate into the metal beyond the so called skin
depth. The refractive index of the of the metal is imaginary, n =

√
ε.

The imaginary part of the dielectric constant also leads to dissipation of
energy in the metal.

There is, however, a much more interesting result, hinted already in the
appearance of the natural frequency above. To see this, consider the flat
interface between two dielectric materials of dielectric constants εd and
εm. As we shall consider this problem in detail in the following work,
we not solve it to the full here but rather aim at the general idea. With
the understanding that we are looking for a surface wave of the electrons,
driven by the electromagnetic field, we assume there exist a solution to
the homogeneous macroscopic Maxwell equation on the surface

∇×∇× E− ω2ε

c2 E = 0 (1.2)

which propagates in the along the surface, but decays exponentially away
form the surface, in both directions,

E ∝ eikx−κ|z|, (1.3)

where the interface was chosen as the XY plane. The first thing to note,
when comprising solutions of this kind is that because of the continuity
of the the electric field parallel to the surface, no transverse electric (TE)
solutions exist. This will somewhat simplify our account in chapter 2.
The resulting boundary conditions for our problem are

Ed,x − Em,x = 0 (1.4)
εdEd,z − εmEm,z = 0 (1.5)

leading to the dispersion relation

εdκm − εmκd = 0. (1.6)

Since we are looking for decaying solutions in both directions, κ are both
real and positive. Therefore, such waves exist on the surface of metal,
obeying the dispersion relation (1.6). This means that their propagation
constant is determined by

k2 =
εdεm

εd + εm

ω2

c2 , κ2
i =

−ε2
i

εd + εm

ω2

c2 , (1.7)

Which can be seen to always be bigger than the wave number of a photon
of the same frequency. The lateral decay is what makes the plasmon so
attractive to our proposes - the higher the propagation constant k is the
more confined is the electric field around the surface, generating higher
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intensities and smaller mode volume generating stronger and stronger
interaction with adjacent atoms.

The is a price to pay, though, hidden within the the above relations. As
stated the metal dielectric constant is accompanied by an imaginary part,
representing dissipation in the metal. If the dielectric constant is written
as εm = ε̄m + i ¯̄εm then the propagation constant is

<{k} =
√

ε̄mεd
ε̄m + εd

ω

c
(1.8)

={k} =
√

ε̄mεd
<ε̄m + εd

¯̄εmεd
2ε̄m(ε̄m + εd)

ω2

c2 . (1.9)

The higher the confinement of the field at the surface, the lossier is the
mode becoming. Therefore, any surface plasmon device for strong cou-
pling to the quantum emitters will suffer propagation losses, and it is
the need to extract the plasmonic excitation onto a photonic state that we
were set to solve with this work.

1.3 Interaction with single emitters

1.3.1 The Purcell effect and the modification of the decay
rate in the proximity of a dielectric/metallic body

The key advantage of plasmons to surface quantum optics applications
is the coupling of the strongly confined fields of the SPP excitation to an
adjacent emitter. In this section we first describe the influence of the local
density of states on the emission of a dipole. The methods reviewed here
will also prove useful in calculating the decay rate of an emitter above the
plasmonic lens presented in chapter (3).

We start by considering the classical dipole. In classical electromagnetic
theory the dipole is the lowest order term of the current distribution when
expanded in the distance from the source. For harmonic time dependence
∝ e−iωt, it can be written as

j(r) = −iωpδ(r− r0). (1.10)

Which, when plugged into the expression for the fields when those are
written in the Green’s function formalism are simplified to

E(r) = i
1
c

µ
∫

V
G(r, r′)j(r′) =

ω2

c
µG(r, r0)p (1.11)

H(r) =
ω

c
G(r, r0)p. (1.12)

If we are interested in the energy radiated from away from our classical
dipole, the straight forward way will be to integrate the far field Poynting
vector (taking only the components proportional to r−1 in the fields)

S =
c

8π
E×H, (1.13)
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around the dipole. However, this becomes tricky when the dipole is em-
bedded in an inhomogeneous environment. The total fields need to be
calculated everywhere on the enclosing surface. Instead, Poynting theo-
rem can be used. Stating the energy conservation, the radiated energy is
equal to the energy dissipation given by

dW
dt

= −1
2

∫
<{j∗ · E}dV, (1.14)

V being the source volume. For our dipole this is just

dW
dt

=
ω

2
= {p∗ · E(r0)} =

ω3|p|2
2c2 [ p̂= {G(r0, r0)} p̂] , (1.15)

where p̂ is the unit vector in the dipole direction. Using this relation, the
calculation of the decay of the dipole now reduces to calculation of the
electric field at the dipole’s position.

Dependence on the density of states, and the mode volume of a
specific mode

In quantum theory, the interaction between a two level system and the ra-
diation field is described in the dipole approximation by the Hamiltonian
term

H = −p · E, (1.16)

where this time the field and dipole are to be understood as the second
quantization operators

p = ~p∗|e〉〈g|+ ~p|g〉〈e|, E = ∑
k

(
E+k ak(t) + E−k a†

k(t)
)

. (1.17)

The notation ~p was introduced to distinguish between the operator and
the classical vector and summation on in the field operator is done over
all radiation modes.

For an initial state of the two level system in the excited state and no exci-
tation in the radiation field, the decay rate of the dipole can be calculated
using the Fermi golden rule:

Γ =
2π

h̄2 ∑
f
|〈 f |H|e, {0}〉|2 δ(ωeg −ω f ) =

=
2π

h̄2 ∑
k

[
~p∗ · E+k E

−
k · ~p

]2
δ(ωeg −ωk) (1.18)

However, using the normal mode expansion, E+k =
√

h̄ωk
2ε0

uk the sum over
the modes can be written as

={G(r, r)} = πc2

2ω ∑
k

u∗k ukδ(ω−ωk). (1.19)

This finally enables us to write

Γ =
2ω2

eg

h̄c2 |p|
2 [ p̂∗=G(r0, r0) p̂] (1.20)
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Thus, the decay rate of the emitter depends on the environment. The en-
hancement of the decay rate by a near by surface of a dielectric is used in
enhancing the Raman scattering from vibrational modes of molecules, for
example. The importance of this result is in that it enables the calculation
of the spontaneous decay rate in arbitrary setting, all that is need is the
Green function of the system.

Another essential feature to the work described here, is the equivalence
of the classical and quantum mechanical descriptions for the interaction
of a two level systems with the radiation fields. As the key ingredient
to both calculations is the classical Green’s function, and we shall focus
in this work on its calculation. We therefore preform all the calculation
presented in the classical regime, solving the Maxwell equations.

The above result is at the heart of many systems used in quantum optics.
The emission rate is directly proportional to the local density of optical
states (LDOS)

ρµ(r, ω) = 3 ∑
k

[
nµ · (u∗k uk) · nµ

]
δ(ω−ωk), (1.21)

and so by engineering the local density of states around the emitter the
decay rate can be controlled. This is done for example by placing the
emitter in a photonic crystals [Sakoda05], inside a hollow core fibers
[Knight03] or in the vicinity of of a tapered dielectric nanofiber [Vetsch10].
However, the diffraction limit is still the lower limit for any mode volume,
and thus an upper limit to the enhancement of the local density of states.

1.3.2 Coupling of the single emitter to a nanowire

The advantage of SPP in control of the emission of single emitters was
suggested by Chang [Chang07a], Akimov [Akimov07]. In these works,
the emission properties of a nanoscale optical emitter were shown to
be significantly modified by the proximity of a nanowire that supports
surface plasmons. As the mode volume is smaller than the wavelength
squared, the diffraction can be circumvented and the coupling to the plas-
monic mode can be made to dominate the emitters decay process. For its
importance to the work presented here, we shall review and the resulting
decay rates of a closely placed single emitter. In their papers, Chang et
al. analyzed the normal modes of a metallic nanowire (similar calcula-
tions where performed for a dielectric nanofiber in [Klimov04]). In the
following we will consider the nanowire to have a dielectric constatnt εm
embbeded in a surounding of dielectric constant εd. The basic guided
plasmonic modes, satisfying the dispersion relation

k2
m

km,⊥

J
′
0(km,⊥R)

J0(km,⊥R)
−

k2
d

kd,⊥

H
′
0(kd,⊥R)

H0(kd,⊥R)
= 0 (1.22)

with H0, J0 the Hankel and Bessel functions, prime denoting a derivation
with respect to the functions argument, ki =

√
εik0 and ki,⊥ =

√
k2

i − k2
‖,

was shown not to posses a cutoff, and have an effective refractive index
k‖ ∝ 1/R the radius of the nanowire. Other modes were shown to either
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have a cutoff, or to asymptotically approach the wave number of the sur-
rounding medium as the nanowire’s radius was reduced. This means two
thing contributing to the strong coupling. The first is that the wire can
be operatated in a single mode regime, inhibiting the decay into higher
modes. For the basic mode, the diverging k‖ means tighter confinement
as the radius of the wire is reduced, as κ⊥, the decay length in the trans-
verse direction also scales as R−1. This in turn results in smaller volume
and stronger coupling to the mode. This is in contrast to dielectric waveg-
uides, where the index of refraction approaches that of the surrounding
bulk wave number. For the photonic waveguide, this means less confine-
ment, and weaker coupling of the guided mode to nanoscale emitters.

The diverging wavenumber of the guided mode in inverse proportionality
to the system typical length scale is a key feature for this application. As
we shall explore in chapter (2), this also applies to slab plasmonic wave
length. This scaling can be understood by considering the electrostatic
limit as the system become much smaller than the wavelength, leaving
the radius as the only length scale in the problem. It is accompanied
by a group velocity proportional to the radius, slowing as the plasmon
propagates toward smaller radii. This again can help explain the strong
resulting interaction with the localized emitter, as the effective interaction
time increases.

Quantifying the decay mechanism to the different channels next to
dielectric/metallic cylinder

The decay channels were identified as belonging to one of three distinct
modes- radiative processes, resulting in a outgoing photon propagating in
the bulk, nonradiative, thermal loses to the metal and decay into guided
plasmonic mode.

The decay into the radiation modes can be calculated in the far field away
from the wire, as this is the only channel by which energy transport far
from the source can occur. In this limit, the total radiation can be seen as
coming from a dipole, combining the the source and the reflecting field

Γrad ∝ |p0 + δp|, (1.23)

with p0 = p0ρ̂ being the source dipole. The reflected dipole contribution
was shown to be [Klimov04]

δp = p0
ε− 1
ε + 1

R2

d2 ρ̂ (1.24)

here ε ≡ εm/εd, R is the nanowire radius and d is the distance between
the dipole and the wire axis of symmetry (d ≥ R). This gives a total decay
rate (relative to the isolated dipole source) of

Γrad
Γ0
≈
∣∣∣∣1 + ε− 1

ε + 1
R3

d3

∣∣∣∣2 < 4. (1.25)

The addition of the metallic nanowire is seen to be able to change the
radiative decay rate, but in a limited way.
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Another decay mechanism considered is that of nonradiative modes orig-
inating in the joule heating of the metal/dielectric. As the emitter is
brought closer to the wire surface, its near fields induce strong currents
in the metal which dissipate. The resulting decay rate is then calculated
by considering the near field in the vicinity of the surface h ≡ (d−R)→ 0
of all modes, including those cutoff. This results in

Γnon−rad
Γ0

≈ 3c3

16ω3h3ε3/2
d

={ε− 1
ε + 1

}. (1.26)

The decay to the non-radiative channel is seen to depend on the dissipa-
tive part of the dielectric constant of the metal (={εm}) and decay like
h3 as a function of the distance from the surface. Note, that the geome-
try of the metallic object does not play a role in the qualitative behavior
described in (1.26), and we shall encounter the same behavior discussing
the slab plasmonic wave guide in chapter (2).

The contribution of the bound modes (plasmons in the metallic case,
guided dielectric waveguide modes in the dielectric cylinder case) con-
fined to the surface of the wire, requires further knowledge of the normal
modes of the system. Using the cylindrical coordinate decomposition
and the regime at which the wire is a single mode waveguide, Chang et
al. showed the lowest bounded solution to have the form

E = Θ(ρ− R)Ed + Θ(R− ρ)Em (1.27)

Ed = bd

[
ik‖kd,⊥

k2
d

H
′
0(kd,⊥ρ)ρ̂ +

k2
d,⊥
k2

d
H0(kd,⊥ρ)ẑ

]
eik‖z (1.28)

Em = bm

[
ik‖km,⊥

k2
m

J
′
0(km,⊥ρ)ρ̂ +

k2
m,⊥
k2

m
J0(km,⊥ρ)ẑ

]
eik‖z. (1.29)

The amplitudes are connected via the boundary condition

bd
bm

=
km,⊥
kd,⊥

J
′
0(km,⊥R)

H′
0(kd,⊥R)

. (1.30)

The decomposition allows writing the the Green’s function of the nanowire
which, in the limit of no dissipation (={εm} = 0) exhibits a pole at the
wavenumber corresponding to this mode. The contribution of the plas-
monic mode to the decay rate can thus be evaluated by considering (1.20)
around this pole. This results in

Γspp

Γ0
≈ αspp

K2
1(kd,⊥d)
(k0R)3 (1.31)

where αspp depends only on εd, εm. The decay into the plasmonic channel
is seen to depend on the the radius of the nanowire like 1/R3, and ex-
ponentially on the distance of the emitter from the wire. The latter is an
indication to the coupling being a result of the tight field confinement.

The different scaling of the decay channels as a function of the geome-
try of the nanowire allows for optimization of the Purcell factor of the
plasmonic channel, defined as Γspp/(Γtotal − Γspp). The advantage of the
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plasmonic nano wire demonstrated in the works discussed here was the
ability to reach Γspp/(Γtotal − Γspp) ≈ 5.2 × 102, equivalent to 99.8% of
the emitter energy decaying into the plasmon channel. Note, however,
that depends strongly on the orientation of the dipole along the radial
direction. The authors suggested using a nanotip to overcome this prob-
lem and further increase the coupling. In chapter (3) We suggest yet an-
other way by which the emission of a dipole emitter parallel to the metal-
dielectric interface can be strongly coupled to surface plasmon modes.

1.4 Quantum Surface plasmons

1.4.1 Coherent coupling and manifestations of quantum
surface plasmon optics

The enhanced coupling in itself is not sufficient for quantum information
applications if the coupling is not coherent (as is the case for the radia-
tive and non radiative decay channels discussed above), or if the resulting
excitation cannot be manipulated on the quantum mechanics level. the
advantage of the strong coupling to the surface plasmon lies in the coher-
ence of the coupling and the control achieved over these excitations.

The quantum nature of a few plasmonic excitations has been researched
extensively in recent years. As a first step towards integrating surface
plasmons in quantum information systems, the ability to generate, ma-
nipulate and measure the quantum nature of the surface plasmons has
to be established. In this subsection we mention a few of these results,
manifesting the ability to utilize SPPs for quantum optics purposes.

In the experiments aimed at measuring the strong coupling Akimov et
al. [Akimov07] using chemically grown silver nanowires coated with
nanodiamonds containing color nitrogen vacancy (NV) centers as emit-
ters, showed that the resulting radiation scattering of the wire ends bears
the signature of the singe emitter. They have demonstrated a Hanbury
Brown-Twiss experiment showing no coincidence peak in the intensity
correlation function. This indicates the single quantum character of the
source is carried coherently by the SPP. Kolesov et al. [Kolesov09] went
further to show not only that the statistics of the emitter is preserved in
the radiation emitted of the ends of the wire, indicating the coherent na-
ture of the coupling between the single emitter and the plasmonic prop-
agating mode, but also the quantum nature of the excitation by demon-
strating a self interference of the emitted quantum using the two possible
directions of the out going plasmon as the different arms of the beam
splitter using the diffraction to show an interference. Together with the
particle-like intensity coincidence correlations this has shown the particle
wave duality of the SPP, a quantum mechanical feature. Another evi-
dence to the ability to manipulate surface plasmons on the quantum level
was demonstrated by Huck et al. [Huck09] by demonstrating the ability of
a plasmonic guide to preserve the noise features of a non classical beam
coupled to it. In their experiment, a light source producing −1.9± 0.1dB
P-squeezed vacuum was end-coupled to the long range plasmon prop-
agating on the interface of a gold slab. They then measured the light



1.4 Quantum Surface plasmons 9

emitted at the end of the slab and showed that the nonclassical squeezing
was preserved. The importance of this work was also in demonstrating
that both coupling propagation losses can be modeled as beam splitter
losses- incoherence which can be simulated by introducing a mixture of
vacuum state.

1.4.2 Quantization of the plasmonic modes

As collective modes of the the electrons and photons, surface plasmon
can also be quantized as "quasi-particles". The existence of such quanta is
essential if we wish to consider coherent excitations between photons or
atomic excitations and the SPP modes. Here we sketch the quantization
procedure of SPP.

The appearance of the normal modes in the decomposition 1.17 as basic
excitations of Hamiltonian 1.16 is the first step towards the quantization
of the plasmonic modes. For the lossless system the linearity of the equa-
tions, it would be tempting to replace the c-number amplitudes of the
electric field with the creation operators

E =
∫ ∞

0
E(r, ω)dω +

∫ 0

−∞
E(r, ω)dω →

∫ ∞

0
Ê(r, ω)dω + h.c. (1.32)

However, some care is needed when treating the quantization of the elec-
tromagnetic fields in the presence of dielectrics, especially when losses
are introduced as is crucial for the case of surface plasmons. the dielec-
tric constant represents the average polarization, but does not account for
the noise. Naïve quantization thus leads to decaying operators, as the
dissipation is not acompanied by fluctuations.to account for the quan-
tum noise in the dielectric, one adds additional polarization noise to the
displacement current

D(r, ω) = εε0E(r, ω) + P(r, ω) (1.33)

which leads to inhomogeneous macroscopic Maxwell equations

∇ · (εε0E(r, ω)) = ρ(r, ω) (1.34)
∇× B(r, ω) = −iωµ0εε0E(r, ω) + µ0j(r, ω) (1.35)
∇ · B(r, ω) = 0 (1.36)
∇× E(r, ω) = iωB(r, ω). (1.37)

with

j = −iωP(r, ω) (1.38)
ρ = −∇ · P(r, ω). (1.39)

As the current and charge noises added here have to do with the dissipa-
tion in the metal, the description is related to the imaginary part of the
dielectric constant. It can be shown that the source is associated with a
bosonic field

ĵ(r, ω) =
ω

µ0c2

√
h̄

πε0
={εm} f̂(r, ω) (1.40)
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satisfaying the commutation relation

[ f̂i(r, ω), f̂ †
j (r
′, ω′)] = δi,jδ(r− r′)δ(ω−ω′) (1.41)

and diagonalizing the field Hamiltonian

H =
∫

d3r
∫ ∞

0
dω h̄ωf̂†(r, ω) · f̂(r, ω) (1.42)

With the solution of the equation written using the Green’s function, the
resulting fields can be written as

E = iωµ0

∫
d3r′ G(r− r′, ω, ω′)ĵ(r′, ω′) (1.43)

= i

√
h̄

πε0

ω2

c2

∫
d3r′

√
={εm(r′, ω′)}G(r− r′, ω, ω′)f̂(r′, ω′) (1.44)

where G is the classical dyadic Green’s function for the field.

The importance of the second quantization of surface plasmons is that
it enables the application of both techniques and schemes developed in
quantum electrodynamics (QED). The mapping of the system descrip-
tion onto the basic Hamiltonian of interacting quantized field and a two
level atomic system [Dzsotjan10] has allowed the calculation of quantum
optical effects in this system. A few examples are spontaneous emission
rates [Archambault10], estimation of strong coupling to ensemble of emit-
ters [Gonzalez-Tudela12], of the superradiance regime [Martín-Cano10,
Dzsotjan10], suggestion of a two qubit gates [Dzsotjan10], and dissipative
entangled state preparation [Martín-Cano11, Gonzalez-Tudela11]. Future
possibilities, stemming from this unique channel have also emerged,such
as the proposal for a single photon transistor [Chang07b] and photon
number resolvers [Witthaut12].

1.5 in- and outcoupling of light to Surface
plasmon

Having showed the usefulness of surface plasmons as a quantum inter-
face to single emitters, it remains to show how these excitations are to be
coupled out of the system. Due to the dissipative losses discussed in 1.2,
in particular in the regime of high confinement at which strong coupling
was demonstrated, the SPP modes are not suitable as information carri-
ers over distances beyond a few hundreds of a wave lengths. However,
if an efficient coupling of free propagating or optically guided photons
can be achieved, the plasmonic devices can serve as an effective inter-
mediate step between light and matter qubits, single photon generators,
quantum simulators and even quantum computation gates. It is the main
aim of the entire work presented here to demonstrate such coupling and
the facilitation of such devices.

It is useful however, to discuss first the techniques used in the classical
field of plasmonics for surface plasmons excitations. The key for all the
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described coupler is that for the photon to couple to a surface plasmon,
the momentum gap is to bridged somehow.

As we have seen the surface plasmons can couple efficiently to localized
emitters using the strong near field confinement. For this to become a
useful tool, they must also be coupled to far field radiation, allowing for
them to be recorded and measured. In order to couple and excite surface
plasmons, the coupled field must be matched in energy and momen-
tum. We start by looking at the dispersion relation describing the relation
between the energy and the momentum of the surface plasmon, as ap-
pearing in Eq. (1.9). For a given frequency ω, the wave number in the
propagation direction kz is always larger than the wavenumber of light in
the dielectric, which is also clearly visible from Eq. (1.7). As illustrated
above this is due to the polariton nature of the plasmon, where the light
field has to drag along the massive electrons. This means that free propa-
gating light cannot couple directly to an SPP on a flat surface. Excitation
of the SPP can only occur if the momentum of the exciting light can be
increased beyond the free space one.

In this section we review some of the means to do so, coupling light
to surface plasmon. We start by considering far field excitations using
attenuated reflections and grating, describe end coupling to plasmonic
waveguides and end with near field excitations using localized sources.

1.5.1 Far field excitation of surface plasmons

Attenuated total reflection (ATR)

One way to compensate the missing momentum of the free propagat-
ing light is the usage of evanescent fields. When light propagates in a
homogeneous dielectric with a dielectric constant εp, its wavenumber is
k =
√

εpω/c. Upon impingement at an angle θ on boundary with another
dielectric of smaller dielectric constant ε0, the in-plane component of the
momentum equals

kz =
√

εp
ω

c
sin(θ), (1.45)

which can be larger than the propagation constant in the dielectric ε0,
kz > k0 =

√
ε0

ω
c , corresponding to total internal reflection at the bound-

ary and evanescent field in ε0. The dispersion relation of an SPP prop-
agating on the interface of the dielectric ε0 and a metal can thus be sat-
isfied in the region between the two light lines ckprism and ck0 . There
are two well-known geometries of coupler suggested for the implemen-
tation of this idea. The first, suggested by Kretschmann and Raether
[Kretschmann68] utilizes a thin metallic film on the back of a prism (see
Fig. (1.1b)). In this configuration, the evanescent wave from the internal
reflection in the prism is used to excite the SPP on the other side of the
film (The evanescent wave momentum is still smaller than the momentum
of the plasmon propagating on the prism end of the film.). This imposes
the limitation on the film thickness, as the it needs to be thinner than the
penetration depth in the metal to allow the evanescent wave to overlap
with the plasmon mode on the other side. To use this technique in thicker
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a) b)
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p

Figure 1.1: Otto (a) and Kretschmann and Reather (b) configurations for attenu-
ated total reflection coupling to surface plasmons. A prism of dielectric constant
εprism is placed slightly above (a) or in contact to (b) a metallic film of dielectric
εmetal . The total internal reflection generates an evanescent wave out side the
prism

films, the closer side needs to be excited. This is done by introducing a
thin layer of either air or a low dielectric constant material between the
prism and the metal as is demonstrated in Fig. (1.1a), suggested by Otto
[Otto68]. In this configuration gap is the critical parameter, as small gaps
will lead to broadening of the plasmon resonance as a result of radiation
damping, and too larger gap will lead to small overlap of the evanescent
waves of the prism and the surface plasmon.

In both configurations, the coupling to the surface plasmon can be seen
examining the reflected wave coming out of the prism. When the reso-
nance conditions are satisfied, a dip appears in the reflection curves from
the prism, as the energy is being transferred to the SPP. For exactly
tailored parameters (thickness of the film for the Kretschmann configura-
tion, gap width for the Otto configuration) the coupling can theoretically
reach 100% efficiency ([Polzik92]), however both configurations are sen-
sitive to the the mention parameters, and are thus not practical for use in
nano-optical systems, though theoretical suggestions for these coupler on
the nanoscale were put forward, including a their quantum mechanical
description [Ballester09].

Grating

Another way to provide momentum conservation in order to excite SPPs
is to use diffraction effects. Light diffracted off surface features can con-
tain components whose wavevector coincides with that of the SPP. If
light of wave number k = ω/c hits a sinusoidal grating with a period of
a at an angle θ0 its component in plane can have wave vectors

kx =
ω

c
sin θ0 ± νg (1.46)
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with ν an integer, and g = 2π/a the lattice momentum. The momentum
mismatch can thus be bridged by choosing

kspp = k0,x + ∆kx = kx,0 + νg (1.47)

This allows choosing the angle at which coupling occurs. For example,
if the grating periodicity matches that of the SPP, the light coupling will
occur at normal angle to the surface.

The coupling is experimentally observed by a minimum as a dip in the re-
flection curve as a function of the angle of the incoming/outgoing light.
The dependence on the grating height has been investigated in several
regimes. For a shallow grating the dispersion of the plasmon propagat-
ing on the surface is unaltered by the corrugations. The efficiency of
coupling is increased with increasing depth of the lattice, which is then
only changing the scattering strength. As the height is further increased
the plasmon mode change to match the new boundary condition. This
then results in a mismatch of the grating momentum and the plasmon
momentum reducing the coupling efficiency. This means the grating pe-
riodicity and depth must be We shall discuss this in detail in chapter
(3) where we use a coupling grating as a part of the plasmonic lens we
suggest.

1.6 Quantum nature of a system

In the previous sections, we have touched upon a point of greater im-
portance to the understanding and control of quantum systems. The con-
ceptual differences between classical and quantum physics have intrigued
and sometimes bewildered the physics community since the early days of
quantum mechanics. This has led to a search for indisputable manifesta-
tions of the quantum world through observations of non-classical behav-
ior in experiments. A field of particular curiosity is that of identifying the
quantum to classical cross-over for ever larger systems, thereby eventually
identifying non-classical effects in macroscopic systems. Recently this has
led to the observation of, e.g., macroscopic entangled atomic ensembles
[Hammerer10, Kimble08], interference of large molecules [Arndt99] and
experiments pushing toward observing non-classical effects in mechani-
cal oscillators [Regal08, Teufel11, Chan11]. In parallel to this fundamental
interest, non-classicality is of central importance to quantum information
processing, the essence of which is to advance computation beyond what
is classically possible [Nielsen04]. However, as with some of the exam-
ples given in Sec. (1.4.1), in some instances quantum effects are claimed
by demonstrating consistency with an appropriate quantum model. Yet
any rigorous demonstration of genuine quantum behavior must exclude
the possibility of classical explanations. The importance of this is ex-
emplified in Ref. [Grønbech-Jensen10], where a pair of coupled classical
oscillators is shown to exhibit signatures easily mistaken for those of en-
tanglement expected from a quantum model. Thus, a definite conclusion
on the quantum nature of a system can only result from the breakdown
of the classical description and not from verified agreement with quan-
tum mechanics. This approach is most rigorously demonstrated by the
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Bell-inequalities, where the underlying model of the system is stripped
of any physics and is reduced to the very basic assumptions of locality
and realism, resulting in an indisputable non-classicality criterion. The
Bell-inequalities cannot however, by their very nature, be investigated by
data obtained from a single system.

1.6.1 Nonclassicallity criteria and demonstrations

A large class of such non-classicality demonstrations relies on show-
ing measurable effects which, according to quantum mechanics, cannot
be obtained for a system being prepared classically. For instance, any
light field being prepared by a classical source, must have its Glauber-
Sudrashan P-function, a representation of the density matrix,

ρ̂ =
∫

d2α P(α)|α〉〈α|, (1.48)

represent a probability distribution and is therefore positive and well be-
haved in the sense of a classical probability distribution [Sudarshan63].
As a classical state is understood to be described in quantum mechanics
by a mixture of coherent states, the arbitrary state described by distribu-
tion of coherent state appearing in (1.48) is classical only if P(α) is a non-
negative probability function. It is an argument that can be used to say
that any state with an ill-behaved P-function is considered non-classical
[Vogel00]. Yet, the direct probability of the P-function is not possible, and
for nonclassical states, it is not only negative but highly singular, clearly
not being determined by measurements. To work around this problem
and prescribe a measurable criterion, Vogel [Vogel00] suggested examin-
ing the the characteristic function G(k(φ)) of any quadrature probability
distribution x(φ) = âeiφ + â†e−iφ defined as

p(x(φ)) =
1

2π

∫
dk e−ikxG(k). (1.49)

The advantage of using the characteristic function is that the vacuum
noise contained in p(x) can be convoluted out simply by dividing

G(k) = G̃(k) e−ik2/2, (1.50)

and the resulting new characteristic function supplys the desired link
between the quadrature and the P-function of the state

p̃(x) =
1

2π

∫
dk e−ikxG(k) =

∫
d2α P(α)δ(x− xα(φ)) (1.51)

with xα(φ) = αeiφ + α∗e−iφ. That is, removing the ground state fluctua-
tions the P-function is identified by Vogel as the classical distribution.

As it results from the regularity of the P-function, the new noise-reduced
distribution should also be a proper distribution function. This is then
translated, using Bochner’s theorem [Bochner33] to the demand that G̃
be positive definite. Violation of this condition is equivalent to∣∣G̃(k)

∣∣ > 1 (1.52)



1.6 Quantum nature of a system 15

which, using (1.50), gives the final criterion

|G(k)| > e−ik2/2. (1.53)

Though the derivation of this criterion is rather mathematical, the final re-
sult can be rather intuitively understood. If the characteristic function G
shows features decaying slower than those of the coherent state, the dis-
tribution itself will exhibit structures narrower than that of the coherent
state, render non classical by the quantum description. A squeezed state,
for example, is considered non-classical because the quantum fluctuations
of a coordinate are reduced below the vacuum fluctuations [Kiesel11],
which according to quantum physics are inherently present even for a
classical source. While such non-classicality arguments are perfectly ade-
quate for, e.g., verifying the non-classicality of a source [Neergaard-Nielsen07]
or validating the performance of a quantum information protocol [Mišta10,
Furusawa98, Lee11b], they inherently rely on quantum mechanics.

1.6.2 The second order coherence

An example for a criterion making no assumption based on quantum me-
chanics, is that of the second order coherence function. The second order
coherence function is the normalized intensity intensity fluctuations, two
time correlation function. It is defined as

g(2)(τ) ≡ 〈 Ī(t) Ī(t + τ)〉
〈 Ī(t)〉2 =

〈E∗(t)E∗(t + τ)E(t + τ)E(t)〉
〈E∗(t)E(t)〉2 . (1.54)

where Ī(t) is the intensity averaged over several cycles, and stationary
statistical ensemble is assumed. The last term is the expression for light
measurements, in terms of the electric fields. The possible range of values
for such a measurement can by calculated by considering the Cauchy
inequality for the two real valued intensities

2 Ī(t1) Ī(t2) ≤ Ī2(t1) + Ī2(t2), (1.55)

which on a set of measurements, means the averages obey

〈 Ī(0)〉2 ≤ 〈 Ī2(0)〉. (1.56)

This leads to the zero time delay correlation being constrained to

g(2)(0) ≥ 1. (1.57)

Though no such constraint exist for the general time delay τ 6= 0, one can
still show that

g(2)(τ) ≥ g(2)(0). (1.58)

These two characteristics of the intensity fluctuations are based solely on
the existence of an underlying distribution function leading to Eq. (1.56).

In the quantum mechanical description, however, the intensity is de-
scribed in term of the fields (for light) operators

E→ Ê+ + Ê− =

√
h̄ω

2ε0V

(
â†eiφ + âe−iφ

)
(1.59)
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or in the general case, by the generalized coordinate x →
(
â†eiφ + âe−iφ),

a (a†) being the annihilation (creation) operator for the bosonic field of
energy excitation in the system. The second order coherence function
then becomes

g(2)(τ) =
〈a†a†aa〉
〈a†a〉2 . (1.60)

For simplicity, we limit our discussion here to the single mode field which
explains the lack of dependance on both position and time. This can be
expressed using the mean number of excitons in the system

g(2)(τ) =
〈n(n− 1)〉
〈n〉2 = 1− 1

〈n〉 +
(∆n)2

〈n〉2 ≥ 1− 1
〈n〉 , (1.61)

where we have used that the variance in exciton number, (∆n)2 ≡ 〈n2〉 −
〈n〉2 is a non negative value. The range of coherence accessible according
to the quantum description is thus different than the one permitted by
the classical description. This is not merely a theoretical bound, as one
can immediately verify by examining the coherence of a Fock state, for
which ∆n = 0. The coherence of the Fock state |n〉 is therefore

g(2)(τ) = 1− 1
n

, (1.62)

which cannot be explained by the classical argumentation. In measuring
g(2) < 1, one therefore shows the system to be inexplicable by a clas-
sical model, and not the disagreement of the results with the quantum
mechanical description of the classical state.

1.6.3 continuous variables and phase-space distributions

The nonclassicality criterion presented in the previous section requires
the ability to measure the intensity. In chapter (4), we shall present such
a nonclassicality criterion which is based on the indirect inferring of the
phase space distribution of the state. We shall therfore review the concept
of a phase space distribution.

In classical physics, the state of a system is completely determined by its
generalized coordinates, x and p, for each degree of freedom. Even in the
case where only statistical knowledge of the position and momentum can
be obtained. The state of such a system is fully characterized by the phase
space distribution W(x, p); that is, given the phase space distribution, the
ensemble averaged result of any measurable quantity A can be obtained
by

〈A〉 =
∫

dxdp W(x, p) A(x, p) , (1.63)

where A(x, p) is the decomposition of the quantity A in terms of the
generalized coordinate x and its canonically conjugated momentum p.
Classically, the phase space distribution W(xi, pi) is the joint probabil-
ity of finding the system in an infinitesimal phase space volume around
x = xi, p = pi and hence it obeys all the requirements of a probability
distribution, including being a non-negative function. In the case of a
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Figure 1.2: Homodyne detection scheme. The signal is mixed on a 50 : 50 beam
splitter with a strong coherent light source and the resulting intensity in two
arms is then measured and subtracted to give measurements of the quadratures
of the signal light. See text for details.

quantum phase space function, the Heisenberg uncertainty renders this
definition meaningless, as a joint probability distribution for x and p does
not exist.

The phase space distribution is only defined through Eq. (1.63) [Nha08]
and this relaxation of constraints allows for negative values of the func-
tion in areas smaller than h̄. This negativity is not observable directly
due to the vacuum fluctuations preventing simultaneous measurement of
x and p. However, using classical arguments one can still infer the phase
space distribution from measurements of only a single observable at a
time (see below) and detect such negativities, thereby illuminating the
failure of classical theory.

the statistics of the position and momentum in classical physics can be
completely characterized by a phase space distribution W(p, q). The dis-
tribution quantifies the probability of finding a pair of x and p

However, the existence of an equivalent quantum mechanical phase space
formulation, as introduced by Wigner [Wigner32], offers a valuable tool
for investigating the discrepancies between classical and quantum me-
chanical expectations, such as the one studied here.

Probing the phase space distribution - homodyne detection

It is left, therefore, to describe the way these phase space (quasi-) prob-
abilities can be sampled. In this section we review the main technique
to measure the quadratures of the light field, called homodyne detection.
The scheme of the balanced homodyne detector is depicted in Fig. (1.2).
The signal light is interfered with a coherent laser beam whose inten-
sity much stronger than that of the signal. Furthermore, the intensity is
assumed large enough to be treated classically . That is, the quantum
fluctuations of the local oscillator can be ignored. After the optical mix-
ing of the signal and the local oscillator on the 50 : 50 beam splitter, each
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emerging beam is measured by a photodetector. The photocurrents are
then subtracted from each other. An important feature is that the pho-
todetection need only be proportional to the photon number of the beams
(a linear response photodiode, for example) but not necessarily photon
number resolving. This allows for higher detection efficiencies. assuming
the photocurrents to be proportional to the photon number impinging
beams n̂1, n̂2 the final quantity of interest is

Ic − Id = ĉ† ĉ− d̂†d̂ (1.64)

Writing these operators in terms of the original signal annihilation op-
erator â and the the complex amplitude of the strong LO coherent field
αLO,

ĉ =
1√
2
(â− αLO) , d̂ =

1√
2
(â + αLO) , (1.65)

leads to the difference being

Ic − Id =
√

2|αLO|qθ (1.66)

with the angel θ, which determines the quadrature, being the LO phase.
Thus,the different field quadratures can be probed by varying the phase
of the laser.

A note should also be made on errors and inefficiencies in the balanced
homodyne scheme. As the signal is amplified by the imposed high inten-
sity laser, such that high efficiency yet noisy photodetectors can be used.
In [Polzik92] the detectors efficiencies were cited to be η = 1± 0.02. Even
for a finite efficiency of the detectors and imperfect mode matching of
the beams, losses in the two arms of the homodyne do not change the
operation of the detector and can be mapped to a beam splitter loss on
the entrance port of the homodyne detector.

1.7 Thesis structure
The thesis is structured in the following manner; In part I we suggest
devices for efficient coupling of surface plasmons and photons. This in-
clude two different schemes. In chapter ) we discuss adiabatic coupling of
a dielectric slab waveguide with a plasmonic slab guide, allowing for an
effective transfer of energy from one waveguide to the other. This is done
by choosing the geometry of the wave guides such that their dispersion
curves cross a some point along the guides. the variation of propagation
constant with the distance is achieved by tapering the plasmonic slab,
where the tapering is made slow enough to ensure negligible backscat-
tering. To describe the propagation of energy along the wire, we develop
a perturbation method based on casting the Maxwell equations into a
Schödinger like form. The method developed is applicable to any cross
section of the guide, allowing future use in more realistic experimental
setups.

In chapter (2) we go on to suggest a different method of using surface
plasmons as a mediator between light and a quantum emitter. We exam-
ine an emitter placed above a structured metallic surface. The structure
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consists of concentric grooves, optimized to generate a coupling grat-
ing between light propagating perpendicular to the sample and radially
propagating surface plasmons. These groove also generate a lossy cavity
effect, as a fraction of the out-going plasmons are reflect back towards the
emitter. This results in significant increase of the emitter’s decay rate. In
addition, solid state quantum dots in layered semiconductor structures
have their dipole moment aligned parallel to the plane of the lens, re-
ducing the coupling efficiency to surface plasmon. To overcome this, we
add a central groove to the metallic structure and show this results in
improved coupling and higher decay rates.

The second part of the thesis deals with nonclassicality of a quantum
state, and in chapter (4) we suggest a criterion for showing the break-
down of classical theory for a local state, when limited to quadrature
measurements only. We take the approach suggested above, where no
assumptions based on quantum mechanics are made. Instead, we use the
quadrature measurements to classically infer the underlying distribution
function. The non negativity constraint on the distribution function re-
sults in an inequality on moments of the distribution function. However,
non classical states violate this inequality, showing the resulting distribu-
tion function to contain negativity. By that we show that no classical
model can be devised which will reproduce the quadrature measure-
ments of that state. We test this criterion on a set of quadrature mea-
surements of a noisy single photon source, demonstrating the negativity,
and the essential nonclassicality of the single photon state.
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Efficient coupling of light and
surface plasmons for quantum

optics applications
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Chapter2

Adiabatic coupling of plasmonic

and photonic waveguides

2.1 Introduction

In the introduction we presented the possibility of reaching strong cou-
pling to a single emitter near a metallic surface [Chang06, Chang07a,
Akimov07] for the use in quantum optics and quantum information ap-
plications [Chang07b]. This regime is reached when the surface sup-
ports modes with high spatial confinement. However, as discussed, these
highly confined modes are short-range plasmon modes which are rapidly
damped in the metal. This makes a reliable in and out coupling to the
plasmon modes very important. Current experiments mostly use end-
coupling to the plasmonic waveguide (see, e.g. [Huck09]). However, this
is lossy and restricted to the long-range surface plasmon modes. Another
option suggested by Chang et al. in [Chang07a] is that of generating
a resonant cross talk between the plasmonic nanowire and an adjacent
dielectric waveguide. In doing so the excitation experiences Rabi flip-
ping between the wire and the waveguide, due to the evanescent fields
overlaps of both the guides. The authors then showed that terminat-
ing the interaction at the point were the excitation is completely in the
photonic waveguide, by either the termination of one of the guides or by
increasing the separation, will lead to efficient extraction of the plasmonic
excitation. The technical details of the termination were not treated. Re-
cently, adiabatic changes of a plasmon mode by tapering of the waveguide
have also been investigated theoretically [Stockman04] and experimen-
tally [Verhagen09].

In this chapter we investigate the possibility of performing an adiabatic
transfer between a plasmon mode and another guided mode of a di-
electric waveguide. Different varieties of these adiabatic transfer tech-
niques are well established in atomic physics (see, e.g., [Bergmann98])
and some of them have also been demonstrated for dielectric waveguides
[Longhi07]. Here we suggest here a general formalism under which such
general coupling structures can be investigated. We utilize the under-
standing of the process of adiabatic passage reached in quantum me-
chanics over the years since the work of Born and Fock in 1928 [Born28].
The advantage of the method presented here is its straight forward gen-

23
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eralization to arbitrary cross section of the samples, allowing for easier
numerical modeling and optimization of experimental setups.

The chapter is structured as follows. In Sec. (2.2) we review the main
example used in this work, that of the slab waveguide and slab plasmonic
channel. InSec. (2.3) we introduce the formalism used here. We cast
the Maxwell equations in a quantum-mechanical-like form and discuss
the requirements for applying the techniques of adiabatic passage. In
Sec. (2.5) we present the results for the adiabatic transfer of plasmonic
excitation from the metallic nanoslab to an adjacent dielectric waveguide,
and discuss adiabatic condition for such tapering to insure the efficient
transfer of the energy. Finally we summarize and conclude the results in
Sec. (2.6).

2.2 Slab waveguide and plasmonic waveguide
Though the method used here is general and applicable to three dimen-
sional configurations, we shall limit ourselves to discussing a two dimen-
sional systems, namely a slab waveguide and a slab plasmonic waveg-
uide. For this reason it will be useful to review here the dispersion
relation and modes of these wave guides. The planar slab waveguide
is shown in Fig. (2.1). It consists of a core layer of thickness 2a in-
finitely long in the ŷ direction, surrounded by a uniform medium, with
the waves guided along the ẑ direction. The core layer is characterized
by a dielectric constant ε2 which can be either positive (for the photonic
waveguide) or negative (for the plasominc waveguide). We shall work
in the frequency domain for a fixed wavelength and will neglect the dis-
persion of the metal. For the plasmonic waveguide, only TM mode can
occur [Zayats03], and thus we need consider only three components of
the fields, namely Hy, Ex and Ez. Though the dielectric guide support
transverse electric (TE) modes, these will not interact with the plasmonic
modes, and we therefore consider only the TM modes of the dielectric
waveguide as well.

Next we calculate the dispersion curves for the two waveguides. As
we are looking for a solution decaying exponentially from the metal-
dielectric interface into the dielectric, the following solution can be as-
sumed

E(I), H(I) ∝ e−κ1(x−a)eiqz

E(III), H(III) ∝ eκ1(x+a)eiqz

E(II)
+ , H(II) ∝ eκ2(x−a)eiqz

E(II)
+ , H(II) ∝ e−κ2(x+a)eiqz

}
f or the plasmonic waveguide

E(II)
+ , H(II) ∝ eik2(x−a)eiqz

E(II)
+ , H(II) ∝ e−ik2(x+a)eiqz

}
f or the dielectric waveguide

where the superscripts refer to the different regions of the guide section
plotted in Fig. (2.1a), and κ1,2 and k2 are to be determined later as a
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Figure 2.1: In a) a section of the slab plasmon waveguides considered in sec.
2.2. The structure is assumed infinite in the y-direction. In black, the long (left)
and short range (right) modes, depicted by Hy the amplitude of the magnetic
field in the y direction, see text for details. In b) the dispersion curve for the two
modes is plotted. In the inset the imaginary part of the wave number is shown,
corresponding to the decay of the two modes

function of the wave number q.

The complete mode is obtained by equating the boundary conditions and
the amplitudes in each region. The parallel electric field Ez and mag-
netic field Hy are continuous across the interface, as well as the electric
displacement Dx = εEx perpendicular to the surface. These equations
give the relation between κ1,2 (k2), the decay (propagation) constant in the
transverse direction, and the wave number q, namely

κ2
i = q2 − k2

0εi, (2.1)

for the plasmonic guide and

−k2
2 = q2 − k2

0ε2, (2.2)

for the region II in the dielectric waveguide case.
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The resulting dispersion relation for the plasmon is

e2κ2a(
κ2

ε2
+

κ1

ε1
)2 = e−2κ2a

(
κ2

ε2
− κ1

ε1

)2

, (2.3)

which according to the root sign chosen yields one of the two plasmonic
modes,

κ2

ε2
tanh(κ2a) = −κ1

ε1
(2.4)

κ2

ε2
coth(κ2a) = −κ1

ε1
(2.5)

plotted in Fig. (2.1b). The corresponding magnetic field amplitudes are

Hlr =
1
2


1

1− κ2ε1
κ1ε2

1− κ2ε1
κ1ε2

1

 Hsr =
1
2


1

1− κ2ε1
κ1ε2

−1 + κ2ε1
κ1ε2

−1

 (2.6)

where the symmetric, first mode is the long range plasmon, and the sec-
ond the short range one. These names can be justified examining the
dispersion curves of both modes plotted in Fig. (2.1). For the long range
mode, both real and imaginary parts of the wave number approach that
of the bulk photons. This means lower losses, but also less confinement
of the fields around the metal making it less useful for strong coupling to
single emitters. The short range plasmon however exhibits the divergence
of the wavenumber as the width of the slab is reduced. As we discussed
in the introduction this implies tight confinement of the fields and make
the short range plasmon couple strongly to quantum emitters when the
width is reduced, similar to the the plasmonic mode on a cylindrical
nanowire.

For the dielectric waveguide the dispersion relation of the TM modes in
the slab is

ε2κ⊥,1 = ε1k2 tan(k2 a) even modes (2.7)
ε2κ⊥,1 = −ε1k2 cot(k2 a) odd modes (2.8)

The resulting k-numbers for the TM0 mode in the slab are plotted in Fig.
(2.2). Examining Eqs. (2.7) and (2.8) the different modes have a cutoff
when the mode is no longer bound on the cross-section. for the mode j
this happens when κ2 a = jπ/2. At this point the κ⊥,1 = 0, which means
q = k0 and no guiding. We will focus here on the the single mode regime
of the wire, where κ2 a < π/2. in this regime the only guided mode
is the TM0 mode which does not exhibit a cutoff, but its wave vector
approaches the surrounding medium as the radius is decreased. This
behavior is opposite to the one discussed above for the plasmonic wire.
As the waveguide is narrower the extension of the electric field outside
the wire increases.

In Fig. (2.2), the dispersion curves of the wire and the wave guide are
plotted for the different half-width in isolation. The different trends of
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Figure 2.2: Effective refractive index for a dielectric waveguide of dielectric con-
stant ε = 2.5 (dashed, green) and a silver plasmonic waveguide (full line, blue)
as a function of the waveguides widths. Dash-dot line indicates the dielectric
waveguide chosen in the calculation of the adiabatic coupler in Sec. (2.5).

the dispersion curves, corresponding to the confinement of the fields in
the plasmonic slab versus the extension of the dielectric waveguide as the
half width is reduced, generate a crossing of the propagation constants
for appropriately chosen widths of the two guides. It is this crossing we
exploit in this chapter. Placing the two guides next to each other, the
overlap of the guides with the evanescent fields of the other guide, will
generate interaction. The new modes of the hybridized system will dis-
play an avoided crossing - meaning their dispersion curves will display
a gap rather than cross, corresponding to a "flip" between the plasmonic
and the dielectric waveguide isolated modes. In what follows we explore
the conditions of slow variation in this coupled guides configuration un-
der which an excitation of the plasmonic guide will adiabatically follow
the hybridized mode, leading an energy transfer into the dielectric waveg-
uide.

2.3 Mapping the EM Maxwell equations on the
Schrödinger equations

To consider the propagation of an excitation along a slowly varying waveg-
uide we use techniques of adiabatic evolution and perturbation theory
in their quantum mechanical formulation. Quantum-classical analogies
are very useful for increasing the understanding of both fields, and have
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been already used in a number of seemingly unrelated fields, from An-
derson localization[Schwartz07] to quantum chaos[Agam92] and Bloch
oscillations[Morandotti99, Pertsch99]. Commonly, the optical analogs are
used to investigate these effectively quantum effects. In this work, we
shall make the opposite route. We will introduce a quantum descrip-
tion of the classical Maxwell equation in order to use the formalism of
adiabatic changes.

The concept of perturbation is very well understood both in classical and
quantum mechanics. The aim of the theory presented here is to project
the problem at hand in terms of a z-dependent Schrödinger like equation
of motion, defining an inner product and applying such a perturbative
scheme.

The projection of the Maxwell equations into the form of a scalar Scödinger
equation is usually done within the weak guidance limit. Using the scalar
wave equation for any of the field components, say Ez,

∇2Ez + k2εEz = 0 (2.9)

Within of the paraxial approximation [Born99] this can be written as

Ez = ψ(x, z)ei
√

ε2kz, (2.10)

with ψ being a slowly varying function, ε1 is the cladding dielectric con-
stant and ε2 is the core dielectric constant. In combination with the
assumption that (

√
ε2 +

√
ε1)/2

√
ε2 ∼ 1 allows to neglect the second

derivative in the propagation direction, resulting in the propagation equa-
tion

∂2

∂x2 ψ + 2i
√

ε2k
∂

∂z
ψ− 2

√
ε2k2 (ū(x) + ∆n)ψ = 0, (2.11)

here ū is a square potential well on the boundaries of the waveguide, of
height

√
ε2 −

√
ε1 and ∆n are a perturbation in the index of refraction,

assumed much smaller than the core index of refraction.

As we wish to consider surface plasmons, however, the assumption of
weak guidance is not suitable for our needs. the dielectric constants of
the metal and the surroundings vary significantly from each other, both
in the sign and absolute magnitude. For this reason, the mapping will be
of the vectorial Maxwell equations, and we shall make no assumptions
on dielectric constants ratios.

2.3.1 Perturbation and Mode orthogonality

For a given frequency ω the propagation is governed by Maxwell’s equa-
tions

∇ · D = 0, ∇×H = −i
ω

c
D (2.12)

∇ · B = 0, ∇× E = +i
ω

c
B. (2.13)

We assume that the waveguide is described by a permittivity ε(x, z),
which is a function of x and z, while the relative magnetic permeabil-
ity is one. Thus the material equations are given by

D = ε(x, z)E, B = µH. (2.14)
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As a guiding example throughout we use the systems considered in Sec.
(2.2) with a guided mode which is guided by a thin film with infinite
extension in the y-direction and travels into the z-direction. This reduces
the problem to a two dimensional problem, with a one dimensional cross
section, making the equations easier to follow. However the formalism
provided here is general.

Assuming an infinite extension into the y-direction, we have ∂y = 0. Fur-
thermore one can show that plasmon modes on the thin films are TM
modes such that Ey = Hx = Hz = 0 (see, e.g., [Pitarke07]). Maxwell’s
equations for the field E and H thus reduce to the four equations

∂Hy

∂z
= i

ω

c
εEx (2.15)

Ez =
ic

ωε

∂Hy

∂x
(2.16)

∂Ex

∂z
=

∂Ez

∂x
+ i

ω

c
µHy (2.17)

∂Ez

∂z
= −∂Ex

∂x
− 1

ε

∂ε

∂x
Ex −

1
ε

∂ε

∂z
Ez. (2.18)

From Eqn. (2.16) we see that we only have to take into account two inde-
pendent variables Ex and Hy. However, it is more convenient to keep all
three components Ex, Ez and Hy. Nevertheless we note that Eqn. (2.16)
is redundant - if we take the derivative with respect to z we reproduce
Eqn. (2.18).

We now introduce the field vector

ψ =

 Ex

Ez

Hy

 . (2.19)

We can recast the propagation equations Eqns. (2.15), (2.17) and (2.18)
into the form

i
∂ψ

∂z
= (M0 + M1)ψ. (2.20)

Here, the dynamics is governed by the operators

M0 =

 0 i∂x −ω/c
−i∂x − i(∂xε)/ε 0 0
−ωε/c 0 0

 (2.21)

M1 =

 0 0 0
0 −i(∂zε)/ε 0
0 0 0

 . (2.22)

Note that Eq. (2.20) has the form similar to the Schrödinger with M0 as
the unperturbed Hamiltonian H0 and M1 being the the small perturbation
V. Furthermore, if ∂zε = 0, the propagation equation can be solved by
diagonalizing M0 using the waveguide modes, equivalent to the quantum
mechanical stationary modes. In the following we will start from M0 and
view M1 as a small perturbation. We then expand the solution using the
stationary modes of the translationally invariant waveguide, and examine
the conditions under which the slowly varying wire mode will follow the
local stationary modes (adiabatic following).
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2.3.2 definition of the inner product for the guided modes

In order to apply the well understood techniques of quantum mechanics,
a key feature of the system should be the Hermiticity of the Hamilto-
nian. This ensures real eigenvalues, and a complete orthonormal set of
eigenfunctions. Unfortunately, M0 is not hermitian with respect to the
standard scalar product

〈ψ|φ〉 =
∫

dx ∑
j

ψj(x)∗φj(x). (2.23)

However, the operator M0 is pseudo-hermitian as it satisfies the relation

η M†
0 η−1 = M0, (2.24)

where the dagger symbol (†) denotes the common hermitian conjugate
and η is a dielectric parity matrix defined by

η = diag(ε,−ε, 1). (2.25)

A pseudo-hermitian operator has some nice properties which makes it
just as useful as a hermitian one. First of all, all eigenvalues are either real
or come in complex conjugated pairs [Bender98], corresponding to prop-
agating and damped electromagnetic modes, respectively. Second, the
eigenmodes form a complete orthonormal set [Weigert03]. Another sig-
nificant general feature is that with M0 independent of z, the z-evolution
conserves an inner product given by [Mostafazadeh02]

〈〈ψ|φ〉〉 = 〈ψ|ηφ〉 (2.26)

=
∫

dx ∑
jk

ψj(x)∗ηjkφk(x). (2.27)

However this is not the case here, as the the metric η is z-dependent. The
implication of this is considered in 2.3.4.

2.3.3 Relation to momentum density transfer of the
guided mode

To understand the physical meaning of the inner product described here,
we examine the expression in the dielectric. In the dielectric, this quantity
is proportional to the (z, z) component of the Maxwell stress tensor,

Tα,β =
1

4π

[
EαDβ + HαBβ −

1
2
(E ·D + B ·H) δα,β

]
(2.28)

representing the flow of combined material and field momenta through
the wave guide cross section. It is interesting to note the natural emer-
gence of the Minkowski form of the material stress tensor, though it has
been disputed [Peierls76]. Here it arises because the M0 Hamiltonian
represents the translational invariant propagation (a wire with a constant
cross section). This naturally leads to momentum conservation along the
wire, and the momentum density can serve as an inner product. We
emphasis that the ability to extend this symmetry into the metallic part
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is due to neglecting the dispersion in the metal. The above form of the
stress tensor is derived assuming linear medium. In considering real met-
als, a more careful treatment of the dependence of the temperature and
pressure on the dielectric constant will be required.

2.3.4 Equation of motion for longitudinal changes

We now turn to treating longitudinal changes in the wire, using the
Schödinger type equation (2.20). We first ignore the M1 term and will
include it later. We will formulate the problem as follows. We know the
eigenmodes for each stationary Hamiltonian for the transitionally invari-
ant problem ( ∂ε

∂z = 0) of the form

−km (Z)ψm (Z) = M0 (ε(r⊥; Z))ψm (Z) , (2.29)

form a complete set of orthonormal eigenfunctions. We therefore write
the solution in the following way

Φ(z) = ∑
m

Cm(z) exp
(

i
∫ z

−∞
km(ξ)dξ

)
ψm. (2.30)

Substituting into (2.20), multiplying by 〈〈ψn| on the left and integrating
over the transverse coordinates, we get

i ∑
m

∂Cm(z)
∂z

exp
(

i
∫ z

−∞
km(ξ)dξ

)
〈〈ψn|ψm〉〉+

+ i ∑
m

Cm(z) exp
(

i
∫ z

−∞
km(ξ)dξ

)
〈〈ψn|

∂

∂z
ψm〉〉 = 0. (2.31)

The orthogonality of the eigenfunctions can be used for the first term. An
expression for the second term is obtained by deriving equation (2.29)
with respect to the parameter Z, and multiplying by 〈〈ψn| on the left,
with n 6= m

〈〈ψn|
∂

∂z
|ψm〉〉 =

〈〈ψn| ∂M0
∂z |ψm〉〉

kn − km
. (2.32)

The equation of motion for the coefficients Cm(z) can thus be written

i
∂Cn(z)

∂z
= ∑

m 6=n
Cm(z) exp

(
i
∫ z

−∞
(kn(ξ)− km(ξ)) dξ

)
×

×
(
−i
〈〈ψn| ∂M0

∂z |ψm〉〉
kn − km

)
+ 〈〈ψn|

∂

∂z
|ψn〉〉 (2.33)

Phase evolution along z

For Eq.(2.33) to be a consistent description of the evolution of the wave
along the z axis, the term 〈〈ψn| ∂

∂z ψn〉〉 with the same index n on both sides
of the inner product must also be accounted for. In quantum mechanics,
the normalization condition ensures the contribution from this term is
purely imaginary. Fixing 〈〈ψn|ψn〉〉 here, the differentiation of the the
normalization condition yields

d
dz
〈〈ψn|ψn〉〉 = 2<

{
〈〈ψn|

∂

∂z
ψn〉〉

}
+ 〈ψn|

∂η

∂z
|ψn〉 (2.34)
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where the single 〈 〉 bracket is to be understood in the common L2 inner
product used in quantum mechanics. This means the diagonal term will
have a real part as well due to the change in the inner product discussed
above. The term −1

2〈ψn| ∂η
∂z |ψn〉 should thus be added to the propagation

equation to account for the change of amplitude of the mode along the
propagation direction.

An additional contribution of the diagonal term is due to the imaginary
part and causes phase changes. However this contribution can be set to
zero using the freedom of choice of the phases of the eigenmodes in the
different slices. As the functions at each slice are only determined up to
a phase, we can add a phase eiα(z) such that

〈〈ψ̃n|
∂

∂z
ψ̃n〉〉 = 〈〈e−iα(z)ψn|

∂

∂z
eiα(z)ψn〉〉 = =

{
〈〈ψn|

∂

∂z
ψn〉〉

}
+ i

dα

dz
. (2.35)

Therefore, if the relative phases are set such that

α = −
∫ z
=
{
〈〈ψn|

∂

∂z
ψn〉〉

}
dz, (2.36)

the phase contribution of the diagonal term vanishes. In the examples
we discuss here, the relative phase between the slices was fixed directly,
without an explicit calculation of the derivative. By fixing the transverse
fields to be real, and have a continuous sign convention between the slices
we set the phase evolution of the norm to zero (α = 0).

Step boundary conditions

The equation of motion derived above uses the partial derivative of the
Maxwell equation Hamiltonian, ∂M0

∂z , which, when applied to Eq.(2.21)
yields

∂zM0 =

 0 0 0
−i 1

ε ∂z∂xε + i 1
ε2 (∂xε)(∂zε) 0 0

−k∂zε 0 0

 . (2.37)

(2.38)

We shall focus our attention on waveguides with a step profile in the x-
direction (radial direction in the general three dimensional case) and a
uniformly expanding cross section

ε = ε2 + (ε1 − ε2)Θ(z− f (x, y)). (2.39)

and therefore both ∂xε, ∂zε will be Dirac delta functions, and ∂x∂zε will
be highly singular. This however can be overcome in the following way;
Examine the expression (∂zM0)2,1 = −i 1

ε ∂z∂xε + i 1
ε2 (∂xε)(∂zε). When ap-

pearing in the inner product between 〈〈kn| and |km〉〉 the integral over the
crosse section will read∫

dr⊥ E∗z ε

[
−i

1
ε

∂z∂xε + i
1
ε2 (∂xε)(∂zε)

]
Ex (2.40)
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We first notice that

(∂x∂zε)Ex = ∂x ((∂zε)Ex)− (∂zε)∂xEx (2.41)

This can now be plugged back in to (2.40) together with a partial inte-
geration to to yield

i
∫

dr⊥ (∂xE∗z )ε
(∂zε)

ε
Ex +

∫
E∗z (∂zε)

[
i∂x +

i
ε
(∂xε)

]
Ex (2.42)

identifying∫
dr⊥

[
(M†

0)2,1E∗z
]
(∂zε)Ex +

∫
dr⊥ E∗z (∂zε) [(M0)2,1Ex] (2.43)

adding the other nonvanishing term in (2.37),∫
dr⊥ H∗y ε(−k(∂zε))Ex =

∫
dr⊥

[
(M†

0)2,1 H∗y
]
(∂zε)Ex (2.44)

We finally get,

〈〈ψn|
∂M0

∂z
|ψm〉〉 =

∫
dr⊥ ∂zε

(
knE∗n,xEm,x + kmE∗n,zEm,z

)
(2.45)

This kind of manipulation is not limited to the two dimensional TM and
can be generalized to the full 3D Maxwell equations. This term still car-
ries with it a problem for the step profile waveguide, as Ex is discontin-
uous across the interface. This can be dealt with in a similar manner to
coupled mode theory [Snyder83] using the continuity of the displacement
field D = εE and by

∂zε = (ε1 − ε2) δ( f (x, y)) (2.46)

∂z
1
ε
=

(
1
ε1
− 1

ε2

)
δ( f (x, y)) (2.47)

This gives∫
dr⊥ (∂z

1
ε
)
(
knE∗n,xEm,x + kmE∗n,zEm,z

)
dA = (2.48)

= (ε1 − ε2)

(
1

ε1ε2
knD∗n,xDm,x + kmE∗n,zEm,z

)∣∣∣∣
boundary

(2.49)

which is well defined on the boundary.

2.3.5 Treating M1

The last expression obtained (2.49) for the matrix elements of M0 also
facilitates the handling of the M1 term ignored so far. We are assuming it
to be small, and thus keep the decomposition in the eigenstates of the M0
Hamiltonian. The correction to the equation of propagation (2.33) can be
accounted for by adding M1 to the equation of motion

i
∂Cn(z)

∂z
= ∑

m 6=n
Cm(z) exp

(
i
∫ z

−∞
(kn(ξ)− km(ξ)) dξ

)
×[

−i
〈〈ψn| ∂M0

∂z |ψm〉〉
kn − km

+ 〈〈ψn|M1|ψm〉〉
]
+ Cn〈〈ψn|M1|ψn〉〉, (2.50)
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The additional term in the equation can be calculated in a similar manner
to (2.49), giving

〈〈ψn|M1|ψm〉〉 =
∫

dr⊥ (∂zε)
(
E∗n,zEm,z

)
=

= (ε1 − ε2)
(
E∗n,zEm,z

)∣∣
boundary . (2.51)

2.3.6 Absorbtion in the metal

For the Hamiltonian like description of Sec. (2.3.1) to be pseudo Hermi-
tian, the parity operator is to be a linear and Hermitian. As it is propor-
tional to the dielectric constant, this limits the formalism above to dis-
cussing the ideal metal ={ε} = 0. However, for plasmonic applications,
especially in the tapered focus case, dissipation in the metal is crucial for
the estimation of the efficiency of the energy transfer. To consider the ab-
sorbtion in the metal, we include the exact complex wave number derived
from the complex dielectric constant in the phase factor appearing in Eq.
(2.33) but keep the mode functions and the inner product the same. This
is equivalent to a stepwise operation of the dissipation between two prop-
agation steps. We also recall that losses in each mode are proportional to
the propagation constant, and therefore in the vicinity of mode matching
condition, will only influence the total energy in the system.

2.3.7 Adiabatic processes

The description of the z-propagation as a Schrödinger equation leads nat-
urally to the use of the adiabatic theorem. We shall consider an initial
condition in which the state of the system is described by one of the nor-
mal modes of the Hamiltonian 2.3.1 and look for the condition under
which the excitation will adiabatically follow this state.

Examining Eq.(2.3.1), assuming the system is in the initial state l, we can
use Cm = δm,l to obtain

∂Cm

∂z
= −Cl

〈〈m| ∂M0
∂z |l〉〉

kl − km
exp

(
i
∫ z

R0

(km(ξ)− kl(ξ)) dξ

)
m 6= l (2.52)

If the variation of kl, km and ∂zM0 are slow in z, we can estimate the
change in the occupancy of the other states by assuming them constant,
and the resulting amplitude of the state m can be written as

Cm(z) ≈ i
〈〈m| ∂M0

∂z |l〉〉
(kl − km)

2

(
exp

(
i
∫ z

R0

(km(ξ)− kl(ξ)) dξ

)
− 1
)

m 6= l.

(2.53)

This amplitude oscillates in time, and has no steady change over a long
distance, making the jump unlikely. This expression also gives us the
criteria for making an adiabatic passage. For the estimation to be valid,
we require that the change of the Hamiltonian ∂zM0 over one period of
the Rabi frequency between the states to be much smaller than the energy
difference between the levels:∣∣∣∣∣ 〈〈m| ∂M0

∂z |l〉〉
(kl − km)

2

∣∣∣∣∣� 1. (2.54)
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In addition, the coupling region in which the coupling of the mode is
different than zero should be larger than the Rabi flipping length Lex =
|(kl − km)|−1 allowing for the exponential to average out. This criterion
will be used later to identify the adiabatic regime, as we expect the cou-
pling coefficients to fluctuate rapidly. This is the equivalent to the laser
pulse area generating the Rabi oscillations in atomic systems being much
larger than 1, setting the minimum time for an adiabatic process τ ∼ 1/Ω.

2.3.8 Summary of theoretical scheme

To conclude, in this section we have devised a perturbative scheme to
describe the evolution of a guided mode propagating along a varying
waveguide, by mapping it onto a Schrödinger like equation. Knowing the
eigenmodes of the translationally invariant wire for each cross section of
the wire we write the varying waveguides fields as

Φ(z) = ∑
m

Cm(z) exp
(

i
∫ z

−∞
km(ξ)dξ

)
ψm, (2.55)

with ψm being the fields vector of the local mode. The coefficients Cm
evolve according to

i
∂Cn(z)

∂z
= ∑

m 6=n
Cm(z) exp

(
i
∫ z

−∞
< {kn(ξ)− km(ξ)} dξ

)
×

× exp
(

i
∫ z

−∞
= {kn(ξ)− km(ξ)} dξ

)
×

×
[
−i
〈〈ψn| ∂M0

∂z |ψm〉〉
<{kn − km}

+ 〈〈ψn|M1|ψm〉〉
]
− 1

2
Cn(z)〈ψn|

∂η

∂z
|ψn〉. (2.56)

along with the phase condition in equation (2.36). We note again that
this scheme is completely general, and that no assumptions were made
regarding the two-dimensionality of the guide. It is thus applicable to
arbitrary, three dimensional cross sectioned guide.

2.4 Tapering and mode transformation of a
single plasmonic waveguide

We first demonstrate the suggested technique on a simple cases, namely
the symmetrically expanding plasmonic slab depicted in Fig. (2.3). The
idea behind this is both to test the numerical technique and gain intu-
ition about how fast we can vary the width of the plasmonic guide while
maintaining adiabaticity. The single symmetrically tapered slab equa-
tions simplify to the forward and backward propagating modes, as the
symmetry of the problem makes the coupling between the long and short
range plasmons zero. The equations of motion in this case are

∂z

(
C+

C−

)
=

[
ε1 − ε2

2k+

(
0 K+,−

K∗+,− 0

)
+

(
T+ T+,−
T ∗+,− T−

)](
C+

C−

)
(2.57)
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Figure 2.3: Geometry of the tapered plasmon waveguides considered in sec. 2.4.
The initial excitation is propagating from the right towards the broader region.

with

K+,− = ei
∫ z

R0
2k+(ξ)dξ

(
k+

ε1ε2
|D+,x|2 + k+|E+,z|2

)
= K∗−,+

T+ =
1
2

ei
∫ z

R0
2k+(ξ)dξ

(
1

ε1ε2
|D+,x|2 + |E+,z|2

)
= T ∗−

T+,− =
1
2

ei
∫ z

R0
2k+(ξ)dξ

(
|E+,z|2

)
and where we have used k+ = −k−, D−,x = D+,x and E∗−,z = E+,z. In he
last two relations we have adopted the conventions

E−k = E⊥,+k − Ez,+kẑ
E⊥, H⊥ are real, Ez is pure imaginary.

Note, that the local coupled mode [Snyder65] equations are identical to
those appearing in coupled mode theory, apart from a factor of k+ appear-
ing in the coupling matrix. This is due to the fact that the eigenmodes of
the unperturbed propagation equation (2.29) are common to both meth-
ods. The key difference is in the inner product definition, and therefore
in the normalization of the modes. For example, let us examine the nor-
malization of the short range slab plasmon of Eq. (2.5): using coupled
mode equations, where the normalization is based on the z-direction flux
across the cross section of the wire

∫
A(E×H∗) · ẑ the normalization factor

is (starting at the non normalized coefficients of Eq. (2.6))

N2
c.m. =

4kn

k0

[
1

ε1κ1
+

e−2κ2a

κ2ε2

(
1− κ1ε2

κ2ε1

)2(1
2

sinh(2κ2a)− κ2a
)]

, (2.58)

while, using the inner product suggest here,

N2
our = 8

[
1
κ1

+
e−2κ2a

κ2

(
1− κ1ε2

κ2ε1

)2(1
2

sinh(2κ2a)− κ2a
)]

, (2.59)
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Figure 2.4: Geometry for the plasmon waveguide-dielectric waveguide tapered
coupler considered here. the initial excitation is propagating in the lower, metal-
lic waveguide, from the left along the expanding waveguide.

and the ∝
√

kn is again appearing. This result is useful in translating the
results obtained here to flux. In the coupled mode theory, the amplitudes
are directly related to the flux in a specific mode by the definition of of
the inner product.

Performing the calculations, however, shows no energy transfer to ei-
ther the back propagating or the long range plasmon. The energy of the
surface plasmon remains in the forward propagating mode, though the
amplitude of the fields increase. This result agrees well with several pre-
vious works [Babadjanyan00, Stockman04, Gramotnev05]. To understand
this, we refer to Fig. (??) showing the dispersion curves. Assuming the
Drude model and the diverging wave number, the group velocity of the
plasmon decreases as it approaches the tip. The slowing down of the plas-
mon allows for dissipation into the metal, thus avoiding accumulation at
the tip[Stockman04], this property was used by Stockman and others to
show that a short range surface plasmon can be focused by focusing it
towards the tip of a cone. In our calculations the reversed process occurs,
yet the idea is the same. The slowly varying mode does not experiences
back reflection when propagating along the expanding wire.

2.5 Adiabatic transfer into an adjacent
dielectric waveguide

The main result of this chapter is to show that one can have an efficient
transformation of energy between a tapered metallic slab and an adjacent
dielectric waveguide. The structure consists of a thin silver nano slab
of half width a(z) and a glass waveguide of half width d, separated by
a distance S surrounded by vacuum, as plotted in Fig. (2.4). As was
the case for the single tapered slab, the dielectric constant of the silver
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Figure 2.5: Avoided crossing used for adiabatic transfer. The plot shows the
dispersion curves for an isolated Ag plasmonic slab waveguide (dashed, blue) as
a function of the slab half width, for a glass dielectric waveguide (dashed,green)
of fixed half width d = 0.5/k0 and for the resulting two normal modes when
the two guides are brought to a proximity of s = 5/k0 (full lines). The avoided
level crossing generates modes which transfer the energy from the dielectric to
the metallic waveguide as the slab width is increased, and vise versa.

is corresponding to the vacuum wavelength λ = 1µm [Johnson72], εm =
−50+ 0.6i and the dielectric constant εd = 2.5 typical for glass waveguide.

2.5.1 Avoided crossing with a waveguide

As the waveguide and the plasmonic slab are brought together, the over-
lap of the extended fields outside the guides ca uses the modes to hy-
bridize, corresponding to off diagonal term in the Hamiltonian (2.21).
This leads to an avoided crossing of the normal modes of the new Hamil-
tonian, depicted in Fig. (2.5). The gap between the two levels at the
crossing point is plotted in Fig. (2.12) as a function of the distance be-
tween the slab and the waveguide, displaying an increase as the distance
between the waveguides is reduced. As discussed above in Sec. (2.3.7)
this gap also gives the length order on which adiabatic processes occur.
We shall return to this below. It is important to note the shift of the
waveguide mode due to the presence of the metallic slab, persisting far of
resonance from the plasmonic mode. This is due to the extension of the
fields of the guided mode, as can clearly be seen from the modes plot-
ted in Fig.(2.10). This also means that care should be taken as to the the
way the slab coupler ends, as the this will change the waveguide mode.
This effect is not expected to cause energy transfer back to the plasmonic
wire, as the two modes are far detuned at the end of the coupler, however
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Figure 2.6: Fraction of the excitation transferred to the dielectric waveguide at
the full length of the coupler L, as a function of the coupler length and the sep-
aration between the waveguides, when the dissipation in the metal is neglected
(i.e., ={ε} = 0).

abrupt ending can result in radiation out of the guide. The treatment of
free propagating radiation modes is currently beyond the scope of this
formalism due to the divergence of the inner product, and we therefore
do not treat this problem here.

2.5.2 Adiabatic transfer of the energy from the plasmonic
nano wire

In the calculation presented here we have chosen the dielectric waveguide
half width d = 0.5/k0 corresponding to a guided single mode of kz =
1.05k0. This k value is obtained in the plasmonic slab for a half width
of a = 0.06/k0. Throughout, the initial radius of the nanometallic slab
is ai = 0.02/k0, the avoiding the reflections at the tip of the nanoslab
[Stockman04] and the final width is a f = 0.2/k0. in both regimes the
detuning of the two mode is far such the hybridized mode is identical
to the isolated plasmonic mode (see Fig.(2.5)). We vary the length of
the tapering and the separation between the wires. In the following, we
compare the results with and without losses. In all calculations, four
modes were considered, namely the forward and backward propagating
short rang surface plasmon, and the waveguide modes. In principle all
modes are to be taken into account but we restrict ourselves to four to
facilitate faster calculations. To follow the description proposed above,
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Figure 2.7: Fraction of the excitation remaining in the plasmon mode after
the avoided crossing for as a function of the coupler length and the distance
between the two waveguides, when the dissipation in the metal is neglected (i.e.,
={ε} = 0).
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Figure 2.8: Fraction of the excitation transferred to the dielectric waveguide
at the full length of the coupler L, as a function of the coupler length and the
separation between the waveguides when dissipation in the metal is taken into
account.
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Figure 2.9: Fraction of the excitation remaining in the plasmon mode after the
avoided crossing for as a function of the coupler length and the distance between
the two waveguides.

we here use the normal modes, which can in general be calculated by
two dimensional codes available, for arbitrary cross section.

In Figs. (2.6) and (2.7) we plot the efficiency of the adiabatic transforma-
tion, measured as a the fraction of the energy in the the upper and lower
dressed states of Fig. (2.5) at the end of the structure. The transmission is
calculated without dissipation in the metal (expressed by the imaginary
part of the dielectric constant being set to zero). In Figs. (2.8) and (2.9)
the same results are shown including the losses in the metallic slab. As
the plasmon decay length induced by the addition of the imaginary part
of the dielectric constant Lspp = 1

2|={k}| ∼ 120/k0 is larger than the tran-
sition length of the adiabatic taper, the results are shown to be largely
unchanged, though the sum of fractions does no longer sum to one. It is
shown that even with the introduction of dissipation, a 100% efficiency
can be achieved, choosing slabs separation of S = 2.5/k0 and a coupler
length of L ∼ 200/k0.

In Fig. (2.11) we further verify the adiabatic character of the passage. As
discussed above, the adiabatic regime is achieved when the Rabi oscilla-
tions between the modes are become rapid between adjacent slices of the
tapering. The phase appearing in the integral of Eq. (2.33) should vary
on the scale of 2π. This corresponds to the large phase factor in equa-
tion of motion of the mode. Comparing the phase coupling coefficients
in the two limits, L = 10/k0 and L = 200/k0, shows the strong oscillation
typical of the adiabatic regime for the longer coupler.
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Figure 2.10: Magnetic field of the waveguide dressed state of the coupler for
different separations between the metallic slab and the dielectric wave guide at
the end of the coupler. Note that the waveguide mode is still change relative to
the isolated waveguide, due to the extension of the fields outside the waveguide.
The waveguide location is indicated by the gray line, while the metallic slab is
dashed gray. The curves are shifted for readability.

Coupling length and comparison to evanescent couplers

Several authors have previously suggested coupling surface plasmons via
evanescent coupling of two adjacent plasmonic waveguides [Gramotnev08]
or wave number matched plasmonic and dielectric waveguides [Chang07a],
and suggestions were made to prevent such coupling in future all plas-
monic circuits [Veronis08]. In all such couplers the wave number match-
ing results in Rabi-like oscillations of the energy between the two guides,
induced by the evanescent fields coupling. Chang et al. [Chang07b] sug-
gested that this can be used for coupling the surface plasmon out of an
emitter-plasmon quantum optics setup. It is therefore worthwhile to ex-
amine the difference between the two mechanisms.

The coupling length for a complete transfer of the energy in the wavenum-
ber mode matched situation is half a Rabi wavelength, defined by

Lc ≡
π

|qsym − qasym|
(2.60)

where the symmetric (qsym) and anti-symmetric (qsym) modes are the
dressed modes of the combined system, shifted by the interaction be-
tween the guides. This coupling length does not change upon the intro-
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Figure 2.11: The accumulated phase factor in the equation of propagation. large
phase change indicate rapid oscillations typical of the adiabatic regime.

duction of dissipation in the metal. The introduced decay length of the
oscillations, defined as Lp = 2/(={qsym}+={qasym}), and the total total
transferred energy is reduced according to [Veronis08]

Pmax ∼
e−2x arctan x−1

1 + x2 , x =
2Lc

πLp
. (2.61)

The resulting coupling length is plotted in Fig. (2.12), along with the
dressed states gap. Complete transfer of the energy for the parameters
explored above occurs for L ∼ 100/k0. For the adiabatic process however,
this length scale is set by the length on which we can expect adiabaticity
to appear. As was discussed, this can be explained by the length needed
to avoid change in the amplitude of the initially unexcited modes:∣∣∣∣ 〈〈∂zM0〉〉

(qm − q0)2

∣∣∣∣ , (2.62)

which here amounts to L ∼ 200/k0 ∼ 25λ0.

Though the lengths over are larger than those suggested for evanescent
coupling based on the Rabi flipping, the length is only longer by a factor
of two. This increases the losses, but on the other hand there are several
advantages to the present method. In particular the suggested coupling is
insensitive to small variations in the coupler length or the exact position-
ing of the wires (controlling the initial phase between the two oscillating
modes) and the coupling region is controllable.
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Figure 2.12: Blue curve (left axis), the gap in propagation constants ∆q of the
two normal modes appearing in Fig. (2.5) at the position of the avoided crossing,
as a function of the separation between the two guides. In green (right axis) the
coupling length Lc ∼ 1/δq for a Rabi flipping schemes (see text for details).

2.6 Conclusions
In this chapter we have demonstrated the possibility of adiabatic cou-
pling of a surface plasmon propagating on a tapered matallic slab to an
adjacent dielectric waveguide. We have shown that even with realistic
metallic losses expected in silver slabs the expected efficiency is close to
100% of the incoming plasmonic energy. Though the slab configuration
is not favorable experimentally due to one dimensional confinement only,
the calculational technique developed here should be useful for arbitrary
slow varying plasmonic guides. We have introduced and demonstrated
the use of a general mapping of the Maxwell equation on a z-propagation
Schrödinger like set of equations allowing the use of the full range of tech-
niques available and understood in quantum mechanics. The key step in
this is the use of the pseudo-Hermiticity reached by changing the inner
product of states to include the local dielectric constant. This enables
the full use of both orthogonality, completeness and evolution equation
familiar from Hamiltonian quantum mechanics. Though unitarity is not
preserved, we demonstrate a way to overcome this difficulty by correcting
the equations of motion for the amplitudes of the normal modes decom-
position. Thus, we provide a useful tool for the advancement of quantum
optics application, avoiding the cumbersome three dimensional calcula-
tions otherwise required to evaluate these structure.



Chapter3

Solid state plasmonic Lens

structure

3.1 Introduction

A key idea to the strong coupling between quantum emitters and surface
plasmons is that strong transverse confinement is a result of the large
wavenumber of the surface plasmon in the direction of propagation. The
decay length of the plasmon fields into the dielectric is determined by the
difference between the wave number of the plasmon and that of a free

propagting plasmon in the bulk κd =
√

k2
spp − εdk2

0. This naturally leads
to consideration of strongly guiding structures, maximizing kspp such
as the ones considered in [Chang06, Gonzalez-Tudela12, Gramotnev07,
Stockman04]. Such structures however suffer from propagation losses
and require rapid coupling out as the one suggested in chapter (2).

A different approach to generating strong confinement can be taken using
the interference of several sources of propagating surface plasmons. This
idea has received much attention in recent years in the emerging field
of Extra Ordinary Transmission (EOT) through thin metallic films (for a
review see [Garcia-Vidal10a]). In the original experiment of Ebbesen et
al. [Lezec02] strong, directional transmission through a subwavelength
hole in an optically thick silver was observed when corrugations were
added to both sides of the metallic film. Later investigation have shown
the mechanism leading to this phenomena to be the excitation of plas-
monic modes on the surface of the film on the side facing the light source,
which then propagate through the hole and scatter out by the grating
on the other side ([Carretero-Palacios11, Garcia-Vidal10a] and references
therein). Since then multiple subwavelength holes and different geome-
tries of the corrugations were investigated, both numerically and experi-
mentally [Lerman09, Yanai09, Bulu11, Jun11, Aouani11b, Aouani11a]. In
this chapter we suggest

In this chapter we examine an emitter placed above a structured metallic
surface. The structure consists of concentric grooves, optimized to gen-
erate a coupling grating between light propagating perpendicular to the
sample and radially propagating surface plasmons. These groove also
generate a lossy cavity effect, as a fraction of the out-going plasmons are

45
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reflect back towards the emitter. This results in significant increase of
the emitter’s decay rate. In addition, solid state quantum dots in layered
semiconductor structures have their dipole moment aligned parallel to
the plane of the lens, reducing the coupling efficiency to surface plas-
mon. To overcome this, we add a central groove to the metallic structure
and show this results in improved coupling and higher decay rates.

The chapter is build as follows. We begin by a short review of the proper-
ties of plasmon propagating on the flat interface between a dielectric and
a metal. We then describe the suggested structure to be used and go on to
investigate the coupling grating and the central hole rules in enhancing
the decay rate and collection efficiency in the radiated energy, and finally
conclude our results.

3.2 Analysis of dipole decay in proximity of a
metallic mirror

The decay rate of emitters can be change dramatically in the vicinity of
metallic and dielectric boundaries, as this allows for large changes in the
density of states at the emitter location. In this section we review the
decay rate analysis of a dipole in the vicinity of an infinite, flat boundary.
The advantage of this analysis is the availability of an analytic solution
which will allow the separation into different channels of the decay. This
analysis will become useful later, when the more elaborated structures
are introduced, and the results to follow will serve as a basis for the
comparison. We follow here the analysis of Sipe [Sipe81] using the plane
wave decomposition of the fields. In this description, the dipole electric
field can be written as

E(r) = F(r− r0) · µ (3.1)

µ being the dipole moment located at r0. The tensor F can be decomposed
into

F(r− r0) =
∫ dκ

(2π)2 F(κ; z− z0)eiκ·(ρ−ρ0) (3.2)

where ρ (ρ0) is the projection of the position vector r (r0 on the plane of the
mirror, the x − y plane. The decomposition into plane waves of compo-
nent κ along the surface can to be understood as plane waves propagating
from or to the interface from both sides, with the wave vector:

νi± = κκ̂ ± kzẑ (3.3)

where the size of wave vector, νi =
√

εik0 is the wave vector for propaga-
tion in medium i, and k0 = ω/c. Note that the integral in Eq.(3.2) as well
as the momenta decompositions to follow, is calculated over all κ, includ-
ing both propagating and evanescent waves (κ > ν). The polarizations
for the waves depicted in Fig.(3.1), with

p̂i,± = ν−1
i (κẑ∓ kzκ)

for p-polarized waves and
ŝ = κ̂ × ẑ
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Figure 3.1: The polarization used for the fields decomposition

for s-polarized waves.

The calculation of the total fields can now be solved using the transfer
matrix technique by writing

E0(r) = E0+eiν0+·r + E0−eiν0−·r

E1(r) = E1+eiν1+·r + E1−eiν1−·r (3.4)

above and below the interface, respectively, and requiring the amplitudes
to be related via a transfer matrix M

M =
1

Ts,p
01

(
1 Rs,p

01
Rs,p

01 1

)
,

with Rs,p
01 (Ts,p

01 ) being the reflection (transmission) Fresnel coefficient from
the dielectric to the metal, defined according to the polarization of the
impinging wave.

The dipole problem can now be solved as follows. Above the dipole
position r0 = d ẑ, the electric field is the field emitted by the dipole plus
the surface response. The surface response to the dipole field is obtained
by inserting the dipole source decomposition (3.2) into the transfer matrix
equations 3.4, and using the Fresnel coefficients for the reflection and
transmission through the surface. The resulting outgoing field in the
positive z direction, above the dipole location is given by

E0 =
∫ idκ

2πkz
e0(κ)eiν0+·r (3.5)

where the field amplitude e0(κ) are the coherent sum of the direct field
emitted by the dipole, and the reflected radiation from the surface;

e0(κ) = ν2
0
[
ŝµs0 + p̂0+µp0

]
µs0 = ŝ · µ

[
e−ikz,0d + Rs

01eikz,0d
]

(3.6)

µp0 = p̂0+ · µe−ikz,0d + p̂0− · µRp
01eikz,0d. (3.7)

The corresponding magnetic field can be derived from Maxwell equations
using the electric field. It has same functional form as the electric field
with

b0(κ) = ν̂0 × e0(κ)

This allows the calculation of emitted power as the sum of the in-plane
component κ contributions

W0 =
∫

inter f ace
S(r) · ẑd2ρ =

cν3
0

8π

∫
κ<ν0

d2κ

kz

[
|µp0|2 + |µs0|2

]
. (3.8)
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The decay rate can also be calculated from the reaction of the mirror on
the dipole. Recalling that the dipole decay rate is determined by the
reflected field at the dipole position:

Γ =
1
2

ω=(µ∗ · E(rµ) (3.9)

The decay rate is thus the limit of the above calculated fields at the posi-
tion of the dipole:

Γ

Γ0
= µ2

||

[
1 +

3
4ν0
<
∫ ∞

0

κdκ

kz

(
Rs

01 −
k2

z

ν2
0

Rp
01

)
e2ikzd

]
+

+ µ2
z

[
1 +< 3

2ν0

∫ ∞

0

κdκ

kz

(
κ2

ν2
0

Rp
01

)
e2ikzd

]
, (3.10)

where Γ0 = 1
3 ωk3

0 |µ|
2is the dipole decay rate in free space, and µz = |µ · ẑ|

and µz = |µ− (µ · ẑ) · ẑ| are the dipole’s projections out-of and in plane
respectively. We again emphasis that the integral in 3.10 contains mo-
mentum components κ > ν0 corresponding to evanescent, near field con-
tribution. These are at the core of this work, as we shall explain below. In
contrast, in the radiated energy (3.8) only propagating waves contribute,
as noted in the integration. The total decay rate for different position of
the dipole emitter above a silver mirror is plotted in blue in Fig. (3.2).

The analytic form of the decay rate is useful in distinguishing the different
decay mechanisms for the emitter coupled to this system to decay into.
Examining the integral in Eq. (3.10), we can separate it into two parts.
For wave numbers below the medium’s light wave number, the decay is
in to a mode that can propagate out of the system, representing radiative
decay process. This contribution is plotted in red Fig. (3.3). As expected,
the decay rate due to radiative process remains constant at large distances
from the mirror, oscillating about Γrad/Γ0 = 1. Significantly, for a dipole
orientation perpendicular to the mirror, there exist a "dark spot" where
due to destructive interference between the emitted and reflected field no
radiative coupling exist. In the following we distinguish the two other
processes, i.e. the plasmonic modes and the non radiative losses. This
distinction will become useful later on in analyzing the more elaborate
structures. For this end, we plot in Fig.(3.3) the integrand of Eq. (3.10)
for κ > ν0. The existence of a resonance in the response function is
apparent. The decay rate appearing in equation (3.10) is the imaginary
part of the response green function of the metallic surface at the position
of the dipole. In the absence of metal losses (=ε = 0) this Green’s function
will display poles, corresponding to resonances with the plasmon mode.
Taking into account the medium absorption, i.e., a small but finite value
of =ε 6= 0 the plasmonic modes turn into resonances with a finite width.
This means that in case of losses there is no longer a single, well-defined κ
but continuously many κ values peaked around kpl that contribute to the
plasmon mode. This is clearly visible in Fig.(3.3). In the above analysis, it
is easy to see that this resonance accurse at κ = k0

√
εmε0

ε0+εm
the flat interface

plasmon dispersion relation discussed in the introduction.

A key motivation to the work presented here, is evident when examin-
ing Fig. (3.4). In this plot, the energy fraction decayed into the plasmon
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Figure 3.2: Different contributions to the decay rate for a dipole emitter above
a flat mirror d. In a), the decay rate for a dipole moment perpendicular to the
surface, where a "dark spot" for the radiation decay channel is noticeable. In b)
the decay rate for a dipole moment parallel to the surface. Note the overall lower
decay rate, and in particular the lower decay rate to the plasmon decay channel,
indicating weaker coupling of the dipole to the plasmon.
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Figure 3.3: Evanescent part of the in plane momenta distribution for a flat mirror
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Figure 3.4: Energy fraction decayed into the plasmon channel for both config-
uration of the dipole above the surface. Note that for the dipole in the parallel
configuration only a little above half the energy can be coupled to the plasmonic
channel

channel is plotted as a function of the dipole position above the mirror,
for the two orientations of the dipole appearing in Eq. (3.10). For the
dipole oriented perpendicular to the surface, up to 99.5% of the energy
can decay into exciting SPPs. It is for this reason that most quantum in-
formation applications utilizing the plasmon confinement focused on this
configuration [Chang06]. In the solid state systems we wish to consider
here however, the dipole orientation in the system is determined by the
layered structure growth, and is oriented in the mirror’s plane. For this
configuration, the maximal coupling efficiency obtained is 52% of the
dipole emission, as can be seen in Fig. (3.4). Another feature which can
be extracted from the simple model of the infinite mirror are the field
and energy distributions on the surface of the mirror and in the far field.
These will become useful when comparing the distributions of the more
elaborate structures presented in this work.

As we will be interested in structures preserving the axial symmetry, it
is useful to develop the fields in cylindrical coordinates. We will require
both the fields at the surface of the device, and in the far field. Above, the
expression for the fields was developed for an observation point above the
dipole position.In the volume between the dipole and the mirror, equation
(3.7) is slightly altered, by changing the propagation vector and polariza-
tion of the direct radiation fields from dipole ν0,+ → ν0,−, p̂0,+ → ˆp,−:

e0(κ) = ν2
0
[
ŝµs0 + p̂0+µp0

]
(3.11)

µs,0 = ŝ · µ
[
e−ikz,0d + Rs

01eikz,0d
]

(3.12)

µp,0 = p̂0,− · µe−ikz,0d + p̂0− · µRp
01eikz,0d.. (3.13)
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Using the expansion of the exponential into spherical coordinates (here,
r = (ρR, φR, zR)

eiν0,±·r = e±i kz
ν0

zR

(
∞

∑
n=−∞

in Jn(
κ

ν0
ρR)ein(φR−φκ)

)
, (3.14)

and

ŝ · µ = µ|| sin(φκ) (3.15)

p̂0,± · µ =
1
ν0
(κẑ∓ kzκ̂) · µ =

κ

ν0
µz ∓

kz

ν0
µ|| cos(φκ) (3.16)

yielding, after some manipulation, the field in cylindrical coordinates:

E(r) = ν2
0

∫
κ dκ

kz
eikzd

{
µz

[
(J−1(κR||) ĵ+ − J1(κR||) ĵ−)×

×
(

e−i kz
ν0

zR − Rp
01ei kz

ν0
zR

)
κkz

ν2
0
+ i J0(κR||)

(
e−i kz

ν0
zR − Rp

01ei kz
ν0

zR

)]
+

+
µ||
2

[
i
(

e−i kz
ν0

zR + Rs
01ei kz

ν0
zR

)(
J0(κR||)e

iφr + J−2(κR||)e
−iφr

)
ĵ++

+i
(

e−i kz
ν0

zR + Rp
01ei kz

ν0
zR

)(
J0(κR||)e

iφr − J−2(κR||)e
−iφr

) k2
z

ν2
0

ĵ++

+i
(

e−i kz
ν0

zR + Rs
01ei kz

ν0
zR

)(
J2(κR||)e

iφr + J0(κR||)e
−iφr

)
ĵ−+

+i
(

e−i kz
ν0

zR + Rp
01ei kz

ν0
zR

)(
J0(κR||)e

−iφr − J2(κR||)e
iφr
) k2

z

ν2
0

ĵ−+(
e−i kz

ν0
zR + Rp

01ei kz
ν0

zR

)(
J−1(κR||)e

−iφr − J1(κR||)e
iφr
) κkz

ν2
0

ẑ

}
, (3.17)

Where ĵ± = 1
2(ρ̂± iφ̂), and Jm are the Bessel functions of order m.

The far field radiation intensity can be calculate simplifying Eq.(3.5). In
this limit the integral can be replaced by the

E0 =
∫ idk

2πkz
e0(κ)eiν0+·r e0(ν0 sin(θ))

eiν0+R

R
, (3.18)

R = |R| is the distance to the observation point and θ the angle to the
axis of symmetry. The intensity radiated to a solid angle dΩ in far field
is defined as

dI
dΩ

= R2R̂ · Ŝ = R2 c
8π

R̂ · <(E×H∗). (3.19)

The explicit expression for the radiation in the far field is thus,

dI
dΩ

=
3

8π

{
|µz|2(sin(θ))2

∣∣∣1 + Rp
01e2ikzd

∣∣∣2 + (3.20)

+
1
2
|µ|||2

[∣∣∣1 + Rs
01e2ikzd

∣∣∣2 + kz

ν0

∣∣∣1− Rp
01e2ikzd

∣∣∣2]} . (3.21)

The resulting radiation pattern is plotted for the parallel dipole orien-
tation is plotted in Fig. (3.5), for different dipole positions d above the
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Figure 3.5: Radiation pattern from a flat mirror as a function of the position of
the dipole above the mirror. Different position are shifted for visibility.

surface. Note that since the SPP and free propagating radiation are mo-
mentum mismatched, as mentioned in the introduction, strong coupling
to the SPP modes results in reduced amount of far field radiated en-
ergy. Thus, though SPP modes allow for sub wavelength focusing of the
electromagnetic fields, and so strong coupling to single emitters, the flat
mirror configuration presents two difficulties: the coupling of the SPP
mode to measurable radiation, and the limited coupling to the in-plane
dipole orientation. In the following we address both problems.

3.3 Plasmonic lens structure considered

For plasmon propagating on a flat interface to become useful for cou-
pling free propagating photons to single emitters in solid state, the two
issues discussed in the previous section to be addressed. The propagating
plasmon is to be efficiently coupled out into radiation, and the coupling
efficiency between the dipole emitter parallel to the surface is to be in-
creased.

In this work we investigated the coupling efficiency, directionality, and
enhancement of the decay rate for a structure depicted in Fig. (3.6), The
structure consists of a cylindrical central hole of depth h and radius a
engraved in interface between a Ag layer and GaAs at which a quantum
dot is embedded. Surrounded by cylindrical grooves The quantum dot is
placed on the axis of symmetry of the structure, above and in the central
hole. The central hole is designed to increase the coupling of the in plane
dipole moment of the quantum dot to the surface plasmon propagating
on the surface, while the concentric grooves serve as a grating coupler,
beaming the energy into a directional radiation of a narrow cone. The
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Figure 3.6: Radial cross section of the lens considered.

distance between the first groove and the central hole serves as a cavity,
using the in plane scattering of the plasmon form the grating to further
enhance the coupling to the surface plasmon. Although it was recently
shown [Andersen10] that in the case of quantum dots coupled to sur-
face plasmon size effects of the dot can be measured, in this work the
quantum dot will be considered a point emitter, i.e. a point dipole. The
permittivity values for both the Ag and the and the GaAs were taken
from [Johnson72].

3.4 Numerical method used to investigate the
structure

The numerical investigations of the structure suggested here was done
with an implementation of the boundary element method (BEM) for elec-
tromagnetic simulations presented in Ref.[García de Abajo02]. In this sec-
tion we shall review the main concept of the method. The full details of
the implementations appear in Appendix A due to their length. The cal-
culation is preformed in the frequency domain. We assume that our sys-
tem contains a set of known, time-harmonic source charges and currents
e−iωt in the presence of some scattering dielectric body whose surface is
denoted ∂Vi, with i denoting the side of the interface considered. The
Maxwell equations in continuous media can be written as (in this work,
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as in the referenced paper, cgs units are used)

∇ ·D = 4π$ (3.22)
∇ · B = 0 (3.23)

∇×H + ikD =
4π

c
j (3.24)

∇× E− ikB = 0, (3.25)

where harmonic time dependance e−iωt is assumed for all quantities, c is
the speed of light and k = ω/c is the vacuum wave number. Further, I
assume the constitutive relations D = εE and B = µH. For the rest of this
work, µ = 1 is assumed.

If the dielectric constant ε is spatially varying as is the case for our struc-
ture, the fields cannot easily be rewritten in terms of the electric potential
Φ and vector potential A without artificial source terms appearing in the
equations corresponding to ∇ε. We can however, treat each part of space
where the dielectric constant is spatially independent separately. Thus
writing

E = ikA−∇Φ (3.26)
H = ∇×A (3.27)

Because of the non trivial geometry of the problem, finding the Green’s
function for the entire space is a complicated task. However, given the
boundary charges and currents on the interface allows the usage of the
well known free space form of the Green’s function for the Helmholtz
equation:

Gi =
eikir

r
, (3.28)

with ki =
√

εik the wave number in medium i. The vector potentials Ai(r)
and Φi(r) in each region {r ∈ Vi} can then be written in the form

Ai =
1
εi

∫
Vi

dr′Gi
(
|r′ − r|

)
j(r′) +

∫
∂Vi

dsGi (|s− r|) hi(s) (3.29)

Φi =
1
c

∫
Vi

dr′Gi
(
|r′ − r|

)
ρ(r′) +

∫
∂Vi

dsGi (|s− r|) σi(s), (3.30)

With j, ρ the external charge and current distributions in the problem and
h, σ the induced charges and currents on the interface between the media.
A Lorenz-like gauge, i.e. ∇ · A = ikεΦ, was used. In the BEM method,
the charge and current on the on the boundary are replaced by two sets
of distributions on both sides of the interface to satisfy the boundary
conditions and justify the use of 3.28. In general, the resulting effective
distributions do not have physical significance; they do not correspond to
actual charges and currents, and the distributions in region V1 and region
V2 may not necessarily be equal. The boundary conditions to be satisfied
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are the continuity of the potential Φ,∫
d2sG1

(
s, s′

)
σ1(s′)−

∫
d2sG2

(
s, s′

)
σ2(s′) = Φe

2 −Φe
1 (3.31)∫

d2sG1
(
s, s′

)
h1(s′)−

∫
d2sG2

(
s, s′

)
h2(s′) = Ae

2 −Ae
1 (3.32)∫

d2s (ns · ∇) G1
(
s, s′

)
h1(s′)−

∫
d2s (ns · ∇) G2

(
s, s′

)
h2(s′)−

− ikns

(
ε1

∫
d2sG1

(
s, s′

)
σ1(s′)− ε2

∫
d2sG2

(
s, s′

)
σ2(s′)

)
= α (3.33)

ε1

∫
d2s (ns · ∇) G1

(
s, s′

)
σ1(s′)− ε2

∫
d2s (ns · ∇) G2

(
s, s′

)
σ2(s′)−

− ikns

(
ε1

∫
d2sG1

(
s, s′

)
h1(s′)− ε2

∫
d2sG2

(
s, s′

)
h2(s′)

)
= D, (3.34)

with the source terms

Φe
i =

1
εi

∫
d3rGi(s, r) ρi(r) (3.35)

Ae
i =

1
c

∫
d3rGi(s, r) ji(r) (3.36)

α = (ns · ∇s) (Ae
2 −Ae

1) + ikns (ε1Φe
1 − ε2Φe

2) (3.37)
D = ns · [ε1 (ikAe

1 −∇sΦ
e
1)− ε2 (ikAe

2 −∇sΦ
e
2)] (3.38)

which depend only on the external source terms and not the surface
distributions. These equations represent the continuity of the parallel
component of the vector potential A and the scalar potential Φ across
the boundary. In this way this method is a form of extinction method
[Toigo77, Mills75] and is exact.

In this work we discuss cylindrically symmetric structures. We therefore
consider the Fourier transform of the set of equations ?? with respect to
the azimuthal angel φ,

f (r) =
∞

∑
m=0

fm(ρ, z)eimφ. (3.39)

Assuming a single valued function z = ξ(ρ) describing the interface, as
we will use here, the transform reduces the surface integrals to a discrete
set of one dimensional integrals along the radius. This, combined with
the dipole symmetry of the emitter (m = 0,±1) simplifies the numerical
problem.

To solve the coupled set of equations the interface is described by a grid,
and the integral is then discretized according to

( fm)b = fm(ρb, z(ρb)). (3.40)

And the Green’s operators are averaged around a area of the discretiza-
tion to create a matrix formulation of the integrals:

(Gm)a,b = 2π
∫

δSb

ρ′dρ′

√
1 +

(
dz
dρ
|ρb

)2

Gm(ρa, ρ′, |za − z′|) (3.41)
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where δSb is a radius element around ρb. In this way the integral can be
written as a matrix product

Im(ρa) = (Gm)a,b · ( fm)b. (3.42)

Equations ?? are thus reduced to a set of linear equations
G1 −G2 0 0
0 0 G1 −G2

−ikε1nsG1 ikε2nsG2 H1 −H2

ε1H1 −ε2H2 −ikε1nsG1 ikε2nsG2




σ1

σ2

h1

h2

 =


Φe

Ae

α

D

 ,

(3.43)

where we define Hi ≡ (ns · ∇) Gi, Φe ≡ Φe
2 −Φe

1, Ae ≡ Ae
2 −Ae

1 and both
Gi and Hi are to be understood as the discrete matrices of size N×N and
3N × 3N respectively, with N the size of the grid.

A major restriction applies here. The surface element δSb is small com-
pared to the smallest length scale of the problem. In our case, this is the
penetration depth in the metal, on the order of 20nm in silver at vacuum
wavelength of λ0 = 1µm. For a comparable size and above, the resulting
calculation exhibits no plasmons, and reconstruct the results of the per-
fectly conducting conductor, as no correlations can evolve in the metal.
This results in fine grids when calculating structures of comparable with
the wavelength as we do here. This made the calculations slow, requiring
parallel computation of the Green function matrices.

The solution for the surface charge and current distributions is obtained
by inverting the Green’s function matrix on the righthand side of Eq.
(3.43). Note, that the Green’s matrices contain the surface information,
while the source terms vector (LHS in (3.43) contain the information on
the dipole position. Thus, though the calculations of the Green’s matrix
is complicated, once obtained it can be used for multiple dipole position,
speeding up the calculations.

3.5 Concentric Bragg grating for
plasmon-radiation coupling

In this section we investigate the effectiveness with which the plasmon
can be coupled out of the metallic surface, in a directional manner by
a Bragg grating. We show that up to 70% of the energy coupled to the
plasmon on a flat surface can be directed into a cone of angle 0.6 rad
in the bulk, equivalent to a numerical aperture (NA) 0.6 perpendicular
to the surface of the lens. Compared to previous suggestion for effi-
cient collection of the emission of a quantum emitter [Lee11a], requiring
cumbersome oil immersed lens to achieve NA of 1.6, this allows for sim-
pler experimental setup. Furthermore, the introduction of the grating
introduces a cavity effect, enhancing the Purcell factor of the plasmonic
channel.

As previously mentioned, on a flat surface the momentum of the SPP is
higher than that of propagating waves in the dielectric above the mirror.
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However, the introduction of a periodic structure enables the bridging of
this momentum gap[López-Tejeira07] by process of Bragg scattering. to
understand this we recall that light is scatters from a periodical structure
according to

k(out)
|| = k(in)|| ±mG, (3.44)

where kin
|| , kout

|| are the in plane momenta components of the incoming
and outgoing light, respectively. Here, G = 2π/a is the reciprocal lattice
vector of the grating of periodicity a. Thus by choosing the periodicity
of the grating to equal the plasmon wavelength G = kspp the momentum
in plane of the scattered light will be k‖ = 0. This means the emitted
light will be radiated perpendicular to the surface. We use this to achieve
radiation into a narrow cone around the axis of symmetry of the structure.

The geometry considered here is plotted in Fig. (3.6). For the investiga-
tion of the effect of the Bragg grating on the coupling efficiency between
the SPP and radiation, no central hole is introduced since we wish to fo-
cus on the effect of the grating. In comparison of grating fields and flux,
the dipole source is positioned at d = 0.25/k0 away from the mirror on
its axis of symmetry. This position was shown in section 3.2 to induce
the maximal coupling to the mirror Γspp/Γtot = 0.52 and will serve as
a reference to the performance of the coupler grating. The parameters
investigated are radius of the cavity to the first groove (L in Fig. (3.6))
and the grating height (A). Due to computational power available, de-
pendence on the grating periodicity is not investigated and is fixed at
G = 2π/λspp, for the reason mentioned above. Unless mentioned, the
total lens size of all grating considered is 90/k0, equivalent to 15 grooves.
For the dielectric constants of Ag and the GaAs considered throughout
this chapter, this the length of the lens is much smaller than propagation
length of the plasmon. This means that in some simulations part of the
generated plasmon may reach the sample edge, disturbing the results of
the calculation. This effect of scattering from the sample edge is consid-
ered below.

In Fig 3.7 and 3.8, we plot the radiated power into a solid angle as a
function of the angle from the axis of symmetry. The power plotted is
normalized to the calculated total decay rate of the emitter. Compared to
the flat mirror, the introduction of the grating induces a peak in the emit-
ted flux around the the central axis. The energy radiated shows strong
dependence on both grating height and start position.

3.5.1 Radiative beaming of plasmon- groove height
dependence

In this section we investigate the influence of the grating height on the
efficiency of collection and the directionality of the emitted beam from
the lens. Examining Fig. (3.8), the waist of the radiated cone is seems
to be roughly inversely proportional to the height of the grating. This
can be understood to reflect the conversion efficiency of the grating. As
the effective area radiating the lens becomes larger the focal beam waist
becomes narrower. The focusing effect thus depend on the effective dis-
tance traveled by the plasmon before being converted to radiation. The
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Figure 3.7: Fraction of the energy radiated into a solid angle about θ as a func-
tion of the angle for a parallel dipole positioned h = 0.5/k0 from the Lens. Three
different grating depths (a) A = 0.4/k0, (a) A = 0.8/k0, and (c) A = 1.2/k0 are
plotted. The radiation is normalized by the total decay rate. The different curves
are for different starting positions of the grating L, as described in the text.

plasmon coupling to light can be seen as radiation damping increasing
the imaginary part of the plasmon wavenumber.

To better understand this effects, we consider the electromagnetic fields
on the surface of the lens. As was discussed for the flat mirror, the surface
fields can be expanded in a polar Bessel-Fourier decomposition, similar
to Eq.3.2. The Bessel Fourier decomposition of the z-component of the
field, Ez, is presented in Fig 3.9. As expected from the radiation pattern
discussed above, the directed emission appears as response around k|| =
0.

Also evident in Fig. (3.7) is that width of the plasmon peak is increased
for increasing grating height. A zoom in on the broadening of the plas-
mon resonance compared to the flat mirror response function is plotted
in Fig.(3.10). The broadening indicates an increase of the imaginary part
of the plasmon wave number by a factor of ten. The variation between
different grid starting points however prevents clearly distinguishing the
effect of the grating heights on the width of the momentum distribution
and we will evaluate the outcoupling strength using a different method
below.

The introduction of the grating also changes the center of the plasmon
resonance. As the wave number of the plasmon is changed, the plas-
mon wave number and the grating wave number are no longer exactly
matched, which also contributes to the broadening of the radiated beam.
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Figure 3.8: Same plot as Fig .3.7 around the axis of the lens. As the grating
become shallow, the waist of the focused beam is reduced as the effective size of
the lens increases.
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Figure 3.10: Same as 3.9 in the vicinity of the plasmon resonance. The black
dashed line corresponds to the flat mirror case.

We have chosen G = kspp to isolate the kspp component of the momentum
transfer to the outcoupled directed beam. We are thus assuming that the
grating is shallow enough so as not to shift the plasmon significantly from
the flat surface wave number. From Fig. (3.10) we see that this assump-
tion is justified for grating depth of 0.4/k0 and 0.8/k0. For deeper grating,
as evident from the momentum distribution of grating depth 1.2/k0 fur-
ther optimization of the grating frequency are to be made to improve the
outcoupling efficiency.

To evaluate increase in the imaginary part of the plasmon wave number,
we examine the in plane energy flux defined by the radial component of
the Poynting vector

S · ρ̂ =
c

8π
(E×H∗) · ρ. (3.45)

As we expect the plasmon to propagated outwards as a radial field, the
flux is expected to be proportional to Sρ ∝ exp−ik̃/ρ, with k̃ the effec-
tive propagation constant accounting also for the radiative losses. The
flux is plotted in Fig. (3.11) on a logarithmic scale, after multiplying
by the radius ρ. The modified decay lengths can be extracted and are
L0.4 = 220/k0, L0.8 = 115/k0 and L1.2 = 60/k0 for the grating height of
A = 0.4/k0, A = 0.8/k0 and A = 1.2/k0 respectively. The long prop-
agation lengths also explain the features appearing in Fig(3.7) for the
radiation patterns of the for the two shallower gratings, A = 0.4/k0 and
A = 0.8/k0 . As the length of the sample is smaller than the modi-
fied decay length (considering also that the relevant length is that of the
grating, ∼ 80/k0), scattering from the sample edge results in diffraction
fringes. A comparison with the expected ∝ J2

0(k0R sin θ) behavior for
Fraunhofer diffraction is shown to roughly match the observed behavior,
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Figure 3.11: logarithm of the radial flux on the surface of the grating A =
0.4/k0, A = 0.8/k0 and A = 1.2/k0. The depth of the grating determines the
effective propagation constants by the efficiency of conversion.

see Fig.(3.12). To further validate this assumption, a calculation was done
on a larger sample and the comparison is plotted in Fig.(3.12)

As we have seen, the depth of the grating is thus an important parameter
in the design of these future device. The choice of the grid height is a
compromise between the focusing of the beam and the size of the lens.

3.5.2 In plane scattering and plasmon cavity

Apart from the out of plane scattering, the introduction of the grating
also generates backscattering on the surface from the boundary of the
flat and grated surface. As the circular area around the dipole position
is confined, the reflected plasmon can interfere with the outgoing plas-
mon to create a standing wave, significantly increasing the field ampli-
tude at the origin [Liu05, Yanai09], and thereby also increases the de-
cay into the plasmonic channel. The enhancing effect of in-plane scatter-
ing in focusing the plasmon to a single point was suggested by several
authors [Zhang10, Steele06]. The theoretical analysis[Leskova85] of this
is often quite cumbersome, and relys on technique such as impedance
boundary conditions[Ong93] which are less suitable for the current solid
state applications where the dielectric contrast between the metal and
the dielectric is relatively low.Several experimental and simulative works
have suggested strong field enhancement around the resonance condition
[Yanai09, Carretero-Palacios11] L = mλspp/2 with m an integer number.
Here we examine the decay rate into the plasmonic channel to give fur-
ther evidence for the SPP source of the focusing.
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The analysis of the plasmonic enhancement is enabled by the following
assumptions. Since the non radiative decay rate is short range and the
grating is engraved more than a plasmon wave length away, we assume
this decay rate is not changed from the infinite mirror. This assump-
tion can be supported be examining the decay rates above the mirror for
k0h < 0.1 where the dominant decay channel is non radiative. Because
of the distance of the grating starting point to the the dipole position,
direct reflections from the mirror (the radiative part of the decay rate),
should only differ for grazing angles, determined by tan(θ) = d/L, with
d the dipole distance from the surface and L the initial radius of the grat-
ing. It thus has little influence on the on axes field and therefore on
the field at the dipole position. This is also corroborated by examining
the angular radiation pattern for larger d, where the plasmon excitation
rate is small. For example, considering k0d = 3 the plasmonic energy
fraction Γspp/Γtotal = 0.037 and both the radiation pattern and the de-
cay rates agree for all grating parameters considered. As the analytical
model of the infinite mirror allows isolation of the different contribution
to the decay rate, these assumptions facilitate analyzing the enhancement
of the plasmonic decay rate due to the cavity effect by subtracting the in-
finite mirror decay rates for the non radiative and radiative contributions,
assuming that they are unaltered. The remaining decay rates show ex-
ponential behavior of the decay rate as a function of the dipole position,
further justifying the assumptions made above.

The enhancement of the plasmon coupling due to the cavity effect as a
function of the cavity size is plotted in Fig. (3.13), and the maximal frac-
tion of energy directed into the plasmonic channel is plotted in Fig. (3.14).
A significant increase of the decay rate occurs around L = 2λspp though
it is dependent on the grating depth suggesting a phase dependence of
the reflection coefficient.

The addition of the grating thus improves both problem introduced in
utilizing the flat surface plasmon for coupling to single emitters. The di-
rectional emission allows collection of the plasmon excitation by adding
a lens of NA 0.6 above the surface, while the introduction of the cavity
improves the Purcell factor of the plasmonic channel. The efficiency of
collection into the cone of 0.2 radian above the mirror can now be calcu-
lated relative to the coupling to the plasmon, and is plotted in Fig. (3.15).
We observed that the outcoupling efficiency is up to 70% of the plasmon
energy.

3.6 Enhancing the coupling for an in plane
dipole moment

Due to the limited coupling of the in-plane dipole, the structure con-
sidered above, with only a flat surface and gratings is not immediately
suitable for implementation with quantum dot. In a conventionally fabri-
cated layered structures quantum dot the dipole moment lies in the plane
of the mirror. In this work, a central hole under the position of the quan-
tum dot is suggested, allowing for the formation of a local cavity to form,
increasing the coupling efficiency to the parallel dipole. The introduc-
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Figure 3.14: Fraction of the energy coupled to the plasmonic channel for differ-
ent cavity lengths. Solid line -A = 1.2/k0, dot-dashed-A = 0.8/k0 and dashed
A = 0.4/k0.

tion of the hole is motivated by the appearance of a dipole charge and
field distribution [Popov05] suggesting better matching with the dipole
orientation.

The question of the fields arising at the opening of small slits and holes in
metallic films was investigated seriously in the research of extra ordinary
transmission (EOT) effect [Garcia-Vidal10b]. In this field, the excitation of
surface plasmons by an incoming is partially responsible for the enhanced
transmission through holes in metallic films. However, in these works
relative weak coupling of the incoming light to SPPs have been observed,
mostly through tunneling. Furthermore, rigorous analysis was preform
mostly for one dimensional slits, where a guided plasmonic mode occurs
for infinitely small gaps.

In this section the coupling of the single emitter to the central hole and
the subsequent excitation of SPP along the surface of the lens is investi-
gated. The decay rates, plotted in Fig.(3.16), show two distinct regimes
of enhancement depending on the central hole parameters. We show an
increase in the decay rate of a factor Γ/Γ0 = 25 for narrow holes due to
the increase in surface charge at the hole edges. For wide holes, coupling
to the modes of the hole allows further increase in the decay rate up to
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Figure 3.15: Fraction of the plasmon energy radiated into the 0.6NA cone above
the lens for different grating depths.

Γ/Γ0 = 45 for deeper holes as is shown in 3.6.2. The coupling between
these modes and the SPP is discussed 3.6.3, where an inferred coupling
to the plasmonic mode of about 70% of the emitted energy is found.

3.6.1 Optimization of Central Pit geometry

For the numerical simulations of the central hole, the groove is taken to
be symmetric and the cylindrical groove is modeled

ζ(ρ) = −H
2

(
tanh(

∆

2
(ρ− R))− 1

)
. (3.46)

Here, A is the hole’s depth and w is the radius. The wall steepness 1/∆
is taken to be on the order of the flat surface numerical step, and the
resolution in ρ is taken to be such that the length element along the wall
is at least the flat surface resolution. As there is no analytical expression
for the decay rate as in the case of the flat mirror, the plasmon fraction
cannot be investigated directly from the surface response in a simple way.
Instead, the pit plasmonic efficiency investigation is done with the con-
centric Bragg grating discussed in 3.5, and the efficiency of plasmon col-
lection is defined by the energy radiated into a solid angle equivalent to
0.6NA. The two sets of results shown here are based on calculations with
grating of depth 0.8k0R and a starting position of 10k0R. The plasmonic
coupling efficiency is then inferred from the coupling efficiencies of the
grating. As discussed in the previous section, the starting position
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Figure 3.16: Decay rate of the dipole emitter as a function the central hole
radius, dependent on the dipole position on the axis of symmetry of the lens.
The two plots demonstrate the two different regimes discussed in the text. In
a) the central hole radius w = 1.4/k0 allows for a cavity mode in the deep hole
regime. For w = 0.6/k0, plotted in b) no such mode is excited, and the coupling
to the mirror is through the electrostatic charge on the edge. See text for details.

3.6.2 Coupling of the emitter to the surface

To understand the enhancement observed, we investigate two mechanism
allowing for an increase of coupling between the single emitter and the
surface.

Shallow limit- shape resonants

In Fig. (3.17) the maximal decay rate normalized to the free space dipole
decay rate is plotted as function of the hole parameters. The range of
parameters plotted here roughly corresponds to the regime accessible in
experiments [Lezec02], where R (0.4− 1.6/k0) corresponds to 20− 100nm
in a GaAs structure, for the vacuum wavelength of λ0 = 1µm. The dipole
decay rate is seen to be primarily dependent on the hole radius, and
insensitive to the groove depth. In Fig. (3.18) we plot the decay rate
as a function of the dipole position on the symmetry axis of the lens,
noting that the maximal decay enhancement is obtained when the dipole
is positioned close to the the groove edge, and reduces as the dipole is
further inserted into the hole. Note also that the decay rate curves are also
altered when the dipole is positioned outside the groove as compared to
the dependence of the decay rate on the position for the flat mirror.

The origin of the enhanced decay rate exhibited in this regime of parame-
ters can be understood as the result of the high electric charge induced on
the edge of the hole, and is thus independent of the depth of the etched
hole. To validate this assumption, we plot in Fig. (3.19a) the charge dis-
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Figure 3.17: The maximal decay rates of an dipolar emitter placed on the lens
axis as a function of the the central hole parameters for typical experimental pa-
rameters. As discussed in the text, in this shallow pit limit there is no excitation
of the wave guide mode, and the decay rates are determined by the proximity to
the hole edges.

tribution induced by the dipole on the surface of the lens for the different
parameters appearing in Fig. (3.17). These can be seen to be almost un-
changed as the hole is deepened.

Such bounded surface plasma excitations are called localized surface plas-
mons (LSP) [Boardman82]. LSP frequency can be determined in a non-
retarded (electrostatic) approximation by solving the classical Dirichlet
problem. One feature of such localized excitation is a polynomial decay
of the charge distribution away from the localization area. This can be
seen by considering for example a corner in a perfectly conducting metal.
In the electrostatic limit, the problem reduces to the finding the electric
potential solving the Laplace equation,

1
sin θ

d
dθ

(
sin θ

dP
dθ

)
+

[
l(l + 1)− 1

sin2 θ

]
P = 0 (3.47)

d2

dρ2 R− l(l + 1)
ρ2 R = 0, (3.48)

where separation of variables Φ = R(ρ)P(θ)e±imφ has been used and we
have taken m = ±1 which is the relevant choice in our case given the
source symmetry. We are interested in the functional behavior of the
surface charges in the vicinity of the edge, on the outer part of the lens.
To further simplify the analysis we consider only one corner and further
reduce the problem to a tip of a cone of opening angle α = π/4, to which
the solution for the surface charge in proximity to the edge is proportional
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Figure 3.18: Decay rates as a function of the position of the dipole into the hole,
for hole radius w = 0.6/k0. Maximal rates are obtained in the same position on
the edge of the hole, regardless of the geometry of the hole.

to
R ∝ ρν−1, (3.49)

where ν is determined by the boundary values such that

Pν (cos(π/4)) = 0, (3.50)

for a corner of π/2. This leads to a polynomial decay of the charge on
the surface, where ρ−0.7 expected for an corner of π/2.

In Fig. (3.19b) the log-log plot of the charge distribution is plotted as a
function of the distance from the hole edge for the different depths of the
hole. Though the power of the decay deviates from the estimated one, a
clear polynomial decay of identical order is visible for all the central hole
depth, indicating that the origin of the decay enhancement is that of a
localized excitation at the central holes edge.

Deep pit limit - Wave guide mode

As the central hole depth is further increased, another coupling mecha-
nism kicks in. In Fig. (3.16) the decay rate enhancement for deeper depth
holes is plotted for two different radii, R = 0.6/k0 and R = 1.4/k0. As
discussed in the previous section, for the small radius hole the dipole de-
cay rate enhancement is primarily due to edge charges and is achieved in
the vicinity of the hole edge with little dependence on the hole depth. For
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Figure 3.19: Charge distribution on the hole edge, with the dipole positioned at
k0h = −0.1. Different hole radii are indicated by different colors. W = 0.4/k0
are plotted in red, W = 0.6/k0 in blue and W = 0.8/k0 in black for central hole
depth in the range appearing in Fig.3.17. In panel (b), the logarithm of the charge
distribution is plotted as a function of the logarithm of distance to the hole edge
for W = 0.4/k0

R = 1.4/k0 however we observe a strong enhancement of the decay rate
appearing around H = 5.2/k0. The enhancement observed, with a decay
rate of about 45 times that of the free space decay rate, is significantly
larger than the one generated by the electrostatic edge charges, and is
maximized inside the hole.

To understand the appearance of this resonant coupling of the dipole to
the central hole, let us first examine the infinitely long dielectric nanowire
surrounded by metal. The dispersion relation of the infinite dielectric
cylinder surrounded by metallic material of finite conductivity is deter-
mined by [Novotny94, Catrysse05]:[

k1

k⊥,1

J′m
Jm
− k2

k⊥,2

H′m
Hm

] [
1

k⊥,1

J′m
Jm
− 1

k⊥,2

H′m
Hm

]
=

m2k‖
R2

(
1

k2
⊥,1
− 1

k2
⊥,2

)2

(3.51)
where Jm, Hm are the m-order Bessel and Hankel functions of the argu-
ment k⊥,iR with

k⊥,i =
√

k2
0εi − k2

‖ , i = 1, 2 (3.52)

Here prime denotes differentiation with respect to the the function argu-
ment. With the exception of the m=0 modes, modes of this waveguide



70 Solid state plasmonic Lens structure

can not be separated into TM or TE mode and these modes are noted as
HE (EH) if the the electric (magnetic) field is the dominant component
in the direction of propagation. It was already noted [Novotny94] that
the lowest mode of such waveguide in the finite conductivity case is the
HE11 mode, which does not display a cutoff but rather has a smooth tran-
sition to an evanescent mode. As the radius of the core is decreased, the
wave number in the propagation direction continuously decreases while
the imaginary part of the wave number increases. As the radius is further
reduced, the imaginary part of the transverse wave number is increased,
indicating larger fraction of the energy deposited in the metal and thus
higher losses. In Fig. (3.20), the dispersion curve around the transition
point of the HE11 mode is plotted. At radii R < 3.4/k0, the cutoff ra-
dius for the HE12 mode, considered here the waveguide is a single mode
channel, as any higher modes are display a cutoff. Note that the hole
always supports propagating mode, far below λ0/2 at which the perfect
electric conductor (PEC) waveguide displays a cutoff. This is a unique
result of the finite conductivity of the surrounding metal which is not
taken into account in coupled mode models [Carretero-Palacios11]. The
modal shape of the HE11 also proves favorable for coupling to a dipole
perpendicular to the axis of symmetry of the wire. The mode function
electric fields are given by [Snyder83]

Eρ = − a− J0(k⊥,1ρ) + a+ J2(k⊥,1ρ)

J1(k⊥,1R)
cos(φ) (3.53)

Eφ =
a− J0(k⊥,1ρ)− a+ J2(k⊥,1ρ)

J1(k⊥,1R)
sin(φ) (3.54)

Ez = −
ik⊥,1

kz

J1(k⊥,1ρ)

J1(k⊥,1R)
cos(φ), (3.55)

with

a± =
1
2

 1
R

(
1

k2
⊥,2
− 1

k2
⊥,1

)
1

1
k⊥,1

J′m
Jm
− 1

k⊥,2

H′m
Hm

± 1

 . (3.56)

This mode has a non vanishing x electric field component

Ex ∝ a−/J1(k⊥,1R), (3.57)

allowing the coupling to the on axis dipole. The dispersion curve allows
tailoring of the coupling of the dipole to the mode. In Fig. (3.16) the
decay rate of the emitter is plotted for two different pit radii, namely
k0R = 0.6 and k0R = 1.4. As expected from the dispersion curve, below
the transition point the hole depth plays very little influence on the decay
rate pattern since the coupling to the propagating mode is weak, and the
decay rate is mainly determined by the proximity to the sharp edges of
the pit, as discussed for the shallow limit case (3.6.2). However, for the for
width k0R > 1.1 plotted in Fig. (3.16a), the coupling to the propagating
mode is enabled beyond k0L > 1/2. Here the optimal coupling position is
determined by the waveguide mode. When the depth of the pit is equal
to the λwg/2 the formation of a standing wave in the hole is obtained
and the decay rates are maximal. We note here the discrepancy with
experiments conducted [Miyazaki06, Kurokawa07] on a two dimensional
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Figure 3.20: Dispersion curves for the HE11 mode in the central hole in the deep
hole limit. In blue and green the real <{kz} and imaginary <{kz} parts of the
wavenumber in the direction of the axis of symmetry, respectively. In .

Metal-Insulator-Metal (MIM) slit structure. In these experiments with
one end closed slit, the coupling to the resonances appeared at depths of
odd multiplication of the guided wave length. In those experiments, the
resonances are investigated by illumination of the slit from the outside
external. The resonance is then constrained to have a maximum of the
perpendicular electric field at the slit entrance, in order to couple to it.
Here the radiation source is internal in the pit, and so enhanced coupling
to the standing wave can occur in different position independent of the
field amplitude at the open end.

3.6.3 Directional radiation and collection efficiency with
a central pit

In Sec. (3.6.2) we observed enhanced coupling of the dipole emitter to the
surface, when introducing a hole on the axis of symmetry beneath the
emitter position. This enhanced coupling was expressed by rapid decay
rate relative to the free space decay rate of the emitter. We have identified
two decay channels associated with modes localized at the central hole.
For our purpose it is important however to consider the coupling of these
modes to the propagating surface plasmons, and subsequently to direc-
tional radiation by means of the coupling grating as we discussed in Sec.
(3.5).

Though the decay rates are significantly increased when coupling to the
edge or waveguide modes, neither of these modes is phased matched to
the surface plasmon propagating on the surface. In Fig. (3.21), normal-
ized decay rates into the cone of 0.6NA, above the surface, associated
with plasmonic fraction of the energy reaching the grating, are plotted
for the parameter range of the shallow pit. The coupling to the plasmon
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Figure 3.21: Fraction of the total energy emitted by the dipole radiated into an
angle of 0.6 NA about the symmetry axis of the lens, for the shallow central hole
regime.

is seen to be constant at around 50% of the dipole energy. The same limit
is observed in the deep limit plotted in Fig. (3.22). Another distinct fea-
ture is the appearance of a dip in the radiated power. This illustrates the
claim made in the previous subsection. When the enhancement due to the
standing wave in the hole is such that the field amplitude at the open end
is small, the coupling to the surface modes outside the hole is inhibited,
resulting in radiation from the grating. These results are in agreement
with the two dimensional results of [Lalanne05] where diffraction from
the edge of the hole into evanescent modes was accounted for the weak
coupling. Even with the limited collection efficiency, enhanced decay rate
can be beneficial for solid state applications as other decohering processes
in the semiconductor can be suppressed.

3.7 Conclusions

To conclude, we have shown that a plasmonic lens, constructed of a pla-
nar metallic surface with concentric grooves, and a central hole can serve
as an effective coupler to a single dipole emitter placed on the axis of sym-
metry. The system in mind for this design, already used for investigating
plasmonic and photonic interaction with single emitters, is that of self-
assembled InGaAs quantum dots [Andersen10]. We have optimized the
grating height showing coupling efficiencies of 70% of the dipole emis-
sion can be directed into a cone of NA 0.6 above the surface, facilitating
simple experimental collection. This is achieved using a cavity effect gen-
erated by the in plane scattering at the grating edge, which we show to
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Figure 3.22: Fraction of the total energy emitted by the dipole radiated into an
angle of 0.6 NA about the symmetry axis of the lens in the regime of the deep
central hole.

increase the coupling to the plasmonic decay channel by a factor of three.
To further improve the coupling to quantum dots having their dipole mo-
ment aligned along the surface, we have introduced a cylindrical groove
on the symmetry axis beneath the quantum dot. We have analyzed the
effect for two regimes of the holes depth and dipole position. We showed
coupling to shape resonances on the hole edge for shallow grooves, re-
sulting in increase of the emitter’s total decay rate by a factor of 25. A
stronger coupling to the guided HE11 mode in the hole was observed for
deep grooves, with an increase of the total decay rate by a factor of 45.
However, both coupling mechanisms seem to detuned from the surface
plasmon mode, and therefore a limited extraction rate via the grating cou-
pler of about 50% was obtained. These results suggest the plasmonic lens
can become a valuable tool in interacting with quantum dots, bypassing
the need for lossy waveguide structures.
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Chapter4

Non classicality criterion for

conjugated variable of a single

degree of freedom

4.1 Introduction

In this chapter we provide a conceptually simple demonstration of one of
the key discrepancies between classical and quantum mechanics, valid for
systems of a single degree of freedom: classical systems can always be de-
scribed by a joint probability distribution for x and p, the two canonically
conjugated coordinates of a system, whereas such a description does not
apply in quantum mechanics due to the Heisenberg uncertainty principle.
This discrepancy is most evident when the phase space description of the
state of a system is examined. Classically, the phase space distribution
W(xi, pi) is the joint probability of finding the system in an infinitesi-
mal area around x = xi, p = pi, and hence it obeys all the requirements
of a probability distribution including being a non-negative function. As
mentioned, in the case of a quantum phase space formulation, introduced
by Wigner [Mandel95], the Heisenberg uncertainty renders this definition
meaningless, as a joint probability distribution for x and p does not exist.
The phase space distribution is only defined through the single coor-
dinate (marginal) distributions, projected from the distribution function
[Nha08] and this relaxation of constraints allows for negative values of the
function in areas smaller than h̄. This negativity is not directly observable
due to the vacuum fluctuations preventing simultaneous measurement of
x and p. However, one can still infer the phase space distribution from
measurements of only a single observable at a time and detect such neg-
ativities, thereby illuminating the failure of classical theory.

The usage of these negativities as markers of non-classicality has been
discussed and demonstrated in several quantum optics systems (see, e.g.,
[Leibfried96, Lvovsky01, Zavatta04, Ourjoumtsev06, Mari11]), using to-
mographic techniques. Often such methods search for the quantum state
most compatible with the experimental data using statistical inference
or variational techniques[Hradil97, Benichi11] and thus inherently rely
on quantum mechanics. These methods are therefore not applicable for
demonstrating the absence of a classical description. Alternatively, given
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measurements of all the coordinate distributions, the underlying state can
be uniquely determined, and the phase space distribution fully calculated
using the inverse Radon transformation [Welsch99] without relying on
quantum mechanics. Though such methods have been used in quantum
optics for demonstrating various states, the mathematical transformation
involved is highly complicated. Furthermore the numerical stability of
the inverse transformation is problematic, leading to numerical uncer-
tainty at high frequencies, and sometimes results in unphysical states
[Lvovsky09]. These limitations are a drawback for using tomographic
techniques for validating the breakdown of a classical description, and
the application of these methods is usually cumbersome.

Our simple, unambiguous demonstration of the absence of a classical
probability distribution is based on recent theoretical work by Bednorz
and Belzig [Bednorz11] that verifies the negativity of the Wigner function
based on moments. As discussed in detail below, their results lead to a hi-
erarchy of inequalities, such that violation of any one inequality indicates
negativity of the Wigner function. Full tomographic reconstruction with
the associated numerical complexities is thereby avoided. We extend this
approach such that it can be applied to quadrature measurement of a sin-
gle photon state, and use the experimental data from the heralded single
photon generation to directly disprove the existence of a joint probability
of the position and momentum for this system.

4.2 Probing phase space indirectly
We start by re-iterating the key results of Bednorz and Belzig, through
a reformulation that relies only on classical mechanics. The phase space
of a system with a single degree of freedom is fully characterized by
a two-dimensional phase space distribution W(x, p). That is, given the
phase space distribution, the ensemble averaged result of any measurable
quantity A can be obtained by

〈A〉 =
∫

dxdp W(x, p) A(x, p) , (4.1)

where A(x, p) is the decomposition of the quantity A in terms of the
generalized coordinate x and its canonically conjugated momentum p.

To disprove the existence of a classical probability distribution we ex-
amine the ensemble average of a non-negative test function F(x, p) over
a classically explainable system, which must have a proper distribution
function that results in the ensemble average of F be non-negative:

〈F〉 =
∫

dxdp W(x, p)F(x, p) ≥ 0. (4.2)

Violating this condition is a direct proof of the absence of a joint proba-
bility distribution. The condition can, however, be violated in quantum
mechanics, where W(x, p) is the Wigner function that can contain neg-
ative values. The objective therefore is to optimize a test function such
that it will be dominant at the possible negative areas of the distribution
function. For a rotationally invariant phase space both the phase space
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distribution and the test function can be described solely by the phase
space radius r, defined by r2 = x2 + p2. For reasons to become clear later,
we choose a specific form for the test function F, writing it as a square of
an Nth order, even polynomial M with real coefficients {Ci}N;

〈F〉 = 〈M2〉 =
〈(

1 +
N/2

∑
n=1

C2nr2n

)2〉
. (4.3)

Minimizing the above expression for a given order N is done by straight-
forward linear optimization of the coefficients {Ci}N:

N/2

∑
l=1
〈r2(l+j)〉C2l = −〈r2j〉, (4.4)

for all j = 1, 2, ..., N/2. Notice that the linearity of the problem ensures
that the obtained minimum of 〈F〉 is global and therefore the most opti-
mal indicator of a possible violation of Eq. (4.2) for a given polynomial
order N. It is important to emphasize that this is only a sufficient crite-
rion for non-classicality, and an optimized positive average for a chosen
N does not ensure a classical probability distribution, since the negativity
may only be exhibited by the inclusion of higher order terms in M. How-
ever, it is clear that increasing the polynomial order N cannot increase
the minimized value of 〈F〉, and we conjecture that the limit of N → ∞
will exhibit any negativity of the Wigner function, as the polynomial can
represent an arbitrarily (analytical) sharp peaked function F focused at
the negativity. Assuming the existence of all moments (e.g., due to an
exponentially decaying tail of the phase space distribution at large r), this
then becomes a necessary criterion for the negativity of the distribution
function. We also note here, that similar polynomial expansion has been
discussed [Shchukin04, Korbicz05] in the context of the P-function distri-
bution. The P-function is, however, only defined within the framework of
quantum mechanics, and hence cannot be used to prove the absence of a
classical description.

It is also here that the natural connection to photon antibunching arises.
If the Hamiltonian is that of the harmonic oscillator, r2 is directly re-
lated to the intensity, and the above relation can be expressed in terms
of coherence functions. For example, when considering the second order
polynomial M = 1 + C2r2, the optimal test function is found to be such
for which C2 = −〈r2〉/〈r4〉 and the negativity criterion is then

〈r2〉2
〈r4〉 > 1. (4.5)

Replacing I = r2 immediately yields g(2) < 1, the antibunching criterion.

We assume that, as is the case for many systems, the system in question
can only be experimentally accessed by measuring one of the canonically
conjugated variables (e.g., x or p) at a time. Since we are restricted to
single coordinate measurement at a time, neither the intensity nor the
phase space distribution function is directly accessible. For this method
to be applicable to such experimental data, the functional 〈F〉 must be
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expressed in terms of the moments of the projected coordinates 〈Qn
α〉,

where
Qα = cosα x + sinα p, Pα = cosα x− sinα p (4.6)

is a measureable rotated coordinate. To do this we use the identity

(
x2+p2

)N
= A2N

2N

∑
m=1

(
cos
(mπ

2N

)
x+sin

(mπ

2N

)
p
)2N

, (4.7)

where

A2N =

(
2N
N

)−1
22N

2N
. (4.8)

This is where quantum and classical approaches diverge. While classi-
cally Eq. (4.7) represents a measurable physical quantity, it is missing
the key vacuum uncertainty, allowing for the breakdown of the classical
description.

It is interesting to note the implication of identity (4.7). For the 2mth mo-
ment of the radial distribution to be known, we need 2m ’cuts’ in phase
space; i.e., different coordinate measurements at equally distributed an-
gles. Regardless of any assumption about the underlying state, the aver-
age of Eq. (4.7) directly gives

〈r2N〉 = A2N

2N

∑
m=1

〈
(Qmπ/2N)

2N
〉

. (4.9)

In the special case of a symmetric distribution function these moments
are all identical, and Eq. (4.9) reduces to

〈r2N〉 =
(

2N
N

)−1

22N〈x2N〉. (4.10)

The radial moments can thus be indirectly calculated from the quadrature
measurements. Substituting these radial moments into Eq. (4.2) using the
functional form of F(x, p) given by Eq. (4.3), we get, for a given set of
measured moments {〈x2k〉}k, a necessary condition for classicality of the
underlying state. If Eq. (4.2) is violated by the solutions of Eq. (4.4), the
underlying state cannot be explained by a proper phase space probability
distribution, and one cannot assign a joint probability distribution to x
and p.

4.3 Experimental verification
To demonstrate the absence of a joint probability distribution we are go-
ing to consider the phase space description of a single photon state. In
phase space this can be described by the first excited state of a harmonic
oscillator, which is rotationally invariant and contain negative parts in the
Wigner functions. Fig. 4.1 shows the optimal functional forms obtained
for the this state for low polynomial orders. As higher order terms are
included, the optimized test function is increasingly probing the negative
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Figure 4.1: Profiles of the test function F minimizing the expectation value 〈F〉
for the first excited state of a quantum harmonic oscillator, as a function of the
phase space radius, for different orders N (see text) plotted against the profile
of the corresponding Wigner function. As the order of the polynomial increases,
the function becomes centered around the negativity, decreasing elsewhere. In
this case, negative expectation values are obtained starting at N = 4. Inset
shows the polynomial order required to observe negative expectation values, as
a function of the single-photon fractional content in a mixture with vacuum. As
the fraction of vacuum is increased, the state approaches a classically describable
state and higher moments are needed to observe the negativity.

part of W, yielding a negative expectation value. We note that negative
expectation values appear only from the fourth order onward. This is be-
cause the peak of the test function at the position of the negativity must
be narrower than Heisenberg’s uncertainty in order not to smear the neg-
ativity; this is in full agreement with Ref. [Bednorz11].

The experimental demonstration is achieved with single photons gener-
ated by an heralded cavity-enhanced non-degenerate parametric down-
conversion. The equivalence between a single mode electromagnetic field
and an harmonic oscillator allows us to describe the EM field by a phase
space of a single degree of freedom. The down-conversion process pro-
duces two photons, and as one is detected as a trigger, the result is a single
photon state where the losses introduce a statistically mixed component
of vacuum. The projection measurements (quadratures) are obtained by
measuring the statistics of the noise, using an optical homodyne detection
scheme. In this scheme, the weak investigated optical field is overlapped
with a strong laser pulse on a beam splitter, and the interference of the
two fields is detected and subtracted. The phase of the strong laser field
determines the angle α (Eq. (4.6)) of the measured coordinate. Measure-
ments were taken without fixing the phase of the local oscillator, thus
smearing the resulting distribution. This enables us to treat the results
as rotationally invariant even if non-invariant features existed prior to
smearing. Such measurements will generate a rotationally invariant re-
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constructed state for any underlying state, but this does not necessarily
average out negativities in the Wigner function (see, e.g., [Leonhardt05]).
For details of the experimental setup and the charactarization of the re-
sulting single photon see Ref. [Neergaard-Nielsen07].

The data set contained 180,000 measured quadratures. We have here re-
vised the optimization of the functional to also account for statistical un-
certainties inherent to a limited data set. This is done by optimizing

G =
〈F〉
〈σF〉

, (4.11)

where σF =
√
〈F2〉 − 〈F〉2 is the standard deviation of F. The results

are shown in Fig. 4.2. The fact that the expectation value for our test
function is negative with certainty of almost twenty standard deviations,
clearly demonstrates that the measured state in this experiment cannot
be explained by classical theory, unambiguously negating the possibility
of existence of a joint probability distribution for x and p. The appear-
ance of negative values from the twelfth order polynomials and higher
indicate the quantum mechanical description of this state in terms of a
Wigner function includes negative valued areas. We note that the mini-
mized function from Eq. (4.3) is monotonically decreasing for increasing
order N, and the onset of negativity at a certain order therefore means
that all higher orders will also be negative. This suggests a sequential
authentication procedure for an unknown state. As mentioned above,
for a pure single photon state, negative expectation values are observable
from the 4-th order polynomial onwards. The twelfth order polynomial
required here is due to the vacuum component of the field, requiring
higher orders of the polynomial as shown in the inset of Fig. 4.2, and
is in agreement with the results obtained in Ref. [Neergaard-Nielsen07]
reporting 62% fraction of single photon in the resulting mixed state.

4.4 Conclusions

In conclusion, we have experimentally demonstrated the non-existence of
a joint probability distribution of two canonical variables. This is done
by violation of an inequality derived without the assumptions of quan-
tum mechanics, thus allowing for it as proof of the absence of a classical
description in systems not immediately evident to display quantum be-
havior. The procedure used here can thus provide a simple, practical
tool for demonstrating the non-classicality of a state based on quadra-
ture measurements, where the existence of a classical joint distribution
of two conjugated variables can be negated. In this way, this procedure
is closely linked to other criteria [Leggett85, Klyachko08, Lapkiewicz11]
demonstrating contextuality of measurements, and thus disproving the
classical local hidden variable view. Unlike Ref. [Leggett85, Klyachko08,
Lapkiewicz11], which are applicable to discrete variables, the method
demonstrated here applies for continuous variables such as position and
momentum, collective spin operators [Fernholz08] and quadrature phase
operators. This makes it useful to systems containing many particles,
where criteria based on counting particles are not easily implemented
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Figure 4.2: Expectation value for the square of a polynomial relative to its stan-
dard deviation, as a function of the polynomial’s order for the experimental
data. Negativity by almost 20 standard deviations disproves the existence of a
joint probability distribution for x and p. The inset shows a histogram of the raw
measured quadrature data (arbitrary units).

and interpreted. This method complements the full tomographic recon-
struction techniques in that it is simpler and avoids numerical complex-
ities of inverse transformations. These kinds of conceptual proofs, when
extended to different detection schemes, can shed more light on the quan-
tum to classical correspondence, especially where the control of claimed
macroscopic quantum states is in question.
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AppendixA

Boundary Elements Method for

an axially symmetric interface

A.1 Boundary Element Method
In this Appendix we describe in detail the approximations applied to
solve numerically the problem of a dipole above a corrugated metal-
lic surface with cylindrical symmetry. We used the Boundary Element
Method [García de Abajo02], and we provide a review of this method,
along with the specific details of our current implementation.

Writing the macroscopic Maxwell equations in the frequency domain

∇ · (εE) = 4πρ, ∇ · (µH) = 0

∇× E− ik
µ

H = 0, ∇×H + ikεE =
4πj

c

with ε and µ being the dielectric constant and magnetic permeability,
respectively, and k = ω/c. These equations can be written in terms of the
vector and scalar potentials A and Φ(

∇2 + iµεk2
)

A = −4π

c
(µj + m) (A.1)(

∇2 + iµεk2
)

Φ = −4π
(ρ

ε
+ σs

)
(A.2)

where a Laurentz-like gauge was used, ∇ · A = iµεkΦ. The additional
source term represent spatial variation of the material properties ε, µ:

σs =
1

4π
(εE) · ∇1

ε
(A.3)

m = − c
4π

(ikΦ∇ (εµ) + H ×∇µ) . (A.4)

In this work, we consider non magnetic materials, setting µ = 1 every-
where. We shall also focus on sharp interfaces between homogeneous
material. In this case the additional sources represent surface charges
and currents on the interface between the two materials, mediating the
effect of the fields on one side of the interface to the other. Led by this
understanding, the core idea of the boundary elements method is that in-
troduction of fictitious boundary charges and currents, determined by the
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boundary conditions on the interface, enables one to calculate the fields
on both side of the interface using the homogeneous material solution.

Namely, writing the solution to the potentials

Φ(r)|r∈Vi =
1
εi

∫
duGi(r, u)ρ(u) +

∫
Si

dsGi(r, s)σi(s) (A.5)

A(r)|r∈Vi =
1
c

∫
duGi(r, u)j(u) +

∫
Si

dsGi(r, s)hi(s) (A.6)

where the homogeneous Green’s function is used

Gi(r, r′) =
eiki|r−r′|

|r− r′| , (A.7)

ki =
√

εik being the wave number in the material, allows for calculation
of the electromagnetic fields everywhere if the surface charge and current
{σ, h} on both sides of the interface can be determined.

As A has three coordinates, Φ is a scalar, and both are to be calculated on
both sides of the interface, Eq. (A.6) gives rise to eight component linear
integral equations (for {σ, h}):

∫
d2sG1

(
s, s′

)
σ1(s′)−

∫
d2sG2

(
s, s′

)
σ2(s′) =

=
1
ε2

∫
d3rG2(s, r) ρ2(r)−

1
ε1

∫
d3rG1(s, r) ρ1(r) (A.8)∫

d2sG1
(
s, s′

)
h1(s′)−

∫
d2sG2

(
s, s′

)
h2(s′) =

=
1
c

∫
d3rG2(s, r) j2(r)−

1
c

∫
d3rG1(s, r) j1(r) (A.9)∫

d2s (ns · ∇) G1
(
s, s′

)
h1(s′)−

∫
d2s (ns · ∇) G2

(
s, s′

)
h2(s′)−

− ikns

(
ε1

∫
d2sG1

(
s, s′

)
σ1(s′)− ε2

∫
d2sG2

(
s, s′

)
σ2(s′)

)
= α

(A.10)

ε1

∫
d2s (ns · ∇) G1

(
s, s′

)
σ1(s′)− ε2

∫
d2s (ns · ∇) G2

(
s, s′

)
σ2(s′)−

− ikns

(
ε1

∫
d2sG1

(
s, s′

)
h1(s′)− ε2

∫
d2sG2

(
s, s′

)
h2(s′)

)
= D

(A.11)

The source terms in these equations are the volume integral containing
the known real currents and charges distributions in the problem, and
are described in Sec. (A.1.3). Note, that the volume integrals in the above
equations can be calculated directly for the known charge and current
distributions (we calculate the dipole source terms for the lens geometry
in Sec. (??)) To solve these equations, the interface is discretized, to form a
set of linear algebraic equation. In this work, the two dimensional surface
integral are further reduced using the symmetry of the lens. We discuss
this below.
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A.1.1 Cylindrical coordinates

The cylindrical symmetry of the problem is used to reduce the surface in-
tegrals in Eqs. (??) to one dimensional integrals in the following manner.
Any scalar quantity f can be decomposed in cylindrical coordinates into
its angular Fourier components:

f =
∞

∑
m=0

fm(ρ, z)eimφ (A.12)

where

fm =
1

2π

∫ 2π

0
dφ f e−imφ, (A.13)

and the integral of the Green’s function:

I = ∑
m

∫
ρ′dρ′dφ′

√
1 + (dz/dρ)2 |ρ′ G(ρ, z, φ, ρ′, z′, φ′) fm(ρ

′, z′)eimφ′ .

(A.14)

The same decomposition can be applied to the Green’s function. Using
the symmetry of the angular dependence of the distance in cylindrical
coordinates, where∣∣r− r′

∣∣ = √ρ2 + ρ′2 + (z− z′)2 − 2ρρ′ cos(φ− φ′), (A.15)

it is enough to use the single coordinate Fourier decomposition

G = ∑
m

Gmeim(φ−φ′), Gm =
1

2π

∫
dψGe−imψ, (A.16)

and we get

I = 2π ∑
m

eimφ
∫

ρ′dρ′
√

1 + (dz/dρ)2 |ρ′ Gm(ρ, ρ′, |z− z′|) fm(ρ
′, z′).

(A.17)

The same decomposition can be applied to the Green’s function gradient

H = (ns · ∇) G (A.18)

The gradient has a singularity at the origin, yet the integral can be shown
to equal [García de Abajo02]

H f =
∫

d2s
[

ns · (s− s′)
|s− s′|3

(
ik|s− s′| − 1

)
eik|s−s′| ± 2πδ(s− s′)

]
f (s′),

(A.19)

with the minus (plus) sign coresponding to the side of the interface ns is
pointing to (from). For the integral part of A.19 the angular decomposi-
tion is again defined as

Hm =
1

2π

∫
dψ

ns · (s− s′)
R3 (ikR− 1) eikRe−imψ, (A.20)

where

R =
√

ρ2 + ρ′2 + (z− z′)2 − 2ρρ′ cos(φ− φ′). (A.21)

Some care is needed preforming the above decomposition of the intergral
into angular moments when vectorial field f are involved, as the cylindri-
cal unit vectors are also functions of the angle φ. A detailed examples of
the involved treatment appears in ?? below.
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A.1.2 Discretization and numerical solution

In order to solve the set of linear integral equations ?? numerically,the
integrals are discretised as following; The interface is described by a grid,

( fm)b = fm(ρb, z(ρb)) (A.22)

(Gm)a,b = 2π
∫

δSb

ρ′dρ′

√
1 +

(
dz
dρ
|ρb

)2

Gm(ρa, ρ′, |za − z′|) (A.23)

where δSb is a radius element around ρb. In this way the integral can be
written as a matrix product

Im(ρa) = (Gm)a,b · ( fm)b (A.24)

A.1.3 Source terms

Source terms are defined through the 4-vector potential for a dipole posi-
tioned above the symmetry axis of the lens, at rp = (0, 0, d), described by
a current density

j = −iωpδ(r− rp) (A.25)

This gives

A1(s) =
1
c

∫
dr′

eik1|r′−s|

|r′ − s| j(r′)

= −ikp
∫

dr′
eik1|r′−s|

|r′ − s| δ(r− rp) = −ikp
eik1|rp−s|∣∣rp − s

∣∣
The angular Fourier components are then calculated as stated above:

Am
1 (s) =

1
2π

∫ 2π

0
dφe−imφ

[
−ikp

eik1 |rp−s|∣∣rp − s
∣∣
]

where D is the distance function described above. Since the dipole is
located at ρ = 0, the fraction in the integrand does depend on the angle
phi. Assuming p = px x̂ + pzẑ, and using x̂ = cosφ ρ̂− sinφ φ̂, we get

Am
1 (s) =

−ik
2π

eik1 |rp−s|∣∣rp − s
∣∣ ∫ 2π

0
dφ e−imφ

[
px cos φ ρ̂− px sin φ φ̂ + pz ẑ

]
=

=
−ik
2π

eik1 |rp−s|∣∣rp − s
∣∣ ∫ 2π

0
dφ e−imφ

[ px

2

(
eiφ (ρ̂+iφ̂

)
+ e−iφ (ρ̂−iφ̂

))
+ pz ẑ

]
=

= −ik
eik1 |rp−s|∣∣rp − s

∣∣ [ px

2
(
δm,1

(
ρ̂ + iφ̂

)
+ δm,−1

(
ρ̂− iφ̂

))
+ pzδm,0 ẑ

]
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To calculate the charge density for the dipole, we look at the continuity
equation

∇J = −∂$

∂t
= iω$ (A.26)

where time dependence of e−iωt is assumed for all quantities. Substituting
the current density (A.25) leads to $ = −p · ∇rδ(r− rp), and plugging this
density into the potential expression yields after partial integration (note
sign change):

Φ1 =
1
ε1

∫
dr′ δ(r′ − rp)p · ∇r′

(
eik1 |r′−s|

|r′ − s|

)
=

=
1
ε1

∫
dr′ δ(r′ − rp)

p · (r′ − s)

|r′ − s|3
(
ik1
∣∣r′ − s

∣∣− 1
)

eik1 |r′−s| =

=
1
ε1

p ·
(
rp − s

)∣∣rp − s
∣∣3 (

ik1
∣∣rp − s

∣∣− 1
)

eik1 |rp−s|

The angular Fourier components are calculated in a similar manner to the
vector potential, noting that only p · (r′ − s) depends on the angle of s;

Φm
1 =

1
ε1

(
ik1
∣∣rp − s

∣∣− 1
)∣∣rp − s

∣∣3 eik1 |rp−s| 1
2π

∫
dφ e−imφp ·

(
rp − s

)
=

=
1
ε1

(ik1R− 1)
R3 eik1 R 1

2π

∫
dφ e−imφ (−pxρs cosφ + pz (d− zs)) =

=
1
ε1

(
ik1
∣∣rp − s

∣∣− 1
)∣∣rp − s

∣∣3 eik1 |rp−s|×

×
(
− px

2
ρs (δm,1 + δm,−1) + pz (d− zs) δm,0

)
For calculating α, defined as

α = (ns · ∇s) (A2 −A1) + ikns (ε1Φ1 − ε2Φ2) (A.27)

we make use of the definition of convective operators in cylindrical coor-
dinates,

(v · ∇)w =

(
vρ

∂wρ

∂ρ
+

vφ

ρ

∂wρ

∂φ
+ vz

∂wρ

∂z
−

vφ

ρ
wφ

)
ρ̂+

+

(
vρ

∂wφ

∂ρ
+

vφ

ρ

∂wφ

∂φ
+ vz

∂wφ

∂z
+

vφ

ρ
wρ

)
φ̂+

+

(
vρ

∂wz

∂ρ
+

vφ

ρ

∂wz

∂φ
+ vz

∂wz

∂z

)
ẑ.

Using the symmetry, meaning nφ = 0

(ns · ∇)A =

(
nρ

∂Aρ

∂ρ
+ nz

∂Aρ

∂z

)
ρ̂ +

(
nρ

∂Aφ

∂ρ
+ nz

∂Aφ

∂z

)
φ̂+

+

(
nρ

∂Az

∂ρ
+ nz

∂Az

∂z

)
ẑ.
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Lack of φ-dependence also means that the the m-coefficients can be triv-
ially calculated by replacing A with Am. Since Am = f(s) a, with a a
constant vector, the derivatives can be expressed as

∂Am

∂τ
=

[
∂

∂R

(
−ik

eik1 R

R

)]
∂
∣∣rp − s

∣∣
∂τ

= −ik
(ik1R− 1) eik1 R

R3 τ̂ ·
(
s− rp

)
(A.28)

for τ either ρ, z. This gives:

(ns · ∇)Am
1 = −ik

(
ik1
∣∣rp − s

∣∣− 1
)

eik1 |rp−s|∣∣rp − s
∣∣3 (

ns ·
(
s− rp

))
×

×
[ px

2
(
δm,1

(
ρ̂ + iφ̂

)
+ δm,−1

(
ρ̂− iφ̂

))
+ pzδm,0 ẑ

]
Such that finally

αm = − (ns · ∇s)A1 + iknsε1Φ1 =

= ik

(
ik1
∣∣rp − s

∣∣− 1
)

eik1 |rp−s|∣∣rp − s
∣∣3 ×

×
{[

(d− zs)

(
δm,0 nρ pz −

1
2
(δm,1 + δm,−1) nz pρ

)]
ρ̂ +

+

[(
nρρs + nz (zs − d)

) i
2
(δm,1 − δm,−1)

]
φ̂ +

+

[
nρρs pz δm,0 −

1
2

nzρs px (δm,1 + δm,−1)

]
ẑ
}

The last source term is defined as

D = ns · [ε1 (ikA1 −∇sΦ1)− ε2 (ikA2 −∇sΦ2)] = ε1ns · (ikA1 −∇sΦ1)
(A.29)

The second term can be calculated in a similar fashion to (A.28). Since

∇sΦ =
∂Φ

∂ρ
ρ̂ +

1
ρ

∂Φ

∂φ
φ̂ +

∂Φ

∂z
ẑ (A.30)

and the second term can be dropped since nφ = 0. Using

∂

∂R
(ik1R− 1)

R3 eik1 R =
−k2

1R2 − 3ik1R + 3
R4 eik1 R (A.31)

and
∂
∣∣rp − s

∣∣
∂τ

=
τ̂ ·
(
s− rp

)∣∣rp − s
∣∣ (A.32)

we find

(ε1ns · ∇sΦ1)
m =

= eik1 |rp−s|
{
−k2

1

∣∣rp − s
∣∣2 − 3ik1

∣∣rp − s
∣∣+ 3∣∣rp − s

∣∣5 ns ·
(
s− rp

)
×

×
(
−1

2
pxρs (δm,1 + δm,−1) + pz (d− zs) δm,0

)
+

+

(
ik1
∣∣rp − s

∣∣− 1
)∣∣rp − s

∣∣3
(
−1

2
pxnρ (δm,1 + δm,−1)− pznzδm,0

)}
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note that the inner product ns ·
(
s− rp

)
is invariant to rotations, because

of the symmetry and position of the dipole and need not be decomposed
to angular components. This result can now be substituted into D to give:

Dm =

{
k2∣∣rp − s

∣∣ ( px

2
nρ (δm,1 + δm,−1) + pznzδm,0

)
−

−
(
ik1
∣∣rp − s

∣∣− 1
)∣∣rp − s

∣∣3
(
−1

2
pxnρ (δm,1 + δm,−1)− pznzδm,0

)
−

−
−k2

1

∣∣rp − s
∣∣2 − 3ik1

∣∣rp − s
∣∣+ 3∣∣rp − s

∣∣5 ns ·
(
s− rp

)
×

×
(
−1

2
pxρs (δm,1 + δm,−1) + pz (d− zs) δm,0

)}
eik1 |rp−s|

A.1.4 Far Field Radiation

For the far field, we use the the assumption r � λspp, d to write

G(|r− r′|) = eikr

r
e−ikr̂·r′ (A.33)

Which, upon introduction of a radial direction

A =
eikr

r

[
−ikpe−ikd cos θ +

∫
ds e−ikr̂·sh(s)

]
(A.34)

The power radiated per solid angle is given by

dP
dΩ

=
c

8π
<
(

r2r̂ · E×H∗
)

. (A.35)

Note, that since E = ikA −∇Φ and Φ ∝ eikr/r, the gradient of Φ is in
the radial direction and proportional to 1

r2 , and does not contribute to the
radiated power. Therefore

dP
dΩ

=
c

8π
<
(

r2r̂ · ((ikA)× (∇×A)∗)
)

. (A.36)

For the calculation of A, we use∫
ds e−ik1 r̂·sh(s) =

∫
ds e−ik1(ρs cos(φ−φs) sin θ+zs cos θ)h(s) =

=
∫

dφs

∫
ρsdρs F(ρs) e−ik1zs cos θe−ik1ρs sin(π

2−φ+φs) sin θh(s) =

=
∫

dφs

∫
ρsdρs F(ρs) e−ik1zs cos θ×

×
(

∞

∑
n=−∞

Jn(k1ρs sin θ)e−in(π
2−φ+φs)

)
h(s),

where F(ρs) =

√
1 + dz

dρ

∣∣∣2
ρ2

. treating this integral in the same way as the

near field Green’s function we define

[G f ar f ield
m ]a = 2π

∫ ρa+∆ρ

ρa−∆ρ
ρsdρs F(ρs) e−ik1zs cos θ Jm(k1ρs sin θ)e−

imπ
2 , (A.37)
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leading to

Am
r =

eik1r

r

[
−i2kπ

(
1
2

px sin θ(δm,1 + δm,−1) + pz cos θδm,0

)
e−ik1d cos θ +

+
1
2

(
G f ar f ield

m+1 (hm
ρ + ihm

φ ) + G f ar f ield
m−1 (hm

ρ − ihm
φ )
)

sin θ + G f ar f ield
m hm

z cos θ

]
Am

φ =
eik1r

r

[
kπpx(δm,−1 − δm,1)e−ik1d cos θ+

+
i
2

(
−G f ar f ield

m+1 (hm
ρ + ihm

φ ) + G f ar f ield
m−1 (hm

ρ − ihm
φ )
)]

Am
θ =

eik1r

r

[
−i2kπ

(
1
2

px cos θ(δm,1 + δm,−1)− pz sin θδm,0

)
e−ik1d cos θ +

+
1
2

(
G f ar f ield

m+1 (hm
ρ + ihm

φ ) + G f ar f ield
m−1 (hm

ρ − ihm
φ )
)

cos θ − G f ar f ield
m hm

z sin θ

]
.

Together with (where only terms proportional to 1
r are kept)

(∇×A)φ =
1
r

∂

∂r
(rAθ) = ik1Aθ

(∇×A)θ = −
1

r sin θ

∂

∂r
(
r sin θAφ

)
= −ik1Aφ

gives

dP
dΩ

m
=

ckk1

8π
<
(∣∣∣∣−i2kπ

(
1
2

px cos θ(δm,1 + δm,−1)− pz sin θδm,0

)
e−ik1d cos θ +

+
1
2

(
G f ar f ield

m+1 (hm
ρ + ihm

φ ) + G f ar f ield
m−1 (hm

ρ − ihm
φ )
)

cos θ − G f ar f ield
m hm

z sin θ

∣∣∣∣2
+
∣∣∣kπpx(δm,−1 − δm,1)e−ik1d cos θ+

+
i
2

(
−G f ar f ield

m+1 (hm
ρ + ihm

φ ) + G f ar f ield
m−1 (hm

ρ − ihm
φ )
)∣∣∣∣2
)
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distance to the hole edge for W = 0.4/k0 . . . . . . . . . . . . . 69

3.20 Dispersion curves for the HE11 mode in the central hole in
the deep hole limit. In blue and green the real <{kz} and
imaginary <{kz} parts of the wavenumber in the direction of
the axis of symmetry, respectively. In . . . . . . . . . . . . . . . 71

3.21 Fraction of the total energy emitted by the dipole radiated into
an angle of 0.6 NA about the symmetry axis of the lens, for the
shallow central hole regime. . . . . . . . . . . . . . . . . . . . . 72

3.22 Fraction of the total energy emitted by the dipole radiated into
an angle of 0.6 NA about the symmetry axis of the lens in the
regime of the deep central hole. . . . . . . . . . . . . . . . . . . 73

4.1 Profiles of the test function F minimizing the expectation value
〈F〉 for the first excited state of a quantum harmonic oscillator,
as a function of the phase space radius, for different orders
N (see text) plotted against the profile of the corresponding
Wigner function. As the order of the polynomial increases, the
function becomes centered around the negativity, decreasing
elsewhere. In this case, negative expectation values are ob-
tained starting at N = 4. Inset shows the polynomial order re-
quired to observe negative expectation values, as a function of
the single-photon fractional content in a mixture with vacuum.
As the fraction of vacuum is increased, the state approaches a
classically describable state and higher moments are needed to
observe the negativity. . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Expectation value for the square of a polynomial relative to its
standard deviation, as a function of the polynomial’s order for
the experimental data. Negativity by almost 20 standard devi-
ations disproves the existence of a joint probability distribution
for x and p. The inset shows a histogram of the raw measured
quadrature data (arbitrary units). . . . . . . . . . . . . . . . . . . 83
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