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Abstract

A series of studies are presented of the Higgs-like resonance that was discovered in July 2012.

The studies focus on measurements of the resonance spin and parity using the full dataset

collected by the ATLAS experiment during the LHC Run-1.

Alternative spin models are compared to the Standard Model Higgs. Spin-2 models are de-

scribed as graviton-like particles in an e↵ective field theory approach. Several assumptions on

the boson coupling to the QCD sector are tested, as is the analysis dependency on transverse

momenta cuto↵s. The Standard Model is favoured over all alternative models and except for

the negative parity spin-2 and a spin-2 boson that does not couple to the quark sector, each are

excluded with 95% confidence level. Notably, the spin-2 universal couplings model is assigned

a CLS value of 0.0009. Spin-1 models are tested in the H ! ZZ⇤ ! 4` channel and excluded

in favour of the Standard Model. The resonance decay to �� also disfavours the possibility of

spin-1.

The spin-0 boson coupling to the heavy vector bosons is described in an e↵ective field theory

approach with three components, the Standard Model and a CP-even BSM and CP-odd sector.

Assuming only one coupling to be present at a time, the Standard Model (JP = 0+) is tested

against the CP-even BSM (JP = 0+h ) and CP-odd (JP = 0�) model. The Standard Model is

favoured in data and the two alternate models are assigned CLS values of 0.10 (CP-even) and

0.054 (CP-odd).

The analysis is extended by allowing a mixture of the three spin-0 components, first assuming

only one BSM coupling to be present at a time. Discriminative power between models is ob-

tained in a Matrix-Element Observable approach. The H ! ZZ⇤ ! 4` channel is combined

with the H ! WW ⇤ ! e⌫µ⌫ analysis. The e↵ective BSM cross section contributions to the

resonance is found to be limited to the ranges:

fg2 · cos�g2 2 [�0.16, 0.12] fg4 · cos�g4 2 [�0.41, 0.090]

at 95% confidence level. The data is thus found to be in agreement with the Standard Model.

In a final extension of the analysis the possibility of the simultaneous presence of both BSM

sectors is studied.



Resumé

En serie af studier vil blive præsenteret af den Higgs-lignende resonans, hvis eksistens blev

p̊avist i juli 2012. Disse vil bruge det samlede datasæt der blev indsamlet af ATLAS detektoren

under LHC Run-I til at lave målinger af resonansens spin og paritet. Alternative spin modeller

vil blive sammenlignet med Standard Model Higgs partiklen. Spin-2 modeller er beskrevet

som graviton lignende partikler i en e↵ektiv felt teori. Adskillelige antagelser omkring dens

koblinger til QCD sektoren vil blive testet, ligeledes vil analysens sensitivitet til transverse

impuls begrænsninger blive testet. Standard Modellen er fundet til at være den fortrukne

teori over alle alternative modeller og med undtagelse af den negative spin-2 hypotese er

disse udelukket med 95% konfidensniveau. Den universelle spin-2 koblingsmodel er specielt

tilskrevet en CLS værdi p̊a 0.0009. Spin-1 modeller er testet i H ! ZZ⇤ ! 4` henfaldet

og ekskluderet til fordel for Standard Modellen. Resonansens henfald til �� udelukker ogs̊a

muligheden for spin-1 som en følge af Landau-Yang teoremet.

Spin-0 bosonens kobling til massive vektor bosoner er beskrevet i en e↵ektiv felt teori med tre

komponenter, Standard Modellen og en CP-lige BSM og CP-ulige sektor. Under antagelse af

at en kobling er tilstede ad gangen vil Standard Modellen (JP = 0+) blive testet mod den

CP-lige alternative model (JP = 0+h ) og den CP-ulige model (JP = 0�). Standard Modellen

er fortrukket i data og de to alternative modeller er tilskrevet CLS værdier p̊a 0.10 (CP-lige)

og 0.054 (CP-ulige).

Analysen vil blive udvidet ved at tillade en blanding af de tre spin-0 komponenter. I første

omgang vil kun en BSM kobling blive inkluderet ad gangen. Ved at bruge observable baseret

p̊a matrix elementer vil der blivet skabt seperation mellem modeller. H ! ZZ⇤ ! 4` henfaldet

vil blive kombineret med H ! WW ⇤ ! e⌫µ⌫ analysen. Det e↵ektive bidrag fra BSM tværsnit

til resonansen er fundet til at være begrænset til intervallerne:

fg2 · cos�g2 2 [�0.16, 0.12] fg4 · cos�g4 2 [�0.41, 0.090]

med 95% statistisk sikkerhed. Data er derfor konkluderet til at være i overenstemmelse med

Standard Model forudsigelser. I en sidste udvidelse af analysen vil muligheden for den samti-

dige eksistens af begge BSM sektor blive undersøgt.
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Introduction

The summer of 2012 proved to be the point in time, where the Higgs boson would finally be

discovered. The discovery both marked the culmination of decades of research and the onset

of dedicated studies of its properties. The question changed from: ’Does it exist?’ to ’Is it

the one predicted by the Standard Model?’.

The Higgs mechanism serves the Standard Model by enabling it to be a gauge invariant theory

of massive particles. Beside conserving gauge invariance, it furthermore resolves problems of

massive vector boson scattering that, without spontaneous symmetry breaking, would leave

the pertubative regime at the TeV scale.

The properties of the Standard Model Higgs boson has proved to make it exceedingly di�cult

to discover. The Higgs introduction to the Standard Model does not o↵er a direct prediction of

its mass and only by assuming the absence of new physics can the mass indirectly be predicted

to be ⇠ 100 GeV.

The LEP experiments had ruled out the lower end of this spectrum prior to the LHC era.

In 2010 the scene was set for searches in the broad energy range that is possible with proton

collisions produced by the LHC.

Due to the low production probability of the Higgs boson and its preference to decay to final

state topologies that are indistinguishable from other mechanisms in proton collisions, the rare

but clean H ! ��, H ! ZZ⇤ ! 4` and H ! WW ⇤ ! e⌫µ⌫ proved to be the most valuable

for discovery.

The 2012 discovery thus demonstrated the existence of a resonance with production probabil-

ity and decay to the electroweak vector bosons in agreement with predictions. Beside the large

uncertainty in these properties, a multitude of di↵erent parameters were still to be constrained

in order to conclude that the Higgs-like boson is indeed The Higgs boson.

Predictions of its coupling to the other massive particles are available to be tested. The Higgs

self-coupling is fully determined in the Standard Model and provides an interesting but di�-

cult probe. The Higgs boson is furthermore predicted to be spin-0 and CP-even, which will

be the focus of the work presented in this thesis.

The analysis structure is outlined as follows: The Higgs sector of the Standard Model Lag-

rangian is removed (SM � H) and generic boson models (J) described with e↵ective field

theories are added in its place:

LHC,J = LSM�H + LJ

Several scenarios will be tested for the J substitute. First, the Standard Model Higgs is tested

against alternative spin-0, spin-1 and spin-2 models. The alternative spin-0 models consist of

a CP-even BSM Higgs and a CP-odd pseudo scalar.

Following this, the spin-0 sector is examined by allowing mixtures between the three Lag-

rangian parts that constitute the Standard Model and the two spin-0 BSM terms. Deviations

from the Standard Model are parameterised in BSM to SM coupling ratios of the three spin-0

ix
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terms: ̃HV V
SM

(CP-Even) and ̃AV V
SM

tan↵ (CP-Odd).

The analysis mainly focuses on the H ! ZZ⇤ ! 4` decay channel. This specific channel has

the advantage over H ! �� that the polarisation of the intermediate Z bosons a↵ects the

angular distributions of the final state leptons. It also has a much higher signal to background

ratio. The H ! ZZ⇤ ! 4` channel distinguishes itself over the H ! WW ⇤ ! e⌫µ⌫ by having

its final state fully reconstructable with the absence of neutrinos. This both give a cleaner

probe of the massive vector boson polarisation and a higher signal to background ratio. The

requirement of the two Z bosons to simultaneous decay to either electrons or muons make the

probability of this decay type exceedingly rare on the other hand.

The kinematics of the H ! ZZ⇤ ! 4` decay can in general be described with eight parameters

for a given Higgs mass. The high dimensionality of the final state kinematics o↵ers considerable

challenges when describing the decay through its interaction with the detector. Substantial

focus of the analysis will be given to how multivariate techniques are adopted to give valid

predictions.



Thesis Outline

The thesis is divided into the three chapters: “Theory”, “Experiment” and “Analysis”. Being

a work of physics measurements the focus will be on the last part.

The Theory section will start out with an overview of the Standard Model of particle physics

and discuss some of its properties and challenges. Following this, the Higgs mechanism will

be motivated and introduced. Its predicted properties and its discovery will be described.

The theoretical framework that is used for the analysis will be described after the general

introduction. Here, an e↵ective field theory approach is used to describe generic spin-0, spin-

1 and spin-2 bosons. Finally, some “Beyond the Standard Model” physics scenarios will be

mentioned.

The Experiment section describes the setup that is used to probe the Standard Model predic-

tions. First, the design features of the Large Hadron Collider (LHC) are motivated. After the

LHC introduction, the ATLAS detector will be described, where the individual sub-detectors

and their properties are outlined. An algorithm for primary vertex reconstruction in ATLAS

to be used in the next years of data taking is moreover described.

Finally, details on electron and muon reconstruction and identification are given. These will

be the main objects used in the analysis.

The analysis aims to present studies of how knowledge of the Spin/CP nature of the Higgs

boson is obtained. The chapter starts with an overview of the event selection that is imposed

on the 2011 and 2012 datasets. A description of the hypothesis tests to determine if data

favours the SM or some fixed alternative follows the event selection.

The next section describes the analysis of the BSM to SM coupling ratios ̃HV V
SM

and ̃AV V
SM

tan↵.

The first part will follow the H ! ZZ⇤ ! 4` analysis. A short overview of the dedicated

H ! WW ⇤ ! e⌫µ⌫ analysis is given and its combination with the H ! ZZ⇤ ! 4` results.

The last part presents the results of a simultaneous fit of ̃HV V
SM

and ̃AV V
SM

tan↵. The results

are interpreted as limiting the e↵ective BSM contribution to the combined boson cross section.

Finally, an outlook will be given. The prospects of measurering the HV V tensor structure

are presented for both a 300 fb�1 and a 3000 fb�1 dataset. The first study shows a dedicated

ATLAS analysis and the second is given in a more general setting.

A list of symbols and abbreviations that are commonly used throughout the thesis can be

found on the last two pages.

This is a thesis describing work done in a large collaboration, meaning my own contributions

will naturally intertwine with the work of others. I have as much as possible tried to make the

analysis text reflect my own contributions.

However, as anybody who writes a Ph.D thesis on experimental physics measurements will

find: A surprisingly large amount of your time is spent trying to figure out, why your histo-

grams look slightly di↵erent from what you think they should look like. Some considerations

have been given to the readability and content of the text.
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To clarify my own involvement, I have included a time-line of, where I have spent my time the

last three years:

Fixed hypothesis tests for the H ! ZZ⇤ ! 4` analysis:

The very first project I got involved in. During the fall of 2012 until the summer of 2013 I

focused on the exclusion of alternative spin and parity models in the H ! ZZ⇤ ! 4` decay

channel. The analysis contributed to the results that were presented at the HCP-2012[1] and

Moriond-2013[2] conferences, and finally led to the “Evidence for the spin-0 nature of the Higgs

boson using ATLAS data” publication[3].

Up until the HCP conference I was mainly involved in the preparation of discriminant dis-

tribution and construction of analysis workspaces. In the beginning of 2013 I updated the

analysis framework and further optimised the multivariate separation to alternative models.

Following the publication I created the first implementation of the two-dimensional approach

that was subsequently used.

HV V tensor structure analysis:

During the summer of 2013 I got involved in the studies of the HV V tensor structure. The

first analysis that was done was a prospects studies presented at the ECFA-2013 conference[4].

I was involved in the section called the “Matrix Element observable fit” and creating a fast

simulation approximation of the H ! ZZ⇤ ! 4` analysis.

Following these initial studies, the work turned to the Run-I analysis. As will be described,

further development was done and a slight change of models are used. Being an actual data

analysis instead of a prospect studies, the level of scrutiny is naturally also much higher. I

was largely responsible for the development and running of the “Matrix Element observable

fit” approach from the fall of 2013 to its completion in early 2015.

Following the H ! ZZ⇤ ! 4` analysis, I was involved in the combination of the HZZ and

HWW tensor structure analyses, which were finally published in the paper: “Study of the

spin and parity of the Higgs boson in diboson decays with the ATLAS detector”[5].

As a side project to the main analysis, I also participated in a prospects study of the feasibility

of measuring the Higgs CP-nature using angular asymmetries[6]. The study will summarily

be described in the outlook section.

Primary vertex reconstruction:

From the beginning of 2013 to the spring of 2015 I was beside the Higgs analysis also a con-

tributor to the ATLAS primary vertex reconstruction group. The work here mainly focused

on the implementation and testing of a seeding algorithm that is more robust, when faced

with the higher pile-up conditions that is expected in LHC Run-II. For this reason the vertex

reconstruction algorithm is also described in more detail in the “Experiment” chapter than

other parts of the ATLAS reconstruction that are of equal importance.
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Finally, a couple of comments on the text: Natural units (c = h = 1) are assumed throughout

the thesis. When describing the ATLAS detector and the LHC, SI units are sometimes used

but the shift should be apparent from context.

When describing distances the metric tensor is always assumed to have positive time compon-

ent and negative special components.

The H ! ZZ⇤ ! 4e, 4µ, 2e2µ decays are collectively named “Higgs to four lepton”. In this

context only electrons and muons are referred to as leptons although the tau should also fall

into this category. Taus are experimentally very di↵erent from muons and electrons and there-

fore are not included in the analysis. Throughout the analysis section, it can be assumed that

“lepton” (`) solely is a synonym for electrons (e) and muons (µ).
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2 Chapter 1 Theory

1/c

h

G

Classical 
mechanics
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General relativity
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QFT
(The Standard model)

(Quantum gravity)

Theory of 
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Figure 1.1: The Physics Cube. The physical models describing fundamental interactions
are here divided into three regimes: Models describing physics in the presence of large bodies
represented by the gravitational constant G. The description of physics at relativistic speeds,
symbolised here by the speed of light c and models describing microscopic interactions rep-
resented by Plank’s constant h. It is the grand aim to find a common description of all three

areas.

The general theme of this work will be to probe possible deviations from the predicted be-

haviour of the Higgs boson. In this section the theoretical models that will be examined are

motivated and described. First, a very general introduction to the world of particle physics is

given.

The Standard Model is subsequently described with its particles and interactions, before the

Higgs mechanism is finally introduced. In order to examine if the observed particle is indeed

the Standard Model Higgs boson, a framework for characterising deviations is described in the

same section.

Figure 1.1 summarises the expanse that physics of fundamental interactions considers. Three

regimes are here represented by three constants of nature; the gravitational constant G, the

speed of light 1/c1 and Planck’s constant h. It is possible to imagine a world, where each

constant is zero. This would be the classical world of Galilean transformations and Newton’s

three laws of motion. Imagining one constant present at a time, three di↵erent physics models

are obtained. Historically the first of these to be described is physics including gravitational

attraction (G 6=0). The classical theory of gravitation is found in this corner. The two other

corners describe a world where either the speed of light (c) or Planck’s constant (h) are present,

described with special relativity and quantum mechanics respectively.

One major goal in the development of physics theories is the attempt to create models that

1 1
c
is used since Newtonian physics is equivalent to the speed of light being infinite rather than 0



Chapter 1 Theory 3

combine the three fields. Two successful combinations have so far been made. First the

combination of special relativity in the presence of gravity results in the general theory of re-

lativity. By combining special relativity and quantum mechanics on the other hand, quantum

field theories (QFT) emerge. Dissimilar to general relativity, QFTs are much more ambiguous

and can be thought of more as a mathematical framework in which theories can be described.

Unfortunately it can be demonstrated that it is not possible to directly describe gravity in

this way. The dominant QFT is the Standard Model of particle physics, which this thesis is a

probe of.

The last combination of two constants would give a description of quantum gravity. There are

technical challenges that makes this combination unappealing and no successful description

has so far been made. It is the impression of most that a model that is able to describe both

quantum mechanics and gravity would necessarily also include special relativity.

One of the major problems of this corner is the weakness of gravity. Experimental probes of

gravity at the quantum scale would e.g. have to take into account that the electromagnetic

forces between two particles is many orders of magnitude larger than the gravitational forces.

As an example, assuming classical gravitational attraction, two electrons would repel each

other ⇠ 1039 times stronger due to their charges than they would attract each other due to

their gravitational masses. Experiments testing this would have to probe unrealistic small ef-

fects. On the other hand without experimental guidance to the microscopic nature of gravity

it is problematic to make concrete predictions.

One could on the other hand imagine a theory that encompass all three and would success-

fully reduce to special relativity, classical gravity and quantum mechanics in the correct limits.

There does not exist many candidates to models with this property at the moment. Probably,

the most known candidate is String Theory. Many however have the impression, that the most

likely way to progress is to first probe the Standard Model and figure out, where and how it

breaks down. The fault of a model will often give indications of what is needed to extend it.

Optimistically this could eventually lead to a Theory of Everything.

Historically the development of particle physics has happened as a co-development between

theoretical predictions and experimental discoveries. It is known that the Standard Model as

it exist today cannot be a complete description of nature. On the other hand it is complete

in the sense that all the predicted particles have now been discovered. New experimental

discoveries can essentially come from two directions: Either by discovery of new particles or

by measuring deviations from the predicted Standard Model parameter values. This thesis

will describe an attempt of the latter type.

The Field Point of View

Quantum Mechanics o↵ers an approach to calculate the probability of a given outcome (�O)

given a set of initial conditions (�I), and the Hamiltonian (Ĥ) describing the system. This is
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normally expressed as an amplitude whose magnitude is interpreted as a probability:

U(t) = h O|Ĥ| Ii

In the context of special relativity it is natural to ask how a free particle propagates through

space. This will indicate an area where quantum mechanics as first formulated fails, and

thereby motivates the necessity of a field viewpoint2. The free particle amplitude reads:

U(t) = h~x|e�iHt| ~x0i =
⇣ m

2⇡it

⌘3/2
eim(~x� ~x0)2/2t

This is nonzero for all values of ~x, which means the theory predicts that a particle should be

able to propagate faster that the speed of light in contradiction of special relativity3.

From analytical mechanics it is known that systems will follow a path over the Lagrangian

such that its time integral (the action) is at an extremum:

S =

Z

Ldt =

Z

d4xL(�, @µ�) ,

for some Lagrangian density L. The Lagrangian is a function of the field � and its derivative.

The extremum will usually be a minimum. Following the extremal path is equivalent to satisfy

the Euler-Lagrange equation:

@µ

✓

@L
@(@µ�)

◆

� @L
@�

= 0

The Lagrangian formalism is well motivated since all expressions are explicitly Lorentz Invari-

ant [7, p.36].

The complementary Hamiltonian formalism for point particles defines the conjugate mo-

mentum p ⌘ @L/@q̇ for each dynamic variable q. Imagining a field as a set of point particles:

p(x) ⇠ ⇡(x)d3x it is natural to draw the field equivalent

p ⌘ @L

@q̇
! ⇡(x) ⌘ @L

@�̇(x)
,

for a spacial field �. In a similar approach to the first quantisation, the fields can now be rein-

terpreted as operators. By imposing commutation relations, a quantum mechanical description

is developed:

[qi, pj ] = i�ij ! [�(x),⇡(y)] = i�(3)(x� y),

where the other combinations (q with q, ...) commute.

As the most simple example, it is useful to examine the Klein-Gordon field:

L =
1

2
(@µ�)

2 � 1

2
m2�2

2For a more detailed derivation, see: [7, Sect 2.]. The content presented in this subsection can throughout
be attributed to this source.

3To be stringent, what contradicts special relativity is that there is a particle type that can travel both
slower and faster than c. The expression here also assumes E = p2/2m rather than the correct relativistic
E =

p
p2 +m2 for brevity. The conclusion would however be the same as described in the reference.
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The equations of motion are derived by imposing the Euler-Lagrange equation:

(@µ@µ +m2)� = 0

These equations turn out to be the same as for a Harmonic Oscillator. The solutions to the

Harmonic Oscillator is given by applying creation operators to the ground state, or annihilation

operators to an exited state. In the Klein-Gordon case the exited states are interpreted as

particles.

Returning to the question wether the new approach preserve causality. The amplitude for a

particle to propagate from y to x is:

D(x� y) = h0|�(x)�(y)|0i

It is a necessity of Lorentz invariance that any measurement at x cannot influence a meas-

urement at y if their separation is space-like. If the commutator between the field at x and y

vanishes when (x� y)2 < 0, the two do not influence each other. Further calculations reveals

that:

[�(x),�(y)] = D(x� y)�D(y � x) = 0, for (x� y)2 < 0

The equality to zero can be set since the D(x� y) terms are independently Lorentz invariant,

such that the transformation x� y ! �(x� y) imposed on the second term guarantees this to

be true. Note also that had the separation been time-like (x�y)2 > 0, no such transformation

would have existed (the causality of two events is fixed if it is possible to send information

from one to the other).

The introduction here has been given in a very general setting. A more concrete approach

is necessary to obtain predictions that can be used in an experimental setting. The next

section will turn to the Standard Model of particle physics by taking the vantage point at the

description of a free fermion.



6 1.1 The Standard Model

1.1 The Standard Model

1.1.1 The Standard Model Lagrangian

Consider the Lagrangian describing a free Dirac fermion4:

L0 = i ̄(x)�µ@µ (x)�m ̄(x) (x)

and introduce the global U(1) transformation:

 (x) !  ‘(x) = eiQ✓ (x)

It can be seen that L0 is invariant under this type of transformation. The phase ✓ does not

have any physical meaning.

If the transformation however is generalised to a local transformation, ✓ ! ✓(x), an extra term

will emerge from deriving ✓ w.r.t. x. The Lagrangian is not invariant any more.

Intuitively it seems unphysical that once a phase without physical interpretation is chosen it

must be the same for all space. The “Gauge Principle” states that the U(1) transformation

should hold locally. This can be achieved by modifying the Lagrangian with an addition of a

new spin-1 field that transforms in the following way:

Aµ(x) ! A‘µ(x) ⌘ Aµ +
1

e
@µ✓

The problematic derivative from the local gauge transformation can now be replaced by the

covariant derivative:

Dµ (x) ⌘ [@µ � ieQAµ(x)] (x) ) Dµ (x) ! (Dµ (x))‘ = eiQ✓Dµ (x)

Local gauge invariance of the Lagrangian is achieved. If Aµ has to be a true propagating field,

it is necessary to add a kinetic term:

LKin = �1

4
Fµ⌫F

µ⌫(x) , Fµ⌫ ⌘ @A⌫ � @Aµ

Aµ can then be identified as the photon. The Lagrangian density of Quantum Electro Dy-

namics thus emerges:

LQED = i ̄(x)�µDµ (x)�m ̄(x) (x)� 1

4
Fµ⌫F

µ⌫(x)

Note that the introduction of the field Aµ is very similar to the Classical description of a free

particle, with charge number Q, being introduced to an electromagnetic potential:

P ! P � eQA

4See [8] for a more detailed description of the next section.
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The same covariant derivative follows informally with the canonical quantisation of promoting

the momentum to the derivative operator:

P ! i@ (free) P � eQA ! i(@µ � ieQAµ) = iDµ (EM)

The introduction of weak interactions is more involved. It is known experimentally that

fermions come in several flavours with di↵erent properties for left and right-handed fields.

The theory should therefore have doublets. Moreover, the existence of three extra massive

gauge bosons (W±, Z) needs to be coupled to the fermion interactions. The simplest group

with doublet representation is SU(2). If the theory also has to describe the EM interactions

from above it seem natural to consider:

G ⌘ SU(2)L ⌦ U(1)Y

In the following, only the lepton sector will be considered but the discussion holds equally for

quarks as well. The derivation starts by defining the following fields:

 1(x) =

✓

⌫e
e�

◆

L

,  2(x) = ⌫eR ,  3(x) = e�R

As above, it is useful to first consider the free Lagrangian5:

L0 =
3
X

j=1

i ̄(x)j�
µ@µ j(x) ,

and introduce the new SU(2)L transformation:

UL ⌘ ei
�i
2 ↵i

, for i = 1, 2, 3

with Pauli matrices �i. It can be demonstrated that the Lagrangian is again invariant under

the global transformation:

 (x)1 !  1‘(x) = eiy1�UL 1(x) ,

 (x)2 !  2‘(x) = eiy2� 2(x) ,

 (x)3 !  3‘(x) = eiy3� 3(x)

Following the same logic as above, the theory is required to be invariant under local gauge

transformations, where the phases ↵i and � are made position dependent.

Since there are now four gauge parameters, four gauge bosons are needed to correct the

5As opposed to before, all particles are throughout the next assumed to be massless.
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Lagrangian. The new covariant derivatives are as follows:

Dµ (x)1 ⌘ [@µ � igW̃µ(x)� ig‘y1 Bµ(x)] 1(x) , W̃µ(x) ⌘ �i
2
W i

µ(x)

Dµ (x)2 ⌘ [@µ � ig‘y2 Bµ(x)] 2(x) ,

Dµ (x)2 ⌘ [@µ � ig‘y3 Bµ(x)] 3(x)

Local gauge invariance requires the fields to transform as:

Bµ(x) ! B‘µ(x) = Bµ(x) +
1

g‘
@µ�(x)

W̃µ(x) ! W̃ ‘µ(x) = UL(x)W̃µU
†
L(x)�

i

g
@µUL(x)U

†(x)

Again a gauge invariant kinetic term is added, resulting in the Electroweak Lagrangian density

for interactions of massless fermion fields and four massless vector bosons:

L =
3
X

j=1

i ̄(x)j�
µDµ (x)j � 1

4
Bµ⌫B

µµ � 1

4
W i

µ⌫W
µ⌫
i (1.1)

The field strengths Bµ⌫ and W i
µ⌫ can e.g. be found in [8, Eq. (13.14),(13.16)].

It is not clear from looking at Eq.1.1 how the physical fields �, W± and Z are described. By

dismantling the expression, the charged current bosons can be realised to be described by the

superpositions: Wµ ⌘ (W 1
µ + iW 2

µ)/
p
2 and W †

µ ⌘ (W 1
µ � iW 2

µ)/
p
2.

The photon and Z on the other hand emerges as a rotation of the remaining two bosons6:

✓

W 3
µ

Bµ

◆

⌘ ⇥W

✓

Zµ

Aµ

◆

where ⇥W describes the rotation matrix of angle ✓W . If the Lagrangian is expressed in terms

of the rotated fields it, will contain an Aµ factor: g �3
2 sin(✓W ) + g‘yj cos(✓W ). If QED is to be

reproduced by the theory, it must be required that:

g sin(✓W ) = g‘ cos(✓W ) = e , Y = Q� T3 , T3 =
�3
2

,

where Q is the Electromagnetic charge operator:

Q1 =

 

Qu/⌫ 0

0 Qd/e

!

, Q2 = Qu/⌫ , Q3 = Qd/e

The first part relates the theory to the Electroweak interaction. The second part reveals

fermion hypercharges in terms of the electric charge and weak isospin number. A unified

framework that is able to describe electromagnetic and weak interactions has been found.

6For now the fact that the Z and W are massless in the theory is ignored. This will be addressed in section
1.2
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It is worthwhile mentioning that the kinetic term that was added to Eq.1.1 also contain the

terms for the gauge boson self-interaction: (Z/�)W+W�,W+W�W+W� and (Z/�)(Z/�)W+W�.

Without going into detail, the QCD Lagrangian follows a similar derivation with slight modi-

fication. In order to explain the multitude of di↵erent mesons (qq̄) and baryons (qqq) observed

in experiments, it is necessary that each quark species have three di↵erent strong charges,

referred to as colour. Again one can start with the free Lagrangian for quarks with three

di↵erent colours and check that it is invariant under global SU(3)C transformations in colour

space. The symmetry group has eight generators giving as many invariant gauge parameters.

To upgrade the Lagrangian to local gauge invariance, eight vector bosons are introduced to

create the covariant derivative. The bosons are identified as gluons. Some algebra moreover

reveals that the gluons have self interactions such that vertices of the type ggg and gggg are

allowed.

1.1.2 Amplitude Calculations

A rough outline of the Standard Model Lagrangian has been given. A framework for drawing

concrete predictions out of the model is still needed. Classically the field would evolve in a

way that minimises the action. The quantum mechanical equivalent however does not allow a

definite path.

It is possible however to interpret the QM path as the classical path with higher order addi-

tions. The QM description instead corresponds to a sum over all possible paths weighted by

the path amplitude. In principle it would be possible to solve the Euler Lagrange equations

to make predictions. In practice this is impossible to do for anything other than the simplest

scenarios. A di↵erent approach is needed.

The most well known approach to amplitude calculations can be attributed to Richard Feyn-

man, with the method of Feynman diagrams.

The recipe starts by dividing the Lagrangian into its interacting and free parts. By dividing

the Lagrangian, it is possible to describe scenarios where particles propagate from infinity, in-

teract and propagate to infinity again. The interacting part will then contain all the relevant

physics. Notice how this approximation resembles what is done in collider experiments.

The Matrix Element from scatter theory will be used to describe the interacting part. If

interaction strengths are assumed small, it is possible to estimate the Matrix Element by

perturbation. This is a good approximation for QED and Electroweak models. Due to the

asymptotic freedom of QCD however, perturbation is only valid at high momentum transfers.

This is also the reason why the method performs well in describing hard interactions in colli-

sion experiments but has di�culties describing e.g. the internal mechanics of a proton.

A di↵erent approach has been derived to describe low-energy behaviour: Calculations are sim-

plified by dividing space into a lattice. Accurate predictions can be made by examining the

predicted behaviour as the lattice spacing tends to zero.
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Returning again to the Feynman rules. The Lagrangian is divided into its kinetic terms, iden-

tified by two field components, and interaction terms which are identified by three or more

field components. The kinetic terms describe how the fields propagate, while particle scatter-

ing is described by the interaction terms. The matrix element calculation is in the next step

translated to the construction of a set of Feynman diagrams.

The recipe is outlined as follows:

• Identify the initial and final state particles. Each is represented by an ingoing or outgoing

line to the diagram.

• Connect via vertices and internal lines (propagators) all ingoing an outgoing lines. Each

vertex will be associated with a coupling strength.

• Momentum is conserved at all vertices such that the sum of incoming and outgoing is

the same.

Each component in the diagram correspond to a factor of the amplitude calculation. Their

total product result in iM.

Since it is assumed that the interactions are weak, such that perturbation is valid, the specific

diagram contribution to M will be ordered in the number of vertices. An example of the

leading order diagrams contributing to qq̄ ! ZZ production is seen in Figure 1.2.

q

q̄

Z

Z

q

q̄

Z

Z

Figure 1.2: Leading order contributing processes of qq̄ ! ZZ.

The recipe however does not constrain the momentum of internal lines in loops. It is necessary

to integrate over all possible momenta to get the final prediction. This is for example the case

for the leading order diagrams for gg ! ZZ production, Figure 1.3. Note the di↵erence to the

qq̄ case. The Standard Model does not allow vertices of the type gqZ, such that the leading

order process now has to be constructed with four vertices. The momentum flowing through

the quark box is not constrained.

Theories will tend to diverge as the internal propagator momenta goes to infinity. The theory

is said to be ultraviolet divergent.

Some mechanism is needed to counteract the divergence such that predictions of the theory

are well defined. One could imagine a cuto↵ scheme, where momenta are confined to be below

some energy-scale ⇤. If ⇤ is chosen to be above the relevant energies of the study, it could be

possible to make valid predictions. By introducing a maximal energy, the theory is said to be
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g Z

g Z

g Z

g Z

Figure 1.3: Leading order contributions processes of gg ! ZZ.

regularised. It is however undesirable to have a model that only makes physical predictions

by introducing an arbitrary scale. The introduction of a maximal energy is also equivalent

to choosing a minimal length scale. Since QFTs are defined in a continuous space, this also

reveals a problematic feature of the approach.

Renormalisation o↵ers another solution to the divergency problem. The renomalisation pro-

cedure is closely related to how the coupling constants of the theory behaves. When renor-

malising, the coupling constants are interpreted as having a bare value and a physical value,

where the latter is the one that would be measured in experiments. This way the physical

value can be modified to be a function of energy such that it cancels the divergent behaviour.

The physical value of a coupling g0 is now a function of its bare value g, the momentum transfer

Q and possibly an energy scale ⇤:

g0 = f(g,⇤, Q)

By fixing g and ⇤ the running of the coupling can be measured at a given Q. Once the physical

coupling constant has been measured, the coupling can be extrapolated to other scales.

This method of concealing divergent behaviour might seem rather arbitrary at first glance. It

is however actually measured in real life, where e.g. the electromagnetic coupling is ↵QED '
1/137 when measured at low energy while it changes to ↵QED ' 1/128 when probed at the

electroweak scale [9, Ch.10].

One can also interpret this phenomenon as the charged particle having a bare value, but will

polarise the sea of virtual particles that surrounds it in the vacuum. As a result, the bare

value is screened by the polarised vacuum when probing at some length scale.

1.1.3 General Considerations

The text will now turn to a more pragmatic point of view. Figure 1.4 o↵ers an overview of the

particles found in the Standard Model. These are thought to be the elementary constituents of

matter and interactions7. A particle is characterised by a set of di↵erent properties, including

mass, charge and spin.

The list of particles can be divided into two groups, fermions (spin-1/2) and bosons (spin-

0 or spin-1) obeying Fermi or Bose-Einstein statistics, respectively. The fermions are the

constituents of matter, while the spin-1 bosons are force carriers. The only observed spin-0

particle is the Higgs boson which is believed to give the other particles masses. The three

7Excitations of what is described as elementary particles, which would imply inner structure is searched for.
Limits on e.g the mass of excited electrons and muons are at the current status ⇠ 2 TeV[11]
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(a) (b)

Figure 1.4: (A): Elementary particles in the Standard Model. (B) shows which of the
Standard Model particles are able to interact[10]

forces the Standard Model describes are the strong, weak and electromagnetic, mediated by

the gluon, W/Z bosons and photon. The forces carriers are collectively known as vector bosons.

The matter constituents are divided into quarks and leptons. All particles also have an anti-

partner, which has the same mass but opposite sign on conserved quantum numbers. A more

detailed table of the particle names, masses and charges can be found in Table 1.1.

Bosons

The gauge bosons describe the way particles interact by transmitting the three forces that the

Standard Model describes, the weak, the strong and the electromagnetic.

The electromagnetic force is carried by the photon (�) and couples to all particles that have

electric charge. The photon is a massless particle giving the electromagnetic force infinite

range. Like the other gauge bosons, it is a spin-1 particle, but since it is massless its spin has

only two possible projections instead of three.

The weak force is transmitted by the two weak charged currents (W±) and the weak neutral

current (Z0), similarly to the photon interacting with everything that has charge, these couple

to weak hyper charge. In Figure 1.4a, the top row of each type of fermion has isospin -1/2

while the second has 1/2. The force conserves weak isospin. Examples of processes obeying

this, can e.g. be seen in the beta-minus decay of atoms, where a down quark is converted to

an up quark, e↵ectively changing the neutron to a proton: n ! p+ e� + ⌫̄e

The massiveness of the weak force bosons limits them to very small ranges. The W bosons have,

as an example, a mass around 80 GeV, which gives the force a characteristic range of 1
MW

⇠
10�18 meters. For this reason it is not seen in many everyday interactions. At interactions

with energies around the weak scale (⇠100 GeV), it unifies with the electromagnetic force

giving the two interactions similar characteristics.

The bosons responsible for the strong force are the eight gluons. The strong force di↵ers from

the other two in that it has three distinct charges, red, green and blue. The eight di↵erent
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Name Symbol Mass [MeV] EM Charge Weak Isospin Colour charge
leptons (spin 1/2)
Electron e 0.5485 -1 -1/2,0
Muon µ 113.4 -1 -1/2,0
Tau ⌧ 1776 -1 -1/2,0
Electron Neutrino ⌫e < 2·10�6 1/2
Muon Neutrino ⌫µ < 0.19 1/2
Tau Neutrino ⌫⌧ < 18.2 1/2
Quarks (spin 1/2)
Up u ⇠ 2.3 2/3 1/2,0 R/G/B
Down d ⇠ 4.8 -1/3 -1/2,0 R/G/B
Charm c 1275 2/3 1/2,0 R/G/B
Strange s ⇠ 95 -1/3 -1/2,0 R/G/B
Top t 173·103 2/3 1/2,0 R/G/B
Bottom b 4180 -1/3 -1/2,0 R/G/B

Gauge Bosons (spin 1)
Photon � < 1·10�18 *
Weak charged current W± 80.34·103 ±1 ±1
Weak neutral current Z0 91.18·103 *
Gluon g ⇠ 0 Octet
Higgs Boson (spin 0) H0 ⇠ 125.09 · 103

Table 1.1: Particles of the Standard Model and their properties. Mass values are taken
from [9] where uncertainties have been omitted. The Higgs Boson mass is from [12], the gluon
mass is a theoretical prediction[9]. The weak hypercharge (YW ), the EM (Q) charge and the
weak isospin (T

3

) are related: YW = 2(Q� T
3

). *The photon and weak neutral current are a
rotation of the Bµ and W 3

µ fields with weak isospin 0 and 1 respectively.

gluons correspond to the possible superpositions of the colour charges.

The strong force is moreover confined. This means that there cannot exist free particles with

a colour charge di↵erent from zero. The strong force is responsible for binding quarks together

in hadrons of which the proton and the neutron are well known examples.

The Higgs particle is the last known fundamental boson. It o↵ers a way to explain the masses

of the Electroweak bosons, �, W± and Z0. By introducing new couplings into the Standard

Model it is also able to give a non-predictive description of fermions masses8.

Leptons

The left-handed leptons are grouped in three generations, each containing two particles. The

first consist of the electron (e�) and the electron neutrino (⌫e). The following generations con-

tain the muon (µ�) and tau (⌧�) and their respective neutrinos (⌫µ, ⌫⌧ ). The right-handed

leptons only include the electron, muon and tau.

In principle the Standard Model is not restricted to solely contain three generations (⌫e, ⌫µ, ⌫⌧ ).

A precise measurement of the Z decay-width however establish a preference of three neutrino

8Non-predictive because it is necessary to introduce a coupling per mass. It is however possible to imagine
that it couples to fermions, but not in proportion to their masses as would be the case for the Standard Model
Higgs.



14 1.1 The Standard Model

families [13].

The electron, muon and tau have electric charges of -1, spin 1/2 and weak isospin of -1/2.

They both couple to the electromagnetic and weak force. The neutrinos have hypercharge 1/2

and only couple to the weak force. The di↵erence between the electron, muon and tau is their

masses, as can be seen in Table 1.1 and their lepton number. The lepton number is a conserved

quantity, preventing e.g. muons to decay to electrons without the emission of neutrinos.

It has however been established that neutrinos oscillate, meaning they will have flavour trans-

itions in flight. The transition rate is dependent on flight length and neutrino energy9.

Neutrino oscillations are described by introducing lepton-number states of the neutrinos that

are (non-trivial) superposition of at least three mass eigenstates. Neutrino oscillations can

only occur if at least two of the states are massive.

The transition rate can be shown to be dependent on the squared mass di↵erence. The oscil-

lation rates can therefore not be used as a direct measure of their masses. Two of the mass

eigenstates have been determined to have a squared mass di↵erence of �m12 ⇠ 10�4 eV2,

while the third have a squared di↵erence to the mean of the other two of �m ⇠ 10�3 eV2 [9,

Tab. 14.7].

Direct measurements of the neutrino mass scale can be tried in di↵erent ways. A model

independent way is to study the kinematics of �-decays. Other more model dependent

measurements include the delay between neutrinos and light from super-novae (< 5.7 eV[15],

< 5.8 eV[16]) and the neutrino mass influence on the background radiation power spectrum

(< 0.5 eV[17]).

Quarks

The quarks together with the leptons form all known forms of matter. They di↵er from the

leptons in several ways: They do not have lepton numbers, they have either charge numbers

of 2/3 and -1/3. The quarks are also fermions with spin 1/2. The quarks again consists of

three families, containing the up (u) and down (d) quark, the charm (c) and strange (s) and

the top (t) and bottom (b) quarks, where the first mentioned have charge 2/3 and the second

-1/3, Table 1.1. The quark masses span three orders of magnitude.

Due to the colour confinement of the strong force, the quarks tend to cluster into quark anti-

quark pairs (mesons) or groups of three (baryons). Any quark composition is commonly called

a hadron. Observation of resonances that contain four[18] and five[19] quarks have been made.

The up and down quarks are the constituents of the proton (uud) and neutron (udd), which

together with the electron forms the stable matter observed in everyday life.

A complicating factor when colliding protons, as is the case with the LHC, is that it is far from

su�cient to describe the proton as three quarks. A sea of gluons bind the quarks together and

confines them in the proton. Gluons moreover not only couple to quarks, but also to them-

selves. This means that there is a certain probability for a gluon to not only split into a virtual

9For a comprehensive description of neutrino oscillations, see [9, Ch. 14]. An overview of direct neutrino
mass measurements is given in [14].
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quark anti-quark pair but also into a virtual gluon-gluon pair from quantum fluctuations.

Production Cross Sections

In the context of collision experiments it is useful to consider how probable the creation

of di↵erent particles are. Figure 1.5 show the production probability for di↵erent types of

Standard Model processes as measured in ATLAS compared to theoretical predictions. In

general it can be seen that proton collisions will mostly consist of QCD final states. The

production of the heavy electroweak bosons and diboson production are found at much lower

probabilities. The Standard Model is accurately able to predict cross sections over many

orders of magnitude. The figure is included here, but will be used as a reference for back of

the envelope estimates a number of times throughout the text.
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Figure 1.5: Cross sections for various Standard Model processes. The figure shows both
theoretical predictions and the ATLAS measurements[20].

1.1.4 Proton Collision Kinematics

The Standard Model o↵ers a recipe to calculate the amplitude of an outcome given incoming

particles of certain momenta. The full cross section is given by integrating over the final state

phase spaces.
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(a) (b)

Figure 1.6: (A) Parton distribution function (PDF) for a proton probed at Q2 = 1 GeV2.
Partons are represented as: u (black), d (red), ū (blue) and g (green). Notice that the
valence quark (u,d) tend to carry 1/3 of the momentum for high x values. This correspond
to the ’classical’ proton picture. (B): PDF of a proton probed at the weak energy scale
(Q2 = 104 GeV2). At values of x . 0.2 gluons totally dominates the parton distribution

function. PDFs are generated by [21].

In hadron collider scenarios, the incoming particles will be quarks or gluons, but it is clear

that for a proton with constant momentum its constituents will not have fixed momenta. The

probability of ’drawing’ a parton out of a proton with a certain fraction of the total momentum

(x) given the scale at which the proton is probed (Q) will therefore have to be included in the

cross section calculation. For a centre of mass energy
p
s and parton collision energy M :

x1x2 = M2/s ,

where for the two partons:

xi =
p|| parton

P|| proton

Taking the structure of the proton into account, the measured cross section for a di↵erential

cross section d�̂ is:

d� ⇠
Z

x1x2=M2/s

dx1dx2 fA(x1)f
B(x2)d�̂ ,

where e.g. fA(x) describes the probability to draw a parton of momentum fraction x out of

proton A.

It is of high importance in experimental particle physics to know the parton density functions

f(x) to make precise predictions. Collaborative e↵orts of the determination are described in [9,

Ch. 19], where MSTW[22, 23], NNPDF[24] and CT(EQ)[25] can among others be mentioned.

The Monte Carlo used in the analysis is based on the CT(EQ) distribution functions.

Figure 1.6 shown the distributions for two di↵erent momentum transfers; Q2 = 1 GeV2 and

Q2 = 104 GeV2 (LHC scale). With this in mind it is not completely unreasonable to think of

the LHC as mainly a gluon collider. A schematic picture of a proton is shown in Figure 1.7.



Chapter 1 Theory 17

Figure 1.7: Schematic drawing of proton interactions at di↵erent levels of probing energy
and momentum fractions. In the bottom left corner a proton is probed with low energy (small
Q) while a significant part of its momentum is contained in the observed partons (x ' 1). At
lower x values the image gets more distorted as the probability to draw a gluon increases. At

higher momentum transfers the virtual particles become increasingly dominating[26].

Another useful consideration of proton collision kinematics is to examine the free single particle

behaviour. If the phasespace does not have any preference for Cartesian Momentum compon-

ents, the di↵erential phasespace volume is[27, App. C]:

d4P �(E2 � p2 �m2) = pT · dpTd�dy , dy = dp||/E ,

where the di↵erential rapidity dy is introduced. With a slight rewriting it can be seen that

this conforms with the standard expression for rapidity used in particle physics:

y =
1

2
ln

✓

E + p||
E � p||

◆

= ln

✓

E + p||
mT

◆

The di↵erential form follows from dy = (dy/dp||)dp|| and E =
q

p2|| +m2
T .

If the phasespace does not have any preference it follows that y and � are approximately

flat. The large QCD backgrounds should then conveniently be uniformly distributed in these

coordinates. Of course this cannot hold true to infinite rapidities, so something else will have

to constrain their kinematics.

Another set of useful identities are:

E = mT cosh y p|| = mT sinh y

By inserting in the above equation for y the expressions can be seen to be consistent.

The new identities can be used to re-write the momentum fractions of the two protons. Intro-

ducing the di↵erence in fractions: x = x1 � x2 :

x =
mT sinh y

P
=

2mT sinh yp
s
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The limit of rapidity is found when x tends to one:

x ' Mp
s
ey ) �y ' 2 ln

p
s

M

The particle rapidity will moreover asymptotically approximate its pseudo-rapidity ⌘ when

E � m.

Based on these considerations it is expected that the low mass particle distributions will be

approximately flat in ⌘ in the �y interval from above. This e.g. explains why it is useful for

particle isolation to use windows of �R =
p

��2 +�⌘2.
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1.2 The Higgs Mechanism

Figure 1.8: Decay diagram of the H ! ZZ⇤ ! 4` final state, which will be the main focus
of this thesis[5]. Angle definitions inspired by [28].

1.2.1 Spontaneous Symmetry Breaking

The Electroweak Lagrangian was introduced in Section 1.1.1. The derivation concluded by

having a model with massless bosons. This is acceptable for the photon field but not the weak

bosons10. It was not possible directly to add mass terms to the Lagrangian since this will

break the local gauge symmetry.

As a simple example of spontaneous symmetry breaking, a Lagrangian, which is both invariant

under a group (G) of transformations and has a degenerate set of states with minimal energy

can be examined.

Take for instance the complex scalar field �(x) with Lagrangian:

L = @µ�
†@µ�� V (�) , V (�) = µ2�†�+ h · (�†�)2 (1.2)

L is invariant under the transformation:

�(x) ! e�i✓�(x)

It must be required, for a potential of this type, that h � 0 such that it is bounded from below

and has a ground state. µ2 can on the other hand be chosen both to be negative and positive.

The positive choice will give the potential a trivial � = 0 minimum and correspond to the

introduction of a massive scalar particle.

The negative choice is interesting for the discussion of spontaneous symmetry breaking. The

10The following derivation can be attributed to [8], where more detail can also be found.
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minimum is now non-zero as will satisfy:

|�0| =
r

�µ2

2h
⌘ vp

2
> 0 , V (�0) = �h

4
v2

It is clear that the choice of the complex phase of �0 is free and will lead to the same energy

state. The Lagrangian has in other words a degenerate minimum. By making a choice (e.g.

✓ = 0) the symmetry is said to be spontaneously broken. To see how a massive state enters

into the Lagrangian, it is useful to parameterise the field around the ground state:

�(x) ⌘ 1p
2
[v +  1(x) + i 2(x)]

The new parameterisation can be put back into the potential of the original Lagrangian:

V (�) = V (�0)� µ2 2
1 + hv 1( 

2
1 +  2

2) +
h

4
( 2

1 +  2
2)

2

 1 can be identified with a massive field (m2 = �2µ2), and can be understood as the excit-

ation in the direction of the potential that cost energy.  2 on the other hand corresponds

to excitations in the degenerate direction. Since these excitations do not cost energy it is a

massless state, a Goldstone boson.

If the Lagrangian is invariant under the continuous symmetry G, but vacuum is only invariant

under subgroup H in G there exist as many massless spin-0 particles as broken generators, i.e.

in G but not in H[29].

Returning to the more physically relevant case of Electroweak interactions, the trick is now to

introduce a doublet of complex scalar fields:

�(x) ⌘
✓

�+(x)

�0(x)

◆

Similar to before, the scalar Lagrangian now reads:

L = (Dµ�)
†Dµ�� µ2�†�� h(�†�)2 , (h > 0, µ2 < 0)

The new Lagrangian is invariant under local gauge transformations with the covariant deriv-

ative:

Dµ� =
h

@µ � igW̃µ � ig0y�B
µ
i

� , y� = Q� � T3 =
1

2

where the choice of hypercharge is made such that the photon will not couple to �(0) and �+

acquires the correct electric charge.

The ground state obtains the degenerate minimum:

|h0|�(0)|0i| =
r

�2µ2

2h
=

vp
2

The symmetry group is again broken by choosing a ground state.
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By having the photon not couple, U(1)QED remains a true symmetry of the vacuum. Con-

sidering the di↵erence in the number of symmetries of the vacuum state and the Lagrangian,

there will exist three massless particles. The scalar double is parameterised in the general

form:

�(x) =
1p
2
ei

�i
2 ✓i(x)

✓

0

v +H(x)

◆

containing the three real fields ✓i and the real H(x). It can be demonstrated that by the local

gauge invariance of L it is possible to rotate away any dependency on �i, which are identified

as the three massless Goldstone bosons. If the gauge ✓�(x) = 0 is chosen, the field � can be

put into the original Lagrangian. The kinetic term are then of the form:

✓�(x) = 0 : (Dµ�)
†Dµ� =

1

2
@µH@

µ + (v +H)2
✓

g2

4
W †

µW
µ +

g2

8 cos2 ✓W
ZµZ

µ

◆

It is seen that the vacuum expectation value of the introduced boson has generated quadratic

(mass) terms of W± and Z. The expression moreover reveals that MZ · cos✓W = MW = 1
2vg.

Fermion Masses

The derivation of the Electroweak Lagrangian in Section 1.1.1 explicitly assumed the fermions

to be massless. This was deliberate since introducing a mass term of the form L = �m( ̄L R+

 ̄R L) would break local gauge invariance. The scalar doublet introduced above can however

also generate fermion masses by introducing gauge invariant terms with structure[8]:

L = c (⌫̄e, ē)L

✓

�+

�0

◆

eR + h.c.

After the spontaneous symmetry breaking this term will take the form:

L =
1p
2
(v +H)(cēe) , me = �c

vp
2

Notice that this does not directly constrain the theory since the fermion mass is just replaced

by the parameter (c). It does however provide a gauge invariant mass term. Even though the

individual fermion masses are not predicted, the coupling to fermions is proportional to their

mass. The assumption can be tested by measuring the relative branching ratio of Higgs to

fermion decays.

1.2.2 Intermezzo: Predictions, Discovery and Property Measurements

The derivation of the Electroweak unification predicts that there exist a massive scalar boson

with properties:

• Spin-0

• Positive parity



22 1.2 The Higgs Mechanism

• Coupling to W±, Z and the massive fermions

• Mass around the Electroweak scale

The introduction does however not include a concrete prediction of the mass. It is however

possible from the knowledge of the masses of heavy particles to make indirect predictions. The

derivation concluded by predicting that:

MW = MZ cos ✓W

The weak mixing angle ✓W (at scale ⇠ mW ) can be measured independently through e.g. the

forward backward asymmetry of Z/�⇤ production in pp̄ collisions[30][31].

The predicted and measured W mass can then be compared, but without further considera-

tions this turns out to be a bad match11.

W+ W+

t

W+

b̄

W+ W ⇤+

H0

W+

Figure 1.9: Left: Propagator of a W boson. Middle: Largest single loop correction to the
W propagator (tb̄). Right: Loop correction to the W propagator by a Higgs boson.

From QFT it is known that the propagator of the W boson takes the form ⇠ 1
p2+M2 . As

illustrated in Figure1.9, the propagator will have higher order corrections, e↵ectively giving it

an operational mass rather than a bare mass. The fermion and boson propagators are in the

large momenta limit (p � M ) 1/p and 1/p2, respectively. The mass correction to the W is

given by the correction propagators integrated over all possible momenta:

�M2
corr ⇠ m2

fermion �M2
corr ⇠ lnmboson (1.3)

Due to charge conservation, the loop corrections to the Z and W propagator will however be

di↵erent, such that for Z bosons, the loop will contain tt̄ while e.g. W+ will contain tb̄, as the

largest fermion contribution. The very precise knowledge of the Z mass, the fine structure

constant ↵, the Fermi Coupling constant GF and the weak mixing angle cos ✓W [32][9] makes

it possible to calculate the e↵ective W mass up to a correction that is dominated by the top

and Higgs mass:

M2
W = M2

Z cos2 ✓W (1 + �) , (1.4)

where the top and Higgs corrections are:

�t ⇠ 3↵W

16⇡

✓

mt

MW

◆2

�H ⇠ �11↵W tan2 ✓W
24⇡

ln
MH

MW
(1.5)

11The following calculations will follow the argumentation described in [27, Ch. 4.8], equations can be
attributed to this source.
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The equation can be inverted to obtain a Higgs mass prediction as function of the W and top

mass. The fit results are shown in Figure 1.10, where it is seen that a mass of 125 GeV is

around 1� from the best fit value. The calculations make the assumption that the Standard

Model including the Higgs boson describe all particles with relevant couplings. If however

heavy undiscovered particles exist, they could also contribute to the correction loop diagrams,

making the predicted Higgs mass biased. With the Higgs discovery and subsequent mass

measurement, very precise knowledge of the W mass could lead to indications of new physics.

Unfortunately the logarithmic dependence of the correction to the W mass makes it di�cult

to improve the constraint.
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Figure 1.10: (A): Compatibility of di↵erent Higgs mass models to the W and top mass from
LEP2 and Tevatron. (B): Indirect Higgs mass prediction from combined precision measure-
ments together with LEP and LHC exclusions. Figures shows the status in March 2012[32].

Unitarity of WW scattering

So far, the Higgs mechanism has been introduced as a way to give the massive vector bosons and

fermions masses. Another important feature of the Higgs mechanism becomes apparent when

trying to describe the high energy behaviour of WW scattering without the Higgs boson12.

A massive gauge boson at rest (kµ = (m, 0, 0, 0)) will have a linear polarisation vector that is

a combination of the three orthogonal unit vectors:

(0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

12The following paraphrases [7, Ch. 21.2], where more details can be found.
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If the particle is now boosted along the third component axis, its momentum vector read

will read: kµ = (E, 0, 0, k). The orthogonal projections of the polarisation vector will be left

unchanged. The polarisation vectors however have to satisfy:

✏µkµ = 0 ✏µ✏µ = �1 ,

resulting in a longitudinal component that changes in the following way:

✏µL(k) =

✓

k

m
, 0, 0,

E

m

◆

From this it can be seen that for large momenta the longitudinal polarisation vector will

approximately be parallel to kµ:

✏µL(k) =
kµ

m
+O

⇣m

E

⌘

The polarisation vector can now be used to examine the di↵erential cross section of WW

scattering in e.g. a lepton-positron collider:

d�

d cos ✓
(e+e� ! W+W�) ⇠ 4⇡↵2

4s
· |✏(k+) · ✏(k�)|2 ,

where k± are the momenta of the outgoing W bosons. The transverse component of this is

well-behaved but the longitudinal can be realised is problematic. Using the approximation for

the longitudinal component from above, the cross section is given by:

✏(k+) · ✏(k�) ' k+ · k�
m2

W

' s

4m2
W

for large momenta (s � m2
W ). This will clearly lead to problems at some point. In fact

inserting the relevant values indicate that unitarity will be violated at
p
s ' 1 TeV.

Of course violation of unitarity must be wrong. In fact the calculation above also only include

the tree-level diagram. It could be imagined that higher order diagrams will cancel this

behaviour, but this leads to di↵erent unpleasantries. The higher order corrections would

have to be increasingly important in order to restore valid predictions. In other words the

electroweak theory would leave the pertubative regime and start becoming ”strongly” coupled

at the TeV scale.

Another solution could be found if there exist di↵erent tree-level diagrams which cancels the

divergent behaviour in just such a way that the W bosons would couple weakly up to very

high energies.

Fortunately the introduction of the Higgs boson actually provides such a mechanism.

The Higgs mechanism was accompanied by three unphysical Goldstone bosons. The Goldstone

boson equivalence theorem[33] derives that at high energies, the longitudinal W bosons should

have equal cross section to the production of scalar Goldstone bosons. The scalar particles

do not have the divergent behaviour however. By giving the W s mass through spontaneous

symmetry breaking the problematic divergence conveniently cancels.
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The Higgs Discovery
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Figure 1.11: (A) Cross sections of a Standard Model Higgs Boson produced with proton-
proton collisions at 8 TeV. (B) Branching ratios for a Higgs boson with a mass of 125 GeV[34].

The introduction of the Higgs mechanism reveals some particle properties, its spin, parity and

branching ratios. The mass is predicted indirectly under assumptions that there does not exist

new coupled particles and is required to be below the TeV scale. Unfortunately the lack of

knowledge of the mass together with its coupling to other particles make it exceedingly hard

to observe directly at hadron colliders. Since accelerators only collide light particles, as a

result of the heavier being unstable, the probability of creating a Higgs boson is very small.

Figure 1.11a show the dominant Higgs production modes for LHC collisions at 8 TeV, gluon

fusion, vector boson fusion and associated production. For a Higgs with a mass of 125 GeV,

produced at 8 TeV, these are 19.27 pb (ggF), 1.578 pb (VBF), 0.7046,0.4153 pb (WH, ZH)

and 0.1293 pb (ttH)[34]. To put these numbers into perspective the total LHC cross section

is around 0.1 b and the Z cross section around 30 nb (fiducial), see Fig. 1.5. Besides the

minuscule probability to produce a Higgs another challenge emerges from its branching ratios.

A hadron collider like the LHC further introduce complexity since the most dominant Higgs

decay channels are totally overwhelmed by hadronic backgrounds. Figure 1.11b shows that a

Higgs with a mass of 125 GeV will dominantly decay to bb̄, WW and gg. The WW diboson

branch is again dominated by hadronic decays.

In the end, the most sensitive channels in the low mass region are the �� and the leptonic

final states of W+W�⇤ and ZZ⇤. The W+W�⇤ final state has the advantage that it by far

has the highest branching ratio, but has the disadvantage that the branching ratio for both W

bosons to decay to either an electron or a muon is ⇠ 4%[9]. The leptonic W decay is besides

this made more complicated by the emission of a neutrino.

For the discussion of this thesis it is worth remembering that the discovery is mostly based on

observing an excess of events in a specific window of invariant mass. The discovery demon-

strated that the new particle state’s production cross section and branching ratio to the diboson
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channels were in agreement with Standard Model Higgs predictions[35][36]. Despite these be-

ing compatible there are still plenty of predictions that needs to be tested to conclude that

the observed excess is the result of Standard Model Higgs production.

Property Measurements

) µSignal strength (
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Figure 1.12: Summary of Higgs signal
strength measurements by the ATLAS
collaboration[37]. The signal strength µ
is defined as the ratio of observed num-
ber of events to Standard Model expect-

ations.

One of the most important measurements to be per-

formed is the invariant mass determination. The pro-

duction rates and branching ratios for instance are

mass dependent. Although most measurements are

limited by statistics at the moment, the invariant mass

is ultimately necessary to make precise predictions.

The invariant mass compatibility between the high res-

olution channels �� and ZZ⇤ ! 4` can also be tested.

The ATLAS and CMS collaborations recently pub-

lished the combined measurement[12]. It is found that

everything agree within 1�.

The natural decay width as function of mass is also

determined in the Standard Model. For a Higgs mass

of 125 GeV the on-shell width is 4.1 MeV[34]. A direct

measurement of the width by examining the mH spec-

trum would be dominated by the experimental mo-

mentum resolution. It is however possible to determine

the width in o↵-shell ZZ, WW decays. The current

95%CL upper limits are found to be '5 times SM pre-

dictions[38]. In an analogous analysis CMS achieved

similar results[39]. The width can moreover be determ-

ined through the relative branching ratios to di↵erent

decay channels[40] under the assumption that known physics constitute all decay channels.

It is finally also of high interest to establish that the boson couples to fermions and that the

couplings are in agreement with SM predictions.

The ATLAS and CMS collaborations have established strong evidence that the decay to a

pair of ⌧ leptons exist, each with a signal more than three standard deviations above back-

ground[41][42]. The best fitting signal strength is moreover found to be in agreement with

Standard Model expectations, albeit with large uncertainties.

Direct evidence for its coupling to the quark sector is moreover starting to collect13. The

strongest channel is bb̄, both because of its large branching ratio (Fig. 1.11b) but also because b

quarks have displaced vertices making them distinguishable over other QCD backgrounds. The

LHC Run-1 dataset yielded that the V H ! bb̄ signal is around 2� over background[43][44].

The measured signal strengths are found to have uncertainties of 80% (ATLAS) and 50%

13The decay to �� is in the Standard Model dominated by a top loop. A diphoton decay rate in agreement
with SM can be considered indirect evidence for quark coupling
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(CMS) making it di�cult to draw final conclusions.

Figure 1.12 summarises the signal strength measurements in ATLAS, where it is seen that all

observations are in agreement with SM expectations. It is worth noting that most property

measurements so far are limited by statistics making the start of the LHC Run-II an interest-

ing period to study Higgs Physics.

1.2.3 Higgs Characterisation with E↵ective Field Theories

E↵ective Field Theories (EFT) are used as a method to obtain approximations to the low

energy behaviour of undescribed physics. As an example of the approach, consider the charged

current weak interaction between two fermions:

g2

8
 ̄�µ(1� �5) 

1

q2 �m2
w
 ̄�mu(1� �5) ,

with W propagator 1/(q2�m2
W ) for momentum transfer q. Expanding the propagator around

m2
W gives the series:

1

q2 �m2
w

= � 1

m2
W

"

1 +
q2

m2
W

+

✓

q2

m2
W

◆2

+ · · ·
#

,

for q2 < m2
W . If low energy phenomena are examined (q ⌧ mw) only the first term of the

expansion will contribute significantly to the propagator. Inserting the series lowest order into

the interaction again:

GFp
2
 ̄�µ(1� �5)  ̄�

mu(1� �5) , GF =

p
2

8

p

g2

m2
W

' 1.7 · 10�5 GeV�2 ,

revealing the Fermi interaction.

Informally this is similar to a ’zoomed out’ version of the original interaction. Taking into

account the full EW structure, a process like e�⌫e ! e�⌫e would have a leading order diagram

with two incoming fermions connected by a W propagator to the two outgoing fermions. By

’zooming out’ the W propagator diminishes such that the process look like a four fermion

interaction.

Some general properties of the approach can be concluded by dimensional analysis. The ac-

tion S is dimensionless. Since
R

dxµ has dimension -4, the operators of the Lagrangian density

must necessarily be of dimension 4. Here, dimensionality is used to express powers of energy:

m = [E] ! d = 1, x = [E�1] ! d = �1 in natural units14.

Dimensional analysis indicate that that the operator expansion must be suppressed by a di-

mensional quantity. Usually in the context of EFT the scale of new physics ⇤ is used. In the

example above it is the EW scale, ⇤ = mW .

Choosing a high energy scale has the advantage that as long as the theory is applied only

14@µ and bosonic fields has d = 1. Fermionic fields have d = 3/2. The numbers here are only valid for 4D
spacetime.
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below the ⇤ scale the expansion is ordered. More precision can be achieved by adding more

terms.

The EFT approach thus gives a recipe for describing new physics phenomena in a compact

way if it is assumed that no new physics exist below a certain energy level.

An EFT description of the new bosonic state is derived in “A framework for Higgs Character-

ization”[45]. As above it is assumed that the boson (X(JP )) does not couple to any unknown

particles below a scale ⇤. ⇤ is for reference chosen to be 1 TeV, when the model is used in the

analysis. The characterisation model divides the Standard Model Lagrangian into two terms:

LHC,J = LSM�H + LJ

where the first term on the right-hand side refers to the Standard Model without the Higgs

boson contribution and the second describes the kinetic and interaction terms of a generic

boson X(JP ) with spin J and parity p.

1.2.4 Spin-0 Models

When constructing the spin-0 Lagrangian, it is of interest that the Standard Model can easily

be reproduced. The model should moreover include all interactions that are generated by

gauge-invariant dimension-6 operators above the electroweak scale. The model is expected to

include a CP-odd state 0� as predicted by e.g. many SUSY theories and allow for CP-Mixing

between the SM and CP-odd state.

A possible Lagrangian of this type is [45, Comments inserted by author]:

LV
0

=
�

c↵SM

⇥

1

2

gHZZZµZµ + gHWWW+

µ W�µ
⇤

SM ZZ/WW vertices

� 1

4

h

cos(↵)H��gH��Aµ⌫Aµ⌫ + sin(↵)A��gA��Aµ⌫Ãµ⌫
i

H�� Vertex

� 1

2

h

cos(↵)HZ�gHZ�Zµ⌫Aµ⌫ + sin(↵)AZ�gAZ�Zµ⌫Ãµ⌫
i

HZ� Vertex

� 1

4

h

cos(↵)HgggHggGa
µ⌫G

a,µ⌫ + sin(↵)AgggAggGa
µ⌫G̃

a,µ⌫
i

Hgg Vertex

� 1

4

1

⇤

h

cos(↵)HZZZµ⌫Zµ⌫ + sin(↵)AZZZµ⌫Z̃µ⌫
i

BSM HZZ Vertex

� 1
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⇤

h

cos(↵)HWWW+

µ⌫W
�µ⌫ + sin(↵)AWWW+

µ⌫W̃
�µ⌫

i

BSM HWW Vertex

CP� Even terms CP�Odd terms

� 1

⇤

cos(↵) [H@�Z⌫@µAµ⌫ + H@ZZ⌫@µZµ⌫ + (H@WW+

⌫ @µW
�µ⌫ + h.c.)]

 

X
0

Contact Terms

The reduced field strength tensors and dual tensor of the Lagrangian are listed in [45, Eq. 2.5,2.6,2.7].

All Standard Model processes are included as a subset of the interaction.

The mixing angle ↵ describes the degree of CP-mixing. The gis are chosen in such a way that

the an e↵ective Standard Model is reproduced if the SM is are set to 1, the BSM is are

0 and ↵ = 0. In the context of the dimension analysis above, it is worthwhile noting that
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d(gWW,ZZ) = 1 while the others have d = �1, such that all terms end up with dimension 4,

see [45, Tab. 2].

For the analysis of this thesis, only the coupling to ZZ and WW are considered. The Lag-

rangian reduces to:

LV
0 =

�

cos(↵)SM
⇥

1
2gHZZZµZµ + gHWWW+

µ W�µ
⇤

�1
4
1
⇤

h

cos(↵)HZZZµ⌫Zµ⌫ + sin(↵)AZZZµ⌫Z̃µ⌫
i

(1.6)

�1
2
1
⇤

h

cos(↵)HWWW+
µ⌫W

�µ⌫ + sin(↵)AWWW+
µ⌫W̃

�µ⌫
io

X0

There are now three di↵erent terms for either ZZ and WW . If only one were present at a time,

the X(JP ) addition to the Standard Model Lagrangian correspond to a Standard Model Higgs

(SM -term), a CP-Even BSM boson (HZZ-term) and the CP-odd pseudo scalar (AV V -term).

These three seperate models are denoted 0+, 0+h and 0� in the following.

The analysis will consider two separate scenarios for the spin-0 analysis. The first scenario

examines if the data can exclude the SM in favour of either X(JP ) = 0+h or 0�, or conversely

if either of the two BSM hypotheses are excluded in favour of 0+.

In the second scenario the Lagrangian is allowed to contain multiple terms at the same time.

The mixed Lagrangian will be parameterised in BSM/SM coupling ratios:

̃HV V

SM

̃AV V

SM
tan↵

where ̃ is used as a short hand notation for:

̃AV V =
1

4

⌫

⇤
AV V ̃HV V =

1

4

⌫

⇤
HV V (1.7)

The ratio of couplings are convenient to use instead of a direct measure of the couplings. As

was for instance seen in Figure 1.12, both WW and ZZ has measured a higher signal strength

than SM expectations. If the ZZ and WW couplings are also changed in the Lagrangian the

rate of observed ZZ and WW can also deviate from expectations. It could be feared that by

including the signal strength as a model discriminant the best fitting model would be a↵ected

by the signal strength instead of the very fine alterations of final state distributions that will

be examined.

By using the ratio of couplings instead, an overall normalisation factor can be put outside of

the Lagrangian to swallow any deviation, corresponding to letting the signal strength float

freely when fitting the models. In the high statistics limits it could be possible to also include

the observed rate of events.

Table 1.2 summarises the di↵erent models that will be examined. Examples of how final

state distributions are a↵ected by di↵erent coupling configurations can moreover be seen in

Figure 1.8. The di↵erent choices of couplings for the spin-0 models in Table 1.2 will not a↵ect

the boson’s production mechanism. The final state observables that are related to production:

�1 and cos ✓⇤ or equivalently pT and ⌘ will have the same distribution for the di↵erent spin-

0 models. The production mechanisms can instead be used to distinguish the boson from

di↵erent background types in a model independent way.
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Model JP Coupling value Coupling Ratio

SM AV V HV V ↵ ̃AV V
SM

tan↵ ̃HV V
SM

Standard Model 0+ 1 0 0 0 0 0

BSM Spin-0 CP-odd 0� 0 1 0 ⇡/2 ‘1‘ 0

BSM Spin-0 CP-even 0+h 0 0 1 0 0 ‘1‘

Mixed SM, BSM CP-odd (0+, 0�) 6= 0 6= 0 0 6= 0,⇡/2 [-10, 10] 0

Mixed SM, BSM CP-even (0+, 0+h ) 6= 0 0 6= 0 0 0 [-10, 10]

Table 1.2: Summary table of the spin-0 models that will be studied in this thesis.

(a) (b) (c)

Figure 1.13: Angular distributions of spin-0 models. Angles are defined as in Figure 1.8.
(A): mZ , (B): cos ✓1, (C): ��. The distributions are shown for four di↵erent coupling config-

urations[45].

The gi parameterisation

A di↵erent approach to describe BSM spin-0 models is described in [46][47, Sect. 11.4.2].

Instead of using an EFT approach, the amplitude describing a spin-0 particle X of arbitrary

parity and two spin-1 gauge bosons is used:

A(Xj=0 ! V V ) =
1

⌫
(g1m

2
V ✏

⇤
1✏

⇤
2 + g2f

⇤(1)
µ⌫ f⇤(1),µ⌫ + g4f

⇤(1)
µ⌫ f̃⇤(1),µ⌫)

The notation g1, g2 and g4 has been adopted to describe the SM, scalar BSM and pseudo-

scalar coupling of the HVV scattering amplitude. The Standard model is retrieved if only g1

is present. The BSM scalar and pseudo scalar contributions are parameterised by g2 and g4

respectively.

The approach also include the possibility of having complex couplings, a matter that will be

addressed in the outlook section. Complex couplings might arise from light particles loop

contributions. The main analysis, using the EFT approach, will however not consider this.

It has been demonstrated that the known light particles would not create sizeable complex

contributions to the couplings[6].

Considering only the WW and ZZ decay channels the di↵erent parameterisations can be
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related as follows:
̃HV V

SM
= <(g2)/g1 ̃AV V

SM
tan↵ = <(g4)/g1

The coupling ratios can moreover be translated to e↵ective cross-section fractions. The e↵ective

cross-section contribution from BSM is easier to understand and as an added benefit also allows

for a direct comparison to published results[48]. The e↵ective cross-section fraction is defined

as follows:

fgi =
|gi|2�i

|g1|2�1 + |g2|2�2 + |g4|2�4 , �i = arg

✓

gi
g1

◆

. (1.8)

The �is are the cross-section obtained in the presence of only gi. If only one BSM contribution

is assumed at a time, Eq. 1.8 can be rewritten in the following way:

fgi =
r2i1

1 + r2i1
; (i = 2, 4),

such that a direct translation to the ’kappa’ framework can be made by choosing:

r221 =
�HV V

�SM

 

k̃HV V

kSM

!2

, and r241 =
�AV V

�SM

 

k̃AV V

kSM

!2

tan2 ↵.

Similar to the �is in Eq. 1.8; �SM, �HVV and �AVV are the cross sections obtained when

only the single corresponding coupling contributes to the Lagrangian. The cross sections

are estimated with the MadGraph5 aMC@NLO generator[49] and their ratios found to

be �HV V /�SM = 0.349 and �AV V /�SM = 0.143. Figure 1.14 shows how the cross section

contribution evolves as function of coupling ratio.
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Figure 1.14: Conversion between coupling ratios ̃HV V

SM
and ̃AV V

SM
tan↵ and cross section

fraction fg2 and fg4.

By inverting Eq. 1.8 the coupling ratios can also be described in terms of e↵ective cross section

fractions:

ri1 =
fgi

1� fg1 � fg2
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for i = 1, 2 and ri1 as above. If the assumption of only one BSM coupling at a time is removed

the description is somewhat more complex, as the BSM and SM cross section fractions have

to add up to one. The ̃HV V
SM

coupling for a fg2 = 0.5 boson will e.g. depend on where the

remaining 50% of the cross section come from. The translation of cross section fractions to

the ̃HV V
SM

and ̃AV V
SM

tan↵ coupling ratios is illustrated in Figure 1.15.
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Figure 1.15: Conversion between cross section fractions and coupling ratios. (A) ̃HV V

SM
as

function of fg2 and fg4. (B)
̃AV V

SM
tan↵ as function of fg2 and fg4.

1.2.5 Spin-1 and Spin-2 Models

Spin-1 models will also be tested in data, using the parameterisation described in [50].

The spin-1 parameterisation that will be analysed follows a similar structure as the ’gi’ para-

meterisation from above. The scattering amplitude of a spin-1 bosons interaction with two Z

bosons is given in Eq. 4 of the same source. Both a positive and negative parity spin-1 boson

can be described with this approach.

The two parity models will be tested against the Standard Model but it is however important

to mention that the spin-1 sector is of smaller physical interest. The Landau-Yang theorem

states that a spin-1 particle cannot decay to a pair of massless vector bosons[51][52]. The

spin-1 scenario is ruled out by the �� observation and disfavoured by production rates being

compatible with gluon-fusion. If it is (reasonably) assumed that it is the same boson that

decays to �� and ZZ, the ZZ spin-1 scenario is also ruled out.

The spin-2 models that are tested in the analysis are also described by EFT. The spin-2 models

that will be examined couple to the fermion and boson energy-momentum tensor similar to a

Graviton. For a colour, weak and electromagnetic singlet spin-2 resonance, the interaction is
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uniquely determined[45]:

L2 = � 1

⇤

2

4

X

V=Z,W,�,g

V T V
µ⌫X

µ⌫ +
X

f=q,l

fT f
µ⌫X

µ⌫

3

5 , (1.9)

where a coupling is introduced for each boson and fermion. Some assumptions have to be

made on the couplings to reduce the number of models to a feasible size.

The couplings to the �, W and Z vector bosons are assumed to be 1. The choice is not of

particular interest since it is known that the boson couplings exist due to the observed decays.

Moreover, the relative magnitude is of minor relevance since the analysed final states do not

mix. The signal strengths for each channel are allowed to float for similar reasons to what was

described in the spin-0 discussion, making the analysis independent of the particular choice of

these coupling values.

The choice of fermion and gluon couplings is of more importance. This will a↵ect how large

a portion of the production is due to gluons or quarks. Intuitively the relative magnitude

of quark or gluon production will have an e↵ect on the resonance pT spectrum, see e.g. Fig-

ure 1.6.

Three models are considered in the analysis. The universal couplings model assumes that

quark and gluon couplings are equal. A model where the boson does not couple to quarks and

one where the quark coupling is twice that of the gluon coupling are also considered.

The non-universal coupling models predicts a hard pT spectrum. The extremum of q = 2g is

chosen since a harder pT spectrum than what this will produce would have shown up in fiducial

cross section measurements[5]. The EW spin-2 production moreover has been estimated to be

negligible (�EW /�QCD ' 3 · 10�4[5]) and will not be considered.

A transverse momentum cuto↵ is finally imposed in order to prevent the analyses from us-

ing discriminative power from an energy regime where an EFT with ⇤ = 1 GeV is invalid.

The cuto↵ is chosen as 300 GeV and the results are validated against a conservative cuto↵ of

125 GeV. Table 1.3 summarises the spin-2 models that will be considered. Final state distri-

butions for spin-2 models with di↵erent quark and gluon coupling configurations can be found

in Figure 1.16. A conversion table between the scattering amplitude parameterisation and the

e↵ective field theory parameterisation for both spin-0 and spin-2 models is given in [45, Tab. 3].

Values of spin-2 quark and gluon couplings pXT selections (GeV)
q = g Universal couplings – –
q = 0 Low light-quark fraction < 300 < 125
q = 2g Low gluon fraction < 300 < 125

Table 1.3: Spin-2 models studied in this thesis. Table courtesy of [5].
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Figure 1.16: Normalised final state distributions for spin-2 models with di↵erent coupling
configurations. ME+PS indicate the presence of extra QCD radiation compared to leading

order[45].
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1.3 Monte Carlo Simulation and Validation

Several Monte Carlo generators are used to get the best possible description of signal and

background models.

Spin-0 models

As described in Section 1.2.4 only WW and ZZ BSM contributions are considered to the

spin-0 Lagrangian. The Higgs is primarily created through gluon-fusion, meaning that

the production is decoupled from the assumed model. The production of the models

that are examined can adequately be described by tools that have been developed to

simulate Standard Model Higgs production. The analysis uses the POWHEG-Box to

simulate the hard scattering of gg ! H at next to leading order[53].

The boson decay is described with JHU[46]. The generator is able to describe the decay

topology for the various models that will be examined; SM, BMS-scalar, pseudo-scalar

and mixed models thereof. The JHU generator moreover describes final state interference

in the 4e and 4µ final states.

The generators are interfaced with Pythia6 to describe initial and final state radiation,

hadronisation and multi-parton interactions[54]. The current analysis only considers

gluon-fusion and not the rarer vector boson fusion and associated production.

The Higgs pT is after production reweighted to the Standard Model next-to-next-to-

leading-order and next-to-next-to-leading-logarithms predictions given by the HRES2.1

program[55][56].

Spin-2 models

The spin-2 models predict di↵erent couplings to gluons and quarks than the Standard

Model, meaning that the POWHEG-Box can no longer be utilised. Instead, both the

production and decay of spin-2 models are described by the MadGraph5 aMC@NLO

generator[49]. Like above, initial and final state radiation, hadronisation and multi-

parton interactions are described by interfacing with Pythia6.

ZZ⇤-continuum

The ZZ⇤-continuum constitute the largest background of the analysis. The qq ! ZZ⇤

production is again described at next-to-leading order precision using the POWHEG-

Box. The smaller gg ! ZZ⇤ background processes is generated with GG2ZZ[57]. The

continuum is generated in a window around the signal mass region: 100 GeV < mZZ <

150 GeV. Initial and final state radiation, hadronisation and multi-parton interactions

are described by interfacing with Pythia6.

In all cases only decays to the four final states; 4e, 4µ, 2e2µ and 2µ2e are generated. All

samples are moreover generated with CT10 parton distribution functions[25].

A summary of the Monte Carlo samples and generators that are used in the analysis is given

in Table 1.4. The JHU generator that is used to produce the BSM spin-0 models uses the gi

parameterisation. The generator values are therefore stated in this scheme. Complex couplings
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are also present in several of the samples but will mostly not be considered. Throughout the

main analysis, the complex contributions to the couplings are removed with matrix element

based reweighting as described below.

Signal Processes

Process type Generator

g1 = 1, g2 = 0, g4 = 0 (SM) POWHEG-Box JHU Pythia

g1 = 0, g2 = 1, g4 = 0 (0+h ) POWHEG-Box JHU Pythia

g1 = 0, g2 = 0, g4 = 1 (0�) POWHEG-Box JHU Pythia

g1 = 1, g2 = 1 + i, g4 = 1 + i POWHEG-Box JHU Pythia

g1 = 1, g2 = 0, g4 = 2 + 2i POWHEG-Box JHU Pythia

g1 = 1, g2 = 1 + i, g4 = 0 POWHEG-Box JHU Pythia

g1 = 0, g2 = 1, g4 = 1 POWHEG-Box JHU Pythia

g1 = 1, g2 = 1, g4 = 1 POWHEG-Box JHU Pythia

Spin-2, Universal couplings MadGraph5 aMC@NLO Pythia

Spin-2, Low quark fraction MadGraph5 aMC@NLO Pythia

Spin-2, Low gluon fraction MadGraph5 aMC@NLO Pythia

Background processes

Process type Generator

gg ! ZZ⇤ GG2ZZ Pythia

qq̄ ! ZZ⇤ POWHEG-Box Pythia

Table 1.4: Monte Carlo samples and generators. All processes are only generated in the
four lepton final state at both 7 TeV and 8 TeV. Other backgrounds are estimated with data

driven techniques.

1.3.1 Matrix Element Based Reweighting

The tensor structure fit that will be described in Section 3.4 examines a continuum of coupling

ratios. It will not be possible to generate fully simulated Monte Carlo samples at all values

that are examined, or even at enough points to do a reasonable interpolation.

Matrix Element based reweighting is instead used to get fully simulated Monte Carlo descrip-

tions at closely located coupling ratios. The method works as follows:

First, a large Monte Carlo sample is generated at some coupling configuration, here g1 =

1, g2 = 1 + i, g4 = 1 + i. The sample will in the following be referred to as the “Source”

sample. To get a description at a “Target” coupling configuration each event is weighted in

such a way that they combined will reproduce the correct distributions. The matrix element

event weight is defined as:

w =
|ME|2(✓Target)
|ME|2(✓Source) (1.10)

The Matrix elements are calculated with JHUGenMELA.v4.2.1[46] which also uses the scat-

tering amplitude parameterisation (“gi”).
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The matrix element will take into account the full decay information for each event. It does

however not contain any information on the production mechanisms of the boson. The re-

weighting method can therefore only be used to reproduce decay topologies. The BSM tensor

structure models that will be examined in the analysis also only di↵er in decay topologies as

mentioned in Section 1.2.4 meaning that no loss of generality is su↵ered from this.

The weight is calculated using the event information at generator level while the observable

distributions are calculated after full detector simulation. The reweighting procedure will

moreover reduce the statistical power of a sample such that the generated number of events

will have to be significantly higher than for backgrounds and closure samples. A sample of

3000000 events are generated.

Matrix element based reweighting is used to get a description at a grid of <(g2)/g1 and <(g4)/g1
couplings. A separation of 0.25 between each point from -10 to 10 is used (81 points in either

dimension). This way all integer values of couplings will lie at centres of bins, while having a

symmetric range around zero.

Two tests are presented as examples of the validation tests that have been performed of the

reweighting procedure. The Source sample is reweighted first to describe the Standard Model

and second to describe a BSM boson where g1 = 1, g2 = 1, g4 = 1.

Samples at these coupling values have also been generated directly. The predicted distribu-

tions from reweighting can as a result be compared to the prediction from a direct Monte

Carlo generation.

The comparisons can be found in Figures 1.17 and 1.18, where the five di↵erent final state

observables are shown. Beside any visual di↵erence, the distributions are compared in two

di↵erent ways. First the bin-by-bin di↵erence in units of the statistical uncertainty (’the

pulls’) is calculated. The pull distributions will follow a unit Gaussian if the two distribu-

tions are sampled from the same parent distribution. The pull distribution will however not

necessarily tell if there are systematic tendencies, but only indicate di↵erences in the average

behaviour. It could e.g. be imagined that the reweighting would underestimate in the left side

and overestimate in the right side of some distribution. To rule out this possibility the probab-

ility of obtaining the Kolmogorov-Smirnov (KS) statistic of the comparison is also calculated.

The distribution of probabilities is uniform if the two distributions are from the same parent

distribution, such that small values indicate poor agreement. The reweighting procedure is

concluded to give a good description after considering the figures.

It is worthwhile pointing out that the reweighting procedure will not produce statistically inde-

pendent samples however. Large statistical fluctuations present at one coupling configuration

will also be present in others.
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Figure 1.17: Reweighting validation. The large MC sample with coupling configuration
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(D), � (E). The observable distributions are shown in the centre of each plot, bin
pulls in the bottom and pull distribution in top right.
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1.4 Beyond the Standard Model

A few comments are finally given on the limitations of the Standard Model before the text

turns to the experiment chapter15.

The problems of the Standard Model can in general be divided into unexplained phenomena

and unnatural predictions.

Starting with the unexplained phenomena, it is natural to ask why the Standard Model has

so many free parameters and features that are simply introduced by hand. The SM, without

neutrino oscillations and Higgs mechanism, has 19 free parameters[58]. These include three

gauge couplings, six quark masses and three charged lepton masses. One can also ask why

the charged fermion masses are so vastly di↵erent, spanning nearly 6 orders of magnitude

(me = 0.511 MeV ,mt = 173 GeV[9]).

When neutrino oscillations are included it is furthermore necessary to introduce another three

masses, three mixing angles and three CP-violating phases. The fermions were also postulated

to exist in three generations without further explanation. It seems unsatisfactory that a fun-

damental theory would have this much freedom.

Another type of unexplained phenomena can be seen on larger scales. The Standard Model

has a natural particle anti-particle symmetry. Particles and anti-particles appear in the model

in pairs with similar properties. Another natural question to ask is why there is such a large

preference for matter? The Standard Model does not contain strong enough CP-violation to

be able to explain why there would be this asymmetry if the universe contained equal amounts

of matter and anti-matter at the time of the Big Bang.

Cosmological observations moreover indicate that the visible amount of matter is only able to

account for around 5% of the total energy in the universe. The remaining 95% is a combination

of dark matter (⇠ 25%) and dark energy (⇠ 70%[60]). The necessity of dark matter is e.g.

seen in the angular rotation of galaxies, which would have been much smaller if only gravity

of the visible matter pulled it together[61]. Furthermore, the so called “Bullet Cluster” has

been observed, where galaxy clusters collide on an astronomical scale[62]. It was observed that

the visible parts interacted with each other and were slowed down, while gravitational lensing

indicated that the majority of the mass passed right through, leaving a discrepancy between

the visible centre of mass and the gravitational centre of mass.

Another undescribed phenomenon that is evident at macroscopic scales is gravity. Gravity

is extremely weak compared to the other forces at particle level. This makes it impossible

to directly measure in today’s collider experiments. Comparing the energy scales of gravity

MP lanck to e.g. the weak scale ⌫ = 246 GeV also raises the question why gravity is so di↵erent

from the other forces.

At a more technical level, if gravity were to be introduced as a quantum field theory with

15For more elaboration, see [58], [7, Ch.22,5], [59], which is largely the basis for the description here.
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Feynman diagrams, it would have coupling constant with inverse energy dimensionality mak-

ing it non-renormalisable[7].

The Hierarchy problem is on the other hand found in the category of unatural predictions. The

problem also relates to the di↵erence in the weak and Planck scales. It can be demonstrated

that in the Standard Model, the quantum corrections to the Higgs mass mH and consequently

to mW are quadratically divergent[58]:

�m2
H ' O

⇣↵

⇡

⌘

⇤2 ,

where ⇤ is the scale at which new physics appear. If it is imagined that the Standard Model

would hold all the way up to the Planck scale, the radiative corrections would be 36 orders of

magnitude larger than the physical value of mH itself.

In principle there is nothing wrong with this from a mathematical point of view. A tree level

value of mH can be introduced that is almost the exact opposite (1 in 1036) of the correction

such that the measured mass will come out correctly. This kind of fine tuning seems highly

arbitrary and unsatisfactory.

One possible solution to the Hierarchy problem is to introduce a particle symmetry such that

each fermion has a bosonic partner and vice versa called ’Super Symmetry’. The radiative

corrections for the Higgs mass for fermions and bosons come with opposite sign. In the presence

of this kind of symmetry the correction instead reads:

�m2
H ' O

⇣↵

⇡

⌘

(m2
B �m2

F )

If the super symmetric partners are found at the TeV scale the unnaturalness would naturally

disappear[58]. Another motivating feature of Super Symmetry is that, if the lightest super-

symmetric particle is stable, it would be a natural candidate for all the dark matter that is

observed.

One incarnation of SUSY, the Minimal Supersymmetric Standard Model, contain the spectrum

of a two-Higgs Double Model16. The model predicts the existence of five physical Higgs bosons

after spontaneous breaking of the electroweak symmetry: A charged Higgs pair (H±), one CP-

odd scalar (A) and two CP-even states (H and h). An appealing feature of this is that the

model could provide strong enough CP-violation to give an explanation of the cosmic matter-

antimatter asymmetry.

Super Symmetry is one of several possibilities of Standard Model extensions that preserve

naturalness. The modifications that aim to restore naturalness to the Higgs sector can be

divided into two types: The Higgs is fundamental and some other mechanism removes the

need for finetuning or the observed Higgs is in fact a composite particle.

In composite models, the Higgs boson is described as a bound state of some new dynamic

which become strong at the weak scale. The ’Little Higgs models’ are examples of such

a description[63][64]. In them the Higgs doublet is identified as a Nambu-Goldstone boson

analogous to how the pions appear in QCD.

16 A comprehensive description of BSM in the context of Higgs physics is given in [9, Ch. 11, Sect. 5].
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The models that will be examined have now been established and need to be tested. The

following chapter will focus on the experimental setup.

First an overview of the Large Hadron Collider is given, which is used to accelerate and collide

protons. The chapter will continue with a description of the ATLAS detector with mentions of

each of its subdetector constituents. The section will focus on how particles are identified and

how their kinematics are measured. Finally, details on lepton identification and reconstruction

will be given in context of the H ! ZZ⇤ ! 4` analysis.

2.1 The Large Hadron Collider

Figure 2.1: Map of the accelerator and detector complex found at CERN[65].

The Large Hadron Collider (LHC) is the world’s biggest particle accelerator. LHC is the

final step of the CERN (Organisation Européenne pour la Recherche Nucléaire) accelerator

complex, situated in Switzerland and France. The accelerating ring of the LHC has a 27 km

circumference.

Figure 2.1 show the CERN accelerator complex and the route protons take before colliding at

e.g. the ATLAS site. After having been separated from its electron in the hydrogen state, the

protons are in sequence accelerated through the LINAC-2, PSB1, PS, SPS and LHC acceler-

ators. Each of the accelerators before LHC serves in this context to accelerate the protons to

the energy level where the next accelerator starts functioning. The energy reached by each

step is: 50 MeV (LINAC-2), 1.4 GeV (PSB), 25 GeV (PS) and 450 GeV (SPS). The LHC is

1The Proton Synchrotron Booster is labelled as BOOSTER in the figure.
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finally able to boost the individual protons from 450 GeV up to a maximum of 7 TeV2.

The accelerator has not accelerated protons to its maximal energy yet, but in 2010 ran with

a centre of mass energy of 900 GeV, 7 TeV in 2011 and 8 TeV in 20123. The first tests at

13 TeV have started in the summer 2015. LHC can furthermore perform heavy ion collisions

using lead. In lead collisions the design energy per nucleon is 2.76 TeV4.

Four large experiments are found at the LHC ring: ATLAS, ALICE, CMS and LHCb. ATLAS

and CMS are general purpose detectors optimised for proton collisions. The ALICE detector

on the other hand focuses mostly on Pb-Pb collisions. It is designed to reconstruct a higher

track multiplicity at higher resolution compared to the ATLAS and CMS experiments. Higher

resolution comes at the cost of a slower response. The LHCb experiment is mainly build close

to the beam-line in one direction from the collision point. It is able to reconstruct tracks in

the very forward region, between 10 to 300 mRad in the non-bending plane[66]. The LHCb

design is among other optimal for heavy flavour physics.

The focus in the coming sections will be on the ATLAS detector, but first some considerations

on the accelerator design are given.

Two of the main design features of an accelerator are its centre of mass energy (
p
s) and its

instantaneous Luminosity (L).
The cross section of Higgs production in proton collisions for instance increases rapidly with

centre of mass energy. The gluon and vector boson fusion cross sections increased by a factor

of 1.3 when going from 7 TeV to 8 TeV while an increase from 8 TeV to 14 TeV will enhance

the Higgs cross section by another 2.7[34]. Moreover, searches for heavy BSM particles require

that the centre of mass energy is larger that its mass. These two examples alone serve as good

motivation to want a high centre of mass energy.

LHC is mainly built of two types of components, bending and focusing magnets control the

beam shape in the transverse direction while radio frequency cavities accelerate and limit the

longitudinal proton bunch dispersion. The LHC consist of eight arcs with eight straight sec-

tions in between. The eight straight sections contain the experiments, beam dumps, cleaning

and RF cavities. The arcs consist of focusing and bending magnets.

The basic mechanics of the magnetic system can be understood by investigating the Lorentz

force di↵erent types of magnets exert on charged particles. Imagining a charged particle trav-

elling in the z direction. If the particle hits a magnetic field that only points in the y direction,

it will experience a force that pushes it into a circular path. This type of field can be created

locally with a dipole magnet. The LHC uses 1232 14.3 m dipole magnets with a field strength

of 8.3 T to achieve this[67]. The maximal proton energy the bending magnets are able to

maintain can be estimated from these numbers. A charged particle (charge q) traversing a

magnetic field (strength B) in a circulation motion (radius ⇢) will have momentum given by[68,

2Increasing the energy by more than an order of magnitude constitute here a gain of ⇠650 m/s in speed,
2.7 m/s from c.

3Colliding particles travelling in each direction with (Ep) gives a centre of mass energy
p
s = 2Ep

47 TeV scaled by the number of charged to total number of nucleons in lead (here the stable 209 ion):
7 TeV 82p

209(n+p)
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Eq. 4.1]:

p = qB⇢ ) p ' 0.2998
GeV

T ·mB · ⇢ , (2.1)

where the latter assumes unit charge. The expected energy emerges by inserting the size,

number and strength of the LHC dipole magnets from above:

p =
0.2998

2 · ⇡
GeV

T ·m · 8.3 T · 14.3 m

dipole
· 1232 dipoles = 7.0 TeV (2.2)

Beam focusing is necessary since the protons will repel each other and consequently not be

exactly aligned. Consider a quadrupole magnet with a field of the form:

B = (B · x, B · y, 0)

Assuming a short interaction with the magnet such that the particle continues to travel parallel

to z while in the magnetic field gives equations of motion[68, Eq. 4.17]:

d2x

dz2
/ �x

d2y

dz2
/ y

The acceleration in the transverse x direction is proportional to negative x, meaning it has a

sinusoidal solution. The y acceleration is on the other hand proportional to positive y giving

it an exponentially increasing solution. This magnet type can then be used to focus in the

x direction at the cost of defocusing in the y direction. A focused beam can be obtained by

consecutive focusing in x and y.

The focusing will not be perfect and higher order beam corrections are needed in real life. The

LHC uses cells consisting of dipoles to bend particles towards the LHC centre, quadrupoles to

focus the beam and higher multipoles to correct the focusing.

The radio frequency cavities (RF) serves to accelerate and focus the protons in the direction

of flight. When protons traverse the cavity, they will enter an oscillating electric field. The

oscillations are matched to the proton speed such that each bunch will constantly have a de-

crease in the EM potential in the forward direction. The dispersion is reduced since protons

behind the bunch will feel a stronger field than the average proton in the bunch. The ones in

front will likewise feel a weaker field than average.

For a 20 min ramp the protons will on average receive a push of 485 keV per revolution. Con-

trarily the energy loss due to synchrotron radiation is around 7 keV at 7 TeV[67, Ch. 6].

The other mentioned design criteria, instantaneous Luminosity, is defined as the conversion

factor between how probably an event is (�) and how often it occurs (R):

R = L · � , L =
N2f

A
, (2.3)

The rightmost expression assumes two equal size proton bunches with population N , colliding

at frequency f with an e↵ective beam-beam cross section A.
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A naive estimation of the beam-beam cross section can give a good approximation. Assum-

ing the beams have a RMS transverse size of �x,y = 16.6 µm[67, Ch. 1] the instantaneous

luminosity will be[9, Ch. 29]:

L ' N2

4⇡ · t · �x · �y =
(1011)2

4⇡ · 50 ns · (16.7)2 µm2
= 7.5 · 1033 m�1cm�2 (2.4)

In good agreement with the actual LHC instantaneous luminosity, see e.g. Figure 2.2a.

Usually analyses will use datasets which have been collected over a period of time. The

integrated luminosity is the equivalent conversion between observed number of events and

production cross section:

L =

Z

dt L ,

with units m�2. The length of each run and how many of those are performed determines the

accumulated integrated luminosity. A run is typically ⇠ 10 hours. By then the bunches are

depleted due to beam-beam and gas interactions. The total integrated luminosity from the

data collection of 2010, 2011 and 2012 is shown in Figure 2.2c.

In order to avoid confusion by high powers of ten it is customary to use units of ’barns’, where

1 b = 10�24 cm�2. The rise in integrated luminosity between 2010 and 2012 can be ascribed

to an increase in the average number of interactions per bunch crossing, hµi, see Fig. 2.2b.

It is apparent from the definition of the integrated luminosity that it is an essential parameter

in cross section measurements and searches. Luminosity uncertainties will directly translate to

uncertainties in these types of analyses. A precise luminosity measurement is however di�cult

to perform.

The simplest type of measurement would be to compare the observed number of events and the

cross section of a well known process. This type of analysis is, as an example performed on the

Drell-Yan cross section for the 7 TeV data sample with m`` > 116 GeV[70]. The systematic

error is estimated to be greater than 4% in all categories. Both theoretical and experimental

uncertainties are considered a systematic uncertainty.

Another method of luminosity measurements is to analyse the elastic scattering of protons

during specialised runs. The scattered protons are detected at low angles far from the collision

point. The relative luminosity uncertainty is found to be �L/L = 1.8% for the same dataset

as the Drell-Yan cross section is measured for[71].
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Figure 2.2: (A): Recorded instantaneous luminosity in ATLAS in 2010-2012. The increase
in collisions per time can be explained by the increase in interactions per bunch crossing seen
in (B), where the distributions for 2011 and 2012 are seen. The integrated luminosity is found

in the (C)[69].
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2.2 The Atlas Experiment

The ATLAS detector is one of the two general purpose LHC experiments. This section will

describe some of its main design features. By general purpose is meant that it is able to

perform a wide variety of physics measurements in both proton and heavy ion collisions.

Listing the major criteria it has to fulfil:

• Decide 40.000.000 times per second if a bunch crossing is considered worth storing.

• Reconstruct particle tracks and measure their momenta with high resolution.

• Measure particle energy.

• Identify particle type by its EM and strong interaction with matter.

• Do this in very dense environments where it is necessary to reconstruct >20 interaction

vertices or >500 tracks per bunch crossing[72].

• Have full azimuthal coverage and as high polar coverage as possible5.

How these considerable challenges are met will be outlined in the following section. Figure 2.3

illustrates how particle identification, momentum and energy measurements are performed.

The detector is constructed as co-axial cylinders around the beam-axis. Closest to the centre is

the inner detector, consisting of the Pixel/SCT detectors and the Transition Radiation Tracker

(TRT). These, being submerged in a magnetic field are able to measure charged particle mo-

menta. Outside of the magnet system are the EM and Hadronic calorimeter systems, designed

to measure energy depositions by electrons/photons and hadrons. The muon spectrometer is

the outermost layer, which is used to identify muons and improve their measured momentum

resolution. Table 2.1 summarises the individual parts and their purpose.

A word on the coordinate frame that is used will be given before the following section describes

the design and functionality of each of the subdetector systems.

2.2.1 The ATLAS Coordinate Frame

A cylindrical coordinate frame is used to take full advantage of the symmetries of the experi-

ment. The frame is defined by:

r =
p

x2 + y2 tan(�) =
y

x
⌘ = � ln

✓

tan

✓

arctan(r/z)

2

◆◆

The conversion is visualised in Figure 2.4. The Cartesian coordinate frame is defined such

that x points to the LHC centre, y upwards and z in the beam direction towards Geneve.

5For a spherical coordinate frame where the beam-line goes through the polar axis
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Type Purpose
Inner Detector System
Pixel detector Measures bending of charged particles and primary/displaced

vertices.
Silicon strip detector Layers of silicon micro strips are used to seed tracking and

measure bending of charged particles.
TRT Gas filled tubes measure transverse track curvature. Transition

radiation is created and used for electron identification.
Calorimetry
LAr Central region has high granularity giving optimal conditions

for e/� measurements. Uses a presampler to correct for up-
stream energy-loss. Higher pseudorapidity regions are covered
by the LAr hadronic end-cap and LAr forward calorimeter.

Tile Scintillating tile calorimeter outside central LAr. Improves
especially hadronic containment and energy resolution.

Muon spectrometer Measures bending of muons by a toroidal field in the outermost
part of ATLAS.

Trigger Indicates when an event topology is considered interesting.
Di↵erent levels operate at di↵erent frequencies.

Table 2.1: Names and purposes of the ATLAS sub detectors and trigger

Figure 2.3: Depiction of how particles are identified using the ATLAS detector. After
colliding in the bottom of the figure, the particle will in order traverse the Inner Detector, the
Electromagnetic Calorimeter, The Hadronic Calorimeter and the Muon Spectrometer. The
Inner detector is submerged in a magnetic field and is used to reconstruct charged particle
trajectories. The calorimeters are used measure particle energy. The figure is somewhat
simplified as hadrons will e.g. deposit energy in the E-Cal as well. ATLAS Experiment

© 2014 CERN.
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y (upwards)

x (toward LHC center)

z (beam line, 
toward Geneve)

x

y

z

r

Figure 2.4: Figure showing the Cartesian and the cylindrical coordinate frame used in the
ATLAS detector.

Since the collisions and detector are symmetrical around the beam axis, it is natural to use the

azimuthal angle, �. In Section 1.1.4 it was moreover argued that the low momentum transfer

background would tend to be distributed uniformly in rapidity. It is however as a rule of

thumb di�cult to measure energy/momentum and easy to measure angles. In the limit where

E � m the pseudorapidity (⌘) asymptotically approximates the rapidity (y) making it the

preferable choice.

The reason it is desirable to use the transverse length rather than the radial length can among

other be found in the detector design. The detector has full coverage in � but not ⌘. This

means that measured momentum and energy is only conserved in the transverse plane.

2.2.2 The ATLAS Inner Detector

The Inner detector is designed to be hermetic in the transverse plane and be able to create

robust tracking recognition. It is able to reconstruct primary, secondary vertices and tracks

with high resolution. It moreover has electron identification for |⌘| < 2. The design is an

optimisation between having as little material to influence particle trajectories and as high

resolution as possible. The Inner Detector uses two types of detector design; a silicon sensor

based tracking system and a Transition Radiation Tracker.

The silicon based tracking system consist of a pixel and a silicon microstrip tracker. Figure 2.5

depicts the inner detector system. The trackers are divided into a barrel region and end-caps.

The barrel region is formed as a cylinder, and has a number of layers at constant distance

from the beam axis. The end-caps consist of layers with constant z-coordinates, i.e. disks in

the transverse plane. The discs are used to measure higher pseudorapidity regions.

The Pixel and SCT detectors are semiconductor or solid-state detectors. The general principle

relies on charged particles creating electron-hole pairs in the material which can be collected by
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(a)

(b)

Figure 2.5: (A) Front view of the ATLAS Inner Detector. The Pixels, SCT and TRT
systems are separately highlighted. (B) Side view of the same figure [73].

an external electric field6. Semiconducting detectors have properties that make them ideal for

tracking conditions close to the collision point. They have small ionisation energies compared

to gas detectors, or equivalently give a large signal when hit by an ionising particle. The drift

time of electrons and holes in the semiconductor is low, resulting in fast detector response.

Semi-conducting detectors are moreover possible to produce very small giving a high position

resolution. A drawback of using solid-state detectors is their tendency to deteriorate from

radiation damage.

The material solid-state detectors consist of (silicon in ATLAS) will have electrons in the

outermost atomic shell of its crystal structure with a special energy band structure. The

structure contains a valence band, where electrons are bound to an atom and a conduction

band with free electrons. The two band are separated by an energy gap.

The semiconductor is said to be doped, by adding small impurities to the crystal structure

6 A more detailed description of semiconductor particle detectors can be found in [74, Ch. 10]. Information
here can also be attributed to this source.
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with either more (n-type) or less (p-type) valence electrons than silicon has. The sensitive

element of the detector is created by ’pressing’ e.g. a p-type semiconductor and an n-type

material together. The excess of holes and electrons in each of the parts will di↵use to the

other. After stability is reached, an electric field is created across the junction. If an ionising

particle traverse the junction the charge deposit will quickly flow out of the potential, leaving

a signal.

The ATLAS pixel detector consist of 1744 sensors with 47232 silicon pixels on each7. For the

most part, the pixels have a size of 50 ⇥ 400µm2. The closeness of the Pixel detector to the

interaction point together with its high resolution enables it to measure interaction vertices

very precisely.

The SCT consist of 15912 sensors with 768, 12 cm active strips per sensor. Each layer of the

SCT is able to register a particle twice, as it consist of two strips which form a small angle

between them. In this way they are able to both give ⌘ and � measurements. Their direction

is a compromise between resolution in the � and ⌘ direction. The � direction weighs more

heavily as a higher �-resolution translates to a higher pT resolution.

The description of the ATLAS silicon detectors is based on [75, Ch. 4.1] where numbers are

also taken from.

The geometry of the Transitional radiation tracker (TRT) is similar to the silicon based de-

tectors, with a barrel region and two end-cap regions, see Tab. 2.2. Instead of pixels or strips,

the TRT consists of a large number of gas filled tubes. Each tube, functioning as a cathode,

has an anode wire in the centre. The straws serve as a proportional gas chamber such that

if the gas inside the tubes is ionised, the free electrons will start accelerating towards the

centre, knocking more electrons free on its way and in doing so starting a cascade. The charge

collected at the anode serves as the detector output. The output strength of each straw tube

is a measure of how many electrons hit the anode.

The straws are covered in thin multilayer films. When a charged particle passes through a

barrier between two media with di↵erent dielectric properties, it will emit radiation. Starting

e.g. in a medium of low dielectric constant, the medium will experience small polarisation

e↵ects and the charged particle’s electric field will have a large spacial extent. If the particle

passes to a medium of high dielectric constant, which thereby has a larger polarisation e↵ect,

the extent of the electric field will be reduced. The sudden redistribution of charge in the

medium will give rise to transition radiation.

The radiation emitted by a charged particle passing through a single surface is[68, Eq. 12.5]:

W =
2

3
↵!p� ,

where !p is the plasma frequency of the medium. The radiation is centred in a cone around

the charged particle with deflection angle: ✓ ⇠ 1/�.

The radiation will ionise the gas inside the tubes and start cascades. Since the amount of

ionisation from transition radiation is dependent on the traversing particles �-factor it can be

used for particle identification. Given the same momentum, an electron e.g. has a ⇠ 200 times

7The sensors have 46080 readout channels since some of the pixels are clustered.
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higher �-factor than a pion.

Figure 2.6 show how the TRT output is used for electron identification. The signal strength

collected by the anode is divided into time bins and classified as either over threshold or over

high threshold.

(a)

-factor    γ

10 210 310 410 510
H

ig
h-

th
re

sh
ol

d 
pr

ob
ab

ilit
y

0

0.1

0.2

0.3

0.4

0.5

 from Z±Data, e
ψ from J/±Data, e

 from Z±Simulation, e
ψ from J/±Simulation, e

 from Z±µData, 
ψ from J/±µData, 

 from Z±µSimulation, 
ψ from J/±µSimulation, 

Data 2011
=7 TeVs

|<0.625η|

ATLAS Preliminary

       Electron momentum [GeV] 
10 210

Muon momentum [GeV]    
10 210

(b)

Figure 2.6: ATLAS TRT electron identification. (A) TRT digitisation, the signal strength is
divided into time bins where two thresholds are defined, low and high[76]. (B) The probability
to obtain a high threshold hit is dependent on the �-factor of the traversing particle[77].

The TRT straws are 4 mm in diameter which can be considered a compromise between the

cascade drift time and the number of ionisation clusters. During the LHC Run-1 a gas mixture

of Xe, CO2 and O2 was used[78].

While the tubes are somewhat larger than the pixels and strips in the silicon detectors, they

contain less material, resulting in less particle interaction.

In the barrel region there are three layers with 22, 38 and 52 tubes respectively, while the

end-caps have three layers with 8 tubes each [75, Tab. 4.3].

The barrel in total contains 52544 straws, while the endcaps contain 12880. The barrel straws

are 72 cm in length, joined in the end to give a barrel length of 144 cm. The end-cap straw

length is 37 cm[78]. For this reason the TRT is not able to measure the z component of a

traversing particle in the barrel region accurately, and likewise for the transverse component

in the end-cap discs. Tracking has to be combined with the other parts of the detector. Beside

particle ID, the use of the TRT improves momentum resolution and give possibility of tracking

at greater distances from the collision point.

Elaborate tracking algorithms combine hits from ionising particles into tracks. A description

of an early version is e.g. given in [75, Sect. 10.2.1].

The Inner Detector is submerged in a 2 T solenoidal magnetic field parallel to the beam axis,

such that charged particles will bend in the transverse plane. The Lorentz force acting on

a charged particle combined with the radius of curvature make it possible to calculate its

transverse momentum.

The sources of the pT error can be divided into two. The first is attributed to interaction with



Chapter 2 Experiment 55

Part radius [mm] length [mm] Aprox. ⌘ cove. R-� acc. [µm]
Pixel
3 barrel layers 50.5 - 122.5 0 - 400.5 0.0-2.0 10
2 ⇥ 3 end-cap disks 88.0 - 149.6 495-650 2.0-2.5 10
SCT
4 barrel layers 299 - 514 0 - 749 0.0-1.5 17
2 ⇥ 9 end-cap disks 275 - 560 839 - 2735 1.5-2.5 17
TRT
3 barrel layers 554 - 1082 0 - 780 0.0-1.0 130
3 ⇥ 3 end-cap disks 617 - 1106 827 - 2744 1.0-2.0 (z-�)130

Table 2.2: Geometry of the inner detector. [75, table 1.2, 4.3, p.6-7] Listed are the radius,
length, approximate ⌘ coverage and characteristic accuracy of the individual parts.

matter and is mostly relevant at low momenta. The second type stems from mis-alignment, the

uncertainty of the macroscopic size of the detector pixels and finite knowledge of the magnetic

field strength, which dominate the resolution at high momenta. The design expectation on

the relative error on transverse momentum is [75, Tab. 1.1]:

�pT /pT = 0.05% · pT ⌦ 1% [GeV] , (2.5)

where the constant term stems from material interaction and the term proportional to pT

comes from resolution. The geometrical features of the inner detector are listed in Table 2.2.

2.2.3 Calorimeter System

The ATLAS calorimeter consist of several subsystems. The electromagnetic, the hadronic

endcap and the forward calorimeters are sampling calorimeters with liquid argon (LAr) as

the active medium. The calorimeter has been designed with an accordion geometry. The geo-

metry has been found to optimise energy resolution in all directions while leaving no cracks[75,

Sect. 5.2.1]. A scintillator tile calorimeter is situated in the barrel region outside of the elec-

tromagnetic.

The calorimeter system has a high pseudorapidity coverage, extending up to |⌘| ' 4.9. It

is designed to have high containment of electromagnetic and hadronic showers and minimise

punch-through to the muon system. The system has more than 22 radiation lengths in its

full coverage and around 10 interaction lengths of the active calorimeter, ensuring both high

resolution of shower energies and missing transverse energy. A drawing of the system can be

found in Figure 2.7, and the number of interaction lengths a particle will meet when traversing

the calorimeter system is shown in Figure 2.8.

The LAr electromagnetic calorimeter is optimised for high resolution e/� measurements. It

consists of a barrel region |⌘| < 1.475 and an endcap region 1.375 < |⌘| < 3.2, each housed

in a cryostal. The electromagnetic calorimeter shares vacuum vessel with the central solen-

oid magnet system to avoid having two vacuum barriers and reduce the material budget[75,

Ch. 5.2].

An electron entering a material will deflect and emit bremsstrahlung with cross section /



56 2.2 The Atlas Experiment

1
M2

e
[74, P.38]. Bremsstrahlung will initially be the dominant e↵ect at LHC relevant energies.

Collision e↵ects will start to become relevant as the electron emits energy. The total energy

loss can be approximated by the collision loss and the loss due to bremsstrahlung. The energy

at which the two terms are equal is usually referred to as the critical energy and is typically

⇠ 100 MeV[74, Tab. 2.2].

Di↵erent mechanisms will govern the energy depositions of photons, since they are chargeless.

At high energies, the energy loss is dominated by pair production of electrons and positrons and

at lower energies Compton scattering. The pair production is related to bremsstrahlung such

that for E� � me the mean path a photon will have before pair production is[74, Eq.2.123]:

�pair ' 9

7
Lrad

Imagining for instance a high energy photon entering into a material. The photon will on av-

erage after �pair create an electron positron pair, each with E�/2. After two radiation lengths

these will on average both have emitted one photon due to Bremsstrahlung. Initially the aver-

age number of particles will as a result grow exponentially as a function of length traversed in

the medium, while the energy of each particle will decrease exponentially. A particle cascade is

created until the lower energy processes take over at the critical energy and stop the particles

completely.

On average, the number of particles that are created will be N ' EI/Ec, where EI is the

initial energy. If the material is interlayered by detectors to count the number of particles,

an energy measurement of the original particle can be obtained. The above description is of

course a simplification and Monte Carlo techniques are used in real life.

The LAr-EM calorimeter uses lead to stop particles. Its innermost layer has high granularity

to achieve high directional resolution. A presampler is situation in front of the calorimeter in

the |⌘| < 1.8 region to account for upstream energy loss. The presampler also uses LAr as its

active medium

The Scintillator Tile calorimeter consist of a barrel region (|⌘| < 1.0) and an extended barrel

0.8 < |⌘| < 1.7. The calorimeter consist of 64 azimuthal pieces. The Tile Cal uses steel to stop

particles and samples with scintillators. The barrel consist of three layers with 1.5, 4.1 and

1.8 interaction lengths and three layers of extended barrel with 1.5, 2.6 and 3.3 interaction

lengths[75, Sect.5.3.1].

The Hadronic Endcap is build of wheels on each side of the detector. It extends between

pseudorapidities of 1.5 and 3.2 such that it has an overlap with both the tile and forward

calorimeters. It is made of two segments of 32 wedge shaped modules resulting in four layers

per end cap. The HEC uses copper plates and liquid argon[75, Sect.5.3.2].

The forward calorimeter is integrated in the endcap cryostal and is designed for very high

radiation environments. The FCal has three modules, where the first has cobber layers and

the two outer use tungsten. The first uses cobber to be optimised for electromagnetic interac-

tions[75, Sect.5.3.3].

The processes involved in hadronic showers include multi-particle production of e.g. pions and

secondary particle ionisation. Since it is likely that ⇡0s will also be produced, which almost
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instantaneously decay to two photons, the hadronic shower will also be mixed with an elec-

tromagnetic, increasing the complexity of the process.
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Figure 2.7: (A): Drawing of the ATLAS calorimeter system with individual parts labelled.
(B): Accordion geometry of the LAr calorimeter in the ATLAS detector[75] ATLAS Exper-

iment ©2012 CERN.
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Figure 2.8: Integrated interaction length as function of pseudorapidity of the ATLAS calor-
imeter system[75].

2.2.4 The Muon Spectrometer

The Muon Spectrometer is the outermost component of the ATLAS detector. It is almost

exclusively muons that are able reach the central parts of the spectrometer, making both the

muon selection e�ciency and background rejection high. The spectrometers immense size and
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Figure 2.9: The Muonic Spectrometer of the ATLAS detector. ATLAS Experiment
© 2014 CERN.

high bending power yield a high momentum resolution. The relative pT resolution is estim-

ated on a Z ! µµ sample to be 1.7% for central muons with low pT and 4% for high |⌘| and
pT = 100 GeV. The resolution is based on a combination of ID and MS, where it is expected

that the MS will dominate the measurement at high pT [79].

The muon spectrometer consist of four separate detector elements and a superconducting air-

core toroidal magnet system. The detector elements provide both triggering and high precision

tracking.

The magnet system is divided into a barrel region |⌘| < 1.4 with bending power (
R

Bdl)

between 1.5 and 5.5 Tm and two end-cap magnets in the forward 1.6 < |⌘| < 2.7 region with

bending power between 1 and 7.5 Tm[75, Sect. 1.4.1]. Each of the three toroids consist of

symmetric coils around the beamline. Bending between the two regions is supplied by a mix

of the two fields. The bending of charged particles in a toroidal field will be di↵erent at the

two ends of the detector, meaning the reconstruction e�ciency is also slightly di↵erent in the

two ends.

The detector elements consist of the Monitored Drift Tubes (MDT), the Cathode Strip Cham-

bers (CSC), the Resistive Plate Chambers (RPC) and the Thin Gap Chamber (TGC). Their

coverage and primary function are listed in Table 2.3.

The muon spectrometer is constructed of two parts, joined at ⌘ = 0. The spectrometer as

a result of this has a ’crack region’ at very small pseudorapidities, where particles are not

measured. A depiction of the MS layout can be seen in Figure 2.9.

The MDT system [75, Sect. 6.3] provides precision measurements over a large ⌘ range. The

elements rely on 29.970 mm tubes filled with a mixture of Ar and CO2, serving as gaseous

ionisation detectors. The barrel region consist of three layers of chambers while the endcap

has two. The wedges that constitute the MDT system are slightly overlapping to avoid crack

regions.

The CSC [75, Sect. 6.4] serves as the other system for high precision measurements in the
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Part Function Aprox. |⌘| cov.
Monitored drift tube MDT Precision tracker 0.0 - 2.7 (first layer to 2.0)
Cathode strip chambers CSC Precision tracker 2.0 - 2.7
Resistive plate chambers RPC Trigger, second coordinate 0.0 - 1.05
Thin gap chambers TGC Trigger, second coordinate 1.05 - 2.7 (trigger to 2.4)

Table 2.3: Coverage, names and function of the muon spectrometer subsystems[75, Tab. 1.4].

muon spectrometer. It is situated as the innermost layer of the barrel region in front on the

MDT. It is optimised to have high spacial and time precision and double track resolution. The

CSC is able to perform with a track density of 1000 HZ/cm2, while the design density of the

MDT is 150 HZ/cm2. This makes it optimal for the innermost layer of the forward region.

The CSC is a multiwire proportional chamber, where a series of parallel anode wires are held

between two cathode plates. The cathode plates of the CSC are segmented. One of the plates

is segmented orthogonal to the wires and the other parallel to. The multiwire proportional

chamber will, except very close to the wires, have an electric field with a constant direction

orthogonal to the wires. When a particle ionises the gas, the ions will drift along the electric

field direction. By segmenting the cathodes it possible to obtain a coordinate of the particle

path.

The MDT system consist of 1150 chambers with a combined 354000 readout channels. The

CSC consist of 32 chambers with 30700 readout channels. The MDT can give 20 measurements

per track in both the barrel and endcap region, while the CSC give four in the forward region.

The muon spectrometer trigger systems consist of the RPC [75, Sect. 6.7] and TGC [75,

Sect. 6.8]. The MS trigger serves to give bunch crossing ID, a well defined pT threshold and

muon coordinate in the orthogonal direction to the inner detector trigger. The MS has trigger-

ing coverage for |⌘| < 2.4. The RPC cover the barrel region while the TGC cover the endcap.

The RPC consist of three concentric cylindrical layers around the beam pipe. Its individual

component are gas detectors build of two 23⇥ 35 mm plates with a separation of 2 mm. Each

station consist of two layers both giving measurements in ⌘ and �. The RPC is thus able to

give six measurements per track.

Particles that trigger a coincidence in the two innermost layers of the RPC will have trans-

verse momenta between 6 and 9 GeV, while three coincidences can be used for variable trigger

thresholds in the 9 to 35 GeV range.

The TGC is a multiwire proportional chamber with 1.4 mm wire to cathode spacing and

1.8 mm wire to wire spacing. The layout ensures fast operation, making it suitable for the

forward region. The middle layer of the MDT in the forward region is supplemented with

seven layer of TGC and the inner layer with two. Beside serving as a muon trigger, the TGC

also give a second (azimuthal) coordinate to the MDT measurement in the radial direction.
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2.2.5 Trigger Systems

During the LHC Run-1, the ATLAS computing system was able to write events to disc at a

rate ⇠ 1 kHZ, see Figure 2.10b. With an event rate during Run-I of 20 MHZ it is clearly ne-

cessary to perform an online selection. The ATLAS trigger system is designed to filter events

using fast electronics and later fast computing. Comparing the total pp cross section to e.g.

electroweak production of W and Z bosons in Figure 1.5 reveals a di↵erence of six orders

of magnitude. For Higgs production it is '10 orders. The trigger system has to be able to

identify interesting event types and reject the overwhelming backgrounds8.

The trigger system is divided in two levels, level-1 (L1) and level-2 (L2) which are followed by

a subsequent event filter (EF). The level one trigger identifies particles with high transverse

momenta or energy. An example of level one triggers and their rates are shown in Figure 2.10

for a proton run in 2012. The e/� and muon trigger rates are 20 and 7 kHZ in the beginning

of the run. Their rates decreases as the proton bunches are depleted.

The L2 trigger later uses all available information from the detector to evaluate if an inter-

esting event has occurred. This is possible because the L1 trigger has reduced the regions of

interest to approximately 2%[75, p.15]. The level two trigger reduces the examined event rate

by more than an order of magnitude and . 104 Hz is passed on to the event filter which finally

reduces the rate to . 1 kHz. The raw data at this point contains an amount of information

equivalent to 1.3Mb/event[75, p.14].
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Figure 2.10: (A): Level-1 rates for single object triggers at 7.8 · 1033 cm�2s�1 (peak lu-
minosity). The di↵erent types of triggers that are displayed are: Electron or photon with
ET > 18 GeV (EM18VH), muon with pT > 15 GeV with coincidence in three stations of the
barrel or endcap (MU15), hadronically decaying tau with ET > 40GeV (TAU40), missing
ET > 40GeV (XE40) and Jet with ET > 75 GeV (J75). (B): Event filter recording rates for

a run with peak luminosity of 7.2 · 1033 cm�2s�1[80].

8Interesting for physics searches and rare processes measurements.
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2.3 Primary Vertex Reconstruction in Run-2

During the LHC Run-1 an iterative algorithm was used to reconstruct primary vertices with

high success. The pileup during Run-2 is however expected to increase significantly. Using

simulations it is found that the iterative process looses accuracy with increasing hµi.
The iterative vertex algorithm was mainly optimised to have a high e�ciency and avoid vertex

splitting, where a single vertex is reconstructed as two. When pileup increases, it becomes

more and more important to avoid merging vertices where two are reconstructed as a single

vertex. It is found that by iteratively seeding and fitting vertices there will be a tendency for

this to happen.

The iterative vertex algorithm can be divided into the following steps:

1. The z0 values of the tracks’ closest approach to the beamspot are scanned using a z-

window. The highest density area is used as the first vertex seed.

2. The vertex is fitted using the tracks within the z-window. If a track is compatible with

the fitted vertex, it is removed from further consideration.

3. The process is repeated for the remaining tracks.

The iterative algorithm finds 81% and 100% e�ciency for minimum bias and tt̄ simulation

respectively. The probability to split a vertex in the two scenarios is ' 0.04%.

The problems arise under high pileup conditions. If the tracks from two di↵erent vertices are

close enough to each other, they may be fitted to a single vertex. It is likely that tracks from

both vertices will be consistent with the fitted vertex and therefore discarded from further

consideration. If two vertices are merged there is no possibility to recover the mistake at a

later state.

Instead, by simultaneously creating all seeds and thereby allowing the tracks to be globally

assigned to their nearest seed this problem can partially be avoided. The following will de-

scribe an algorithm that follows this approach.

The description will outline [81] where the first ATLAS results using the technique are de-

scribed. The numbers reported in this section can be attributed to this source. The ATLAS

implementation of the new algorithm is to a high degree inspired by [82].

The imaging algorithm can be summarised as follows:

1. A three-dimensional histogram is defined around the beamspot with dimensions; 4, 4, 400 mm

in x, y and z respectively. The tests described here use two di↵erent settings for the

number of z bins: 1024 (low z-resolution) and 2028 (high z-resolution).

2. All tracks are projected into the histogram volume such that the bin contents are pro-

portional to the track path length they contain. The tracks are assumed to be linear

such that their path is given by their perigee parameters. An example of this can be

seen in figure 2.11a.
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3. A Discrete Fourier Transform is performed on the histogram.

4. A Colcher and Defrise filter function is modified to the acceptance of the ATLAS inner

detector[83][84]. It corresponds to the inverse Fourier transform of the detectors angular

acceptance.

5. A four-term Blackman-Harris window filter is created[83]. The window filter smooths

high frequency variations in the original image. A cuto↵ frequency is specified individu-

ally for x, y and z. This for instance reduces the probability for a single track to create

a false seed.

6. The transformed track image is multiplied by the filters. An inverse Discrete Fourier

Transform returns a histogram in position space. The filtered track density can be found

in figure 2.11b.

7. A clustering algorithm identifies good seed candidates in the filtered image. A simplistic

clustering is used for what is shown here. The filtered density is projected onto the

z-axis. All local maxima above a threshold are considered seed candidates. If the local

minima between two seed candidates is more than 90% of the smallest maximum, the

seeds are merged.

8. Each track is associated with its closest seed before the vertices are fitted

The imaging method yields an 80-82% and 100% e�ciency for minimum bias and tt̄ simulation

respectively. The probability to split vertices is between 0.2% (min-bias, low z-resolution) and

9.5% (tt̄, high z-resolution). Clearly some optimisation is still needed.

More advanced clustering algorithms could possible reduce the splitting rate drastically. It is

not given however, that the imaging method will outperform the iterative algorithm in terms

of splitting probability.

Turning now to the problem of vertex merging. Figure 2.12a demonstrates an area where the

imaging approach performs well. It shows the number of correctly reconstructed vertex pairs

as function of the z-distance between them (�z). As �z decreases fewer and fewer pairs are

reconstructed. The imaging approach is seen to have a narrower gap and therefore less prone

to merge vertices.

The probability to merge a vertex can be realised is quadratic in pileup. This means that the

number of reconstructed vertices as function of pileup will take the form[81, Eq.1]:

N reco
vtx = c0 + ✏µ(1�mµ) ,

where ✏ describes the reconstruction e�ciency and m describes the loss term due to merging.

Figure 2.12b shows N reco
vtx for three di↵erent setups; iterative and imaging with di↵erent z-

resolution. A perfect vertex reconstruction would have ✏ = 1, m = 0. The high resolution

imaging method is seen to have a smaller quadratic loss term when going to high pileup

conditions. At a relevant pileup of 40, the iterative method is estimated to lose 32% of

vertices, while only 20% are lost with the imaging vertex algorithm.
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The algorithm shows promising results and will be interesting to further optimise for the high

pileup conditions of the LHC Run-II.
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Figure 2.11: Two-dimensional projections of the 3D histograms used in the Imaging vertex
algorithm. The histograms show a single simulated tt̄ event. (A) The tracks from the simulated
events are projected into the volume such that the bin content correspond to the total track
length the bin contains. (B) The same histograms after the image filtering process described
in the text has been performed. Left: The yz (x=15) slice. Right: The xz slice (y=0)[81].
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Figure 2.12: (A) Distance between reconstructed vertex pairs in z. The gap-width is a
measure of how sensitive the approach is to merging. The imaging method uses the high
z-resolution configuration. (B) Number of reconstructed vertices as function of pile-up. The
iterative approach is compared to the imaging algorithm with high and low z-resolution[81].
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2.4 Lepton Identification for the H ! ZZ⇤ ! 4` Analysis

The analysis will mainly focus on the H ! ZZ⇤ ! 4` decay chain. Some detail will here be

given on how electrons and muons are identified with the ATLAS detector.

The methods here are specifically tuned to the H ! ZZ⇤ ! 4` analysis. The description

should however serve as an illustration on how detector output is utilised and cover many fea-

tures, as e, µ reconstruction is based on the trigger system, the inner detector, the calorimeter

and the muon spectrometer.

More details can be found in [85]. The numbers reported here can also be attributed to this

source.

As a start it is worth looking at the characteristic reconstruction e�ciencies for electrons and

muons in data and Monte Carlo, shown in Figure 2.13. There is in general greater loss in the

electron reconstruction, where e�ciency drops especially in the low transverse energy region.

Muons overall have very high e�ciencies, but the muon spectrometer crack can be seen to

lower the e�ciency for small |⌘| values.

Events that potentially contain H ! ZZ⇤ ! 4` decays are identified at the trigger level as the

first step. Due to the di↵erent background types of electrons and muons, di↵erent pT selections

are required. The trigger either identify a single lepton with high pT or two leptons with lower

pT -requirement. The triggers that are used to select events in the 2011 and 2012 datasets are

found in Table 2.4. Some explanation of the ATLAS trigger nomenclature is necessary:

Starting with the 2011 dataset. The trigger names start with EF indicating that the selection is

done at the Event Filter level. The relevant lepton, e or mu for electrons and muons respectively

and the ET , pT selection is listed next. The trigger is indicated with a postfix to be either loose

or medium referring to a quality requirement. For electrons the requirement is imposed on the

EM shower shape and in the medium case the relative energy deposit in the electromagnetic

sampler. Finally, the MG for muons indicate the reconstruction algorithm ”Muon Girl”. The

trigger requirements tightens during 2011 due to the increase in instantaneous luminosity, see

Figure 2.2a.

The rest of the indicators are: i: lepton is isolated such that surrounding tracks within a cone

of �R = 0.2 do not have more than 10% of the lepton pT . h: trigger is seeded from a L1

trigger with hadronic veto. v: trigger is seeded from a L1 trigger with variable threshold. T:

trigger is seeded from L1 trigger with tight selection criteria. For muons in the 2012 selection

there are also EFFS (Event Filter Full Scan) for the di-lepton selection. The Event Filter will

in this case first find a 18 GeV muon and subsequently scan the entire event for a muon with

pT > 8 GeV. L2StarB indicate a software framework to do pattern recognition at the L2.

In the subsequent analysis it is later required that the triggering leptons should be in the set

of leptons that form the Higgs-quadruple. For the di-lepton trigger both leptons are required

to be used.

The 2012 trigger performance is estimated with a tag-and-probe approach on Z ! `` events

in data. The e�ciencies for the di↵erent decay types for a Higgs mass of m4` = 130 GeV are
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Period Final State Single-lepton Di-lepton

2012
4e e24vhi medium1, e60 medium1 2e12Tvh loose1, ( L2StarB, data only)
4µ mu24i tight, mu36 tight 2mu13, mu18 mu8 EFFS
2e2µ 4e, 4µ, e12Tvh medium1 mu8, e24vhi loose1 mu8

2011, B-I
4e EF mu18 MG EF 2mu10 loose
4µ EF e20 medium EF 2e12 medium

2011, J
4e EF mu18 MG medium EF 2mu10 loose
4µ EF e20 medium EF 2e12 medium

2011, K
4e EF mu18 MG medium EF 2mu10 loose
4µ EF e22 medium EF 2e12T medium

2011, L,M
4e EF mu18 MG medium EF 2mu10 loose
4µ EF e22vh medium1 EF 2e12Tvh medium

2011, All 2e2µ 4e, 4µ 4e, 4µ, EF e10 medium mu6

Table 2.4: Trigger menu for H ! ZZ⇤ ! 4` candidate selection. Trigger names separated
by a comma is to be understood as a logical ’or’ between the two.

found to be:

✏4µ = 97.6% ✏2e2µ = 97.3% ✏4e = 99.7%

The Monte Carlo e�ciencies are moreover corrected by applying a scalefactor to the expected

signal yield based on this. Following the trigger, more stringent requirements are imposed

that utilise the full detector information.

Starting with electrons. The main backgrounds are conversion photons and QCD particles

(mostly pions) interacting in the EM calorimeter. The influence of conversion photons can

largely be reduced by requiring that the track delivers a hit to the innermost pixel layer, the b-

layer. It is necessary to analyse the electron candidate signature in the TRT and calorimeters

to reduce QCD backgrounds. For the 2012 data-sample, the analysis use a likelihood based

discriminant:

dL =
LS

LS + LB
, L(x) =

Y

i

Pi(xi)

The individual pdfs consist of various electron/background separating observables. The full

set is listed in Table 2.5. The distributions are derived from data before being applied to the

Higgs analysis.

The hadronic leakage tests if energy from the electromagnetic shower leaks into the hadronic

calorimeter. Hadronic leakage will tend to happen for heavier QCD particle (pions) but not

for electrons. For this reason the relative energy deposit in the last EM-Cal layer will also

have discriminating power.

If an electron interacts in the EM-Cal it will tend to have a narrow signature, while QCD jets

for instance will be less colimated. By studying the relative energy deposited in the highest cell

to the surroundings, it is possible to further reduce backgrounds. A pion will for instance also

tend to traverse longer into the calorimeter before interacting than an electron. The relative

energy in the first layer to the total energy is a measure of this.

The inner detector tracking can furthermore be used to separate photons from electrons. It

should be noted however that the inner detector hits are not used in the likelihood discriminant

but are enforced by rectangular cuts. This ensures that all electron candidates used in the
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Figure 2.13: ATLAS electron and muon reconstruction e�ciencies as function of transverse
energy(momentum) and pseudorapidity. (A,B) Electron e�ciencies for data and expectations
from Monte Carlo for the 7 TeV and 8 TeV data samples. (C,D) Muon e�ciencies for data
and Monte Carlo here only shown for the 8 TeV sample. (C) E�ciency of inner detector tracks
from muons. (D) E�ciencies for di↵erent reconstruction methods: CB: Combined. CB+ST
Combined and Segmented Tagged. CaloTag: Muons with ⌘ in the spectrometer crack region

which are identified in the calorimeter[86][79].

analysis have a well measured four momentum. To improve the track quality, the inner detector

track is required to match the electromagnetic shower-shape. The electrons are reconstructed

with a Gaussian sum fitter that improves the electron E/p to be ⇠ 1 by including photon

emissions from brehmstralung.

The energy measurement for most electrons will be based on the calorimeter deposit. For low

energy electrons (Ee < 30 GeV) the measurement is however based on a combination of EM

calorimeter and tracking due to the lower calorimeter resolution.

The 2011 electron identification uses the same parameters as the 2012, but only imposes

rectangular cuts instead of the likelihood approach.

The muon identification is somewhat simpler. In general ATLAS uses di↵erent identification

criteria for muons:

• Combined muons: Reconstruction uses combined information from muon spectrometer

and inner detector.
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Type Description

Hadronic leakage
Ratio of ET in the first hCal layer to the EM cluster for |⌘| < 0.8
or |⌘| > 1.37.

Ratio of ET in hCal to the EM cluster for 0.8 < |⌘| < 1.37.

Third layer of EM calorimeter Ratio of energy deposit in the third ECal layer to total energy.

Middle layer of EM calorimeter
Lateral shower width:

p

(⌃Ei⌘2i )/(⌃Ei)� ((⌃Ei⌘i)/(⌃Ei))2. Ei

and ⌘i are the energy and pseudorapidity of cell i in a window of
3x5 cells.

Ratio of the energy in 3x3 cells over the energy in 3x7 cells centred
at the cluster and energy ratio of 3x7 to 7x7 cells.

Strip layer of EM calorimeter

Shower width,
p

(⌃Ei(i� i
max

)2)(⌃Ei). The index runs over a
window of around 20 strips in ⌘; �⌘ ⇥�� ⇡ 0.0625⇥ 0.2.

Ratio of largest to second largest energy deposit in the cluster
divided by their sum.

Strip energy deposit to total EM energy.

Track quality

Number of B-layer hits discriminates against photon conversions.

Number of hits in the pixel detector.

Combined number of hits in pixel and SCT hits.

Relative momentum loss in the inner detector.

TRT
Total number of TRT hits.

Fraction of TRT hits with high threshold signature.

Track-cluster matching
�⌘ between cluster position in EM strip layer and expectation
from track.

�� between cluster position in EM middle layer and expectation
from track. Track momentum is re-scaled to EM cluster energy.

Table 2.5: Electron Identification Criteria. Track quality requirements are applied directly
instead of entering the likelihood model.

• Stand-alone muons: Reconstruction is solely based on parameters measured in the muon

spectrometer. Stand-alone muons are especially useful outside the inner detector cover-

age of |⌘| < 2.5

• Segment tagged muons: Reconstruction is performed in the inner detector and track

parameters are taken from there. The track is associated with segments in the precision

muon chambers.

• Calorimeter tagged muons: Reconstruction is performed in the inner detector. The muon

track is compatible with a minimum ionising particle signature in the calorimeter. The

calorimeter reconstruction is used for muons hitting the spectrometer crack at |⌘| < 0.1.

The analysis will mainly use STACO muons (Segment TAgged, COmbined muons), to get the

optimal purity and quality at the cost of some e�ciency, but allow at most one calorimeter of

stand-alone muon per lepton quadruple.

Moreover, the inner detector selection listed in Table 2.6 is imposed.



68 2.4 Lepton Identification for the H ! ZZ⇤ ! 4` Analysis

ID Hit requirements 2011

ID pixel and SCT

At least one B-layer hit if expected
More than one pixel hit. Passing an inactive sensor counts as hits
More than five SCT hits. Passing an inactive sensor counts as hits
At most three pixel and SCT holes

TRT Hits if |⌘| < 1.9 More than five hits, where number of outliers make out at most 90%
TRT Hits if |⌘| � 1.9 If more than five hits, require number of outliers make out at most 90%

ID Hit requirements 2012

ID pixel and SCT
At least one pixel hit. Passing an inactive sensor counts as hits
More than four SCT hits. Passing an inactive sensor counts as hits
At most three pixel and SCT holes

TRT Hits if 0.1 < |⌘| � 1.9 More than five hits, where number of outliers make out at most 90%

Table 2.6: Inner detector requirements imposed on muons for the H ! ZZ⇤ ! 4l analysis.
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Figure 3.1: H ! ZZ⇤ ! 2e2µ candidate, m
4` = 124.3 GeV, mee = 76.8 GeV, mµµ =

45.7 GeV[87], ATLAS Experiment © 2014 CERN.
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Figure 3.2: H ! ZZ⇤ ! 4µ candidate, m
4` = 124.6 GeV, mµµ = 89.7 GeV, 24.6 GeV[87],

ATLAS Experiment © 2014 CERN.
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3.1 Introduction

The four-lepton final state can in general be described with eight parameters for a fixed Higgs

mass: Four lepton four-vectors give sixteen degrees of freedom. Since each of these are real

particles, they are bounded to lie on their invariant mass shell resulting in twelve degrees of

freedom. Constraining the full system to the Higgs four-vector results in eight.

Theoretical descriptions exist of how probable it is for any of the Standard or alternative

models to fall into any region of this phasespace. In a perfect world, the analysis likelihood

could readily be constructed from this. In real life however the decay will be observed through

a detector, giving rise to resolution and acceptance e↵ects. The quest is to find a description

that convolutes the theoretical predictions with detector behaviour in a computationally man-

ageable way.

It is in principle possible to simulate the behaviour of the detector when faced with four-lepton

production to a very high precision. Simulations however work on an event-by-event basis.

The simulation is costly, but the dimensionality of the phase space is more problematic. Ima-

gining a ”brute-force” analysis where each dimension of the phase space is divided into 10

regions would result in a total of 108 regions. Even if it was possible to choose the phasespace

such that the events would be reasonably uniformly distributed in it, it would be close to

impossible to populate such a phasespace with enough statistics.

The analyser is thus faced with a choice. Either find a simplified description of the detector

behaviour or perform a dimensional reduction. The mapping to the reduced phasespace will

have to be defined such that pratically all relevant information is conserved.

The analyses described in this section will be of the latter type. The hypothesis tests will use

boosted decision trees to distinguish models and the tensor structure fit will make use of an

approach based on matrix element observables.

The analysis description starts with the event selection, i.e. a description of how H ! ZZ⇤ !
4` events are identified, how many are expected and how many are observed.

The fixed hypothesis tests introduce the analysis that aim to tests the SM against various

pure BSM scenarios. The focus will be on tests against the BSM spin-0 and spin-2 models

that were introduced in Section 1.2.3.

Finally, the Tensor Structure fit will be described. The section will focus on theH ! ZZ⇤ ! 4`

analysis, but also include its combination with H ! WW ⇤ ! e⌫µ⌫. The section will conclude

with some high-luminosity prospects studies.

A description of how models are constructed and how statistical inference from them is made

is given in App. A. The tools that will be used throughout the analysis are described in this

part as well. The appendix is self contained and can be read as a whole or used as a reference

for the analysis sections.
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3.2 The H ! ZZ⇤ ! 4l Signal Region

3.2.1 Event Selection

A H ! ZZ⇤ ! 4` optimised selection is imposed after the lepton reconstruction described in

Section 2.4. The selection follows what is described as the inclusive selection in [85].

First, events passing the trigger described in the previous section are required to be recorded

when any relevant detector system in ATLAS was fully operational. Events are required to

have at least one vertex with associated track pT > 400 GeV. The primary vertex is chosen

to be the one with the highest summed pT . Electrons that are chosen to possibly constitute

a Higgs candidate are required to have a transverse impact parameter less than 10 mm from

the primary vertex. Muons have a stricter requirement of 1 mm due to contamination from

cosmic-rays.
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Kinematic requirements are imposed on the individual

electron and muons. The electrons are required to

be reconstructable in the inner detector by having a

pseudo-rapidity |⌘| < 2.47. Moreover, in order to re-

duce the large QCD background and improve calori-

meter ET resolution a minimum of 7 GeV transverse

energy is required.

The muons are divided into three categories of di↵er-

ent types of reconstruction, see Section 2.4 for specific-

ation. The segmented tagged or combined muons are

required to be reconstructable in the muon spectro-

meter and have transverse momentum of 6 GeV. The

momentum again ensures a reduction of low energy

backgrounds. Muons reconstructed by the calorimeter

in the crack region have higher requirements on trans-

verse momentum as a result of the higher background

acceptance. Finally, stand-alone muons are also accep-

ted if they fall outside of the inner detector acceptance.

At most one calorimeter or stand-alone muon is accepted at a time due to their lower purity.

The leptons are required to be isolated to reduce contamination from QCD. The specific values

used in the selection can be found in Tab. 3.1.

For electrons the surrounding energy density is subtracted from the cluster to remove contri-

butions from pile-up. The muon energy deposit in the calorimeter is estimated from cells with

energy 3.4� above the quadrature sum of the expected electronic and pile-up noise. If another

lepton that passes the selection is found inside the isolation cone, its energy will be subtracted

when calculating the summed energy.
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Following the individual lepton selection, a quadruple is defined as a pair of same-flavour

opposite-sign leptons: 4e, 4µ, 2e2µ, 2µ2e. The 4e and 4µ events have two possible ways to

pair the oppositely charged leptons. The leading lepton pair is defined to be the combination

with invariant mass closest to the nominal mZ . If more than four leptons pass the require-

ments, the second pair is chosen as the next same-flavour opposite sign pair with mass closest

to mZ . The quadruple of leptons is restricted by imposing transverse momentum requirements

on the leading leptons. Lepton pair invariant masses are furthermore restricted to make the

probability that they stem from Z bosons higher. A J/ veto finally is imposed together with

calorimeter/track isolation and impact parameter cuts.

In the case that enough pairs pass the event such that it is possible to reconstruct several

Higgs bosons, only one is chosen. The choice is based on the expected signal yield of the four

di↵erent final states: N4µ > N2e2µ > N2µ2e > N4e.

Final state photon radiation recovery is attempted after the selection. Good theoretical de-

scriptions of the Z ! ``+ � radiation are available. Two di↵erent types of recovery are tried,

collinear and non-collinear. The collinear looks for a photon cluster within �R < 0.15 with

transverse energy ET > 1.5 GeV. The collinear recovery only applies to muons. If no collinear

photon is found, non-collinear photons are searched for. The non-collinear looks for photons

outside �R > 0.15 with ET > 10 GeV. The non-collinar recovery applies both to electrons

and muons. In all instances it is required that the photons are isolated.

Collinear corrections are applied if 66 GeV < mµµ < 89 GeV and mµµ� < 100 GeV. The

non-collinear correction applies to events with m`` < 81 GeV and m``� < 100 GeV. The col-

linear recovery is estimated to have a photon e�ciency of 0.7 with purity of 0.85, while the

non-collinear has a photon e�ciency of 0.6 but with high purity of 0.95.

The H ! ZZ⇤ ! 4` analysis uses a signal region defined by the mass window m4l 2
[115 GeV, 130 GeV]. Table 3.1 summarises the di↵erent criteria that are imposed on data

to identify Higgs candidates. The invariant mass distribution for selected events together with

signal and background expectations can be found in Figure 3.3.

3.2.2 Reducible backgrounds

Beside the ZZ⇤-continuum, a number of di↵erent process-types will be able to emulate the

four lepton signal. The ZZ⇤ background is considered irreducible in the sense that the final

state objects are identical to that of the signal; four isolated leptons1. Contrary to the con-

tinuum are the irreducible backgrounds where other types of physics objects will emulate the

behaviour of the isolated leptons. This could for electrons be jets and for muons be the muonic

decay of the heavy flavour b quark and tt̄ production.

It is in general di�cult to identify all di↵erent production mechanisms that will be able to

fake the final state behaviour. Another problem exist in generating enough MC to fully de-

scribe the background. Take for instance the Z ! ll + �2 jets, where the additional jets fake

1Irreducible is a bit stronger than reality since production and decay observable distributions will di↵er
between Higgs and ZZ⇤-continuum production. It is possible to determine the favoured production mechanism
as will be demonstrated in Section 3.3
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Lepton selection

Electrons Identification as in Sect.2.4 and ET > 7 GeV, |⌘| < 2.47

Muons

At most one calo or stand-alone muon. Others should be combined
or segmented tagged, as in Sect.2.4.

STACO: pT > 6 GeV, |⌘| < 2.7.

Calo: pT > 15 GeV, |⌘| < 0.1.

Stand-alone: pT > 6 GeV, 2.5 < |⌘| < 2.7. �R > 0.2 from any
segment tagged.

Event Selection

Kinematic Selection

A candidate consist of one quadruple of two same-flavor, opposite-
charge leptons pairs.

Three leading lepton pT of minimum 20, 15, and 10 GeV respectively.

Leading di-lepton mass m12 defined to be the pair with an invariant
closest to the on-shell Z mass.

Select quadruple with pair masses closest to the on-shell Z mass.

Leading di-lepton mass: 50 GeV < m12 < 106 GeV.

Sub-leading di-lepton mass: 12 GeV < m12 < 106 GeV.

Discard candidate if a same-flavor opposite-sign lepton pair exist with
mll < 5 GeV.

�R(l, l‘) > 0.10(0.20) for same (di↵erent) flavour candidate leptons.

Isolation

Apply isolation to all quadruple leptons, removing contributions from
any other in the quadruple.

Lepton track:
P

pT /pT < 0.15 within �R = 0.2.

Electron Calorimeter:
P

ET /ET < 0.30 within �R = 0.2.

Muon Calorimeter:
P

ET /ET < 0.30 within �R = 0.2.

Stand-alone muon Calorimeter:
P

ET /ET < 0.15 within �R = 0.2.

Impact parameter
d0/�d0 < 6.5 for all quadruple electrons.

d0/�d0 < 3.5 for all quadruple muons.

Table 3.1: 4` quadruple candidate requirements. �R =
p

�⌘2 +��2.

the third and fourth electron. The process has a cross section ⇠ 1 pb (see e.g. Figure 1.5)

and BR(Z ! ee, µµ) = 6.6%[9]. As will be demonstrated below, a total of 1.04 events of

this category is expected to pass the selection and fall in the mass window in the 2012 data-

set. As a back-of-the-envelope estimation of the e�ciency, imagine all of these coming from

Z ! ll+ �2Jets. The resulting e�ciency is ' 0.005%. In other words, by blindly generating

Monte Carlo only one event in 20000 would be useful for further analysis. Millions would be

necessary for this single background type.

It is instead chosen to estimate the reducible background behaviour from control regions.

In general the most likely process type to emulate a H ! ZZ⇤ ! 4` event will be of the type

Z + `` where two additional objects fake the sub-leading leptons. The reducible backgrounds
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are divided into Z ! 2`+ 2e and Z ! 2`+ 2µ as a consequence of their very di↵erent identi-

fication mechanisms.

Control regions are defined by inverting or relaxing selection criteria. As an example, by in-

verting the impact parameter significance requirement and isolation criteria for the subleading

muons the ``µµ category will contain b-quarks due to their macroscopic flight distance.

The expected number of events in the signal region is determined from transfer factors that

are estimated using Monte Carlo samples. Three di↵erent approaches for both Z + ee and

Z+µµ have been constructed to estimate the reducible backgrounds where one is used for the

nominal description and the two others are used to describe the systematic uncertainty of the

approach. A full description can be found in [85, Sect. 6].

3.2.3 Expectations

The number of Higgs bosons that are expected to be produced, decay to the four-lepton final

state and finally be reconstructed/identified is given in Table 3.2. A total of 18 signal events are

expected to be observed. Not much compared to the total number of Higgs produced by LHC

during Run-I (⇠ 500000[34]). Luckily the background processes that pass the selection are

equally rare. The post-selection expected and observed number of events are found in Table 3.3.

The signal and ZZ⇤ columns are derived from Monte Carlo simulations, while the reducible

backgrounds are extrapolated from control regions. The 18.0 signal events are compared to

10.4 expected events from the ZZ⇤-continuum and 4.2 for reducible backgrounds. The numbers

take into account only events falling in the signal mass window, 115 GeV  m4`  130 GeV.

p
s FS �H [pb�1] NRun�I BR(H ! ZZ⇤ !FS) [10�5] NRun�I E↵. NRun�I

7 TeV

4e

17.1 77.1 · 103
3.42 2.64 17.0% 0.45

4µ 3.37 2.60 39.2% 1.02
2e2µ 3.11 2.40 26.7% 0.64
2µ2e 3.11 2.40 20.0% 0.47

8 TeV

4e

21.8 443 · 103
3.42 15.1 19.3% 2.91

4µ 3.37 14.9 39.0% 5.81
2e2µ 3.11 13.8 27.0% 3.72
2µ2e 3.11 13.8 21.2% 3.00

total 520 · 103 67.5 18.0

Table 3.2: Signal cross sections and e�ciencies. Cross sections and branching ratios from
[34]. Production include gluon fusion (88%), vector boson fusion (7.2(7.1)% for 8 TeV(7 TeV)
and associated production. A Higgs mass of 125.5 GeV is assumed. Note that the branching
ratios of 2e2µ and 2µ2e are assumed the same, while not completely accurate, it is close

enough for this purpose. E�ciencies are derived from [34] and [5].

Spin/CP Disciminating Variables

The expected and observed final state distributions are examined after the event selection

is imposed. Figure 3.4 show the distributions related to production and the kinematic dis-

criminant KD, while Figure 3.5 show decay variables. The reducible backgrounds and the
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SM Signal ZZ⇤ tt̄, Z + jets Total expected Observedp
s = 7 TeV

4µ 1.02±0.10 0.65±0.03 0.14±0.06 1.81±0.12 3
2µ2e 0.47±0.05 0.29±0.02 0.53±0.12 1.29±0.13 1
2e2µ 0.64±0.06 0.45±0.02 0.13±0.05 1.22±0.08 2
4e 0.45±0.04 0.26±0.02 0.59±0.12 1.30±0.13 2
Total 2.58±0.25 1.65±0.09 1.39±0.26 5.62±0.37 8p

s = 8 TeV
4µ 5.81±0.58 3.36±0.17 0.97±0.18 10.14±0.63 13
2µ2e 3.00±0.30 1.59±0.10 0.52±0.12 5.11±0.34 8
2e2µ 3.72±0.37 2.33±0.11 0.84±0.14 6.89±0.41 9
4e 2.91±0.29 1.44±0.09 0.52±0.11 4.87±0.32 7
Total 15.4 ±1.5 8.72±0.47 2.85±0.39 27.0 ±1.6 37

Table 3.3: Expected signal and background yields together with number of observed events
in data in the 115 GeV < m

4` < 130 GeV signal region. The number of signal events is given
for a Higgs boson mass of 125.5 GeV[5].
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Figure 3.4: Expected and observed production distributions after event selection for events
falling in the signal mass range 115 GeV  m

4`  130 GeV. The expected contributions from
a Standard Model Higgs and Spin-2 bosons with di↵erent quark/gluon couplings are shown

separately. Figures show from left to right pT , ⌘ and the kinematic discriminant KD.

ZZ⇤-continuum are shown together with SM and alternative signal distributions. The Stand-

ard Model is compared to alternative spin-2 models in the first set of figures and compared

to the 0� pseudo-scalar in the second set. The kinematic discriminant will be described in

Section 3.3.

It is clear that it is not possible to tell by eye which model is preferred from the figures alone.

More advanced methods will have to be used that take into account the full correlation between

the observables.

3.2.4 Systematic Uncertainties

The expected distributions and normalisations will be associated with uncertainties. Partially

due to the finite statistics size and partially due to imperfect knowledge. The latter type
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Figure 3.5: Expected and observed angular distributions after event selection for candidates
falling in the signal mass range: 115 GeV  m

4`  130 GeV. The expected contributions from
a Standard Model and pseudo-scalar boson are shown separately. The figure show in order,

m
12

, m
34

(top), cos ✓
1
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2

(centre), � (bottom)[5].
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that can lead to systematic uncertainties will be described here. The individual analyses will

also have uncertainties associated with them from the way they are constructed, but the vast

majority will fit into two categories; theoretical and experimental uncertainties. The di↵erent

types of e↵ects that can influence the analyses are collected here. The ATLAS collaboration

uses a common naming scheme for systematic uncertainties, which will be used in the analyses

descriptions. The systematic uncertainties are here listed according to this scheme and fall

into the following categories:

Theoretical:

alpha BR VV: The H ! V V branching ratio. A 4% uncertainty is assigned to the signal

normalisation for H ! ZZ⇤ ! 4`.

alpha pdf Higgs ggH: Parton density uncertainty for signal production. A↵ects the signal

normalisation with a variability of 7%.

alpha pdf qq: Parton density uncertainty for ZZ⇤ production. Normalisation uncertainty of

4%.

alpha QCDscale Higgs ggH: Renormalisation and factorisation scale of signal production.

Normalisation is allowed to vary 8% down and 7% up.

alpha QCDscale VV: Renormalisation and factorisation scale of background production. The

e↵ect is estimated to be 5% at
p
s = 7 TeV and 3% at

p
s = 8 TeV of the normalisation.

Experimental:

alpha Lumi 2011, alpha Lumi 2012: Uncertainty in the luminosity collected by ATLAS for

the 2011 and 2012 datasets respectively. The uncertainty will a↵ect the signal and

background normalisation in a correlated way. The uncertainties are estimated to be

1.8% for
p
s = 7 TeV and 2.8% for

p
s = 8 TeV.

alpha ATLAS MU ⇤: Uncertainties associated with muons. The uncertainties include e�ciency,

identification, resolution and trigger performance. Four nuisance parameters are assigned

to the spectrometer and one to the trigger. The uncertainties a↵ect both shape and

normalisation.

alpha ATLAS EM ⇤: Uncertainties associated with the electromagnetic calorimeter describing

the energy scale and resolution. The uncertainties take among other into account pileup

e↵ects and material uncertainties. 21 nuisance parameters are assigned a↵ecting both

shape and normalisation.

alpha ATLAS EL: Six uncertainties related to electron reconstruction and identification a↵ect-

ing both signal and normalisation variations.

Analysis:
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alpha ATLAS norm SF H4l Z llee 2011,2012 Reducible background normalisation uncertainty

for the 4e and 2µ2e final states. The following uncertainties are assigned, 4e-2011: 2.0%,

2µ2e-2011: 2.3%, 4e-2012: 2.1%, 2µ2e-2012: 2.3%.

alpha ATLAS norm SF H4l Zbb llmumu 2011,2012 Reducible background normalisation un-

certainty for the 4µ and 2e2µ final states. The following uncertainties are assigned,

4µ-2011: 4.3%, 2e2µ-2011: 3.8%, 4µ-2012: 1.9%, 2e2µ-2012: 1.7%.

alpha ATLAS shape SF H4l Z llee 2011,2012 Uncertainty in the reducible background dis-

tributions of the 4e and 2µ2e final states.

alpha ATLAS shape SF H4l Zbb llmumu 2011,2012 Uncertainty in the reducible background

distributions of the 4µ and 2e2µ final states.

alpha ATLAS ⇤ Analysis specific uncertainties will be described in their individual sections.

The systematic uncertainties are included in the likelihood model of each analysis that will

be presented. Normalisation uncertainties are included by pdf-scaling. Shape uncertainties

are described by pdf-interpolation between a nominal distribution and two templates that are

estimated to represent the one standard deviation variation in either direction of the parameter.

A Gaussian constraint term is moreover multiplied on the likelihood to reflect the preference

of the nominal parameter value and limiting the model from straying far from expectations.

Denoting the parameter of interest ↵, constraint term C and set of nuisance parameters ✓ the

likelihood becomes:

L(↵) ! L(↵, ✓) · C(✓) , Ci = e�✓2i /2 ,

where ✓ = ±1 correspond to variations described above. A separate constraint term is added

for each nuisance parameter.

An e↵ect of constraining the likelihood this way is, that if an unimportant parameter is included

the uncertainty on the fitted parameter will be 1. The reason for this is if the parameter is

unimportant for the analysis, the unconstrained likelihood is not going to vary with it. The

constrained likelihood on the other hand will be maximised at the nominal nuisance parameter

value due to the Gaussian constraint term. The uncertainty on the parameter is given by how

much it should be changed before the log-likelihood ratio has grown by one:

1 = �2 ln� = �2 ln
L(↵,±�✓) · C(±�✓)

L(↵̂, 0) · C(0)
' �2 ln e�(±�2

✓)/2 ) ✓ = ±1

If the nuisance parameter fits to zero with unit uncertainty it can be taken as indication that

it is unimportant for the analysis.
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3.3 Fixed Hypothesis Tests

The models that will be examined have been motivated and described, the experiment run and

selection of events imposed. It is now time to determine if the observations are in agreement

with the Standard Model or something more exotic.

The first part of the analysis focuses on the fixed hypothesis tests, where the Standard Model

is tested against alternative BSM scenarios one by one. Keeping in mind the description of

models in Section 1.2.3, the tests can be outlined as follows:

First the Standard Model is tested against other spin-0 models; the positive parity, higher

dimensional operator boson 0+h and the pseudo-scalar 0�, Table 1.2. Following the spin-

0 tests, the Standard Model is tested against spin-2 models with di↵erent QCD coupling

configurations, see Table 1.3. The spin-0 and spin-2 tests will constitute the main result of

the fixed hypothesis section. Two tests of a spin-1 CP-even and CP-odd boson using the

H ! ZZ⇤ ! 4` decay chain will also shortly be mentioned. The resonance decay to two

photons however rules out this possibility.

From the way the models were defined in Section 1.2.4 only the five observables describing

the decay will be influenced by the specific spin-0 model. Spin-2 (and spin-1) production will

however in general di↵er due to the di↵erent QCD couplings. The section will describe how

final state kinematics can be used to separate models2.

3.3.1 Distinguishing Models with Boosted Decision Trees

For each hypothesis test, two Boosted Decision Trees (BDT) are used. One is optimised

to separate the two Jp hypotheses under question and the other optimised to separate a

Standard Model Higgs Boson (Jp = 0+) from the ZZ⇤-continuum background. This single

background discriminant is used for all hypothesis tests. The dependency between the angular

and background discriminants will be described using two-dimensional templates. The final

state observables used for the angular and kinematic BDT discriminants are as follows:

• 0+ vs. 0� and 0+ vs. 0+h separation: m12, m34, cos(✓1), cos(✓2), �.

• 0+ vs. 2+ separation: m12, m34, cos(✓1), cos(✓2), �, cos(✓⇤), �1.

• 0+ vs. ZZ⇤ separation: m4l, pT�4l, ⌘4l, KD.

where m4l, pT�4l, and ⌘4l are the mass, transverse momentum, and pseudorapidity of the

four-lepton system respectively. The observables are defined in Figure 1.8.

2On a personal note, I have chosen to divide this section into two parts. First, the analysis in its final
version is described which is followed by a short description of the earlier implementation. During my Ph.D.
studies I took part in the full completion of the first version but changed to focus on the tensor structure fit
that will be described later, after the initial stages of the second iteration. During these I was involved in the
BDT optimisation, shift to using two-dimensional KDE templates and testing the statistical procedure that will
be described. After I switched to the tensor structure analysis I also wrote the documentation of the second
iteration.
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The KD, an abbreviation of Kinematic Discriminant, is defined by the ratio of Higgs and

ZZ⇤-continuum matrix elements:

KD = log

✓

ME2
H

ME2
ZZ

◆

The Matrix elements (ME) are calculated at leading order using MadGraph[49]. The matrix

element take into account the full final state structure and o↵ers extra discriminative power

against the background.

The final state observables that the boosted decision trees are trained on are summarised in

Table 3.5. The distributions used in the di↵erent trainings are seen in Figure 3.5 for the 0+

and 0� states and Figure 3.4 for the 0+ state and di↵erent 2+ models. The figures do not do

the problem full justice as separation also arises from parameter correlations.

The training is performed using the TMVA tool for multivariate analysis[89]. Other types

of multivariate approaches have been tested, like the Neural Network and Fishers Linear

Discriminant. The BDT approach is found to give the optimal result, as it is able to describe

the non-linear correlations between the final state observables without introducing significant

overtraining.

The Jp discriminating BDTs are constructed from between 200 and 800 trees, each having a

maximal depth of 3. The background discriminant is trained with between 300 and 900 trees

with a maximal depth of 3 to 5. In all cases, the BDTs are optimised using gradient boosting

and bagging re-sampling as described in [89, Sect. 7]. A description of how BDT separation

is obtained is moreover given in App. A.4. Finally, a detailed list of the setup can be found

in Tab. 3.4. All configurations are chosen to give the maximal separation without creating

overtrained discriminants.

Separated Hypotheses NTrees Shrink. MNP S/B BSF NCuts Max depth
Jp = 0+, 0� 200 0.10 0.5 1 0.6 20 3
Jp = 0+, 0+h 800 0.03 0.6 1 0.8 20 3
Jp = 0+, 2+m 200 0.10 0.5 1 0.6 20 3
Jp = 0+, ZZ-continuum

4e 300 0.03 0.6 1.5 0.6 20 3
4µ 900 0.05 0.6 1.5 0.6 20 5
2e2µ 300 0.03 0.6 1.5 0.6 20 3
2µ2e 300 0.02 0.6 1.5 0.6 20 3

Table 3.4: Parameters used for the BDT training. The definitions of the options are lis-
ted in Table 22, 23 and 24 of [89]. The names used here are translated to the source as
follows: N

Trees

: NTrees, Shrink.: Shrinkage, MNP: MinNodeSize, S/B: SigToBkgFraction,
BSF: BaggedSampleFraction, N

Cuts

: nCuts, Max depth: MaxDepth. All forests of trees are
moreover boosted using bagging re-sampling.

For each separation, the MC samples of the two hypotheses are divided into two sub-samples

of equal size, whose entries are chosen at random. The BDT training is performed on one of

the partitions, the training sample. To ensure that the discriminant training did not optimise

separation on di↵erences caused by statistical fluctuations, the resulting shape is compared
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to the second half of the data samples. To evaluate the e↵ect of overtraining the resulting

ROC-integral is computed for both the test sample and training sample.

The ROC-curve (Receiver Operating Characteristic) describes the connection between an ob-

servable’s signal e�ciency and background rejection power. In other words, what the rate of

type-I error is for any given type-II error.

Here the ROC-curve is defined such that an integral of 1.0 indicates perfect separation while

0.5 indicates random selection between the two samples:

ROC : 1� ✏bkg vs ✏sig

If the curve is defined in this way the integral can be interpreted as the average probability

of correctly classifying a randomly selected event. It thus provides a good measure of the

separation power. For each separation a ⇠ 1% di↵erence or below is found between the test

and training samples, see Table 3.5.

The discriminating distributions that will be used in this analysis are shown in Figure 3.6. By

combining information from the di↵erent observable distributions a preference for SM can be

seen.
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Figure 3.6: BDT discriminant distributions for data, backgrounds and signal models. The
top row show the spin-0 models: (A) 0+ vs. 0� separation. (B) correlation between 0+ vs.
0� and background discriminant. (C) 0+ vs. 0+h . Bottom row shows spin-2 discriminants:
(D) Universal coupling model (q = g). (E) small gluon coupling. (F) No quark coupling.
The non-universal spin-2 distributions have a transverse momentum cut-o↵ of 300 GeV[5].



84 3.3 Fixed Hypothesis Tests

Separation Training parameters
R

ROCTrain
R

ROCTest Di↵erence
p
s = 8 TeV

Jp = 0+, 0� cos(✓1), cos(✓2), m1, m2, � 0.681 0.677 0.6 %

Jp = 0+, 0+h cos(✓1), cos(✓2), m1, m2, � 0.630 0.624 1.0 %

Jp = 0+, 2+ cos(✓1), cos(✓2), m1, m2, �, cos(✓⇤), �1 0.629 0.622 1.1 %

Jp = 0+, ZZ⇤

m4l, pT�4l, ⌘4l, KD

4e 0.887 0.884 0.3 %

4µ 0.891 0.886 0.6 %

2e2µ 0.887 0.884 0.3 %

2µ2e 0.885 0.882 0.3 %
p
s = 7 TeV

Jp = 0+, 0� cos(✓1), cos(✓2), m1, m2, � 0.683 0.680 0.4%

Jp = 0+, 0+h cos(✓1), cos(✓2), m1, m2, � 0.629 0.628 0.2%

Jp = 0+, 2+ cos(✓1), cos(✓2), m1, m2, �, cos(✓⇤), �1 0.627 0.625 0.3%

Jp = 0+, ZZ⇤

m4l, pT�4l, ⌘4l, KD

4e 0.878 0.875 0.3%

4µ 0.890 0.881 0.1%

2e2µ 0.876 0.878 0.2%

2µ2e 0.873 0.876 0.3%

Table 3.5: BDT summary table. The columns show in consecutive order the two models
for any training, the final state observables used as training parameters and the resulting
ROC integral for the sample the training has been performed on and a statistical independent
sample of equal size. The last column show the di↵erence in ROC-integral. The di↵erence
indicates the size of overtraining and is seen to be at most at the percentage level. 2+ numbers

are from the q = g model.

3.3.2 PDF Construction

For any given signal model and background, the discriminant separating the two spin-parity

states and the background discriminant is correlated to some degree. It is therefore necessary

to construct two-dimensional pdfs that are able to describe any non-trivial correlation to its

full degree.

For each hypothesis test, the JP -discriminant and background separating BDT distributions

are described with a two-dimensional histogram of suitable binning (40 ⇥ 40 bins). The dens-

ity of each model is estimated with simulated data. By construction, the BDT values are

confined to the range [-1, 1].

Populating a histogram of 1600 bins with simulated data would however require an unreason-

ably large amount of statistics. The pdfs are instead estimated from the histograms with a

Gaussian Multivariate Kernel Density Estimation (KDE) using the RooNDKeysPDFs pack-

age[90]. A description of the KDE method is given in App. A.2. The multivariate KDE is

performed with an adaptive bandwidth. Di↵erent choices of KDE bandwidths (h in Eq. A.5)
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have been examined, where it was found that scaling the nominal h (Eq. A.6) with 0.35 gives

the optimal description. The same procedure is done for signal, ZZ*-continuum and reducible

background processes separately.

All data are divided into the four final states 4e, 4µ, 2e2µ, and 2µ2e and centre of mass ener-

gies
p
s = 7, 8 TeV before having their parent distribution estimated with the KDE method.

The KDE is afterwards projected into the final histogram. As an example, the hypothesis test

separating the positive and negative spin-0 parity states will be based on eight pdfs for each

of the Jp = 0+, Jp = 0�, ZZ⇤-continuum, and reducible background process types. These are

all subsequently created in versions reflecting the systematic changes described below.

3.3.3 Statistical Treatment

In the fixed hypothesis analysis, pairs of di↵erent spin and parity models are tested against

each other. A maximum likelihood fit is performed on the events falling in the signal mass

region. The likelihood model for any given Jp hypothesis is of the form:

L(N̄ |Jp, µ, ✓) =
Nchan
Y

j

Nbin
Y

i

P (Ni,j | µj · S(jp)
i,j (✓) + Bi,j(✓)) · C(✓) , (3.1)

where P is a Poissonian distribution evaluated at the observed Ni,j events in observable bin i,

final state j depending on flavor of the four leptons and centre of mass energy. The expectation

values are symbolised by µ · S and B. The Si,j (Bi,j) value describes the signal (background)

probability density function evaluated in observable bin i, final state j, scaled by the integral

number of signal (background) events. The background is a sum of the ZZ⇤-continuum and

reducible backgrounds.

The nuisance parameter µ, the signal strength, have been emphasised from the remaining set,

✓. In the maximal likelihood fit the signal strength is freely allowed to change, modifying

the signal normalisation. The background normalisations are on the other hand contained

✓. The likelihood is moreover multiplied by a Gaussian constraint term C(✓) to constrain the

systematic variations to their expected ranges.

The ratio of profiled likelihoods is used as test statistic. It reads, as an example, for the

hypothesis test of Jp = 0+ and Jp = 0�:

� 2 ln⇤ = �2 ln
L(Jp = 0+, µ̂0+ , ✓̂0+)

L(Jp = 0�, µ̂0� , ✓̂0�)
, (3.2)

where µ̂ and ✓̂ symbolises the maximum likelihood estimator of µ and ✓ for the individual

likelihoods. The test statistic for all other hypotheses are constructed similarly.

A large ensemble of Monte Carlo pseudo experiments is used to estimate the expected test stat-

istic distribution of the di↵erent hypotheses. The p0 value for any hypothesis follows directly

as the tail integral of the distribution starting at the data test statistic value. Expectations for

di↵erent signal models are calculated using the median value of the test statistic distributions.
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3.3.4 Systematic Uncertainties

Dominant systematic uncertainties for hypothesis test

Nuisance parameter Average e↵ect on separation

Higgs Mass uncertainty, �m = 500 MeV
2.77%

alpha ATLAS Higgs mass

Muon spectrometer resolution
0.87%

alpha ATLAS MU MS RES MS

Reducible background normalisation in the 2e2µ + 4µ final

states
0.78%

alpha norm SF H4l Zbb llmumu 2012

Constant term of EM calorimeter resolution
0.71%

alpha EM mRes CT

qq̄ parton density function for ZZ⇤
0.64%

alpha pdf qq

Reducible background normalisation in the 4e + 2µ2e final

states
0.55%

alpha ATLAS norm SF H4l Z llee 2012

Background renormalisation and factorisation QCD scale
0.48%

alpha QCDscale VV

Sampling term of EM calorimeter resolution
0.46%

alpha EM mRes ST

Luminosity uncertainty
0.45%

alpha ATLAS LUMI 2012

Table 3.6: Dominant systematic uncertainties for the hypothesis test analysis and e↵ect of
each on the Jp = 0+ vs 0� separation. The e↵ect of each nuisance parameter is calculated
as the di↵erence between the result when including all systematic uncertainties, and when
each is shifted one standard deviation to either side. The average e↵ect is calculated from
the absolute value of the upward and downward shift. A threshold of 0.45% is chosen as to
where a systematic uncertainty has a potential impact on the result. The full list of systematic

uncertainties can be found in Table B.1, Appendix B.

Systematic e↵ects are described by either generating a dedicated Monte Carlo sample or as-

signing a set of event weights to the nominal sample. The variations are created for each

systematic uncertainty separately. The procedure described above of filling two dimensional

histograms and performing a KDE is repeated for each systematic change that a↵ect distri-

butions. The shapes corresponding to systematic changes are finally added to the likelihood

model before the fitting procedure. The majority of the systematic uncertainties in the BDT

spin and parity analysis are equivalent to those outlined in Section 3.2.4.

In addition to these, the construction of the BDT shape will add uncertainties. The additional

systematic changes related to the BDT discriminant that have been considered are as follows:

BDT Overtraining :



Chapter 3 Analysis 87

Finite statistic in the BDT training may potentially have an impact on the MVA out-

put. The MVA can optimise separation on statistical fluctuations present in the training

sample that are absent or di↵erent in the testing sample.

In order to assess the magnitude of this e↵ect, the expected separations between spin

and parity hypotheses are compared for the combined training and test sample (as in

the analysis) and for the separate samples. No di↵erence is observed.

This is also confirmed by the insignificant di↵erence in ROC integrals presented in

Tab. 3.5

Signal mass modelling :

alpha ATLAS Higgs mass

Mass resolution and mis-modelling of the reconstructed Higgs boson mass has been taken

as an additional source of systematic uncertainty. It is worth noting that the four lepton

mass is the strongest separating parameter used in the background discriminant. The

mass and the background discriminant are therefore correlated. A shift of 500 MeV in

the signal four lepton mass is applied to take this uncertainty into account. The change

in observable distributions are found to influence the results while changes in the signal

yield do not a↵ect the result.

In general, any systematic uncertainty that only a↵ects the combined signal normalisa-

tion can be absorbed in the signal strength. Only distribution changes are considered

for the final estimates.

Kernel Density Estimation :

alpha ATLAS rho signal, alpha ATLAS rho Redbkg, alpha ATLAS rho ZZ

It is likely that di↵erent choices of bandwidth of the KDE would have resulted in equally

valid descriptions while at the same time showing slight shape di↵erences. To estimate

the uncertainty introduced by the KDE procedure the bandwidth is changed from the

nominal 0.35 to 0.30 and 0.40. The same procedure is applied to signal, ZZ⇤-continuum

and reducible background shapes. A separate nuisance parameter is assigned to each.

The e↵ect of each nuisance parameter is subsequently estimated. This is done by calculating

the profiled likelihood ratio between the Jp = 0+ and Jp = 0� hypotheses when all nuisance

parameters are included and when a single one is shifted 1 standard deviation to either side.

The likelihood ratio value is for this purpose interpreted as a significance.

The di↵erence in significance when including all nuisance parameters and when shifting to

±1� is used as a measure of relevance of each systematic uncertainty. It is of great interest

to rank the systematic uncertainties, both because it is important to demonstrate that the

impact follows expectations, but also such that any irrelevant parameters can be discarded.

The computing time for the final significance should be mentioned is strongly dependent on

the number of nuisance parameters.

A threshold of 0.45% is chosen as to where a parameter has potential relevance for the ana-

lysis. The systematic uncertainties that are found above this threshold for the hypothesis
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test analysis are summarised in Table 3.6 while the full list can be found in Table B.1 of

Appendix B.

3.3.5 Summary of the BDT strategy

• At the first stage of the analysis, the full event selection is applied on all the signal

Monte Carlo samples for di↵erent spin and parity models and to the ZZ⇤ background

samples simulated in the 100 GeV < m4` < 150 GeV region. The reducible backgrounds

are estimated from control-regions in data. The observables sensitive to the spin and

parity of the underlying resonance are reconstructed for all the samples in the signal mass

region: 115 GeV < m4` < 130 GeV. The obtained set of observables is used to train a set

of BDT discriminants. A single background discriminant, used for all hypothesis tests, is

constructed to discriminate against the ZZ⇤ background continuum. A Jp discriminant

is trained to distinguish between one pair of spin and parity states. Discriminants to

distinguish Jp = 0+ from Jp = 0�, 0+h and 2+ are constructed. Several models for QCD

couplings are examined for the 2+ state. The distributions of values of Jp discriminants

applied to the signal and background samples are later used to compare to the observed

data as described below.

• At the second stage, the simulated signal and background distributions for the angular

and kinematic discriminants are described using two-dimensional histograms. All non-

trivial observable correlations can be taken into account in this way. The underlying

distributions are subsequently described using a Gaussian KDE to reduce the influence

of statistical fluctuations. The procedure is done separately for all eight channels: 4e,

4µ, 2e2µ and 2µ2e, each in versions of the two centre of mass energies 7 TeV and 8 TeV.

A separate histogram is created for each systematic uncertainty a↵ecting distributions.

• In the final stage, pairs of signal hypotheses are compared to each other. A large set

of pseudo-experiments are performed, with a maximal likelihood fit done separately for

each of the two signal models. The ratio of profiled likelihoods is used as a test statistic.

The test statistic distribution is created for each of the two hypotheses.

The expected exclusion, under the assumption of each signal model, is obtained from

the tail integral of the test statistic distribution starting at the median of the alternative

distribution. The test statistic is finally calculated in data and the observed exclusion

of each of the tested models follow from the tail integral of its test statistic distribution.

3.3.6 Results

Pseudo experiments are finally created to derive the exclusion of each model. For each model in

each hypothesis test, the test statistic of Eq. 3.2 is calculated for the pseudo experiments. First,

expected results are calculated and later compared to observations. Presented in Table 3.7

are the p0-values of expected and observed exclusion for various signal hypothesis with the

combined 7 TeV and 8 TeV data-samples. The table present both tests of Jp = 0�, 0+h and 2+
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assuming a Standard Model Higgs (Alt columns) and tests of the Standard Model Higgs under

the alternative hypotheses (Null column). The probabilities to obtain the test statistic value

under each hypothesis are labelled p0. The p0 values are also translated to the corresponding

number of Gaussian sigmas and to CLs values (p0(HAlt)/(1 � p0(HNull)), see e.g. App. A.1

for a description).

The values are derived from MC toy distributions and as such have a related statistical uncer-

tainty. The statistical uncertainty on the significances corresponds to at most 0.04 sigma and

equivalently is of the size of the last reported digit of the p0-values.

Data is seen to be in agreement with Standard Model expectations while the alternative tested

models are excluded with high confidence. The assumed QCD coupling is seen to a↵ect the

observed result where the absence of quark couplings is seen to be the least excluded. The

two spin-0 BSM hypothesis are assigned CLs of 0.054 (CP-odd) and 0.10 (CP-even). The

potential mixing of these to the SM Higgs will be the subject of the following section.

An equivalent analysis and its combination with the H ! WW ⇤ ! e⌫µ⌫ and H ! �� decays

is moreover described in [5].

p
s = 7 + 8 TeV

Hypotheses p
0

(JP
Null=SM

) p
0

(JP
Alt

) �(JP
Alt

) CL
s

(JP
Alt

)

Null, Alt Observed Expected Observed Expected Observed Observed

Jp = 0+, 0� 0.78 0.001 0.012 3.10 2.26 0.054

Jp = 0+, 0+h 0.63 0.016 0.037 2.14 1.78 0.10

Jp = 0+, 2+ with:

q = g 0.23 0.009 0.0007 2.36 3.2 0.0009

q = 2g, pT < 125 GeV 0.38 0.036 0.017 1.80 2.12 0.027

q = 2g, pT < 300 GeV 0.23 0.018 0.0023 2.09 2.84 0.0030

q = 0, pT < 125 GeV 0.49 0.040 0.037 1.75 1.78 0.071

q = 0, pT < 300 GeV 0.58 0.018 0.030 2.10 1.88 0.071

Table 3.7: The expected and observed exclusion for the combined 7 TeV and 8 TeV dataset
of di↵erent alternative spin and parity models for the hypothesis test analysis. The exclusions
are given in terms of p

0

-values and corresponding number of Gaussian sigmas. The Alt p
0

is
corrected for the SM p

0

to give the CL
s

. The stated values take into account all systematic
uncertainties that are evaluated to be significant (impact � 0.45%). When calculating the

expected numbers, all nuisance parameters have been profiled to the observed data.
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3.3.7 Previous iterations of the H ! ZZ⇤ ! 4` Fixed Hypothesis Tests

The results presented so far constitute the second iteration of the ATLAS Higgs spin/parity

hypothesis tests. In this section the first iteration will be presented. The results were pub-

lished in [3] with more details outlined in [2].

The analyses structure for the H ! ZZ⇤ ! 4` decay chain is much the same. Some minor

di↵erences are however worth mentioning:

• The first iteration analyses did not use theBDTZZ discriminant to suppress backgrounds,

nor were distributions described with KDEs. Two signal regions are instead defined: A

high signal to background fraction; m4l 2 [121 GeV, 127 GeV] and a low signal to back-

ground region; m4l 2 [115 GeV, 121 GeV]
S

[127 GeV, 130 GeV].

• An algorithm is structured such that after each BDT is trained, Monte Carlo simulation

of signal and backgrounds are filled into one-dimensional histograms. To ensure that

there are no empty bins present, the maximal range where all templates are populated is

found. While simpler, the approach is somewhat less sensitive due to the weaker back-

ground suppression.

Following this, the construction of the likelihood model and test statistic is the same.

A larger variety of models are moreover examined. Both the CP-even and CP-odd spin-1

boson are tested, see Section 1.2.3. The spin-2 minimal coupling model 2+m that is included in

the results is equivalent to the previous 2+ with q = g. A negative parity spin-2 model is

moreover tested. Finally, di↵erent fractions of quark and gluon cross sections for the positive

parity spin-2 are examined.

The expected and observed discriminant distributions for testing 0�, 1+ and 2+ against SM

can be found in Figure 3.8. Monte Carlo pseudo experiments are created and the likelihood is

maximised under each hypothesis, to calculate the ratio of profiled likelihoods. The distribu-

tion for each hypothesis can be found in the same figure.

The p0-values, significances and CLs values are listed in Table 3.8. The Standard Model is

again concluded to be preferred over all alternative hypotheses.

One will notice when examining the table for hypothesis scan of di↵erent spin-2 qq̄ fractions,

that the test statistic also has a tendency to fall in the tail of the Standard Model distribution.

The spin-2 models are more excluded than the Standard Model predicts. The SM mean and

one, two � bands for di↵erent fractions can be found in Figure 3.7b. To figure out where

the deviation from Standard Model prediction originates from the initial decay distributions

are examined. Figure 3.7a show the m34 distribution. A deviation in data is seen for low

masses. It should be underlined that the tests are performed on the same data and the BDT

optimisation is partly performed on the same Monte Carlo such that deviations should in no

way be considered independent. None of the measurements moreover fall outside of the 2�
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band.

The deviation disappears as seen in Figure 3.5 after the updated selection described in Sec-

tion 3.2
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Figure 3.7: (A) m
34

distribution of the “first iteration” event selection. Note the deviation
in m

34

for low values compared to Figure 3.5. (B) Test statistic distributions for di↵erent qq̄
fraction of spin-2 production. The Standard Model is preferred in all instances[3][2].

p
s = 7 + 8 TeV

Hypotheses p
0

(JP
Null=SM

) p
0

(JP
Alt

) �(JP
Alt

) CL
S

(JP
Alt

)

Null, Alt Observed Expected Observed Expected Observed Observed

Jp = 0+, 0� 0.31 0.0037 0.015 2.7 2.2 0.022

Jp = 0+, 1+ 0.55 0.0016 0.0010 2.9 3.1 0.0020

Jp = 0+, 1� 0.15 0.0038 0.051 2.7 1.6 0.060

Jp = 0+, 2+m 0.53 0.092 0.079 1.3 1.4 0.168

Jp = 0+, 2� 0.034 0.0053 0.025 2.6 2.0 0.258

Jp = 0+, 2+(fqq̄ = 100%) 0.962 0.082 0.001 1.4 3.1 0.026

Jp = 0+, 2+(fqq̄ = 75%) 0.923 0.099 0.003 1.3 2.7 0.039

Jp = 0+, 2+(fqq̄ = 50%) 0.943 0.113 0.002 1.2 2.9 0.035

Jp = 0+, 2+(fqq̄ = 25%) 0.944 0.107 0.002 1.2 2.9 0.036

Jp = 0+, 2+(fqq̄ = 0%) 0.532 0.092 0.079 1.3 1.4 0.169

Table 3.8: The expected and observed exclusion for the combined 7 TeV and 8 TeV dataset
of di↵erent alternative spin and parity models for the “first iteration” hypothesis test analysis.
The exclusions are given in terms of p

0

-values and corresponding number of Gaussian sigmas.
The Alt p

0

is corrected for the SM p
0

to give the CL
s

. When calculating the expected numbers,
all nuisance parameters have been profiled to the observed data[3][2].
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3.4 The Tensor Structure Fit

In this section, the analysis adopted to examine mixed spin-0 models is presented. The di↵erent

Higgs models are described in Section 1.2.4. In the fixed hypothesis tests of the previous

section only spin-0 models with one coupling (SM , AV V , HV V ) were considered. This

section will generalise by examining mixed models, where two couplings are simultaneously

present; (SM , HV V ) and (SM , AV V ). The latter combination will also take into account

the CP-mixing angle ↵.

The section will focus on how discriminants based on matrix element observables can be used

to distinguish the examined signal models. This part will start with showing the variation of

the angular distributions and Z masses for di↵erent coupling configurations in Section 3.4.1.

In section 3.4.2 the Matrix Element Observable fit is described together with an evaluation of

systematic uncertainties and the expected exclusion limits as estimated from MC simulation.

It should be noted that in several places of the text there are references to complex coupling

ratios. The possibility of imaginary contributions to the coupling ratios are not studied in

this analysis. Monte Carlo with the presence of complex couplings was however generated

before this choice was made. In all instances any imaginary contribution is always removed

by Matrix Element based reweighting. A prospects study of complex coupling measurements

will be described for high luminosity projections in Section 3.7.

3.4.1 Coupling Ratios and Final State Observable Variations

The Lagrangian density that was introduced to describe a generic spin-0 boson contained

three sectors. By examining shape variations, the analysis will measure which couplings of the

density are necessary to describe the observed resonance behaviour.

It is known that di↵erent coupling configurations will lead to di↵erent production cross sec-

tions. By only studying coupling ratios and letting deviations in the observed number of events

be absorbed in a free signal strength, the analysis removes this dependency. With more stat-

istics and experience in performing the tensor structure fit, it could be useful to include fitted

normalisation as well. For now the possibility of separating models based on normalisation

will be ignored.

By solely examining shape variations it will only be necessary to measure the relative contri-

butions of the di↵erent elements of the Lagrangian. The presented results will therefore be

given as the ratio of BSM to SM couplings:

̃HV V

SM
, ̃AV V = 1

4
⌫
⇤AV V

̃AV V

SM
tan↵ , ̃HV V = 1

4
⌫
⇤HV V

where:
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AV V : Higher dimensional operator contribution.

HV V : Pseudo scalar contribution.

⌫/⇤ : Higgs field expectation value over EFT scale (' 0.246).

Figure 3.9 show the distributions of decay related final state observables in the signal mass

range (115 GeV  m4`  130 GeV), taking detector e↵ects into account. The angular distri-

butions and Z masses are shown for the SM Higgs together with four BSM scenarios; ̃HV V
SM

±1

and ̃AV V
SM

tan↵± 5.

The analyses presented in this section also use production related observables to suppress

backgrounds. The EFT expansion around SM that will be used only include the ZZ and

WW vertices. The analysis solely consider the gluon fusion production mechanism such that

distributions related to production are una↵ected by the ̃HV V
SM

, ̃AV V
SM

tan↵ composition.

Like the hypotheses tests, the tensor structure analysis use the selection described in Sec-

tion 3.2.1.

3.4.2 The Matrix Element Observable Fit

The method of the Matrix Element observable fit is based on modelling the distributions

of final state observables at di↵erent coupling ratios using Monte Carlo. The observables

sensitive to the presence of ̃HV V
SM

and ̃AV V
SM

tan↵ considered in the analysis correspond to

the first and second order Optimal Observables for a BSM amplitude with three component

structure. Optimal Observables are described in [91–93]. The choice of observables will be

discussed in Sect. 3.4.3. The observables are used for conditional ̃HV V
SM

and ̃AV V
SM

tan↵ fits

respectively. A kinematic BDT discriminant trained to suppress backgrounds is moreover used

as an additional observable in all fits.

The Matrix Element Observable (ME-Obs) fit section is outlined as follows. In 3.4.3 a detailed

description is given of how a pdf is constructed that will enable a measurement of the HV V

tensor structure. The section will outline how matrix element based reweighting, KDEs and

pdf interpolation is combined to finally arrive at a model that is continuous in the examined

coupling ratios. The final likelihood model is defined in Section 3.4.4. The section is followed

by a discussion on how the exclusion intervals at 95% CL are set and why this is justified.

In Section. 3.4.6 the tensor structure fit is demonstrated to be able to close on SM and altern-

ative models that cover the examined intervals of coupling ratios under various conditions.

Sect. 3.4.7 describes how systematic uncertainties are taken into account and present an es-

timate of how significant each source will be to the final result. Finally, the observed 95% CL

limits are set and compared to expectations.
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3.4.3 Pdf Construction

Observables

The coupling ratio sensitive observables used in the ME-Obs analysis are defined in the follow-

ing paragraph. The technical implementation is based on the JHU matrix element calculator

JHUGenMELA.v4.2.1[46] while the background discrimination is based on the TMVA BDT

tool[89].

In the following, the shorthand notation ME(✓) is used to describe the matrix element of a

coupling ratio ✓ (✓ = ̃HV V
SM

or ̃AV V
SM

tan↵). The matrix element dependency on the particles

four-momenta is left implicit.

To shortly motivate the form of the matrix element observables, it is useful to consider the

EFT Lagrangian described in Section 1.2.4. Imagining only a single CP-even or CP-odd BSM

contribution, the matrix element is of the form:

ME(✓) / ME(SM) + ✓ ·ME(BSM) ,

Where BSM refers to the pure, non-Standard Model term.

Squaring this, reveals an expression that is proportional to the di↵erential probability of the

process:

|ME|2(✓) / |ME|2(SM) + ✓2 · |ME|2(BSM) + ✓ · 2R(ME(SM) ·ME⇤(BSM))

The JHUGenMELAmatrix element calculator does not contain the interference term: R(ME(SM)·
ME⇤(BSM)). If one however examines the expression for a coupling ratio of 1 it is seen that:

|ME|2(✓ = 1) / |ME|2(SM) + |ME|2(BSM) + 2R(ME(SM) ·ME⇤(BSM))

giving an expression for the interference term solely described by squared matrix elements.

Inserting into the expression for the squared matrix element for an arbitrary ✓ and dividing

by the squared Standard Model matrix element reveals:

|ME|2(✓)
|ME|2(SM)

/ 1 + ✓ ·
✓ |ME|2(✓ = 1)� |ME|2(BSM)

|ME|2(SM)
� 1

◆

+ ✓2 · |ME|2(BSM)

|ME|2(SM)

The first and second order observables are defined as the two components:

O1(✓) =
|ME|2(✓ = 1)� |ME|2(BSM)

|ME|2(SM)
O2(✓) =

|ME|2(BSM)

|ME|2(SM)
(3.3)

Oi(✓) is here used to symbolise the observable that is used to measure ✓ = ̃HV V
SM

or ̃AV V
SM

tan↵.

By inserting the expression of the EFT coupling ratios, the observables defined in Eq. 3.4

emerges. The predicted distributions as observed by the ATLAS detector can be found in
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Figure 3.10.

O1(̃HV V ) =
2<(ME(SM 6=0; HV V ,AV V =0; ↵=0)⇤·ME(HV V 6=0; SM,AV V =0; ↵=0))

|ME(SM 6=0; HV V ,AV V =0; ↵=0)|2 ,

O2(̃HV V ) =
|ME(HV V 6=0; SM,AV V =0; ↵=0)|2
|ME(SM 6=0; HV V ,AV V =0; ↵=0)|2 ,

O1(̃AV V ,↵) =
2<(ME(SM 6=0; HV V ,AV V =0; ↵=0)⇤·ME(AV V 6=0; SM,HV V =0; ↵=⇡/2))

|ME(̃SM 6=0; HV V ,AV V =0; ↵=0)|2 ,

O2(̃AV V ,↵) =
|ME(AV V 6=0; SM,HV V =0; ↵=⇡/2)|2
|ME(SM 6=0; HV V ,AV V =0; ↵=0)|2 . (3.4)

The first two observables O1(̃HV V ) and O2(̃HV V ) are defined to have sensitivity to ̃HV V
SM

and similarly O1(̃AV V ,↵) and O2(̃AV V ,↵) are defined with sensitivity to ̃AV V
SM

tan↵.
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Figure 3.10: Distributions of Matrix Element Observables passing event selection. The
expected contributions from the signal models, ̃HV V

SM
= ±1, ̃AV V

SM
tan↵ = ±5 and SM are

presented. (A) Observables used in the ̃HV V

SM
fit. (B) ̃AV V

SM
tan↵ observables.
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A Boosted decision tree is trained to help discriminate against backgrounds. The training is

performed per final state, using 600 trees but otherwise keeps all default settings from the

TMVA package [89, Tab. 21,22]. To be able to easier describe the multidimensional final

state histogram it is chosen to only use production related parameters. This ensures that the

background discriminant is as uncorrelated with the CP sensitive observables as possible and

independent of the particular coupling ratio of a given signal model. The used parameters are

as follows:

(m4l, pT�4l, ⌘4l, cos(✓⇤), �1) ! BDTZZ

The training is only performed on events falling in the signal mass region 115 GeV < m4` <

130 GeV. This BDT discriminant will be denoted hereafter as the BDTZZ . The training is

optimised to separate the signal model with coupling configuration ̃HV V
SM

= 1+i, ̃AV V
SM

tan↵ =

1 + i from the qq ! ZZ⇤ background. The Monte Carlo samples used are described in Sec-

tion 1.3. The specific signal model was chosen due to it having the largest MC sample.

Figure. 3.15 e.g. demonstrates that the BDTZZ distribution is not influenced by the choice of
̃HV V
SM

signal model. The background discriminant is finally divided into four bins before being

used in the analysis.

The observable distributions are described using multi dimensional histograms. It can be di�-

cult to populate these using simulated data, which motivate the use of KDE. As is customary,

a Gaussian Kernel is chosen. To get the simplest possible input before the KDE step the

observables are transformed to pseudo-Gaussian shapes. The derivation of the transformation

is described in App. A.3.

The transformation was specifically defined such that the 1D projection of each observable

is a Gaussian distribution for the Standard Model. A consequence of the ”conservation of

probability” that is used to derive the transformation is that the resulting likelihood function

per construction is unchanged. Choosing the Standard Model to be the particular model that

is exactly Gaussian will not bias the final result. Given that the distributions are described

with histograms, the transformation can also be thought of as a motivated choice of binning.

The BDTZZ distribution is moreover defined to be uniform for the Standard Model using a

similar approach.

A simple fit of the ̃AV V
SM

tan↵ coupling ratio is performed on a simulated Standard Model

Higgs to check that the pre- and post-transformed likelihoods are identical. The original and

transformed distributions together with their respective likelihood curves can be found in Fig-

ure 3.11, where the likelihood values are seen to be identical. The transformed observable O

will be denoted TO in the following.

Finally, it was found that the observable distributions related to ̃HV V
SM

are to a very high

degree linearly correlated. To get as easy a description as possible, the observables are de-

correlated using TO1(̃HV V ) + TO2(̃HV V ) and TO1(̃HV V ) � TO2(̃HV V ) instead3. Again,

3More precisely: 0.5 ·(TO1(̃HV V ) + TO2(̃HV V )) and 7.5 ·(TO1(̃HV V )� TO2(̃HV V )) are used, such that
the distributions will remain defined in the same interval. The figures do not include this in the notation since
it is already plenty cluttered.
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Figure 3.11: Transformation validation. Here applied on the 2e2µ final state of Monte Carlo
generated at 8 TeV. The transformation is applied to O

2

(̃AV V ,↵). (A) Original distributions,
for SM and ̃AV V

SM
tan↵ = 10. (B) Transformed distribution for SM and ̃AV V

SM
tan↵ = 10. (C)

Likelihood scan for a test sample using original and transformed distributions.

the histogram templates will contain the same information. Using simulation however, it would

have been di�cult to populate areas where TO1(̃HV V ) is at its left tail while TO2(̃HV V ) is

at its right and vice versa. The areas correspond to the upper left or lower right histogram

corners of Figure 3.12a.

The observable distributions are filled into 3-dimensional histograms containing the three

relevant observables for ̃HV V
SM

and ̃AV V
SM

tan↵ separately. For the two coupling ratios the

histograms have dimensions:

̃HV V

SM
: { TO1(̃HV V )� TO2(̃HV V ), TO1(̃HV V ) + TO2(̃HV V ), BDTZZ }

̃AV V

SM
tan↵ : { TO1(̃AV V ,↵), TO2(̃AV V ,↵), BDTZZ }

A binning of {11, 11, 4} is chosen for the {x, y, z} dimensions of the histograms. It was found

that it is most vital for the analysis to have as detailed description of the CP-sensitive ob-

servables as possible while the final result is only weakly sensitive to the choice of binning in

BDTZZ .

To help the reader visualise the multidimensional pdfs, the 2D projections of the 3D histo-

grams are shown in Figure 3.12 for di↵erent coupling ratios. Only a weak dependency between

the observables and the background discriminant is seen.

Reweighting procedure

The reweighting follows what is described in Section 1.3.1. A large MC sample is generated

with both SM and BSM components. To acquire MC with di↵erent coupling compositions, an

event-by-event weight is calculated from the ratio of target to source squared matrix elements.

The reweighting is done in 81 steps of ̃HV V
SM

and ̃AV V
SM

tan↵ from -10 to 10. This way there

will exist MC description in steps of 0.25, where SM at 0 is specifically included. Section 1.3.1
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Figure 3.12: Two dimensional observable distributions. (A) TO
1

(̃HV V ) vs. TO
2

(̃HV V ),
(B) TO

1

(̃HV V ) � TO
2

(̃HV V ) vs. TO
1

(̃HV V ) + TO
2

(̃HV V ). (C) O
1

(̃AV V ,↵) vs.
O

2

(̃AV V ,↵). (D) O
2

(̃AV V ,↵) vs. BDTZZ . The coloured background represent the Stand-
ard Model, while the lines indicate 10%, 30%, 50%, 70% and 90% of the SM maximum for
̃HV V

SM
= ±1 (A,B) and ̃AV V

SM
tan↵ = ±5 (C,D). Additional figures showing the correlation to

BDTZZ can be found in Figure C.11 of App. C.

moreover demonstrated that the reweighting could accurately predict final state observable

distributions by comparing to independent Monte Carlo samples.

The reweighting validation is repeated here on the Matrix Element Observables and BDTZZ

to ensure the procedure also accurately describes observables derived from the full final state

kinematics. The procedure is repeated for the three-dimensional observables to take any

possible dependency into account.

An example of the reweighting validation is shown in Figure 3.13. Here, the source sample is
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Figure 3.13: Reweighting validation for ̃HV V

SM
and ̃AV V

SM
tan↵ observables. Left figures

show the individual pulls in the four di↵erent BDTZZ bins. The right figures show the pull
distributions. (A) Observables used in ̃HV V

SM
fit. (B) Observables used in ̃AV V

SM
tan↵ fit. An

additional check can be found in Figure C.12 of App. C.

reweighted to
⇣

̃HV V
SM

= 1, ̃AV V
SM

tan↵ = 1
⌘

and compared to distributions obtained from MC

directly generated at this coupling configuration. The figure shows a good agreement between

the two samples for the di↵erent observables that will be used.

Kernel Density Estimation

A Gaussian Kernel Density Estimator (KDE) is used to get a description of the 3D pdfs that

is less influenced by statistical fluctuations. This will also help to get a description of the tail
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behaviour of the observable distributions such that the final likelihood will not contain empty

bins.

It is customary to use the RooNDKeysPdf[90] package but it was found that for this specific

analysis it could result in a problematic processing time. A binned Kernel Density Estimator

was developed instead. The binned KDE can be realised is equivalent to the convolution of

two vectors which can be performed using ’Fast Fourier Transform’ algorithms due to the

Convolution Theorem. A full description of the algorithm is given in App. A.2.

The histograms use a binning of {11, 11, 4}. Motivated by the small dependence of the mat-

rix element observables to BDTZZ , it is chosen to perform the KDE separately on the four

BDTZZ bins and subsequently stack the 2D histograms to retrieve the final 3D histogram.

The procedure was done such that the normalisation of each of the BDTZZ bins of the final

KDE histogram is identical to that of the input histogram. To validate the approach, the

resulting KDE was compared to ”unsmoothed” histograms. The cross checks are presented in

Figure 3.14 for the shapes used in the ̃HV V
SM

and ̃AV V
SM

tan↵ measurements.

Special attention is made to the reducible background shapes due to them having low statist-

ics. Some approximations are made to get a better description. The background types that

fall into each of the two categories are mainly dictated by the low pT lepton pair. It was

assumed that the 4e and 2µ2e final states can be described with the same pdf , and likewise

for the 4µ and 2e2µ final states. The matrix element observable distributions for the di↵erent

BDTZZ bins are moreover assumed to be the same for reducible backgrounds such that their

pdfs are described by a two times one dimensional shape. A KDE validation for the reducible

backgrounds is included in App. C, Fig. C.13.

Pdf Interpolation

The steps described above will result in a description of the observable histograms for fixed

values of either ̃HV V
SM

or ̃AV V
SM

tan↵. It is however of interest to get a continuous description

of the distributions as function of coupling ratios.

A ”vertical, linear” pdf interpolation is used. In essence this is a bin-by-bin interpolation

between the input histograms. The pdf at coupling  will take the value:

pdf(O|) = 1

i � j
[(� j) · pdf=i(O)� (� i) · pdf=j(O)] ,

where:

pdf(O|) is the interpolated pdf for coupling  evaluated at observable O.

i,j are the two closest templates to .

pdf=i,j(O) are the input templates at i,j evaluated at observable O.

The interpolation is done between signal models using the 81 templates from the reweighting

procedure. The continuous signal model is subsequently added to the ZZ⇤-continuum and

reducible backgrounds to create the final pdf .

The same interpolation type is also used to describe variations between systematic uncer-

tainties that a↵ect observable shapes. The systematic shape variations use only three input
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Figure 3.14: Kernel Density Estimation validation for ̃HV V

SM
and ̃AV V

SM
tan↵ observables.

Left figures show the individual pulls in the four di↵erent BDTZZ bins. The right figures show
the pull distributions. (A) Observables used in ̃HV V

SM
fit. (B) Observables used in ̃AV V

SM
tan↵

fit. A cross check for the reducible backgrounds can be found in Figure C.13 of App. C.

templates however; the nominal and the one � up and down variations. The technical imple-

mentation of systematic variations is described [94, Sect. 4.1].

A linear interpolation model is chosen by virtue of it being the absolute simplest pdf -morphing

method. More advanced methods are found to be unstable when applied to a large number

of input histograms. Linear interpolation does however su↵er from some disadvantages. The

most notable is that the pdf is not continuously di↵erentiable at the input points. The likeli-

hood curve can as a result have kinks if the pdf is changing rapidly for parameter changes.

The limits and maximum likelihood estimator of the coupling ratios that are examined in this

analysis are derived from scanning the likelihood function over the coupling ratios. The kinks



104 3.4 The Tensor Structure Fit

will therefore not a↵ect the minimisation procedure as could have been the case for a standard

minimisation algorithm.

In the case of systematic uncertainties, it will be important to make sure that the fitted nuis-

ance parameters do not stray far from the one standard deviation variations. In extreme cases

the linear interpolation model could e.g. predict negative pdf values. As will be demonstrated

in Section 3.4.7, the analysis is in the end only to a very small degree a↵ected by systematic

uncertainties.

The final observable distributions for backgrounds and various signal models can be found in

Figure 3.15. The ̃AV V
SM

tan↵ observables are not rotated and behaves as expected; TO1(̃AV V ,↵)

has sign sensitivity while TO2(̃AV V ,↵) is more sensitive but not able to distinguish the ±5

models. The BDTZZ background discriminant is seen to be identically distributed for the

presented signal models.

3.4.4 Statistical Procedure

To create the final results, data collected at
p
s = 7 and 8 TeV and in di↵erent final states are

treated as independent channels. The combined Likelihood function reads:

L
✓

̃HV V

SM
,
̃AV V

SM
tan↵, ✓

�

�

�

�

⌦

◆

=
Y

p
s,FS

Y

i2TO

P



⌦i

�

�

�

�

TO
i,sig

✓

̃HV V

SM
,
̃AV V

SM
tan↵, ✓

◆

+ TO
i,bkg(✓)

�

·C(✓) ,

(3.5)

where:

✓ Set of nuisance parameters, containing systematic uncertainties and signal strengths.

⌦ Observed or simulated data.

p
s, FS Centre of mass energy and final state.

TO Transformed matrix element observables. The likelihood uses three dimensional signal

or background templates.

P (a|b) Poissonian distribution with expectation b evaluated at a.

A constraint term is included in the likelihoods similar to what was done for the hypothesis

test.

The profiled likelihood ratio test statistic is finally used to establish the excluded regions:

�2 ln�

✓

̃HV V

SM
,
̃AV V

SM
tan↵

◆

= �2 ln
LFree(✓̂)

LMLE(
ˆ̂✓)

,

Where ’Free’ and ’MLE’ denotes whether the likelihood is a function of, or evaluated at the

maximum likelihood estimator of the coupling parameters.

For each measurement, an Asimov dataset [95] normalised to the expected event yield is

produced to calculate the expected results. The test statistic behaviour will be examined in

Section 3.4.5.
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Figure 3.15: Matrix element observables: TO
1

(̃HV V ) + TO
2

(̃HV V ), TO
1

(̃HV V ) �
TO

2

(̃HV V ) (top), TO
1

(̃AV V ,↵), TO
2

(̃AV V ,↵) (centre) and background discriminant
BDTZZ (bottom). The distributions show a stack of reducible backgrounds, ZZ⇤-continuum

and di↵erent signal models. Figures published in [5].
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Expected results

The likelihood model and test statistic that will be used to measure coupling ratios have now

been established. The expected Standard Model results are presented before turning to the

further tests that will evaluate the validity of the approach.

The likelihood model is constructed and a nominal Standard Model Asimov sample is cre-

ated. Nominal refers to all parameters are taken at their expected value (µ = 1, m4` =

125.5 GeV, ✓ = 0). The systematic uncertainties that are included in the likelihood will be

described in Section 3.4.7.

The combined and per-final-state likelihood curves are found in Figure 3.16 for both ̃HV V
SM

and
̃AV V
SM

tan↵. The combined likelihood is approximately the sum of the individual final state

curves. The final states share systematic uncertainties however such that the equality is not

exact. The amount of sensitivity derived from each final state follows their individual event

yields (N4µ > N2e2µ > N2µ2e > N4e). The best fit values and excluded regions are listed in

Table 3.9.
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Figure 3.16: Expected results of the tensor structure fit over coupling ratios ̃HV V

SM
(A) and

̃AV V

SM
tan↵ (B). The fit is performed on a Standard Model Asimov sample generated with all

nuisance parameters set at their nominal expected values.

Nominal Standard Model expectations: H ! ZZ⇤ ! 4`
Coupling ratio Best-fit value 95% CL Exclusion Regions
̃HV V
SM

0.0 [�1.84,�0.89]
̃AV V
SM

tan↵ 0.0 (1,�5.45]
S

[5.45,1)

Table 3.9: Expected best-fit values of ̃HV V

SM
and ̃AV V

SM
tan↵ and 95% CL excluded regions

obtained in the H ! ZZ⇤ ! 4` analysis. The expected values are estimated for an Asimov
data sample generated with nominal nuisance parameters. The

p
s = 7 TeV and

p
s = 8 TeV

samples are combined.
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Figure 3.17: Fit results for Monte Carlo pseudo experiments. The figure shows the Max-
imum Likelihood Estimator for coupling ratio vs. the profiled likelihood ratio �2 ln� evaluated
at the true generated value. (A) ̃HV V

SM
generated at �5, 0 (SM), 5. (B) ̃AV V

SM
tan↵ generated

at �5, 0 (SM), 5.

3.4.5 Asymptotic Test Statistic Behaviour

When establishing that regions where �2 ln� > 3.84 can be excluded at more than 95% CL,

it is explicitly assumed that �2 ln� follows a �2
1 distribution when evaluated at the true

parameter value[96]. This is however only precise to O(1/
p
N), where N is the observed

number of events. The exact function is analysis dependent.

MC is generated from the model to establish if it is possible to ignore the 1/
p
N term. Samples

with coupling ratios of ̃HV V
SM

= �5, 0, 5 and ̃AV V
SM

tan↵ = �5, 0, 5 are generated and used as

input for the fit. The datasets are fitted with a no-systematic-uncertainty model, where only

the signal strengths for the 7 TeV(µ2011) and 8 TeV(µ2012) samples are allowed to float freely.

As will be demonstrated in Section 3.4.7, systematic uncertainties have very little impact on

the results, such that the ”no-systematics” sampling will give an accurate description of the

true distribution.

Prior to generating the pseudo samples, µ2011, µ2012 are fitted to the observed data and

sampling is performed according to their best fit values to get the most accurate description

of data behaviour.

Figure 3.17 shows the dependence between �2 ln� and the best fitting coupling value for the

sampled distribution. The figure demonstrates that the model will tend to find minima close to

the true coupling value. Moreover, a higher sensitivity is seen for the Standard Model than the

±5 distributions. Models are parameterised as coupling ratios and the ability to distinguish

between them solely based on shape information. The sensitivity is therefore expected to

flatten when moving away from SM such that it is not possible to distinguish between models

of very large coupling ratios.

It is also seen that for the ±5 models it is possible to fit outside of the defined analysis range.

In principle, the fit should extend to infinite coupling ratios, corresponding to pure BSM



108 3.4 The Tensor Structure Fit
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Figure 3.18: Sampled �2 ln� distributions for: (A) ̃HV V

SM
generated at �5, 0 (SM), 5. (B)

̃AV V

SM
tan↵ generated at �5, 0 (SM), 5. The figures show the predicted �2

NDF=1

distribution
in red. The analysis establishes 95% CL intervals in regions where �2 ln� > 3.84. The full
blue line indicate the point where 95% of the pseudo experiments fell to the left of, while the

dashed line show the assumed limit.

scenarios4. Based on the results of the hypothesis tests, it is reasoned that this will not be

of great concern. Although used di↵erent, the hypothesis tests are based on the same shape

information as the tensor structure fit. If large BSM contributions to the e↵ective Lagrangian

exists, it seems unlikely that the hypothesis test would show such a great compatibility with

the Standard Model.

The �2 ln� distributions can be derived by projecting the distributions of Figure 3.17 onto

the x-axis. In the following, the fits that converge outside of range are not considered in order

to examine the distribution of well defined test statistic values. The �2 ln� distributions can

be found in Figure 3.18. A good agreement between the sampled and asymptotic distributions

is in general seen.

The pull distributions are examined to further understand the fit behaviour. Normally the

pull is calculated as the di↵erence between the observed and true parameter in units of the

observed uncertainty:

Pull =
✓̂ � ✓0
�✓̂

,

where:

✓̂ : Observed parameter

4One could change parameterisation to the e↵ective BSM cross sections contribution; fg2, fg4 from 0 to 1
for instance.
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✓0 : True parameter

�✓̂ : Gaussian uncertainty on the observed parameter

It will be useful here to rewrite this expression slightly. In standard measurements, the distance

between each unit of uncertainty �✓̂ will be the same5. This corresponds to the likelihood curve

forming a parabolic function. If, as is the case here, the likelihood curve is not parabolic, it

can no longer be assumed that e.g. the distance to one �✓̂ is half of the distance to two �✓̂.

Assuming asymptotic behaviour, the uncertainty can however be estimated as6:

�✓ =
|✓̂ � ✓0|

p�2 ln�(✓0)
) Pull =

✓̂ � ✓0

|✓̂ � ✓0|
p

�2 ln�(✓0)

The pull will contain the same information as the �2 ln� distribution but moreover distinguish

preferences to obtain values higher or lower than the true. The distributions for the di↵erent

sampling series are shown in Figure 3.19. The Standard Model distributions form a unit

Gaussian, while the BSM distributions are asymmetric. It follows intuition that the BSM

samples cannot form a Gaussian tail in the direction away from the Standard Model. The

analysis has poor separation power between models & |5| as can e.g. be seen from the expected

results in Figure 3.16, where the curves tend to flatten out for high values.

Another e↵ect is seen when the fits converge to the wrong sign of the coupling ratio. In general

the model will have better sensitivity to the magnitude of the coupling rather than the sign,

meaning there is a chance that the fit will converge to the wrong sign. In this case the pull

distribution cannot be symmetrical around zero.

The analysis is concluded to exhibit asymptotic behaviour for best fitting models with coupling

ratios in [�5.0, 5.0]. If the best fit value is observed at higher ratios in data, special care should

be made to ensure that the test statistic is interpreted accurately. A best fit to a coupling

ratio with large BSM contributions is also expected to reveal a degenerate minimum, where

there is poor exclusion to the opposite signed coupling.

With the knowledge from the hypothesis tests, it is reasoned to be unlikely that the Lagrangian

would contain large BSM contributions.

3.4.6 Closure Tests

A series of tests are performed to establish the analysis ability to locate minima over the ex-

amined range of couplings. In each case an Asimov sample is created under various conditions

and subsequently fitted. To make the tests as stringent as possible, the Asimov dataset is

created from di↵erent Monte Carlo samples than the one used to create the pdf . The dataset

is here called ”independent Asimov”.

Unlike the true Asimov, which per construction exactly reproduces all parameters, the inde-

pendent can be used to check for analysis biases. These could for instance be the reweighting

5�✓̂ is here used as the distance along the parameter axis one has to go before the true model would result
in the observed with frequency less than 31.7% (1�), 4.6% (2�), etc.

6Note that the non-parabolic likelihood can still have its �2 ln� approximate a �2 distribution.
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Figure 3.19: Sampled pull distributions. (A) ̃HV V

SM
generated at �5, 0 (SM), 5. (B)

̃AV V

SM
tan↵ generated at �5, 0 (SM), 5. A positive value indicates that the observed parameter

overestimates the true. Each distribution has been fitted to a Gaussian. In the Standard Model
case the fit covers the full range. A one sided fit is performed on the BSM samples. The side
that is not fitted corresponds to the side where the fit can go out of range. Fits that have

converged to the wrong sign are indicated by green.
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Figure 3.20: Closure tests performed on independent Asimov samples. (A): ̃HV V

SM
models

ranging from �10 to 10. (B) ̃AV V

SM
tan↵ models ranging from �10 to 10.
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procedure, the KDE or calculation errors in general. The independent dataset will however

also have statistical fluctuations compared to the Monte Carlo used to construct the pdf .

Asimov-data is created in steps of two in ̃HV V
SM

and ̃AV V
SM

tan↵ from -10 to 10. The data is

created with an integrated luminosity corresponding to the LHC Run-1 dataset. Figure 3.20

show the combined fit to the di↵erent samples where it is seen that the analysis closes near the

generated values. Some di↵erences are seen for the ̃HV V
SM

analysis, but the fit in no place show

a �2 ln� value of more than 0.01 at the true generated parameter value. To understand the

size of the bias it can be mentioned that the likelihood values of an Asimov sample fit scales

linearly with assumed statistics size. The expected biases thus correspond to approximately

1� for a sample size of 100·Run-1, equivalent to the total integrated luminosity expected to

be collected with LHC and HL-LHC.

3.4.7 Systematic Uncertainties

The majority of the systematic uncertainties of the tensor structure fit are equivalent to

those described before. Uncertainties related to theoretical predictions, detector e↵ects and

integrated luminosity are the same as for the hypothesis tests. In addition to these, systematic

e↵ects are introduced from the observable shape construction.

The procedure described above of filling three dimensional histograms and performing a KDE,

is repeated for each systematic change separately. The shapes corresponding to systematic

changes are finally added to the likelihood model before each fit. The systematic changes

related to the ME-Obs fit that is not described in the common section are:
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Figure 3.21: BDTZZ distributions for various mass models. The figures show from left to
right the four di↵erent final states, 4e, 4µ, 2e2µ, 2µ2e. The signal models are stacked on top
of the background. A shift away from 125.5 GeV makes the signal more background like.

Mass mis-modelling :

alpha ATLAS Higgs mass

Mass resolution and mis-modelling of the reconstructed Higgs boson mass have been

taken as an additional source of systematic uncertainty. The four lepton mass is the

strongest separating parameter used in the background discriminant, meaning that the

mass and the background discriminant will be correlated. A nominal value of 125.5 GeV
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was chosen based on the combined ATLAS H ! ZZ⇤ ! 4` and H ! �� mass fit [88]7.

The parameter has not been constrained and is freely allowed to float in all fits. Even

though the uncertainty on the Higgs mass is known in the four lepton final state, this

number is not used since it is based on the same data that the tensor structure fit utilises.

The mass enters in the Matrix Element Observable fit indirectly through the background

discriminant however and the method is as a result only weakly able to measure it. It

was found using toy Monte Carlo samples that templates situated at ±2 GeV would

be able to cover most fits. Again, a linear interpolation model is used. The BDTZZ

distributions for various mass models, for the four di↵erent final states can be found in

Fig. 3.21. A shift away from the nominal 125.5 GeV will tend to make the signal model

more background-like.

KDE procedure :

alpha ATLAS rho signal, alpha ATLAS rho Redbkg, alpha ATLAS rho ZZ

It is likely that di↵erent choices of bandwidth used in the kernel density estimation would

have resulted in equally valid descriptions while at the same time showing slight shape

di↵erences. To estimate the uncertainty introduced by the kernel density estimation,

the bandwidth scale was changed from the nominal 0.16 to 0.13 and 0.20 for signal and

ZZ⇤-continuum. Similarly, a shift from the nominal 0.5 of the reducible background to

0.4 and 0.6 was chosen such that in both cases the systematic shifts are approximately

20% of the nominal. A separate nuisance parameter is assigned for each case.
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Figure 3.22: Impact on TO
1

(̃AV V ,↵) (A), TO
2

(̃AV V ,↵) (B) and BDTZZ (C) from the
soft electron reducible background uncertainty alpha ATLAS shape SF H4l Z llee 2012. The
shapes shown here correspond to the combined signal and background 4e, 8 TeV model. The
relative di↵erence (�/Nom) is defined such that an upward shift compared to the nominal

distribution is positive. The uncertainty is seen to a↵ect the low populated regions.

The potential e↵ect of the systematic uncertainties are evaluated such that irrelevant paramet-

ers can be discarded. The impact of each nuisance parameter is estimated in the following. This

is done by examining the profiled likelihood ratio between ̃AV V
SM

tan↵ = 0 and ̃AV V
SM

tan↵ = 5

7Rounded to nearest 500 MeV.
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Dominant systematic uncertainties for tensor structure analysis

Nuisance parameter Average e↵ect
̃HV V
SM

fit

Reducible background shape in the 2µ2e + 4e final states in 2012 2.30%

alpha ATLAS shape SF H4l Z llee 2012

Reducible background shape in the 2µ2e + 4e final states in 2011 1.41%

alpha ATLAS shape SF H4l Z llee 2011

Reducible background normalisation in the 2µ2e + 4e final states in 2012 1.26%

alpha ATLAS norm SF H4l Z llee 2012

Reducible background normalisation in the 2e2µ + 4µ final states in 2012 0.95%

alpha ATLAS norm SF H4l Zbb llmumu 2012

Muon spectrometer resolution 0.72%

alpha ATLAS MU MS

Reducible background shape in the 2e2µ + 4µ final states in 2012 0.61%

alpha ATLAS shape SF H4l Zbb llmumu 2012

qq̄ parton density function for ZZ⇤ 0.58%

alpha pdf qq

EM calorimeter energy scale 0.52%

alpha ATLAS EM ES Z

̃AV V
SM

tan↵ fit

Reducible background shape in the 2µ2e + 4e final states in 2012 1.17%

alpha ATLAS shape SF H4l Z llee 2012

Reducible background normalisation in the 2µ2e + 4e final states in 2012 0.97%

alpha ATLAS norm SF H4l Z llee 2012

Reducible background normalisation in the 2e2µ + 4µ final states in 2012 0.89%

alpha ATLAS norm SF H4l Zbb llmumu 2012

qq̄ parton density function 0.88%

alpha pdf qq

Reducible background shape in the 2µ2e + 4e final states in 2011 0.74%

alpha ATLAS shape SF H4l Z llee 2011

Background renormalisation and factorisation QCD scale 0.72%

alpha QCDscale VV
p
s = 8 TeV luminosity uncertainty 0.57%

alpha ATLAS LUMI 2012

Table 3.10: Dominant systematic uncertainties of the tensor structure fit. The e↵ect is
evaluated as the di↵erences in �2 ln�(�0.8) for ̃HV V

SM
and �2 ln�(5) for ̃AV V

SM
tan↵ when

shifting each nuisance parameter. The di↵erences are calculated for a Standard Model Asimov
sample. The full list can be found in Tables C.2 and C.3 of Appendix C.
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Figure 3.23: Impact on TO
1

(̃HV V )+TO
2

(̃HV V ) (A), TO
1

(̃HV V )�TO
2

(̃HV V ) (B) and
BDTZZ (C) from the muon spectrometer resolution model, alpha ATLAS MU MS. The shapes
shown here correspond to the combined signal and background 4µ, 8 TeV model. The relative
di↵erence (�/Nom) is defined such that an upward shift compared to the nominal distribution

is positive. The uncertainty is seen to a↵ect the low populated regions.

assuming a Standard Model Higgs boson. The di↵erence is calculated under nominal circum-

stances and when each nuisance parameter is shifted. In a similar approach the �2 ln� impact

is calculated between ̃HV V
SM

= 0 and ̃HV V
SM

= �0.8 for the ̃HV V
SM

fit. Evaluating the impact of

the systematic uncertainties using these points was motivated by the fact that it is approxim-

ately where it is expected that the 95% CL limits are going to be found.

An ideal estimation would evaluate the impact based on where the exclusion regions are found

and not the likelihood value, since this will be the actual result. It is however very compu-

tationally expensive to calculate this number to the same level of precision as the size of the

systematic e↵ects. This is partly, as will be seen, because the analysis is insensitive to system-

atic uncertainties, but also an e↵ect of how the fit is performed. The profiled likelihood ratio

is calculated for a number of parameter values. In the approach chosen here it is necessary to

perform this calculation two times for each nuisance parameter.

If on the other hand the limit were to be used, it would be necessary to perform the calculation

in a very finely spaced grid to examine sub-percent e↵ects.

The log likelihood ratio is interpreted as a significance and the di↵erence in significance is

subsequently used as a measure of relevance of each systematic uncertainty. A threshold of

0.5 % is chosen as to where a parameter is relevant for the analysis.

The list of nuisance parameters that are found to potentially influence the log-likelihood ratio

more than 0.5% is listed in Table 3.10. The complete lists can be found in Tables C.2 and C.3

of Appendix C. The Higgs mass uncertainty is moreover included in all models.

Two examples of systematics that where found to be influential are given in Figure 3.22 and

3.23. The figures show the uncertainty on the soft electron reducible background (``ee) and

the muon spectrometer resolution uncertainty. The two systematics are both of the shape

variation type. The e↵ects are in general observed to be small.

The nuisance parameters profiles are finally examined as function of ̃HV V
SM

and ̃AV V
SM

tan↵ to

understand their behaviour. Figures 3.24 and 3.25 show the best fitting value and correspond-

ing uncertainty of each nuisance parameter that is estimated to have a potential e↵ect. The
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Figure 3.24: Best fitting value and uncertainty of each nuisance parameter in the ̃HV V

SM

scan.

(a) mu 2011 (g) alpha ATLAS norm SF H4l Zbb llmumu 2012
(b) mu 2012 (h) alpha ATLAS MU MS
(c) alpha ATLAS Higgs mass (i) alpha ATLAS shape SF H4l Zbb llmumu 2012
(d) alpha ATLAS shape SF H4l Z llee 2012 (j) alpha pdf qq
(e) alpha ATLAS shape SF H4l Z llee 2011 (k) alpha ATLAS EM ES Z
(f) alpha ATLAS norm SF H4l Z llee 2012
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Figure 3.25: Best fitting value and uncertainty of each nuisance parameter in the ̃AV V

SM
tan↵

scan.

(a) mu 2011 (f) alpha ATLAS norm SF H4l Zbb llmumu 2012
(b) mu 2012 (g) alpha pdf qq
(c) alpha ATLAS Higgs mass (h) alpha QCDscale VV
(d) alpha ATLAS shape SF H4l Z llee 2012 (i) alpha ATLAS shape SF H4l Z llee 2011
(e) alpha ATLAS norm SF H4l Z llee 2012 (j) alpha ATLAS LUMI 2012
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three columns show the outcome when the fit is applied to di↵erent samples. The ’Nominal

Asimov’ sample is generated with expected parameter values; 0 for systematic uncertanties

and 1 for signal strengths. The ’Profiled Asimov’ sample is a Standard Model sample gener-

ated with all nuisance parameters fitted to data. The ’Observed’ column show the outcome of

the fit when applied to the actual data. The ’Profiled Asimov’ best fitting nuisance parameter

values at ̃HV V
SM

= 0 or ̃AV V
SM

tan↵ = 0 are per construction the same as for the ’Observed’

column.

The top three rows show the 7 TeV, 8 TeV signal strengths and Higgs mass respectively. For

the nominal Asimov sample, it can be seen that each of these will tend to pull the signal

distribution down when moving away from the Standard Model value, e↵ectively making the

combined model more background like. The remaining nuisance parameters have small vari-

ations over the fitted range and uncertanties close to one, indicating small influence.

3.4.8 Compatibility Studies, The Nine Dimensional Fit

A di↵erent approach was tried for the tensor structure analysis: The Nine-Dimensional fit8.

Only a superficial description of the approach can be given here, since the Author has not

been directly involved in the work. The approach is outlined as follows:

The analytical squared matrix element of the HZZ decay is calculated as function of the five

decay observables; m12, m34, cos ✓1, cos ✓2 and � given coupling ratios ̃HV V
SM

and ̃AV V
SM

tan↵.

The matrix element is calculated at parton-level. By normalising the function, a pdf is given

which contain all information of the HZZ tensor structure.

The pdf does however not take into account detector e↵ects. A factorised detector model is

created by studying which observable corrections are correlated.

The production obserservables pT,4l, ⌘4l, cos ✓⇤ and four lepton mass m4l are estimated from

simulation as well and added as factors to discriminate against backgrounds. The complete

model reads:

pdf = fParton(m12, m34, cos ✓1, cos ✓2, �|)
· hcorr(m12, m34|) · hcorr(cos ✓1, cos ✓2, �|)
· h(m4l) · h(cos ✓⇤) · h(pT,4l, ⌘4l) ,

where:

f : Analytical function.

h : Histogram with Monte Carlo distribution.

corr : Detector correction function.

 : Composition of ̃HV V
SM

and ̃AV V
SM

tan↵.

8 Or Nine Dimensional Matrix Element Method (9DMEM).
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The background distributions are based on a factorised model of histogram templates. The

production observables are grouped as for the signal, while the decay observables are included

as (�), (m12, m34) and (cos ✓1, cos ✓2) factors.

The approach demonstrates similar abilities to the ME-Obs approach in closure, asymptotic

behaviour, sensitivity to systematic uncertainties and ability to exclude models. The analysis

is mentioned here, because the two methods; The Matrix Element Observable and the Nine

Dimensional Fit are used as independent cross checks of one and the other. For the final

validation, a set of 300 Monte Carlo samples is created. The samples are generated with

Standard Model expectations and signal strength from observed data. Finally, the MC samples

are created in such a way that they will have to pass through each analysis in the same fashion

as the observed data.

The outcome of the checks is presented in Figure 3.26. The best fitting values of the two
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Figure 3.26: Compatibility checks between Matrix Element Observable fit and Nine Dimen-
sional Fit. A set of 300 MC samples is generated with expectations profiled to data. Figures
show the maximum likelihood estimator of the coupling ratios for the two di↵erent analyses.

(A,B) ̃HV V

SM
correlation and di↵erence. (C,D) ̃AV V

SM
tan↵ correlation and di↵erence.

methods are to a high degree compatible. The structure of the ̃HV V
SM

correlation can e.g. be

understood by examining Figure 3.16a. It is highly unlikely that a Standard Model Higgs will

be fitted to ̃HV V
SM

= �1. On the other hand ̃HV V
SM

= �2.5 is much more compatible with the
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Standard Model. There is hence a chance that one method will fit to one side of the peak and

the other method to the opposite side.

The two independent approaches are seen to be in good agreement, thereby validating them

individually.

3.4.9 Summary of the Tensor Structure Fit

• At the first stage of the analysis, an event selection is applied to a Monte Carlo sample

with coupling parameters ̃HV V
SM

= 1 + i, ̃AV V
SM

tan↵ = 1 + i, to the ZZ⇤ background

samples simulated in the 100 GeV < m4` < 150 GeV region and to reducible backgrounds

estimated from control regions in data. A signal region is defined as events falling in the

mass window: 115 GeV < m4` < 130 GeV. Observables are defined by Matrix element

ratios. The observables are sensitive to the coupling ratios ̃HV V
SM

and ̃AV V
SM

tan↵ of

the underlying resonance. A BDT discriminant is also trained on parameters related to

Higgs production in order to suppress backgrounds.

• In the second step, Matrix Element based reweighting is used to obtain a description

of signal models over the examined intervals of ̃HV V
SM

and ̃AV V
SM

tan↵. The approach is

validated by comparing the resulting distributions to those of independent Monte Carlo

samples. A step size of 0.25 is used in the [-10, 10] interval of each parameter, resulting

in 81 points on each axis.

• In the next stage, the simulated signal and background distributions for the matrix ele-

ment observables and background discriminant are described using three-dimensional

histograms. All non-trivial correlations can be taken into account in this way. The

parent distributions are subsequently estimated using a Gaussian KDE. The KDE helps

to reduce the influence of statistical fluctuations and improve description of tail distri-

butions. The procedure is performed separately for all 4 final states considered in the

analysis: 4e, 4µ, 2e2µ and 2µ2e, each of which are divided into the two centre of mass

energies. A separate histogram is created for each systematic uncertainty a↵ecting shape

variations. Piece-wise linear pdf interpolation is used to acquire a continuous description

of the three-dimensional histograms in ̃HV V
SM

, ̃AV V
SM

tan↵ and all nuisance parameters.

• In the final stage of the analysis, the profiled likelihood ratio is used to establish the

intervals of coupling ratios that are excluded at 95% CL. Asymptotic behaviour of the

test statistic distribution is assumed. The expected Standard Model sensitivities are

based on Asimov data samples.
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3.4.10 Results

The analysis is finally applied to the observed Run-1 data of 4.5 fb�1 taken at
p
s = 7 TeV and

20.3 fb�1 taken at
p
s = 8 TeV. In order to get the most valid comparison to Standard Model

expectations, a fit is performed on data, where SM is assumed but all nuisance parameters

are free. Figures 3.27a and 3.27b show the expected and observed results for the combined

likelihood model and the individual final states. The fits include all systematic uncertainties

that are found to potentially be influencial. The 2011 and 2012 signal strengths and the Higgs

mass are freely floating, while all others are under a Gaussian constraint.

Examining the figures, a good agreement between Standard Model expectations and obser-

vations is seen. The individual final states all find a best fitting value close to the Standard

Model.

The best fitting values and excluded regions are listed in Table 3.11. As described in Eq. 1.8

of Section 1.2.4 the results can be re-interpreted as limiting the e↵ective BSM cross section

contribution. The results are also presented according to this scheme.

A comparisson between expected and observed likelihood curves are seen in Figure 3.27c.

It is concluded that the observations are in agreement with Standard Model predictions.

Coupling ratio Best-fit value 95% CL Exclusion Regions

H ! ZZ⇤ ! 4` Observed SM Expectation Observed
̃HV V
SM

�0.2 (�1,�0.75]
S

[6.95,1) (�1,�0.75]
S

[2.45,1)

fg2 · cos�g2 �0.01 [�1,�0.16]
S

[0.94, 1] [�1,�0.16]
S

[0.68, 1]
̃AV V
SM

tan↵ �0.8 (�1,�2.95]
S

[2.95,1) (�1,�2.85]
S

[0.95,1)

fg4 · cos�g4 �0.08 [�1,�0.56]
S

[0.56, 1] [�1,�0.54]
S

[0.11, 1]

Table 3.11: Expected and observed best-fit values of ̃HV V

SM
and ̃AV V

SM
tan↵ and 95% CL

excluded regions obtained in the H ! ZZ⇤ ! 4` analysis. The expected values are estimated
for an Asimov sample generated with signal strength and systematic uncertainties as measured
in data. The data for

p
s = 7 TeV and

p
s = 8 TeV are combined. The results are also given

in e↵ective coupling ratio fractions fg2, fg4. The angle �gi is either 0 for positive coupling
ratios or ⇡ for negative. Results published in [5].
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Figure 3.27: Expected and observed fit results per final state and their combination. The
likelihood curves represent the outcome for the LHC Run-1 dataset. The expected curves are
derived from a Standard Model Asimov sample where nuisance parameters have been fitted
to data. (A) ̃HV V

SM
SM expectations and observations per final state. (B) ̃AV V

SM
tan↵ SM

expectations and observations per final state. (C) Expected and observed fit results of the
tensor structure analysis. ATLAS figures published in [5].
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3.5 The ZZ⇤ and WW ⇤ Combination

Up until now, only ZZ couplings to the observed resonance have been studied. To access the

complete information that can be derived from the LHC Run-1 dataset, the WW channel will

now be included. Since there are no overlapping candidates between theWW and ZZ channels,

the combination can be achieved by considering the two decay types as separate channels of the

likelihood. This is similar to how the di↵erent lepton final states and centre of mass energies are

treated as separate channels of the ZZ likelihood in Equation 3.5. Disregarding systematic

uncertainties it would be a simple matter of performing the separate analyses and adding

their likelihood functions together. The two channels however share systematic uncertainties

from theoretical descriptions, luminosity uncertainties and because both consider leptonic

final states. The challenge of the combination is thus to identify the common systematics and

correlate these. First a short outline of the WW analysis is given:

3.5.1 The WW ⇤ Final State

The main di↵erence to the ZZ⇤ channel is also one of the main challenges, the leptonic decay

of W bosons contain a neutrino. It follows from the Higgs mass and pT -spectrum that the

W bosons will not be very boosted. This means that the direction the neutrios will travel in

cannot be approximated and the final state is as a result not fully recoverable. It will therefore

not be directly possible to use Matrix Element Observables as was done in the ZZ⇤ analysis.

An MVA approach is instead opted for, using BDTs.

TheWW ⇤ decay also have significantly higher backgrounds as compared to ZZ⇤. Both because

of the increased di�culty in rejecting backgrounds using missing transverse energy compared

to using a pair of reconstructed leptons and because the invariant mass peak is smeared over

a much larger mass range than for the ZZ⇤ analysis. Since only two of the four leptons are

possible to reconstruct, the analysis solely focus on the e⌫µ⌫ channel. The other channels are

found to have overwhelming backgrounds. By using e.g. e⌫e⌫ final states the analysis would

for instance be prone to accept Z + X types of backgrounds. The WW ⇤ analysis moreover

only considers the zero jet category of the 8 TeV dataset.

The structure follows much the same logic as what was described in the fixed hypothesis test

section: Two BDTs are trained, one separating a SM Higgs from an alternative spin-0 model

(BDTCP ) and one separating a SM Higgs from backgrounds (BDT0). The parameters used

to train the BDT s are as follows:

BDT0 (0+ vs. bkgs) : p``T , m``, ��``, pmiss
T

BDTCP (0+ vs. 0+h ) : p``T , m``, ��``, mT

BDTCP (0+ vs. 0�) : m``, E``⌫⌫ , �pT , ��`` ,
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where:

p``T : Transverse component of lepton momentum sum.

m`` : Invariant mass of the lepton momentum sum.

��`` : Azimuthal angle between the leptons.

pmiss
T : Missing transverse energy.

mT : Transverse mass of leptons and missing energy.

E``⌫⌫ : p`1T � 0.5 · p`2T + 0.5pmiss
T for transverse lepton momenta p`1T and p`2T

The distributions for various relevant processes can be found in Figure 3.28.

The ̃HV V
SM

fit will be based on the BDT trained against 0+h and similarly the BDT trained

against 0� will be used in the ̃AV V
SM

tan↵ fit.

The analysis uses two-dimensional templates to describe possible correlations between BDTCP

and BDT0. An alternative approach to the KDE is chosen to ensure that there do not exist

empty bins. Instead, the 2D histograms are unrolled to a 1D distribution, such that the new

bin numbering iCP,0 is given by:

iCP,0 = jCP +NCP · k0 ,

where NCP is the number of BDTCP bins and j, k are the indices of BDTCP and BDT0,

respectively. Any empty bin is merged with its neighbour after the unrolling. The subsequent

approach follows the same structure as described for the ZZ⇤ analysis: Construct the likelihood

model, maximise the likelihood as function of the coupling ratios and use the profiled likelihood

ratio as test statistic. A comprehensive description of the analysis is given in [97].
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Figure 3.28: BDT discriminant used in the WW ⇤ analysis. (A) BDT
0

optimised to separate
a SM Higgs and backgrounds. (B) BDTCP optimised to separate a SM Higgs from the CP-
Even spin-0 boson 0+h (C) BDTCP optimised to separate a SM Higgs from the pseudo-scalar

0� [97].

3.5.2 Correlating Systematic Uncertainties

The next step of the combination is to identify which systematic uncertainties the two analyses

share. The combined likelihood will be the product of the two individual ones, but where the



124 3.5 The ZZ⇤ and WW ⇤ Combination

shared systematics are correlated and the constraint term only contain the minimal set of

unique uncertainties:

LComb = LZZ · LWW · C(✓Unique)

The analysis of systematic uncertainties that was conducted for the ZZ analysis demonstrated

two things: The analysis is at the current level of available data completely dominated by

statistical uncertainties and a large part of the relevant systematic uncertainties are related

to the description of reducible backgrounds which, do not relate to the WW analysis. In the

end, after the pruning of the ZZ systematic uncertainties the only ones shared between the

two decay channels are:

alpha Lumi 2012: Uncertainty in the luminosity collected by ATLAS for the 2012 dataset.

alpha pdf qq: Parton density uncertainty for V V ⇤ production.

alpha QCDscale VV: Renormalisation and factorisation scale of background production.

In conclusion it is the uncertainty in background process production and the collected dataset

size that will simultaneously a↵ect the two analysis.

3.5.3 Results

The first result that is presented will examine how well the ZZ and WW analyses agree.

Looking at the Lagrangian density of Eq. 1.6, a di↵erent coupling has been assigned to the

ZZ and WW sectors. Having constructed the combined likelihood, it is possible to perform

a fit on the separate BSM/SM coupling ratios for the individual decay channels. In principle

a deviation in the best fitting value between the two would violate custodial symmetry. The

result is presented in Figure 3.29, where it is seen that the fitted results are in agreement with

the Standard Model expectations.

The peculiar shape of the ̃HWW
SM

, ̃HZZ
SM

landscape can be understood from the behaviour of

the individual results, see of Figure 3.30b. The WW channel has a degenerate minimum at
̃HV V
SM

= �1 and �0.5, where �1 is slightly preferred. This correspond to the two minima that

are found in the vertical direction. The scan also more or less has a constant test statistic

value of 5 at large BSM fractions, corresponding to the vertical bar of Figure 3.29.

The separate fit result indicate good agreement between the two decay-channels. It is well

motivated both theoretically and by observations to combined the two coupling ratios:

✓

̃HZZ

SM
,
̃HWW

SM

◆

! ̃HV V

SM

✓

̃AZZ

SM
tan↵,

̃AWW

SM
tan↵

◆

! ̃AV V

SM
tan↵

The fits are repeated to create the final results. Note that the combined parameter results

will appear significantly more constraining that what is indicated by Figure 3.29. This is both

because the ZZ and WW information is combined, but also because the parameter combin-

ation will create a di↵erent interpretation of the profiled likelihood test statistic. The 68%
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Figure 3.29: Simultaneous fit of ̃HZZ

SM
, ̃HWW

SM
(A) and ̃AZZ

SM
tan↵, ̃AWW

SM
tan↵ (B). The

contours are meant to be interpreted as everything that is within the solid line are within the
68% CL and everything within the dashed line is within the 95% CL. (A) has a degenerate

minimum in the WW direction.

and 95% CL are set assuming asymptotic behaviour which means that the test statistic dis-

tribution follows a �2
N distribution with degrees of freedom equal to the dimensionality of the

parameter of interest. Combining the two parameters will make the dimension go from two to

one and as a result the 95% CL is found where the likelihood crosses 3.84 instead of 5.99.

The results are presented in Table 3.12. The limits are again reinterpreted as e↵ective BSM

cross section contributions. The combined and individual likelihood curves are found in Fig-

ure 3.30. Everything is again concluded to be in agreement with Standard Model expectations.

Coupling ratio Best-fit value 95% CL Exclusion Regions

Combined ZZ⇤,WW ⇤ Observed SM Expectation Observed
̃HV V
SM

�0.48 (�1,�0.55]
S

[4.80,1) (�1,�0.73]
S

[0.63,1)

fg2 · cos�g2 �0.074 [�1,�0.096]
S

[0.89, 1] [�1,�0.16]
S

[0.12, 1]
̃AV V
SM

tan↵ �0.68 (�1,�2.33]
S

[2.30,1) (�1,�2.18]
S

[0.83,1)

fg4 · cos�g4 �0.062 [�1,�0.44]
S

[0.43, 1] [�1,�0.41]
S

[0.090, 1]

Table 3.12: Expected and observed best-fit values of ̃HV V

SM
and ̃AV V

SM
tan↵ and regions

excluded at 95% CL obtained in the combined H ! ZZ⇤ ! 4` and H ! WW ⇤ ! e⌫µ⌫
analysis. The expected values are estimated for an Asimov sample generated with the nuisance
parameters found in data. The data for

p
s = 7 TeV (ZZ⇤ only) and

p
s = 8 TeV are

combined. The results are also given in e↵ective coupling ratio fractions fg2, fg4. The angle
�gi is either 0 for positive coupling ratios or ⇡ for negative. Results published in [5].
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Figure 3.30: Expected and observed results of the HV V tensor structure analysis. Likeli-
hood curves obtained for H ! ZZ⇤ ! 4`, H ! WW ⇤ ! e⌫µ⌫ and their combination. The
data for

p
s = 7 TeV (only ZZ⇤) and

p
s = 8 TeV are combined. Left column show ̃HV V

SM

scans while right column show ̃AV V

SM
tan↵ results. (A) Individual and combined expectations.

(B) Individual and combined observations. (B) Expected and Observed comparison. Figures
published in [5].
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3.6 Simultaneous Fit of ̃HV V

SM
and ̃AV V

SM
tan↵

The analyses so far have assumed that data could be described by having at most one BSM

contribution to the e↵ective Lagrangian. Beside it being the simplest approach, there is no

real theoretical motivation to make this assumption. A more ideal approach is to allow the

coexistence of all three Lagrangian terms (SM , HV V , AV V ). The full inclusion will make

it possible to perform a simultaneous fit of both coupling ratios, or perform the likelihood scan

of one over the profile of the other9. The following section will examine how a simultaneous

fit can be constructed using the Matrix Element Observable approach of fitting coupling ratios.

Ignoring how much Monte Carlo is available or reasonable to produce, the simplest possible

extension would be to create five-dimension histograms with the four Matrix Element Observ-

ables and background discriminant. Using the same (conservative) binning as is done for the

one-parameter analysis, the histogram would consist of ' 60000 bins. It would be virtually

impossible to populate such a histogram with simulated events.

If on the other hand it is possible to disregard some of the observable correlations, a factorised

model can be used. Since the observables have been defined with separate use; two to measure
̃HV V
SM

; two to measure ̃AV V
SM

tan↵ and one to discriminate backgrounds, a natural factorisation

scheme would be:

pdf(Ō) = pdf (TO1(̃HV V ) + TO2(̃HV V ), TO1(̃HV V )� TO2(̃HV V )) ·
pdf (TO1(̃AV V ,↵), TO2(̃AV V ,↵)) · pdf(BDTZZ) (3.6)

In the factorised scheme it will then at most be necessary to describe two dimensional distri-

butions.

Even more than for the one-parameter analysis, it will be necessary to assume asymptotic test

statistic behaviour. In that case, the test statistic will follow a �2
Dim=2 distribution and limits

can readily be set. One necessary criterion for the assumption is however that the factorised

observables are not correlated10.

Figure 3.31 shows the dependency between the ̃HV V
SM

and ̃AV V
SM

tan↵ observables. A cor-

relation between TO2(̃AV V ,↵) and TO1(̃HV V ) ± TO2(̃HV V ) is seen. The dependency is

suspected to propagate to the test statistic distribution but it is however di�cult to assess how

severely the correlation will a↵ect the result solely from looking at the observable distribu-

tions. To estimate how much the factorisation scheme will overconstrain the fitted parameters,

a series of tests are performed:

The pdfs that are assumed to be uncorrelated in Eq. 3.6 are examined two by two. In each

case, a two-dimensional factorised model is constructed from a ̃HV V
SM

and a ̃AV V
SM

tan↵ observ-

able. The likelihood contour of the factorised model is compared to the model that takes into

account their dependency. In the first test for instance, the likelihood contours for the two

9Profiling here means that the likelihood is minimised with respect to the coupling ratio that is not scanned
over. In other words the coupling ratio that is not scanned over is treated as a nuisance parameter.

10 A short discussion of the problems of factorising with correlated observables is given in App. A.3.
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Figure 3.31: Correlation between ̃HV V

SM
and ̃AV V

SM
tan↵ observables. (A,B): TO

1

(̃HV V ) +
TO

2

(̃HV V ) vs. TO
1

(̃AV V ,↵) and O
2

(̃AV V ,↵). (C,D): TO
1

(̃HV V ) � TO
2

(̃HV V ) vs.
TO

1

(̃AV V ,↵) and O
2

(̃AV V ,↵). A dependency to TO
2

(̃AV V ,↵) is seen.

models:

pdf(Ō)Full = pdf (TO1(̃HV V ) + TO2(̃HV V ), TO1(̃AV V ,↵)) · pdf(BDTZZ)

pdf(Ō)Fact. = pdf (TO1(̃HV V ) + TO2(̃HV V )) · pdf (TO1(̃AV V ,↵)) · pdf(BDTZZ) ,

are compared. The test will show if the fitted parameters will be overconstrained by assuming

that the two pdfs are independent.

The tests are continued for each of the observable distributions that are assumed to be in-

dependent. It should be noted here, that the background discriminant is assumed to be

independent from the other observables. The assumption is motivated theoretically by the

fact that the boosted decision tree is only trained on Higgs production related parameters
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while the models that are examined are explicitly constructed to be independent of the bo-

son’s production mechanism (gluon fusion). The correlation is moreover shown in Figure 3.12d

and C.11. The outcome of the observable dependency tests is shown in Figure 3.32.

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

1

2

3

4

5

6

7

8

9
ZZ

), BDTα, AVV κ∼(
1

), OHVV κ∼(
2

)+TOHVV κ∼(1TO
Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

Factorised model
Full model

α tan ⋅ ) SMκ / AVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

Factorised model
Full model

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

α
 ta

n 
⋅

 ) 
SM
κ

 / 
AV

V
κ∼ ( 

10−

5−

0

5

10

(F
ac

to
ris

ed
 - 

Fu
ll)

λ
-2

ln
 

1−

0

1ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

1

2

3

4

5

6

7

8

9
ZZ

), BDTα, AVV κ∼(
2

), OHVV κ∼(
2

)+TOHVV κ∼(1TO
Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

Factorised model
Full model

α tan ⋅ ) SMκ / AVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

1

2

3

4

5

6

7

8
ZZ

), BDTα, AVV κ∼(
2

), OHVV κ∼(
2

)+TOHVV κ∼(1TO
Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

Factorised model
Full model

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

α
 ta

n 
⋅

 ) 
SM
κ

 / 
AV

V
κ∼ ( 

10−

5−

0

5

10

(F
ac

to
ris

ed
 - 

Fu
ll)

λ
-2

ln
 

1−

0

1ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)+TOHVV κ∼(1TO

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

0.5

1

1.5
2

2.5

3

3.5
4

4.5 ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

α tan ⋅ ) SMκ / AVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
ZZ

), BDTα, AVV κ∼(
1

), OHVV κ∼(
2

)-TOHVV κ∼(1TO
Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

α
 ta

n 
⋅

 ) 
SM
κ

 / 
AV

V
κ∼ ( 

10−

5−

0

5

10

(F
ac

to
ris

ed
 - 

Fu
ll)

λ
-2

ln
 

1−

0

1ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

ZZ
), BDTα, AVV κ∼(

1
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

0.5

1

1.5
2

2.5

3

3.5
4

4.5 ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

α tan ⋅ ) SMκ / AVVκ∼( 
10− 5− 0 5 10

λ
-2

ln
 

0

1

2

3

4

5

6

7

8
ZZ

), BDTα, AVV κ∼(
2

), OHVV κ∼(
2

)-TOHVV κ∼(1TO
Factorised model
Full model

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Factorised model
Full model

 )SMκ / HVVκ∼( 
10− 5− 0 5 10

α
 ta

n 
⋅

 ) 
SM
κ

 / 
AV

V
κ∼ ( 

10−

5−

0

5

10
(F

ac
to

ris
ed

 - 
Fu

ll)
λ

-2
ln

 

1−

0

1ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

ZZ
), BDTα, AVV κ∼(

2
), OHVV κ∼(

2
)-TOHVV κ∼(1TO

Figure 3.32: Likelihood contours obtained with a full two dimensional observable description
and a factorised model. In all cases the background discriminant BDTZZ is added as a separate
factor. A simultaneous scan over ̃HV V

SM
and ̃AV V

SM
tan↵ is performed. The left column show the

scan over ̃HV V

SM
assuming ̃AV V

SM
tan↵ to be zero. The centre column show the ̃AV V

SM
tan↵ scan

when ̃HV V

SM
is assumed to be zero, while the rightmost column show the di↵erence between the

factorised and full model. A red colour indicate that the factorised model will overestimate
the likelihood. The four rows show the four di↵erent combinations of pdfs that are assumed

independent.
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Assuming O2(̃AV V ,↵) to be independent of the ̃HV V
SM

observables (row two and four) give

slightly higher likelihood values as expected. The e↵ect is stronger at coupling ratios far from

the Standard Model.

The di↵erence is seen to be around 0.5 in the most severe cases. To give an idea of how

much the fitted parameter coverage changes, it can be mentioned that the tail integral of a

�2
2 distribution from 5.5 is 0.063 compared to the 0.05 at 5.99, where limits are usually set.

Likewise, the tail integral of a �2
1 from 3.3 is 0.07 compared to the 0.05 from 3.84 where

limits are usually set. The discrepancy is concluded to be within acceptable deviations, but

it is noted that the 95% CL of the following section should be considered approximate or

conversely should be interpreted as . 95% CL.

Further attempts at decorrelating the observables is outlined in Appendix D. The appendix

describes the use of a transformation matrix that result in a set of observables with covariance

given by the identity matrix.

3.6.1 Results

The likelihood model is created similarly to the one-dimensional tensor structure fit. For

technical reasons it is not possible to perform pdf -interpolation between models as in the one-

parameter case. Instead, the likelihood values are calculated in a grid and the intermediate

likelihood values are estimated with linear interpolation. The grid is chosen as 81⇥ 81 points

from �10 to 10 in either direction.

The likelihood model is here constructed without systematic uncertainties. It was demon-

strated in Section 3.4.7 that it is not expected that the result will change in any noticeable

way from this. The computational demand of fitting in the two-dimensional plane with sys-

tematic uncertainties is however problematic.

A model is constructed where the background normalisations are allowed to float unconstrained

in order to assess how much the result would change by including systematic uncertainties.

The relative normalisation of the individual backgrounds is kept constant such that only one

extra nuisance parameter is added. The limits set on ̃AV V
SM

tan↵ for a nominal Standard Model

Asimov sample was observed to change from 2.5 to 2.6.

The analysis is applied to the observed Run-1 data of 4.5 fb�1 taken at
p
s = 7 TeV and

20.3 fb�1 taken at
p
s = 8 TeV. In order to get the most valid comparison to Standard Model

expectations, a fit is performed on a Asimov sample where SM is assumed but the model signal

strength is taken from data. The first set of results are presented in Figure 3.33. The observed

and expected contours are compared. Stronger limits than expected are observed for positive
̃HV V
SM

as in the one-dimensional case. The contour is seen to be flat in this area such that

relatively small changes in likelihood values will result in large changes of the limit.

The one dimensional results are moreover examined. Both, where each parameter is fitted,

while the other is assumed to be zero, and where the other is minimised (profiled). A kink

in the profiled likelihood curve is seen at around ̃AV V
SM

tan↵ = 3 as a result of a degenerate

minimum in ̃HV V
SM

. The ̃AV V
SM

tan↵ scan will be minimised for positive values of ̃HV V
SM

in the

beginning and when reaching ̃AV V
SM

tan↵ ' 3 will suddenly change to be minimised in the
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valley seen in the upper left corner of the plane.

The profile is in some areas observed to be a stronger discriminant that when fixing the al-

ternate parameter to zero. This can happen if the two-dimensional fit is not minimised at

zero either. The expected and observed limits and best fitting values found in the figures are

presented in Table 3.13.

Figure 3.34 show the results when they are re-interpreted as limiting the e↵ective contributions

to the combined cross section in terms of fg2 and fg4. The e↵ective cross section results are

created by interpolating the likelihood values found in the coupling ratio fit. The one para-

meter limits can directly be calculated from Table 3.33, while the ’profile’ limits are dependent

on where the minimum of the alternate parameter is found. The profile values can as such

be understood as limiting one BSM contribution independent on whether the remaining cross

section stems from the Standard Model or the alternate BSM sector. The corresponding best

fitting values and limits are listed in Table 3.14.

The results are concluded to be in agreement with the Standard Model.

Coupling ratio Best-fit value . 95% CL Exclusion Regions

H ! ZZ⇤ ! 4` Observed SM Expectation Observed

̃HV V

SM
with ̃AV V

SM
tan↵ = 0 �0.30 (�1,�0.67]

S

[3.7,1) (�1,�0.87]
S

[0.97,1)

̃HV V

SM
with ̃AV V

SM
tan↵ profiled �0.50 (�1,�0.77]

S

[3.7,1) (�1,�0.97]
S

[1.0,1)

̃AV V

SM
tan↵ with ̃HV V

SM
= 0 �0.74 (�1,�2.5]

S

[2.5,1) (�1,�2.3]
S

[0.92,1)

̃AV V

SM
tan↵ with ̃HV V

SM
profiled �0.50 (�1,�3.4]

S

[3.3,1) (�1,�2.1]
S

[0.82,1)

Table 3.13: Observed best fitting values and limits for ̃HV V

SM
and ̃AV V

SM
tan↵. The expected

and observed limits are given both when the alternate parameter is assumed zero and when
profiled. Values correspond to the full LHC Run-I dataset.

Contribution to cross section Best-fit value . 95% CL Exclusion Regions

H ! ZZ⇤ ! 4` Observed SM Expectation Observed

fg2 · cos�g2 w. fg4 · cos�g4 = 0 �0.030 [�1,�0.14]
S

[0.83, 1] [�1,�0.21]
S

[0.25, 1]

fg2 · cos�g2 w. fg4 · cos�g4 profiled �0.074 [�1,�0.16]
S

[0.83, 1] [�1,�0.24]
S

[0.24, 1]

fg4 · cos�g4 w. fg2 · cos�g2 = 0 �0.069 [�1,�0.47]
S

[0.47, 1] [�1,�0.43]
S

[0.11, 1]

fg4 · cos�g4 w. fg2 · cos�g2 profiled �0.035 [�1,�0.52]
S

[0.52, 1] [�1,�0.39]
S

[0.082, 1]

Table 3.14: Observed best fitting values and limits for fg2 · cos�g2 and fg4 · cos�g4. The
expected and observed limits are given both when the alternate parameter is assumed zero

and when profiled. Values correspond to the full LHC Run-I dataset.
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Figure 3.33: Simultaneous fit of ̃HV V

SM
and ̃AV V

SM
tan↵. Expected and observed likelihood

landscapes (A) and likelihood curves (B). The alternate parameter is both assumed zero and
profiled in the single parameter scans. The figures show the analysis outcome using the full

LHC Run-I dataset.
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Figure 3.34: Expected and observed likelihood landscapes of fg2 · cos�g2 vs. fg4 · cos�g4
(A). The values are created by interpolating Figure 3.33. (B) Likelihood curves for the single
parameter scan and the profiled scan. The figures show the analysis outcome using the full

LHC Run-I dataset.
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3.7 Outlook: High Luminosity Prospects

The future prospects of the tensor structure analysis is examined for high luminosity projec-

tions. Benchmark luminosities of 300 fb�1 and 3000 fb�1 are chosen, corresponding to the

expected data-size after the LHC and HL-LHC.

3.7.1 Matrix Element Observables as a Probe of the HZZ Vertex

The analysis described in this section follows with a few modifications the analysis structure

of the previous parts11.

The structure of the HZZ vertex is here described in coupling ratios g2/g1 and g4/g1 following

[46]. The BSM couplings g2 and g4 are in general allowed to be complex. The parameterisation

can however readily be compared to the parameterisation used in previous sections:

<(g2)/g1 = ̃HV V

SM
<(g4)/g1 = ̃AV V

SM
tan↵

Samples

A large Monte Carlo sample is generated with coupling composition: (g1 = 1, g2 = 1+ i, g4 =

1+i) with an assumed boson mass of 125.5 GeV. The signal sample is generated using the JHU

3.1.8 Monte Carlo generator. Matrix element based reweighting is applied to get descriptions

of other coupling composition using JHUGenMELA[46]. A number of BSM samples are

independently generated to demonstrate the ability to close on di↵erent signal models.

MadGraph5[49] is used to generate a ZZ⇤-continuum background sample around the signal

mass region: 100 GeV < m4l < 150 GeV. The shape of the reducible backgrounds is assumed

to be the same as ZZ⇤ but with a relative event yield of 50%.

The behaviour of the ATLAS detector is described by a simplified model. The e�ciencies and

resolutions of lepton reconstruction is described in [98]. Finally, a kinematic selection similar

to what is described in 3.2.1 is applied to all samples. The expected event yield after the

selection is listed in Table 3.15.

A set of systematic uncertainties describing variations in the expected number of events is

moreover included. The list and sizes can be found in Table 3.16. The systematics will be

included in the analysis likelihood model as scaling factors under Gaussian constraints.

11This analysis is historically the first to be performed. This is reflected by the inclusion of complex coupling
ratios and a less developed use of matrix element observables. The analysis functioned as a feasibility study on
which the Run-I analysis described above is based on. Results published in [4].
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Signal Backgroundsp
s = 14 TeV, 3000 fb�1

4µ 1186 641
2µ2e 867 431
2e2µ 1035 574
4e 871 474
Total 3959 2120

Table 3.15: Expected signal and background yields for high luminosity projections, in the
115 GeV < m

4` < 130 GeV signal region. The number of signal events is given for a Higgs
boson mass of 125.5 GeV[4, Tab.2]. The 300 fb�1 numbers are assumed to be 1/10th of the

above.

Uncertainty Size

Luminosity uncertainty. Correlated between signal and backgrounds. 3%

Lepton reconstruction e�ciency. Separate yield uncertainty for signal and back-

grounds

5%

ZZ⇤ and reducible background event yield for 300 fb�1 9.4%

ZZ⇤ and reducible background event yield for 3000 fb�1 7.4%

Table 3.16: Assumed systematic uncertainties for high luminosity tensor structure fits[4].

Likelihood model construction

The analysis makes use of the following set of Matrix Element observables:

O(|g2|/g1) = ln
|ME(g1 = 1, g2 = 0, g4 = 0)|2
|ME(g1 = 0, g2 = 1, g4 = 0)|2

O(<(g2)/g1) = ln
|ME(g1 = 1, g2 = �1 + i, g4 = 0)|2
|ME(g1 = 1, g2 = 1 + i, g4 = 0)|2

O(=(g2)/g1) = ln
|ME(g1 = 1, g2 = 1� i, g4 = 0)|2
|ME(g1 = 1, g2 = 1 + i, g4 = 0)|2

O(|g4|/g1) = ln
|ME(g1 = 1, g2 = 0, g4 = 0)|2
|ME(g1 = 0, g2 = 0, g4 = 1)|2

O(<(g4)/g1) = ln
|ME(g1 = 1, g2 = 0, g4 = �2 + 2i)|2
|ME(g1 = 1, g2 = 0, g4 = 2 + 2i)|2

O(=(g4)/g1) = ln
|ME(g1 = 1, g2 = 0, g4 = 2� 2i)|2
|ME(g1 = 1, g2 = 0, g4 = 2 + 2i)|2

The observables are chosen to be optimal in measuring di↵erent elements of the complex

coupling structure. Three observables are defined for each of the two planes. The first is

constructed to be sensitive to the coupling magnitude, the second with sensitivity to the real

part and the last with sensitivity to the imaginary part.

The magnitude sensitive observables O(|g2|/g1) and O(|g4|/g1) are the same as used in the

Run-I analysis; O2(̃HV V ) and O2(̃AV V ,↵). The two other observables are chosen such that
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the first ratio of matrix elements has di↵erence in the real part of gi while the other ratio

di↵ers in the imaginary part.

A Boosted Decision Tree (BDTZZ) is moreover trained on production observables to discrim-

inate against backgrounds. Two dimensional templates are finally created where each of the

six observables is separately described with their correlation to BDTZZ .

The observable distributions for coupling ratios in the g2/g1 and g4/g1 planes are found with

matrix element based reweighting applied to the large (g1 = 1, g2 = 1+ i, g4 = 1+ i) sample.

101 points from -5 to 5 are chosen for each of the dimensions. The distributions are described

individually for each of the four final states.

The analysis likelihood is constructed similarly to the description of Section 3.4.4 but is here

a function of both the real and imaginary part of the coupling ratios. The likelihood is calcu-

lated at the coupling values chosen as targets of the matrix element based reweighting. The

points are fairly close, so an adequate description can be found by interpolating likelihood

values rather than pdf values.

It is finally found to be di�cult to describe the correlation between the observable distribu-

tions. A simplistic solution is instead adopted by using the test statistic:

�2 ln�(g↵/g1) = max

(

�2 ln
LO, Free(✓)

LO, MLE(✓̂)

�

�

�

�

�

O = O(|g↵|/g1), O(<(g↵)/g1), O(=(g↵)/g1)
)

,

such that a profiled likelihood ratio is created for each of the three observables and limits are

based on the most restrictive.

Closure and results

The model is applied to various BSM samples to demonstrate its ability to accurately locate

minima in the complex g2/g1 and g4/g1 planes. Figure 3.35 show the 2.23 and 5.99 �2 ln�

contours corresponding to regions excluded at 68% and 95% CL. The contours are shown for

each of the three observables. The coupling composition is accurately found in each of the

four examples. The three observables are seen to have di↵erent sensitivities as expected from

their construction.

The analysis is finally applied on Standard Model Asimov samples to get the 300 fb�1 and

3000 fb�1 expectations. The obtained contours can be found in Figure 3.36.

The interval studied in the Run-I analysis corresponds to taking the likelihood slice along the

x-axis of the figures. The expected intervals are listed in Table 3.17. The limits set on the real

part of the coupling are presented in two ways. The first constructs the likelihood curve for

the real component while profiling the imaginary. In the presence of complex coupling ratios

this would be the most accurate way to describe limits. If complex coupling ratios however

are disregarded, it no longer make sense to create the profile. The likelihood curve is instead

in the second approach read directly along the x-axis.

Examining the structure of the g4/g1 fits it can be realised that the two values are the same.

The 300 fb�1 exclusion potential is created by the modulus sensitive observable and does not

have any phase structure. In other words, the landscape is circular around the Standard Model
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Figure 3.35: High luminosity closure tests. Likelihood contours for Asimov samples with
coupling compositions (g
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at zero and the real axis as a result contain the minimum as function of real coupling ratio.

The sensitivity of the 3000 fb�1 scan is derived from the real-sensitive observable. The limits

are seen to be close to constant as function of complex ratio.

Comparing the results to the expectations of the Run-I dataset of Table 3.9 reveals a significant

increase in sensitivity. The analysis is to a very high degree limited by statistics and will keep

gaining sensitivity as integrated luminosity is collected. It is expected by the end of LHC that

it will be possible to exclude or measure ⇠ 10% contributions from the CP-odd and 2% to 5%

contributions from the CP-even BSM sector. Likewise, for the HL-LHC limits these numbers

are expected to reduce to ⇠ 1% (CP-even) and 0.2% to 0.4% (CP-odd) which will e↵ectively

move the study of the HV V vertex structure into the category of precision measurements.
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Figure 3.36: High Luminosity coupling ratio fits assuming a Standard Model Higgs. (A,B)
likelihood contours for the g

2

/g
1

plane for 300 and 3000 fb�1. (C,D) likelihood contours for
the g

4

/g
1

plane for 300 and 3000 fb�1[4].

Coupling ratio 95% CL Exclusion Regions
H ! ZZ⇤ ! 4` Expected 300 fb�1 Expected 3000 fb�1

̃HV V
SM

(complex profile) (�1,�0.88]
S

[0.38,1) (�1,�0.33]
S

[0.11,1)

fg2 · cos�g2 (complex profile) [�1,�0.21]
S

[0.048, 1] [�1,�0.037]
S

[0.0042, 1]
̃HV V
SM

(real-only) (�1,�0.25]
S

[0.38,1) (�1,�0.075]
S

[0.11,1)

fg2 · cos�g2 (real-only) [�1,�0.021]
S

[0.048, 1] [�1,�0.002]
S

[0.0042, 1]
̃AV V
SM

tan↵ (�1,�1.01]
S

[1.01,1) (�1,�0.34]
S

[0.26,1)

fg4 · cos�g4 [�1,�0.13]
S

[0.13, 1] [�1,�0.016]
S

[0.0096, 1]

Table 3.17: Expected exclusion regions at 300 fb�1 and 3000 fb�1. The values are both
derived from profiling the complex contribution and assuming real-only couplings. The two
are the same in the g

4

/g
1

plane. The profiled values correspond to the < row of [4, Tab. 6].
Note that the e↵ective cross section fractions fg2, fg4 di↵er from the paper, due to updated

predictions of �HV V /�SM and �AV V /�SM . Values used here are as in Section 1.2.4.
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3.7.2 Angular asymmetries as a Probe of the HZZ Vertex

A separate study was performed which focused on the prospects of fitting the HZZ tensor

structure using angular asymmetries[6]. The parameterisation of mixed models is similar to

the e↵ective field theory approach described in Section 1.2.4. The analysis focuses on CP-

violating contributions to SM and therefore only considers SM and AZZ couplings.

CP-mixing is parameterised in terms of the mixing angle ↵. As such, it is necessary to make

assumptions on the relationship between the two couplings. SM is fixed to 1 in order to

reproduce SM when cos↵ = 1. AZZ is chosen to have the value that results in equal cross

section to the Standard Model, AZZ = 28.6 or equivalently ̃AZZ = 1.7612.

Monte Carlo is generated with the MadGraph5 aMC@NLO generator[49] and interfaced

with a CMS/ATLAS like detector simulation generated with PGS[99]. Expected event yields

are similar to [4]: NS = 1.32L, NB = 0.71L where L is the integrated luminosity.

So far, either Matrix Element Observables or the direct use of the final state observables have

been described. The study here examines a di↵erent set of discriminants proposed in [100].

The angular distributions are defined to be asymmetric in the presence of BSM contributions

to the HZZ vertex. Six observables are constructed from the final state kinematics. Here, only

the O4 observable will be mentioned since it turns out (together with O5) to be the strongest

probe of CP-mixing.

In the following, the notation ~piV is used to describe the lepton three momenta. They are

enumerated such that 1 and 2 come from the Z boson with the highest mass and 1 is the

particle while 2 is the anti-particle. Equivalently, 3 is used to symbolise the particle and 4

the anti-particle. The H,Z index denotes whether the momentum is measured in the Z or H

frame of reference. The observable O4 is defined as:

O4 =
[(~p3H ⇥ ~p4H) · ~p1H ][(~p3H ⇥ ~p4H) · (~p1H ⇥ ~p2H)]

|~p3H + ~p4H |2|~p1H + ~p2H ||~p3Z � ~p4Z |2|~p1Z � ~p2Z |2/16 ,

The distribution of O4 for a CP-even and CP-violating boson can be found in Figure 3.37a.

The presence of CP-mixing is measured in two complementary approaches. First the CP-

mixing is measured in terms of the observable asymmetry, with corresponding significance:

A =
N(O > 0)�N(O < 0)

N(O > 0)�N(O < 0)
S = A

NSp
N

,

where NS and N refer to the expected number of signal events and total number of events.

The observables are conveniently defined such that the ZZ⇤-continuum background is more

or less symmetric as in Figure 3.37a.

The significance of the asymmetry thus tells how compatible an observation is with the Stand-

ard Model. Conversely, a lack of observed symmetry can be interpreted as excluding possible

mixing angles. The excluded mixing angles assuming a SM Higgs for 300 fb�1 and 3000 fb�1

are listed in the ’Asymmetry’ row of Table 3.18.

Next, the method of creating pdfs using Monte Carlo templates, constructing a likelihood

12 The paper also studies di↵erent coupling scenarios between ̃AZZ/1.76 = 0.6 to 1.4
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Figure 3.37: (A) Expected O
4

distribution for the ZZ⇤ continuum, the Standard Model
and a CP-violating cos↵ = 0.5 model. (B) Likelihood exclusion based on the O

4

distribution
assuming a mixed model of cos↵ = 0.45. Both figures assume an integrated luminosity of

300 fb�1[6].

function and using this to derive limits is tried. The approach follows the same structure as

has been described in the previous sections.

An example of an expected likelihood contour assuming cos↵ = 0.45 and an integrated lumin-

osity of 300 fb�1 is shown in Figure 3.37b. Here it is demonstrated that the O4 observable

would limit cos↵ to be between 0.2 and 0.7 if the true value is 0.45 (i.e. strong CP-violation).

The procedure is repeated assuming mixing angles between cos↵ = 0 and 1. Figure 3.38 show

which regions will be excluded based on the O4 distribution as a function of the true mixing

angle. The expected limits assuming a Standard Model Higgs (cos↵ = 1) are listed in the ’O4

Likelihood’ row of Table 3.18.
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Figure 3.38: Expected exclusion regions as function of cos↵ for 300 fb�1 and 3000 fb�1.
The assumed model is shown on the x axis with corresponding limits on the y axis. The white

areas are excluded at 95% confidence level[6].

The limits obtained in the two approaches are seen to be fairly similar. The ’Asymmetry’

approach is not able to distinguish the SM Higgs from a completely CP-odd model, which is
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reflected in the lack of sensitivity to cos↵ ' 0. The results shown here are slightly weaker

than the matrix element observable approach presented in the previous section. The analysis

did however only use one observable and combining several would potentially lead to stronger

limits. A more primitive detector simulation is also used so comparison between the two

methods should be done with caution.

The approach does however reflect the interesting idea that the CP nature of the Higgs boson

can be probed by measuring asymmetries rather than through complex model building. As

such, its use could be valuable to study in more detail, by using more realistic simulation, by

combining several observables and by obtaining better understanding of how the asymmetry

should optimally be used as a test statistic.

95% CL Exclusion Regions

H ! ZZ⇤ ! 4` Expected 300 fb�1 Expected 3000 fb�1

Approach cos↵ fg4 cos↵ fg4
O4 Asymmetry [0.34,0.79] 0.21 [0.089,0.97] 0.028

O4 Likelihood [0,0.71] 0.30 [0, 0.91] 0.084

Table 3.18: Expected high luminosity limits on the CP-mixing angle using angular asym-
metries. Only the limit of fg4 corresponding to cos↵ ' 1 is given for the Asymmetry approach

since the high BSM fraction has already been excluded by current observations.
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4.1 Summary

The introduction of the Higgs particle to the Standard Model of particle physics reveals a

number of appealing features. It enables a description of a gauge invariant theory of massive

particles and remedies the divergent behaviour of massive vector boson scattering.

The discovery of the Higgs boson marked the culmination of decades of dedicated research at

the massive collaborative e↵orts at the LEP, Tevatron and LHC experiments.

The resonance discovery however left many questions unanswered. In an e↵ort to test the

predictions o↵ered by the Standard Model, a series of studies have been conducted here on

its spin and CP-nature. The common outline of those is to remove the Higgs sector of the

Standard Model Lagrangian and substitute several alternatives to determine which is favoured

by data.

The substitutes are divided into alternative spin models and alternative spin-0 models. Spin-2

alternatives are described as graviton-like particles in an e↵ective field theory approach. The

QCD couplings of the spin-2 models is not determined in theory and several assumptions are

tried.

The spin-1 hypothesis is also tested in the H ! ZZ⇤ ! 4` decay channel but has little theor-

etical motivation since it is disfavoured by the resonance decay to �� due to the Landau-Yang

theorem[51][52]. The agreement between the production cross section of the boson and the

Standard Model production of Higgs through gluon fusion also disfavours this hypothesis.

Discrimination between hypotheses is obtained in a multivariate approach using boosted de-

cision trees. The BDT approach allows for a compact description of the eight-dimensional

final state of H ! ZZ⇤ ! 4` that takes into account relevant parameter correlations. A BDT

is used to separate alternative signal models and another is used to separate a Standard Model

Higgs from the ZZ⇤-continuum background. It is found, with the exception of the negative

parity spin-2 and a spin-2 boson that does not couple to the quark sector, that all alternative

spin hypotheses excluded at the 95% CL. Notably, the spin-2 universal couplings model is

assigned a CLS value of 0.0009.

The spin-0 sector is described in an e↵ective field theory approach with three component struc-

ture. Assuming only a single sector present at a time, the three components correspond to

the Standard Model, a CP-even BSM boson and CP-odd boson. Using the same multivariate

approach as for the spin hypothesis tests the Standard Model if found to be favoured by data

and the alternative CP-even (JP = 0+h ) and CP-odd (JP = 0�) models are assigned CLS

values of 0.10 (CP-even) and 0.054 (CP-odd).

The analysis is extended by allowing the simultaneous presence of the SM coupling (SM ) and

one BSM coupling (HV V ) or (AV V ) where AV V is accompanied by the CP-mixing angle ↵.

The H ! ZZ⇤ ! 4` analysis uses a Matrix Element Observable approach that is constructed

to take into account the full decay kinematics of the process. The matrix elements observables

are extended by a BDT background discriminant. A combination of matrix element based

reweighting, kernel density estimation and pdf -interpolation is used to acquire a pdf that is

continuous in the examined coupling ratios. Extensive testing against independent Monte

Carlo simulation is used to validate the approach.
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The H ! ZZ⇤ ! 4` channel is finally combined with the H ! WW ⇤ ! e⌫µ⌫ analysis. The

channels are found to give similar results in agreement with custodial symmetry. By combining

their information, the e↵ective BSM cross section contribution to the resonance production is

found to be limited to the ranges:

fg2 · cos�g2 2 [�0.16, 0.12] fg4 · cos�g4 2 [�0.41, 0.090]

at 95% confidence level. Data is thus in agreement with Standard Model behaviour.

The spin-0 analysis concludes with a final extension, where all three components of the EFT

Lagrangian are simultaneously studied. A factorised model of the Matrix Element Observables

is developed and the simultaneous fit reveals data to be in agreement with the Standard Model.

A summary of the results is presented in Figure 4.1.

A prospect study of the use of Matrix Element Observables in the high luminosity limit is

conducted. It is demonstrated that for an integrated luminosity of 300 fb�1 it will be possible

to probe 10% contributions from the CP-odd sector to the combined cross section and 2% to

5% from the CP-even BSM sector. At 3000 fb�1 these numbers are demonstrated to reduce

to 1% (CP-even) and 0.2% to 0.4% (CP-odd).

A separate analysis of the use of angular observables as a probe for the HV V vertex is also

performed. The analysis concludes that it will be possible to accurately measure CP-mixing

in the Higgs sector by studying observable asymmetries. The results are demonstrated to be

of a similar precision as those obtained from a full likelihood model.
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Figure 4.1: Simultaneous fit of ̃HV V

SM
and ̃AV V

SM
tan↵ performed with the Matrix Element

Observable approach. The figure shows the expected and observed 68% and 95% confidence
contours obtained for the dataset collected by ATLAS during the LHC Run-I. The fit take into
account the complete structure of the spin-0 EFT Lagrangian and serves as the final result of

this thesis. Observations are found to be in agreement with Standard Model behaviour.
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4.2 Concluding Remarks

The Standard Model has proved to accurately describe the observed data. It is concluded the

observed resonance must be spin-0 and not completely CP-odd based on the alternatives that

have been tested in both ATLAS and CMS[5][48].

The results of the tensor structure analysis are however limited by statistics. The analysis

so far has only examined the heavy vector boson decays of a Higgs-like boson produced with

gluon-fusion. With more data it will be possible to include the less probable production

mechanisms and more final states. One of the first extensions could be the inclusion of vector

boson fusion (VBF). The VBF production mode is accompanied by the emission of two hard

jets in the forward direction. The kinematic behaviour of the two jets can be demonstrated

to be a↵ected by the level of CP-mixing exhibited by the Higgs particle. By having the heavy

vector bosons produce the Higgs, the CP-nature of the HV V interaction can be examined in

all di↵erent decay channels.

The analysis approach presented here will likely have to be modified if more complexity is added

to the model. A factorisation scheme had to be used when examining ̃HV V
SM

and ̃AV V
SM

tan↵

at the same time. As more features are added it will be necessary to include more observables

and soon it will be simpler to utilise the final state kinematics directly.

On a personal note, I think this is the promising way to progress in the H ! ZZ⇤ ! 4`

analysis. The leptonic final states are very pure, meaning it feasible to construct a precise

e↵ective detector model. If the transfer functions were to be based directly on the lepton four-

momenta instead of the derived kinematic distributions only a handful of parameters would be

needed (pT,`, ⌘`,�`, ...). It would surely be a challenge to construct such a model, especially if

the jets of VBF were to be described, but if successful the analysis would be protected against

the exponential increase in complexity that has lured in every corner of the studies so far.

If not the main, then one of the largest challenges of the analysis that have been presented

here proved to be the optimisation between how the most powerful conclusions are obtained

and what is feasible to do. The current technological limitations of how much information

can be used to describe the coupling sensitive pdf for instance limited the analysis from using

a fine binning of the matrix element observables. Moreover, the reweighting procedure is

computationally heavy and realistically can only be performed with distributed computing.

When many iterations are necessary before the final results can be produced, this proves a

limiting factor timewise. Further development of the analysis tools is of high priority when

updated results are to be made with the LHC Run-II data.

Another interesting development of the tensor structure analysis has recently been developed.

It demonstrates that it is not necessary to perform reweighting as described in the text. Instead

of creating a template for each of the examined coupling configurations it is possible to mix

SM and BSM templates directly, if their interference is accurately described.

The Higgs analysis of the LHC Run-I all but closes the question of whether the resonance can

be described with a pure BSM spin/CP model. The tensor structure analysis has only seen

its very first results and will continue to serve as an interesting probe of the Higgs sector in

the years to come.
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A Statistical Considerations

This section will aim to explain some of the ’whys’ and ’hows ’ of the more technical aspects

of the analysis. The setting will be held very general and should not solely be considered

applicable to the H ! ZZ⇤ ! 4` analysis. It has been chosen to include this in a separate

section to not break the flow of the actual analysis text, such that the focus there can be held

as much as possible on physics. Moreover, many of the aspects will be used repeatedly in

di↵erent sections.

For interested readers, the following text should be self-contained. Otherwise, it can be used

as a reference when reading the analysis sections.

A.1 Construction and Interpretation of Statistical Models

One of the most fundamental features of any analysis is the probability density function (pdf).

The pdf describes what the probability for an observation of some observable is: What is e.g.

the probability that a Higgs boson produced by LHC collisions has a transverse momentum

greater than 100 GeV?

In the context of physics measurements this is often not the type of question you want answered

however. It is likely more interesting to know what the probability of the observed behaviour

is given some model1.

The pdf is changed to be model dependent, pdf(x) ! pdf(x|↵). In the context of discovery,

the probability that the background only hypothesis will produce data is e.g. chosen to be

⇠ 10�6.

The interesting part is thus to study how well data is described by pdfs for di↵erent values of

↵. In order to examine this, it is natural to introduce a new function of the parameter (↵)

given observation (x). The function is called the likelihood function.

For particle physics in particular, it is most likely the case that a measurement is identically

repeated independently a number of times (Independent and Identically Distributed, IID).

The pdf for each of these is identical and the likelihood thereby takes the form:

L(↵|x) = pdf(x|↵) IID��! L(↵|x) =
Y

i

pdf(xi|↵)

The favoured ↵ is obtained by maximising the likelihood. Typically, if only one model is

favoured, the maximum is found when @L
@↵ = 0 and @2L

@↵2 < 0. Moreover, as will be the theme of

the following text, since the exclusion of models is based on how much the likelihood changes

when moving away from the optimal ↵, the discriminative power of the analysis is contained

in the curvature of the likelihood around the maximum: @2L
@L2 .

This part will present a general discussion of the statistical approaches used in the analyses.

It is the aim to argue that the approaches follows naturally from the Neyman-Pearson (NP)

1The Bayesian probability of a model given data will not be considered here.
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lemma[101]:

Imagine two separate hypotheses H0, H1, where H0 is the true model. In practice this is of

course not know.

The goal is now to find a measure that ensures the maximum purity for any chosen e�ciency.

In other words, the analyser chooses that it is acceptable to have rejection of the true H0 with

probability ⌘ (Type-II). The measure should ensure that the false H1 is accepted as rarely as

possible (Type-I).

The NP-lemma states that the most powerful test of this type is given by the likelihood ratio:

⇤ =
L(H0|x)
L(H1|x)  � , P (⇤  �|H0) = ⌘ (A.1)

I.e. choosing an ⌘ for the analysis and requiring that ⇤ < � will ensure the highest possible

purity.
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Figure A.2: Example model used in text. The model consist of a constant background and
a signal with variable mean (µ). The signal is a Gaussian where the width scales as

p
µ. Data

is divided in 20 bins of 0.5.

In order to make the following description more concrete, a toy model is introduced. It

consists of a Gaussian signal with mean µ and width
p
µ and a constant background. The pdf

normalised to the expected signal and background yield is given by:

pdf(x) =
Nsp
2µ

e�
(x�µ)2

µ +
Nbkg

10
, x 2 [�3.0, 7.0]

The signal and background normalisations are chosen to be 20 and 15 events, respectively.

The distributions of two di↵erent signal models together with an example of how data might

look like can be found in Figure A.2.

The choice of this particular pdf is completely arbitrary. It was simply chosen because it

is possible to construct the di↵erent types of tests that will be described here from it. The

width of the signal distribution is chosen to change with the distribution mean to visualise

how sensitivities will change as an e↵ect of this. As such, the models resemble a simple version

of something that could be used to measure a resonance mass in particle physics.
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Simple hypothesis tests

In the most basic scenario, only two models are considered, H0 and H1
2.

The likelihood ratio can be used to determine the favoured of the two hypotheses. In order

to do this, it is necessary to know the test statistic distribution of the two models. Although

it is sometimes possible to predict these distributions directly from the form of the likelihood

it will often not be the case. Instead, the distributions can be derived from more empirical

principles. The analyses of this thesis that fall into the ’simple hypothesis tests’ category are

for instance based on Monte Carlo pseudo experiments.

The general idea is to first assume the hypothesis H0 to be true. A Monte Carlo dataset is

then constructed from its pdf and normalisations. The number of MC events simulated from

the pdf can in relevant scenarios be drawn from a Poissonain distribution to take into account

the expected statistical fluctuations.

The likelihood ratio test statistic (⇤) is calculated and the procedure is repeated a large num-

ber of times. Finally, the data value is calculated and the probability for H0 to exhibit the

data behaviour (p0) follows from the tail integral of the H0 test statistics distribution. The

process can be repeated for H1 in order to find its p0-value.

Using the toy pdf from above, the two models µ = 1.5 and µ = 2.5 are chosen as H0 and H1

respectively. The ’Observed’ data is constructed from µ = 1.5 as well.

Note that it is customary to use �2 ln⇤ instead of ⇤. For now it can be seen as a way to

avoid dealing with computation with really small numbers. The approach is illustrated in

Figure A.3a. In order to demonstrate the e↵ectiveness of the likelihood ratio, the test statistic

is compared to another choice. Figure A.3b show the same procedure using the fitted µ value.

Using µ̂ as test statistics gives weaker results as expected.

In an ideal world, the data test statistic will fall close to the median of the log likelihood ratio

distribution of one hypothesis and in the tail of the other. In a blinded analysis, this should

however not be assumed.

As an example assume H0 is the Standard Model Higgs Boson, H1 is a Super Symmetric parity

odd Higgs, but what is actually observed is a spin-2 Graviton-like state. Both H0 and H1 will

fit the model poorly. If one only consider exclusion of the Super Symmetric H1 by its p0 value

it can be excluded over the Standard Model, even though this model also fits the data poorly.

To avoid this problem before unblinding the data, exclusions of models can be based on CLs

instead:

CLs(H1) =
p0(H1)

1� p0(H0)
, (A.2)

The CLs is constructed such that it will be inconclusive if both models fit poorly and approx-

imate p0(H1) if H0 is true. The CLs approach should be said does not mend the problem if

very high separation between the two models is expected and the data falls in between the

two hypothesis distributions.

2’Simple’ here refers to the assumption of only two hypotheses.
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In most real scenarios the likelihood will not only be a function of the parameter of interest

↵. It will also contain parameters that e.g. describe uncertainties in theoretical predictions

and lack of knowledge of the experiment behaviour called nuisance parameters. In actual

measurements these will mostly consist of systematics uncertainties.

The standard approach is to modify the likelihood ratio as:

⇤ =
L(H0|x)
L(H1|x) ! L(H0, ✓̂H0 |x)

L(H1, ✓̂H1 |x)

such that the likelihood is maximised with respect to all nuisance parameters for either hypo-

thesis separately. This type of test statistic is commonly refereed to as the ’ratio of profiled

likelihoods’.
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Figure A.3: Hypothesis test result using the likelihood ratio test statistics (A) and the
maximum likelihood estimator µ̂ (B). The models that are used are described in the text.

Composite model tests

In a more general setting it will not be possible to assume that the observed data is drawn

from one of two hypotheses. A composite model is needed instead of the simple hypothesis

models.

As an example, it is more interesting to figure out what the best fitting Higgs mass and its

corresponding uncertainty is rather than figuring out which of the 124.5 GeV and 126 GeV

mass models best describe data.

The composite model is used to establish excluded regions of a continuum of models in some

parameter space ⌦:

L(↵|x) , ↵ = H0, H1 ! L(↵|x) , ↵ 2 ⌦
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At first glance one could imagine that the same likelihood ratio procedure as for the simple

hypothesis tests could be carried out by creating pseudo experiments and testing values of ↵i

against each other in some finely spaced grid of ⌦. Aside from the possible computational

problems of this approach it is not clear how the results would be interpreted. The goal is to

design an optimal approach to establish which regions that would lead to the observed data

with probability less than ⌘.

If the NP-lemma is for now ignored, one possible solution could be to choose another test

statistic that does not compare models, such that its distribution can be evaluated locally.

Like above the fitted µ̂ is an example of this approach.

Although possible here, it will be assumed that the distribution of means for the model can

not be calculated a-priori but will have to be derived from pseudo experiments. This will be

the case for most analyses.

The test statistic distribution can as such be calculated for each model and compared to data.

The approach is illustrated in Figure A.4a, where the Gaussian mean is used to derive limits

on the toy model from before. A pseudo-data µ (generated at µ = 1.5) is fitted and its value

compared to the distributions of the di↵erent models. It follows directly which models would

result in an observed mean with a probability less than any chosen threshold.

When using a simple test statistic like the signal mean it is intuitive to define which models

are close and far away from the observed data. An ’ordering principle’ has been chosen.

The approach of choosing a “local” test statistic and deriving coverage belts, as was exemplified

with the signal mean above, is usually referred to as the Neyman Construction[101].

Returning again to the likelihood. Instead of considering a fixed number of hypotheses, the

likelihood is assumed to be a continuous function of the parameter of interest ↵.

If the likelihood is calculated for each ↵ the best fitting model is found at the maximum. In

the case the likelihood also contains nuisance parameters, it can instead be maximised w.r.t.

these for each ↵.

Considering that the discussion started out with an attempt to generalise the simple hypothesis

likelihood ratio to a composite model, it seems natural to compare the non-optimal ↵ models

to the best fitting:

� 2 ln�(↵) = �2 ln
L(↵, ✓̂)

L(↵̂, ˆ̂✓)
(A.3)

The test statistic is usually referred to as the profiled likelihood ratio. The use of �2 ln will

become apparent shortly.

The profiled likelihood ratio does not compare hypotheses in the same sense as the ratio of

profiled likelihoods does, since the best fitting model does not need to be assumed. Given the

NP-lemma, it is well motivated to use the profiled likelihood ratio as an ordering principle

in the Neyman-Construction. This then gives an optimal method for determining excluded

regions based on pseudo experiments[102]3.

The likelihood approach is applied to the toy example. Pseudo experiments are generated for

a series of ↵ models to establish the test statistic distribution for each. The likelihood ratio is
3In this section the ordering is introduced as a way to obtain the most restrictive exclusion regions. This is

relevant when performing measurements on established signals as will be the case for the analysis. The paper
introduces the ordering as a way to get correct coverage when observing small or negative signals.



Appendix 153

calculated for the “observed” data as a function of ↵ by which the excluded regions follows.

The outcome is shown next to the limits set by sampling the mean, see Figure A.4. Similarly

to the hypothesis tests, where a better exclusion than the alternative µ method was obtained,

a more restrictive interval if found by the likelihood ratio ordering than the µ̂ ordering.
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Figure A.4: Examples of coverage belts based on di↵erent test statistics. (A): µ̂, (B): The
profiled likelihood ratio. In both figures a large number of pseudo experiments have been
generated for each point on the x-axis. The test statistic value of each toy is seen on the
y-axis. In the µ case the observed µ̂ is indicated by a full horizontal line. The intervals which
produce such a µ in less that 5% of cases are indicated by the dashed vertical lines. For the
profiled likelihood ratio, the observed test statistic varies as function of tested µ. The excluded
regions are again found when the pseudo experiments produce the observed test statistic in

less that 5% of cases.

Asymptotic behaviour

One important distinction between the µ̂ test statistic and likelihood ratio in Figure A.4, is

seemingly that the profiled likelihood distributions do not change between models.

In fact, it can be proven that under regular conditions and given enough statistics this will

always be the case for composite models[96]. According to Wilk’s theorem, the test statistic

distribution is given by the �2
NDF pdf for a parameter of interest with dimensionality of NDF :

f(�2 ln�(↵)) = �2
Dim(↵)(�2 ln�(↵)) +O

✓

1p
N

◆

(A.4)

Figure A.5a shows the test statistic values of the toy model generated at µ = 2.5, corresponding

to a vertical slice (µ = 2.5) of the sampled distribution.

A very good agreement between the distribution of pseudo experiments and their asymptotic

approximation is found. The probability of the µ = 2.5 model would produce the observed

results is given by the tail integral, starting at the test statistic value. This means that it is



154 A Statistical Considerations

 = 2.5)µ(λ-2 ln 
0 1 2 3 4 5 6 7 8 9

3−10

2−10

1−10

1

=2.5)µPseudo exp. (
Asymptotic aprox.
68% of pseudo exp.
95% of pseudo exp.
Observed

(a)

µ
0.5 1 1.5 2 2.5 3 3.5 4

λ
-2

 l
n
 

0

2

4

6

8

10

12

14
Observed

95 %CL Asymptotic Limits

Observed

95 %CL Asymptotic Limits

(b)

Figure A.5: (A): Profiled likelihood test statistic distribution for the toy model. Pseudo
experiments are generated at µ = 2.5. The test statistic is evaluated at the same value as
the pseudo experiments are generated at. The distribution is compared to its asymptotic
approximation. The probability that the µ = 2.5 model would produce the observed results
is indicated by the tail integral. (B): Limits based on the profiled likelihood ratio assuming

asymptotic behaviour.

possible to determine if a model ↵0 is excluded at confidence level ⌘ by evaluating if:

P (�2
Dim(↵) > �2 ln�(↵0)) > ⌘

Some common values are worth mentioning as reference: Intervals with �2 ln� > 3.84 are

excluded at 95% CL for a one dimensional ↵. The equivalent 95% CL regions are found above

5.99 for a two dimensional ↵.

In summary, combining the knowledge of the NP-lemma, likelihood ordering and Wilks the-

orem, a recipe emerges for establishing excluded parameter regions:

• Construct the likelihood from the analysis specific pdf

• Calculate the profiled likelihood as function of the parameter of interest ↵ over its allowed

space ⌦

• Regions where P (�2
Dim(↵) > �2 ln�(↵0)) > ⌘, are excluded at confidence level ⌘.

The asymptotic likelihood limits are set as shown in Figure A.5b. A very good agreement is

seen when comparing to the results obtained by sampling. The asymptotic behaviour of the

test statistic distribution is very appealing since it does not require the generation and fitting

of a large number of pseudo experiments.
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A.2 Fast Binned Kernel Density Estimators

This section will shortly discuss a solution to a challenge often occurring in analysis: There

does not exist an analytical description of the observable pdf or it is di�cult to find a fitting

function.

This happens to often be the case when dealing with fully simulated Monte Carlo. The

underlying physics is described well, but it is close to impossible to fold prediction with the

complex behaviour of the detector.

Ideally one could simulate enough Monte Carlo to be able to describe the distributions with

template histograms. Monte Carlo statistics are however often a limiting factor such that the

templates will su↵er from large statistical uncertainties and give less reliable predictions. This

is especially the case if multi-dimensional discriminants are used. All other things being equal,

the number of bins grows exponentially with dimensionality. This means that the characteristic

statistics size needed to populate the template will grow exponentially as well.

A possible solution is to use Kernel Density Estimators (KDE). The general idea is to describe

each data point with a ’kernel’, such that the sample of events is exchanged with a sample of

kernel functions.

Most often a Gaussian distribution is used. One could interpret this as assigning an uncertainty

to the observable value and create a pdf from the summed Gaussians. In the one-dimensional

case, for a dataset X and kernel function �h the KDE will read:

f̂(x) =
↵

n

n
X

i=1

�h(x�Xi) ! f̂(x)Gauss =
1

hn

n
X

i=1

e
(x�Xi)

2

h , (A.5)

where the common Gaussian case has been written explicitly in the left expression. The

parameter ↵ in the first expression is kernel specific and there to ensure the pdf is normalised.

Moreover, a bandwidth parameter h is introduced. In the Gaussian case this is the distribution

width, describing how much each data point is smeared. In general this will be a kernel specific

parameter that is chosen such that the pdf will describe data optimally.

Things like the statistics size and rapid fluctuations in the distribution will influence what the

optimal choice of h is. In general the best value is unknown and can be tuned to the analysis

in question.

It can be demonstrated that in the large statistics limit of normally distributed data, the mean

integrated squared error is minimised when[90]:

h =

✓

4

3

◆

1
5

�n� 1
5 (A.6)

And thus often serves as a good starting point for optimisation.

For rapidly changing distributions it is often beneficial to introduce an adaptive bandwidth.

A good adaptive bandwidth will be narrow in regions with high statistics and wide in low

statistics regions. A customary choice scales the bandwidth with the non-adaptive estimate:

hi =
h

p

fNA(Xi)
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The adaptive hi is seen to have the desired properties.

The simple case described above generalises to more observable dimensions. In the Gaussian

case for instance, the two dimensional expression emerges from the following substitution:

(x�Xi)2 ! (x�Xi)2 + (y � Yi)2.

If the distributions are linearly correlated, a better description of the dataset can be found by

decorrelating the observable[90].

After the kernels have been calculated, the pdf can subsequently be described by a histogram.

To estimate the density in each bin of the histogram the distance to each data point needs to be

known. For each bin and data point a Gaussian function furthermore needs to be evaluated4.

In the adaptive case this needs to be done twice, making the procedure potentially slow for

large datasets.

A standard KDE approach will thus construct a Gaussian function for each datum. The

underlying pdf that the data is sampled from is estimated by constructing a histogram with

bin content given by the summed kernels.

A faster but less accurate approach is to first fill the dataset into the template histogram and

subsequently perform the KDE. The algorithm that will be described here is largely motivated

by [103].

Creating the histogram as the first step is equivalent to performing the KDE on a weighted

dataset of g entries with separation equal to the histogram bin width. The KDE expression

for a uniform binning reduces to:

f̂(xi) =
1

n

n
X

i=1

ci�h(x� xi) ! 1

g

g
X

i=1

ci�h(|i� j|�) , (A.7)

with histogram bin width � = x2 � x1, and ci describing the histogram bin content.

The expression can also be generalised to more dimensions as above.

The binned expression has some desirable features compared to the unbinned approach. Be-

fore, the Gaussian function had to be evaluated O(NData ·NBins) times. If the bin width � is

constant in the binned approach it only has to be evaluated O(NBins) times5.

While the binned approach already seems like the faster choice, further optimisation is still

possible. If one defines the “data” and “kernel” vectors (C and K) as arrays containing the

histogram bin content and the Gaussian kernel values respectively:

C = (c1, c2, · · · , cg)
K =

1

n
(�h(0),�h(�), . . . ,�h((g � 1)�)) ,

the expression for f̂(xi) from above looks very similar to the convolution: C ⇤K. This means

that f̂(xi) can be found using the Discrete Fourier Transform (DFT) and the Convolution

4If the data-point is several bandwidths away from the bin it will not really influence the result and can be
ignored

5Intuitively, it seems that it should be O(N2
Bins) corresponding to one evaluation for each function argument

i and sum index j. For uniform binning the arguments entering the Gaussian function are however solely
specified by �|i� j| of which there are NBins of.
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Theorem:

f̂(xi) = DFT�1 [ DFT(C) ·DFT(K) ] (xi)

The convolution theorem applied on the discrete C and K vectors is however only applicable

if C is periodic. In real life the distribution that is approximated will likely not have periodic

behaviour making it a bad assumption. As a concequence, if the method is blindly applied,

the very left of the distribution will a↵ect how the very right part looks like. To remove this

type of over-wrapping e↵ects, the vectors can be padded with empty bins: A number of 0s

are appended to the beginning and end of C such that the overwrapping e↵ects only applies

to the ’zero-regions’. The convolution can be applied, after which the zero bins are removed

to get the final estimate. Some considerations are needed to figure out how this is optimally

done.

A large fraction of the terms in the kernel vector K will most likely be negligible. For the

Gaussian case, if only less-than-5� contributions are considered, any entry �h(i�) in K where

|i�/h| � 5 can be set to zero.

To reduce notation, define l as the largest integer less than 5h/�.

l = min(g � 1, f loor(5h/�))

In the definition of l, it is furthermore required that l should be less than the actual histogram

size g. To remove overwrapping e↵ects, the C vector then as a minimum need to have a length

of g + l + 1.

An FFT algorithm will be used for the Fourier transformation. The method can be demon-

strated to have a complexity of O(n log n) for all powers of two6. A choice of padding-size

that both has no overwrapping e↵ect but also ensures a fast computation is thus given by the

smallest power of two that is greater that the minimally required size of C:

p = 2ceil(log2(g+l+1))

The C vector thus has the form:

C = (c1, c2, . . . , cg, 0, . . . , 0
| {z }

p-g

)

Finally the kernel vector can be constructed. The only contributing terms (e.g. greater-than

5�) will be at the beginning and end of K. In order for it to have the same size as C, K must

have the form:

K =
1

n
(�h(0),�h(�), . . . ,�h(l�), 0, . . . , 0

| {z }

p-2l-1

,�h(l�), . . . ,�h(�))

The C ⇤K convolution is ultimately performed and the zero bins removed from C to obtain

the final result. An example of its use can be seen in Figure A.6.

6To be stringent it has O(n log n) complexity for all highly composite numbers of which all powers of two
are a subset[103].
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(a) (b) (c)

(d) (e) (f)

Figure A.6: KDE applied to a black and white photograph. The black/white photograph
is described as a histogram with 256 possible entries per bin corresponding to di↵erent levels
of light intensity. Figure (A) shows a well known photograph. In (B) a random noise has
been added. (C) shows the KDE when applied to the noisy image. The bottom row figures
show a cutout of the top left corner. The KDE diminishes the statistical fluctuations but has

di�culty describing sharp contrasts.

Summarising the KDE approach:

• The general multidimensional KDE is simplified by binning the data distribution first

and performing the KDE at histogram level. This is similar to convoluting a vector

containing the histogram values with a ’kernel vector’.

• In order to ignore insignificant terms the vectors are modified such that their convolution

will only include products over a given threshold.

• A discrete Fourier transform is performed on both vector separately. Their vector

product is calculated and an inverse Fourier transform is performed on the result.

The computing time of the approach is tested on an example distribution of N events in two

dimensions and compared to an unbinned approach. The characteristic evaluation time for

the two methods is seen in Figure A.7. The original approach is polynomic in data-size while

the binned is constant.

The binned KDE is however a simplification with less accuracy than the original approach.

The use can only be found if the procedure has to be repeated a large number of times. As

a reference, the analysis use 11 bins in either dimension and has a general statistics size of

⇠ 1.5 · 105 events available.
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Figure A.7: Evaluation time of KDE methods as function of sample size and binning. The
algorithms are applied on a two dimensional distribution.
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A.3 PDF Transformations

Transformation to known distribution

As was mentioned above, it can in general be di�cult to figure out a suitable function to

describe the data distributions. As such, it is often useful to transform the pdf to something

that is easier to describe.

If a transformation is found that will make the analysis simpler, it should be bijective and

constructed in such a way that it will not bias the result or throw away information.

When applying a Gaussian KDE for instance, it can easily be imagined that it is simpler to get

a valid description of a distribution that is Gaussian-like rather than something more complex.

To make the discussion more concrete, assume a pdf of some observable x: f(x). We want to

find a function y(x) such that y is distributed according to some chosen distribution, g(y). In

order to satisfy the requirement that a measurement using either x or y will yield the exact

same result, it is necessary that the probability of any y observation y0 must be the same as

the probability of the original x0 observation:

P (x0 � ✏x < x0 < x0 + ✏x) = P (y0 � ✏y < y0 < y0 + ✏y) , y0 = y(x0), y ± ✏y = y(x0 ± ✏x)

Integrating f and g over the ✏ intervals describes these probabilities. Notice that a consequence

of this is that the requirement also guarantees that any likelihood function constructed from

either f or g will give the same result.

If the ✏-intervals tend to zero the following di↵erential equation emerges:

f(x)dx = g(y)dy ) dy

dx
=

f(x)

g(y)
7

By choosing a g(y) it is possible to find the transformation by solving a di↵erential equation.

The two examples that are used in the analysis are transformation to a uniform distribution

and transformation to a normal distribution.

The transformation to a uniform distribution is the simplest to find. If the interval [0, 1] is

chosen for g, g(y) = 1, and:

dy

dx
= f(x) ) y(x) =

Z x

�1
dx0f(x0) = cdf(x).

The cumulative density function of x is distributed uniformly as expected.

Turning now to the case of transformations to normal distributions. It will most likely be

di�cult to solve the di↵erential equation directly. A trick can be used however: If x is first

transformed to a uniform distribution and subsequently to the normal distribution it will only

be necessary to solve the more simple:

dy

dx
=

1

g(y)
=

1
1p
2
e�y(x)2/2

=
p
2ey(x)

2/2

7The sign choice of dy/dx is arbitrary. Here positive is chosen such that a greater x will result in a greater
y.
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A solution can be guessed based on the inverse error function:

d(erf�1(x))

dx
=

1

2

p
⇡e|erf

�1(x)|2 ! y(x) =
p
2 · erf�1(2x) ,

meaning that the transformation that will make any distribution normal is:

y(x) =
p
2 · erf�1(2 · cdf(x))

An example, where the two transformations are applied, can be found in Figure A.8.
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5− 4− 3− 2− 1− 0 1 2 3 4 50
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0.035

0.04
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.005
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0.015

0.02

0.025
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(2 cdf(x)) -1  erf2Gaussian : 
4− 3− 2− 1− 0 1 2 3 40

0.005

0.01
0.015

0.02

0.025

0.03

0.035
0.04

Figure A.8: Example of pdf transformations. In the top figure an arbitrary distribution is
selected. In the centre and bottom figures, the same dataset is shown after the Uniform and
Gaussian transformations have been applied. The dashed lines indicate where 2.3%, 15.9%,
50%, 84.1 and 97% of the distribution integral is contained to the left of, corresponding to the
Gaussian standard deviations. The entries going into each interval are the same for the three

distributions.

Decorrelating observables

As has been mentioned several times, it is in general problematic if the dimensionality of the

observable distribution grows too high. The characteristic amount of data that is required to

describe the distributions will grow exponentially.

Another approach to reduce the dimensionality of the problem in question is to construct

factorised pdfs.

Consider an analysis that uses two observables x and y with pdf f(x, y). If the two outcome

of x and y are independent, f(x, y) can be written as:

f(x, y) = g(x) · h(y)

Where g and h describe the densities of x and y. Since these are individually one-dimensional,

the full problem now has been reduced to also being one-dimensional.
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In real life it is seldom the case that the observables entering into a measurement are completely

independent by construction.

If, in the example above, pdf(x) and pdf(y) are linearly correlated, the same information will

loosely speaking be used more than once in the likelihood. Assuming asymptotic behaviour of

the likelihood ratio will in this scenario tend to overconstrain the parameters.

To see why this is the case it is useful to consider the example with the highest possible

correlation; where x and y are the same observable. It is furthermore assumed that the

individual distribution g(x) is unbiased and has asymptotic behaviour.

The pdf is now f(x) = g2(x) and the likelihood ratio for f follows:

�2 ln�f (↵) = �2 ln

✓

Q

g2(xi|↵)
Q

g2(xi|↵̂)
◆

= 2 · (�2) ln

✓

Q

g(xi|↵)
Q

g(xi|↵̂)
◆

= 2 · (�2 ln�g)

It is clear that if g is unbiased in the sense that it on average will give a maximum at the true

↵ value so will f , meaning that in principle f should still be a valid pdf to use.

If standard asymptotic behaviour of the test statistic for f is assumed however, the “asymptotic

95% CL” limits will no longer cover the true value 95% of the time. In the example above this

assumption will yield limits that do not have correct coverage since the actual test statistic

distribution is twice as wide as assumed.

It is possible to remove any linear correlation from a dataset. Suppose a data vector X consist

of p observables, each having been measured n times. X has covariance matrix CX with

elements:

(CX)ij =
1

ndata

X

data

(xi � µi)(xj � µj) , i, j = 1, ..., p

where µi denotes the observable mean and the summation index over the data columns have

been made implicit. In the following µ, without index will be used to describe the vector of

means. It can be demonstrated that the dataset matrix:

Z = C
� 1

2
X (X � µ) ,

has identity covariance matrix. To see why this is the case, it is useful to construct the

intermediate data-vector Y = X � µ with zero mean. The covariance matrix CX is in terms

of Y given by:

CX = E(Y Y T )

The covariance matrix CZ for Z follows similarly:

CZ = E(ZZT ) = E(C
� 1

2
X Y Y T (C

� 1
2

X )T ) = C
� 1

2
X E[Y Y T ](C

� 1
2

X )T = C
� 1

2
X CXC

� 1
2

X = I

The linear correlation has been removed in Z. The linear decorrelation is a good starting point

when constructing factorised pdfs.
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A.4 Comment on MVAs

Signal
Background

x1

x 2

x1>a

x2>c

Yes

No

YesYesN
o N
o

Figure A.9: Decision tree for a thought
up process.

The H ! ZZ⇤ ! 4` final state can be described with

eight parameters. Ideally, it would be possible to con-

struct a pdf of as many dimensions which would ac-

curately describe any model that will be examined.

This will be di�cult to do and as such multi-variate

methods are developed. As has been the theme of large

parts of this section, it will be the goal to perform a

dimensional reduction such that models are simpler to

describe.

One of the most well known methods that is used sev-

eral times during the analysis is the Boosted Decision

Tree (BDT). A short description on how it works will

be given here to clarify its use.

A decision tree is an intuitive method of dividing an

observable space. The structure of one is exemplified

in Figure A.9. The general idea is to start with scan-

ning one of the observables to the point where a cut

would result in the highest signal and background sep-

aration. The space is now divided into two boxes; one

with high signal content and one with high background

content. The scan can now be performed again on these individually whereby smaller regions

with higher purity is found. In principle the process could continue until a large number of

boxes of very high purity are found. In reality, since the training is performed on finite stat-

istics, it will just be optimised on the statistical fluctuations present in the dataset, the tree

is said to be overtrained.

A di↵erent approach would be to train a multitude of di↵erent, simple trees and average their

result. Each tree is a weak classifier, but their combination can have high separation power.

A natural question is: If each tree is constructed to have maximal separation power, why will

they not end up being identical?

A way to get around this problem is to perform boosting. The algorithm will start by training

the first tree, which will misclassify a number events. These are in the next training tree

assigned a higher weight when calculating the signal to background separation. The next tree

is hence optimised to perform separation on events where the first failed.

Di↵erent boosting methods exist, where the adaptive boosting is likely the most popular

choice8. Here the misclassified events are weighted by a common boost weight ↵, derived from

the misclassification rate, err, of the previous tree:

↵ =
1� err

err
, err < 0.5

8See [89, Sect. 7.1,8.12] for a more detailed description. The text here is also mainly derived from this source.
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The individual tree will predict events to be either signal or background like. Let h(x) denote

the result of an individual tree such that +1 indicates signal and �1 indicates background.

The boosted decision tree will predict the signal-likeness of x to be:

yBoost(x) =
1

NTrees

X

i2Trees
ln(↵i) · hi(x)

Other approaches exist than adaptive boosting, where only Bagging-resampling will be men-

tioned here. Bagging is not strictly a Boosting algorithm since it does not reweight events.

Instead, each weak classifier is trained on a subsample of the training sample. Choosing the

subsample at random will make statistical fluctuations even out when averaging the trained

trees.

A large number of BDT parameters can be set to optimise the analysis in question. The

TMVA package describes these in [89, Tab. 22,23,24]. The options for instance include how

many trees there will be trained, the maximal allowed complexity of each tree, how large the

bagging subsample is and what the maximal purity of a node is allowed to be.
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Figure A.10: pT,4l and ⌘
4l distributions for H ! ZZ⇤ ! 4` and ZZ⇤�continuum ! 4`.

The logarithm of the pT,4l distribution is shown to make visualisation easier. The distributions
are overlaid BDT classifiers of di↵erent complexity. (A): N

Trees

= 3, (B): N
Trees

= 30, (C):
N

Trees

= 300. Red indicates the BDT predicts events to be more signal-like. The training did
not achieve better predictive power by going from 30 to 300 trees.

A BDT is trained to classify whether an event is more likely to be a Higgs or a background to

illustrate the process. More specifically, it is trained to separate the event types H ! ZZ⇤ !
4` and ZZ⇤�continuum ! 4`, based on their transverse momenta and pseudorapidities. The

distributions are shown in Figure A.10, where three classifiers of increasing complexity have

been made. When adding more trees, the BDT will divide the observable space into a finer

grid with better predictive power. At some complexity the BDT becomes saturated with trees

and more complexity will not give more separation.
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B Fixed Hypothesis Test Appendix

NP name Down Pull Up pull average e↵ect [%]
Significance di↵erence [%] Significance di↵erence [%]

alpha ATLAS Higgs mass 2.26 -3.65 2.31 -1.90 2.77
alpha ATLAS MU MS RES MS 2.36 0.49 2.32 -1.24 0.87
alpha ATLAS norm SF H4l Zbb llmumu 2012 2.37 0.81 2.33 -0.75 0.78
alpha ATLAS EM mRes CT 2.33 -0.66 2.33 -0.75 0.71
alpha pdf qq 2.37 0.66 2.34 -0.62 0.64
alpha ATLAS norm SF H4l Z llee 2012 2.36 0.57 2.34 -0.53 0.55
alpha QCDscale VV 2.36 0.49 2.34 -0.47 0.48
alpha ATLAS EM mRes ST 2.34 -0.53 2.34 -0.39 0.46
alpha ATLAS LUMI 2012 2.36 0.45 2.34 -0.44 0.45
alpha ATLAS rho signal 2.34 -0.45 2.36 0.37 0.41
alpha ATLAS EM mRes MatID 2.34 -0.35 2.34 -0.45 0.40
alpha ATLAS MU MS 2.35 -0.17 2.34 -0.52 0.34
alpha ATLAS MU MS RES ID 2.35 0.18 2.34 -0.50 0.34
alpha ATLAS EM mRes PU 2.34 -0.36 2.34 -0.26 0.31
alpha ATLAS EM mRes MatCryo 2.34 -0.23 2.34 -0.30 0.26
alpha ATLAS EM ES Z 2.35 -0.03 2.34 -0.45 0.24
alpha ATLAS shape SF H4l EL EFF ISOIP 2012 2.36 0.24 2.34 -0.24 0.24
alpha ATLAS shape SF H4l Z llee 2012 2.36 0.35 2.35 0.11 0.23
alpha ATLAS EL 2012 REC Low 2.35 0.19 2.35 -0.19 0.19
alpha ATLAS EM LArElecUnconv Barrel 2.35 -0.12 2.34 -0.26 0.19
alpha ATLAS EM L2Gain 2.35 -0.10 2.34 -0.24 0.17
alpha ATLAS EM MatCryo Barrel 2.34 -0.25 2.35 -0.07 0.16
alpha ATLAS shape SF H4l Zbb llmumu 2012 2.35 0.05 2.36 0.25 0.15
alpha ATLAS EM mRes MatCalo 2.35 -0.12 2.35 -0.14 0.13
alpha ATLAS EL 2012 ID low 2.35 0.12 2.35 -0.13 0.12
alpha ATLAS EM ES Momentum 2.35 -0.07 2.35 -0.17 0.12
alpha ATLAS MU EFF 2.35 0.12 2.35 -0.12 0.12
alpha ATLAS EL 2012 IDST high 2.35 0.11 2.35 -0.11 0.11
alpha ATLAS EM mRes MatGap 2.35 -0.09 2.35 -0.11 0.10
alpha ATLAS EL 2012 ST 10 2.35 0.10 2.35 -0.10 0.10
alpha ATLAS EM LArCalib Barrel 2.35 -0.06 2.35 -0.12 0.09
alpha ATLAS EM PS Barrel 2.35 -0.03 2.35 -0.14 0.09
alpha ATLAS EM MatID 2 2.35 -0.11 2.35 -0.06 0.09
alpha ATLAS EM Pedestal 2.35 -0.01 2.35 -0.14 0.08
alpha ATLAS rho Redbkg 2.35 -0.06 2.35 0.09 0.07
alpha ATLAS EL 2012 ST 15 2.35 0.07 2.35 -0.07 0.07
alpha ATLAS EM LArElecUnconv EC 2.35 -0.05 2.35 -0.09 0.07
alpha ATLAS EL 2012 REC high 2.35 0.07 2.35 -0.07 0.07
alpha ATLAS MU 2012 TRIG 2.35 0.07 2.35 -0.07 0.07
alpha ATLAS EM MatCryo EC 2.35 -0.07 2.35 -0.04 0.06
alpha ATLAS EM MatID 3 2.35 -0.06 2.35 -0.04 0.05
alpha ATLAS EM MatCalo Barrel 2.35 -0.09 2.35 0.01 0.05
alpha ATLAS EM MatID 1 2.35 -0.04 2.35 -0.05 0.04
alpha ATLAS EM LArCalib EC 2.35 0.00 2.35 -0.08 0.04
alpha ATLAS EM L1Gain 2.35 0.00 2.35 -0.08 0.04
alpha ATLAS EM LArUnconvCalib Barrel 2.35 -0.06 2.35 -0.01 0.04
alpha ATLAS EM Geant4 2.35 -0.05 2.35 -0.02 0.04
alpha ATLAS EM S12 Barrel 2.35 -0.01 2.35 -0.06 0.03
alpha ATLAS EM LArElecCalib 2.35 -0.04 2.35 0.02 0.03
alpha ATLAS EM S12 EC 2.35 -0.01 2.35 -0.05 0.03
alpha ATLAS EM MatID 4 2.35 -0.03 2.35 0.01 0.02
alpha ATLAS EM PS EC 2.35 0.00 2.35 -0.03 0.02
alpha ATLAS rho ZZ 2.35 0.01 2.35 0.02 0.02
alpha ATLAS EM MatCalo EC 2.35 -0.02 2.35 -0.01 0.02
alpha ATLAS EM LArUnconvCalib EC 2.35 -0.01 2.35 -0.01 0.01
alpha ATLAS EL 2012 TRIG 2.35 0.00 2.35 0.00 0.00
alpha ATLAS BR VV 2.35 0.00 2.35 0.00 0.00
alpha ATLAS EL 2012 ST 7 2.35 0.00 2.35 0.00 0.00
alpha pdf Higgs ggH 2.35 0.00 2.35 0.00 0.00
alpha QCDscale Higgs ggH 2.35 0.00 2.35 0.00 0.00
alpha ATLAS EM ConvRadius 2.35 0.00 2.35 0.00 0.00
alpha ATLAS EM ConvE�ciency 2.35 0.00 2.35 0.00 0.00
alpha ATLAS EM ConvFakeRate 2.35 0.00 2.35 0.00 0.00
Including all 2.35 0.00 2.35 0.00 0.00

Table B.1: E↵ect of each systematic uncertainty on the Jp = 0+ vs. 0� separation. The
e↵ect of each nuisance parameter is calculated as the di↵erence between the result when includ-
ing all systematic uncertainties (last line), and when each is shiftet one standard deviation
to either side. The average e↵ect is calculated from the absolute value of the upward and
downward shift. A threshold of 0.45% was chosen as to where a systematic uncertainty has

an actual impact on the result. These are indicated with bold script in the table.
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C Tensor Structure Fit Appendix
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Figure C.11: Two dimensional observable distributions. (A) TO
1

(̃HV V )�TO
2

(̃HV V ) vs.
BDTZZ , (B) TO

1

(̃HV V ) + TO
2

(̃HV V ) vs. BDTZZ , (C) O
1

(̃AV V ,↵) vs. BDTZZ . The
coloured background represent the Standard Model, while the lines indicate 10%, 30%, 50%,

70% and 90% of the SM maximum for ̃HV V

SM
= ±1 (A,B) and ̃AV V

SM
tan↵ = ±5 (C).
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Figure C.12: Reweighting validation for ̃HV V

SM
and ̃AV V

SM
tan↵ observables. Left figures

show the individual pulls in the four di↵erent BDTZZ bins. The right figures show the pull
distributions. Standard Model shapes for ̃HV V

SM
observables (A) and ̃AV V

SM
tan↵ observables

(B).
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Figure C.13: Kernel Density Estimation validation for ̃HV V

SM
and ̃AV V

SM
tan↵ observables.

Left figures show the individual pulls in the four di↵erent BDTZZ bins. The right figures show
the pull distributions. (A) Reducible background shape for ̃HV V

SM
observables. (B): Reducible

background shape for ̃AV V

SM
tan↵ distributions.
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NP name Down Pull Up pull average e↵ect [%]
Significance Di↵erence [%] Significance Di↵erence [%]

alpha ATLAS shape SF H4l Z llee 2012 1.59 2.70 1.57 1.90 2.30
alpha ATLAS shape SF H4l Z llee 2011 1.57 1.59 1.56 1.22 1.41
alpha ATLAS norm SF H4l Z llee 2012 1.56 1.30 1.52 -1.22 1.26
alpha ATLAS norm SF H4l Zbb llmumu 2012 1.56 0.96 1.53 -0.93 0.95
alpha ATLAS MU MS 1.55 0.48 1.53 -0.95 0.72
alpha ATLAS shape SF H4l Zbb llmumu 2012 1.52 -1.21 1.54 -0.01 0.61
alpha pdf qq 1.55 0.60 1.54 -0.55 0.58
alpha ATLAS EM ES Z 1.55 0.33 1.53 -0.70 0.52
alpha QCDscale VV 1.55 0.48 1.54 -0.44 0.46
alpha ATLAS norm SF H4l Z llee 2011 1.55 0.47 1.54 -0.35 0.41
alpha ATLAS LUMI 2012 1.55 0.40 1.54 -0.38 0.39
alpha ATLAS norm SF H4l Zbb llmumu 2011 1.55 0.33 1.54 -0.31 0.32
alpha ATLAS EM ES Momentum 1.54 -0.24 1.54 -0.36 0.30
alpha ATLAS EM MatCryo Barrel 1.54 -0.44 1.54 -0.15 0.29
alpha ATLAS EM MatID 3 1.54 -0.35 1.54 -0.24 0.29
alpha ATLAS EM mRes MatGap 1.54 -0.31 1.54 -0.27 0.29
alpha ATLAS EM PS Barrel 1.54 -0.25 1.54 -0.33 0.29
alpha ATLAS EM LArUnconvCalib EC 1.54 -0.30 1.54 -0.27 0.28
alpha ATLAS EM MatCalo Barrel 1.54 -0.31 1.54 -0.25 0.28
alpha ATLAS EM MatID 4 1.54 -0.29 1.54 -0.27 0.28
alpha ATLAS EM LArCalib Barrel 1.54 -0.23 1.54 -0.33 0.28
alpha ATLAS EM S12 EC 1.54 -0.25 1.54 -0.31 0.28
alpha ATLAS EM LArUnconvCalib Barrel 1.54 -0.31 1.54 -0.25 0.28
alpha ATLAS EM LArElecUnconv Barrel 1.54 -0.14 1.54 -0.41 0.28
alpha ATLAS EM LArElecCalib 1.54 -0.30 1.54 -0.25 0.28
alpha ATLAS EM LArElecUnconv EC 1.54 -0.17 1.54 -0.39 0.28
alpha ATLAS EM LArCalib EC 1.54 -0.23 1.54 -0.32 0.28
alpha ATLAS EM MatID 1 1.54 -0.29 1.54 -0.26 0.28
alpha ATLAS EM MatCalo EC 1.54 -0.28 1.54 -0.26 0.27
alpha ATLAS EM S12 Barrel 1.54 -0.23 1.54 -0.32 0.27
alpha ATLAS EM ConvRadius 1.54 -0.27 1.54 -0.27 0.27
alpha ATLAS EM PS EC 1.54 -0.25 1.54 -0.29 0.27
alpha ATLAS EM ConvFakeRate 1.54 -0.27 1.54 -0.27 0.27
alpha ATLAS EM ConvE�ciency 1.54 -0.27 1.54 -0.27 0.27
alpha ATLAS EM L1Gain 1.54 -0.24 1.54 -0.30 0.27
alpha ATLAS EM mRes MatCalo 1.54 -0.25 1.54 -0.28 0.27
alpha ATLAS EM Geant4 1.54 -0.28 1.54 -0.25 0.27
alpha ATLAS EM MatID 2 1.54 -0.34 1.54 -0.20 0.27
alpha ATLAS EM Pedestal 1.54 -0.21 1.54 -0.31 0.26
alpha ATLAS EM MatCryo EC 1.54 -0.38 1.54 -0.14 0.26
alpha ATLAS EM L2Gain 1.54 -0.31 1.54 -0.20 0.25
alpha ATLAS EM mRes MatCryo 1.54 -0.20 1.54 -0.24 0.22
alpha ATLAS MU EFF 1.55 0.21 1.54 -0.20 0.21
alpha ATLAS EM mRes MatID 1.54 -0.15 1.54 -0.23 0.19
alpha ATLAS MU MS RES ID 1.54 -0.16 1.54 -0.19 0.18
alpha ATLAS EM mRes ST 1.54 -0.17 1.54 -0.19 0.18
alpha ATLAS EM mRes PU 1.54 -0.18 1.54 -0.18 0.18
alpha ATLAS EL 2012 REC Low 1.55 0.17 1.54 -0.17 0.17
alpha ATLAS shape SF H4l EL EFF ISOIP 2012 1.55 0.16 1.54 -0.16 0.16
alpha ATLAS MU MS RES MS 1.54 -0.26 1.54 -0.03 0.14
alpha ATLAS shape SF H4l Zbb llmumu 2011 1.54 -0.21 1.54 -0.01 0.11
alpha ATLAS EL 2012 IDST high 1.55 0.11 1.54 -0.11 0.11
alpha QCDscale Higgs ggH 1.54 0.00 1.54 -0.16 0.08
alpha pdf Higgs ggH 1.54 0.00 1.54 -0.16 0.08
alpha ATLAS EL 2012 ID low 1.54 0.05 1.54 -0.05 0.05
alpha ATLAS EM mRes CT 1.54 -0.02 1.54 -0.06 0.04
alpha ATLAS EL 2012 ST 7 1.54 0.04 1.54 -0.04 0.04
alpha ATLAS EL 2012 ST 10 1.54 0.03 1.54 -0.03 0.03
alpha ATLAS rho signal 1.54 -0.02 1.54 0.00 0.01
alpha ATLAS EL 2012 ST 15 1.54 0.01 1.54 -0.01 0.01
alpha ATLAS rho Redbkg 1.54 0.02 1.54 0.00 0.01
alpha ATLAS EL 2012 REC high 1.54 -0.01 1.54 0.01 0.01
alpha ATLAS rho ZZ 1.54 0.00 1.54 -0.00 0.00
alpha BR VV 1.54 0.00 1.54 0.00 0.00
alpha ATLAS MU 2012 TRIG 1.54 0.00 1.54 0.00 0.00

Table C.2: E↵ect of each systematic uncertainty on the separation of the Standard Model
from the ̃HV V

SM
= �0.8 model. The e↵ect of each nuisance parameter is calculated as the

di↵erence between the result when including all systematic uncertainties, and when each is
shifted one standard deviation to either side. The average e↵ect is calculated from the absolute
value of the upward and downward shift. A threshold of 0.5 % (indicated by bold font) is

chosen as to where a systematic uncertainty has a potential impact on the result.
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NP name Down Pull Up pull average e↵ect [%]
Significance Di↵erence [%] Significance Di↵erence [%]

alpha ATLAS shape SF H4l Z llee 2012 1.86 1.32 1.85 1.03 1.17
alpha ATLAS norm SF H4l Z llee 2012 1.85 1.01 1.82 -0.93 0.97
alpha ATLAS norm SF H4l Zbb llmumu 2012 1.85 0.92 1.82 -0.86 0.89
alpha pdf qq 1.85 0.92 1.82 -0.85 0.88
alpha ATLAS shape SF H4l Z llee 2011 1.85 0.91 1.84 0.57 0.74
alpha QCDscale VV 1.85 0.76 1.82 -0.69 0.72
alpha ATLAS LUMI 2012 1.85 0.60 1.82 -0.55 0.57
alpha ATLAS norm SF H4l Z llee 2011 1.84 0.50 1.83 -0.34 0.42
alpha ATLAS EL 2012 REC Low 1.84 0.38 1.83 -0.35 0.36
alpha ATLAS MU MS 1.84 0.24 1.83 -0.43 0.34
alpha ATLAS norm SF H4l Zbb llmumu 2011 1.84 0.36 1.83 -0.31 0.33
alpha ATLAS shape SF H4l EL EFF ISOIP 2012 1.84 0.33 1.83 -0.32 0.33
alpha ATLAS MU EFF 1.84 0.28 1.83 -0.27 0.28
alpha ATLAS shape SF H4l Zbb llmumu 2012 1.83 -0.07 1.84 0.37 0.22
alpha ATLAS EM ES Z 1.84 0.08 1.83 -0.27 0.17
alpha ATLAS EL 2012 IDST high 1.84 0.15 1.83 -0.13 0.14
alpha ATLAS EM mRes ST 1.83 -0.09 1.83 -0.16 0.12
alpha ATLAS EL 2012 ID low 1.84 0.11 1.83 -0.11 0.11
alpha ATLAS EM mRes PU 1.83 -0.08 1.83 -0.15 0.11
alpha ATLAS EM MatID 3 1.83 -0.13 1.83 -0.08 0.11
alpha ATLAS EM mRes MatGap 1.83 -0.08 1.83 -0.13 0.10
alpha ATLAS EM mRes CT 1.83 0.02 1.83 -0.19 0.10
alpha ATLAS MU MS RES MS 1.83 -0.03 1.83 -0.17 0.10
alpha ATLAS EM LArElecUnconv Barrel 1.83 -0.03 1.83 -0.17 0.10
alpha ATLAS EM PS EC 1.83 -0.08 1.83 -0.12 0.10
alpha ATLAS MU MS RES ID 1.83 -0.01 1.83 -0.19 0.10
alpha ATLAS EM MatCalo EC 1.83 -0.11 1.83 -0.08 0.10
alpha ATLAS EM MatCryo Barrel 1.83 -0.17 1.83 -0.02 0.10
alpha ATLAS EM LArUnconvCalib EC 1.83 -0.11 1.83 -0.08 0.10
alpha ATLAS EM L1Gain 1.83 -0.08 1.83 -0.11 0.10
alpha ATLAS EM mRes MatCalo 1.83 -0.09 1.83 -0.10 0.10
alpha ATLAS EM mRes MatID 1.83 -0.05 1.83 -0.14 0.09
alpha ATLAS EM L2Gain 1.83 -0.12 1.83 -0.07 0.09
alpha ATLAS EM Pedestal 1.83 -0.04 1.83 -0.14 0.09
alpha ATLAS EM MatID 4 1.83 -0.09 1.83 -0.09 0.09
alpha ATLAS EM ConvFakeRate 1.83 -0.09 1.83 -0.09 0.09
alpha ATLAS EM ConvRadius 1.83 -0.09 1.83 -0.09 0.09
alpha ATLAS EM ConvE�ciency 1.83 -0.09 1.83 -0.09 0.09
alpha ATLAS EM LArElecCalib 1.83 -0.11 1.83 -0.07 0.09
alpha ATLAS EM MatID 1 1.83 -0.09 1.83 -0.09 0.09
alpha ATLAS EM PS Barrel 1.83 -0.06 1.83 -0.12 0.09
alpha ATLAS EM S12 EC 1.83 -0.07 1.83 -0.11 0.09
alpha ATLAS EL 2012 ST 7 1.84 0.09 1.83 -0.09 0.09
alpha ATLAS EM S12 Barrel 1.83 -0.08 1.83 -0.10 0.09
alpha ATLAS EM LArCalib EC 1.83 -0.06 1.83 -0.11 0.09
alpha ATLAS EM LArCalib Barrel 1.83 -0.06 1.83 -0.11 0.09
alpha ATLAS EM ES Momentum 1.83 -0.05 1.83 -0.12 0.09
alpha ATLAS EM LArElecUnconv EC 1.83 -0.04 1.83 -0.13 0.09
alpha ATLAS EM Geant4 1.83 -0.10 1.83 -0.07 0.08
alpha ATLAS EM MatCryo EC 1.83 -0.14 1.83 -0.02 0.08
alpha ATLAS EM mRes MatCryo 1.83 -0.08 1.83 -0.08 0.08
alpha ATLAS EM MatCalo Barrel 1.83 -0.10 1.83 -0.06 0.08
alpha ATLAS EM LArUnconvCalib Barrel 1.83 -0.09 1.83 -0.06 0.08
alpha ATLAS EM MatID 2 1.83 -0.11 1.83 -0.03 0.07
alpha ATLAS EL 2012 ST 15 1.84 0.03 1.83 -0.03 0.03
alpha ATLAS shape SF H4l Zbb llmumu 2011 1.83 -0.01 1.84 0.05 0.03
alpha ATLAS EL 2012 ST 10 1.83 0.03 1.83 -0.03 0.03
alpha ATLAS EL 2012 REC high 1.83 0.01 1.83 -0.01 0.01
alpha BR VV 1.83 0.00 1.83 0.02 0.01
alpha pdf Higgs ggH 1.83 0.00 1.83 0.02 0.01
alpha QCDscale Higgs ggH 1.83 0.00 1.83 0.02 0.01
alpha ATLAS rho Redbkg 1.83 -0.01 1.83 -0.01 0.01
alpha ATLAS rho signal 1.83 -0.01 1.83 -0.00 0.00
alpha ATLAS rho ZZ 1.83 -0.00 1.83 0.00 0.00
alpha ATLAS MU 2012 TRIG 1.83 0.00 1.83 0.00 0.00

Table C.3: E↵ect of each systematic uncertainty on the separation of the Standard Model
from the ̃AV V

SM
tan↵ = 5 model. The e↵ect of each nuisance parameter is calculated as the

di↵erence between the result when including all systematic uncertainties, and when each is
shifted one standard deviation to either side. The average e↵ect is calculated from the absolute
value of the upward and downward shift. A threshold of 0.5 % (indicated by bold font) was

chosen as to where a systematic uncertainty has a potential impact on the result.
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D Comments on Correlation Scheme

The factorisation scheme that was used in the simultaneous fit of ̃HV V
SM

and ̃AV V
SM

tan↵ was

found to have a slight tendency to overconstrain the fitted parameters. This appendix examines

the possibility of decorrelating the observables to further reduce this e↵ect.

The decorrelation of the ̃HV V
SM

observables that was described in the main section is for now

disregarded as is the Gaussian transformation. Returning to the original observable definitions,

the covariance matrix S of the four observables is calculated and the uncorrelated set is

obtained9:
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Since the uncorrelated observables will be a mix of the previous and do not have the same

physical interpretation as before, it is chosen simply to denote them O1 to O4. Considering

the correlation figures (3.12 and 3.31), the matrix follows intuition nicely. The O1(̃HV V ) and

O2(̃HV V ) are highly linearly correlated. The new O1 and O2 is a mix of the two with opposite

sign. The O1(̃HV V ) and O2(̃HV V ) observables were moreover demonstrated to be correlated

with O2(̃AV V ,↵) while independent of O1(̃AV V ,↵) which is also reflected in the matrix by

having contributions for the first but not the second. The decorrelation scheme has here been

derived for the Standard Model distributions.

In principle, following the same arguments as for the pdf transformations and the fact that the

rotation is bijective, it should not be possible to bias the results from basing the decorrelating

matrix on SM distributions. It is however important to realise that this is only true until

the factorisation step. It could be imagined that the observable correlations would di↵er

at di↵erent coupling ratios. Rotating such that the Standard Model is uncorrelated and

constructing the factorisation scheme based on this, could in this case bias the results.

The Gaussian transformation is applied to the pdfs again, to give an easier input to the

KDE procedure. The final decorrelated distributions can for the Standard Model be seen in

Figure D.14. Some structure is seen in the distributions after the decorrelating rotation. To

establish if it is possible to construct a reliable factorisation scheme, the same set of tests as

for the main results is repeated.

The model construction follows the same path as before. The template distributions are

constructed for two centre of mass energies and four final states. The description at di↵erent

coupling ratios is obtained with matrix element based reweighting. The distributions are

finally estimated using KDEs before being added to the likelihood.

There are now six di↵erent correlations that can be tested to be independent. The factorisation

tests are shown in Figures D.15 and D.16. The approach show promising results.

9The decorrelation procedure is in the following performed separately on the four di↵erent final state due
to their di↵erent sensitivities. The numbers here correspond to the 2e2µ final state. A description of how the
rotation matrix is obtained can be found in Section A.3
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Figure D.14: Two dimensional projections of decorrelated observables. (A,B,C) show the
dependency between O

1

and O
2

, O
3

and O
4

. (D,E) show O
2

vs. O
3

and O
4

. O
3

vs. O
4

is
seen in (F). The linear dependency present in the original distributions is e↵ectively removed.

The linear dependency of O1 to the other observables is reduced such that the factorised model

will slightly underestimate the sensitivity. Some issues are seen in the second set of correlation

test. It is observed that there are some problems with the fit for the factorised model for

negative values of ̃HV V
SM

. Most likely an error has been made when constructing the input

templates.

To check whether the decorrelating matrix would change for di↵erent choices of input model,

the correlation matrix (⇢) and mean vector (µ) of the original observables are calculated10.

The values are calculated for the SM and a BSM with ̃HV V
SM

= �5. The mean vector and

correlation matrix for the Standard Model are:
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10The decorrelation is based on the covariance matrix rather than the correlation matrix. The correlation
matrix is presented since it is easier to interpret the numbers
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while they take the following values for the BSM scenario:
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The structure of the correlation and means are seen to change depending on the input model.

This means that the decorrelating matrix will also depend on which model is used as vantage

point.

The decorrelation procedure does however give promising results. With more work it should

be possible to understand the weird likelihood behaviour at negative values of ̃HV V
SM

. More

studies are needed on how the matrix structure changes with di↵erent models before a final

approach can be defined. If the analysis is to be repeated when more statistics is collected, a

decorrelation of the observable distributions could prove an interesting extension.
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Figure D.16: Factorisation scheme test with decorrelated observables. The outline is similar
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[67] O. S. Brüning et al., LHC Design Report, CERN-2004-003-V-1, Geneva: CERN, 2004,

url: http://cds.cern.ch/record/782076.

[68] R. Fernow, Introduction to experimental particle physics,

Press Syndicate of the University of Cambridge, 1986, isbn: 0-521-37940-7.

http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
http://dx.doi.org/10.1007/JHEP11(2011)064
http://arxiv.org/abs/1109.2109
http://dx.doi.org/10.1007/JHEP09(2013)129
http://dx.doi.org/10.1007/JHEP09(2013)129
http://arxiv.org/abs/1306.4581
http://arxiv.org/abs/0807.0024
http://arxiv.org/abs/hep-ph/0211168
http://dx.doi.org/10.1142/9789814307505_0001
http://dx.doi.org/10.1142/9789814307505_0001
http://arxiv.org/abs/hep-ph/9709356
http://dx.doi.org/10.1051/0004-6361/201321529
http://dx.doi.org/10.1051/0004-6361/201321529
http://arxiv.org/abs/1303.5062
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/383178
http://arxiv.org/abs/astro-ph/0309303
http://dx.doi.org/10.1088/1126-6708/2002/07/034
http://arxiv.org/abs/hep-ph/0206021
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://dx.doi.org/10.1016/S0370-2693(01)00741-9
http://arxiv.org/abs/hep-ph/0105239
http://en.wikipedia.org/wiki/CERN
http://dx.doi.org/10.1088/1748-0221/3/08/S08005
http://cds.cern.ch/record/1129809
http://cds.cern.ch/record/782076


180 BIBLIOGRAPHY

[69] ATLAS Collaboration, ATLAS EXPERIMENT - Public Results: Integrated

luminosity summary plots for 2011-2012 data taking, retrieved Jun 25 2015,

url: http://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResults#Integrated_luminosity_summary_pl.

[70] ATLAS Collaboration, Measurement of the high-mass Drell–Yan di↵erential

cross-section in pp collisions at with the ATLAS detector,

Phys. Lett. B 725 (4–5 2013) 223–242, arXiv: 1305.4192 [hep-ex].

[71] ATLAS Collaboration, Improved luminosity determination in pp collisions atp
s = 7 TeV using the ATLAS detector at the LHC,

Eur. Phys. J. C 73, 2518 (8 2013), arXiv: 1302.4393 [hep-ex].

[72] ATLAS Collaboration, Performance of the ATLAS Inner Detector Track and Vertex

Reconstruction in the High Pile-Up LHC Environment,

ATLAS-CONF-2012-042 (2012), url: http://cds.cern.ch/record/1435196.

[73] ATLAS Collaboration,

Alignment of the ATLAS Inner Detector and its Performance in 2012,

ATLAS-CONF-2014-047 (2014), url: http://cds.cern.ch/record/1741021.

[74] W. Leo, Techniques for Nuclear and Particle Physics Experiments,

Springer-Verlag, 1994, isbn: 3-540-57280-5.

[75] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,

JINST 3 (08 2008) S08003, url: http://cds.cern.ch/record/1129811.

[76] P. Wagner, Performance of the ATLAS Transition Radiation Tracker Readout with

High Energy Collisions at the LHC, ATL-INDET-PROC-2011-040 (2011),

url: http://cds.cern.ch/record/1403142.

[77] ATLAS Collaboration, Basic ATLAS TRT performance studies of Run 1,

ATL-INDET-PUB-2014-001 (2014), url: http://cds.cern.ch/record/1669603.

[78] ATLAS TRT Collaboration, The ATLAS Transition Radiation Tracker (TRT)

proportional drift tube: design and performance, JINST 3 (02 2008) P02013,

url: http://cds.cern.ch/record/1094549.

[79] ATLAS Collaboration, Measurement of the muon reconstruction performance of the

ATLAS detector using 2011 and 2012 LHC proton–proton collision data,

Eur. Phys. J. C 74, 3130 (11 2014), arXiv: 1407.3935 [hep-ex].

[80] ATLAS Collaboration,

ATLAS EXPERIMENT - Public Results: Trigger Operation Public Results,

retrieved Jun 18 2015, url: http://twiki.cern.ch/twiki/bin/view/AtlasPublic/

TriggerOperationPublicResults.

[81] ATLAS Collaboration,

An imaging algorithm for vertex reconstruction for ATLAS Run-2,

ATL-PHYS-PUB-2015-008 (2015), url: http://cds.cern.ch/record/2008700.

http://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#Integrated_luminosity_summary_pl
http://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#Integrated_luminosity_summary_pl
http://dx.doi.org/10.1016/j.physletb.2013.07.049
http://dx.doi.org/10.1016/j.physletb.2013.07.049
http://arxiv.org/abs/1305.4192
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://dx.doi.org/10.1140/epjc/s10052-013-2518-3
http://arxiv.org/abs/1302.4393
http://cds.cern.ch/record/1435196
http://cds.cern.ch/record/1741021
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://cds.cern.ch/record/1129811
http://cds.cern.ch/record/1403142
http://cds.cern.ch/record/1669603
http://dx.doi.org/10.1088/1748-0221/3/02/P02013
http://cds.cern.ch/record/1094549
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://dx.doi.org/10.1140/epjc/s10052-014-3130-x
http://arxiv.org/abs/1407.3935
http://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults
http://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerOperationPublicResults
http://cds.cern.ch/record/2008700


BIBLIOGRAPHY 181
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