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Abstract

This thesis describes two subjects that I mainly work on during my PhD study. They

are both about scattering amplitudes, covering gravity and gauge theories, tree and loop

level, with or without supersymmetry. The first subject is Kawai-Lewellen-Tye(KLT)

relation in field theory, which mysteriously relates Yang-Mills amplitudes to gravity am-

plitudes. Based on many known works about KLT and super-KLT relations, we provide

a complete map between super-gravity amplitudes and super-Yang-Mills amplitudes for

any number of supersymmetry that allowed in 4-dimensional theory. We also provide

an explanation for vanishing identities of Yang-Mills amplitudes as violation of linear

symmetry groups based on KLT relation argument. The second subject is integrand re-

duction of multi-loop amplitude. The recent methods based on computational algebraic

geometry make it possible to systematically study multi-loop amplitude with general-

ized unitarity cut. Using Gröbner basis and primary decomposition, we thoroughly

study integrand basis and solution space of equations from maximal unitarity cut for

all 4-dimensional two-loop topologies. Algorithm and examples of this computation are

illustrated in this thesis. We also study a special type of two-loop and three-loop dia-

grams where equations of maximal unitarity cut define complex curve. Geometry genus

of complex curve is a topological invariant, and characterizes the property of curve. We

compute the genus of complex curve for some two-loop and three-loop diagrams from in-

formation of degree and singular points of that curve using algebraic geometry method.

Information of integrand basis, structure of solution space as well as geometric genus is

useful for future multi-loop amplitude computation.
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Chapter 1

Introduction

1.1 Scattering amplitude in a nutshell

Pursuit of simplicity has never been stopped for physics research, even though we are

confronting more and more complicated phenomena. In the past decade, tremendous

researches have been done to uncover the simplicity of scattering amplitude[1]. Many

old ideas are studied again. With a modern interpretation, their hidden power has been

released for amplitude computations that can not even image to do so in old days.

Traditionally, scattering amplitude is computed perturbatively by Feynman rules of

Feynman diagrams. Feynman rules are derived from Lagrangian description of field

theories. In the days when it is firstly proposed, it served as very efficient method for

computing amplitude. However, the Feynman diagram approach suffers many disadvan-

tages in modern amplitude computations. This is because we are already going beyond

simple amplitude of few points and tree level scattering process. The complexity of

computation using Feynman rules is factorial in the number of particles as well as num-

ber of loops. This leads to a bottleneck for computing complicated amplitudes. It also

suffers from unphysical singularities in intermediate steps of computations, which cause

unnecessary errors in numeric computations.

To bypass disadvantages of Feynman diagram approach, we have a straightforward way:

throw it away. New changes for amplitude computation take place since 2003, at which

time Witten showed that perturbative gauge theory can be described as string theory

in twistor space[2]. The simplicity of scattering amplitudes then shows up, and hints

new methods for amplitude computation. Soon after that, a method is proposed in

Cachazo-Svrcek-Witten(CSW) formalism[3, 4]. By using MHV rules, it is possible to

compute Maximal-Helicity-Violating(MHV) amplitude from MHV vertices through cer-

tain off-shell continuation. Then a simple and powerful recursion relation is proposed

1



2 Chapter 1. Introduction

by Britto-Cachazo-Feng-Witten(BCFW)[5, 6]. The BCFW recursion relation interprets

amplitude as complex function of single variable. Then complex analysis can be intro-

duced in amplitude computation, especially Cauchy’s theorem. The physical amplitude

is computed from lower-point on-shell tree amplitudes. The on-shell condition excludes

many Feynman diagrams, which greatly simplify the computation. Since it does not

rely on any specific Lagrangian description of field theories, this motives us to re-think

the S-matrix program proposed in 1960’th[7–9]. Many well known results are re-studied

in the framework of S-matrix program using BCFW recursion relation, especially for

tree amplitudes. On one hand, complicated tree amplitudes are being computed from

three-point amplitudes without referring to the Lagrangian of field theory[10–12]. On

the other hand, non-trivial relations of tree amplitudes are proved. These non-trivial re-

lations include the U(1)-decoupling relation[13–15], Kleiss-Kuijf(KK) relation[16] as well

as recently proposed Bern-Carrasco-Johansson(BCJ) relation[17]. They are examined

from string theory approach[18, 19] and pure field theory approach[20–25].

Since so many works have been done for tree amplitudes from 2003, there are almost no

simple researches left now. We are forced to study gravity amplitude and loop amplitude.

This is of course lucky for physics, but somehow unlucky for students, since computation

of gravity amplitude and loop amplitude is so difficult. Every small effort contributes to

a little progress, which pushes the research a step forward. But we are still on the road

no matter how difficult it is.

Almost no one likes gravity amplitude computation, not even drawing all contributing

Feynman diagrams. Fortunately, there is an indirect way of computing gravity ampli-

tude from Yang-Mills amplitudes via Kawai-Lewellen-Tye relation[26]. This relation is

proposed in 1985 for string amplitudes, but it finds its important application in field

theory amplitude computation. However, KLT relation is only valid for tree gravity and

Yang-Mills amplitudes. We should go beyond tree level, since any simple and not so

simple pieces of tree amplitudes have already been studied and re-studied during last

decade. Shortly after the discovery of BCJ relation, a BCJ conjecture[27, 28] has been

proposed. This conjecture states that, for representations of Yang-Mills amplitudes

where kinematic factors of diagrams follow the same Jacobi identity of color factors

from corresponding diagrams, the gravity amplitude can be straightforwardly produced

by squaring kinematic factors of two Yang-Mills amplitudes in those representations.

Such representation can be constructed for both tree and loop amplitudes, as far as the

Feynman diagrams to be included are cubic diagrams. So the BCJ conjecture can be

used to compute loop gravity amplitude from loop Yang-Mills amplitude[29–37], with

the help of computer.
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Computation of loop Yang-Mills amplitudes goes far beyond computation of loop grav-

ity amplitudes. While results of loop gravity amplitudes are still restricted to some

examples, the systematic computation of one-loop Yang-Mills amplitudes is already

fully implemented[38]. Any one-loop integrals can be expanded to finite number of

known integrals, and the expansion coefficients can be computed by unitarity cut. The

computation takes advantages of spinor-helicity formalism and compact tree amplitude

results produced by BCFW recursion relation. Researches on integral reduction of two-

loop and three-loop amplitudes also provide very inspiring results[39–47]. For the inte-

grand reduction approach, recent researches inspired by computational algebraic geom-

etry method[48, 49] push one-loop integrand induction[50–55] to multi-loop integrand

reduction[56–65]. This is theoretically true, but practical computation still depends on

the efficiency of algorithm and ability of computer. The first step is taken by comput-

ing integrand basis of multi-loop amplitudes via Gröbner basis method and generalized

unitarity cut method. It is totally translated to mathematical problem, so systematic

algorithm can be implemented. Further information of the algebraic system defined

by generalized unitarity cut of multi-loop amplitude is detailed explored by algebra-

ic geometry methods such as Gröbner basis, primary decomposition of ideal, varieties

and branch structures of reducible algebraic set, geometric genus of complex curve, etc.

This information can be used in the further steps of multi-loop amplitude computation-

s such as integral reduction with Integration-By-Parts(IBP) method[66–69] or fitting

coefficients of master integrals.

Although theoretical tree amplitude computation is approaching the final stage, theo-

retical loop amplitude computation is still in its very early period. The complexity of

multi-loop gravity and Yang-Mills amplitudes is really a challenge both for theoretical

and practical computations. The simplicity of tree amplitude discovered in the past

decade starts a revolution of tree amplitude computation, and finally makes it trivial to

compute any tree amplitudes theoretically. We believe that the simplicity of multi-loop

amplitude is still hidden somewhere waiting for us to pursuit. This belief will inspire

further researches on the amplitude community.

1.2 Outline of the thesis

This thesis describes two subjects that I mainly work on during my PhD study[61, 70, 71].

They are presented in following chapters after a brief introduction of basic knowledge

and convention that are frequently used in amplitude computations.

The whole chapter 2 is devoted to KLT and super-KLT relations in field theory. Since

(super-)KLT relation has already been proven by pure field theory method, we think it
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is consistent within field theory and do not mention its string theory origin in this thesis.

The first section describes various formulations of KLT relations and shows that they are

equivalent through BCJ relation. The second section describes our work on super-KLT

relation. The complete map between super-gravity amplitudes and super-Yang-Mills

amplitudes for any number of supersymmetry in 4-dimensional theory is provided. The

linear symmetry groups of super-gravity theories that inferred from KLT products are

also illustrated, and their roles in the vanishing identities of Yang-Mills amplitudes are

discussed. The main results of this section have been published in [70].

Chapter 3 describes the basics of loop amplitude computation. After introducing two

major representations of loop integral, we focus on one of them where color information

is separated and kinematic information defines color-ordered partial amplitude. This

representation is especially useful for practical computation. Firstly we introduce the

traditional integral reduction procedure, and concentrate on one-loop integral reduction.

The unitarity cut and generalized unitarity cut are introduced for the reduction. Then

a whole section is devoted to the introduction of algebraic geometry. With these mathe-

matical concepts, the last section describes integrand reduction of multi-loop amplitude

as a problem of algebraic geometry. Ideas and algorithms discussed in this section will

be applied to detailed analysis of two-loop and three-loop diagrams in chapter 4 and

chapter 5.

Chapter 4 describes integrand basis of 4-dimensional two-loop topologies. The integrand

basis is obtained by computational algebraic geometry methods. Possible topologies

of two-loop amplitude are discussed in the first section. The second section provides

general discussion of algebraic system defined by equations of maximal unitarity cut of

4-dimensional two-loop topologies. Since complete results for all topologies are too much

to present, in this thesis, we select two typical topologies and provide detailed analysis

in section 3 and section 4. The complete results have been published in [61].

Chapter 5 describes a special type of multi-loop topologies where equations of maximal

unitarity cut define a complex curve. For this complex curve, we compute the geometric

genus. Since geometric genus is topological invariant, it characterizes properties of curve.

It is also a judgement of rational solution for equations of maximal unitarity cut. The

first section describes the way of birationally mapping non-plane curve to plane curve,

whose genus is much easier to be computed. The second section discuss genus of curves

from two-loop diagrams and the third section discuss genus of curve from three-loop

diagrams. The main results of this chapter have been published in [71].

Conclusion and outlook are given in the last chapter.
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1.3 Preliminary

Many concepts and notations are frequently used in amplitude computations. In this

section, we introduce some basics which will be used in following chapters. They can be

found in many review papers, for example [72, 73].

1.3.1 Gauge group

For convenience we can study Yang-Mills theory of SU(N) group. The generators (T a) j̄
i ,

a = 1, 2, . . . , N2−1, of SU(N) group in fundamental representation are N ×N traceless

Hermitian matrices. They can be normalized as

Tr(T aT b) = δab , [T a, T b] = i
√

2fabcT c , (1.1)

where square bracket is normal commutator and fabc is Lie algebra structure constant.

Gluon is in the adjoint representation of SU(N) group, and it carries an adjoint color

index a, a = 1, 2, . . . , N2 − 1. Quark or antiquark is in the fundamental representation,

and carries an i or j̄ index, i, j̄ = 1, 2, . . . , N , but color free. Each gluon-quark-antiquark

vertex contains a factor (T a) j̄
i , each gluon three-vertex contains a structure constant

fabc, and each gluon four-vertex contains structure constants fabef cde. To simplify

amplitude computation, it is better to eliminate all structure constants by generators

T a before computation. This can be done by applying identity

i
√

2fabc = Tr(T aT bT c)− Tr(T aT cT b) . (1.2)

As a result, the color factors of Feynman diagram are represented by products of traces

of generators as Tr(. . .) . . .Tr(. . .). If external quarks are also involved, there will be

strings of generators ended by fundamental indices as (T a1 . . . T am) j̄
i . Then we can

apply Fierz identity of SU(N) group

∑
a

(T a) j̄1
i1

(T a) j̄2
i2

= δ j̄2
i1
δ j̄1
i2
− 1

N
δ j̄1
i1
δ j̄2
i2

(1.3)

to reduce all color structures in terms of traces of generators.

The second term in the right hand side of (1.3) is introduced to implement the traceless

condition of SU(N) group. Identity (1.3) states that the SU(N) generators T a form a

complete set of N ×N traceless Hermitian matrices. Sometimes it is convenient to get

rid of the second term −1/N in (1.3) by considering U(N) = SU(N)×U(1) group. The

traceless condition is then relaxed, and the additional U(1) generator is proportional to
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identity matrix

(T a0) j̄
i =

1√
N
δ j̄
i . (1.4)

This U(1) gauge field is referred to as photon. The generator commutes with all gener-

ators of SU(N) group with zero structure constant, so it does not couple to gluon.

From Fierz identity, it is possible to write the product of two traces as

Tr(T aX)Tr(T aY ) =
∑
i,k

(T a) i
kX

k
i

∑
j,m

(T a) j
mY

m
j

=
∑
i,k,j,m

δ i
mδ

j
k X

k
i Y

m
j −

∑
i,k,j,m

1

N
δ i
k δ

j
mX

k
i Y

m
j

= Tr(XY )− 1

N
Tr(X)Tr(Y ) , (1.5)

where X,Y are any sequences of generators. There are two terms in the Fierz identity.

However, if we only consider contracting structure constants such as

fa1b1e1fe1b2e2 · · · fek−1bkck ,

since fabe can be replaced by Tr(T aT bT e)−Tr(T bT aT e), after contracting we can always

get −1/N terms as

− 1

N
· · · (Tr(T aT b)− Tr(T bT a)) , (1.6)

where · · · represents any products of traces from contracting other structure constants.

They are all canceled out since cyclic permutation invariance of trace implies Tr(T aT b) =

Tr(T bT a). So the −1/N term in (1.5) does not contribute in the color structures of

gluon vertices. This is expected since photon dose not couple to gluon. So we can write

products of traces of SU(N) generators as

∑
a

Tr(T aX)Tr(T aY ) = Tr(XY ) ,
∑
a

Tr(T aXT aY ) = Tr(X)Tr(Y ) . (1.7)

The second relation in (1.7) is useful when working out color structures of loop amplitude.

Especially, if X is identity, we have

∑
a

Tr(T aT aY ) =
∑
a

∑
i,j,k

(T a) i
j (T a) j

k Y
k

i =
∑
a

∑
i,j,k

δ i
k δ

j
j Y

k
i = NTr(Y ) , (1.8)

where N = Tr(I) is the trace of identity matrix. This is the reason why we only have

single trace structure for tree amplitudes, but double, triple or N-ple trace structures

for loop amplitudes.
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After eliminating structure constants by traces of generators, we separate color part and

kinematic part from full amplitude. The kinematic information associated with certain

trace structures then can be identified as partial amplitudes, which are color-ordered

and much easier to be computed than full amplitude. In fact, we can compute partial

amplitudes, and assemble them into full amplitude according to the color structures.

1.3.2 Spinor-Helicity formalism

The spinor-helicity formalism is widely used in recent methods of amplitude computa-

tion, and responsible for compact and simple final results. The idea is to express the

mathematical structures of amplitude with two-dimensional irreducible representation of

Lorentz group, especially the Dirac spinors, polarization vectors and momenta. The rep-

resentation can be chosen as Weyl spinor of massless particles. Note that Lorentz group

can be expressed as SU(2)L × SU(2)R, so we can use two independent two-dimensional

representations (1/2, 0) and (0, 1/2) to express the finite dimensional representation of

Lorentz group.

Let us start from the Weyl spinor of massless momentum, which can be found by solving

massless Dirac equation

pµγ
µu(p) = 0 , (1.9)

where u(p) is four-component vector, and gamma matrices satisfy anti-commutation

relations

{γµ, γν} = 2gµνI4×4 , gµν = diag(+,−,−,−) . (1.10)

In the Weyl representation, gamma matrices have explicit form as

γ0 =

(
0 I2×2

I2×2 0

)
, γi =

(
0 σi

−σi 0

)
, (1.11)

where σi is 2 × 2 Pauli matrix. So the four-component Dirac spinor can be written as

two two-component Weyl spinors

u(p) =

(
uα(p)

ũα̇(p)

)
, (1.12)

and the Dirac equation becomes

p · σβα̇ũα̇ = 0 , p · σβ̇αuα = 0 . (1.13)
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The index of Weyl spinor is raised and lowered by two-dimensional anti-symmetric Levi-

Civita tensor εαβ or εα̇β̇. A commonly used notation of spinor is given by

λα(p) = 〈p| , λα(p) = |p〉 , λ̃α̇(p) = [p| , λ̃α̇(p) = |p] . (1.14)

With this notation, the inner product of two Weyl spinors associated to two massless

momenta pi, pj can be expressed as

〈i j〉 ≡ λα(pi)λα(pj) = εαβλα(pi)λβ(pj) = λ1(pi)λ2(pj)− λ2(pi)λ1(pj) , (1.15)

[i j] ≡ λ̃α̇(pi)λ̃
α̇(pj) = εβ̇α̇λ̃

α̇(pi)λ̃
β̇(pj) = λ̃1̇(pi)λ̃

2̇(pj)− λ̃2̇(pi)λ̃
1̇(pj) . (1.16)

We can decompose massless momentum as two Weyl spionrs

pαα̇ = pµ · (σµ)αα̇ = λαλ̃α̇ = |p]〈p| , pαα̇ = pµ · (σµ)αα̇ = λαλ̃α̇ = |p〉[p| , (1.17)

since det(p · σ) = p2 = 0 for massless momentum. If we treat momentum as complex

valued, then λ, λ̃ are independent. If momentum is real in Minkowski space, we should

constrain λ̃ = λ̄, the complex conjugate of λ. The inner product of two momenta is

related to the inner product of spinors as

〈i j〉 [j i] = λα(pi)λα(pj)λ̃α̇(pj)λ̃
α̇(pi) = paα̇i pj,αα̇ = pi,µσ

µ,αα̇σναα̇pj,ν = 2pi · pj . (1.18)

We use QCD convention in above relation, while the string convention differs with a

minus sign.

Many identities are quite useful for computation with spinors. They are

• 〈i|γµ|i] = 2pµi , Gordon identity,

• 〈i j〉 = −〈j i〉 , [i j] = −[j i], 〈i i〉 = [i i] = 0, Antisymmetry,

• 〈i|γµ|j] = 〈j|γµ|i], Charge conjugation,

• 〈i|γµ|j] 〈k|γµ|l] = 2 〈i k〉 [j l], Fierz rearrangement,

• 〈i j〉 〈k|+ 〈k i〉 〈j|+ 〈k i〉 〈j| = 0, Schouten identity,

• ∑k 〈i k〉 [k j] = 0, Momentum conservation.

These identities are also valid when replacing |·〉 → |·], |·]→ |·〉.

The next object to be expressed by Weyl spionr is polarization vector. It has two states

ε±µ with four components µ = 0, 1, 2, 3, which produce the helicity ±1. An explicit
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representation for polarization vector is given by

ε+µ (p) =
〈r|γµ|p]√

2 〈r p〉
, ε−µ =

〈p|γµ|r]√
2 [p r]

, (1.19)

or in the matrix form

ε+α̇α(p) =

√
2λ̃α̇(p)λα(r)

〈r p〉 =

√
2|r〉[p|
〈r p〉 , ε−α̇α(p) =

√
2λ̃α̇(r)λα(p)

[p r]
=

√
2|p〉[r|
[p r]

, (1.20)

where r is arbitrary reference momentum representing the freedom of on-shell gauge

transformation, and will disappear in the final result. The polarization vectors are

normalized as

ε+(p) · ε−(p) = −1 , ε±(p) · ε±(p) = 0 . (1.21)

They are transverse to p for any reference momentum r

ε±(p) · p = 0 , (1.22)

and the complex conjugation reverses helicity

(ε+(p))∗ = ε−(p) . (1.23)

The completeness relation of polarization vectors with reference momentum r gives a

light-like axial gauge with gauge vector r

ε+µ (p)ε−ν (p) + ε−µ (p)ε+ν (p) = −gµν +
pµrν + rµpν

p · r . (1.24)

For gravity theory, we also have graviton states with helicity ±2. These states can be

produced by 2-dimensional polarization tensor ε±µν , which can be written as products of

two polarization vectors as

ε±µν(p) = ε±µ (p)ε±ν (p) . (1.25)

1.3.3 Three-point amplitude

The three-point amplitude is the basic building block for modern methods of amplitude

computation. In Yang-Mills theory, the color-ordered three-point vertex with definite

helicity is produced by contracting three-vertex with corresponding polarization vec-

tors of external states. However, it is possible to construct three-point amplitude from

discussion of consistency conditions[74, 75] without specific Lagrangian description.
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For massless three-point amplitude, momentum conservation p1 + p2 + p3 = 0 and on-

shell conditions p2
i = 0, i = 1, 2, 3 ensure that pi · pj = 0 for arbitrary i, j = 1, 2, 3.

Expressed in spinor-helicity formalism, we have

〈1 2〉 [2 1] = 0 , 〈1 3〉 [3 1] = 0 , 〈2 3〉 [3 2] = 0 . (1.26)

We want to find the non-trivial solution of above equations. If 〈1 2〉 = 0 and 〈1 3〉 = 0,

both |2〉, |3〉 are proportional to |1〉. Then we can write |2〉 = t1|1〉, |3〉 = t2|1〉, and

〈2 3〉 automatically vanishes. However, if momenta are real, we have |i] ∼ |i〉∗. So inner

products [i j] for any i, j = 1, 2, 3 also vanish. In this sense, no non-trivial three-point

amplitude can be constructed from inner products of spinors. Instead, we can consider

all momenta as complex valued, then |i] and |i〉 are independent, and each set of solutions

〈1 2〉 = 〈2 3〉 = 〈3 1〉 = 0 , [i j] non-zero , (1.27)

[1 2] = [2 3] = [3 1] = 0 , 〈i j〉 non-zero (1.28)

satisfies momentum conservation and on-shell conditions. So the complex three-point

amplitude should be a purely holomorphic or anti-holomorphic function of spinors. By

requiring consistency conditions from assumption of S-matrix that the Poincaré group

acts on scattering amplitude as it acts on individual one-particle states, the three-point

amplitude is forced to be

A3(1h1 , 2h2 , 3h3) = κH 〈1 2〉d3 〈2 3〉d1 〈3 1〉d2 + κA [1 2]−d3 [2 3]−d1 [3 1]−d2 , (1.29)

where hi is helicity of particle pi, and d1 = h1−h2−h3, d2 = h2−h3−h1, d3 = h3−h1−h2.

κH , κA are constants, and one of them should be zero, in order to fulfill the correct physics

behavior in the limit of real momentum. Explicitly, if d1 + d2 + d3 is positive, then κA

should be zero in order to avoid infinity. Similarly, if d1 + d2 + d3 is negative, then κH

should be zero.

Let us apply above discussion in Yang-Mills theory, where the helicity could be ±1,±1/2

or 0. Note that above discussion could not exclude the possibility of theories with three-

point amplitude of the form A3(1±, 2±, 3±). But such theories will contain a high power

of momenta in cubic vertex. In Yang-Mills theory, we can only consider following non-

trivial three-point vertices. (1) pure gluon three-vertex,

A3(1−, 2−, 3+) =
〈1 2〉3
〈2 3〉 〈3 1〉 , A3(1+, 2+, 3−) =

[1 2]3

[2 3] [3 1]
, (1.30)
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(2) gluon coupled to fermion pair three-vertex

A3(1−
1
2 , 2+ 1

2 , 3−) =
〈3 1〉2
〈1 2〉 , A3(1−

1
2 , 2+ 1

2 , 3+) =
[3 1]2

[1 2]
, (1.31)

and (3) gluon coupled to scalar pair three-vertex

A3(10, 20, 3−) =
〈2 3〉 〈3 1〉
〈1 2〉 , A3(10, 20, 3+) =

[2 3] [3 1]

[1 2]
. (1.32)

All constant pre-factors have been ignored in above expressions.

1.3.4 BCFW recursion relation

Taking advantages of spinor-helicity formalism and complex momentum, the Britto-

Cachazo-Feng-Witten(BCFW) recursion relation[5, 6] is a powerful tool for analyzing

and computing amplitudes. This method dose not rely on Lagrangian description of field

theories, but tries to extract as much information as possible from general assumptions.

The amplitude is real valued, but it has no problem to extend it to complex plane,

provided that the amplitude is analytic function. One way of complexifying amplitude

as function of complex variable is to deform external momentum. Suppose we have

selected two massless gluons whose momenta are pk = λkλ̃k and pn = λnλ̃n, then we

can introduce a complex variable z, and deform them as

p̂k(z) = λk(λ̃k − zλ̃n) , p̂n(z) = (λn + zλk)λ̃n . (1.33)

The other external momenta are kept the same. This deformation modifies the anti-

holomorphic part of momentum pk and holomorphic part of momentum pn, while pre-

serves two properties, (1) all momenta after deformation are still on-shell, (2) momentum

conservation of all external momenta after deformation still holds. In fact, it is not nec-

essary to use spinor-helicity formalism. We can introduce an arbitrary four-vector q,

and deform two momenta as

p̂k(z) = pk − zq , p̂n(z) = pn + zq , (1.34)

with q2 = pk · q = pn · q = 0. But spinor-helicity formalism makes computation simple.

With momenta deformation, the amplitude becomes a function of single complex variable

A(z) = A(p1, . . . , pk−1, p̂k(z), pk+1, . . . , pn−1, p̂n(z)) . (1.35)
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The advantage of such deformation is that, for generic external momenta, A(z) is rational

function of complex variable z with only simple poles. The poles come from propagators

where only one p̂k(z) or p̂n(z) is included, since p̂k(z) + p̂n(z) = pk + pn, which is

independent of z. Furthermore, if we consider following Cauchy’s theorem

0 =
1

2πi

∮
Γ
dz
A(z)

z
, (1.36)

where Γ is a large enough contour, and assume that A(z) vanishes at infinity, then

there is no boundary contribution, and above contour integration is totally given by its

residues. These residues are computed at z = 0 and at locations of simple poles from

A(z). So we have

An(0) = −
∑
i,j

∑
h=±

AL(. . . , p̂k(zij), . . . , p̂
h
ij(zij))

1

p2
ij

AR(−p̂−hij (zij), . . . , p̂n(zij), . . .) . (1.37)

The summation is over all possible helicity configurations and diagrams of propagators

with only one p̂k(z) or p̂n(z). zij is the solution of p̂ij(z)
2 = (pij + zλkλ̃n)2 = 0,

zij =
p2
ij

〈k|pij |n]
. (1.38)

Since the amplitude is computed at phase space where propagators p̂ij(z) are on-shell,

the summation only contains on-shell diagrams. An(0) is the physical amplitude we

want, and AL, AR are tree amplitudes that having fewer external momenta than An.

If AL contains n1 external legs, then it is (n1 + 1)-point tree amplitude, and AR is

(n−n1+1)-point tree amplitude. n1 ranges from 2 to (n−2), so (n1+1) and (n−n1+1) are

always smaller than n. We can recursively perform similar momenta deformation (1.33)

and BCFW expansion (1.37) for AL and AR until all of them can be constructed only

from three-point amplitudes. This is fascinating, since as already mentioned, three-point

amplitude can be determined by general physics considerations, while BCFW recursion

relation is also based on very general assumptions about field theory and scattering

amplitude. So it is possible to build up field theory based on general principles without

relying on specific Lagrangian.

Attention should be paid to the boundary contribution of contour integration (1.36)

when A(z) does not vanish as z → ∞. The large z behavior of A(z) depends on the

way of deforming momenta (1.33). For Yang-Mills theory, it is always possible to select

two momenta pk, pn with helicities (−,+), (+,+) or (−,−). A(z) vanishes as z → ∞
under these momenta deformations. So in order to avoid boundary contributions, we can

simply select two momenta pk, pn which have helicities (hk, hn) = (−,+). However, even

for some bad deformations where A(z) does not vanish as z →∞, we can still compute
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the contour integration (1.36). Besides residues in locations z = 0, z = zij , there are as

well additional terms from boundary contribution. The physical amplitude is then given

by (1.37) plus corrections from boundary contribution[76–78]. Computation of boundary

contribution is not easy, but if we are carefully enough and do not make mistakes, we

should get the right physical amplitude.

1.3.5 MHV amplitude

We mentioned that non-trivial gluon three-point amplitudes with helicities (−,−,+) or

(+,+,−) have very simple form when written in spinor-helicity formalism, while ampli-

tudes of all plus or all minus helicities vanish. This can be generalized to arbitrary point

gluon amplitude by introducing Maximal-Helicity-Violating(MHV) amplitude. Consider

n-point amplitude with k minus helicities. When k = 0 or 1, the amplitudes vanish. The

first non-trivial amplitude is MHV amplitude when k = 2, known as the Parke-Taylor

amplitude[79], and it takes a simple form as

An(1+, . . . , i−, . . . , j−, . . . , n+) =
〈i j〉4

〈1 2〉 〈2 3〉 · · · 〈n− 1, n〉 〈n 1〉 , (1.39)

where pi, pj are chosen to be minus helicities. Similarly, we define anti-MHV amplitude

as amplitude with two-plus helicities and others minus. It also takes a simple form as

An(1−, . . . , i+, . . . , j+, . . . , n−) =
[i j]4

[1 2] [2 3] · · · [n− 1, n] [n 1]
, (1.40)

where pi, pj are chosen to be plus helicities. If j = i+ 1, then the numerator will cancel

one factor in denominator.

For 4-point and 5-point amplitudes, they should either be zero or MHV, anti-MHV am-

plitudes. Especially for 4-point amplitudes, the MHV amplitude is as well the anti-MHV

amplitude. This is a consequence of 4-point kinematics. Let us take A(1−, 2−, 3+, 4+)

as example. Since s12 = s34, we have 〈1 2〉 [1 2] = 〈3 4〉 [3 4], and

〈1 2〉3
〈2 3〉 〈3 4〉 〈4 1〉 =

[3 4]3 〈3 4〉3

[1 2]3 〈2 3〉 〈3 4〉 〈4 1〉
=

[3 4]3 〈3 4〉2
[1 2] 〈3|2|1] 〈4|1|2]

=
[3 4]3 〈3 4〉2

[1 2] 〈3| − 4|1] 〈4| − 3|2]
=

[3 4]3

[1 2] [2 3] [4 1]
. (1.41)

For An with n ≥ 6, (1.39) and (1.40) are not enough to determine amplitudes of all

helicity configurations. For example, 6-point amplitude could have three-minus, three-

plus helicity configuration, defined as Next-MHV(NMHV) amplitude, which is far more
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complicated than 6-point MHV amplitude. Amplitude with k + 2 minus helicities is

called NkMHV amplitude.

We can generalize MHV amplitude beyond pure gluon amplitude. The most close gen-

eralization is to include a fermion pair in the amplitude. Amplitude of a fermion pair

with all plus gluon is trivially zero, and the first non-trivial amplitude is

An(1−
1
2 , 2+ 1

2 , 3+, . . . , i−, . . . , n+) =
〈1 i〉3 〈2 i〉

〈1 2〉 〈2 3〉 · · · 〈n− 1, n〉 〈n 1〉 . (1.42)

Similarly the anti-MHV amplitude is defined as

An(1−
1
2 , 2+ 1

2 , 3−, . . . , i+, . . . , n−) =
[2 i]3 [1 i]

[1 2] [2 3] · · · [n− 1, n] [n 1]
. (1.43)

They are also generalization of corresponding three-vertex amplitudes.

The MHV gravity amplitude also exists[80–85]. But compared to the simple formulation

of MHV Yang-Mills amplitude, it is extremely complicated. A better understanding of

gravity theory might be needed in order to construct a possibly simple formulation for

MHV gravity amplitude.

1.3.6 Supersymmetry

Tree amplitude in Yang-Mills theory has apparent sypersymmetry[86, 87]. Supersym-

metry is an idea of relating fermion and boson states, and treating them in an equivalent

way. It is an extension of Poincaré algebra, by including additional anti-commutating

spin half supercharge operators Q. Since this operator is fermionic, it will change spin

states by half when acting on them.

Expressed in terms of Weyl spionr, the supercharge operators Q ≡ (Qaα, Q̃
a
α̇) have spinor

indices α, α̇ = 1, 2, and also index a = 1, 2, . . . ,N , where N is the number of super-

charges. Qaα can be used to lower spin by half while Q̃aα̇ can raise spin by half. The

supercharges can be realized by Grassmann variables η through

Q̃a =

n∑
i=1

|i〉ηa , Qa =

n∑
i=1

|i] ∂
∂ηa

. (1.44)

ηa are numbers satisfying anti-commutating relations {ηa, ηb} = 0, but commute with

normal numbers. It is easy to infer that η2
a = 0. The integration of Grassmann variables

is defined as ∫
dη = 0 ,

∫
ηdη = 1 , (1.45)
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and the differentiation of Grassmann number is identical to integration. It is also in-

teresting to see that delta function of Grassmann number δ(η) is identical to η, follows

directly from the definition of delta function and integration of Grassmann number.

Fields in supersymmetric theories are then associated to Grassmann variables. For ex-

ample, if N = 1, we have gluon g and gluino Λ fields. Using Grassmann variable η, they

can be packed into a super-field

Φ = g+ + ηΛ+ , Ψ = ηΛ− + g− . (1.46)

Acting Q̃,Q on Φ,Ψ super-fields, we get

Q̃Φ = ηg+ + 0 , Q̃Ψ = 0 + ηg− , QΦ = 0 + Λ+ , QΨ = Λ− + 0 . (1.47)

Comparing with Φ,Ψ super-fields, it is easy to see that it gives the correct state trans-

formation

Q̃ : (g+,Λ+,Λ−, g−)→ (0, g+, 0,Λ−) , Q : (g+,Λ+,Λ−, g−)→ (Λ+, 0, g−, 0) . (1.48)

For 4-dimensional Yang-Mills theory, we have N = 1, 2, 4. N = 3 super-Yang-Mills

theory describes the same theory as maximal N = 4 super-Yang-Mills theory. For 4-

dimensional gravity theory, N could be 1,2,4,6 or 8. N = 7, 5, 3 super-gravity theories

have their equivalent N = 8, 6, 4 super-gravity theories. Generalization of supercharge

operators and super-fields to N supersymmetric theories is straightforward, and we will

discuss the details later.





Chapter 2

KLT relations

This chapter describes KLT relation[26] and its extension to supersymmetric theories[88].

The KLT relation is originally discovered almost thirty years ago when Kawai, Lewellen

and Tye explored some mysterious relation between bosonic closed and open strings.

By carefully defining the integral, they found that scattering amplitude of closed string

can be factorized into product of two open string amplitudes. Since closed string con-

tains spin-2 particle while open string contains spin-1 particle, they can be naturally

identified as graviton and gluon. In the field theory limit, bosonic closed string pro-

vides a description of Einstein gravity theory, and open string provides a description of

Yang-Mills theory. So KLT relation of string amplitudes also encodes mysterious con-

nection between gravity amplitude and Yang-Mills amplitude. In bosonic case, it is the

relation that relates pure graviton amplitude to pure gluon amplitude. This is already

very surprising since such relation is totally obscure in the Lagrangian descriptions of

these two theories. In heterotic string case, it is possible to go beyond pure gravity

and Yang-Mills theories, but include fermion and scalar fields as well as spin 3/2 fields

into the relation. In fact, since every supersymmetric gravity and Yang-Mills theory

with N supercharges can be reduced from certain string theory by taking string tension

to the limit of infinity, it could be expected that a complete set of KLT map between

all possible super-gravity theories and super-Yang-Mills theories exists, even though it

might be hard to work out every corresponding string amplitude factorization. Since

(super-)KLT relation has already been proven by pure field theory method[89, 90], it is

therefore safe to ignore its string theory origin, and concentrate the study only on the

consequences of field theories. In the gravity theory part, these consequences include

constructing various super-gravity theories, and also computation of tree-level gravity

amplitude[91], especially the full expression of tree-level MHV gravity amplitude[80–85].

In the Yang-Mills theory part, some interesting vanishing identities among Yang-Mills

amplitudes[92, 93] are found as a result of symmetry violation.

17
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In the following sections, we will briefly present various expressions of field theory KLT

relations and their application to gravity amplitude computation. The remaining context

is mainly dedicated to super-KLT relation which we have studied. After generalizing

normal KLT relation to supersymmetric gravity and Yang-Mills theories, we will work

out the complete KLT map between all possible 4-dimensional supersymmetric theories,

and illustrate the violation of symmetry that leads to vanishing identities of Yang-Mills

amplitudes.

2.1 KLT relation in field theory

2.1.1 General formula and properties of S-kernel

It only requires one sentence to describe KLT relation: gravity amplitude is a summation

of products of two Yang-Mills amplitudes. Yet it is not quite easy to really work it out

mathematically, since terms to be summed over is of factorial order, and the products

are also dressed with complicated kinematic factors.

The expression could have many different forms[94], and one general form for n-point

gravity is

Mn =(−1)n+1
∑

σ∈Sn−3

∑
α∈Sj−1

∑
β∈Sn−2−j

An(1, σ2,j , σj+1,n−2, n− 1, n)S[ασ(2),σ(j)|σ2,j ]p1

× S̃[σj+1,n−2|βσ(j+1),σ(n−2)]pn−1Ãn(ασ(2),σ(j), 1, n− 1, βσ(j+1),σ(n−2), n) ,

(2.1)

where j is a fixed number taking value of (1, 2, . . . , n− 2). Sn is the set of permutation

of n legs, and σi,j is a permutation of indices (i, i + 1, . . . , j). Coupling constants of

gravity and Yang-Mills theories have been ignored here. An, Ãn are two n-point Yang-

Mills amplitudes, and they are not necessary to be amplitudes of the same theory.

In this expression, three external legs of Yang-Mills amplitudes have been fixed, and

permutation is operate on remaining (n−3) external legs. This is easy to understand in

string theory, since three points are fixed because of conformal invariance. The kinematic

factor, also called momentum kernel or S-kernel, is defined as

S[i1, . . . , ik|j1, . . . , jk]p1 =

k∏
t=1

(
sit1 +

k∑
q>t

θ(it, iq)sitiq
)
, (2.2)

where θ(it, iq) is zero when legs (it, iq) has same ordering at both sets I ≡ {i1, . . . , ik}
and J ≡ {j1, . . . , jk}, and unity for all other cases. si,...,j is simply Lorentz invariant

scalar product (pi + · · ·+ pj)
2. The dual form of S-kernel, i.e., the S̃-kernel, is defined
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as

S̃[i1, . . . , ik|j1, . . . , jk]pn ≡
k∏
t=1

(
sjtn +

∑
q<t

θ(jq, jt)sjtjq
)
. (2.3)

It is helpful to mention some properties of S, S̃-kernels, which can be directly applied

to the rephrasing of KLT-relation expression. One important property is the reflection

symmetry

S[i1, . . . , ik|j1, . . . , jk]p1 = S[jk, . . . , j1|ik, . . . , i1]p1 , (2.4)

S̃[i1, . . . , ik|j1, . . . , jk]pn = S̃[jk, . . . , j1|ik, . . . , i1]pn , (2.5)

where sets I and J have been switched, as well as the ordering in each set has been

reversed. Another useful property is about permutation on S, S̃-kernels. Since

Pij(S[β|α]p1) = S[Pij(β)|Pij(α)]p1 , (2.6)

where Pij is the exchanging of legs i and j, we can generalize it to

∑
β

S[β|Pij(α)] =
∑
β

Pij(S[Pij(β)|α]) = Pij(
∑
β

S[Pij(β)|α]) = Pij(
∑
β

S[β|α]) , (2.7)

where at the third step we used the fact that summing over all permutations
∑

β com-

mutes with permutation Pij . More generally, we have

∑
αβ

F (β)S[β|α]G(α) =
∑

P{2,...,n−2}
(
∑
β

F (β)S[β|2, . . . , n− 2]G({2, 3, ..., n− 2})) , (2.8)

where G(α) is a general function. This shows that we can divide all permutations into

groups of certain particular permutation P{2, 3, . . . , n − 2}. While the left and right

hand sides are different term by term, they are equivalent after summation.

Also we have a special identity considering the combination of S-kernel with Yang-Mills

amplitudes in the following way

∑
α∈Sn−2

S[α2,...,n−1|j2, . . . , jn−1]p1An(n, α2,...,n−1, 1) = 0 . (2.9)

Surprisingly, this is just a rewriting of BCJ relation. For example, if n = 5, (j2, j3, j4)

could be any ordering of {2, 3, 4} and each ordering leads to an identity, though they

might not be all independent. Let us consider one specific ordering (j2, j3, j4) = (2, 3, 4).

The set α has (5−2)! = 6 elements, and we can divide it into two parts. One part keeps

ordering (2, 3) while 4 is inserted into all possible positions of (2, 3), and the other keeps
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ordering (3, 2) with 4 being inserted into all possible positions of (3, 2). Then we get

0 = S[2, 3, 4|2, 3, 4]A(5, 2, 3, 4, 1) + S[2, 4, 3|2, 3, 4]A(5, 2, 4, 3, 1)

+S[4, 2, 3|2, 3, 4]A(5, 4, 2, 3, 1) + S[3, 2, 4|2, 3, 4]A(5, 3, 2, 4, 1)

+S[3, 4, 2|2, 3, 4]A(5, 3, 4, 2, 1) + S[4, 3, 2|2, 3, 4]A(5, 4, 3, 2, 1)

= s12s13

[
s14A(5, 2, 3, 4, 1) + (s41 + s43)A(5, 2, 4, 3, 1)

+(s41 + s42 + s43)A(5, 4, 2, 3, 1)
]

+ s12(s31 + s32)
[
s41A(5, 3, 2, 4, 1)

+(s41 + s42)A(5, 3, 4, 2, 1) + (s41 + s42 + s43)A(5, 4, 3, 2, 1)
]
. (2.10)

Each copy in square brackets is a fundamental BCJ relation

∑
σ∈OP{2,3,...,n−2}⋃{n−1}

S[σ2,...,n−1|2, 3, . . . , n− 1]A(1, σ2,...,n−1, n) = 0 , (2.11)

where the ordered permutation OP{α}⋃{β} is the set of permutations between sets α

and β while preserving the ordering of elements inside each set. When {β} = {n − 1},
which has only one element, it has a simple structure that with (n−1) legs fixed ordering

and bypassing one leg from left to right in each term between the first and last leg. This

gives a relation among (n− 2) amplitudes. So we can see that (2.9) is a combination of

many copies of BCJ relations. A similar relation for dual S̃-kernel is given by

∑
γ∈Sn−2

S̃[i2, . . . , in−1|γ2,n−1]pnÃn(n, γ2,n−1, 1) = 0 . (2.12)

Let us go back to the general form of KLT relation (2.1). It contains a summation over

(n− 3)!× (j − 1)!× (n− j − 2)!

terms. For each j, it is reduced to a specific expression of KLT relation. All of them

are related by BCJ relations, thus equivalent to each other. The equivalence can be

proved by shifting j repeatingly using BCJ relations and momentum conservation[89].

The main formula for shifting j is

∑
α,β

S[αi2,ij |i2, . . . , ij ]p1 S̃[ij+1, . . . , in−2|βij+1,in−2 ]pn−1Ãn(αi2,ij , 1, n− 1, βij+1,in−2 , n)

=
∑
α′,β′

S[α′i2,ij−1
|i2, . . . , ij−1]p1 S̃[ij , ij+1, . . . , in−2|β′ij ,in−2

]pn−1Ãn(α′i2,ij−1
, 1, n− 1, β′ij ,in−2

, n) ,

(2.13)

where number of elements in S decreases from (j − 1) to (j − 2) and that in S̃ increases
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from (n− j − 2) to (n− j − 1). Then the equivalence of all KLT relations by specifying

different j in general KLT formula (2.1) can be guaranteed.

2.1.2 Modified formulae and their applications in gravity amplitude

computation

KLT relations of some special j of (2.1) are important in literatures. If j = [n/2], it

defines n-point KLT relation conjectured in [95]. This gives a summation over

(n− 3)!× ([
n

2
]− 1)!× ([

n

2
]− 2)!

terms. A simplified expression can be obtained by assuming j = 1,

Mn =(−1)n+1
∑

σ,σ̃∈Sn−3

An(1, σ2,n−2, n− 1, n)S̃[σ2,n−2|σ̃2,n−2]pn−1Ãn(1, n− 1, σ̃2,n−2, n) ,

(2.14)

and also the dual form by assuming j = n− 2,

Mn =(−1)n+1
∑

σ,σ̃∈Sn−3

Ãn(σ̃2,n−2, 1, n− 1, n)S[σ̃2,n−2|σ2,n−2]p1An(1, σ2,n−2, n− 1, n) .

(2.15)

The summation is over (n− 3)!× (n− 3)! terms from two independent permutation sets

σ, σ̃, and kinematic factors contain only one S, S̃-kernel.

Using these KLT relations, some simple gravity amplitudes are just in hand to write

down explicitly. A naive example is three-point gravity amplitude, which has only one

term without any kinematic factor, given by

M3(1, 2, 3) = A3(1, 2, 3)Ã3(1, 2, 3) = (A3(1, 2, 3))2 . (2.16)

The last step holds if we take the same Yang-Mills theory for both A and Ã. Gravity

amplitude is totally symmetric in the external legs, while Yang-Mills amplitudes are

color-ordered. The colorless property of gravity amplitude even at three-point level is

not obvious from Yang-Mills part, but it can be seen by using many non-trivial relations

of Yang-Mills amplitudes. In fact, there are 3! = 6 different color-ordered three-point

Yang-Mills amplitudes, while accounting cyclic relation we can fix one leg, thus remain

2! = 2 independent amplitudes, say A3(1, 2, 3) and A3(1, 3, 2). Furthermore, reflection

relation A(1, 2, 3) = −A(3, 2, 1) = −A(1, 3, 2) ensures that there is only one independent

amplitude. Any three-point amplitudes can be related to A3(1, 2, 3) or −A3(1, 2, 3), and
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the square of Yang-Mills amplitudes ensures that we always get a plus sign for gravity

amplitude. In this way we recover the colorless property of gravity amplitude from color-

ordered Yang-Mills amplitudes. The illustration is simple for three-point amplitude, but

for higher point amplitudes it remains a hard task. Let us further consider four-point

gravity amplitude. It also contains one term, and the kinematic factor, if using expression

(2.15), is S[2|2]p1 = s12. Thus

M4(1, 2, 3, 4) = −s12A4(1, 2, 3, 4)Ã4(2, 1, 3, 4) . (2.17)

Note that both Yang-Mills amplitudes A, Ã have s12 pole(or s34 pole, but s34 = s12 from

4-point kinematics), the kinematic factor s12 will cancel one of them to make correct pole

structure for gravity amplitude. s12 of course does not have crossing symmetry when

relabeling all four external legs. This requires us to use BCJ relations to show crossing

symmetry of gravity amplitude. If we consider an arbitrary ordering M4(σ1, σ2, σ3, σ4),

the Yang-Mills part is −sσ1σ2A4(σ1, σ2, σ3, σ4)Ã4(σ1, σ3, σ4, σ2). Because of cyclic sym-

metry of Yang-Mills amplitude, we can fix leg 1 in the first position. One of σi would

be leg 1. If σ1 or σ2 is leg 1, we simply have s1σk . If σ3 or σ4 is leg 1, we also have

sσ1σ2 = sσ3σ4 = s1σi . So formally the Yang-Mills part can be fixed to

−s1,σ′2
A4(1, σ′2, σ

′
3, σ
′
4)Ã4(1, σ′3, σ

′
4, σ
′
2) . (2.18)

Using KK-relation and fundamental BCJ relation, we get three equivalent expressions

s1,σ′2
A4(1, σ′2, σ

′
3, σ
′
4)Ã4(1, σ′3, σ

′
2, σ
′
4) + s1,σ′3

A4(1, σ′2, σ
′
3, σ
′
4)Ã4(1, σ′3, σ

′
2, σ
′
4)

= −s1,σ′2
A4(1, σ′4, σ

′
3, σ
′
2)Ã4(1, σ′3, σ

′
4, σ
′
2)

= s1,σ′4
A4(1, σ′4, σ

′
2, σ
′
3)Ã4(1, σ′2, σ

′
4, σ
′
3) + s1,σ′2

A4(1, σ′4, σ
′
2, σ
′
3)Ã4(1, σ′2, σ

′
4, σ
′
3) .

Symmetry of relabeling (2, 3), (3, 4) or (2, 4) can be seen in above three expressions

respectively. So the total crossing symmetry of four-point gravity amplitude from color-

ordered four-point Yang-Mills amplitudes is recovered. If n = 5, j could be 1, 2, 3.

Gravity amplitude contains two terms when j = 2, which is given directly by (2.1) as

M5(1, 2, 3, 4, 5) = s12s34A5(1, 2, 3, 4, 5)Ã5(2, 1, 4, 3, 5)

+s13s24A5(1, 3, 2, 4, 5)Ã5(3, 1, 4, 2, 5) . (2.19)

Again kinematic factors are responsible to cancel double poles from product of two Yang-

Mills amplitudes, which is easy to see since the first term has double s12, s34 poles while

the second term has double s13, s24 poles. While j = 1 or j = 3, the gravity amplitude



2.1 KLT relation in field theory 23

contains 4 terms. Taking expression (2.15) we have

M5(1, 2, 3, 4, 5)

= s12s13A5(1, 2, 3, 4, 5)Ã5(1, 4, 5, 2, 3) + (s13 + s23)s12A5(1, 2, 3, 4, 5)Ã5(1, 4, 5, 3, 2)

+(s12 + s23)s13A5(1, 3, 2, 4, 5)Ã5(1, 4, 5, 2, 3) + s13s12A5(1, 3, 2, 4, 5)Ã5(1, 4, 5, 3, 2)

= s12A5(1, 2, 3, 4, 5)
[
s13Ã5(1, 4, 5, 2, 3) + (s13 + s23)Ã5(1, 4, 5, 3, 2)

]
+s13A5(1, 3, 2, 4, 5)

[
(s12 + s23)Ã5(1, 4, 5, 2, 3) + s12Ã5(1, 4, 5, 3, 2)

]
. (2.20)

After using BCJ relation and momentum conservation for expressions in square brackets,

above result returns to the one given by j = 2. This explicitly shows the equivalence

among different KLT relations. The pole structure becomes difficult to see, as well as

the crossing symmetry of gravity amplitude.

As the number of external legs keeping growing, the computation difficulty increases

so fast that it is even impossible to get any realistic results. However, tree-level MHV

gravity amplitude is a successful example of applying KLT relations, and compact for-

mulae are derived. There is also schematic result of all N = 8 tree-level super-gravity

amplitude[91]. But it is so complicated that not even possible to really write down the

result. The MHV amplitude for Yang-Mills theory is surprisingly simple, as shown in

(1.39). So it should not be a difficult task to compute MHV gravity amplitude by KLT

relation. There are many MHV gravity amplitude results calculated from many differ-

ent methods. The original one is BGK conjectured result[80], and proved by Mason and

Skinner[84] in the form

MMHV
MS = (−)n−3

∑
P(2,...,n−2)

AMHV (1, 2, . . . , n)

〈1|n− 1〉 〈n− 1|n〉 〈n|1〉
n−2∏
k=2

[k|pk+1 + · · ·+ pn−1|n〉
〈k|n〉 , (2.21)

where the sum is over all Sn−3 permutation of legs (2, ..., n− 2). The equivalence of all

KLT relations indicates that we should able to reach this form from general KLT relation

(2.1). To show the equivalence, we can of course start from the simplified formula (2.14).

Using property of S-kernel (2.8) for formula (2.14), we get

MKLT−MHV
n = (−)n+1

∑
P(2,...,n−2)

AMHV (1, 2, . . . , n− 1, n)

×
∑
β

S[β|2, . . . , n− 2]p1Ã
MHV (n, β, 1, n− 1) . (2.22)
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Then the remaining task is to show the equivalence

1

〈1|n− 1〉 〈n− 1|n〉 〈n|1〉
n−2∏
k=2

[k|pk+1 + · · ·+ pn−1|n〉
〈k|n〉

=
∑
β

S[β|2, 3, . . . , n− 2]ÃMHV (n, β, 1, n− 1) . (2.23)

Using BCJ relation and properties of permutation group, we get

∑
β

S[β|2, 3, . . . , n− 2]p1A(n, β, 1, n− 1)

= sn−2,n−1

∑
γ

S[γ|2, . . . , n− 3]p1A(n− 2, n, γ, 1, n− 1) . (2.24)

The summation over β ∈ P{2, . . . , n − 2} has been reduced to summation over γ ∈
P{2, . . . , n − 3}. While dealing with MHV amplitude, we can further use inverse soft

factor which relates (n− 1)-point MHV amplitude to n-point MHV amplitude as

AMHV (n− 1, n− 2, n, γ, 1) =
〈n− 1|n〉

〈n− 1|n− 2〉 〈n− 2|n〉A
MHV (ñ− 1, ñ, γ, 1, ) , (2.25)

with modified spinor components

|ñ− 1] =
|pn−2 + pn−1|n〉
〈n− 1|n〉 , |ñ− 1〉 = |n− 1〉 ,

|ñ] =
|pn−2 + pn|n− 1〉
〈n|n− 1〉 , |ñ〉 = |n〉 (2.26)

to assure momentum conservation. For (2.25) to be true we assume that helicity of leg

(n− 2) is positive, which can always be done for MHV amplitude since we can fix leg 1

and n to be negative helicities. Applying (2.25) to (2.24) we get

∑
β∈Sn−3

S[β|2, 3, . . . , n− 2]p1A
MHV
n (n, β, 1, n− 1) (2.27)

= sn−2,n−1
〈n− 1|n〉

〈n− 1|n− 2〉 〈n− 2|n〉
∑

γ∈Sn−4

S[γ|2, . . . , n− 3]p1A
MHV
n−1 (ñ, γ, 1, ñ− 1) .

Repeatingly doing so we finally end up with

S[2|2]p1A
MHV (ñ(n−4), 2, 1, ñ− 1

(n−4)
)

n−2∏
k=3

s
k,ñ−1

(n−2−k)
〈n− 1|n〉

〈n− 1|k〉 〈k|n〉 , (2.28)

where ñ(i) denotes the i-th modification of momentum pn, given by

|ñ− 1
(i)

] =
|pn−1−i + pn−i + · · ·+ pn−2 + pn−1|n〉

〈n− 1|n〉 . (2.29)
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Using explicit result of four-point MHV Yang-Mills amplitude with modified spinor

(2.29) in (2.28), the equivalence (2.23) automatically becomes true. This finishes the

proof[96].

So far the KLT relations discussed all contain Yang-Mills amplitude with three legs fixed,

which has a clear explanation in string amplitude. There exists another regularized KLT

relation where Yang-Mills amplitudes have two legs fixed. If we choose two legs p1, pn,

and deform them as

p1 → p′1 = p1 − xq , pn → p′n = pn + xq , (2.30)

where x is an arbitrary non-zero parameter and q is an auxiliary momentum satisfying

q2 = p1q = 0. This means that momentum conservation of deformed momenta is still

valid. The deformed p′1 is on-shell but the deformed (p′n)2 = xpnq is a function of x,

which is off-shell. In the x → 0 limit, p′1, p
′
n go back to the original momenta. The

regularized KLT relation can be expressed as on-shell limit of following expression[94]

Mn = (−1)n
∑
γ,β

Ãn(n, γ2,n−1, 1)S[γ2,n−1|β2,n−1]p1An(1, β2,n−1, n)

s12...(n−1)
. (2.31)

When x→ 0, the denominator s12...(n−1) ∼ xpnq approaches to zero, while the numerator

becomes a rewriting of BCJ relation (2.9) and also goes to zero. The limit however is

finite, and gives correct KLT relation.

The regularized KLT relation contains a summation over (n − 2)! × (n − 2)! terms,

and x → 0 limit is usually quite difficult to calculate. So it helps little to practical

computation of gravity amplitude. Yet the Yang-Mills amplitudes have two legs fixed,

which is more convenient to implement BCFW recursion relation. So the field theory

proof of KLT relation, which takes advantages of BCFW recursion relation, is more

natural with this form. We mention that the field theory proof of KLT relation can be

finished by BCFW recursion relation no matter in the form (2.1) or (2.31). Since the

proof is out of the scope of this thesis, it will not be described here.

2.2 Super-KLT relation in field theory

The KLT relation discussed in previous section is about pure graviton and gluon ampli-

tudes. It is natural to ask the question if other particle states can be included or not.

A way of creating other particle states is to use supersymmetry. In fact, a generaliza-

tion of KLT relation to super-KLT relation with maximal N = 8 super-gravity theory

and maximal N = 4 super-Yang-Mills theory has been proposed[88], and already been
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proven by BCFW recursion relation method[90]. Super-KLT relations of non-maximal

super-gravity and super-Yang-Mills theories are not hard to be truncated from maximal

super-KLT relation. The generalization and truncation are quite intuitive with help of

super-field formalism. Instead of using graviton and gluon fields in pure gravity and

Yang-Mills amplitudes, we should introduce super-fields. All particle states, with spin

(0,±1/2,±1,±3/2,±2) for gravity and (0,±1/2,±1) for Yang-Mills fields, can be packed

into single super-field. With this formalism, expression become very compact, yet it is

easy to restore results for specific particle state by super-field expansion.

2.2.1 Super-field representation and truncation of component fields

With help of Grassmann variables, we can write the super-field for N = 4 super-Yang-

Mills theory as

ΦN=4 = g+ + ηaf
a
+ +

1

2!
ηaηbs

ab +
1

3!
ηaηbηcf

abc
− + η1η2η3η4g

1234
− . (2.32)

It contains all component fields in N = 4 super-Yang-Mills theory, which are tracked by

appropriate coefficients of Grassmann variables. The Grassmann variable ηi,a carries a

SU(4)R symmetry index a = 1, 2, 3, 4, and subscript i distinguishes different particles.

They follow the anti-commutative relation

{ηi,a, ηj,b} = 0 . (2.33)

So it is easy to infer that in monomial of Grassmann variables, ηi,a of a given i and

SU(4)R index a at most has rank 1, otherwise we will always end up with a factor (ηi,a)
2,

which is zero by definition. The component fields also carry SU(4)R symmetry index,

so they are restricted by SU(4)R symmetry as well as anti-commutative of Grassmann

variables. For a super-field, there are two gluon states g+, g
1234
− , four positive fermion

states fa+ with index a = 1 to 4, and four negative fermion states fabc− with index

from selecting any three indices out of (1, 2, 3, 4), normalized by increasing ordering,

as well as six scalars sab satisfying reality condition sab = εabcdscd/2, where sab ≡ s†ab,

with index from selecting any two indices out of (1, 2, 3, 4) and normalized. These

16 states transform as anti-symmetric products in the fundamental representation of

SU(4)R group.

With super-field formalism, we can simply generalize amplitude to super-amplitude by

replacing normal fields with super-fields as

AN=4
n (Φ1,Φ2, . . . ,Φn) . (2.34)
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The super-states Φi encodes all information of helicity assignment and external states.

In fact, it can be expanded as a sum of normal amplitudes with coefficients of Grassmann

variable monomials identifying field contents of corresponding amplitudes. The SU(4)R

symmetry constraints the rank of Grassmann variable monomials to be (η)4k. Of course

all Grassmann variables should be different in one monomial. Schematically, we can

expand super-amplitude according to helicity information as

AN=4
n =

∑
AMHV
n (η)8 +

∑
ANMHV
n (η)12 + . . .+

∑
AMHV
n (η)4n−8 , (2.35)

where summation starts from MHV amplitude and ends with anti-MHV amplitude,

since amplitudes with all plus(or minus) or with one plus(or minus) vanish. The

SU(4)R symmetry index a appears the same number of times in each monomial of

ηi,a. The amplitude AN
kMHV

n is still a summation of NkMHV component amplitudes.

For example, pure gluon MHV amplitude A4(g+
1 , g

+
2 , g

−
3 , g

−
4 ), identified by Grassman-

n variable monomial η3,1η3,2η3,3η3,4η4,1η4,2η4,3η4,4(the first index is particle label and

the second SU(4)R index), is one term in AMHV
4 , while amplitude of gluon coupled

to a pair of fermion A4(g+
1 , g

−
2 , f

+
3 , f

−
4 ), identified by Grassmann variable monomial

η2,1η2,2η2,3η2,4η3,1η4,2η4,3η4,4, is also a term in AMHV
4 . Notice that there are more than

one fermion and scalar states, we could have different Grassmann variable monomials

representing component amplitudes with the same field contents. For example, both

Grassmann variable monomials

η2,1η2,2η2,3η2,4η3,1η4,2η4,3η4,4 and η2,1η2,2η2,3η2,4η3,3η4,1η4,2η4,4

identify amplitude A4(g+
1 , g

−
2 , f

+
3 , f

−
4 ), while monomial

η2,1η2,2η2,3η2,4η3,1η4,1η4,2η4,4

identifies nothing since SU(4)R index do not appear the same number of times.

In spinor-helicity formalism, MHV super-amplitude also takes a simple form as

AMHV
n =

δ4×2(
∑n

i=1 ηi,aλ
α
i )

〈1, 2〉 〈2, 3〉 · · · 〈n− 1, n〉 〈n, 1〉 , (2.36)

with delta function δ4×2(
∑n

i=1 ηi,aλ
α
i ) representing super-momentum conservation. The

SU(4)R index a = 1, 2, 3, 4, while spinor index α = 1, 2. The eight-fold delta function

is in fact delta function of Grassmann variables, so we can also treat them directly as

products of eight factors. Expanding them we get a mount of terms identified by Grass-

mann variable monomials, and kinematic factor of each Grassmann variable monomial is

a component MHV amplitude. As an illustration, let us truncate gluon MHV amplitude
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An(1+, · · · , i−, · · · , j−, · · · , n+). From the field contents, we know that it follows from

Grassmann variable monomial ηi,1ηi,2ηi,3ηi,4ηj,1ηj,2ηj,3ηj,4. So we can concentrate on the

i-th and j-th particles in delta function

δ4×2(ηi,aλ
α
i + ηj,aλ

α
j ) =

∏
a=1,2,3,4

(ηi,aλ
1
i + ηj,aλ

1
j )(ηi,aλ

2
i + ηj,aλ

2
j )

=
∏

a=1,2,3,4

(η2
i,aλ

1
iλ

2
i + ηj,aηi,aλ

1
jλ

2
i + ηi,aηj,aλ

1
iλ

2
j + η2

j,aλ
1
jλ

2
j )

=
∏

a=1,2,3,4

ηi,aηj,a(λ
1
iλ

2
j − λ2

iλ
1
j ) = ηi,1ηj,1ηi,2ηj,2ηi,3ηj,3ηi,4ηj,4 〈i j〉4 . (2.37)

This is in accordance with gluon MHV amplitude, with correct numerator factor 〈i j〉4.

The other component MHV amplitudes can be obtained similarly.

The super-field formalism for N = 8 super-gravity theory can be treated in the same

way. We use eight Grassmann variables to encode all states as

ΦNG=8 = h+ + ηAψ
A
+ + 1

2!ηAηBv
AB
+ + 1

3!ηAηBηCχ
ABC
+ + 1

4!ηAηBηCηDφ
ABCD

+ 1
5!ηAηBηCηDηEχ

ABCDE
− + 1

6!ηAηBηCηDηEηF v
ABCDEF
−

+ 1
7!ηAηBηCηDηEηF ηGψ

ABCDEFG
− + η1η2η3η4η5η6η7η8h

12345678
− ,

where SU(8)R index A takes value from 1 to 8. It is easy to count the particle states.

There are two graviton states h+, h
12345678
− with spin ±2,

(
8
1

)
= 8 positive gravitino

states ψA+ with spin +3
2 ,
(

8
7

)
= 8 negative gravitino states ψABCDEFG− with spin −3

2 ,(
8
2

)
= 28 positive graviphoton states vAB+ with spin +1,

(
8
6

)
= 28 negative graviphoton

states vABCDEF− with spin −1,
(

8
3

)
= 56 positive garviphotino states χABC+ with spin +1

2 ,(
8
5

)
= 56 negative graviphotino states χABCDE− with spin −1

2 , and finally
(

8
4

)
= 70 real

scalars φABCD with spin 0. These 256 states transform as anti-commutative products

in fundamental representation of SU(8)R group.

The gravity super-amplitude is then simply generalized by replacing normal fields as

super-fields

MNG=8
n (Φ1,Φ2, . . . ,Φn) . (2.38)

Analogously, we can treat it as a sum of all component amplitudes with coefficients

of Grassmann variable monomials. The SU(8)R symmetry invariance restricts these

monomials to be η8k, and each index A appears the same number of times in monomi-

als. Otherwise it should vanish and corresponding amplitude disappears in super-field

expansion.



2.2 Super-KLT relation in field theory 29

When talking about theories with less supersymmetry, we can not pack all states into

only one super-field. For example, N = 3 super-Yang-Mills theory can at most have

three Grassmann variables ηa, a = 1, 2, 3, so we can only expand super-field as

ΦN=3 = g+ + ηaf
a
+ +

1

2!
ηaηbs

ab + η1η2η3f
123
− , (2.39)

and the negative gluon state is missing. In order to recover the full set of states, we

need to introduce another super-field

ΨN=3 = f+ − ηasa +
1

2!
ηaηbf

ab
− − η1η2η3g

123
− , (2.40)

where a = 1, 2, 3. The (Φ,Ψ)-super-field gives all states for N = 3 super-Yang-Mills

theory. The Φ-field has one positive gluon state g+, three positive fermion state fa+,

three real scalar states sab, one negative fermion state f123
− , while the Ψ-field has one

positive fermion state f+, three real scalar sa, three negative fermion states fab− , and

one negative gluon state g123
− . In total it has the same number and types of states as

N = 4 super-Yang-Mills theory in coincidence, which hints that N = 3 super-Yang-Mills

is equivalent to N = 4 super-Yang-Mills theory.

There is a systematic way of producing (Φ,Ψ)-super-field for non-maximal supersym-

metric theories from maximal supersymmetric theory[97]. The Φ-super-field can be

obtained by setting unwanted Grassmann variables to zero in the maximal super-field,

and the Ψ-super-field can be obtained by integrating out unwanted Grassmann variables

in the maximal super-field. For super-Yang-Mills theory, we have

ΦN<4 = ΦN=4|ηN+1,...,η4→0 . (2.41)

ΨN<4 =

∫ 4∏
a=N+1

dηaΦ
N=4 . (2.42)

Then for N = 3 theory, the Φ-super-field by setting η4 = 0 is just the one shown in

(2.39), while Ψ-super-field by integrating out η4 can be written as

ΨN=3 = f
(4)
+ − ηasa(4) +

1

2!
ηaηbf

ab(4)
− − η1η2η3g

123(4)
− . (2.43)

The difference of this expression from (2.40) is that we keep track of index 4 in component

fields, although η4 has already been integrated out. For N = 3 super-Yang-Mills theory,

it is a hidden index and has nothing to do with SU(3)R symmetry. But we will show

that it is necessary for assigning correct charge to particle states in the next section.
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Setting η3, η4 to zero we get ΦN=2-super-field, and integrating out η3, η4 we get ΨN=2-

super-field. They are given by

ΦN=2 = g+ + ηaf
a
+ + η1η2s

12 , (2.44)

ΨN=2 = −s(34) − ηafa(34)
− − η1η2g

12(34)
− . (2.45)

We keep hidden indices (34) in parenthesis, and a = 1, 2. This (Φ,Ψ)-super-field has

two gluon states g+, g
12(34)
− , four fermion states fa+, f

a(34)
− and two scalars s12, s(34).

Setting η2, η3, η4 to zero we get ΦN=1-super-field, and integrating out η2, η3, η4 we get

ΨN=1-super-field. They are given by

ΦN=1 = g+ + η1f
1
+ , (2.46)

ΨN=1 = −f (234)
− + η1g

1(234)
− . (2.47)

This (Φ,Ψ)-super-field has two gluon states g+, g
1(234)
− , and two fermion states f1

+, f
(234)
− .

Setting all four Grassmann variables to zero, we get a positive gluon state g+, and

integrating out all four Grassmann variables we get a negative gluon state g−. So it

indeed describes the states of pure Yang-Mills theory.

Super-amplitude of non-maximal supersymmetric theories is now a function of Φ,Ψ-

super-fields. It can be truncated from maximal super-amplitude in the same way as

Φ,Ψ-super-fields. For n-point super-amplitude, if assuming i1 < i2 < . . . < im external

legs are Ψ-super-fields, while j1 < j2 < . . . < jl external legs are Φ-super-fields, with

m+ l = n, then N < 4 super-Yang-Mills amplitude takes the form

AN<4
n,i1...im

=

∫ 4∏
a1=N+1

dηi1,a1 · · ·
4∏

am=N+1

dηim,amAN=4
n (Φ1,Φ2, . . . ,Φn)


ηN+1,...,η4→0

.

(2.48)

A transparent way of representing super-field with its component fields is the diamond

diagram as shown in Figure (2.1). These diagrams contain information of helicities, R-

symmetry charges, hidden indices as well as the number of each states. For non-maximal

super-Yang-Mills theories, we have two diamonds. The top one represents Φ-super-field

while the bottom one represents Ψ-super-field. Combining both of them we get single

(Φ,Ψ)-super-field. For N = 4 theory, every component field can find its CPT conjugate

field inside one diamond, so it is enough to represent single ΦN=4-super-field with only

one diamond. This diagram can be better understood using supercharge operators Q̃a,
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N = 0 N = 1 N = 2

+1 +1 +1

−1(1234) −112(34)−11(234)
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N = 3

(3) (3)
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−1123(4)
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a
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− 1
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− 1
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ab(4)
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(4)
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−11234
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2

a

0ab
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2

abc

Figure 2.1: Diamond diagrams for super-fields of N = 1, 2, 3, 4 super Yang-Mills the-
ories. The SU(N )R indices a, b, c are labeled as superscripts. The hidden indices are
indicated in parentheses. The numbers inside diamonds states the number of corre-
sponding states.

Qa defined in (1.44). For example, if acting Q̃1 on ΦN=3 we get

Q̃1ΦN=3 =

n∑
i=1

|i〉η1(ΦN=3 = g+ + ηaf
a
+ +

1

2!
ηaηbs

ab + η1η2η3f
123
− )

=

n∑
i=1

|i〉(η1g+ + η1ηaf
a
+ +

1

2!
η1ηaηbs

ab + η1η1η2η3f
123
− ) . (2.49)

The last term vanishes because (η1)2 = 0. The transformation of each component field

can be easily identified by comparing terms with η-expansion. We have

g+ → 0 , fa+ → |p〉δa1g+ , sab → |p〉2!(δa1f
b
+ − δb1fa+) , f123

− → |p〉 1

2!
s23 , (2.50)

where we denote
∑n

i=1 |i〉 = |p〉 for simplicity. This transformation means that each

component field inside one diamond is connected by supercharges Q, and no other states

can be further included. So in diamond diagrams (2.1), component fields inside one

diamond are all related by supercharge operators, and each one can be transformed to

another one inside the same diamond after acting certain times of supercharge operators.

While between different diamonds, the particle states are unrelated. The SU(N )R

invariance is realized in each diamond for SU(N )R-indices, but not hidden indices inside

parentheses.

The same diamond diagram can be adapted for super-gravity theories. For N = 8

maximal super-gravity, we only need one diamond to represent super-field ΦN=8, while

for non-maximal super-gravities, more than one diamonds should be used. Since we are

constructing super-gravity amplitudes from super-Yang-Mills amplitudes with super-

KLT relations, the particle states of super-gravities can also be constructed by tensor

products of particle states of two super-Yang-Mills theories. The mapping of particle

states between super-gravity and super-Yang-Mills theories will be discussed later, after

introducing complete super-KLT relation family.
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2.2.2 Super-KLT relations from N = 8 to N = 0

With all above knowledge, it is almost trivial to generalize KLT relation to maximal

supersymmetric theory. We replace every graviton and gluon field with correspond-

ing ΦN=8, ΦN=4, Φ̃N=4-super-fields, and pure gravity and Yang-Mills amplitudes with

super-amplitudes, without changing anything else. Explicitly, following the expression

(2.15), we have

MNG=8
n = (−)n−1

∑
γ,β∈Sn−3

ÃÑ=4
n (n− 1, n, γ, 1)S[γ|β]p1AN=4

n (1, β, n− 1, n) . (2.51)

The summation is over permutation of γ, β ∈ P{2, 3, . . . , n−2}, and S-kernel is the same

as normal KLT relation, defined in (2.2). We use SU(8)R index 1 to 8 for super-gravity

theory, SU(4)R index 1 to 4 for one super-Yang-Mills theory and 5 to 8 for the other

Yang-Mills theory.

The super-KLT relation unifies all KLT relations for amplitudes of component fields.

After super-field expansion in both sides of (2.51), we can automatically get all relations

identified by Grassmann variable monomials. Especially, the pure gravity and Yang-Mills

KLT relation (2.15) can be obtained by taking gravity amplitudes identified by Grass-

mann variable monomials
∏n
i=1(ηi,1ηi,2ηi,3ηi,4ηi,5ηi,6ηi,7ηi,8)ki(where ki is zero if positive

graviton and 1 if negative graviton for particle i) in the left hand side, and Yang-Mills am-

plitudes identified by Grassmann variable monomials
∏n
i=1(ηi,1ηi,2ηi,3ηi,4η̃i,5η̃i,6η̃i,7η̃i,8)ki

in the right hand side.

The super-KLT relations for non-maximal supersymmetric theories are almost the same.

But since there are two super-fields (Φ,Ψ) instead of one, we can not trivially write it

down as an one-line expression. The idea is still replacing all pure graviton and gluon

fields with corresponding (Φ,Ψ), (Φ̃, Ψ̃)-super-fields, and pure gravity and Yang-Mills

amplitudes with super-amplitudes. According to the Φ, Φ̃ or Ψ, Ψ̃-superfields of super-

Yang-Mills theory for particle i, we can get four different super-fields of super-gravity

theory for particle i, i.e., (Φ̃,Φ), (Ψ̃,Φ), (Φ̃,Ψ), (Ψ̃,Ψ). More explicitly, KLT-product
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of two arbitrary super-Yang-Mills amplitudes produces

∑
γ,β∈Sn−3

ÃÑ≤4

n,̃i1,...̃im̃
(n− 1, n, γ, 1)S[γ|β]p1AN≤4

n,i1...im
(1, β, n− 1, n)

=
∑

γ,β∈Sn−3

∫ 4∏
ã1=Ñ+1

dηĩ1,ã1 · · ·
4∏

ãm̃=Ñ+1

dηĩm̃,ãm̃Ã
Ñ=4
n (n− 1, n, γ, 1)


ηÑ+1

,...,η4→0

×S[γ|β]p1 ×

∫ 8∏
a1=N+5

dηi1,a1 · · ·
8∏

am=N+5

dηim,amAN=4
n (1, β, n− 1, n)


ηN+5,...,η8→0

=

∫ 4∏
ã1=Ñ+1

dηĩ1,ã1 · · ·
4∏

ãm̃=Ñ+1

dηĩm̃,ãm̃

8∏
a1=N+5

dηi1,a1 · · ·
8∏

am=N+5

dηim,am

×
∑

γ,β∈Sn−3

ÃÑ=4
n (n− 1, n, γ, 1)S[γ|β]p1AN=4

n (1, β, n− 1, n)


ηÑ+1

,...,η4→0

ηN+5,...,η8→0

=

∫ 4∏
ã1=Ñ+1

dηĩ1,ã1 · · ·
4∏

ãm̃=Ñ+1

dηĩm̃,ãm̃

×
8∏

a1=N+5

dηi1,a1 · · ·
8∏

am=N+5

dηim,amMNG=8
n (Φ1,Φ2, . . . ,Φn)


ηÑ+1

,...,η4→0

ηN+5,...,η8→0

≡MNG≤8

n,(̃i1,...,̃im̃);(i1,...,im)
, (2.52)

where we use labels (̃i1, . . . , ĩm̃) and (i1, . . . , im) to denote Ψ̃ and Ψ-super-fields respec-

tively, and others Φ̃,Φ-super-fields. In above derivation, firstly we write ÃÑ≤4,AN≤4

as truncation of maximal super-Yang-Mills amplitudes, and before taking corresponding

η variables to zero or integrating them out, we use KLT relation for maximal super-

symmetry (2.51) to rewrite the product of two maximal super-Yang-Mills amplitudes as

maximal super-gravity amplitude. Finally we get super-gravity amplitude MNG≤8
n as

truncation from maximal super-gravity amplitude.

To complete the formulation of super-KLT relations for arbitrary N , we need to work

out explicitly the four types of super-fields for super-gravity amplitude. They can be

truncated from maximal N = 8 super-gravity amplitude according to

• (Φ̃,Φ): if k 6∈ (̃i1, . . . , ĩm̃) and k 6∈ (i1, . . . , im), we get ΦNG=Ñ+N
k super-field

ΦNG=Ñ+N
k = ΦNG=8

k |η
k,Ñ+1

,...,ηk,4;ηk,N+5,...,ηk,8→0 . (2.53)
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• (Ψ̃,Ψ): if k ∈ (̃i1, . . . , ĩm̃) and k ∈ (i1, . . . , im), we get ΨNG=Ñ+N
k super-field

ΨNG=Ñ+N
k =

∫ 4∏
a=Ñ+1

dηk,a

8∏
b=N+5

dηk,bΦ
NG=8
k . (2.54)

(ΦNG=Ñ+N
k ,ΨNG=Ñ+N

k ) is a complete SU(NG) super-gravity multiplet.

• (Ψ̃,Φ): if k ∈ (̃i1, . . . , ĩm̃) and k 6∈ (i1, . . . , im), we get ΘNG=Ñ+N
k super-field

ΘNG=Ñ+N
k =

∫ 4∏
a=Ñ+1

dηk,aΦ
NG=8
k |ηk,N+5,...,ηk,8→0 . (2.55)

• (Φ̃,Ψ): k 6∈ (̃i1, . . . , ĩm̃) and k ∈ (i1, . . . , im), we get ΓNG=Ñ+N
k super-field

ΓNG=Ñ+N
k =

∫ 8∏
b=N+5

dηk,bΦ
NG=8
k |η

k,Ñ+1
,...,ηk,4→0 . (2.56)

(ΘNG=Ñ+N
k ,ΓNG=Ñ+N

k ) is a complete SU(NG) matter super-multiplet.

Thus MNG≤8

n,(̃i1,...,̃im̃);(i1,...,im)
is a function of super-fields ΦNG ,ΨNG ,ΘNG and ΓNG .

Now we are going to work out the particle states with help of diamond diagram. The

particle states of super-gravity field can be constructed from tensor products of particle

states of two super-Yang-Mills fields. For maximal theory, we already know that super-

Yang-Mills theory has 16 states. The product of two super-Yang-Mills theories will give

16× 16 = 256 states, which is exactly the number of states that maximal super-gravity

theory has. In fact there is one to one correspondence between super-gravity states and

tensor products of two super-Yang-Mills states. All states of N = 4 super-Yang-Mills

field are (+1,+1
2

4
, 06,−1

2

4
,−1), where superscript denotes the degeneracy of specific

state. Taking tensor product, we immediately get two graviton states

(+1)⊗ (+1) and (−1)⊗ (−1) ,

16 gravitino states ψ±

(+1/2)4 ⊗ (+1) , (+1)⊗ (+1/2)4 and (−1/2)4 ⊗ (−1) , (−1)⊗ (−1/2)4,

56 graviphoton states v±

(0)6⊗(+1) , (+1/2)4⊗(+1/2)4 , (+1)⊗(0)6 and (0)6⊗(−1) , (−1/2)4⊗(−1/2)4 , (−1)⊗(0)6 ,
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Figure 2.2: Matching of particle states for KLT relation of (supergravity)NG=8 =
(super Yang-Mills)Ñ=4⊗ (super Yang-Mills)N=4.

112 spin-1/2 graviphotino states χ±

(−1/2)4 ⊗ (+1) , (0)6 ⊗ (+1/2)4 , (+1/2)4 ⊗ (0)6 , (+1)⊗ (−1/2)4 ,

(+1/2)4 ⊗ (−1) , (0)6 ⊗ (−1/2)4 , (−1/2)4 ⊗ (0)6 , (−1)⊗ (+1/2)4 ,

and 70 scalars

(−1)⊗ (+1) , (−1/2)4 ⊗ (+1/2)4 , (0)4 ⊗ (0)4 , (+1/2)4 ⊗ (−1/2)4 , (+1)⊗ (−1) .

Again if denoting R-indices as 1, 2, 3, 4 for one super-Yang-Mills theory, and 5, 6, 7, 8

for the other super-Yang-Mills theory, we recover R-indices of SU(8)R super-gravity by

just combining indices together from two super-Yang-Mills theories. The diagrammatic

representation is shown in Figure (2.2).

The discussion applies similarly to non-maximal supersymmetric theories. The only

difference is that since we are using (Φ,Ψ)-super-field, there are two diamonds for

each super-Yang-Mills field, and the tensor product should be worked out separately

for each diamond. For example, N = 2 super-Yang-Mills theory has two super-fields.

The ΦN=2-super-field contains states (+1,+1
2

2
, 0) and the ΨN=2-super-field contains

states (0,−1
2

2
,−1). Tensor product of (ΦN=2, Φ̃N=2) gives a super-gravity multiplet

ΦNG=2+2 with states (+2,+(3/2)4,+16,+(1/2)4, 0), tensor product of (ΨN=2, Ψ̃N=2)

gives ΨNG=2+2 with states (0,−(1/2)4,−16,−(3/2)4,−2), which is the CPT conjugate of

ΦNG=2+2. The tensor product of (ΦN=2, Ψ̃N=2) gives a vector super-multiplet ΘNG=2+2
vector

with states (+1,+(1/2)4, 06,−(1/2)4,−1), and finally tensor product of (ΨN=2, Φ̃N=2)

gives another vector super-multiplet ΓNG=2+2
vector . Θ,Γ are CPT self-conjugate vector super-

multiplets, but having different R-indices for component fields.

By working out all tensor products of two arbitrary super-Yang-Mills theories, we get
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NG Ñ ⊗ N Description

8 4⊗ 4 Maximal NG = 8 Supergravity

7 4⊗ 3 Maximal NG = 8 Supergravity

6 4⊗ 2 Minimal NG = 6 Supergravity with SU(6) supergravity multiplet

6 3⊗ 3 Maximal NG = 8 Supergravity

5 4⊗ 1 Minimal NG = 5 Supergravity with SU(5) supergravity multiplet

5 3⊗ 2 Minimal NG = 6 Supergravity with SU(6) supergravity multiplet

4 4⊗ 0 Minimal NG = 4 Supergravity with SU(4) supergravity multiplet

4 3⊗ 1 Minimal NG = 5 Supergravity with SU(5) supergravity multiplet

4 2⊗ 2 NG = 4 Supergravity multiplet coupled to vector multiplet

3 3⊗ 0 Minimal NG = 4 Supergravity with SU(4) supergravity multiplet

3 2⊗ 1 NG = 3 Supergravity multiplet coupled to vector multiplet

2 2⊗ 0 NG = 2 Supergravity multiplet coupled to vector multiplet

2 1⊗ 1 NG = 2 Supergravity multiplet coupled to hypermultiplet

1 1⊗ 0 NG = 1 Supergravity multiplet coupled to chiral multiplet

0 0⊗ 0 Einstein gravity coupled to two scalars

Table 2.1: List of all possible super-gravity theories that are allowed by super-KLT-
relations.

the complete set of super-gravity theories that are allowed by super-KLT relations. The

results are summarized in Table (2.1).

According to the types of super-gravity fields obtained, we can classify all super-gravity

theories into three categories. In category I, we only need a single super-filed Φ to encode

all particles states. This category consists of maximal NG = 8 super-gravity theory, the

equivalent NG = 7 super-gravity theory, and the (Ñ = 3)⊗(N = 3) theory. In fact, they

are the same theory but with super-fields written in different ways. For NG = 8 super-

gravity theory we need ΦNG=8-super-field, while expanding ΦNG=8 = ΦNG=7 +η8ΨNG=7

we get NG = 7 super-gravity theory, and expanding

ΦNG=8 = ΦNG=6 + η4ΘNG=6 + η8ΓNG=6 + η4η8ΨNG=6

we get (Ñ = 3) ⊗ (N = 3) theory. The super KLT-relations for these theories are

equivalent to (2.51).

Theories in category II requires two super-fields (Φ,Ψ)(thus two diamonds) to encode

all particle states. These are all minimal super-gravity theories with 4 ≤ NG < 8. They

arise from KLT product (Ñ = 4)⊗(N ≤ 2) (or (Ñ = 3)⊗(N ≤ 2) due to the equivalence

between Ñ = 3 and Ñ = 4). Super KLT-relations for them can be written as

MNG=4+N
n (ΦNGi1,...,im1

,ΨNGj1,...,jm2
) =∑

γ,β∈Sn−3

ÃÑ=4
n (ΦÑ=4

1,...,n)× S[γ|β]p1 ×AN≤2
n (ΦN≤2

i1,...,im1
,ΨN≤2

j1,...,jm2
) , (2.57)
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where indices (i1, . . . , im1) and (j1, . . . , jm2) denote legs of corresponding super-fields

and m1 +m2 = n.

All remaining theories require four super-fields (Φ,Θ,Γ,Ψ)(thus four diamonds) to en-

code all particle states. They describe minimal super-gravity coupled to a variety of

matter multiplets. The super KLT-relations for them can be compactly expressed as

MNG=Ñ+N
n (ΦNGi1,...,im1

,ΨNGj1,...,jm2
,ΘNGk1,...,km3

,ΓNGl1,...,lm3
) =∑

γ,β∈Sn−3

ÃÑ≤2
n (ΦÑ≤2

i1,...,im1 ,l1,...,lm3
,ΨÑ≤2

j1,...,jm2 ,k1,...,km3
)

× S[γ|β]p1 ×AN≤2
n (ΦN≤2

i1,...,im1 ,k1,...,km3
,ΨN≤2

j1,...,jm2 ,l1,...,lm3
) , (2.58)

where again (i1, . . . , im1), (j1, . . . , jm2), (k1, . . . , km3) and (l1, . . . , lm3) denote correspond-

ing super-fields and m1 +m2 + 2m3 = n. The SU(NG)R invariance requires that (Θ,Γ)-

super-fields should come in pair.

A complete set of diamond diagrams and explicit expression of various super-fields can

be found in [70].

When writing down maximal supersymmetric KLT relation, we mentioned that all KLT

relations for component amplitude can be obtained from η-expansion of super-gravity

and super-Yang-Mills amplitudes in left and right hand sides of (2.51). The physical KLT

relations for component amplitudes come from Grassmann variable monomials
∏
i ηi that

preserving SU(8)R invariance of super-gravity amplitude and SU(4)R invariance of each

super-Yang-Mills amplitude. However, terms of η-monomials that violating SU(N )R

symmetry do exist. For example, 5-point gluon MHV amplitudes

A5(g+
1 , g

+
2 , g

+
3 , g

−
4 , g

−
5 )Ã5(g−1 , g

+
2 , g

+
3 , g

−
4 , g

−
5 ) ,

which follows from Grassmann variable monomials

η4,1η4,2η4,3η4,4η5,1η5,2η5,3η5,4η̃1,5η̃1,6η̃1,7η̃1,8η̃4,5η̃4,6η̃4,7η̃4,8η̃5,5η̃5,6η̃5,7η̃5,8 ,

are non-zero, and each SU(4)R invariance is preserved. The component gravity ampli-

tude, identified by monomial

η1,5η1,6η1,7η1,8η4,1η4,2η4,3η4,4η4,5η4,6η4,7η4,8η5,1η5,2η5,3η5,4η5,5η5,6η5,7η5,8 ,

violates SU(8)R symmetry, and corresponding gravity amplitude M5(s, h+, h+, h−, h−)

vanishes. Thus we have a vanishing identity, i.e., KLT product of pure gluon amplitudes

with specific helicity configurations (1+, 2+, 3+, 4−, 5−) and (1−, 2+, 3+, 4−, 5−) vanishes,

although individually each gluon amplitude does not vanish.
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More generally, we have vanishing identity[93]

0 =
∑

σ∈Sn−3

∑
α∈Sj−1

∑
β∈Sn−2−j

AN
kMHV

n (1, σ2,j , σj+1,n−2, n− 1, n)S[ασ(2),σ(j)|σ2,j ]p1

× S̃[σj+1,n−2|βσ(j+1),σ(n−2)]pn−1Ã
Nk′MHV
n (ασ(2),σ(j), 1, n− 1, βσ(j+1),σ(n−2), n) ,

(2.59)

when k 6= k′. A systematic way of understanding the family of vanishing identities is to

study the symmetry group of various super-gravity theories from super-KLT relations,

and interpret the vanishing identities as consequence of symmetry violation.

2.2.3 Linear symmetry group for super-gravity theories

Generally, for supersymmetric theory with N supercharges QA, Q̃
A, A = 1, 2, . . . ,N , we

have U(N )R invariant group of rotating QA, Q̃
A. However, the supersymmetric theory

could also possess some invariant groups which are subgroups of U(N )R. One typical

subgroup is SU(N )R group, which mentioned several times in previous sections that

constraining Grassmann variable monomials. This subgroup comes out naturally from

decomposition of U(N )R = SU(N )R⊗U(1)R. While SU(N )R is an invariant subgroup,

what is the role of U(1)R group in these various theories? Besides these two subgroups,

is there any other invariant subgroup?

Based on the super-KLT relations, it is possible to argue that

• For maximal supersymmetric theory, the invariant symmetry group is SU(N )R.

There is a SU(N )R charge assigned to component fields in super-gravity multiplet.

• For 4 < NG < 8 minimal super-gravity theories, the invariant symmetry group is

SU(N )R ⊗ U(1)R. Besides SU(N )R charge, there is also a U(1)R charge distin-

guishing Φ,Ψ-super-fields of super-gravity multiplet.

• For 0 < NG < 4 minimal super-gravity theories coupled to matter multiplet, the

symmetry group is SU(N )R⊗U(1)R⊗U(1). The extra U(1) invariant group comes

from the freedom of assigning a charge to component fields in matter multiplet.

Let us discuss them in detail. The maximal super-gravity theory only contains one super-

field, and all particle states can find their CPT conjugate partners inside the super-field.

If non-trivial U(1)R group exists, then some of the component fields should carry non-

vanishing U(1)R charge. (1) Suppose there is U(1)R charge β for graviton. Consider

MHV gravity amplitude Mn(h−, h−, h+, . . . , h+), which has a total U(1)R charge of

−2β+ (n− 2)β = (n− 4)β. The non-vanishing of this amplitude indicates that (n− 4)β



2.2 Super-KLT relation in field theory 39

should be zero to ensure charge conservation. Since n is arbitrary, we should take β = 0.

So graviton can not carry non-zero U(1)R charge. (2) Suppose scalar has non-vanishing

U(1)R charge. If we assign +β to s1234, then the complex conjugate scalar s5678 has

charge −β. Since they are inside one super-field, they must carry the same charge, thus

β = −β → β = 0. (3) Suppose graviphoton v, with helicity ±1, has U(1)R charge ±β.

If we consider the non-vanishing three-vertex amplitude

M(φ, v−, v−) =
〈12〉2〈13〉2〈23〉4
〈12〉2〈23〉2〈31〉2 = 〈23〉2 , (2.60)

then conservation of total charge 0−β−β = 0 implies β = 0. (4) Suppose graviphotino

χ, with helicity ±1/2, has U(1)R charge ±β. Since we have non-vanishing three-vertex

amplitude

M(v−, χ−, χ−) =
〈12〉3〈13〉3〈23〉2
〈12〉2〈23〉2〈31〉2 = 〈12〉〈13〉 , (2.61)

and also U(1)R charge for v− is 0, so total U(1)R charge from χ− should be zero and

we have β = 0. (5) Finally, suppose gravitino ψ with helicity ±3/2 has non-zero charge

±β. We can consider non-vanishing three-vertex amplitude

M(φ, χ−, ψ−) =
〈12〉〈13〉3〈23〉4
〈12〉2〈23〉2〈31〉2 =

〈13〉〈23〉2
〈12〉 . (2.62)

Since we already argued that φ, χ has zero U(1)R charge, it follows immediately that ψ

also has zero U(1)R charge. In summary, even if there is U(1)R symmetry group, the

U(1)R charge for each component field is zero, which has no effect at all for the theory.

So the linear symmetric group for NG = 8 super-gravity is SU(8)R. Similarly, the linear

symmetric group for N = 4 super-Yang-Mills theory is SU(4)R.

Above argument is not valid for non-maximal supersymmetric theories, since more than

one super-fields are presented in those theories, and no confliction can be found for

assignment of U(1)R charge to component fields. In order to assign charge to component

fields of NG < 8 super-gravity theories, we can start from studying certain k× k matrix

Bxi,xj acting on indices (x1, x2, . . . , xk) of Grassmann variables η. The anti-commutative

of η leads us to consider matrix Bxi,xj acting on wedge product of ηx1 ∧ ηx2 ∧ · · · ∧ ηxk ,

where Grassmann variables η span a super-space with each ηxi a basis vector ηxi =
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(0, . . . , 1i−th, . . . , 0)T . When Bxi,xj acts on the basis vector ηxi , we have



B11 · · · · · · · · · B1k

...
. . .

...
...

. . .
...

...
. . .

...

Bk1 · · · · · · · · · Bkk


k×k



0
...

1
...

0


=



B1i

B2i

...

...

Bki


=

k∑
j=1

Bjiηxj , (2.63)

Then the matrix acts on wedge product of all basis vectors implies that

B(ηx1 ∧ ηx2 ∧ · · · ∧ ηxk) = (

k∑
i=1

Bii)(ηx1 ∧ ηx2 ∧ · · · ∧ ηxk) .

So only trace of matrix B plays a role. This trace is responsible for assigning charge to

states.

The maximal NG = 8 super-gravity theory has traceless 8× 8 Hermitian matrix, which

acts on the vector space spanned by 8 Grassmann variables ηA. Since non-maximal

supersymmetric theories can be truncated or integrated out from maximal theory, the

NG Grassmann variables are then a subset of eight ηA. The NG × NG matrix acting

on vector space spanned by NG Grassmann variables and also the (8−NG)× (8−NG)

matrix acting on vector space spanned by (8−NG) hidden Grassmann variables are all

embedded in the traceless (8× 8) Hermitian matrix.

The 4 < NG < 8 minimal super-gravity theories come from KLT product of maximal

super-Yang-Mills amplitude with another Ñ < 4 super-Yang-Mills amplitude. So there

is only one group of hidden indices. The matrix can be expressed as(
TNG×NG

B(8−NG)×(8−NG)

)
8×8

. (2.64)

Matrix T acts on indices 1 to NG while matrix B acts on hidden indices NG + 1 to 8.

Since we want to discuss the role of U(1)R symmetry, we can take matrix T to commute

with all SU(NG)R generators, thus T must be diagonal matrix proportional to identity

T = αING×NG . Then we can assign a charge α for each index from 1 to NG. The

B matrix, acting on hidden indices, satisfies two conditions. Firstly only the trace of

B contributes to the charge when acting on hidden indices. Secondly, the trace of B

should be taken so that the whole 8× 8 matrix should still be traceless. In these cases,

we can assign a charge β ≡ Tr(B) for all hidden indices (NG + 1, . . . , 8) with condition

β + NGα = 0. Since hidden indices always appear together, there is no trouble that

we can not assign charge for each hidden index. The total charge of particle state can
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be obtained by adding all corresponding charges of indices that specifying the state.

Taking NG = 6 for example, the graviton state h+ has no R-indices, so we can assign 0

to it, while the h
123456(78)
− state has 6 SU(6)R indices and 2 hidden indices, so the total

charge is 6α+β = 0. The graviphoton state v12
+ in Φ-super-field has total charge of +2α,

while v
1256(78)
− has total charge of 4α+β = −2α. This could be expected since v− is the

complex conjugate state of v+, thus has the opposite charge. From above discussion,

we see that for 4 < NG < 8 minimal super-gravity theories, the linear symmetric group

is SU(NG)R × U(1)R. Amplitudes that violating either SU(NG)R or U(1)R symmetry

should vanish.

The 0 < NG < 4 super-gravity theories come from KLT product of N < 4 super-Yang-

Mills amplitude and another ÑG < 4 super-Yang-Mills amplitude. So we have two

groups of hidden indices. They are unrelated because of coming from integrating out η

variables in different super-Yang-Mills theories. So we can express the matrix as
T

(1)
N×N T

(2)

N×Ñ
B(4−N )×(4−N )

T
(3)

Ñ×N T
(4)

Ñ×Ñ
C

(4−Ñ )×(4−Ñ )


8×8

. (2.65)

The (N + Ñ )× (N + Ñ ) matrix T T
(1)
N×N T

(2)

N×Ñ
T

(3)

Ñ×N T
(4)

Ñ×Ñ


(N+Ñ )×(N+Ñ )

(2.66)

acts on SU(N + Ñ )R indices of super-gravity theory, while B matrix acts on hidden

indices (N + 1, . . . , 4) and C matrix acts on hidden indices (Ñ + 5, . . . , 8). Again since

we want to study the effect of U(1) subgroup, we can take T matrix to commute with all

SU(N + Ñ )R generators. So it should be proportional to identity, i.e., T (1) = αIN×N ,

T (2) = 0N×Ñ , T (3) = 0Ñ×N and T (4) = αIÑ×Ñ . Similarly, two conditions should be

satisfied by matrices T,B,C. Firstly, only trace of B,C contribute to charge when acting

on their corresponding hidden indices. Secondly, trace of B and C should be taken so

that the whole 8 × 8 matrix is still traceless. Therefore we can assign a charge α for

each index of SU(N + Ñ )R symmetry, β ≡ Tr(B) for hidden indices (N + 1, . . . , 4) and

γ ≡ Tr(C) for hidden indices (Ñ + 5, . . . , 8), with the constraint (N + Ñ )α+β+ γ = 0.

The total charge of particle state can be obtained by adding all corresponding charges

of indices that specifying the state.

In order to illustrate it transparently, let us take NG = 4 super-gravity theory from KLT

product of two N = 2 super-Yang-Mills theories as example. The charge for each state
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is listed below.

For Φ-super-field, R-index ai = 1, 2 and bi = 5, 6. We have

Helicity KLT Product Charge

+2 (+1)⊗ (+1) 0

+3
2 (+1

2

a1)⊗ (+1) , (+1)⊗ (+1
2

b1) α

+1 (012)⊗ (+1) , (+1
2

a1)⊗ (+1
2

b1) , (+1)⊗ (056) 2α

+1
2 (012)⊗ (+1

2

b1) , (+1
2

a1)⊗ (056) 3α

0 (012)⊗ (056) 4α

For Θ-super-field, we have

Helicity KLT Product Charge

+1 (0(34))⊗ (+1) 0 + β

+1
2 (0(34))⊗ (+1

2

b1) , (−1
2

a1(34)
)⊗ (+1) α+ β

0 (0(34))⊗ (056) , (−1
2

a1(34)
)⊗ (+1

2

b1) , (−112(34))⊗ (+1) 2α+ β

−1
2 (−1

2

a1(34)
)⊗ (056) , (−112(34))⊗ (+1

2

b1) 3α+ β

−1 (−112(34))⊗ (056) 4α+ β

For Γ-super-field, we have

Helicity KLT Product Charge

+1 (+1)⊗ (0(78)) −4α− β
+1

2 (+1)⊗ (−1
2

b1(78)
) , (+1

2

a1)⊗ (0(78)) −3α− β
0 (012)⊗ (0(78)) , (+1

2

a1)⊗ (−1
2

b1(78)
) , (+1)⊗ (−156(78)) −2α− β

−1
2 (012)⊗ (−1

2

b1(78)
) , (+1

2

a1)⊗ (−156(78)) −α− β
−1 (012)⊗ (−156(78)) 0− β

For Ψ-super-field, we have

Helicity KLT Product Charge

0 (0(34))⊗ (0(78)) −4α

−1
2 (0(34))⊗ (−1

2

b1(78)
) , (−1

2

a1(34)
)⊗ (0(78)) −3α

−1 (0(34))⊗ (−156(78)) , (−1
2

a1(34)
)⊗ (−1

2

b1(78)
) , (−112(34))⊗ (0(78)) −2α

−3
2 (−1

2

a1(34)
)⊗ (−156(78)) , (−112(34))⊗ (−1

2

b1(78)
) −α

−2 (−112(34))⊗ (−156(78)) 0
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Component fields of super-gravity multiplet Φ,Ψ are assigned with charge α from U(1)R

symmetry. Component fields of matter super-multiplet Θ,Γ are assigned with additional

charge β from an extra U(1) symmetry group. This U(1) generator commutes with all

supercharges QA, Q̃
A. So linear symmetry group for this NG = 4 super-gravity theory

is SU(4)R ⊗ U(1)R ⊗ U(1).

Generally, the linear symmetry group for 0 < NG < 4 super-gravity theories that coupled

to matter super-multiplet is SU(NG)R ⊗ U(1)R ⊗ U(1). The total charge of particle

state can be obtained by adding all α, β, γ charges corresponding to SU(NG)R indices

and hidden indices that specifying the state. The total charge of amplitude should be

conserved, and if it is non-zero, the amplitude will vanish. So non-vanishing amplitudes

should not violate SU(NG)R symmetry, as well as preserving U(1)R ⊗ U(1) charge.

Invariance of SU(NG) symmetry requires each SU(NG)R index appear the same number

of times, and invariance of U(1)R⊗U(1) constrains the amplitude in the hidden indices,

which originate from SU(8)R indices.

We will show some examples to illustrate the violation of symmetry groups by considering

component super-gravity amplitudes of (NG = 4) = (N = 2)×(Ñ = 2). Firstly consider

amplitude of graviton coupled to two scalars, where the scalars are taken from ΘNG=4
vector

and ΓNG=4
vector super-fields. They are denoted by φ1 of charge 2α and R-index (34)56, φ2

of charge β and R-index 12(34), φ3 of charge −2α and R-index 12(78), φ4 of charge −β
and R-index 56(78). The MHV gravity amplitude

MNG=2
n (φi, φj , h

−, h+, . . . , h+) (2.67)

can be computed from KLT relations. The non-vanishing amplitudes

MNG=4
n (φ1, φ3, h

−, h+, . . . , h+) , MNG=4
n (φ2, φ4, h

−, h+, . . . , h+) (2.68)

can be explained as preservation of SU(4)R symmetry since Grassmann variable mono-

mial associated to these amplitudes

η1,1η1,2η2,5η2,6η3,1η3,2η3,5η3,6

do have the same number of each index, as well as preservation of U(1)R×U(1) symmetry

since charge is zero.

Vanishing amplitudes

MNG=4
n (φ1, φ1, h

−, h+, . . . , h+) , MNG=4
n (φ2, φ2, h

−, h+, . . . , h+) ,

MNG=4
n (φ3, φ3, h

−, h+, . . . , h+) , MNG=4
n (φ4, φ4, h

−, h+, . . . , h+) (2.69)
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NG Ñ ⊗ N Number of states for component fields Linear symmetry group
2 3/2 1 1/2 0 from KLT product

8 4⊗ 4 1 8 28 56 70 SU(8)R
7 4⊗ 3 1 7+1 21+7 35+21 35+35 SU(8)R
6 3⊗ 3 1 6+1+1 15+6+6+1 20+15+15+6 15+20+20+15 SU(8)R
6 4⊗ 2 1 6 15+1 20+6 15+15 U(6)R
5 3⊗ 2 1 5+1 10+5+1 10+10+5+1 5+10+10+5 U(6)R
5 4⊗ 1 1 5 10 10+1 5+5 U(5)R
4 3⊗ 1 1 4+1 6+4 4+6+1 1+4+4+1 U(5)R
4 4⊗ 0 1 4 6 4 1+1 U(4)R
3 3⊗ 0 1 3+1 3+3 1+3 1+1 U(4)R
4 2⊗ 2 1 4 6+1+1 4+4+4 1+6+6+1 U(4)R ⊗ U(1)
3 2⊗ 1 1 3 3+1 1+3+1 3+3 U(3)R ⊗ U(1)
2 2⊗ 0 1 2 1+1 2 1+1 U(2)R ⊗ U(1)
2 1⊗ 1 1 2 1 1+1 2+2 U(2)R ⊗ U(1)
1 1⊗ 0 1 1 0 1 1+1 U(1)R ⊗ U(1)
0 0⊗ 0 1 0 0 0 1+1 U(1)

Table 2.2: Field contents of super-gravity theories that are allowed by super-KLT-
relations, and their invariant linear symmetry groups. They are also listed in [98].

can be explained as violation of SU(4)R symmetry as well as U(1)R ⊗ U(1) symmetry.

Vanishing amplitudes

MNG=4
n (φ1, φ2, h

−, h+, . . . , h+) , MNG=4
n (φ3, φ4, h

−, h+, . . . , h+) , (2.70)

can be explained as violation of U(1)R⊗U(1) symmetry, although SU(4)R symmetry is

preserved. Vanishing amplitudes

MNG=4
n (φ1, φ4, h

−, h+, . . . , h+) , MNG=4
n (φ2, φ3, h

−, h+, . . . , h+) (2.71)

can be explained as violation of SU(4)R symmetry, although U(1)R⊗U(1) symmetry is

preserved.

U(1)R symmetry and U(1) symmetry can also be violated individually. This can be

shown by considering amplitudes of graviton coupled to two graviphoton. We have v−2
with charge (4α+ β) and v−1 with charge (0− β). The amplitude

MNG=4
n (v−1 , v

−
1 , h

−, h+, . . . , h+) (2.72)

does not violate SU(4)R symmetry, and also preserves U(1)R symmetry. However, U(1)

charge is −2β 6= 0. So it vanishes by violating U(1) symmetry. Also amplitude

MNG=4
n (v−1 , v

−
2 , h

−, h+, . . . , h+) (2.73)

does not violate SU(4)R symmetry and preserves U(1) symmetry. However, U(1)R

charge is 4α 6= 0. So it vanishes by violating U(1)R symmetry.
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When NG = 1, the invariant linear symmetry group SU(NG)R ⊗ U(1)R ⊗ U(1) reduces

to U(1)R ⊗ U(1), since SU(1) is just an identity. When NG = 0, there is no rotation

invariance for η, so the linear symmetry group further reduces to U(1).

The field contents, particle states and linear symmetry groups for all super-gravity the-

ories that constructed from KLT products are summarized in Table (2.2).





Chapter 3

Loop amplitude computation and

Algebraic geometry method

This chapter describes general knowledge for multi-loop amplitude computation. It

includes traditional methods for 1-loop amplitude computation as well as very recent

methods for amplitude computation beyond 1-loop. Properties and relations of tree

amplitudes, traditional reduction procedure and (generalized) unitarity cut methods

are briefly introduced. Computational algebraic geometry is intensively used in inte-

grand reduction of recent multi-loop amplitude computation, so we devote one section

on the basics of algebraic geometry. In the language of algebraic geometry, we introduce

systematic algorithms for integrand reduction. Details of these algorithms will be imple-

mented in next two chapters, where algebraic systems from some multi-loop amplitudes

are studied.

3.1 Integral and integrand of loop amplitude

3.1.1 Integral representations

The integral of loop amplitude is an integration over phase-space of loop momenta,

with integrand coming from terms of local interactions Nlocal and non-local propagators

1/q2. Terms of local interactions can be generated naively from Feynman diagrams, and

they include all information of color structure, kinematics and particle states, etc. The

behavior of Feynman diagram, explicitly expressed in integral representations, is fully

encoded in the mathematical structure of integrals. Generally, n-point L-loop amplitude

in d-dimension can be expressed as an integration over L independent d-dimensional

loop momenta `µ, thus degrees of freedom to be integrated out are Ld. To get the full

47
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amplitude, we need to sum over all L-loop Feynman graphs(FGs) with n external legs.

For each graph, the denominator of integrand is products of propagators coming from

all internal lines. The propagators Di ≡ q2
i are functions of independent loop momenta

` and external momenta p, in the form

Di = (
L∑
k=1

ai,k`k +
n∑

k′=1

bi,k′pk′)
2 .

The coefficients ai,k, bi,k′ could be +1,−1 or 0 depending on the way these momenta

appearing in propagators. However, the rank of loop momenta in one propagator is

no higher than 2, thus we have three types of terms `i · `j , `i · pj and pi · pj in Di.

In the Feynman diagram approach, we use off-shell Feynman rules to build all terms

in the integral. It is worth to mention that the local numerators Nlocal of integrand

can be obtained from on-shell method without touching off-shell information. The on-

shell information generated from (generalized) unitarity cuts then provides an efficient

resource for constructing integrand and kinematic factors.

The set of all L-loop Feynman diagrams with n-external legs is somehow a very ambigu-

ous terminology. For example, we can always input an identity q2/q2 in the integrand.

While the numerator q2 can be included in Nlocal without changing locality, the de-

nominator q2 provides an extra propagator for the graph. Reversely, terms of ` · p in

local numerator can be expressed as function of propagators, which will cancel the cor-

responding propagator. So in order to uniquely define a representation for integral, we

should specify the way of determining graphs that to be included in the summation. T-

wo integral representations are frequently used. One representation insists to use graphs

F3 that containing only cubic vertex. The loop amplitude

A(L)
n =

∑
k∈F3

∫ ∏L
i=1 d

d`i
(2π)Ld

CkNk

Dk1Dk2 · · ·Dkn+3L−3

(3.1)

has maximal number of propagators (n+3L−3) for all graphs. In this way graphs can be

drawn without ambiguity. The local numerator Nlocal can be sorted into two parts. The

kinematic part Nk contains kinematic information and the color part Ck packs all color

information. It is always possible to do so if particles are in the adjoint representation

of gauge group. The color structure of cubic vertex is the structure constant fabc, and

by addressing color structures from all cubic vertices we define the unique color factor

Ci for the graph. The quartic vertex that usually appears in gauge theory is associated

with color structures fabefecd. However we can add it to corresponding cubic graph of

q2 = (pai + pbj)
2 channel by rewriting it as fabefecdq2/q2. The color factor for k-th graph
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is then given by

Ck =
∏
j∈Vk

faj1aj2aj3 , (3.2)

where Vk is the set of all cubic vertices in k-th graph. The kinematic part Nk is a function

of external and internal momenta, and depends on details of external states, such as

polarizations, helicities, spinor, ect. When treating it as polynomial function of loop

momenta `, the renormalization requirement will constrain the highest degree of ` in the

polynomial, i.e., the degree of loop momenta in numerator should less than the degree of

loop momenta in denominator of integrand. In above integral representation, the number

of propagators for each graph is too large, so that constraints from renormalization

requirement is quite over-estimated. We can also constrain Nk by dimensional analysis.

Assuming each momentum has dimension 1, then the dimension of n-point 4-dimensional

gauge theory amplitude is 4−n. In the right hand side of expression (3.1), we see that the

integral measure has dimension 4L, while the denominator of integrand has dimension

2(n+ 3L− 3), then dimension dim[Nk] of Nk should satisfy

4− n = 4L+ dim[Nk]− 2(n+ 3L− 3) .

Thus we have dim[Nk] = n + 2L − 2. Nk is polynomial function of Lorentz invariant

scalar products with monomial of the form (`2)(` ·p) · · · . dim(Ni) should be distributed

between external and internal momenta, so the highest degree for loop momenta is

n + 2L − 2. Then kinematic part of numerator can be expanded as polynomial with

finite terms as

Nk =
n+2L−2∑
i=0

fi(`
i) . (3.3)

Note that Nk can also be treated as polynomials or rational functions of external kine-

matic variables if necessary. Since loop momenta in integrand will disappear after loop

integration, sometimes it is more convenient to take Nk as function of external kinematic

variables, so that treatments on Nk will not depend on the integration.

There also exists another more traditional integral representation. Different from pre-

vious integral representation that factorizes color and kinematic information in each

graph, this representation separates the color part totally from integral based on trace

structures of group generators. It can be expressed as

A(L)
n =

∑
J

GJ
∑
k∈FG

Rk,J

∫ ∏L
i=1 d

d`i
(2π)Ld

Nk,J

Dk1Dk2 · · ·Dkm

. (3.4)
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GJ is the color factor that packing all color information. The summation of J is over

all possible trace structures of gauge group. So it is an expansion of full amplitude into

partial amplitudes based on trace structures. Since trace structure of gauge group gen-

erators determines the color-ordering, the integral inside the second summation of (3.4)

can be identified as color-ordered partial amplitude. The second summation includes all

n-point L-loop Feynman graphs with color-ordering striped, and Rk,J are rational func-

tions of external momenta, Nk,J are polynomials of independent loop momenta. The

set FG is still not uniquely defined here, but since there is no color information con-

tained in the second summation, we can freely rewrite the numerator when and cancel

propagators in denominator as much as possible. Systematic reduction methods have

been developed, and we can reduce the number of propagator to no more than Ld. For

example 1-loop 4-dimensional gauge theory can at most have 4 propagators, which cor-

respond to bubble, triangle and box integral respectively. We will explain the color part

and color-striped part of (3.4) in detail in following section, since it is an important

integral representation for practical computation.

3.1.2 The color-ordered amplitudes and non-trivial relations

To illustrate trace structures of full amplitude, it is better to start with some examples.

It is well know that tree-level n-point gluon amplitude can be expanded according to

single trace structures[13, 99, 100] as

Atree−fulln ({ki, λi, ai}) = gn−2
∑

σ∈Sn/Zn
Tr(T aσ1 · · ·T aσn )An(k

λσ1
σ1 , . . . , kλσnσn ) , (3.5)

where ki, λi, ai are respectively momentum, helicity and color index of i-th external glu-

on. We will abbreviate kλii as i for simplicity. Sn/Zn is the set of permutation Sn of

n points subtracting cyclic permutation Zn of n points, which represents cyclic permu-

tation invariance of n particles. The partial amplitudes An are color-ordered. There

are many non-trivial relations that relating different partial amplitudes, so that the in-

dependent amplitudes can be reduced significantly. The cyclic permutation invariance

Sn/Zn reduces the number of independent amplitudes to (n−1)!. Explicitly, from group

structures, there is reflection relation(also called color-reversed relation since it reverses

color ordering)

An(1, 2, . . . , n) = (−1)nAn(n, . . . , 2, 1) , (3.6)

cyclic relation

An = (1, 2, . . . , n) = An(2, 3, . . . , n, 1) , (3.7)
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and KK-relation[16]

An(1, α, n, β) = (−)nβ
∑

σ∈OP{α}∪{βT }
An(1, σ, n) , (3.8)

where nβ is the number of β-set and ordered permutation OP is the set of all per-

mutations on set α
⋃
βT while preserving relative ordering in each set α and βT . The

KK-relation reduces the number of independent partial amplitudes to (n − 2)!. A spe-

cial case of KK-relation is the U(1) decoupling relation. When set β only contains one

element, we can get

∑
σ∈OP{2,3,...,n−1}∪{n}

An(1, σ) = 0 . (3.9)

This is an identity among (n− 1) partial amplitudes.

For loop amplitude, trace structures are more complicated. For example, n-point 1-loop

amplitude can be expanded as[101]

A1−loop−full
n ({ki, λi, ai}) = (3.10)∑
J

nJ

bn/2c∑
m=0

∑
σ∈Sn/Sn;m

Grn−m,m (σ) A
[J ]
n−m,m(σ1, σ2, . . . , σn−m;σn−m+1, . . . , σn) ,

where we have taken gauge group as U(Nc). If gauge group is SU(Nc), terms of traces

that containing single generator will disappear in the expansion. bxc is the largest integer

less than or equal to x, and nJ is the number of particles of spin J . The color factor GJ

in (3.4) is denoted as Grm1,m2 ,m1 +m2 = n, with two subscripts since there are double

trace structures. All kinematic information in (3.4) is packed into color-ordered partial

amplitude Am1,m2 ,m1 +m2 = n, where m1,m2 are numbers of legs that associated with

corresponding generators in each trace respectively. Sn,m is a subset of permutation Sn

that keeping Grn−m,m invariant. Explicitly, Grn−m,m can be written as(we abbreviate

generator T a as a)

Grn−m,m = Tr (a1, · · · , an−m) Tr (an−m+1, · · · , an) .

If m = 0, there is only single trace structure

Grn,0 = NcTr (a1, · · · , an) ,

and the kinematic coefficients associated to these single trace structures are primitive

partial amplitudes An,0. For m 6= 0, there is double trace structure, and partial am-

plitudes An−m,m,m 6= 0 are more difficult to evaluate. However, there are non-trivial
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relations that relating all partial amplitudes to primitive partial amplitudes. They can

be expressed as

An−m,m(α1, α2, . . . , αn−m;β1, . . . , βm) = (−1)m
∑

σ∈COP{α}⋃{βT }An,0(σ) , (3.11)

where COP{α}⋃{βT } is subset of permutations Sn on {α, βT } while preserving cyclic

ordering of each set α or βT . Thus 1-loop primitive partial amplitudes are enough

to produce full 1-loop amplitudes. Relation (3.11) is similar to KK-relation of tree

amplitudes. Similar reflection relation and cyclic relation also exist for 1-loop partial

amplitudes. The reflection relation is given by

An−m,m(1, . . . ,m;m+ 1, . . . , n) = (−1)nAn−m,m(m, . . . , 1;n, . . . ,m+ 1) , (3.12)

and cyclic relation is given by

An−m,m(1, . . . ,m;m+ 1, . . . , n) = An−m,m(σ(1, . . . ,m);σ(m+ 1, . . . , n)) , (3.13)

where σ(α) is cyclic permutation of set α. The number of independent primitive partial

amplitudes will be reduced when applying these non-trivial relations.

Expansion of 2-loop full amplitude based on trace structures can be written as

A2−loop−full
n = (3.14)∑

σ∈Sn/Zn
N2
c Tr(σ1, . . . , σn)

(
ALCn,0,0(σ1, . . . , σn) +

1

N2
c

ASCn,0,0(σ1, . . . , σn)

)

+

bn/2c∑
m=1

∑
σ∈Sn/Sn−m,m

NcTr(σ1, . . . , σm)Tr(σm+1, . . . , σn)An−m,m,0(σ1, . . . , σm;σm+1, . . . , σn)

+

bn/3c∑
a=1

b(n−a)/2c∑
(b−a)=a

∑
σ∈Sn/Sa,b−a,n−b

Tr(α)Tr(β)Tr(γ)Aa,b−a,n−b(α;β; γ) ,

where again gauge group is taken to be U(Nc). Sets α = {σ1, . . . , σa}, β = {σa+1, . . . , σb}
and γ = {σb+1, . . . , σn}. Sn−m,n and Sn−b,b−a,a are subsets of permutation Sn while

keeping double trace and triple trace invariant respectively. We have four types of

trace structures, the triple trace structure Tr(α)Tr(β)Tr(γ), the double trace structure

NcTr(α)Tr(β), and two single trace structures N2
c Tr(α), Tr(α). The new single trace

structure Tr(α) does not contain Nc factor, and this is a consequence of non-planar

graphs for 2-loop amplitude. Not much non-trivial relations for 2-loop partial amplitudes

Aa,b−a,n−b are known as tree and 1-loop partial amplitudes. Of course we still have
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reflection relation

Aa,b−a,n−b(1, . . . , a; a+ 1, . . . , b; b+ 1, . . . , n)

= (−)nAa,b−a,n−b(a, . . . , 1; b, . . . , a+ 1, n, . . . , b+ 1) , (3.15)

and cyclic relation

Aa,b−a,n−b(1, . . . , a; a+ 1, . . . , b; b+ 1, . . . , n)

= Aa,b−a,n−b(σ(1, . . . , a);σ(a+ 1, . . . , b);σ(b+ 1, . . . , n)) . (3.16)

More non-trivial relations are explored, but restrict to some examples. For example, 4-

point 2-loop partial amplitudes, except ASCn,0,0, can be expanded as linear combination of

ALCn,0,0 and other two double trace partial amplitudes. For 2-loop ASCn partial amplitudes,

the same KK-relation as tree amplitudes is valid up to n = 7 points[102]. More studies

could be done on relations of loop partial amplitudes.

This full amplitude expansion based on trace structures can be systematically generalized

to L loop, while (L + 1)-fold trace structure will appear. The explicit expression is

very tedious, and various trace structures could exist, corresponding to planar and non-

planar graphs. Theoretically, we can explore non-trivial relations from group constraints.

Relations of all loop 4, 5 and 6-point partial amplitudes of SU(N)c gauge group have

been written down, and we are still waiting for relations of general n-point L-loop partial

amplitudes from solving group constraints[103–105].

We described two integral representations. They are mainly used in different situations.

Representation (3.1) is ideal for BCJ conjecture[27, 28] of constructing gravity ampli-

tude. For an integral representation where Yang-Mills amplitude can be expanded into

graphs with only cubic vertex, if numerator factor Nk of each graph follows the same

Jacobi identity as color factor Ck, then gravity amplitude can be obtained as square of

two Yang-Mills amplitudes using numerator Nk, Ñk as

M (L)
n =

∑
k∈F3

∫ ∏L
i=1 d

d`i
(2π)Ld

NkÑk

Dk1Dk2 · · ·Dkn+3L−3

, (3.17)

where Nk, Ñk are kinematic factors of two Yang-Mills amplitudes that satisfying

Nk1 +Nk2 = Nk3 , Ñk1 + Ñk2 = Ñk3

if

Ck1 + Ck2 = Ck3 , C̃k1 + C̃k2 = C̃k3 .
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This conjecture is extremely useful for calculating loop-level gravity amplitude, different

from KLT relation that is only valid for tree amplitude. Representation (3.4), instead,

is an ideal tool to evaluate Yang-Mills multi-loop amplitude. Since color structures have

already been separated, we can focus on kinematic part. After computing color-ordered

partial amplitudes, we can assemble them into full amplitude with help of trace infor-

mation. Thanks to the non-trivial relations and many other methods, the independent

amplitudes that need to be computed are not as much as naive counting. In following

chapters, we will discuss the computation of multi-loop Yang-Mills amplitudes. So we

will take this integral representation of Feynman diagrams.

3.2 Integral reduction of loop amplitude

3.2.1 The traditional reduction procedure

Let us return to integral representation (3.4). What we are really interested in is the

kinematic part, given by the integral

∫ ∏L
i=1 d

d`i
(2π)Ld

N

D1D2 · · ·Dm
, (3.18)

where we have chosen integral of one graph. Remind that the loop momentum depen-

dence in numerator N takes the form `2, `i · `j and ` · p. There are also tensor structures

`µ, `µ`ν and so on. The number of propagators in denominator depends on the graph

considered. However, before performing integration, simplification can be taken with

above integrand. This simplification can reduce the number of propagators.

Let us take 1-loop amplitude as example. The integral we want to reduce is∫
dd`

(2π)d
N

D0D1 · · ·Dm−1
, (3.19)

where we redefined propagator indices for convenience. The traditional reduction pro-

cedure, such as Passarino-Veltman reduction[106], can reduce the integral to master

integrals with rational coefficients. The master integrals are independent integrals that

used to expand any other integrals. In one-loop case, they are defined from scalar

integrals. The n-point scalar integral is defined as

Iscalarn [1] ≡
∫

dd`

(2π)d
1

(`2 −M2
0 )((`− p1)2 −M2

1 ) · · · ((`− p1 − · · · − pn−1)2 −M2
n−1)

,

where Mi is the mass of corresponding loop momentum, pi is external momentum.
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The reduction procedure intends to eliminate loop momentum dependence in numerator

N step by step, and finally ends up with minimal number of scalar integrals. The

first step is to reduce integral of arbitrary N and m ≥ 5 propagators. Among these

propagators, we can select one propagator D0 = `2 −M2
0 and other four Di = (`2 −

Pi)
2 −M2

i from remaining propagators. Pi is the corresponding external momenta in

propagator Di, and we can rename the four selected ones as Pi, i = 1, 2, 3, 4. Then

each `2 in N can be replaced by D0 +M2
0 . D0 cancels a propagator, while M2

0 goes to

the scalar part. Since external momenta are 4-dimensional, they can be expanded by

Pi, i = 1, 2, 3, 4 using Gram determinant defined as

G

(
p1, . . . , pl

p′1, . . . , p
′
l

)
≡ det(∆ij) , (3.20)

G(p1, . . . , pl) ≡ G
(
p1, . . . , pl

p1, . . . , pl

)
, (3.21)

where Gram matrix ∆ij is l× l matrix with element ∆ij = 2pi ·p′j in (i, j)-th position. So

Gram determinant is a function of Lorentz invariant scalar products. If either (p1, . . . , pl)

or (p′1, . . . , p
′
l) is linearly dependent, it vanishes. Then any 4-dimensional momentum Pk

can be expanded as

Pµk =
1

G(P1, P2, P3, P4)

[
G

(
Pk, P2, P3, P4

P1, P2, P3, P4

)
Pµ1 +G

(
P1, Pk, P3, P4

P1, P2, P3, P4

)
Pµ2

+G

(
P1, P2, Pk, P4

P1, P2, P3, P4

)
Pµ2 +G

(
P1, P2, P3, Pk

P1, P2, P3, P4

)
Pµ4

]
. (3.22)

In this way, all scalar products of the form `·Pk inN can be expanded as `·Pi, i = 1, 2, 3, 4.

Then we can use

Di −D0 = −2` · Pi + P 2
i +M2

0 −M2
i (3.23)

to replace ` · Pi. Again D0, Di cancel corresponding propagators in denominator, and

remaining terms P 2
i ,M

2
0 ,M

2
i go to scalar part. Repeatingly doing so, we reduce the

integral to two types. One type is scalar integral with arbitrary number of propagators,

and the other type is integral with m ≤ 4 propagators, but still contains loop momentum

dependence numerator.

The second step is to eliminate loop momentum dependence in latter type. Assume

that after momentum redefinition, we get an integral with propagators D0 = `2 −M2
0

and Di = (` − Pi)2 −M2
i , i ≤ 3, where Di, i = 0, 1, 2, 3 have been renewed and not the

same as in previous step. The loop momentum dependence in numerator is `2, ` · Pi as
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well as tensor structures `µ, `µ`ν , · · · . It is a little tedious to get rid of tensor structures,

especially when the rank is high. The idea to eliminate tensor structures is that, loop

momentum `µ should be constructed from external momenta p1, . . . , pn−1, so integral

could be expanded as series of external momenta with same tensor structures. For

example, integral with `µ dependence should be expanded as

Im[`µ] =

∫
dd`

(2π)d
`µ

(`2 −M2
0 ) · · · ((`− Pm−1)2 −M2

m−1)
=

m−1∑
i=1

Cip
µ
i , (3.24)

where external momentum pi = Pi−Pi−1, and expansion coefficients Ci could be linear

combination of scalar integrals. By contracting both sides with pj,µ, j = 1, . . . ,m − 1,

we get an equation for each j as

∫
dd`

(2π)d
` · pj

(`2 −M2
0 ) · · · ((`− Pm−1)2 −M2

m−1)
=

m−1∑
i=1

1

2
Ci∆

ij . (3.25)

The left hand side can be reduced to scalar integrals by (3.23), so we get an algebraic

linear system of (m − 1) equations. By solving these equations we get (m − 1) coeffi-

cients Ci represented as linear combinations of scalar integrals. So integrals with tensor

structures `µ are reduced to scalar integrals. Similarly, for tensor structures `µ`ν , we can

expand them to C00g
µν +

∑
ij Cijp

µ
i p

ν
j , and by contracting with gµν , pi,µpj,ν we can get

sufficient linear equations to solve coefficients Cij . Although computation will become

very tedious for integrals with higher rank tensor structures, the reduction procedure is

still the same, and we will end up with all scalar integrals.

The last step is to reduce any n-point scalar integrals In[1] to finite number of scalar

integrals. For scalar integrals with n ≥ 6, we can always find non-trivial solution for

following 5 equations

n∑
i=1

βi = 0 ,

n∑
i=1

βiP
µ
i = 0 , µ = 0, 1, 2, 3 . (3.26)

With this non-trivial solution, we have an identity

n∑
i=1

βiDi =

n∑
i=1

(βi`
2 − 2`µ · (βiPµi ) + βiP

2
i − βiM2

i ) =
∑
i

βi(P
2
i −M2

i ) . (3.27)

Thus we can add an unity (
∑

i βiDi)/(
∑

i βi(P
2
i −M2)) to integrand. The factor Di

cancels corresponding propagator while P 2
i ,M

2 can be absorbed into scalar part. One

thing we need to pay attention to is the scalar pentagon integral I5[1]. In dimensional

regularization using d = 4−2ε, if keeping all expansion orders of ε, scalar pentagon inte-

gral is an independent master integral. While restricted to O(ε0) order, scalar pentagon
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can be further reduced to four scalar boxes.

3.2.2 One-loop integral reduction and integral basis

From above reduction procedure, we can reduce arbitrary 1-loop integral to master

integrals[107, 108], and all kinematic factors are packed into rational coefficients. For-

mally, the integral reduction can be expressed as

A1−loop =

n∑
k=1

ck,i(ε)I
d,(i)
k [1] , (3.28)

where n = 4 for 4-dimensional theory and n = 5 for d = (4 − 2ε)-dimensional theory.

The superscript (i) specifies external momenta configuration, which could be massive

or massless leading to different IR behaviors. For 4-dimensional theory, independent

master integrals of box integral I4[1] are

{I4m
4 , I3m

4 , I2m,e
4 , I2m,h

4 , Im4 , I
0m
4 } , (3.29)

where the number of m denotes the number of massive external momenta. The two-

mass-easy integral I2m,e
4 has massive momenta diagonally opposite and two-mass-hard

integral I2m,h
4 has massive momenta adjacent. Similarly, for triangle integral I3[1], the

independent master integrals are

{I3m
3 , I2m

3 , Im3 } . (3.30)

Zero-mass triangle integral is not allowed since kinematics of three massless momenta

do not have real solution. For scalar bubble and tadpole, external momenta are required

to be massive, so we only have master integrals I2, I1.

The coefficients ck,i in (3.28) are rational functions of external momenta and polarization

vectors as well as dimensional regularization parameter ε. In practical computation, it

is better to use another equivalent expression

A1−loop =

n∑
k=1

ck,i(ε = 0)I
d,(i)
k [1] + (rational part) +O(ε) . (3.31)

The coefficients do not have ε dependence any more, while extra rational part appears in

compensation. The part expanded by master integrals is cut-constructible, since it can

be reconstructed by unitarity cut method. Theoretically, if we start reduction procedure

directly for integral expression from Feynman diagrams and collect all scalar kinematic

factors in every step during the reduction, it is possible to keep all information of rational
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coefficients cn,i of master integrals. But the reduction procedure is so involved that it

is not suggested to do so. Since master integrals are well understood, and coefficients

of master integrals can be accessed by unitarity cut method, it is much easer to recover

coefficients cn,i by studying unitarity cuts on both sides of (3.31), as far as for theories

which are cut-constructible. The unitarity cut method will be introduced in next section.

3.2.3 Discussion on multi-loop integral reduction

One would expect that similar reduction should be valid for higher loop amplitudes, but

it is not exactly true. Schematically, multi-loop amplitude still can be expanded into

master integrals as

AL−loop =
∑
k,i,j

ck,iI
(i)
k [Nj ] , (3.32)

where k is the number of propagators of master integrals, i specifies external momenta

configuration and j specifies numerator of integrand. The master integrals are no longer

scalar integrals, so it becomes a problem to determine independent numerators appearing

in master integrals.

For 4-dimensional 2-loop amplitude, it is possible to reduce the number of propagators

to 8, but the numerator can not be reduced to only scalars. This is because not all loop

momentum dependence in numerator can be written as (3.23). Thus after reduction, we

still get integrals with non-trivial numerators. These integrals should further be reduced

by other methods, such as IBP method. For example[39], after reduction, 4-point 2-loop

double-box integral takes the form

I2−loop
4 [(`1 · p4)a(`2 · p1)b] =

∫
d4`1d

4`2
(2π)8

(`1 · p4)a(`2 · p1)b

D0D1D2D̃0D̃1D̃2D̂0

, (3.33)

where external momenta are pi, i = 1, 2, 3, 4. Di are propagators containing only `1, D̃i

are propagators containing only `2, D̂0 is propagator containing both `1, `2. There are

22 choices of (a, b) such that integrals can not be reduced any further. However, by using

non-trivial IBP relations, these 22 integrals can be further reduced to master integrals

depending on external kinematics. For kinematics of zero-mass, one-mass, two-mass

with massive momenta adjacent along the long side, or two-mass with massive momenta

diagonal opposite, two master integrals I2−loop
4 [1] and I2−loop

4 [`2·p1] are enough to expand

the amplitude. For kinematics of two-mass with massive momenta adjacent along the

short side or three-mass, we need another one I2−loop
4 [`1 ·p4] besides previous two master

integrals. For four-mass case, we need even one more master integral I2−loop
4 [(`1 ·p4)(`2 ·

p1)]. In fact, generating these IBP relations is highly non-trivial and time consuming,
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even though there are a lot of computer packages to do so. Especially for diagrams

without apparent symmetry on Feynman graphs, it is almost impossible to perform any

practical computation. Another weakness of higher loop integral reduction is that, in

(3.31), we assume the explicit results of master integrals Ik[1] are known, so that we

can compute coefficients of master integrals by unitarity cut method. The computation

of 1-loop master integrals is relatively simple, but computation of general multi-loop

master integrals is not trivial.

The integral reduction of 1-loop amplitude is very successful, but not of multi-loop

amplitude. In order to simplify multi-loop amplitude computation, we can reduce the

integrand before doing integration. Instead of master integrals, we get a set of inte-

grand basis. Then further manipulation can be done to get master integrals from these

integrand basis. The computational algebraic geometry method can be introduced to

multi-loop amplitude computation, and systematically determine integrand basis. We

will describe this method after a brief introduction of algebraic geometry.

3.3 Unitarity cut and generalized unitarity cut

3.3.1 Unitarity cut in 4-dimension and d-dimension

Direct computation of loop amplitude is always very difficult, and this motives us to find

indirect methods. The unitarity cut method[101, 109] has been proven to be very efficient

when applying to 1-loop amplitude computation. Standard unitarity cut method uses

double-cut, which cuts two propagators of 1-loop amplitude to divide it into two tree

amplitudes. The double-cut of 1-loop amplitude has very clear physical meaning. When

expanding S-matrix as S = 1 + iT with trivial scattering part 1 and interaction matrix

T , unitarity condition of S-matrix S†S = 1 implies that 2ImT = T †T . This means the

imaginary part of 1-loop amplitude is related to product of two tree-amplitudes. In fact,

unitarity cut computes the discontinuity across branch cut singularity of loop amplitude.

Effectively, two propagators become on-shell. If loop momenta are 4-dimension, double-

cut of two propagators can be expressed mathematically as

1

`21`
2
2

∼ δ(`21)δ(`22) , (3.34)

where `1, `2 are momenta of propagators. For 1-loop amplitude, the discontinuity is

given by

∆A1−loop ≡
∫
d4`1d

4`2δ
(4)(`2 − `1 − P )δ(+)(`21)δ(+)(`22)AtreeL ×AtreeR , (3.35)
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AL AR

ℓ1 −ℓ1

ℓ2−ℓ2
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i i + 1
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n

Figure 3.1: Standard unitarity cut of one-loop amplitude. The double-cut cuts two
propagators, and divide one-loop amplitude to two tree amplitudes.

where two propagators `1, `2 are cut, and P is the total momenta in left hand side of

double-cut as shown in Figure (3.1). The (+) superscript in delta function denotes

the choice of a positive energy solution of `2i = 0. The delta function of momentum

conservation makes one integration over `1 or `2 trivial, so it is really 4-dimensional

integration. AL, AR are tree amplitudes in both sides of double-cut, with two additional

legs from on-shell propagators,

AtreeL = Ai+2(−`2, 1, . . . , i, `1) , AtreeR = An−i+2(−`1, i+ 1, . . . , n, `2) . (3.36)

Of course we should sum over all helicity states of `1, `2. The loop momentum ` is taken

to be on-shell solution of `21 = 0, `22 = 0. Since all momenta are on-shell in unitarity cut,

we still have well-defined on-shell tree-amplitudes. Loop momentum has four degrees of

freedom, two delta functions can freeze two degrees of freedom, thus there are still two

degrees of freedom to be integrated out.

If loop momentum is d = (4 − 2ε)-dimension, we should use d-dimensional unitarity

cut[110, 111]. The loop momentum ` can be decomposed as

`(d) = `(4) + µ ,

where µ is a vector in (−2ε)-dimension, and `(4) is normal 4-dimensional massive vector

with (`(d))2 = (`(4))2 − µ2 = 0. The massive 4-dimensional loop momentum `(4) can

further be decomposed to massless four vector as

`(4) = `+ zP ,
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where `2 = 0, z is a free parameter and P is the cut momentum. In this way, the

integration measure changes to∫
d4−2ε`(d) =

∫
d−2εµ

∫
d4`(4) =

∫
dz

∫
d4`δ(`2)(2` · P ) , (3.37)

It separates integration to integral over mass parameter µ and integral over massive

scalar. The latter can further be separated to integral over massless scalar and in-

tegral over free parameter z. The discontinuity of d-dimensional 1-loop amplitude in

d-dimensional unitarity cut is then given by

∆Ad,1−loop ≡
∫
d−2εµ

∫
dz d4`(2` · P )δ(`2)δ(+)((`

(d)
1 )2)δ(+)((`

(d)
2 )2)AtreeL ×AtreeR , (3.38)

where (`
(d)
i )2 = (`(4)−Pi)2−µ2. Integration over z can be firstly performed by one delta

function, and remaining integrations usually can be transferred to contour integration

in complex plane.

In spinor-helicity formalism, massless loop momentum can be expressed as spinor vari-

ables ` = t|`〉|`], where t is an auxiliary free parameter. So integration measure expressed

with spinor variables has the form∫
d4`δ+(`2) =

∮
λ̃`=λ̄`

〈` d`〉 [` d`]
∫
t dt . (3.39)

The contour of spinor variable integration is the line along real loop momentum in

complex plane, and integration over t is a trivial integration over delta function of

propagators[112]. Then using tree-level amplitudes in spinor-helicity formalism, the

contour integration in fact is the computation of residues in complex plane.

3.3.2 Generalized unitarity cut

Unitarity of S-matrix ensures that loop amplitude can be constructed from summation of

products of sub-loop and tree amplitudes satisfying cut constraints. Although standard

unitarity cut of 1-loop amplitude has clear physical meaning as discontinuity crossing

branch cut, this physical explanation has no significant importance in practical compu-

tation. We can generalize standard unitarity cut to generalized unitarity cut[113, 114],

where more than two propagators are cut. Though losing its physical explanation, it

still provides constraints on loop amplitudes. With these constraints, part of the infor-

mation of loop amplitude can be explored. Mathematically, n-ple unitarity cut will set

n propagators on-shell, thus provide n delta functions for integral. Loop amplitude is

then divided into many sub-amplitudes, which could be lower-loop amplitudes and tree

amplitudes. Especially, the maximal unitarity cut will cut all internal propagators, and
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express loop amplitude as products of only tree amplitudes. This idea can be applied to

any n-point L-loop amplitudes.

Suppose we have a 4-dimensional n-point L-loop integral with m propagators

A(L)
n =

∫ ∏L
i=1 d

4`i
(2π)4L

N

D0D1 · · ·Dm−1
. (3.40)

Then maximal unitarity cut of this integral provides m equations

Di = 0 , i = 0, 1, . . . ,m− 1 . (3.41)

Loop momenta are constrained by these equations. We can also have near-maximal

unitarity cut, which is defined by cutting (m − 1) propagators. This gives a constraint

of (m− 1) equations for loop momenta, which is more relax than constraint of maximal

unitarity cut. The fewer propagators being cut, the more information of loop ampli-

tude we get. But it is harder to separate contributions from other graphs when fewer

propagators are being cut. The maximal unitarity cut, though can only access fewest

information of loop amplitude, is the simplest. It can be served as a guidance for de-

termining multi-loop amplitude. It becomes even more powerful in the computation of

4-dimensional 1-loop N = 4 super-Yang-Mills amplitude, since only box contribution

exists for this theory, and maximal unitarity cut can access all information. It gives

constraints of four equations, and loop momentum is totally determined by the solution

of four equations. So such amplitude is trivially expressed as summation over products

of four tree-amplitudes and all possible internal states.

3.3.3 One-loop amplitude computation with unitarity cut

For 1-loop amplitude, what we want to compute is the expansion coefficients ck,i in

(3.31). By applying standard unitarity cut (3.35, 3.38) or generalized unitarity cut on

both sides of (3.31) and comparing results on both sides, we can separate contributions

for coefficients from different master integrals(For a review see [38]). It is already suffi-

cient to extract all information of cut-constructible part by standard unitarity cut, but

it is more convenient to start from maximal unitarity cut. Explicitly, the (generalized)

unitarity cut on n-point 1-loop amplitude gives

∆A1−loop =

4∑
k=2

ck,i(ε = 0)∆I
(i)
k [1] . (3.42)

Here we take 4-dimensional theory as example, and assume no internal mass. So pen-

tagon and tadpole master integrals do not contribute. If we use maximal unitarity cut,
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Figure 3.2: Quadruple-cut of one-loop amplitude. A specific quadruple-cut of any
one-loop integral selects contribution of a specific box integral.

which is quadruple-cut, then only box integrals have non-vanishing results in the right

hand side of (3.42). Triangle and bubble integrals do not have corresponding quadruple-

cut channels, so they do not contribute in maximal unitarity cut. Integral in left hand

side of (3.42) contains n − 1 propagators which directly generated from Feynman di-

agram. When cutting four propagators, n external momenta are split to four parts,

which we define as P1 = p1 + · · · + pi1 , P2 = pi1+1 + · · · + pi2 , P3 = pi2+1 + · · · + pi3 ,

P4 = pi3+1 + · · · + pn. This is equivalent to box integral with four external momenta

P1, P2, P3, P4, as shown in Figure (3.2). So one quadruple-cut selects one specific box

integral I
(i)
4 [1],

∆4A
1−loop = c4,i(P1, P2, P3, P4)∆4I

(i)
4 [1](P1, P2, P3, P4) . (3.43)

Then coefficient of this master integral is simply given by

c4,i(P1, P2, P3, P4) =
1

2

∑
hi,h′i

∑
`∈S

Atree1 (−`h11 , P1, `
h′2
2 )Atree2 (−`h22 , P2, `

h′3
3 )

×Atree3 (−`h33 , P3, `
h′4
4 )Atree4 (−`h44 , P4, `

h′1
1 ) , (3.44)

where S is the solution of equations

`21 = `2 = 0 , `22 = (`− P1)2 = 0 , `23 = (`− P1 − P2)2 = 0 , `24 = (`+ P4)2 = 0 .

There are exactly two solutions, and they fix loop momentum at two points in complex

plane. By this way, we can get coefficients for all box master integrals by applying all

possible quadruple-cut.
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We can further get coefficients of triangle integrals with triple-cut. There are two differ-

ence of triple-cut from quadruple-cut, which makes triple-cut not as simple as quadruple-

cut. The first difference is that triple-cut does not only receive contributions from tri-

angle integrals, but also from box integrals which have the same cut propagators as

triangle integrals. For example, if a triple-cut specifies a triangle integral I3(P1, P2, P3),

then box integrals I4(P11, P12, P2, P3), I4(P1, P21, P22, P3) and I4(P1, P2, P31, P32), where

Pi1 + Pi2 = Pi, also contribute to the coefficients. We should extract box contributions

in order to get correct triangle coefficients. The second difference is that constraints of

three equations can only freeze three degrees of freedom of loop momentum. So there is

an one-dimensional integration left. Fortunately, we can use this degree of freedom to

identify contributions from box and triangle integrals. This can be done with Forde’s

parametrization[51] of loop momentum for massless propagators. Explicitly, using two

massive external momenta P1, P2, we can construct

(P1 − xP2)2 = 0 , (P2 − x′P1)2 = 0 , (3.45)

with solutions

x± =
(P1 · P2)±

√
(P1 · P2)2 − P 2

1P
2
2

P 2
2

, x′± =
(P1 · P2)±

√
(P1 · P2)2 − P 2

1P
2
2

P 2
1

. (3.46)

So we can define two null vectors, normalized as

P [1 =
P1 − (P 2

1 /γ)P2

1− (P 2
1P

2
2 /γ

2)
, P [2 =

P2 − (P 2
2 /γ)P1

1− (P 2
1P

2
2 /γ

2)
, (3.47)

with

γ± = x±P 2
2 = x′±P

2
1 = (P1 · P2)±

√
(P1 · P2)2 − P 2

1P
2
2 . (3.48)

This defines the flat basis P [1 , P
[
2 . Note that if one of P1, P2 is massless, we can still

construct two null vectors, but with only one solution x or x′. With flat basis P [1 , P
[
2 ,

loop momentum can be parameterized as

` = α1|P [1〉|P [1 ] + α2|P [2〉|P [2 ] +
t

2
|P [1〉|P [2 ] +

α1α2

2t
|P [2〉|P [1 ] , (3.49)

where

α1 =
P 2

2 (γ − P 2
1 )

γ2 − P 2
1P

2
2

, α2 =
P 2

1 (γ − P 2
2 )

γ2 − P 2
1P

2
2

. (3.50)

This parametrization automatically satisfies constraints of three equations

`2 = 0 , (`− P1)2 = 0 , (`+ P2)2 = 0 , (3.51)



3.3 Unitarity cut and generalized unitarity cut 65

and t is the free parameter characterizing remaining degree of freedom. Box integral

behaves differently from triangle integral after substituting this parametrization back to

products of tree amplitudes from triple-cut. Since it contains an additional propagator,

there are two poles in t. These poles can be removed by expanding the result around

point t =∞, and such expansion gives a polynomial in t as

[InftA
tree
1 Atree2 Atree3 ](t) =

m∑
i=0

fit
i . (3.52)

The triangle coefficient is given by the first term as

−[InftA
tree
1 Atree2 Atree3 ](t)|t→0 . (3.53)

Since γ has up to two solutions, the result is actually averaged over solutions of γ.

Remaining coefficients are then bubble coefficients, which are not accessed by quadruple-

cut and triple-cut. Similarly, we can get correct bubble coefficients by double-cut after

subtracting box and triangle contributions. The loop momentum is parameterized as

` = y|P [1〉|P [1 ] +
P 2

1

γ
(1− y)|χ〉|χ] +

t

2
|P [1〉|χ] +

P 2
1

2γ

y

t
(1− y)|χ〉|P [1 ] , (3.54)

which automatically satisfies constraints of two equations. Note that there is only one

Pi = P1, we should choose another arbitrary external momentum to construct massless

momentum basis P [1 , χ. The bubble coefficient is then given by

−i[Inft[InfyA
tree
1 Atree2 ](y)](t)|t→0,ym→ 1

m+1
− 1

2

∑
Stri

[InftA
tree
1 Atree2 Atree3 ](t)|tj→T (j) , (3.55)

where Stri is set of all triple-cuts by cutting one more propagator besides double-cut,

and T (j) is some defining equations[51].

3.3.4 Discussion on multi-loop amplitude computation

For general multi-loop amplitude, there is no systematic way of extracting coefficients of

different master integrals as for 1-loop amplitude. One reason is that, master integrals

of general multi-loop amplitude are in fact unknown. So we do not even have a practical

expansion formula as (3.31). Also the algebraic system of cut equations for multi-loop

amplitude is far more complicated than equations of one-loop amplitude. So we could

not expect a successful application of unitarity cut method on multi-loop amplitude as

1-loop amplitude.
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In order to access as much information as possible of multi-loop amplitude, we can

(1) compute all possible maximal unitarity cuts of multi-loop amplitude, and collect

all information, including residue dependence if maximal cut does not totally freeze

loop momenta, (2) use information of maximal cut to propose an ansatz, (3) compute

near-maximal unitarity cut, and compare result with the ansatz. If there is difference,

correct the ansatz to incorporate the difference, (4) continue computation of k-ple cut

until there is no difference between the ansatz and (k + 1)-ple cut. In the worst case,

this procedure will stop at the fewest number of cuts, where most information of loop

amplitude are extracted.

While it is too difficult to study master integrals of multi-loop amplitude, we can instead

study integrand basis as first step. The integrand basis can be systematically studied by

computational algebraic geometry method. We will describe the method, shortly after

an introduction of basic algebraic geometry.

3.4 The algebraic geometry

3.4.1 Variety and ideal

Algebraic geometry is the study of algebraic varieties[115–118]. The variety is defined to

be the zero locus of a polynomial or many polynomials. In other words, it is the solution

space of polynomial equations. There are two basic categories of algebraic variety, the

affine variety and projective variety.

The affine variety can be defined through a family of polynomials F = (f1, . . . , fr).

Suppose we have r polynomials fi, i = 1, . . . , r in polynomial ring k[X1, . . . , Xn], where

polynomial ring is the set of polynomials of n variables (X1, . . . , Xn) with coefficients

in the field k, which can be taken as real numbers R, complex numbers C, integers Z,

etc. For example, polynomial ring of one variable k[X] is the set of polynomials P of

the form

P = c0 + c1X + c2X
2 + · · ·+ cmX

m , (3.56)

where coefficients ci are elements of k. The polynomial ring in n variables (X1, . . . , Xn)

is more complicated, and we should use monomial instead of one variable. The monomial

is defined as product of n variable in the form

Xα =
n∏
i=1

Xαi
i , (3.57)
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where α = (α1, α2, . . . , αn) with non-negative integers αi is the multi-degree of mono-

mial. The degree of monomial is |α| =
∑n

i=1 αi. Polynomial ring k[X1, X2, . . . , Xn] is

then defined as the set of polynomials

P =
∑
α

cαX
α , (3.58)

where cα ≡ cα1···αn ∈ k. Then polynomial equations

f1(X1, X2, . . . , Xn) = 0 ,

f2(X1, X2, . . . , Xn) = 0 ,

· · ·
fr(X1, X2, . . . , Xn) = 0

define an algebraic subset of affine space kn. If this algebraic subset is irreducible,

it defines the affine algebraic variety V (F ). The variety is associated with geometric

objects such as curve, hypersurface, etc. For example, f(X1, X2) = X1 +X2 = 0 defines

a line in R2-plane if k = R.

More generally, if degrees of all polynomials fi, i = 1, . . . , r are one, we get the linear

affine variety, i.e., lines, planes, etc. We can also get affine variety of plane curve if

degrees of polynomials are two. For example,

f(X1, X2) = a1X
2
1 + a2X

2
2 + a3X1X2 + a4X1 + a5X2 + a6 = 0 ,

when k = R, defines a conics. Of course, curves of any degree exist, and the complexity

of studying variety increases a lot as increasing of degree. There is a kind of curve called

rational curve, which can be rational parameterized. For example, if plane curve C

defined by f(X,Y ) = 0 is rational curve, then we can always find two rational functions

α(T ), β(T ) to parameterize the curve with identity f(α(T ), β(T )) = 0 holds. It is

important to know the curve is rational or not, in order to determine if we could find

some rational parametrization for it.

The projective variety is defined in projective space. In projective space, polynomial

has homogeneous coordinates. For polynomial P ∈ k[X1, . . . , Xn], the homogeneous

polynomial can be defined as

P ′(X ′0, X
′
1, . . . , X

′
n) ≡ (X ′0)degree of PP (

X ′1
X ′0

, . . . ,
X ′n
X ′0

) , (3.59)

with homogeneous coordinates (X ′0, X
′
1, . . . , X

′
n) defined through Xi = X ′i/X

′
0. For

example, consider a polynomial P ∈ C[X1, X2] with the form P = X1X2 +X1 + 1. This
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is a complex curve in C2-plane, and the degree of P is two. In projective space CP2,

we introduce new coordinates X ′0, X
′
1, X

′
2, and define X1 = X ′1/X

′
0, X2 = X ′2/X

′
0. Then

homogeneous polynomial of P is given by

P ′(X ′0, X
′
1, X

′
2) = (X ′0)2(

X ′1
X ′0

X ′2
X ′0

+
X ′1
X ′0

+ 1) = X ′1X
′
2 +X ′1X

′
0 +X ′0X

′
0 ,

with each monomial of homogeneous degree two.

The projective variety is defined through a family of homogeneous polynomials F ′ =

(f ′1, . . . , f
′
r) in polynomial ring k[X ′0, X

′
1, . . . , X

′
n]. It is a subset of projective n-space Pn

over k, defined through the zero locus of homogeneous polynomial equations

f ′1(X ′0, X
′
1, . . . , X

′
n) = 0 ,

f ′2(X ′0, X
′
1, . . . , X

′
n) = 0 ,

· · ·
f ′r(X

′
0, X

′
1, . . . , X

′
n) = 0 .

If the projective algebraic set is irreducible, then it is called projective variety.

The irreducibility is an important property of variety. The algebraic set is not always

irreducible. For example, algebraic set defined by f = X1X2 = 0 where f ∈ R[X1, X2]

is the union of two irreducible varieties, i.e, the coordinate axes X = 0 and Y = 0.

We can study the irreducibility of a variety with ideal. Let A be a polynomial ring

k[X1, . . . , Xn], and F = (f1, . . . , fr) a subset of A, then the ideal I(F ) generated by F

is defined as

I(F ) = {a1f1 + · · ·+ arfr|∀ai ∈ A} . (3.60)

The definition for projective algebraic set is similar, and homogeneous polynomials F ′

generate a homogeneous ideal I ′(F ′). Polynomial equations F = 0 imply that every

element in I(F ) is also zero. Solving equations F = 0 is equivalent to solving all

polynomial equations from ideal I(F ). The algebraic set defined by F = 0 is then

equivalent to the algebraic set Z(I) from solving all polynomial equations in I(F ). Note

that intersection of finite ideals is also an ideal. Denote the intersection of two ideals as

I1
⋂
I2, then the algebraic set

Z(I1

⋂
I2) = Z(I1)

⋃
Z(I2) . (3.61)

The union of two ideals I1
⋃
I2 is not necessary an ideal. The algebraic set

Z(I1

⋃
I2) = Z(I1)

⋂
Z(I2) (3.62)
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could be empty if there is no solution for polynomial equations ai = 0, bi = 0, ai ∈ I1,

bi ∈ I2. It is more convenient to study ideal I(F ) and algebraic set Z(I) than original

equations. If the algebraic set Z(I) is irreducible, it defines a variety, and the ideal is

prime ideal, which means that the ideal can not be non-trivially written as I = I1
⋂
I2. If

ideal is not prime ideal, there is a method primary decomposition of an ideal, which can

decompose the ideal into intersection of many prime ideals. Especially, if the polynomial

ring is Noetherian ring, Lasker-Noether theorem states that primary decomposition of

ideal I uniquely exists

I =
s⋂

a=1

Ia , (3.63)

where s is a finite integer, and each Ia is prime ideal. Then the algebraic set

Z(I) =
s⋃

a=1

Z(Ia) (3.64)

with each Z(Ia) a variety. So in order to determine if an algebraic set defined by F = 0

is irreducible or not, we can generate the ideal I(F ), and apply primary decomposition

method on I(F ). If there are more than one prime ideals Ii(Fi), i > 1 produced by

primary decomposition, then the algebraic set is reducible. The number of prime ideals

by primary decomposition is the number of irreducible varieties of algebraic set. The

variety Z(Fi) of Fi = 0 obtained by primary decomposition is equivalent to the i-th

irreducible variety of original algebraic set.

To determine if a polynomial P ∈ k[X1, . . . , Xn] is in the ideal I(F ), F ⊂ k[X1, . . . , Xn]

or not, we need to do the polynomial division. For multivariate polynomial division,

naively we would expect that after defining the monomial order, we can get a result by

recursively performing P/f1, · · · , P/fr as

P = a1f1 + · · ·+ arfr +R , (3.65)

where ai ∈ k[X1, . . . , Xn], and R is the remainder. If R = 0, then P ∈ I(F ). But above

procedure is not true for arbitrary F = (f1, . . . , fr). In fact, polynomial division can be

applied only when F is Gröbner basis. The Gröbner basis G(F ) = (g1, . . . , gr′) can be

generated from F by algebraic geometry method, and it is a subset of polynomial ring

k[X1, . . . , Xn] equivalent to F . Recursively performing the division P/g1, · · · , P/gr′ , we

get a result

P = a1g1 + · · ·+ argr′ +R , (3.66)
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where ai ∈ k[X1, . . . , Xn]. The coefficients ai is not uniquely determined but the re-

mainder R is unique. So if R = 0, polynomial P is an element of ideal I(F ).

Special attention should be paid to the monomial order. For single variable polynomial

f ∈ k[X], it is natural to define ordering 1 ≺ X ≺ X2 ≺ · · · without any ambiguities.

But for multivariate polynomial, there is more than one way of defining monomial or-

der. The monomial order will change explicit results of Gröbner basis and polynomial

division. In (3.66), we mentioned that R is uniquely determined. But this is true only

for one chosen Gröbner basis. Since explicit result of G(F ) depends on the monomial or-

der, if G(F ) changes, then remainder R also changes, although different remainders are

linearly related. In order to make consistent computation, we should choose a monomial

order and use it through the whole computation.

3.4.2 The curve

Polynomials equations F = (f1, . . . , fr) = 0, where F ⊂ C[X1, . . . , Xn], define alge-

braic set of complex objects. Geometrically, this algebraic set could be complex curve,

hypersurface, or even more complicated complex manifold. For the special case where

r = n − 1, there is only one free complex parameter, and the algebraic set is complex

curve. Complex curve is intensively studied by mathematicians. Properties of com-

plex curve are characterized by its topology, and the topology is described by genus

of the curve. For irreducible algebraic set, i.e., variety, there are two kinds of genus,

the arithmetic genus and geometric genus. The geometric genus, which geometrically

illustrated as the handles of complex curve, is topological invariant. It characterizes the

topology of curve. This invariance is birational invariance, which means that geometric

genus is invariant under rational re-parametrization. The arithmetic genus however is

not topological invariant, and it depends on the parametrization of complex curve.

The arithmetic genus of a complex curve C can be computed by Riemann-Roch the-

orem. Let C be a projective curve in projective space Pn. Define polynomial ring

S = k[X0, . . . , Xn] and quotient ring A = S/I(C), where I(C) is ideal of C. Then the

Euler characteristic is defined as χ(OC(n)) = h0OC(n)−h1OC(n) for all integer n. The

OC is the sheaf of quotient ring A, and the number hi are zero for all i ≥ 2 since C is

dimension one of field k. The Riemann-Roch theorem states that for projective curve C

of degree d and arithmetic genus g, we have

h0OC(n)− h1OC(n) = nd+ 1− g . (3.67)

Moreover, for large n, we have h0OC(n) = nd+ 1− g.
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Especially, there is the algebraic plane curve, which is the set of zero locus of a polynomial

with two variables. The affine plane curve can be defined by variety of polynomial

equation f = 0, where f ∈ k[X1, X2]. Similarly, the projective plane curve defined

in P2 projective space is the variety V (f ′) of homogeneous polynomial f ′ = 0, where

f ∈ k[X ′0, X
′
1, X

′
2]. There is a simple expression for arithmetic genus gA of projective

plane curve with homogeneous degree d, given by

gA =
(d− 1)(d− 2)

2
. (3.68)

Of course it is valid for k = C, where we have complex affine plane curve in C2 and

complex projective plane curve in CP2.

The arithmetic genus gA not only counts the handles but also the singular points of a

curve. A singular point of projective curve C is a point (a0, a1, . . . , an) such that the

rank of Jacobian matrix ∣∣∣∣∣∣∣∣ ∂fi∂Xj

∣∣∣∣∣∣∣∣ , 1 ≤ i ≤ r , 0 ≤ j ≤ n (3.69)

at this point is less than n − 1. A singular point is normal if all tangent lines at the

singular point are distinct.

The geometric genus gG can be defined through arithmetic genus gA and singular points.

For a smooth curve, i.e., an irreducible projective curve without any singular points, the

geometric genus gG equals to arithmetic genus gA. There are many algebraic geometry

methods to deal with non-smooth projective curve. If all singular points of C are normal

singular points, there exists an irreducible projective curve C̃ from the normalization of

C, and the geometric genus gG of C is equal to the arithmetic genus gA of C̃. Explicitly,

we have

gG = gA −
∑

p∈Sing(C)

1

2
µp(µp − 1) , (3.70)

where Sing(C) is the set of all normal singular points p on curve C. µp is the multiplicity

of p, i.e., the number of distinct tangent lines at singular point p. If some singular points

are non-normal, there is blow-up method that blows up them into normal singular points.

Then (3.70) can be modified to compute geometric genus of projective curve.

Curves with geometric genus gG = 0 are rational curves, and curves with geometric genus

gG = 1 are elliptic curves. Higher gG represents more complicated geometric structures.

If k = C, the genus has simple topological interpretation. A smooth projective curve

is a differentiable variety of dimension one over C and dimension two over R, thus it is
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a compact orientable surface. So gG = 0 curve is homeomorphic to a Riemann sphere,

and gG = 1 curve to a torus, as well as gG curve to torus with gG holes.

The geometric genus gG is birational invariant, which means that after re-parameterizing

curve C1 to another curve C2, the geometric genus of C2 equals to geometric genus of

C1. Re-parametrization of a curve is realized through birational map. A rational map

from variety V1 to another variety V2 is defined as a morphism from non-empty open

subset U of V1 to V2. Concretely, a rational map can be expressed in coordinates using

rational functions. A birational map from variety V1 to V2 is a rational map f from V1 to

V2 such that there also exists a rational map g from V2 to V1 which is inverse to f . gf is

an identity map on open set V1, and fg is an identity map on open set V2. A birational

map induces an isomorphism from a non-empty open subset of V1 to a non-empty open

subset of V2, and V1, V2 are birational equivalent.

For complex curves C1, C2, if they are birational equivalent, then gG(C1) = gG(C2).

Reversely, if gG(C1) 6= gG(C2), there is no birational map between C1 and C2. Especially,

since curve of genus gG = 0 is rational curve and any curves with gG > 0 are not

birational equivalent to curve of gG = 0, so there is no rational parametrization for

curves of gG > 0.

3.4.3 Examples

Let us consider two polynomials

f1 = yz , f2 = x3 + y3 − xy − z , (3.71)

defined in polynomial ring R[x, y, z]. f1 has degree two, and f2 has degree three. Equa-

tion f1 = 0 or f2 = 0 describes a two-dimensional surface in R3-space. The polynomial

equations

f1 = yz = 0 , f2 = x3 + y3 − xy − z = 0 (3.72)

define an algebraic subset of affine space R3. In fact, since they are two equations of

three variables, the algebraic subset would describe curve of real dimension one or point

of real dimension zero. Geometrically, it is the intersection of two surfaces f1 = 0 and

f2 = 0 in R3.

Let the ideal I(f1, f2) be generated from f1, f2. Polynomial of the form a1f1 + a2f2,

where a1, a2 ∈ R[x, y, z], is an element of I(f1, f2). For algebraic system (f1 = 0, f2 = 0),

each element in I(f1, f2) is also zero. So the ideal I(f1, f2) is equivalent to algebraic

system (f1 = 0, f2 = 0).
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We can also compute Gröbner basis of ideal I. The result is not unique and depends

on monomial order as well as variable ordering when computing by Mathematica. If we

choose variable ordering as {z, y, x}, and also monomial order as DegreeLexicographic,

then we have

G(yz, x3 − xy + y3 − z, x3z − z2) ≡ G1(g1, g2, g3) . (3.73)

If monomial order is Lexicographic, we have

G(x3y − xy2 + y4,−x3 + xy − y3 + z) ≡ G2(g′1, g
′
2) . (3.74)

It is clear that they are different.

We can divide any polynomial with Gröbner basis by multivariate polynomial division,

or Polynomial reduce in Mathematica. For example, dividing P = x3y2 + z3 with G1 in

variable ordering {x, y, z} and monomial order Lexicographic, we get

P/G1 = yg1 + y2g2 + (xy3 − y5 + z3) .

The remainder (xy3 − y5 + z3) can not be further divided by G1.

The ideal I(f1, f2) is reducible. After primary decomposition of ideal I, we get two

prime ideals

I = I1

⋂
I2 , I1(z, x3 + y3 − xy) , I2(y, x3 − z) . (3.75)

The algebraic set Z(I1) or Z(I2) defines an affine variety V (I1) or V (I2). We have

Z(I1

⋂
I2) = V (I1)

⋃
V (I2) . (3.76)

For I1, Z(I1) is given by solution of

z = 0 , x3 + y3 − xy = 0 , (3.77)

which is an irreducible plane curve C1(x, y) in z-plane. For I2, Z(I2) is given by solution

of

y = 0 , x3 − z = 0 , (3.78)
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which is also an irreducible plane curve C2(x, z) in y-plane. The intersection of two

varieties V (I1), V (I2) is given by algebraic set Z(I1
⋃
I2)

Z(I1

⋃
I2) = V (I1)

⋂
V (I2) , (3.79)

by solving equations

z = 0 , x3 + y3 − xy = 0 , y = 0 , x3 − z = 0 . (3.80)

It has a solution x3 = 0, y = 0, z = 0, which is the origin point. This means that two

curves C1, C2 intersect at origin. Degree of x denotes the multiplicity of solution.

Let us consider affine plane curve C1(x, y) defined by polynomial function P (x, y) =

x3 + y3 − xy = 0. We can introduce another variable w, and define projective plane

curve as

P ′(x′, y′, w) = w3P (
x′

w
,
y′

w
) = (x′)3 + (y′)3 − x′y′w . (3.81)

It has homogeneous degree three, so arithmetic genus of this plane curve is

gA = (3− 1)(3− 2)/2 = 1 .

We can also compute the zero locus of singular points from equations

∂P ′

∂x′
= 3(x′)2 − y′w = 0 ,

∂P ′

∂y′
= 3(y′)2 − x′w = 0 ,

∂P ′

∂w
= −x′y′ = 0 . (3.82)

It only has one solution x′ = 0, y′ = 0. By setting w = 1, x = x′, y = y′, and expanding

the function at (x, y) = (0, 0), we get

f(x, y) = x3 + y3 − xy . (3.83)

Tangent line at this singular point is defined by T (x, y) = −xy = 0. It has two distinct

solutions, the x axis and y axis. So the singular point is normal, and has multiplicity

µ = 2. The geometric genus is then gG = gA − 2(2 − 1)/2 = 0. It is topologically

equivalent to conics, and can be rationally parameterized. One rational parametrization

is given by

x =
t

1 + t3
, y =

t2

1 + t3
. (3.84)
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3.5 Integrand reduction of loop amplitude

Finally we arrive at the section of integrand reduction, especially beyond one-loop am-

plitude, by computational algebraic geometry method[48, 49]. The 4-dimensional L-loop

n-point integral with m propagators is given by

I(L)
n =

∫ ∏L
i=1 d

4`i
(2π)4L

N

D0D1 · · ·Dm−1
. (3.85)

The number of propagators is constrained by total degrees of freedom of loop momenta.

Since each loop momentum is 4-dimensional, L-loop integral has 4L degrees of freedom,

so the maximal number of propagators should be no larger than 4L. Otherwise some

loop momenta will be over-constrained when applying maximal unitarity cut. Degree of

polynomial N is constrained by power counting in order to get UV finite result. Ranks

of loop momenta in each monomial of polynomial N should be no larger than ranks of

corresponding loop momenta in denominator. This constraint produces a finite but still

large set of monomials Mi. We want to get a minimal set of independent monomials

from them. The idea is quite simple. Since the denominator is also a polynomial of loop

momenta D(`) = D0D1 · · ·Dm−1, we can divide each monomial Mi with denominator.

The result is expected to be

Mi/D = f0D0 + f1D1 + · · ·+ fm−1Dm−1 +Ri , (3.86)

where fi are functions of loop momenta. Ri is the remainder, which is also polynomial of

loop momenta. However, we know that the polynomial division can be applied only when

polynomial system (D0, D1, . . . , Dm−1) is Gröbner basis. So we should firstly generate

Gröbner basis G(D) = (g1, . . . , gm′) from polynomials (D0, . . . , Dm−1). The polynomial

equations Di = 0, i = 1, . . . ,m− 1 can be interpreted as equations of maximal unitarity

cut. By dividing monomial Mi with Gröbner basis G(D), we get

Mi

G(D)
= f ′1g1 + · · ·+ f ′m′gm′ +R′i . (3.87)

If R′i is zero, monomial Mi can be expressed as functions of propagators, and it is not

independent. If R′i is non-zero, monomials in remainder R′i can not be further divided

by G(D), so they are independent monomials. These monomials in R′i define integrand

basis. For different Gröbner basis defined from different monomial order and variable

ordering, we get different set of integrand basis. But they are equivalent class, and all

related by linear transformation.

Above discussion does not rely on the number of external momenta and number of

independent loops, so it is quite general and can be applied to integrand induction of
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any multi-loop amplitudes.

3.5.1 Parametrization of loop momenta

The simple idea above should be implemented systematically in mathematical algo-

rithm by computational algebraic geometry method. The algebraic system is defined

by m equations of maximal unitarity cut, where m propagators are polynomials Di,

i = 0, . . . ,m − 1 defined in polynomial ring k[X1, . . . , Xn]. Since momenta are tak-

en to be complex, the field k = C. Then the first problem is how to define variables

(X1, . . . , Xn). These variables come from degrees of freedom of loop momenta. For

4-dimensional L-loop diagram, we have n = 4L variables. A systematic way of defining

variables (X1, . . . , Xn) is through similar Van Neerven-Vermaseren basis[119]. Expan-

sion of loop momenta with this basis has advantages that the result does not depend

on spinor-helicity formalism, and equations of maximal unitarity cut take particular

simple form. The momentum basis (e1, e2, e3, e4) is chosen to be external momenta or

ωj , which are auxiliary momenta perpendicular to all external momenta in momentum

basis. If number of external momenta is lager than five, then we can choose arbitrary

four external momenta as momentum basis. If number of external momenta is four,

then there are only three independent momenta because of momentum conservation.

We construct the additional auxiliary momentum ω as ωµ = εµνρσP1,νP2,ρP3,σ, where

εµνρσ is total anti-symmetric tensor. Then momentum basis is (P1, P2, P3, ω). For three

external momenta case, only two independent external momenta P1, P2 can be chosen,

so we should construct two additional momenta ω1, ω2 as

ωµ1 =
1

2

(〈
P [1 |γµ|P [2

]
+
〈
P [2 |γµ|P [1

] )
, (3.88)

ωµ2 =
i

2

(〈
P [1 |γµ|P [2

]
−
〈
P [2 |γµ|P [1

] )
, (3.89)

with help of flat basis. Then momentum basis can be taken as (P1, P2, ω1, ω2). However,

if there are two external momenta, we can only choose one P1. Then three auxiliary

momenta ω1, ω2, ω3 should be constructed following conditions P1 · ωi = 0, i = 1, 2, 3.

Loop momentum `i can be expanded as

`i = (e1, e2, e3, e4)G−1
4


`i · e1

`i · e2

`i · e3

`i · e4

 , (3.90)
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where G4 ≡ G(e1, e2, e3, e4)(do not confused with Gröbner basis) is Gram determinant

defined in (3.21). When considering d = 4−2ε theory, we can decompose loop momenta

`
(d)
i into 4-dimensional component `i and mass component `

(−2ε)
i

`
(d)
i = `i + `

(−2ε)
i , (3.91)

and define µij = −`(−2ε)
i `

(−2ε)
j . Then we get a set of fundamental scalar products(SPs)

as

SP = {`i · ej |1 ≤ i ≤ L, 1 ≤ j ≤ 4} ∪ {µij |1 ≤ i ≤ j ≤ L} , d = 4− 2ε ,

SP = {`i · ej |1 ≤ i ≤ L, 1 ≤ j ≤ 4} , d = 4 . (3.92)

These scalar products can be served as variables of algebraic system. Scalar products

`2i , `i · `j , `i ·Pj can be expanded as polynomial functions of fundamental scalar products

through

`i · `j = (`i · e1, `i · e2, `i · e3, `i · e4)G−1
4


`j · e1

`j · e2

`j · e3

`j · e4

− µij ,

`i · Pj = (`i · e1, `i · e2, `i · e3, `i · e4)G−1
4


Pj · e1

Pj · e2

Pj · e3

Pj · e4

 . (3.93)

Then ideal of algebraic system is defined by m equations of maximal unitarity cut

Di(SP) = 0, i = 1, . . . ,m− 1 in polynomial ring C[SP].

A lazy way of defining variables uniformly for all situations is realized by picking two

external momenta to construct momentum basis (e1, e2, e3, e4). It is a direct application

of above discussion by always picking two external momenta, no matter how many

external legs it has. We can pick two independent momenta P1, P2 with (P1 +P2)2 6= 0,

and define two null vectors as

P [ µ1 = Pµ1 − xPµ12 ≡
1

2

〈
P [1 |γµ|P [1

]
, P [ µ2 = Pµ2 − x′Pµ12 ≡

1

2

〈
P [2 |γµ|P [2

]
, (3.94)

where x, x′ are solutions of (P1 − xP12)2 = 0 and (P2 − x′P12)2 = 0. Then momentum

basis can be taken as

eµ1 =

〈
P [1 |γµ|P [1

]
2γ12

, eµ2 =

〈
P [2 |γµ|P [2

]
2γ12

, eµ3 =
〈e1|γµ|e2]

2i
, eµ4 =

〈e2|γµ|e1]

2i
, (3.95)
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where

γ2
12 = 2

(P1P2)2 − P 2
1P

2
2

P 2
12

. (3.96)

The momentum basis satisfies properties that the only non-zero products among them

are e1e2 = e3e4 = 1. Definition (3.95) also makes massless limit smoothly, and e1, e2 go

back to P1, P2 respectively when P 2
1 → 0 or P 2

2 → 0.

Loop momenta and external momenta can be expanded into this momentum basis as

`i = xi1e1 + xi2e2 + xi3e3 + xi4e3 , (3.97)

Pi = (Pi · e2)e1 + (Pi · e1)e2 + (Pi · e4)e3 + (Pi · e3)e4 , (3.98)

where expansion coefficients xij are variables of algebraic system. The Lorentz invariant

scalar products are given by

`i · `j = xi1x
j
2 + xi2x

j
1 + xi4x

j
3 + xi3x

j
4 , (3.99)

`i · Pj = (Pj · e1)x1 + (Pj · e2)x2 + (Pj · e3)x3 + (Pj · e4)x4 . (3.100)

With them we can translate equations of loop momenta to equations of variables xij ,

i = 1, . . . , L, j = 1, 2, 3, 4. The affine ideal is generated by m quadratic polynomials

Di(x
1
1, x

1
2, x

1
3, x

1
4, . . . , x

L
1 , x

L
2 , x

L
3 , x

L
4 ) , i = 0, 1, . . . ,m− 1 ,

in polynomial ring

C[x1
1, x

1
2, x

1
3, x

1
4, . . . , x

L
1 , x

L
2 , x

L
3 , x

L
4 ] . (3.101)

This ideal can be further simplified, since fundamental scalar products are constrained

by cut equations. We can systematically define a minimal set of scalar products by

Gröbner basis method. Firstly, we generate ideal I(D) from D = (D0, . . . , Dm−1) = 0

in terms of fundamental scalar products SP. Then compute Gröbner basis G(I) of ideal

I(D). Remind that we should decide the monomial order and variable ordering, and use

them through whole computation. In practical computation with Mathematica, we can

set monomial order as deglex, since the computation is fast with it. By taking all leading

terms L(G(I)) in Gröbner basis according to the monomial order, the linear terms in

L(G(I)) determine a subset of SP that can be reduced to the complementary of this

subset in SP. The scalar products reduced by linear terms in L(G(I)) are defined to be

reducible scalar products(RSPs), and the remaining scalar products are defined to be

irreducible scalar products(ISPs).
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This algorithm indeed generates the minimal set of ISPs. To prove this[48], suppose

the set of fundamental scalar products is SP = (x1, x2, . . . , xn), and the set of RSPs is

(y1, y2, . . . , yr), which is a subset of SP. The remaining scalar products define the set

of ISPs (x′1, x
′
2, . . . , x

′
r′), with r′ + r = n. The Gröbner basis G(I) must contain a linear

polynomial

αyr +
r′∑
i=1

βix
′
i + γ ∈ I , (3.102)

where α, βi, γ are constants and α 6= 0. This linear polynomial cannot contain any other

yj , since for given monomial order, yj is always before yr when j < r. So yr is a linear

function of ISPs on maximal unitarity cut. Consider another linear polynomial

αyr−1 + α′yr
r′∑
i=1

βix
′
i + γ ∈ I , (3.103)

where α′ could be non-zero. yr−1 is before yr in given monomial order since r − 1 < r,

while no other yj are contained in this polynomial. We already show that yr is a linear

equation of ISPs, then yr−1 is also a linear equation of ISPs. By induction, all yj are

linear equations of ISPs. Furthermore, we can consider x′j in ISPs. If it can be expressed

as linear function of ISPs on maximal unitarity cut, then

x′j −
r′∑
i 6=j

βix
′
i + γ ∈ I . (3.104)

In this polynomial, the leading term x′k is also an ISP. Properties of Gröbner basis

ensure that I(L(I)) = I(L(G(I))). So if x′k ∈ L(I), then x′k ∈ I(L(G(I))). Because

(y1, y2, . . . , yr) are all linear terms in L(G(I)), the degree-one scalar product x′k then

should be generated by degree-one monomials of L(G(I)) as

x′k =
r∑
i=1

β′iyi , (3.105)

which contradicts the assumption of ring structure. So the set of ISPs is minimal, and

we can not write any elements in ISPs as linear functions of remaining ISPs.

Since all RSPs can be expressed as functions of ISPs, we can eliminate them in cut

equations. The ideal of algebraic system is then defined by independent quadratic poly-

nomials in polynomial ring C[x′1, x
′
2, . . . , x

′
r′ ]. This simplifies original algebraic system.
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3.5.2 The integrand basis

In summary, the algebraic system of maximal unitarity cut is defined by ideal I(D(ISPs)) ∈
C[ISPs], where ISP = (X1, X2, . . . , Xr′) is a subset of

(x1
1, x

1
2, x

1
3, x

1
4, . . . , x

L
1 , x

L
2 , x

L
3 , x

L
4 ).

In order to get integrand basis, we should divide numerator N by Gröbner basis

N

G(I)
=

N

g1g2 · · · gr
. (3.106)

The numerator is a polynomial of ISPs, and can be formally written as

N =
∑

α1,α2,...,αr′

cα1α2···αr′X
α1
1 Xα2

2 · · ·X
αr′
r′ . (3.107)

Without imposing any constraints, degree of each ISP αi = d(Xi) can be any non-

negative integer, and there is no up-bound for degree α =
∑r′

i=1 αi of each monomial.

This brings practical difficulty when doing polynomial division. We need to get a finite

set of monomials, and this set should be large enough so that no irreducible monomials

are missing in the remainder of polynomial division. A natural constraint of monomials

is the renormalization conditions for ISPs. For an UV finite theory, degree of each

loop momentum in numerator should not be larger than degree of corresponding loop

momentum in denominator, and degree of all loop momenta in a monomial should be less

than the highest degree of total loop momenta in denominator. Expressed in variables

of ISPs, the renormalization conditions impose constraints on degrees αi of each ISPs

directly. For L-loop amplitude with m propagators, they are given by

∑
j∈all ISPs of `i

d(x
(i)
j ) ≤ (Number of propagators containing `i) , i = 1, . . . , L ,

L∑
i=1

∑
j∈all ISPs of `i

d(x
(i)
j ) ≤ m− 1 , d(xij) ≥ 0 . (3.108)

After solving above inequalities, we obtain a finite set M of monomials. Integrand

basis is the set of linearly independent monomials in M with respect to denominator of

integrand, i.e., the propagators. In order to get integrand basis, we can use following

algorithm based on multivariate synthetic division. Firstly, decide a monomial order in

polynomial ring C[X1, X2, . . . , Xr′ ], and compute corresponding Gröbner basis G(I) of

I(D). Secondly, generate a finite set M of monomials from renormalization conditions.
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Third, for each monomial Mi in M , do the multivariate synthetic division by G(I),

Mi/G(I) = f1g1 + · · ·+ frgr +Ri . (3.109)

For given Gröbner basis, the remainder Ri is uniquely determined. Finally, collect all

monomials M(Ri) in Ri, and integrand basis B is given by union of all monomials

B =
⋃
i

M(Ri) . (3.110)

If ideal I(D) is irreducible, then there is only one variety V (D). All elements in integrand

basis are associated with this variety. However, in most cases ideal I(D) is reducible

and can be decomposed to many prime ideals by primary decomposition method as

I(D) =
s⋂

a=1

Ia(Da) . (3.111)

Each prime ideal Ia(Da) defines a variety V (Da), and

V (D) =
s⋃

a=1

V (Da) . (3.112)

For s prime ideals, there are s independent solutions for cut equations.

The algebraic system of Ia is usually much simpler than I. So for complicated system,

it is better to study each Ia separately, and recover the result of I from these partial

results. Following the same algorithm, we can generate Gröbner basis G(Ia) and obtain

integrand basis BIa . This integrand basis is smaller than B. Integrand basis of I can

be recovered by

B =
s⋃

a=1

BIa . (3.113)

Of course this union can not be taken by simply adding all monomials in each BIa to-

gether. Given two prime ideals Ia(Da), Ib(Db), if the union of ideals Ia∪b(Da, Db) is non-

trivial, then the intersection of varieties V (Da) and V (Db) is also a variety V (Da, Db).

The integrand basis of I = Ia
⋂
Ib obtained by Gröbner basis G(Ia

⋂
Ib), denoted as

union of BIa and BIb , is given by

BIa
⋂
Ib ≡ BIa

⋃
BIb = BIa +BIb −BIa⋃ Ib , (3.114)

where BIa
⋃
Ib is integrand basis obtained by Gröbner basis of the union Ia ∪ Ib. This

relation can be generalized to any number of prime ideals from primary decomposition
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of reducible ideal. For example

BIa
⋃
BIb

⋃
BIc = BIa +BIb +BIc −BIa⋃ Ib −BIa⋃ Ic −BIb⋃ Ic +BIa

⋃
Ib

⋃
Ic .

In practical calculation, we are also interested in the dimension of ideal. For 4-dimensional

theory, since there are 4L variables and m polynomial equations, the dimension of I(D)

is then dim(I) = 4L −m. However, if the ideal is reducible, dimension of each prime

ideal dim(Ia) may not equal to dim(I). Variety V (Da) could have fewer polynomial

equations, thus dimension of Ia(Da) could be larger than I(D). When considering ideal

Ia∪b(Da, Db), we get more constraints of polynomial equations than I(D). So dimension

dim(Ia∪b) is usually smaller than dim(Ia) and dim(Ib). This is easy to understand from

geometric picture, since dimension of intersection of two (hyper)surfaces cannot be larg-

er than original (hyper)-surfaces. For example, intersection of two-dimensional surface

and one-dimensional curve can at most be one-dimensional curve, and sometimes it is

only zero-dimensional point. Dimension of ideal can be computed by algebraic geometry

method with many algebraic geometry programs.

3.5.3 Polynomial fitting of expansion coefficients

Advantage of studying prime ideals Ia, a = 1, . . . , s instead of reducible ideal I becomes

obvious for polynomial fitting of expansion coefficients. The integrand basis of multi-

loop amplitude is usually very large, so a great number of coefficients of integrand basis

need to be fitted. Suppose there are nb monomials in integrand basis. The numerator

can be reduced to polynomial of these nb monomials in the form

N =
∑

α1,α2,...,αr′∈B
cα1α2···αr′X

α1
1 Xα2

2 · · ·X
αr′
r′ . (3.115)

We define

c = (c1, c2, . . . , cnb) , (3.116)

where ci denotes a configuration of coefficient cα1α2···αr′ . We want to work out the

map from products of tree-level amplitudes to coefficients ci in solution space of cut

equations. In order to do so, we need explicit parametrization of loop momenta using

solutions of cut equations. If ideal I(D) has dimension dI , then ISPs can be expressed as

functions of dI free parameters (τ1, τ2, . . . , τdI ). A rational parametrization is not always

possible for reducible ideal I, but could be possible for prime ideals Ia. This is one of

motivations that we should work on prime ideals obtained by primary decomposition

of original ideal. The loop moneta, as functions of scalar products, are also functions
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of (τ1, . . . , τdI ). With suitable choice of momentum basis, free parameters, etc., the

parametrization of loop momenta could be simple. After imposing maximal unitarity

cut, L-loop n-point integrand becomes

∆cut =
∑
hi,h′i

An1(`h1α1
, P1, `

h′1
α′1

)An2(`h2α2
, P2, `

h′2
α′2

) · · ·Ant(`htαt , Pt, `
h′t
α′t

) , (3.117)

where `αi , `α′i are corresponding loop momenta `i, i = 1, . . . , L being cut. After substi-

tuting the parametrization of loop momenta, we get

∆cut =
∑

α1,α2,...,αdI

da,α1α2···αdI τ
α1
1 τα2

2 · · · τ
αdI
dI

, (3.118)

where indices a = 1, 2, . . . , s denote a given solution of cut equations. We use α to denote

configurations α1α2 · · ·αdI , where each αi is an integer. Suppose for each solution a we

get na terms with coefficients da,α, α = 1, . . . , na. We can define

d = (d1,1, . . . , d1,n1 , . . . , ds,1, . . . , ds,ns) , (3.119)

which has nd =
∑s

a=1 na elements.

The numerator (3.115) also becomes a series of (τ1, . . . , τdI ). Since monomials of in-

tegrand basis are algebraic linearly independent, we also get nb terms in (τ1, . . . , τdI )

expansion. In the maximal unitarity cut, denominator of integrand is transferred to

delta functions that lead to cut equations, thus we have ∆cut = N . Equating coefficients

of τα1
1 · · · τ

αdI
dI

terms in both sides, we get an equation

nd∑
i=1

a′k,idi =

nb∑
i=1

b′k,ici (3.120)

for each term denoted by k, k = 1, . . . , nb. Coefficients a′k,i, b
′
k,i are obtained directly

from products of tree amplitudes and monomials of integrand basis after substituting

ISPs with parameters (τ1, . . . , τdI ). In total, we get nb equations. So we can construct

a nb × nd matrix M relating d and c as

Anb×nd · dTnd×1 = Bnb×nb · cTnb×1 →Mnb×nd · dTnd×1 = cTnb×1 , (3.121)

where

Mnb×nd = B−1
nb×nb ·Anb×nd . (3.122)

The matrix M has rank nb and invertible. So we can solve coefficients ci as functions

of known coefficients di from products of tree amplitudes.
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For general multi-loop amplitude, integrand basis could contain hundreds of terms, thus

matrix M is very difficult to compute. However, for reducible ideal I(D) that has s

prime ideals Ia(Da), a = 1, . . . , s obtained by primary decomposition, we can perform

polynomial fitting for each ideal Ia(Da) instead of I(D). Integrand basis of Ia(Da)

contains much smaller number of monomials. Suppose it contains nb′ monomials, then

we can define

c = (c1, c2, . . . , cnb′ ) . (3.123)

From multi-loop integrand we can also define coefficients

d = (da,1, da,2, . . . , da,na) , (3.124)

for the a-th prime ideal. This is similar to I(D), but now we are only taking coefficients

in a given cut solution a, not all independent cut solutions. Then from na × nb′ matrix

M, we can solve c as

Mnb′×na · bna×1 = cnb′×1 . (3.125)

Matrix Mnb′×na is much simpler than Mnb×nd , which simplifies practical computations.

The full set of expansion coefficients can be easily recovered from results of all prime

ideals.



Chapter 4

Integrand basis for 4-dimensional

two-loop amplitude

Using the basic setup of computational algebraic geometry methods, we are possible

to translate the study of integrand reduction as mathematical problems. Generally,

algebraic system of multi-loop amplitude is complicated, due to the large number of

cut equations as well as too many variables. However, systematic analysis of all 4-

dimensional 2-loop amplitudes is possible, because of their relatively simple topologies.

The strategy for integrand reduction of 2-loop amplitudes is as follows,

1. Parameterize loop momenta `1, `2 with variables (x1, x2, x3, x4) and (y1, y2, y3, y4)

by using suitable momentum basis (e1, e2, e3, e4). Get algebraic system of equations

from maximal unitarity cut. If there are m propagators Di, i = 0, . . . ,m− 1, then

algebraic system is defined by m equations with eight variable xi, yi, i = 1, 2, 3, 4.

2. Compute ISPs from Gröbner basis. Since the algebraic system is relatively simple,

we can also compute ISPs by hand. From m quadratic equations, we should find

all possible combinations among them to construct linear equations. By solving

these linear equations, we get a set of ISPs. The remaining quadratic equations

with variables of ISPs defines an equivalent algebraic system, which is simpler.

3. Compute ideal I(D). Apply primary decomposition for the ideal. If it is reducible,

get all prime ideals Ia(Da). The number of prime ideals equals to the number of

non-equivalent cut solutions. We can either study reducible ideal I(D) or prime

ideals Ia(Da).

4. Compute Gröbner basis of reducible ideal I(D) or prime ideals Ia(Da) for a given

monomial order. Get all possible monomials of ISPs that satisfying renormalization

85
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conditions. Divide these monomials with Gröbner basis, and collect all monomials

in remainder. They define integrand basis.

5. If I(D) is reducible, study the intersection pattern among varieties V (Ia) of prime

ideals Ia(Da).

6. With knowledge of integrand basis and intersection pattern of varieties V (Ia), we

can continue the study such as polynomial fitting of expansion coefficients, and

even compute integral basis by IBP relations from integrand basis.

In following sections, firstly topologies of 2-loop amplitude are discussed. Then we focus

on 4-dimensional 2-loop amplitudes and provide a general discussion on algebraic system

of them. As illustration of the methods, we present detailed analysis for two diagrams.

Results of other diagrams can be found in [61].

4.1 Topologies of two-loop amplitude

General diagrams of two-loop amplitudes can be drawn as Figure (4.1) and Figure (4.2).

They are constructed from one-loop diagrams by sewing two external legs. Diagrams

in Figure (4.1) have two sub-one-loop diagrams connected at a single point. Diagrams

in Figure (4.2.B) have two sub-one-loop diagrams connected by one common propaga-

tor and diagrams in Figure (4.2.C) have two sub-one-loop diagrams connected by two

common propagators.

(A1) (A2)

Figure 4.1: Illustration of two-loop topology generated from one-loop topology by
sewing two external legs that attached to the same tree structure. In sewing (A1), two
sub-one-loop topologies do not share the same vertex while in sewing (A2), they do
share a common vertex.
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(C)(B)

Figure 4.2: Illustration of two-loop topology generated from one-loop topology by
sewing two external legs that attached to different tree structures. For case (B), two
tree structures are adjacent, while for case (C), they are not adjacent.

These diagrams can be distinguished by their propagators. The propagators for each

diagram can be separated to three parts

D = DD̃D̂ , (4.1)

where D contains propagators with only `1, D̃ contains propagators with only `2, and D̂

contains propagators with both `1, `2. Assume n1, n2, n3 are the numbers of propagators

in D, D̃, D̂, then topologies of two-loop amplitude can be distinguished by (n1, n2, n3).

We can restrict ni with condition

n1 ≥ n2 ≥ n3 (4.2)

for the freedom of relabeling `1, `2. In order to define a solvable algebraic system for

renormalizable theory, we can impose inequalities for d = (4−2ε)-dimensional theory as

n1, n2, n3 ≤ 5 , n1 + n2 + n3 ≤ 11 . (4.3)

Solutions of above inequalities can be sorted into four groups according to n3, denoted

by (n1, n2) as

n3 = 3 : (5, 3), (4, 4), (4, 3), (3, 3) ;

n3 = 2 : (5, 4), (5, 3), (4, 4), (5, 2), (4, 3), (4, 2), (3, 3), (3, 2), (2, 2) ;

n3 = 1 : (5, 5), (5, 4), (5, 3), (4, 4), (5, 2), (4, 3), (5, 1), (4, 2),

(3, 3), (4, 1), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1) ;

n3 = 0 : (5, 5), (5, 4), (5, 3), (4, 4), (5, 2), (4, 3), (5, 1), (4, 2), (3, 3),

(4, 1), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1) .
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However, if we focus on 4-dimensional theory, constraints become

n1, n2, n3 ≤ 4 , n1 + n2 + n3 ≤ 8 . (4.4)

Then the number of solutions is greatly reduced. We get following solutions

n3 = 2 : (4, 2), (3, 3), (3, 2), (2, 2) ;

n3 = 1 : (4, 3), (4, 2), (3, 3), (4, 1), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1) ;

n3 = 0 : (4, 4), (4, 3), (4, 2), (3, 3), (4, 1), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1) .

If n3 = 0, no propagators contain both `1, `2, thus solutions with n3 = 0 denote two-

loop diagrams with two sub-one-loop structures connected at a single point as shown

in Figure (4.3). Integration of `1, `2 can be separated, so algebraic system defined by

maximal unitarity cut will be combination of two corresponding one-loop topologies.

The integrand basis should be slightly modified from two one-loop topologies to two-

loop topology. This modification comes from renormalization conditions of monomials.

Taking topology (A33) as example, for the left sub-one-loop topology, we denote ISPs

as (x1, x2), and for the right sub-one-loop topology, we denote ISPs as (y1, y2). Then

integrand basis can be given by monomials xn1
1 xn2

2 ym1
1 ym2

2 after polynomial division.

The renormalization conditions for the left sub-one-loop is n1 +n2 ≤ 3, and for the right

sub-one-loop m1 + m2 ≤ 3. However, since two sub-one-loop topologies are connected

at one point, we have five vertices in two-loop topology, so n1 + n2 + m1 + m2 ≤ 5.

Solutions of this additional constraint is smaller than naive combination of solutions of

two inequalities from sub-one-loop topologies. Consequently, number of monomials in

integrand basis is also smaller than naive product of those in sub-one-loop topologies.

Explicitly, representative elements of left and right sub-one-loop triangle topologies can

be taken as

{1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2} , {1, y1, y2, y

2
1, y

2
2, y

3
1, y

3
2} ,

and the naive product of these two sets gives 7 × 7 = 49 monomials of (x1, x2, y1, y2).

However, terms of the form x3
1y

3
1, x

3
1y

3
2, x

3
2y

3
1, x

3
2y

3
2 should be excluded from integrand

basis of (A33), since degree of monomial is larger than five. After subtracting these four

terms, we get 7× 7− 4 = 45 monomials in integrand basis of (A33), which are exactly

those by computing with maximal unitarity cut of two-loop topology. Information of

other topologies in type (A) can be similarly computed from sub-one-loop topologies

with minor modification.

Solutions with n3 = 1 denote all planar two-loop diagrams as shown in Figure (4.4).

Solutions with n3 = 2 denote all non-planar two-loop diagrams as shown in Figure (4.5).
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Figure 4.3: All 10 topologies of type (A) diagram. Each topology is denoted by (Anm)
where n,m are numbers of propagators of the left and right sub-one-loop topologies.
All external momenta are out-going.
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Figure 4.4: All 9 topologies of type (B) diagram. Each topology is denoted by (Bnm)
where n,m are numbers of propagators containing only `1 or `2. All external momenta
are out-going.
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K1 K1 K1

K1
K2

K2 K2K3

K5K6
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K4K5

K7
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K5 K3K4

K6
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L1
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L1L2 L2 L2 L2

(C42) (C33) (C22)(C32)

Figure 4.5: All 4 topologies of type (C) diagram. Each topology is denoted by
(Cnm) where n,m are numbers of propagators containing only `1 or `2 respectively.
All external momenta are out-going.

4.2 General discussion on equations of maximal unitarity

cut

When n3 = 1 or 2, we can explicitly write m propagators D, D̃, D̂ as

D0 = `21 , D1 = (`1 −Ka,1)2 , . . . , Dn1−1 = (`1 −Ka,n1−1)2 ,

D̃0 = `22 , D̃1 = (`2 −Kb,1)2 , . . . , D̃n2−1 = (`2 −Kb,n2−1)2 ,

D̂0 = (`1 + `2 +Kc,1)2 , . . . , D̂n3−1 = (`1 + `2 +Kc,n3)2 , (4.5)

where n1 + n2 + n3 = m. For 4-dimensional theory, we have m ≤ 8.

Equations of maximal unitarity cut

Di = 0 , i = 0, 1, . . . , n1 − 1 ,

D̃i = 0 , i = 0, 1, . . . , n2 − 1 ,

D̂i = 0 , i = 0, 1, . . . , n3 − 1 (4.6)

define an algebraic set. From above m equations, we can always get (m − 3) linear

equations by

Di −D0 = −2`1 ·Ka,i +K2
a,i = 0 , i = 1, . . . , n1 − 1 , (4.7)

D̃i − D̃0 = −2`2 ·Kb,i +K2
b,i = 0 , i = 1, . . . , n2 − 1 ,

D̂i − D̂0 = 2(`1 + `2) · (Kc,i+1 −Kc,1) +K2
c,i+1 −K2

c,1 = 0 , i = 1, . . . , n3 − 1 .

Remaining three equations

D0 = `21 = 0 , D̃0 = `22 = 0 , D̂0 = (`1 + `2 +Kc,1)2 = 0 (4.8)

are quadratic equations that can not be used to further construct linear equations.

Solving (m−3) linear equations, we can write (m−3) variables as functions of remaining
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8 − (m − 3) = (11 −m) ISPs. So finally we get an equivalent algebraic system defined

by three quadratic equations with (11−m) variables.

If m = 8, we have three quadratic equations with three variables. By solving these

equations we can completely fix solution to points. So geometric picture of this solution

is simple. It is isolated points in complex plain. Each point is an inequivalent cut

solution, so the number of integrand basis equals to the number of points. Computation

of these topologies is trivial.

If m = 7, we have three quadratic equations with four variables. So solution is described

by one complex variable, which is a complex curve. Topologically, it is equivalent to a

Riemann sphere. There is an unique topological invariant, the geometric genus gG, to

characterize it. Parametrization of solutions is still simple, and different inequivalent

solutions usually intersect at single points.

If m < 7, solutions of cut equations are described by more than one variables, which

describes hyper-surface or complex manifold. Analysis of these solutions is difficult even

as mathematical problems. However, it is still possible to study integrand basis by

Gröbner basis method, and analyze intersection of inequivalent solutions.

Having algebraic system defined by equations (4.8) and (11−m) ISPs, we can compute

Gröbner basis after deciding proper monomial order. Before determining integrand basis,

we need to construct a finite set of monomials in numerator satisfying renormalization

conditions. Suppose there are m1 variables xi and m2 variables yi with m1+m2 = 11−m
in set of ISPs, then monomials of the form x

d(xi1 )

i1
· · ·xd(xim1

)

im1
y
d(yj1 )

j1
· · · yd(yjm2

)

jm2
, where

d(x) is the degree of variable x, should satisfying following renormalization conditions

∑
all ISPs of x

d(xi) ≤ n1 + n3 ,
∑

all ISPs of y

d(yi) ≤ n2 + n3 ,∑
all ISPs of x

d(xi) +
∑

all ISPs of y

d(yi) ≤ m− 1 , d(xi) ≥ 0 , d(yi) ≥ 0 . (4.9)

It is possible to get hundreds of terms from solving these inequalities. By dividing

them with Gröbner basis, we get a set of integrand basis from collecting monomials in

remainders.

A complete study of cut equations also includes the study of inequivalent solutions

and their relations. Primary decomposition of ideal I(D, D̃, D̂) gives all prime ideals

Ia(Da). All inequivalent solutions are described by varieties V (Ia). Intersection of two

inequivalent solutions V (Ia)∩V (Ib) is directly given by solving equations Da = Db = 0,

i.e., V (I1 ∪ I2). If it has no solution, then there is no intersection. We can study the

intersection pattern of all varieties V (Ia) by solving all possible combinations among

them. Since the three equations in (4.8) are all quadratic, each of them can at most be
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factorized to two factors. So at most we can get eight prime ideals. Although intersection

pattern becomes complicated as the number of prime ideals increases, algebraic system

of each prime ideal becomes simpler. So we can still carry out the computation with

help of computer.

The irreducibility of cut equations depends heavily on configuration of external mo-

menta, which can be judged from three-vertex of diagram. Every time when there is

massless three-vertex, cut equations will be reducible. In maximal unitarity cut, all

internal momenta are massless, so the masslessness of three-vertex is totally determined

by external momenta. However, different configurations of external momenta might give

the same factorization of cut equations, thus the same prime ideals after primary decom-

position. So it is important to survey irreducibility of cut equations under all possible

configurations of external momenta.

4.3 Planar penta-triangle topology

In this section, we present result of planar two-loop penta-triangle topology (B42) as

shown in Figure (4.4). This topology has 7 propagators, so finally we get three equations

with four variables. The solution is one-dimensional complex curve. In fact, four prop-

agators contain only `1, so cut equations of these four propagators will completely fix

(x1, x2, x3, x4). It gives two solutions, so ideal of cut equation can be at least decomposed

to two prime ideals even for most general external momentum configuration.

4.3.1 The integrand basis

In order to get simple expressions for cut equations, we choose two external momenta

K1,K4, as shown in Figure (4.4), to generate momentum basis (e1, e2, e3, e4) defined by

(3.95). All loop momenta and external momenta can be expanded as

`1 = x1e1 + x2e2 + x3e3 + x4e4 , `2 = y1e1 + y2e2 + y3e3 + y4e4 ,

K1 = α12e1 + α11e2 , K1 +K2 = α22e1 + α21e2 + α24e3 + α23e4 ,

K1 +K2 +K3 = α32e1 + α31e2 + α34e3 + α33e4 ,

K4 = β12e1 + β11e2 , K5 = γ12e1 + γ11e2 + γ14e3 + γ13e4 ,

K6 = −(K1 +K2 +K3 +K4 +K5) . (4.10)

Coefficients α, β and γ are known for given external momenta. These coefficients are

all independent for general external momenta, but would have non-trivial relation for
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special kinematics. For example, since K5 or K6 could be zero without changing penta-

triangle topology, momentum conservation will impose constraint on these coefficients

if K5,K6 are zero. When K6 = 0, we have

γ11 = −β11 − α31 , γ12 = −β12 − α32 , γ13 = −α33 , γ14 = −α34 , (4.11)

and when K5 = K6 = 0, we have

γ1i = 0 , α31 = −β11 , α32 = −β12 , α33 = 0 , α34 = 0 . (4.12)

These constraints affect the irreducibility of ideal I(D), which we will show later.

Four linear equations

D1 −D0 = −2(α11x1 + α12x2) + 2α11α12 = 0 ,

D2 −D0 = −2(α21x1 + α22x2 + α23x3 + α24x4) + 2(α21α22 + α23α24) = 0 ,

D3 −D0 = −2(α31x1 + α32x2 + α33x3 + α34x4) + 2(α31α32 + α33α34) = 0 ,

D̃1 − D̃0 = −2(β11y1 + β12y2) + 2β11β12 = 0 (4.13)

can be solved, and four variables (x1, x2, x3, y2) are expressed as linear functions of four

ISPs (x4, y1, y3, y4). The results are given by

x1 =
α12(α24α33 − α23α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4 (4.14)

+
α12(−α21α22α33 + α11(α22α33 − α23α32) + α23(α31α32 + α33α34 − α33α24))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
,

x2 =
α11(α23α34 − α24α33)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4 (4.15)

+
α11(α21α22α33 + α12(α23α31 − α21α33)− α23(α31α32 + α33α34 − α33α24))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
,

x3 =
α12(α21α34 − α24α31) + α11(α24α32 − α22α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
x4 (4.16)

+
α11((−α23α24 − α22α21 + α22α31)α32 + α12(α21α32 − α22α31) + α22α33α34)

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)

+
α12(α23α24α31 + α21(α31α22 − α31α32 − α33α34))

α12(α23α31 − α21α33) + α11(α22α33 − α23α32)
,

and

y2 = β11(1− y1

β12
) . (4.17)
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The analytic expression of (x1, x2, x3) seems to be complicated. For purpose of analysis,

we can just treat them as linear functions of x4. For practical computation, we can use

computer.

The quadratic equation D0 = x1x2 + x3x4 = 0 becomes quadratic equation of x4

x2
4 + a1x4 + a2 = 0 , (4.18)

where a1, a2 are functions of α. Since x4 ∈ C, we can get two solutions xΓ1
4 , xΓ2

4 . One

would wonder if in some cases xΓ1
4 = xΓ2

4 . This might be true for very special choice

of α. But for external momentum configurations considered here, we always get two

distinct solutions. So there is no intersection between them. The ideal I(D0, D̃0, D̂0)

can be decomposed to two ideals I1(x4 − xΓ1
4 , D̃0, D̂0) and I2(x4 − xΓ2

4 , D̃0, D̂0). They

could still be reducible ideals. The other two quadratic equations are

D̃0 = β11(1− y1

β12
)y1 + y3y4 = 0 , (4.19)

and(for convenience we re-define D̂0 = D̂0 −D0 − D̃0)

D̂0 = 0 =
(
x2 + γ11 − (x1 + γ12)

β11

β12

)
y1 + (x4 + γ13)y3 + (x3 + γ14)y4 (4.20)

+(x1 + γ12)β11 + γ11x1 + γ12x2 + γ13x3 + γ14x4 + γ11γ12 + γ13γ14 ,

where (x1, x2, x3) should be replaced by linear functions of x4.

It is not difficult to compute integrand basis directly from Gröbner basis G(I) of ideal

I(D0, D̃0, D̂0). Monomials in numerator are terms of the form x
d(x4)
4 y

d(y1)
1 y

d(y3)
3 y

d(y4)
4

that satisfying renormalization conditions

d(x4) ≤ 5 , d(y1) + d(y3) + d(y4) ≤ 3 , d(x4) + d(y1) + d(y3) + d(y4) ≤ 6 .

There are 94 solutions for these inequalities. Computing Gröbner basis G(I) of ideal

I(D0, D̃0, D̂0) with Degree Lexicographic monomial order in Mathematica, and dividing

94 monomials with G(I) by multivariate synthetic division, we obtain integrand basis.

Representative elements of integrand basis depend on kinematic configurations. In these

example, we get 3 types of integrand basis,

1. Kinematic configurations with K4 massive, there are 14 elements

BIB42 = {1, x4, y1, y3, x4y3, y1y3, y
2
3, y

3
3, y4, y3y4, y

2
3y4, y

2
4, y3y

2
4, y

3
4} . (4.21)
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2. Kinematic configurations with K4 massless while at most one of K5,K6 is zero,

there are 14 elements

BIIB42 = {1, x4, y1, y3, x4y3, y1y3, y
2
3, y1y

2
3, y

3
3, y4, y1y4, y

2
4, y1y

2
4, y

3
4} . (4.22)

3. Kinematic configurations with K4 massless while both K5 = K6 = 0, there are 20

elements

BIIIB42 = {1, x4, y1, x4y1, y
2
1, x4y

2
1, y

3
1, x4y

3
1, y3, y1y3,

y2
1y3, y

2
3, y1y

2
3, y

3
3, y4, y1y4, y

2
1y4, y

2
4, y1y

2
4, y

3
4} . (4.23)

For practical computation in Mathematica, we should take care of monomial order

as well as variable ordering of ISPs. For example, to determine monomial order for

x3y, x2y2, xy3, since they are all degree 4, we cannot list them according to total degree

of monomial. If we set variable ordering of ISPs to be {x, y}, then x should firstly be

considered, and we have x3y � x2y2 � xy3. Otherwise if we set variable ordering to

be {y, x}, y should be considered firstly, and we have xy3 � x2y2 � x3y. In practical

computation, we should not only define monomial order but also variable ordering of

ISPs.

4.3.2 Expansion coefficients of integrand basis

Let us briefly describe polynomial fitting of expansion coefficients. For algebraic geom-

etry method, we can translate the integrand F(`1, `2) computed directly from Feyn-

man diagrams or from generalized unitarity cut method to polynomial function of

ISPs F(x4, y1, y3, y4). Then divide F(x4, y1, y3, y4) with Gröbner basis G(I) of ideal

I(D0, D̃0, D̂0). The remainder is a polynomial function. By expanding it as series of

integrand basis, we directly get the expansion coefficients.

We do not necessary to use ideal I if it is reducible. Instead, prime ideals of reducible

ideal I via primary decomposition can also be used to get a smaller set of equations.

Explicitly, we know that ideal I(D0, D̃0, D̂0) can be decomposed to two prime ideals

I1(x4−xΓ1
4 , D̃0, D̂0) and I2(x4−xΓ2

4 , D̃0, D̂0) for general kinematics. Polynomial division

F(x4, y1, y3, y4)/G(I1) gives a remainder

R(F(x4, y1, y3, y4)/G(I1)) = f1 + f2y3 + f3y
2
3 + f4y

3
3 + f5y4 + f6y3y4 + f7y

2
3y4 , (4.24)

with seven known coefficients fi.
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We can also divide each monomial in integrand basis by Gröbner basis G(I1), and

remainders of these polynomial division are

(1)/G(I1)→ 1 , (x4)/G(I1)→ d2 , (y1)/G(I1)→ d31y4 + d32y3 + d33 ,

(y3)/G(I1)→ y3 , (x4y3)/G(I1)→ d5y3 , (y1y3)/G(I1)→ d61y3y4 + d62y
2
3 + d63y3 ,

(y2
3)/G(I1)→ y2

3 , (y3
3)/G(I1)→ y3

3 , (y4)/G(I1)→ y4 , (y3y4)/G(I1)→ y3y4 ,

(y2
3y4)/G(I1)→ y2

3y4 , (y2
4)/G(I1)→ d12,1y3y4 + d12,2y4 + d12,3y

2
3 + d12,4y3 + d12,5 ,

(y3y
2
4)/G(I1)→ d13,1y

2
3y4 + d13,2y3y4 + d13,3y

3
3 + d13,4y

2
3 + d13,5y3 ,

(y3
4)/G(I1)→ d14,1y

2
3y4 + d14,2y3y4 + d14,3y4 + d14,4y

3
3 + d14,5y

2
3 + d14,6y3 + d14,7 , (4.25)

with known coefficients d.

Remainder R(F(x4, y1, y3, y4)/G(I1)) should equal to the expansion of integrand basis

with coefficients ci. So equating the same monomial in both sides, we get 7 equations

for 14 unknown coefficients ci

f1 = c1 + c2d2 + c3d33 + c12d12,5 + c14d14,7 ,

f2 = c3d32 + c4 + c5d5 + c6d63 + c12d12,4 + c13d13,5 + c14d14,6 ,

f3 = c6d62 + c7 + c12d12,3 + c13d13,4 + c14d14,5 ,

f4 = c8 + c13d13,3 + c14d14,4 ,

f5 = c3d51 + c9 + c12d12,2 + c14d14,3 ,

f6 = c6d61 + c10 + c12d12,1 + c13d13,2 + c14d14,2 ,

f7 = c11 + c13d13,1 + c14d14,1 . (4.26)

Similarly, using Gröbner basis G(I2) we also get another 7 equations relating f̃i and 14

unknown coefficients ci. These 14 equations for 14 coefficients ci can be solved to get

all 14 expansion coefficients of integrand basis

Another method, the parametrization method, has already been described in chapter

3. It is closely related to prime ideals of a reducible ideal via primary decomposi-

tion. Each prime ideal is an inequivalent cut solution. For example, two prime ideals

I1, I2 of reducible ideal I(D0, D̃0, D̂0) represent two inequivalent cut solutions, distin-

guished by xΓ1
4 , xΓ2

4 . For each solution, we can parameterize variables with one parameter

y1(τ), y3(τ), y4(τ). Then we have

F(xΓi
4 , y1(τ), y3(τ), y4(τ)) =

14∑
k=1

ckBB42,k(τ) . (4.27)
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Coefficients ci can be fitted by comparing terms that having the same degrees of τ in

both sides. This fitting is simple both analytically or numerically.

4.3.3 Irreducibility of cut equations

Ideal I(D0, D̃0, D̂0) can be decomposed to two ideals I1(x4 − xΓ1
4 , D̃0, D̂0), I2(x4 −

xΓ2
4 , D̃0, D̂0). For general kinematics, each ideal is irreducible. But they are reducible

for kinematic configurations where massless three-vertex appear in diagram. In order to

study the irreducibility, let us focus on one ideal Ii(x4 − xΓi
4 , D̃0, D̂0).

After setting x4 = xΓi
4 , D̂0 = 0 becomes a linear equation in (y1, y3, y4) and D̃0 = 0 is

still quadratic. In our convention, we have β11 6= 0 When K4 is massive. So D̃0 = 0 can

not naively be factorized. To see when it is factorized, we can parameterize cut solution

with y1 = τ , then

D̃0 = 0 → y3y4 + F (τ) = 0 , D̂0 = 0 → ay3 + by4 + c(τ) = 0 , (4.28)

where a, b are functions of α, β, γ and xΓi
4 . F (τ) is quadratic function of τ and c(τ) is

linear function of τ . From above two equations we can solve

y4 =
ac(τ)±

√
a2[c(τ)2 + 4abF (τ)]

−2ab
. (4.29)

We are interested in rational parametrization of cut solutions. Only when c(τ)2+4abF (τ)

inside the square root is a perfect square we can get rational parametrization for y4.

Since c(τ)2 + 4abF (τ) is quadratic function of τ , in order for it to be a perfect square,

the discriminant should be zero. Using explicit expressions of F (τ), c(τ) and a, b, the

discriminant is given by

(xΓi
1 x

Γi
2 + xΓi

3 x
Γi
4 )(β11 −

Ξ

β12
)

+
(xΓi

2 + γ11 + β11)(xΓi
1 + γ12 + β12) + (xΓi

4 + γ13)(xΓi
3 + γ14)

β12
Ξ , (4.30)

where

Ξ = γ11x
Γi
1 + γ12x

Γi
2 + γ13x

Γi
3 + γ14x

Γi
4 + γ11γ12 + γ13γ14 . (4.31)

The first term in (4.30) vanishes since D0 = xΓi
1 x

Γi
2 + xΓi

3 x
Γi
4 = 0. The second term will

vanish if at least one K5 or K6 is zero. If K5 is zero, all γ1i = 0, thus Ξ = 0. K6 = 0,

we have

γ11 = −β11 − α31 , γ12 = −β12 − α32 , γ13 = −α33 , γ14 = −α34 . (4.32)
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So the second term becomes

−xΓi
1 α31 − xΓi

2 α32 − xΓi
3 α33 − xΓi

4 α34 + α31α32 + α33α34

β12
Ξ =

D3 −D0

2β12
Ξ . (4.33)

It vanishes since D3−D0 = 0. The reducible ideal Ii(x4−xΓi
4 , D̃0, D̂0) can be decomposed

to two prime ideals via primary decomposition, and in total we get four prime ideals.

We can compute Gröbner basis for each prime ideal, and use them to compute integrand

basis. For each prime ideal, we get 4 representative elements in integrand basis. Naively

counting the total number of elements, we have 4 × 4 = 16 > 14, which is larger than

the number of representative elements for I(D0, D̃0, D̂0). The over counting comes from

intersections of varieties. Both V (I11 ∪ I12) and V (I21 ∪ I22) are non-empty, and they

are single points. So we get integrand basis

BI11 ∪BI12 = BI11 +BI12 −BI11∪I12 = 4 + 4− 1 = 7 ,

BI21 ∪BI22 = BI21 +BI22 −BI21∪I22 = 4 + 4− 1 = 7 ,

BI11 ∪BI12 ∪BI21 ∪BI22 = 7 + 7 = 14 , (4.34)

which is exactly the integrand basis given in BIB42.

If K4 is massless and at most one of K5,K6 is zero, we have β11 = 0. Equation D̃0 =

y3y4 = 0 is automatically factorized. The other equation D̂0 = 0 is still a linear equation

of (y1, y3, y4), let us assume it to be

ay3 + by4 + y1 + c = 0 . (4.35)

We get two prime ideals for each xΓi
4 as

Ii1(x4 − xΓi
4 , y3, ay3 + by4 + y1 + c) , Ii2(x4 − xΓi

4 , y4, ay3 + by4 + y1 + c) . (4.36)

So in total we have four prime ideals, and the four inequivalent cut solutions are param-

eterized by τ as

solution 1: x4 = xΓ1
4 , y3 = 0 , y4 = τ , y1 = −bτ − c , (4.37)

solution 2: x4 = xΓ1
4 , y3 = τ , y4 = 0 , y1 = −aτ − c , (4.38)

solution 3: x4 = xΓ2
4 , y3 = 0 , y4 = τ , y1 = −bτ − c , (4.39)

solution 4: x4 = xΓ2
4 , y3 = τ , y4 = 0 , y1 = −aτ − c . (4.40)

It is easy to see that varieties of I11, I12 have an intersecting point at

x4 = xΓ1
4 , y3 = 0 , y4 = 0 , y1 = −c .
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Similarly, varieties of I21, I22 have an intersecting point at

x4 = xΓ2
4 , y3 = 0 , y4 = 0 , y1 = −c .

Discussion on integrand basis of this kinematic configuration is the same as kinematic

configuration where K4 is massive and at least one of K5,K6 is zero. However, represen-

tative elements should be modified. The reason is that, when K4 is massless, we have

D̃0 = y3y4. Thus monomials with a factor y3y4 should be reducible by D̃0 and they

should be excluded. So we get a different integrand basis BIIB42 instead of BIB42.

There is a special kinematic configuration where K4 is massless and K5 = K6 = 0.

Equations of maximal unitarity cut become

D0 =
(
− α24

α23
x4 +

α23α24 − α12α21 + α21α22

α23

)
x4 = 0 , D̃0 = y3y4 = 0 ,

D̂0 = x4y3 +
(
− α24

α23
x4 +

α21α22 − α21α12 + α23α24

α23

)
y4 = 0 . (4.41)

Surprisingly, y1 disappears in cut equations. So it is not constrained, and should be taken

as a free parameter τ1. We have three cut equations for three variables (x4, y3, y4), but

these cut equations are not all independent. There are two non-trivial solutions. The

first one is x4 = 0, y4 = 0. This is a solution of D0 = 0, D̃0 = 0, while the third equation

D̂0 = 0 automatically satisfies. So y3 in the third equation is not constrained and

should be taken as a free parameter τ2. Similarly, we have another non-trivial solution

x4 = (α21α22 − α12α21 + α23α24)/α24, y3 = 0. y4 should be taken as a free parameter

τ2. In this kinematic configuration, there are two prime ideals, and each ideal is two

dimensional. Using Gröbner basis of each prime ideal, we get 10 representative elements

in integrand basis. Since there is no intersection between varieties of two prime ideals,

we get 20 elements in integrand basis as shown in BIIIB42.

4.4 Non-planar crossed double-triangle topology

In this section, we present result of another more complicated example, the non-planar

two-loop crossed double-triangle topology (C22) as shown in Figure (4.5). This topology

has six propagators, so finally we get three quadratic equations with five variables. The

cut solutions will be 2-dimensional. Then intersection of varieties of prime ideals could

be 1-dimensional curve or points. The number of prime ideals could be as high as eight

in some kinematic configurations, which makes discussion more involved.
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4.4.1 The integrand basis

For simplicity, we use K1,K2 to construct momentum basis (e1, e2, e3, e4). Loop mo-

menta and external momenta are expanded as

`1 = x1e1 + x2e2 + x3e3 + x4e4 , `2 = y1e1 + y2e2 + y3e3 + y4e4 ,

K1 = α12e1 + α11e2 , K2 = β12e1 + β11e2 ,

K4 = γ12e1 + γ11e2 + γ14e3 + γ13e4 , K3 +K4 = γ22e1 + γ21e2 + γ24e3 + γ23e4 ,

K5 = (−K1 +K2 +K3 +K4) . (4.42)

Three linear equations

0 = D1 −D0 = −2(α11x1 + α12x2) + 2α11α12 ,

0 = D̃1 − D̃0 = −2(β11y1 + β12y2) + 2β11β12 ,

0 = D̂1 − D̂0 =

4∑
i=1

2(xi + yi)(γ2i − γ1i) + 2(γ21γ22 + γ23γ24 − γ11γ12 − γ13γ14)

can be used to solve (x1, y2, x2) as functions of five ISPs (x3, x4, y1, y3, y4). Remaining

three quadratic equations D0 = 0, D̃0 = 0 and D̂0(After re-definition of D̂0 = D̂0 −
D0 − D̃0) could be equations with very complicated coefficients. Ideal I(D0, D̃0, D̂0) of

algebraic system is defined by

D0(x3, x4) = 0 , D̃0(y1, y3, y4) = 0 , D̂0(x3, x4, y1, y3, y4) = 0 (4.43)

with five ISPs (x3, x4, y1, y3, y4).

We can compute Gröbner basis G(I) with Degree Lexicographic monomial order and

variable ordering {x3, y3, x4, y4, y1} in Mathematica. To determine integrand basis, we

take all possible monomials x
d(x3)
3 x

d(x4)
4 y

d(y1)
1 y

d(y3)
3 y

d(y4)
4 under renormalization condi-

tions

d(x3) + d(x4) ≤ 4 , d(y1) + d(y3) + d(y4) ≤ 4 , (4.44)

d(x3) + d(x4) + d(y1) + d(y3) + d(y4) ≤ 5 .

There are 225 solutions. Dividing these 225 monomials with Gröbner basis, and mono-

mials in remainder of multivariate synthetic division define integrand basis. Depending

on kinematic configurations, there are in total 6 types of integrand basis,
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1. Kinematic configurations where at least one of K4,K5 is non-zero and K1,K2 are

massive, there are 100 representative elements

BIC22 = {1, x3, x4, x3x4, x
2
4, x3x

2
4, x

3
4, x3x

3
4, x

4
4, y1, x3y1, x4y1, x3x4y1, x

2
4y1, x3x

2
4y1,

x3
4y1, x3x

3
4y1, x

4
4y1, y

2
1, x3y

2
1, x4y

2
1, x

2
4y

2
1, x

3
4y

2
1, y

3
1, x3y

3
1, x4y

3
1, x

2
4y

3
1, y

4
1, x3y

4
1, x4y

4
1,

y5
1, y3, x3y3, x4y3, x

2
4y3, x

3
4y3, x

4
4y3, y1y3, x4y1y3, x

2
4y1y3, x

3
4y1y3, y

2
1y3, x4y

2
1y3, y

3
1y3,

x4y
3
1y3, y

4
1y3, y

2
3, x3y

2
3, x4y

2
3, y1y

2
3, x4y1y

2
3, y

2
1y

2
3, x4y

2
1y

2
3, y

3
1y

2
3, y

3
3, x3y

3
3, x4y

3
3, y1y

3
3,

x4y1y
3
3, y

2
1y

3
3, y

4
3, x3y

4
3, x4y

4
3, y1y

4
3, y

5
3, y4, x4y4, x

2
4y4, x

3
4y4, x

4
4y4, y1y4, x4y1y4, x

2
4y1y4,

x3
4y1y4, y

2
1y4, x4y

2
1y4, x

2
4y

2
1y4, y

3
1y4, x4y

3
1y4, y

4
1y4, y

2
4, x4y

2
4, x

2
4y

2
4, x

3
4y

2
4, y1y

2
4, x4y1y

2
4,

x2
4y1y

2
4, y

2
1y

2
4, x4y

2
1y

2
4, y

3
1y

2
4, y

3
4, x4y

3
4, x

2
4y

3
4, y1y

3
4, x4y1y

3
4, y

2
1y

3
4, y

4
4, x4y

4
4, y1y

4
4, y

5
4} .
(4.45)

2. Kinematic configurations where at least one of K4,K5 is non-zero and K1 is mas-

sive, K2 is massless, there are 100 representative elements. The integrand basis is

given by replacing one element from (4.45)

BIIC22 = BIC22 − {x2
4y

3
4}+ {x2

4y
2
1y3} . (4.46)

3. Kinematic configurations where at least one of K4,K5 is non-zero and K1 is mass-

less, there are 98 representative elements. The integrand basis is given by removing

17 elements from (4.45) while adding another 15 elements

BIIIC22 = BIC22 − {x3x4, x3x
2
4, x3x

3
4, x3x4y1, x3x

2
4y1, x3x

3
4y1, x

2
4y3, x

3
4y3, x

4
4y3,

x2
4y1y3, x

3
4y1y3, y

5
3, x

2
4y1y4, x

3
4y1y4, x

2
4y

2
1y4, x

2
4y1y

2
4, y

5
4}+ {x2

3, x
3
3, x

4
3, x

2
3y1,

x3
3y1, x

4
3y1, x

2
3y

2
1, x

3
3y

2
1, x

2
3y

3
1, x

2
3y3, x

3
3y3, x

4
3y3, x

2
3y

2
3, x

3
3y

2
3, x

2
3y

3
3} . (4.47)

4. Kinematic configurations where both K4 = K5 = 0 and K2 is massive, there are

96 representative elements. The integrand basis is given by removing 22 elements

in (4.45) while adding another 18 elements

BIVC22 = BIC22 − {x3x4, x3x
2
4, x3x

3
4, x3x4y1, x3x

2
4y1, x3x

3
4y1, x3y

2
1, x

2
4y

2
1, x

3
4y

2
1, x3y

3
1,

x2
4y

3
1, x3y

4
1, x

2
4y3, x

3
4y3, x

4
4y3, x

2
4y1y3, x

3
4y1y3, y1y

4
3, y

5
3, x

2
4y

2
1y4, y1y

4
4, y

5
4}+ {x2

3, x
3
3,

x4
3, x

2
3y1, x

3
3y1, x

4
3y1, x

2
3y3, x

3
3y3, x

4
3y3, x3y1y3, x

2
3y1y3, x

3
3y1y3, x

2
3y

2
3, x

3
3y

2
3, x3y1y

2
3,

x2
3y1y

2
3, x

2
3y

3
3, x3y1y

3
3} . (4.48)

5. Kinematic configurations where both K4 = K5 = 0 and K2 is massless while at

least one of K1,K3 is massive, there are 96 representative elements. The integrand
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basis is given by replacing 9 elements in (4.48)

BVC22 = BIVC22 − {x4y
2
3, x4y1y

2
3, x4y

2
1y

2
3, x4y

3
3, x4y1y

3
3, x4y

4
3, x4y

2
1y4, x4y

3
1y4,

x4y
2
1y

2
4}+ {x3y

2
1, x

2
3y

2
1, x

3
3y

2
1, x

2
4y

2
1, x

3
4y

2
1, x3y

3
1, x

2
3y

3
1, x

2
4y

3
1, x3y

4
1} . (4.49)

6. Kinematic configurations where bothK4 = K5 = 0 and allK1,K2,K3 are massless,

there are 144 representative elements

BV IC22 = {1, x1, x
2
1, x

3
1, x

4
1, x2, x1x2, x

2
1x2, x

3
1x2, x

2
2, x1x

2
2, x

2
1x

2
2, x

3
2, x1x

3
2, x

4
2, y1,

x1y1, x
2
1y1, x

3
1y1, x

4
1y1, x2y1, x1x2y1, x

2
1x2y1, x

3
1x2y1, x

2
2y1, x1x

2
2y1, x

2
1x

2
2y1, x

3
2y1,

x1x
3
2y1, x

4
2y1, y

2
1, x1y

2
1, x

2
1y

2
1, x

3
1y

2
1, x2y

2
1, x1x2y

2
1, x

2
1x2y

2
1, x

2
2y

2
1, x1x

2
2y

2
1, x

3
2y

2
1,

y3
1, x1y

3
1, x

2
1y

3
1, x2y

3
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The number of representative elements for this topology is already very large, so primary

decomposition of reducible ideal will play an important role in simplifying computation.

Thus it is important to study irreducibility of ideal before carrying out computation.

4.4.2 Irreducibility of cut equations

For a transparent presentation of results, we use notation C22
(L,N,R)
(U,P ) to denote various

kinematic configurations. Each L,N,R can be either M or m, representing massive or

massless momentum of K1,K3,K2 respectively. U,P can be either K4,K5 or � if the

corresponding one is zero. For example, C22
(M,M,m)
(K4,�) denotes kinematic configuration

where K1,K3 are massive, K2 is massless and K5 is zero.

Depending on kinematic configurations, we can get 1, 2, 4 or 8 prime ideals after primary

decomposition of ideal I(D0, D̃0, D̂0). Detailed analysis is given below.
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Kinematic configurations C22
(L,N,R)
(K4,K5)

When K4,K5 are non-zero, we have 8 different kinematic configurations since each

L,N,R has two possibilitiesM,m. For most general case C22
(M,M,M)
(K4,K5) , ideal I(D0, D̃0, D̂0)

is irreducible. We can not further simplify this algebraic system. There is only one prime

ideal with dimension two. Coefficients of 100 elements in integrand basis (4.45) should

be computed at the same time using Gröbner basis method or parametrization method.

The ideal is reducible when some of K1,K2,K3 are massless. For kinematic configura-

tions

C22
(M,M,m)
(K4,K5) , C22

(M,m,M)
(K4,K5) , C22

(m,M,M)
(K4,K5) , (4.51)

there are two prime ideals after primary decomposition. For K2
1 = 0, D0 factorizes as

D0 = x3x4. Similarly for K2
2 = 0, D̃0 factorizes as D̃0 = y3y4. For K2

3 = 0, we can solve

γ24 from

K2
3 = (γ21 − γ11)(γ22 − γ12) + (γ23 − γ13)(γ24 − γ14) = 0 ,

After substituting the solution back to D̃0, D̂0, we can further solve y3, x4. Then numer-

ator of equation D0 is factorized to two factors, which contributes to two inequivalent

cut solutions. Let us take C22
(M,M,m)
(K4,K5) as example to analyze the intersection of prime

ideals I1(D0, y3, D̂0) and I2(D0, y4, D̂0). Using Gröbner basis G(I1), we get 59 represen-

tative elements in integrand basis. Similarly, there are also 59 representative elements

in integrand basis when using Gröbner basis G(I2). To study intersection of varieties

V (I1) and V (I2), we compute Gröbner basis G(I1 ∪ I2). The ideal I ′ = I1 ∪ I2 is one-

dimensional, and 18 elements can be obtained by G(I ′). So using both two prime ideals,

we get 59 + 59 − 18 = 100 representative elements in integrand basis of I(D0, D̃0, D̂0),

which agrees with the known result.

For kinematic configurations

C22
(M,m,m)
(K4,K5) , C22

(m,m,M)
(K4,K5) , C22

(m,M,m)
(K4,K5) , (4.52)

there are four prime ideals after primary decomposition of I(D0, D̃0, D̂0). To see this,

let us take C22
(m,M,m)
(K4,K5) for example. The massless conditions of K1,K2 reduce two cut

equations to D0 = x3x4 and D̃0 = y3y4. So we get four prime ideals I11(x3, y3, D̂0),

I12(x4, y3, D̂0), I21(x3, y4, D̂0) and I22(x4, y4, D̂0). Using Gröbner basis of each prime

ideal, we get 34 representative elements in integrand basis. Solutions for (I11 ∪ I12 ∪
I21 ∪ I22) are two points. We get the same two-point solution for

I11 ∪ I12 ∪ I21 , I11 ∪ I12 ∪ I22 , I11 ∪ I21 ∪ I22 , I12 ∪ I21 ∪ I22 .



104 Chapter 4. Integrand basis for 4-dimensional two-loop amplitude

Solutions of I11 ∪ I22 and I12 ∪ I21 are still the same two-point solution. However,

solutions of I11 ∪ I12, I11 ∪ I21, I21 ∪ I22 and I12 ∪ I22 are four different one-dimensional

curves. Using Gröbner basis of them, we get 10 representative elements in integrand

basis for each one. So in total we get

BI = BI11 +BI12 +BI21 +BI22 −BI11∪I12 −BI11∪I21 −BI11∪I22 −BI12∪I21
−BI12∪I22 −BI21∪I22 +BI11∪I12∪I21 +BI11∪I12∪I22 +BI11∪I21∪I22

+BI12∪I21∪I22 −BI11∪I12∪I21∪I22
= 34× 4− 10× 4− 2× 2 + 2× 4− 2 = 98 , (4.53)

as it should be. The geometric picture for this intersection is quite hard to sketch.

Briefly, four surfaces intersect at four curves adjacently, and these four curves share two

common points.

For C22
(m,m,m)
(K4,K5) , there are eight prime ideals after primary decomposition. Two cut

equations can be factorized as D0 = x3x4, D̃0 = y3y4, while the last cut equation D̂0

can also be factorized as D̂0 = f1f2, where fi is linear function of (x3, x4, y1, y3, y4).

19 and 21 representative elements can be obtained by Gröbner basis of I1(x3, y3, f1),

I2(x3, y3, f2) respectively(Similarly for I7(x4, y4, f1) and I8(x4, y4, f2)). For remaining

prime ideals I3(x3, y4, f1), I4(x3, y4, f2), I5(x4, y3, f1), I6(x4, y3, f2), using Gröbner basis

of each one we can obtain 20 representative elements in integrand basis. We should

further clarify intersection of eight varieties V (Ii). No solution can be found for union of

more than four ideals. Considering solution of four ideals, for the following six situations

I1∪I2∪I3∪I4, I5∪I6∪I7∪I8, I1∪I2∪I5∪I6, I3∪I4∪I7∪I8, I1∪I3∪I6∪I8 and I2∪I4∪I5∪I7,

solutions do exist, which are six points respectively. Solutions of equations from union of

three prime ideals exist only when these three prime ideals coming from corresponding

situation of four ideals. For example, single point solution exists for I1 ∪ I2 ∪ I3 ∪ I4,

and the same single point solution exists for I1 ∪ I2 ∪ I3, I1 ∪ I2 ∪ I4, I1 ∪ I3 ∪ I4 or

I2 ∪ I3 ∪ I4. There are possibly
(

8
2

)
= 28 situations to be considered for solutions of

every two prime ideals. The solutions could be one-dimension curves or points. In order

to express results and also the number of representative elements computed by Gröbner

basis, we use notation Vi ∩ Vj = (d|m) to denote intersection of two varieties, where

Vi = V (Ii) is the variety of prime ideal Ii. d is the dimension of prime ideal and m is

the number of representative elements that can be obtained by Gröbner basis G(Ii). All
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possible non-trivial solutions are given by

(1|6) = V1 ∩ V2 = V2 ∩ V4 = V2 ∩ V6 = V3 ∩ V4 = V3 ∩ V8 = V5 ∩ V6 = V6 ∩ V8 = V7 ∩ V8 ,

(1|5) = V1 ∩ V3 = V1 ∩ V6 = V4 ∩ V7 = V5 ∩ V7 ,

(0|1) = V1 ∩ V4 = V1 ∩ V5 = V1 ∩ V8 = V2 ∩ V3 = V2 ∩ V7 = V3 ∩ V6 = V3 ∩ V7 = V4 ∩ V5

= V4 ∩ V8 = V5 ∩ V8 = V6 ∩ V7 .

Note that the one-dimensional curve solutions are all different.

Kinematic configurations C22
(L,N,R)
K4,� or C22

(L,N,R)
K5,�

If K4 or K5 is zero, there is massless three-vertex even when other external momenta are

massive. The ideal I(D0, D̃0, D̂0) is reducible. For kinematic configuration of massive

external momenta, we can get two prime ideals I1, I2 from primary decomposition. Using

Gröbner basis of each prime ideal, we obtain 64 representative elements in integrand

basis. Variety of I1∪I2 is one-dimensional curve, and using Gröbner basis G(I1∪I2), we

obtain 28 elements. So the total number of representative elements in integrand basis is

64 + 64− 28 = 100.

For kinematic configurations

C22m,M,M
K4/K5,� , C22M,m,M

K4/K5,� , C22M,M,m
K4/K5,� ,

massless condition of K1,K2 or K3 will further factorize cut equations. There are four

prime ideals after primary decomposition. Let us take C22M,M,m
K4/K5,� as an example. The

four prime ideals I1, I2, I3, I4 are 2-dimensional, and using Gröbner basis of each one,

we can obtain 21 elements in integrand basis from G(I1) or G(I3), and 49 elements from

G(I2) orG(I4). Variety of I1∪I2∪I3∪I4 is a single point. Variety of I1∪I2∪I4 or I2∪I3∪I4

is two points, while variety of I1∪ I2∪ I3 or I1∪ I3∪ I4 is single point. Geometrically, we

can think that three surfaces (V (I1), V (I2), V (I4)) or (V (I3), V (I2), V (I4)) intersect at

two points t1, t2 or t1, t3 respectively, with a common point t1. This point is the solution

of I1∪ I2∪ I3∪ I4, as well as solutions of I1∪ I2∪ I3 and I1∪ I3∪ I4. There are 6 possible

combination of two prime ideals. Among them, I1∪ I3 has a single point solution, which

is just t1. Solutions of other combinations are one-dimensional. Using Gröbner basis

G(I1 ∪ I2) or G(I3 ∪ I4) we can obtain 11 elements. Using Gröbner basis G(I1 ∪ I4) or

G(I2 ∪ I3) we can obtain 6 elements, while using G(I2 ∪ I4) we can obtain 10 elements.

We can make the counting that

21× 2 + 49× 2− 1− 10− 11− 11− 6− 6 + 2 + 2 + 1 + 1− 1 = 100 .
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For kinematic configurations

C22m,m,MK4/K5,� , C22m,M,m
K4/K5,� , C22M,m,m

K4/K5,� ,

there are six prime ideals after primary decomposition. Taking C22m,M,m
K4/K5,� as example.

We can denote six prime ideals as I1(x3, y3, f1), I2(x3, y3, f2), I3(x3, y4, g1), I4(x4, y3, g2),

I5(x4, y4, f3) and I6(x4, y4, f4), where fi are linear functions and gi are quadratic func-

tions. Using G(I1) or G(I5) we can obtain 19 elements, using G(I2) or G(I6) we can

obtain 21 elements, while using G(I3) or G(I4) we can obtain 34 elements. These six

prime ideals are in fact decomposed from the four ideals of C22m,M,m
K4,K5

, in the way that

when K4 or K5 is zero, two of the four ideals become reducible. Prime ideals I1, I2

or I5, I6 are originated from these two reducible ideals. No solution exists for union

of six prime ideals or of five prime ideals. A single point solution t1 or t2 exists for

I1∪ I3∪ I4∪ I5 or I2∪ I3∪ I4∪ I6 respectively. The same single point solution also exists

for union of three prime ideals that coming from above corresponding four prime ideals.

Besides, different single point solution exists for I1 ∪ I2 ∪ I3, I4 ∪ I5 ∪ I6, I1 ∪ I2 ∪ I4 and

I3 ∪ I5 ∪ I6. Solutions of two prime ideals could be points or one-dimensional curves.

There is single point solution for I1 ∪ I5, I2 ∪ I6, and two points solution for I3 ∪ I4.

Solutions of I3 ∪ I2, I3 ∪ I6, I4 ∪ I2, I4 ∪ I6, I1 ∪ I2 and I5 ∪ I6 are one-dimensional,

and using Gröbner basis of them, we can obtain 6 elements for each one. While I3 ∪ I1,

I3 ∪ I5, I4 ∪ I1 and I4 ∪ I5 are also one-dimensional, and using Gröbner basis we can

obtain 5 elements for each one.

For kinematic configuration C22m,m,mK4/K5,�, quadratic functions g1, g2 in previous section

will further be factorized. So there are eight prime ideals after primary decomposition.

More explicitly, besides the four prime ideals I1(x3, y3, f1), I2(x3, y3, f2), I7(x4, y4, f3)

and I8(x4, y4, f4)(which are the same as I1, I2, I5, I6 in previous section), we have another

four prime ideals I3(x3, y4, g
′
11), I4(x3, y4, g

′
12), I5(x4, y3, g

′
21) and I6(x4, y3, g

′
22), where g′

are linear functions. Using Gröbner basis of them, we can obtain 20 elements for each

one. While I3 ∪ I4 or I5 ∪ I6 is one-dimensional, and using G(I3 ∪ I4) or G(I5 ∪ I6) we

can obtain 6 elements. So we have 20 + 20 − 6 = 34 elements, which agrees with the

number of I(x3, y4, g1) or I(x3, y4, g2). There is a single point solution for union of eight

prime ideals. The same single point solution exists for union of every seven, six, five,

four or three prime ideals. For solutions of two prime ideals, we have

(1|6) = V1 ∩ V2 = V2 ∩ V4 = V2 ∩ V5 = V3 ∩ V8 = V6 ∩ V8 = V7 ∩ V8 = V3 ∩ V4 = V5 ∩ V6 ,

(1|5) = V1 ∩ V3 = V1 ∩ V6 = V4 ∩ V7 = V5 ∩ V7 ,

and the same single point solution exists for other combinations of two prime ideals.
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Kinematic configurations C22
(L,N,R)
�,�

For this type of kinematic configurations, there are three external momenta. Because

of momentum conservation, only two of them are independent. So we can still choose

K1,K2 to generate momentum basis (e1, e2, e3, e4). Equations of maximal unitarity cut

can be explicitly written as

D0 = x3x4 +
α11α12

β12
(1− y1

β12
)y1 = 0 ,

D̃0 = y3y4 + β11(1− y1

β12
)y1 = 0 ,

D̂0 = x4y3 + x3y4 +
α12β11 + α11β12

β12
(1− y1

β12
)y1 = 0 . (4.54)

For massive K1,K2,K3, there are six prime ideals after primary decomposition, given

by

I
C22

(M,M,M)
(�,�)

1 (y3, x3, y1) , I
C22

(M,M,M)
(�,�)

2 (y3, x3, y1 − β12) ,

I
C22

(M,M,M)
(�,�)

3 (y4, y1, x4) , I
C22

(M,M,M)
(�,�)

4 (y4, y1 − β12, x4) ,

I
C22

(M,M,M)
(�,�)

5 (y3y4 + β11(1− y1/β12)y1, y3α12 − x3β12, y4α11 − x4β11) ,

I
C22

(M,M,M)
(�,�)

6 (y3y4 + β11(1− y1/β12)y1,−y3α11 + x3β11, y4α12 − x4β12) . (4.55)

Using Gröbner basis G(Ii), i = 1, 2, 3, 4 we can obtain 19 representative elements in

integrand basis, while using G(Ii), i = 5, 6 we can obtain 36 elements. There is no

solution for union of six or five prime ideals. A single point solution can be found for

I2 ∪ I4 ∪ I5 ∪ I6 or I1 ∪ I3 ∪ I5 ∪ I6 respectively. The same single point solution can be

found for unions of three prime ideals that coming from above corresponding four prime

ideals. No solution exists for other combinations of three prime ideals. Considering

union of two prime ideals, no solution can be found for I1∪I2, I1∪I4, I2∪I3 and I3∪I4,

and a single point solution can be found for I1 ∪ I3, double point solution can be found

for I5∪ I6. Solutions of remaining combinations of two prime ideals are one-dimensional

curve.

For kinematic configurations

C22
(m,M,M)
(�,�) , C22

(M,m,M)
(�,�) , C22

(M,M,m)
(�,�) ,

C22
(m,m,M)
(�,�) , C22

(m,M,m)
(�,�) , C22

(M,m,n)
(�,�) ,

there are still six prime ideals after primary decomposition. These ideals are the same

as (4.55) for C22
(m,M,M)
(�,�) , C22

(M,m,M)
(�,�) , C22

(m,m,M)
(�,�) . But for kinematic configurations

C22
(M,M,m)
(�,�) , C22

(m,M,m)
(�,�) and C22

(M,m,m)
(�,�) , the first four prime ideals are still the same,
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Figure 4.6: Irreducibility of ideal I(D0, D̃0, D̂0) under different kinematic configura-
tions. Branch denotes the prime ideal obtained by primary decomposition. The arrows
indicate how reducible ideals are decomposed to prime ideals.

while the last two prime ideals are given by

I
C22(M,M,m),(m,M,m),(M,m,m)

(�,�)

5 (y3,−y4α12 + x4β12, x3y4 + α11(1− y1/β12)y1) ,

V
C22(M,M,m),(m,M,m),(M,m,m)

(�,�)

6 (y4, x4y3 + α11(1− y1/β12)y1,−y3α12 + x3β12) .(4.56)

However, it dose not change the intersection among varieties of six prime ideals.

For the last kinematic configuration C22
(m,m,m)
(�,�) , we only have non-trivial solutions |1〉 ∼

|2〉 ∼ |3〉 or |1] ∼ |2] ∼ |3] when momenta are complex. This means that K1,K2 can

not used to define four momenta in the momentum basis. However, we can choose

momentum basis as momenta K1,K2 and two arbitrary e3, e4 that satisfying

K1 ·K2 = K1 · e3 = K2 · e4 = e3 · e4 = 0 , K1 · e4 = K2 · e3 = 1 . (4.57)

With this momentum basis, the three linear equations are given by

D1 −D0 = −2x4 = 0 , D̃1 − D̃0 = −2y4 = 0 ,

D̂1 − D̂0 = −2(x4 + y4)− 2(x3 + y3) = 0 , (4.58)
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with solution

x4 = 0 , y4 = 0 , x3 = −y3 . (4.59)

Remaining three quadratic equations are

D0 = 2(x1x4 + x2x3) = 0 , D̃0 = 2(y1y4 + y2y3) = 0 ,

D̂0 = 2(x1 + y1)(x4 + y4) + 2(x2 + y2)(x3 + y3) = 0 . (4.60)

In the solution (4.59), D̂0 = 0 automatically vanishes. So in fact there are only two

independent quadratic equations

D0 = x2y3 = 0 , D̃0 = y2y3 = 0 . (4.61)

Then algebraic system is defined by two quadratic equations of five ISPs (x1, x2, y1, y2, y3).

The solution is no longer 2-dimensional. This is why we have 144 representative elements

in integrand basis, which is much larger than those of other kinematic configurations. Af-

ter primary decomposition of I(x2y3, y2y3), we get two prime ideals I1(y3) and I2(x2, y2).

I1 is 4-dimensional, and using Gröbner basis G(I1) we can obtain 114 elements. I2 is 3-

dimensional, and using G(I2) we can obtain 49 elements. I1∪I2 is 2-dimensional and we

can obtain 19 elements. So using these two prime ideals, we obtain 114 + 49− 19 = 144

elements.

The numbers of prime ideals after primary decomposition for various kinematic config-

urations are summarized in Figure (4.6).





Chapter 5

Genus of curve from multi-loop

amplitude

Maximal unitarity cut of a given diagram generates an algebraic system of polynomial

equations. Solutions of these equations could describe point, curve or (hyper-)surface in

complex plane. Solution of point is trivial to analyze, while solution of (hyper-)surface is

too difficult to study. However, for complex curve, fruitful mathematics can be used to

study its properties. In this chapter, we will focus on Feynman diagrams where solution

of equations of maximal unitarity cut defines complex curve, and study the topological

invariant genus of such curve using computational algebraic geometry.

5.1 From non-plane curve to plane curve

5.1.1 Birational map of non-plane curve to plane curve

In 4-dimensional theory, a L-loop diagram with (4L−1) propagators generates equations

of curve using maximal unitarity cut. This complex curve is defined by more than one

quadratic equations, which is not favorable for genus computation. However, since

geometric genus is birational invariant, we can birationally project the non-plane curve

onto a plane, and compute the genus of plane curve, which is given by (3.70). If the

curve is non-singular, i.e., it is smooth and has no singular points, then gG = gA, which

is simply given by (3.68). Otherwise we should identify all singular points and their

multiplicities, and also apply blow up process if singular points are not normal.

The way of mapping a non-plane curve defined by m quadratic equations with (m+ 1)

variables to plane curve defined by one polynomial equation with two variables is not

111
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unique. Any birational maps of variables leads to equivalent plane curves, and geometric

genus keeps the same for all birational equivalent curves. An automatic way is to use

elimination process with Gröbner basis method. To realize this process in Mathematica,

let us assume that we have m quadratic equations Qi, i = 1, . . . ,m with (m+1) variables

(X1, X2, . . . , Xm+1). The motivation is to get an equivalent plane curve f(X ′1, X
′
2) = 0,

where X ′1, X
′
2 are arbitrary two variables from Xi, and the remaining variables are

denoted as X ′3, . . . , X
′
m+1. Then

1. Compute Gröbner basis G(I) of ideal I(Q1, Q2, . . . , Qm) with given monomial

order, for example Lexicographic, and the ISP ordering {X ′3, . . . , X ′m+1, X
′
1, X

′
2}.

This ordering is important, and we should put X ′1, X
′
2 in the last two positions.

2. After getting a Gröbner basis with r polynomials (g1, g2, . . . , gr), where gi are

polynomials of all or some variables from (X1, . . . , Xm+1), select the gi whose

variables have no common intersection with (X ′3, X
′
4, . . . , X

′
m+1).

3. By this construction, usually there is only one gi that can be selected from above

step. We can define plane curve f(X ′1, X
′
2) = gi. Of course plane curve equations

are different depending on the choice of X ′1, X
′
2. For some choices there could be

no results, which means that we can not project non-plane curve onto plane curve

with those two variables X ′1, X
′
2. Also for some choices we get a result, but the

degree of plane curve is smaller than those from other choices of X ′1, X
′
2. In order

to get a realistic result, it is suggested to repeat step 2 for all possible choices of

X ′1, X
′
2 from (X1, . . . , Xm+1), and use one of the plane curves f(X ′1, X

′
2) that has

highest degree.

This elimination process using Gröbner basis method is systematic, but it is not explicit.

We do not know the details of birational map that leads to birational equivalent plane

curve. Another explicit but not quite systematic way of getting an equivalent plane

curve can be taken as follows. If some of quadratic equations are conics, i.e., quadratic

equation with two variables of the form

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0 , (5.1)

with a1, a2, a3 not all zero, we can take coordinate transformation x → X + b1Y , y →
Y + b2X. In the coordinate (X,Y ), we have

(a3b
2
2 + a2b2 + a1)X2 + (a1b

2
1 + a2b1 + a3)Y 2 + (a2 + 2a1b1 + 2a3b2 + a2b1b2)XY

+(a4 + a5b2)X + (a5 + a4b1)Y + a6 = 0 . (5.2)
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We can take b1, b2 as solutions of a3b
2
2 + a2b2 + a1 = 0 and a1b

2
1 + a2b1 + a3 = 0. So

X2, Y 2 terms disappear in the equation. Then it is trivial to write equation of conics as

Q′ = x′y′−c = 0 after linear coordinate transformations x′ → x′(X), y′ → y′(Y ). In this

case, one variable can be expressed as rational function of the other as x′ = c/y′. Step

by step, hopefully we can get meromorphic equations after using all equations of conics.

If only one meromorphic equation is left, then the numerator of meromorphic equation

defines an equivalent plane curve. Otherwise the curve is still defined by more than one

polynomial equations, and we should further eliminate them by other methods.

5.1.2 Compute singular points and genus

Suppose finally we project non-plane curve onto a birational equivalent plane curve from

above discussions as

F (X,Y ) = 0 , (5.3)

where the highest degree of monomials in F (X,Y ) is d. We assume ideal I(F ) is ir-

reducible. If not, we should study the genus of each irreducible ideal after primary

decomposition of I(F ). Primary decomposition is easy for ideal defined by one equa-

tion. We just factorize F (X,Y ), and each factor defines a prime ideal. For irreducible

ideal I(F ), we can compute singular points of a curve F (X,Y ) = 0 by definition (3.69).

Practically, it is better to use projective plane curve. Introducing a third coordinate

Z ′, we get a homogenous polynomial P (X ′, Y ′, Z ′) of degree d that defines a projective

plane curve

P (X ′, Y ′, Z ′) = (Z ′)dF (
X ′

Z ′
,
Y ′

Z ′
) = 0 , (5.4)

where X = X ′/Z ′, Y = Y ′/Z ′. Let Z ′ = 1, we return to affine plane curve F (X,Y ) =

P (X,Y, 1). Singular points are solutions of equations

P (X ′, Y ′, Z ′) =
∂P (X ′, Y ′, Z ′)

∂X ′
=
∂P (X ′, Y ′, Z ′)

∂Y ′
=
∂P (X ′, Y ′, Z ′)

∂Z ′
= 0 . (5.5)

If there is no solution, then plane curve is smooth and we can safely use gG = gA. If

there are solutions, in order to apply formula (3.70) we should analyze the properties of

singular points. The location of singular points could be at affine plane Z ′ = 1, given

by solutions of

P (X ′, Y ′, 1) =
∂P (X ′, Y ′, 1)

∂X ′
=
∂P (X ′, Y ′, 1)

∂Y ′
= 0 . (5.6)
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Or it could be at the infinite Z ′ = 0, given by non-trivial solutions of

P (X ′, Y ′, 0) =
∂P (X ′, Y ′, 0)

∂X ′
=
∂P (X ′, Y ′, 0)

∂Y ′
=
∂P (X ′, Y ′, Z ′)

∂Z ′

∣∣∣
Z′=0

= 0 . (5.7)

Since each monomial in homogeneous polynomial has degree d, the partial derivative of

P has degree (d − 1). After setting Z ′ = 0, the non-zero terms of polynomial P are

monomials XaY d−a, and non-zero terms of ∂P/∂X ′, ∂P/∂Y ′, ∂P/∂Z ′ are monomials

XaY d−1−a. So above equations have a trivial solution X ′ = 0, Y ′ = 0, Z ′ = 0. The

non-trivial solutions are given by X ′ = X ′0, Z
′ = 0 or Y ′ = Y ′0 , Z

′ = 0. We have the

freedom to define Y ′ = 1 or X ′ = 1 to get an affine plane curve.

In order to study properties of a singular point, we should compute tangent lines at the

singular point. They are given by non-zero homogeneous part of lowest degree in Taylor

series of polynomial at the singular point. Explicitly, for singular point at affine plane

(X ′, Y ′) = (X,Y ) = (X0, Y0), we can expand the function of plane curve as

F (X +X0, Y + Y0) , (5.8)

and tangent lines are defined by terms of lowest degree T (X,Y ) in above expansion.

For singular point at infinite, for example (X ′, Z ′) = (X ′0, 0), we can define Y ′ = 1 in

projective plane curve P (X ′, Y ′, Z ′), and expand it as

P (X ′ +X ′0, 1, Z
′) . (5.9)

Tangent lines are defined by terms of lowest degree T (X ′, Z ′) in above expansion. Equiv-

alently, we can go back to affine plane curve by coordinate re-definition X ′ = XY ′, Z ′ =

ZY ′, and

F (X,Z) =
1

(Y ′)d
P (XY ′, Y ′, ZY ′) . (5.10)

The factor 1/(Y ′)d cancels Y ′ in P (XY ′, Y ′, ZY ′) and we get an affine plane curve

F (X,Z) = 0 in coordinate (X,Z). So at coordinate (X,Z) = (X ′0/Y
′, 0), the function

of plane curve is expanded as

F (X +
X ′0
Y ′
, Z) . (5.11)

If singular point is normal, the multiplicity µp of singular point p equals to the degree

of tangent line T , which is also the number of distinct solutions of tangent line equation

T = 0. For polynomial T of degree dT , there would be dT solutions for T = 0. However,

number of distinct solutions of T = 0 could be smaller than degree of T . For example,

if T (X,Z) = (X + Z)2 = 0, degree of T is two, but the two solutions X + Z = 0 and
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−(X+Z) = 0 are the same. So there is only one distinct solution, and two tangent lines

are not distinct. A singular point is normal if all tangent lines at the singular point are

distinct. A singular point is non-normal if there are non-distinct tangent lines, which

means that the number of distinct solutions of T = 0 is smaller than the degree of T . For

non-normal singular points, the multiplicity µp is no longer given by degree of tangent

line T or the number of distinct solutions of tangent line equation T = 0.

To study properties of non-normal singular point, we need to perform blow up process.

Suppose we have a non-normal singular point at (X ′, Y ′, Z ′) = (X ′0, Y
′

0 , 1)(discussion of

singular point at infinite is the same), and plane curve is expanded as

F (X,Y ) = P (X ′ = X,Y ′ = Y, 1)|X→X+X′0,Y→Y+Y ′0
= P (X +X ′0, Y + Y ′0 , 1) . (5.12)

So singular point (X ′, Y ′) = (X ′0, Y
′

0) has been transferred to (X,Y ) = (0, 0). There is

no constant term in above expansion, since by definition F (X,Y ) = 0 at singular point

(X,Y ) = (0, 0). So we can assume

F (X,Y ) =
d∑

d′=dT

d′∑
a=0

cd′,aX
aY d′−a , (5.13)

where d is degree of F (X,Y ), and dT is the lowest degree of monomials. The function

of tangent line is defined as

T (X,Y ) =

dT∑
a=0

cdT ,aX
aY dT−a . (5.14)

Assume T (X,Y ) = 0 has s distinct solutions, where s < dT since it is a non-normal

singular point. We can blow up the singular point by defining a new variable t through

Y = Xt. Then

F (X,Xt) =

d∑
d′=dT

d′∑
a=0

cd′,aX
d′td

′−a = XdT

d∑
d′=dT

d′∑
a=0

cd′,aX
d′−dT td

′−a . (5.15)

We can always take out a factor XdT , and define a new plane curve F ′(X, t) as

F ′(X, t) = X−dTF (X,Xt) =
d∑

d′=dT

d′∑
a=0

cd′,aX
d′−dT td

′−a . (5.16)

The new curve F ′(X, t) = 0 is birational equivalent to original curve F (X,Y ) = 0. To

get singular points for F ′(X, t) = 0, we can set X ′ = X ′0, or equivalently X = 0, and
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solve equation

F ′(X, t)|X=0 = 0 . (5.17)

The non-zero terms of F ′(0, t) is given by d′ = dT . So we have

F ′(0, t) =

dT∑
a=0

cdT ,at
dT−a . (5.18)

It is a polynomial of degree dT . Equation F ′(0, t) = 0 still has s distinct solutions

ti, i = 1, . . . , s, since coordinate transformation does not change properties of solutions.

However, singular point of P (X ′, Y ′, Z ′) = 0 at (X ′, Y ′, Z ′) = (X ′0, Y
′

0 , 1) which has s

distinct tangent lines, has blown up to s singular points of F ′(X, t) = 0 at (X, t) = (0, ti),

i = 1, . . . , s. We can compute tangent lines at these singular points if all of them are

normal. If certain singular points are still non-normal, we can blow up them again until

all singular points are normal. In the genus computation, we should count all normal

singular points and non-normal singular points of the original plane curve, and also the

non-normal singular points and normal singular points of plane curves after blowing up

certain non-normal singular points. More explicitly, for a non-normal singular point

with tangent line of degree dT which is blown up to s normal singular points pnoni , we

should minus

1

2
dT (dT − 1) +

s∑
i=1

1

2
µpnoni

(µpnoni
− 1) (5.19)

in the genus computation formula (3.70), in order to get the correct geometric genus.

5.2 Genus of curve from two-loop diagrams

In this section, we present results of 4-dimensional two-loop diagrams. All 4-dimensional

two-loop topologies have been given in Chapter 4. The topologies that having seven

propagators will generate equations of complex curve in maximal unitarity cut. They

are box-triangle topology (A43) in Figure (4.3), planar penta-triangle topology (B42),

planar double-box topology (B33) in Figure (4.4), and non-planar crossed-box topology

(C32) in Figure (4.5). Topology (A43) is trivial. Cut equations of sub-one-loop box

topology completely fix solution of loop momenta `1. With this solution, the remaining

equations are equivalent to cut equations of one-loop triangle topology. So we get three

quadratic equations, and from which we can construct two linear equations. After

solving two linear equations, we get an equivalent plane curve, which is an equation of

conics. The conics is birational equivalent to genus-0 Riemann sphere. Topology (B42)
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is also trivial. Cut equations of four propagators that containing only `1 will complete

fix solution of `1. With this solution, the remaining three equations are again equivalent

to cut equations of one-loop triangle topology. So it has genus-0 for each solution of `1.

Topologies (B42) and (C32) are not trivially genus 0, and we will present the results

below.

5.2.1 Genus of planar double-box diagram

The algebraic system of maximal unitarity cut under general kinematic configuration

can be reduced to an equivalent algebraic system with three quadratic equations

Q1(x1, x2) = 0 , Q2(y1, y2) = 0 , Q3(x1, x2, y1, y2) = 0 , (5.20)

as we have intensively discussed in Chapter 4. Further eliminating two equations and

two variables via Gröbner basis method, we get a birational equivalent plane curve. This

plane curve has degree 8, so the arithmetic genus is

gA =
(d− 1)(d− 2)

2
= 21 . (5.21)

Computing singular points and tangent lines at these singular points, we find 8 singular

points of multiplicity µp = 2 and 2 singular points of multiplicity µp = 4. So the

geometric genus is

gG = gA −
∑

p∈Sing(C)

1

2
µp(µp − 1) = 21− 8× 1− 2× 6 = 1 . (5.22)

This result is consistent with that in [42].

Notice that Q1 = 0, Q2 = 0 are conics, we can explicitly birational map non-plane curve

to plane curve without using Gröbner basis. Through linear coordinate transformation,

it is easy to write Q1 → Q′1 = x′1x
′
2 − c1 and Q2 → Q′2 = y′1y

′
2 − c2. So we can do the

following substitutions x′1 = c1/x
′
2, y
′
1 = c2/y

′
2 in Q3. The quadratic terms in Q3 are

transferred by

x′1y
′
1 →

c1c2

x′2y
′
2

, x′1y
′
2 →

c1y
′
2

x′2
, x′2y

′
1 →

c2x
′
2

y′2
, x′2y

′
2 → x′2y

′
2 , (5.23)

after substitution. The resulting Q′3 is a meromorphic function

Q′3 =
n(x′2, y

′
2)

d(x′2, y
′
2)

, (5.24)
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(a) (b) (c) (d)

Figure 5.1: Degenerate topological pictures of cut equations for two-loop double-box
diagram. Tubes of torus is shrunk to points along the dashed line, for given kinematic
configurations.

where n(x′2, y
′
2) has degree 4 and d(x′2, y

′
2) has degree 2. The numerator n(x′2, y

′
2) = 0

defines a birational equivalent plane curve. We have arithmetic genus gA = 3(3−1)/2 =

3. There are 2 singular points of multiplicity µp = 2. Thus we again get geometric genus

gG = 3− 2 = 1.

Topological picture of genus

The ideal of cut equations is usually reducible under many specific kinematic configu-

rations. Genus computation is only for irreducible ideal. If the ideal is reducible, we

should compute genus of prime ideals after primary decomposition. Then connection of

genus among different prime ideals should also be studied. Complex curve of genus-1

is topological equivalent to a torus, so topological picture of genus for reducible ideal

should be deduced from shrinking tube of torus to points. These points separate torus

to many parts, which correspond to prime ideals. For torus with one hole, the topo-

logical picture is simple. The shrinking of tubes will break the hole, and we should get

genus-0 Riemann spheres connected at points. Above argument is indeed true. After

computing genus of each prime ideal after primary decomposition, we find that they

all have genus-0. The three types of shrinking are shown in Figure (5.1). The dashed

lines are shrunk to points and the Riemann spheres separated by these points have no

possibility of forming holes. So they could only be genus-0. There are two, four and six

Riemann spheres connected by points and linked adjacently into a chain, corresponding

to the number of prime ideals under specific kinematic configurations. This topological

picture is exactly the same as described in [42].
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5.2.2 Genus of non-planar crossed-box diagram

Let us consider (C32) in Figure (4.5). Using K1,K3 to generate momentum basis

(e1, e2, e3, e4), we write equations of maximal unitarity cut as four linear equations

L1 = 2(α11x1 + α12x2 − α11α12) = 0 ,

L2 = 2(α21x1 + α22x2 + α23x3 + α24x4 − α21α22 − α23α24) = 0 ,

L3 = 2(β11y1 + β12y2 − β11β12) = 0 ,

L4 = −2

4∑
i=1

(xi + yi)(γ2i − γ1i)− 2(γ21γ22 + γ23γ24 − γ11γ12 − γ13γ14) = 0 ,

and three quadratic equations

Q1 = 2(x1x2 + x3x4) = 0 , Q2 = 2(y1y2 + y3y4) = 0 ,

Q3 = 2(x1y2 + x2y1 + x3y4 + x4y3) + 2
4∑
i=1

(xi + yi)γ1i + 2(γ11γ12 + γ13γ14) = 0 .

Four linear equations can be solved to express four variables as functions of remaining

four variables. The choice of remaining four variables is not unique, and we can get

different curves from different ways of solving linear equations. However, they are all

birational equivalent. So we can choose the most convenient way to solve four linear

equations.

Suppose we have solved four linear equations, and remaining three quadratic equations

of four variables (x1, x2, y1, y2)

Q1(x1, x2) = 0 , Q2(x1, x2, y1, y2) = 0 , Q3(x1, x2, y1, y2) = 0 (5.25)

define a complex curve. Since only one equation Q1 = 0 is conics, it is not explicit to

project it to plane curve by trivial coordinate transformation as described for planar

double-box diagram. We can still take coordinate transformation for Q1 and express

x′2 = c1/x
′
1. Then Q2, Q3 become meromorphic functions Q′2(x′1, y1, y2), Q′3(x′1, y1, y2),

and numerators of them have degree four. Numerators of Q′2 = 0, Q′3 = 0 define an

equivalent curve, and we can project this non-plane curve onto plane curve by elimination

process via Gröbner basis method. We can also get a plane curve by computing the

resultant. Numerators of Q′2 = 0, Q′3 = 0 can be written as

a2(x′1, y1)y2
2 + a1(x′1, y1)y2 + a0(x′1, y1) = 0 ,

b2(x′1, y1)y2
2 + b1(x′1, y1)y2 + b0(x′1, y1) = 0 , (5.26)
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where ai, bi are quadratic functions. Then we can eliminate y2 by computing resultant

of above two equations, and get a plane curve equation F (x′1, y1) = 0. This plane curve

is birational equivalent to (5.26) via the inverse map

y2 =
−a2(x′1, y1)b0(x′1, y1) + a0(x′1, y1)b2(x′1, y1)

a2(x′1, y1)b1(x′1, y1)− a1(x′1, y1)b2(x′1, y1)
. (5.27)

So they have the same geometric genus. The resulting plane curve F (x′1, y1) = 0 has

degree d = 8, so the arithmetic genus is

gA =
1

2
(d− 1)(d− 2) = 21 . (5.28)

There are 18 normal singular points of multiplicity µp = 2, so the geometric genus is

gG = gA −
∑

p∈Sing(C)

1

2
µp(µp − 1) = 21− 18× 1 = 3 . (5.29)

So the curve is associated to a genus-3 Riemann surface, which is topologically equivalent

to a torus with three holes.

Topological picture of genus

For general kinematics, ideal of cut equations is irreducible. So the genus of curve is

3, and the topological picture is sketched in Figure (5.2.a). Under specific kinematic

configurations, the ideal is reducible. So we should study each prime ideal via primary

decomposition and also the degenerate topological pictures.

We begin analysis with kinematic configuration where reducible ideal can be decomposed

to two prime ideals. There are two types of kinematic configurations we need to consider,

and each type gives different degenerate topological pictures.

1. Kinematic configurations where at least one momentum of K1,K2 is massless while

others are general. For K2
1 = 0, Q1 factorizes as Q1 = x3x4, and for K2

2 = 0,

Q1 factorizes as Q1 = f1(x3, x4)f2(x3, x4), where f1, f2 are linear polynomials of

(x3, x4). So we get two prime ideals I1(f1, Q2, Q3), I2(f2, Q2, Q3) via primary

decomposition. We can project the curve of each ideal to plane curve either by

coordinate transformation or by Gröbner basis method. The plane curve has degree

4 and two normal singular points of multiplicity µp = 2, so

gG = 3− 2× 1 = 1 .



5.2 Genus of curve from two-loop diagrams 121

(a) (b) (c) (d)
Not Appear

Figure 5.2: Degenerate topological pictures of cut equations for non-planar two-loop
crossing-box diagram.

Varieties V (I1) and V (I2) intersect at two points. So the topological picture is

given by shrinking two tubes to points along the dashed lines as shown in Figure

(5.2.b).

2. Kinematic configurations where only one of K3,K4 is massless or only one of

K5,K6 is zero, while others are general. Ideal of cut equations are reducible, and

can be decomposed to two prime ideals. It is easy to see that, for K2
3 = 0, since

Q2 = y3y4, we get two prime ideals directly from Q2 = 0. For other kinematic

configurations, factorization of I(Q1, Q2, Q3) is not obvious. We can decompose it

via primary decomposition by Macaulay2[120]. Anyway, we get two prime ideals

I1, I2. Using equations of each ideal, we can project the curve onto plane curve.

Each plane curve has degree 4, and there are three normal singular points of

multiplicity µp = 2. So the geometric genus is

gG = 3− 3× 1 = 0 .

Solution of I = I1∪I2 is four points, so the topological picture is given by shrinking

4 tubes to points along dashed lines as shown in Figure (5.2.c).

Note that from topological picture of genus-3 torus, naively there is another degenerate

topological picture as shown in Figure (5.2.d). It is associated to reducible ideal where

two prime ideals via primary decomposition define genus-2 and genus-0 complex curves.

However, no kinematic configuration leads to this degenerate topological picture. We can

explain this as consequence of symmetry between two prime ideals by parity symmetry,

so they should have the same genus.

The ideal I(Q1, Q2, Q3) could be decomposed to four, six and eight prime ideals via

primary decomposition under other specific kinematic configurations. The topological

picture of them can be explained as consequence of overlapping Figure (5.2.b) and (5.2.c).

We again denote kinematic configurations as C32
(L,N,R)
(U,P ) , where
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(a) (b) (c)

(d) (e)

Figure 5.3: More degenerate topological pictures of cut equations for non-planar
two-loop crossing-box diagram.

• L = m if at least one of K1,K2 is massless, otherwise L = M ,

• R = m if K3 is massless, otherwise R = M ,

• N = m if K4 is massless, otherwise N = M ,

• U = � if K5 = 0, otherwise U = K5,

• P = � if K6 = 0, otherwise P = K6.

For L = m, i.e., C32
(m,M,M)
(K5,K6) , the topological picture is degenerated in the way as

shown in Figure (5.2.b), and for other cases C32
(M,m,M)
(K5,K6) , C32

(M,M,m)
(K5,K6) , C32

(M,M,M)
(K5,�) or

C32
(M,M,M)
(�,K6) , the topological picture is degenerated in the way as shown in Figure (5.2.c).

The degenerate topological picture for more than two prime ideals can be determined

by combining above conditions.

Explicitly, if we combine massless condition L = m with another condition of N = m,

R = m, U = � or P = �, i.e., for kinematic configurations

C32
(m,M,m)
(K5,K6) , C32

(m,m,M)
(K5,K6) , C32

(m,M,M)
(K5,�) , C32

(m,M,M)
(�,K6) ,

the topological picture is given by overlapping of (5.2.b) and (5.2.c), as shown in (5.3.a).

This gives four genus-0 Riemann spheres, which indicates that in these kinematic con-

figurations, the ideal can be decomposed to four prime ideals. Each prime ideal defines

a genus-0 curve. If we combine one condition N = m or R = m with another condition

U = � or P = �, i.e., for kinematic configurations

C32
(M,M,m)
(K5,�) , C32

(M,M,m)
(�,K6) , C32

(M,m,M)
(K5,�) , C32

(M,m,M)
(�,K6) ,
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the topological picture is given by overlapping two copies of Figure (5.2.c). There are

four dashed lines as shown in Figure (5.2.c). When overlapping two copies of (5.2.c) in

these kinematic configurations, the middle two dashed lines coincide with each other.

So the resulting topological picture is as shown in (5.3.b). Again this gives four genus-0

Riemann spheres.

It is not hard to conclude that Figure (5.3.c) is the overlapping of Figure (5.2.b) and

(5.3.b). So this degenerate topological picture should be given by kinematic configura-

tions

C32
(m,M,m)
(K5,�) , C32

(m,M,m)
(�,K6) , C32

(m,m,M)
(K5,�) , C32

(m,m,M)
(�,K6) .

It has six genus-0 Riemann spheres, which means that ideal of cut equations can be

decomposed to six prime ideals. For kinematic configurations with both N = R = m

or U = P = �, i.e., C32
(M,m,m)
(K5,K6) or C32

(M,M,M)
(�,�) , the topological picture is then directly

given by overlapping two copies of (5.2.c) without any coinciding lines, as shown in

Figure (5.3.d). It also gives six genus-0 Riemann spheres. In fact, even if imposing more

conditions of N,R,U or P , the extra dashed lines will coincide with these eight dashed

lines as shown in Figure (5.3.d). So the following kinematic configurations

C32
(M,m,m)
(K5,�) , C32

(M,m,m)
(�,K6) , C32

(M,M,m)
(�,�) , C32

(M,m,M)
(�,�) , C32

(M,m,m)
(�,�)

give the same topological picture (5.3.d).

Finally, we can overlap Figure (5.2.b) and (5.3.d). This corresponds to setting L = m

in the kinematic configurations of Figure (5.3.d). So for

C32
(m,m,m)
(K5,K6) , C32

(m,M,M)
(�,�) , C32

(m,m,m)
(K5,�) , C32

(m,m,m)
(�,K6) ,

C32
(m,M,m)
(�,�) , C32

(m,m,M)
(�,�) , C32

(m,m,m)
(�,�) ,

the topological picture is given by Figure (5.3.e). There are eight genus-0 Riemann

spheres. The primary decomposition of ideal I(Q1, Q2, Q3) indeed gives eight prime

ideals. From explicit computation, we get geometric genus-0 for all curves defined by

prime ideals. The computation agrees with above analysis.

5.3 Genus of curve from three-loop diagrams

The algebraic system of cut equations from three-loop diagrams is more complicated

than that of two-loop diagrams. However, the computation process is similar. For 4-

dimensional theory, we should consider diagrams with 11 propagators. Equations of
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Figure 5.4: (a) Non-planar three-loop box-crossed-pentagon diagram, (b) Non-planar
three-loop crossed-crossed-pentagon diagram. All external momenta are out-going and
massive. Loop momenta are denoted by `1, `2, `3.

maximal unitarity cut then define a complex curve. We will birational project the

curve onto plane curve, and compute the geometric genus from arithmetic genus and

knowledge of singular points. A complete analysis of three-loop diagrams involves too

many topologies, and here we present results of some selected diagrams to illustrate the

computation and analysis.

5.3.1 Genus of non-planar box-crossed-pentagon diagram

We discuss three-loop box-crossed-pentagon diagram as shown in Figure (5.4.a) in this

section. Maximal unitarity cut gives 11 cut equations of 12 variables, and they define

a complex curve. As usual, we can choose two external momenta to construct momen-

tum basis (e1, e2, e3, e4), and expand cut equations with variables defined by expansion

coefficients of three loop momenta. The 11 propagators are given by

Only `1 : D0 = `21 , D1 = (`1 −K1)2 , D2 = (`1 −K1 −K2)2 ,

Only `2 : D̃0 = `22 , D̃1 = (`2 −K6)2 ,

Only `3 : D̄0 = `23 , D̄1 = (`3 −K4)2 , D̄2 = (`3 −K1 −K2 −K3 −K4 −K9)2 ,

Mixed `2, `3 : D̂0 = (`2 − `3 −K5 −K6)2 , D̂1 = (`2 − `3 −K5 −K6 −K7)2 ,

Mixed `1, `3 : D̂2 = (`1 + `3 −K1 −K2 −K3 −K4)2 .

It is easy to see that from them we can construct six linear equations. Then six variables

can be solved as functions of remaining six variables. The remaining five quadratic

equations of six variables define an equivalent complex curve. Using elimination process

via Gröbner basis method, we can project the curve onto an equivalent plane curve, and

compute its singular points.
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We can also analyze the birational map step by step. Since equation of conics can

always be rational parameterized, so from three cut equations D0 = D1 = D2 = 0, we

can rationally parameterize `1 by one free parameter x. From three cut equations D̄0 =

D̄1 = D̄2 = 0, we can also rationally parameterize `3 by one free parameter w. However,

there are only two propagators containing `2. So using D̃0 = D̃1 = 0, we rationally

parameterize `2 by two free parameters y, z. By substituting `1(x), `2(y, z), `3(w) back

to the remaining three mixed loop momenta propagators, they become meromorphic

functions. The numerators f1, f2, f3 of three meromorphic functions are polynomials of

(x, y, z, w). Explicitly, the three equations

f1(y, z, w) = 0 , f2(y, z, w) = 0 , f3(x,w) = 0 (5.30)

define a birational equivalent complex curve. The degree of them are higher than two.

To project the non-plane curve defined by (f1, f2, f3) to plane curve, we can eliminate

y and w from these equations by computing resultant. Firstly, notice that if we ignore

four propagators D0, D1, D2, D̂2 that containing `1, and treat K1 + K2 + K3 + K9 as

one external momentum, then the remaining propagators describe non-planar two-loop

crossed-box diagram of `2, `3. So f1(y, z, w) = 0, f2(y, z, w) = 0 define a genus-3 complex

curve. From previous section we know that each f1, f2 has degree 4, and can be written

as

a2(z, w)y2 + a1(z, w)y + a0(z, w) = 0 ,

b2(z, w)y2 + b1(z, w)y + b0(z, w) = 0 . (5.31)

Thus we can eliminate y just like the case (5.26) to get a plane curve. The birational

equivalence is guaranteed by inverse map like (5.27). The resulting equation F (z, w) = 0

has degree 8. Then the original algebraic system is birational equivalent to following

two equations

a′8w
8 + a′7(z)w7 + a′6(z)w6 + a′5(z)w5 + a′4(z)w4

+ a′3(z)w3 + a′2(z)w2 + a′1(z)w + a′0(z) = 0 ,

b′2(x)w2 + b′1(x)w + b′0(x) = 0 , (5.32)

where a′i, i = 0, . . . , 6 and b′i, i = 0, 1, 2 are quadratic polynomials, while a7(z) is linear

and a8 is constant. We can further eliminate w by computing resultant of above two

equations and get a plane curve F ′(x, z) = 0. This step is also birational with an inverse

map

w =
p(x, z)

q(x, z)
, (5.33)
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(a) (b) (c) (d)

Figure 5.5: Degenerate topological pictures of cut equations for non-planar three-loop
box-crossed-pentagon diagram.

where p(x, z) and q(x, z) can be computed by Gröbner basis method.

Plane curve F ′(x, z) = 0 has degree 20. By computing singular points of this curve,

we find that there are 32 normal singular points of multiplicity µp = 2, one normal

singular point of multiplicity µp = 4, and also a non-normal singular point. The tangent

line T (x, z) of non-normal singular point has degree dT = 16, but there are only 12

distinct solutions for T (x, z) = 0. After blowing up the non-normal singular point, we

get 8 normal singular points of multiplicity µp = 1 and 4 normal singular points of

multiplicity µp = 2. So the genus is finally given by

gG = gA −
[
32× 2(2− 1)

2
+ 1× 4(4− 1)

2

]
−
[
1× 16(16− 1)

2
+ 8× 1(1− 1)

2
+ 4× 2(2− 1)

2

]
= 9 . (5.34)

Topological picture of genus

After solving six linear equations, we get five quadratic equations

Q1(x1, x2) = 0 , Q2(y1, y2, z1, z2) = 0 , Q3(z1, z2) = 0 ,

Q4(x1, x2, z1, z2) = 0 , Q5(y1, y2, z1, z2) = 0 . (5.35)

If all external momenta are general, it is an irreducible curve. Under some specific kine-

matic configurations, the ideal I(Q1, Q2, Q3, Q4, Q5) is reducible. Thus it is important

to study the degenerate topological picture of genus for this reducible ideal. There are a

lot of kinematic configurations to be considered, but most of them could be constructed

from combinations of other two or more kinematic configurations, as we have illustrated

in two-loop non-planar crossed-box diagram. Here as examples, we will present results

for some simple reducible ideals.
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The simplest example comes from kinematic configurations where quadratic polynomials

Q1(x1, x2) or Q3(z1, z2) factorizes, since they are conics. If at least one of K1,K2 is

massless, then Q1 can be simply factorized to two factors. If K4 is massless, then Q3

can be factorized to two factors. In any cases, the ideal I(Q1, Q2, Q3, Q4, Q5) is reducible,

and can be decomposed to two prime ideals via primary decomposition. As usual, we

can project each prime ideal onto plane curve. The resulting plane curve has degree 12.

So the arithmetic genus is gA = 55. There are 16 normal singular points of multiplicity

µp = 2, 1 normal singular point of multiplicity µp = 4 and one non-normal singular

point. The tangent line at this non-normal singular point has degree dT = 8, but it

only has six distinct solutions. After blowing up, we get six normal singular points.

Among them four singular points have multiplicity µp = 1 and two singular points have

multiplicity µp = 2. So finally we get

gG = 55− 16× 1− 1× 4(4− 1)

2
− 1× 8(8− 1)

2
− 2× 1 = 3 . (5.36)

Varieties of two prime ideals intersect at four points. So the degenerate topological

picture is given by shrinking four tubes of genus-9 torus to points along dashed lines as

shown in Figure (5.5.a).

If K6 or K7 is massless, it is possible to factorize Q2 = f1f2, where f1(y1, y2, z1, z2) and

f2(y1, y2, z1, z2) are linear functions. So we have two prime ideals I1(Q1, f1, Q3, Q4, Q5)

and I2(Q1, f2, Q3, Q4, Q5). Similarly, we can birational project each one onto a plane

curve. The resulting plane curve has degree 12, and 20 normal singular points of multi-

plicity µp = 2, one normal singular point of multiplicity µp = 4 and one normal singular

point of multiplicity µp = 8. So we get

gG = 55− 20× 1− 1× 4(4− 1)

2
− 1× 8(8− 1)

2
= 1 . (5.37)

The degenerate topological picture is not hard to conclude, since there are two genus-

1 tori. The only possible way of shrinking tubes of genus-9 torus to points is shown

in Figure (5.5.b), along dashed lines. We can see that there are 8 intersecting points

between two genus-1 tori. This observation agrees with the result of explicit computation

from union of two prime ideals.

If K1 and K6 are massless, each Q1, Q2 can be factorized to two factors. Thus the

reducible ideal can be decomposed to four prime ideals. After projecting each ideal onto

plane curve, we find that it has degree 4 and 3 normal singular points of multiplicity

µp = 2. So the genus is simply gG = 0. The degenerate topological picture is given by

overlapping of Figure (5.5.a) and (5.5.b), which is shown in (5.5.c). Intersection of four

varieties of prime ideals then can be easily read from this picture.
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If K1,K4,K6 are massless, then each Q1, Q2, Q3 can be factorized to two factors. There

are eight prime ideals via primary decomposition. It is easy to compute the birational

equivalent plane curve associated to each prime ideal. Each one has degree 3, with only

one normal singular point of multiplicity µp = 2. So again they are all genus gG = 0

Riemann spheres. However, the degenerate topological picture is not trivially given by

overlapping two copies of (5.5.a) and (5.5.b) in this kinematic configuration, since cut

equations are somehow entangled. By studying intersections among varieties of eight

prime ideals, we can produce the degenerate topological picture as shown in Figure

(5.5.d).

5.3.2 Genus of non-planar crossed-crossed-pentagon diagram

We discuss three-loop non-planar crossed-crossed-pentagon diagram as shown in Figure

(5.4.b) in this section. The algebraic system of cut equations becomes even more com-

plicated than previous example. The complexity of curve can be inferred by the degree

of curve. The higher the degree is, the more complicated the curve will be. Naively,

the up-bound of degree can be obtained from cut equations. For example, for two-loop

diagrams, the curve is defined by three quadratic equations. So the highest degree of

plane curve by projecting the non-plane curve is 23 = 8. Sometimes the three quadratic

equations are not completely independent, and degree of corresponding plane curve is

smaller than 8. Similarly, for three-loop diagrams, the curve is defined by five quadratic

equations. So the highest degree of plane curve is 25 = 32. Such a curve is of course

very complicated. In the previous three-loop non-planar box-crossed-pentagon diagram,

the degree of plane curve is 20.

For diagram considered in this section, the 11 propagators are given by

Only `1 : D0 = `21 , D1 = (`1 −K1)2 ,

Only `2 : D̃0 = `22 , D̃1 = (`2 −K5)2 ,

Only `3 : D̄0 = `23 , D̄1 = (`3 −K1 −K2 −K7 −K9)2 ,

D̄2 = (`3 +K4 +K5 +K6 +K8)2 ,

Mixed `1, `3 : D̂0 = (`3 − `1 −K7)2 , D̂1 = (`3 − `1 −K7 −K9)2 ,

Mixed `2, `3 : D̂2 = (`2 + `3 +K6)2 , D̂3 = (`2 + `3 +K6 +K8) .

Explicitly, we can construct six linear equations to solve six variables. The remaining

five quadratic equations define a complex curve. This curve can be birational projected

onto plane curve by elimination process via Gröbner basis method. For purpose of

analysis, notice that we can rationally parameterize `1 by two parameters (x, y) and



5.3 Genus of curve from three-loop diagrams 129

(a) (b) (c) (d)

Figure 5.6: Degenerate topological pictures of cut equations for non-planar three-loop
crossed-crossed-pentagon diagram.

`2 by two parameters (z, w) from corresponding two equations D0 = 0, D1 = 0 and

D̃0 = 0, D̃1 = 0, and also rationally parameterize `3 by one free parameter τ from three

cut equations D̄0 = D̄1 = D̄2 = 0. Substituting `1(x, y), `2(z, w) and `3(τ) back to

remaining four quadratic equations with mixed loop momenta, they become

f1(x, y, τ) = 0 , f2(x, y, τ) = 0 , f3(z, w, τ) = 0 , f4(z, w, τ) = 0 . (5.38)

We can observe that this diagram in fact contains two copies of two-loop non-planar

crossed-box diagrams defined by (f1 = 0, f2 = 0) and (f3 = 0, f4 = 0). So using the

discussion of two-loop non-planar crossed-box diagram, we can similarly eliminate y

from (f1, f2) and w from (f3, f4) by computing resultant. Then we get two equations

g1(x, τ) = 0 , g2(z, τ) = 0 . (5.39)

This elimination is birational, and g1, g2 have degree 8. g1 is quadratic in x and g2

is quadratic in z. By computing resultant of g1, g2, we can further eliminate τ , and

birationally project non-plane curve to plane curve. So by computing genus of this

plane curve, we get genus of original curve.

The plane curve has degree 24. There are 184 normal singular points of multiplicity

µp = 2, two normal singular points of multiplicity µp = 8. The geometric genus is given

by

gG = 253− 184× 1− 2× 8(8− 1)

2
= 13 . (5.40)

Topological picture of genus

After solving six linear equations, we get five quadratic equations

Q1(x1, x2, z1, z2) = 0 , Q2(y1, y2, z1, z2) = 0 , Q3(z1, z2) = 0 ,

Q4(x1, x2, z1, z2) = 0 , Q5(y1, y2, z1, z2) = 0 . (5.41)



130 Chapter 5. Genus of curve from multi-loop amplitude

For general kinematics, ideal I(Q1, Q2, Q3, Q4, Q5) is irreducible.

If K1 is massless, Q1 can be factorized to two factors. Thus the reducible ideal can be

decomposed to two prime ideals I1, I2. Solution of I1∪I2 is eight points. The degenerate

topological picture of genus is given by Figure (5.6.a). From Figure (5.6.a), we know

that plane curve of each prime ideal should be genus-3. After projecting curve of each

prime ideal onto a plane curve using elimination process via Gröbner basis method, we

find that it has degree 12. There are 40 normal singular points of multiplicity µp = 2,

two normal singular points of multiplicity µp = 4. So the genus is given by

gG =
1

2
(12− 1)(12− 2)− 40× 1− 2× 4(4− 1)

2
= 3 , (5.42)

as expected. If K3 is massless, we also get two prime ideals from factorization of Q3.

The plane curve of each prime ideal has degree 12. There are 38 normal singular points

of multiplicity µp = 2, two normal singular points of multiplicity µp = 4. So we have

gG =
1

2
(12− 1)(12− 2)− 38× 1− 2× 4(4− 1)

2
= 5 . (5.43)

The only possible degenerate topological picture of genus-13 torus which has two genus-5

tori is shown in Figure (5.6.b). So intersection of varieties of two prime ideals is four

points. By computing V (I1 ∪ I2), we find that it is indeed four points.

It is not difficult to conclude that if both K1,K3 are massless, the degenerate topological

picture should be given by overlapping of Figure (5.6.a) and (5.6.b). The resulting

picture is four genus-1 tori linked in a chain, with intersecting points indicated by dashed

lines of both Figures. Explicit computation of plane curve for each prime ideal agrees

with this degenerate topological picture. The plane curve has degree 6, and 9 normal

singular points of multiplicity mp = 2. So the genus is given by

gG =
1

2
(6− 1)(6− 1)− 9× 1 = 1 , (5.44)

as expected.

Since K1,K5 are symmetric in the diagram (5.4.b), the condition of K2
5 = 0 gives the

same degenerate topological picture as Figure (5.6.a). So when combining K2
1 = 0,

K2
5 = 0 together, the degenerate topological picture should be given by overlapping two

copies of Figure (5.6.a), as shown in Figure (5.6.c). Then we get four genus-0 Riemann

spheres linked in a chain, with four intersecting points between adjacent spheres. By

explicit computation, we find that there are indeed four prime ideals after primary

decomposition, which can be easily seen from factorized functions Q1, Q2. The plane



5.3 Genus of curve from three-loop diagrams 131

p1

p2

p3

p4 p5 p6

p7

p8

p9

ℓ1

ℓ2ℓ3

Figure 5.7: Non-planar three-loop ”Mercedes” logo diagram. All external momenta
are out-going and massive. Loop momenta are denoted by `1, `2, `3.

curve of each prime ideal has degree 6, and there are 10 normal singular points of

multiplicity µp = 2. So the genus is gG = 10− 10× 1 = 0, as indicated in Figure (5.6.c).

If K1,K3,K5 are massless, each Q1, Q2, Q3 can be factorized to two factors. The equa-

tions are not totally independent, so the degenerate topological picture is no longer given

by overlapping of Figure (5.6.b) and (5.6.c). After primary decomposition, we get eight

prime ideals. The plane curve of each prime ideal has degree 3, and only one normal

singular point of multiplicity µp = 2. So gG = 0. The degenerate topological picture is

given in (5.6.d), after computing intersections among varieties of eight prime ideals.

5.3.3 Genus of Mercedes-logo diagram

In this section, we present result of three-loop ”Mercedes-logo” diagram, as shown in

Figure (5.7). Although algebraic system of maximal unitarity cut for this diagram

becomes more complicated, the mathematical method of computing genus still keeps

the same. The 11 propagators are given by

Only `1 : D0 = `21 , D1 = (`1 −K1)2 ,

Only `2 : D̃0 = `22 , D̃1 = (`2 −K6)2 , D̃2 = (`2 +K7)2 ,

Only `3 : D̄0 = `23 , D̄1 = (`3 −K3)2 , D̄2 = (`3 +K4)2 ,

Mixed `1, `2 : D̂0 = (`2 − `1 +K7 +K1 +K8)2 ,

Mixed `2, `3 : D̂1 = (`3 − `2 +K4 +K5 +K6)2 ,

Mixed `1, `3 : D̂2 = (`1 − `3 +K2 +K3)2 .
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No linear equations can be constructed from propagators of mixed loop momenta, so we

can only get five linear equations. The complex curve is then defined by six quadratic

equations of seven variables. Notice that we can rationally parameterize `1 by two

variables x, y, `2 by one variable z, and `3 by one variables w. After substituting

`1(x, y), `2(z), `3(w), the remaining three propagators of mixed loop momenta become

meromorphic functions. The numerators of three meromorphic functions

f(x, y, z) = 0 , g(w, z) = 0 , h(x, y, w) = 0 . (5.45)

define a birational equivalent curve. We can further birational project it onto plane

curve F (y, w) = 0 by computing the resultant, as described in previous sections. This

plane curve has degree 20. There are 36 normal singular points of multiplicity µp = 2,

one normal singular point of multiplicity µp = 16, and one normal singular point of

multiplicity µp = 4. So the genus is given by

gG =
(20− 1)(20− 2)

2
− 36× 1− 1× 16(16− 1)

2
− 1× 4(4− 1)

2
= 9 . (5.46)

Coincidentally, genus of Mercedes-logo diagram equals to genus of box-crossed-pentagon

diagrams. When considering the kinematic configurations presented in box-crossed-

pentagon diagram, the degenerate topological pictures of genus are also the same. More

explicitly, if K4 is massless, we get two prime ideals, and the degenerate topological

picture is given by Figure (5.5.a). If K1 is massless, there are also two prime ideals, and

the degenerate topological picture is given by Figure (5.5.b). If both K1,K4 are massless,

the picture is given by Figure (5.5.c). Furthermore, when K1,K4,K6 are massless, there

are eight prime ideals, and the degenerate picture is given by Figure (5.5.d).
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Conclusion

It is always difficult to give a final conclusion, since there are always new possibilities

and results proposed for well-studied problems. Especially for amplitude computation,

where new ideas always shape the power of old methods. The simple formulation of

MHV amplitude has already been provided in 1986 by Parke and Taylor[87]. But only

after almost twenty years the simplicity of tree amplitudes is being explored, with the

discovery of BCFW recursion relation[5, 6]. The BCJ relation[17] can also find its hints

back to 1981 where similar kinematic identity at four points is used to explain certain

zeros in cross sections[121, 122]. But it is only formulated and proved very recently.

The same situation happens for gravity amplitude. The KLT relation is discovered in

1985 for string amplitudes, but it has little progress in field theory gravity amplitude

computation for many years except some results of MHV gravity amplitude. However,

it is again studied three years ago[94], and a family of equivalent KLT relations are

proposed. Some interesting vanishing identities of Yang-Mills amplitudes also appear

as a byproduct of this study[93]. After a complete survey of super-KLT relation with

any number of supersymmetry[70], it seems that all possible studies are already done.

However, within around one year, new simple formulation of MHV gravity amplitude is

provided by Hodges[123], which is equivalent to KLT formula when kinematic invariants

are allowed to be off-shell in a novel way. A series of researches are then done on these

tree gravity amplitude formulations[124].

The traditional notations, ideas and methods, which are somehow forgotten for many

years, also contribute actively with a modern interpretation. Especially for the idea of

S-matrix program[7–9], where only general assumptions as locality, unitarity are used

to analyze scattering amplitudes. Only after the discovery of BCFW recursion relation,

these general assumptions are then well formulated in analytic function of single com-

plex variable for amplitudes. The spinor-helicity formalism plays tremendous role in
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the computation of amplitude using BCFW recursion relation. The unitarity cut and

generalized unitarity cut combined with spinor-helicity formalism and BCFW recursion

relation then are served as powerful tool of computing loop amplitudes, though they are

also already used almost twenty years ago.

For multi-loop gravity amplitude computation, the only practical method by now seems

to be the BCJ conjecture[27, 28] that constructing such amplitude from double copies of

multi-loop Yang-Mills amplitudes. But it also suffers from the computation complexity,

and a better understanding of this conjecture is still required. For multi-loop Yang-Mills

amplitude computation, the algebraic geometry methods are introduced. Application of

these methods to loop amplitude computation is still preliminary, especially for diagrams

where generalized unitarity cut defines very complicated complex manifold. We still need

to work hard in order to get a practical computation method for any point any loop

amplitude.

So we are going to give a final conclusion about this thesis. It contains discussions of

works that have been done during my PhD, distributed in three papers. In the KLT

paper[70], we present the complete map of any products of super-Yang-Mills theories

to super-gravity theories by super-KLT relations in four dimension. Linear symmetry

groups of super-gravity theories and explanation of vanishing identities of Yang-Mills

amplitudes due to violation of symmetry groups are derived. A graphical method is

introduced which simplifies the counting of states, and helps to identify relevant sym-

metries. In the integrand paper[61], we attempts to classify integrand basis of all 4-

dimensional two-loop topologies. The classification is taken by firstly determine all

topologies from structures of propagators, then determine the independent monomials

in numerator of integrand by Gröbner basis. The branch structures of reducible ideal

defined by equations of maximal unitarity cut under specific kinematic configuration are

discussed. In the genus paper[71], a special type of loop topologies where cut equations

define the complex curve is studied. The genus of complex curve is computed by alge-

braic geometry method, with knowledge of the degree and singular points of the curve.

The degenerate topological picture of genus for reducible curve is also discussed.

This is the end of this thesis, but not the end of research. We are waiting to know more.
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