Kort præsentation
I am interested in computational seismic imaging. Besides being a fan of the geophysical inverse problems, I employ seismic wave observations to apply a variety of techniques, including tomography, receiver function imaging, moment tensor inversion, and relocation analysis, in addition to shear wave splitting methods.

Publikationer

Coupled Crust-Mantle Evolution for > 2 Gy in Southern Africa from Exceptionally Strong Crustal Anisotropy

Non-Volcanic Earthquake Swarm Near the Harrat Lunayyir Volcanic Field, Saudi Arabia

Southern Africa crustal anisotropy reveals coupled crust-mantle evolution for over 2 billion years
Thybo, H., Youssof, Mohammad & Artemieva, I., 29 nov. 2019, I: Nature Communications. 10, 1, s. 1 10 s., 5445.

Crustal and upper mantle seismic structure of Russia from teleseismic receiver functions

Thickness and composition of the crust in southern Africa.
Youssof, Mohammad, Thybo, H. & Artemieva, I., 2016, 35th Int. Geological Congress. 1 s. 4422

Velocity Structures underneath NRIL seismic station, Russia: Imaging the difference between the Siberian Craton and the West Siberian Basin
Youssof, Mohammad, Thybo, H., Artemieva, I. & Vinnik, L., 2016, Eos Trans. AGU. AGU, Bind 96. s. 1 199453

Crustal and upper mantle structure of Siberia from teleseismic receiver functions

Strong crustal seismic anisotropy in the Kalahari Craton based on Receiver Functions
Thybo, H., Youssof, Mohammad & Artemieva, I., apr. 2015, I: Geophysical Research Abstracts. 17, 1 s., 8916.

Upper mantle seismic structure beneath southwest Africa from finite-frequency P- and S-wave tomography

Upper mantle structure beneath southern African cratons from seismic finite-frequency P- and S-body wave tomography
Strong seismic anisotropy in the crust of southern African cratons

Teleseismic receiver functions imaging of Siberia

EVOLUTION OF SOUTHERN AFRICAN CRATONS BASED ON SEISMIC IMAGING
Thybo, H., Youssof, Mohammad & Artemieva, I., okt. 2014, I: Geological Society of America. Abstracts with Programs. 46, 6, s. 43-43

Seismic Structure of Southern African Cratons: A study based on teleseismic receiver functions and finite-frequency tomography

Moho depth and crustal composition in Southern Africa

Seismic imaging of Southern African cratons: based on teleseismic receiver function and finite-frequency tomography
Youosof, Mohammad, 2013, Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen. 130 s.

Seismic structure of the crust and lithospheric mantle of the southern African cratonic region

Seismic velocity structure and anisotropy in southern African lithosphere terranes

Investigating the translation of Earth’s inner core

The crust and mantle beneath the Siberian provinces: a preliminary model based on new receiver function analysis

High-resolution imaging of the Kaapvaal Craton using P and S wave receiver functions and P- and S- finite frequency tomography

Why is the Kaapvaal different from other cratons?

Combined teleseismic imaging of the structure of southern African cratons using P-receiver functions and P-and S-finite-frequency tomography

Structure and extent of the southern African cratons: Integrated images from receiver functions and teleseismic tomography.
The extent of the Cratonic keel underneath the Southern African region: A 3D image using Finite-Frequency Tomograph

PdS and SdP Receiver Functions Image of the Lithosphere underneath the Southern African Regions