Detection of a particle shower at the Glashow resonance with IceCube

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Standard

Detection of a particle shower at the Glashow resonance with IceCube. / Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, Markus Tobias; Ahrens, M.; Alispach, C.; Amin, N.M.; Andeen, K.; Ansseau, I.; Anton, G.; Arguelles, C.; Auffenberg, J.; Bourbeau, Etienne; Koskinen, D. Jason; Stuttard, Thomas Simon; Rameez, M; Medici, Morten Ankersen; Icecube Collaboration.

I: Nature, Bind 591, 10.03.2021, s. 220-224.

Publikation: Bidrag til tidsskriftTidsskriftartikelfagfællebedømt

Harvard

Aartsen, MG, Abbasi, R, Ackermann, M, Adams, J, Aguilar, JA, Ahlers, MT, Ahrens, M, Alispach, C, Amin, NM, Andeen, K, Ansseau, I, Anton, G, Arguelles, C, Auffenberg, J, Bourbeau, E, Koskinen, DJ, Stuttard, TS, Rameez, M, Medici, MA & Icecube Collaboration 2021, 'Detection of a particle shower at the Glashow resonance with IceCube', Nature, bind 591, s. 220-224. https://doi.org/10.1038/s41586-021-03256-1

APA

Aartsen, M. G., Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M. T., Ahrens, M., Alispach, C., Amin, N. M., Andeen, K., Ansseau, I., Anton, G., Arguelles, C., Auffenberg, J., Bourbeau, E., Koskinen, D. J., Stuttard, T. S., Rameez, M., Medici, M. A., & Icecube Collaboration (2021). Detection of a particle shower at the Glashow resonance with IceCube. Nature, 591, 220-224. https://doi.org/10.1038/s41586-021-03256-1

Vancouver

Aartsen MG, Abbasi R, Ackermann M, Adams J, Aguilar JA, Ahlers MT o.a. Detection of a particle shower at the Glashow resonance with IceCube. Nature. 2021 mar. 10;591:220-224. https://doi.org/10.1038/s41586-021-03256-1

Author

Aartsen, M.G. ; Abbasi, R. ; Ackermann, M. ; Adams, J. ; Aguilar, J.A. ; Ahlers, Markus Tobias ; Ahrens, M. ; Alispach, C. ; Amin, N.M. ; Andeen, K. ; Ansseau, I. ; Anton, G. ; Arguelles, C. ; Auffenberg, J. ; Bourbeau, Etienne ; Koskinen, D. Jason ; Stuttard, Thomas Simon ; Rameez, M ; Medici, Morten Ankersen ; Icecube Collaboration. / Detection of a particle shower at the Glashow resonance with IceCube. I: Nature. 2021 ; Bind 591. s. 220-224.

Bibtex

@article{165f696fc568493482b95ff066f60907,
title = "Detection of a particle shower at the Glashow resonance with IceCube",
abstract = "The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.",
author = "M.G. Aartsen and R. Abbasi and M. Ackermann and J. Adams and J.A. Aguilar and Ahlers, {Markus Tobias} and M. Ahrens and C. Alispach and N.M. Amin and K. Andeen and I. Ansseau and G. Anton and C. Arguelles and J. Auffenberg and Etienne Bourbeau and Koskinen, {D. Jason} and Stuttard, {Thomas Simon} and M Rameez and Medici, {Morten Ankersen} and {Icecube Collaboration}",
note = "Corrections ; vol 591, pg 220, 2021,DOI: 10.1038/s41586-021-03450-1",
year = "2021",
month = mar,
day = "10",
doi = "10.1038/s41586-021-03256-1",
language = "English",
volume = "591",
pages = "220--224",
journal = "Nature",
issn = "0028-0836",
publisher = "nature publishing group",

}

RIS

TY - JOUR

T1 - Detection of a particle shower at the Glashow resonance with IceCube

AU - Aartsen, M.G.

AU - Abbasi, R.

AU - Ackermann, M.

AU - Adams, J.

AU - Aguilar, J.A.

AU - Ahlers, Markus Tobias

AU - Ahrens, M.

AU - Alispach, C.

AU - Amin, N.M.

AU - Andeen, K.

AU - Ansseau, I.

AU - Anton, G.

AU - Arguelles, C.

AU - Auffenberg, J.

AU - Bourbeau, Etienne

AU - Koskinen, D. Jason

AU - Stuttard, Thomas Simon

AU - Rameez, M

AU - Medici, Morten Ankersen

AU - Icecube Collaboration

N1 - Corrections ; vol 591, pg 220, 2021,DOI: 10.1038/s41586-021-03450-1

PY - 2021/3/10

Y1 - 2021/3/10

N2 - The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.

AB - The Glashow resonance describes the resonant formation of a W− boson during the interaction of a high-energy electron antineutrino with an electron1, peaking at an antineutrino energy of 6.3 petaelectronvolts (PeV) in the rest frame of the electron. Whereas this energy scale is out of reach for currently operating and future planned particle accelerators, natural astrophysical phenomena are expected to produce antineutrinos with energies beyond the PeV scale. Here we report the detection by the IceCube neutrino observatory of a cascade of high-energy particles (a particle shower) consistent with being created at the Glashow resonance. A shower with an energy of 6.05 ± 0.72 PeV (determined from Cherenkov radiation in the Antarctic Ice Sheet) was measured. Features consistent with the production of secondary muons in the particle shower indicate the hadronic decay of a resonant W− boson, confirm that the source is astrophysical and provide improved directional localization. The evidence of the Glashow resonance suggests the presence of electron antineutrinos in the astrophysical flux, while also providing further validation of the standard model of particle physics. Its unique signature indicates a method of distinguishing neutrinos from antineutrinos, thus providing a way to identify astronomical accelerators that produce neutrinos via hadronuclear or photohadronic interactions, with or without strong magnetic fields. As such, knowledge of both the flavour (that is, electron, muon or tau neutrinos) and charge (neutrino or antineutrino) will facilitate the advancement of neutrino astronomy.

U2 - 10.1038/s41586-021-03256-1

DO - 10.1038/s41586-021-03256-1

M3 - Journal article

C2 - 33692563

VL - 591

SP - 220

EP - 224

JO - Nature

JF - Nature

SN - 0028-0836

ER -

ID: 258448527