Scheme for Universal High-Dimensional Quantum Computation with Linear Optics

Publikation: Bidrag til tidsskriftLetterfagfællebedømt

Standard

Scheme for Universal High-Dimensional Quantum Computation with Linear Optics. / Paesani, Stefano; Bulmer, Jacob F. F.; Jones, Alex E.; Santagati, Raffaele; Laing, Anthony.

I: Physical Review Letters, Bind 126, Nr. 23, 230504, 11.06.2021.

Publikation: Bidrag til tidsskriftLetterfagfællebedømt

Harvard

Paesani, S, Bulmer, JFF, Jones, AE, Santagati, R & Laing, A 2021, 'Scheme for Universal High-Dimensional Quantum Computation with Linear Optics', Physical Review Letters, bind 126, nr. 23, 230504. https://doi.org/10.1103/PhysRevLett.126.230504

APA

Paesani, S., Bulmer, J. F. F., Jones, A. E., Santagati, R., & Laing, A. (2021). Scheme for Universal High-Dimensional Quantum Computation with Linear Optics. Physical Review Letters, 126(23), [230504]. https://doi.org/10.1103/PhysRevLett.126.230504

Vancouver

Paesani S, Bulmer JFF, Jones AE, Santagati R, Laing A. Scheme for Universal High-Dimensional Quantum Computation with Linear Optics. Physical Review Letters. 2021 jun. 11;126(23). 230504. https://doi.org/10.1103/PhysRevLett.126.230504

Author

Paesani, Stefano ; Bulmer, Jacob F. F. ; Jones, Alex E. ; Santagati, Raffaele ; Laing, Anthony. / Scheme for Universal High-Dimensional Quantum Computation with Linear Optics. I: Physical Review Letters. 2021 ; Bind 126, Nr. 23.

Bibtex

@article{ba03a318cb824a8ebaaebe23591c6b86,
title = "Scheme for Universal High-Dimensional Quantum Computation with Linear Optics",
abstract = "Photons are natural carriers of high-dimensional quantum information, and, in principle, can benefit from higher quantum information capacity and noise resilience. However, schemes to generate the resources required for high-dimensional quantum computing have so far been lacking in linear optics. Here, we show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical circuits described by Fourier transform matrices. Combining our results with recent schemes for qudit Bell measurements, we show that universal linear optical quantum computing can be performed in arbitrary dimensions.",
keywords = "ENTANGLEMENT, GENERATION, STATES",
author = "Stefano Paesani and Bulmer, {Jacob F. F.} and Jones, {Alex E.} and Raffaele Santagati and Anthony Laing",
note = "Hy-Q",
year = "2021",
month = jun,
day = "11",
doi = "10.1103/PhysRevLett.126.230504",
language = "English",
volume = "126",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "23",

}

RIS

TY - JOUR

T1 - Scheme for Universal High-Dimensional Quantum Computation with Linear Optics

AU - Paesani, Stefano

AU - Bulmer, Jacob F. F.

AU - Jones, Alex E.

AU - Santagati, Raffaele

AU - Laing, Anthony

N1 - Hy-Q

PY - 2021/6/11

Y1 - 2021/6/11

N2 - Photons are natural carriers of high-dimensional quantum information, and, in principle, can benefit from higher quantum information capacity and noise resilience. However, schemes to generate the resources required for high-dimensional quantum computing have so far been lacking in linear optics. Here, we show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical circuits described by Fourier transform matrices. Combining our results with recent schemes for qudit Bell measurements, we show that universal linear optical quantum computing can be performed in arbitrary dimensions.

AB - Photons are natural carriers of high-dimensional quantum information, and, in principle, can benefit from higher quantum information capacity and noise resilience. However, schemes to generate the resources required for high-dimensional quantum computing have so far been lacking in linear optics. Here, we show how to generate GHZ states in arbitrary dimensions and numbers of photons using linear optical circuits described by Fourier transform matrices. Combining our results with recent schemes for qudit Bell measurements, we show that universal linear optical quantum computing can be performed in arbitrary dimensions.

KW - ENTANGLEMENT

KW - GENERATION

KW - STATES

U2 - 10.1103/PhysRevLett.126.230504

DO - 10.1103/PhysRevLett.126.230504

M3 - Letter

C2 - 34170150

VL - 126

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 23

M1 - 230504

ER -

ID: 272508916