Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › fagfællebedømt
We consider the deformation of the Poincar\'e group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Symmetry, Integrability and Geometry: Methods and Applications |
Vol/bind | 10 |
Sider (fra-til) | 053 |
ISSN | 1815-0659 |
DOI | |
Status | Udgivet - 1 jan. 2014 |
Eksternt udgivet | Ja |
- hep-th, gr-qc, math-ph, math.MP
Forskningsområder
ID: 227488929