Wafer-scale epitaxial modulation of quantum dot density
Publikation: Bidrag til tidsskrift › Tidsskriftartikel › fagfællebedømt
Standard
Wafer-scale epitaxial modulation of quantum dot density. / Bart, N.; Dangel, C.; Zajac, P.; Spitzer, N.; Ritzmann, J.; Schmidt, M.; Babin, H. G.; Schott, R.; Valentin, S. R.; Scholz, S.; Wang, Y.; Uppu, R.; Najer, D.; Loebl, M. C.; Tomm, N.; Javadi, A.; Antoniadis, N. O.; Midolo, L.; Mueller, K.; Warburton, R. J.; Lodahl, P.; Wieck, A. D.; Finley, J. J.; Ludwig, A.
I: Nature Communications, Bind 13, Nr. 1, 1633, 28.03.2022.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › fagfællebedømt
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Wafer-scale epitaxial modulation of quantum dot density
AU - Bart, N.
AU - Dangel, C.
AU - Zajac, P.
AU - Spitzer, N.
AU - Ritzmann, J.
AU - Schmidt, M.
AU - Babin, H. G.
AU - Schott, R.
AU - Valentin, S. R.
AU - Scholz, S.
AU - Wang, Y.
AU - Uppu, R.
AU - Najer, D.
AU - Loebl, M. C.
AU - Tomm, N.
AU - Javadi, A.
AU - Antoniadis, N. O.
AU - Midolo, L.
AU - Mueller, K.
AU - Warburton, R. J.
AU - Lodahl, P.
AU - Wieck, A. D.
AU - Finley, J. J.
AU - Ludwig, A.
PY - 2022/3/28
Y1 - 2022/3/28
N2 - Nucleation control of self-assembled quantum dots is challenging. Here, the authors employ conventional molecular beam epitaxy to achieve wafer-scale density modulation of high-quality quantum dots with tunable periodicity on unpatterned substrates.Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/mu m(2) and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer.
AB - Nucleation control of self-assembled quantum dots is challenging. Here, the authors employ conventional molecular beam epitaxy to achieve wafer-scale density modulation of high-quality quantum dots with tunable periodicity on unpatterned substrates.Precise control of the properties of semiconductor quantum dots (QDs) is vital for creating novel devices for quantum photonics and advanced opto-electronics. Suitable low QD-densities for single QD devices and experiments are challenging to control during epitaxy and are typically found only in limited regions of the wafer. Here, we demonstrate how conventional molecular beam epitaxy (MBE) can be used to modulate the density of optically active QDs in one- and two- dimensional patterns, while still retaining excellent quality. We find that material thickness gradients during layer-by-layer growth result in surface roughness modulations across the whole wafer. Growth on such templates strongly influences the QD nucleation probability. We obtain density modulations between 1 and 10 QDs/mu m(2) and periods ranging from several millimeters down to at least a few hundred microns. This method is universal and expected to be applicable to a wide variety of different semiconductor material systems. We apply the method to enable growth of ultra-low noise QDs across an entire 3-inch semiconductor wafer.
KW - SELF-ORGANIZED GROWTH
KW - SURFACE
KW - UNIFORMITY
KW - ISLANDS
KW - CHARGE
KW - GAAS
U2 - 10.1038/s41467-022-29116-8
DO - 10.1038/s41467-022-29116-8
M3 - Journal article
C2 - 35347120
VL - 13
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 1633
ER -
ID: 303444177