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1. The foundation of The General Theory of Relativity 
Newton’s law of gravitation was until the beginning of the twentieth century considered being the 
ultimate physical description of the phenomena of gravitation. The obvious reason was that his law 
of gravitation had been able to explain fully the gravitation on the earth, and by Newton’s 
revolutionary intellect, it was the same simple law that determined the orbital movement of the 
moon, as well as the planets orbital motion around the sun. 
 
The appearance of Einstein’s Special theory of Relativity in 1905 did not significantly influence 
the belief of Newton’s theory of gravitation, and in fact it still hasn’t, as long as one is confined to 
non relativistic motion, although neither Newton’s three laws nor his theory of gravitation did 
comply with Special Relativity. Newton’s laws of dynamics were rather easy to modify to comply 
with the Lorentz transformation, but that was not the case with his law of gravitation. 
 
Also the velocities of the planets are of order most 3,0 104 m/s, so that v/c is of order 10-4, and 
(v/c)2 is of order 10-8 , and for this reason, it is highly unlikely that anyone had ever observed any 
deviation from Newton’s law of gravitation, due to Special  Relativity. With one exception, which 
concerns the precession of the perihelion of Mercury, being a discrepancy of 43’’ per century of 
the observed and calculated precession – even when taking into accounts the influence of the other 
nearest planets.  
 
There was however one more thing. Some observations indicated that a star could be observed in 
two separate positions. This phenomena could, however be explained if the light rays from the star 
were bended by a massive object situated in front of the star in the line of sight.  
But the phenomena can actually be explained in the framework of Newtonian mechanics, although 
the predicted bending is only half of what is derived from Einstein’s General theory of Relativity. 

1.1 The equivalence principle 
The equivalence principle bluntly formulated is that all frames of reference, including accelerated 
frames are inertial frames, in which the laws of physics are valid. 
 
The accelerated frame must however be such that all entities have the same acceleration, which 
mean that the acceleration is due to gravity. 
 
The equivalence principle has due to the formulation of Einstein two parts: 
 
The weak equivalence principle claims the equality between the heavy mass (that is the mass mG 
that enters in Newton’s law of gravitation), and the inertial mass mI (that enters Newton’s second 
law of dynamics). 

(1.1)  2r
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The strong equivalence principle states that motion due to gravitation is equivalent to 
acceleration in a “free fall” in a curved space time. An observer inside a box e.g. in a spaceship, 
will feel no gravity. So gravity is transformed away by acceleration. Inside the box the laws of 
physics will be the same as in a Galileo inertial frame. 
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In the Special Theory of Relativity the laws of physics are the same in every inertial rest frame. 
The coordinates and time measurements for two inertial frames that move relative to each other 
with velocity v, are given by the Lorentz transformations:  

(1.2) 
22 /1

'
cv

vtx
x




  and 

22

2

/1
'

cv
c

xv
t

t



   

 
On the other hand, if you are placed in a accelerated coordinate system, e.g. a train or an airplane 
which enters a curve, Newton’s laws of dynamics are no longer valid, since the passengers will 
follow the law of inertia, and therefore will feel a push in the opposite direction of the turn, even if 
the are no visible force.  
Such forces are called fictitious forces. They have no tangible origin, but they are due to the fact 
that the system is accelerated, because of the external forces, while you follow the law of inertia. 
 
If you move in a rotating system e.g. sitting on a carousel, you will experience two fictitious 
forces, the centrifugal force, which stems from the fact, that it requires a centripetal force to 
uphold a circular motion, and the Coriolis force, which is more subtle, but comes about, because 
the velocity in a rotating system increases linearly with the distance from the centre.  v =ωr, 
whereas ω the angular velocity is the same. 
 
So obviously not all accelerated coordinate system are inertial systems.  
Newton’s laws of dynamics are not in general valid in an accelerated system. The law of inertia is 
not valid in an accelerated system, that is, unless all entities in the frame have exactly the same 
acceleration, which is the case of a gravitational “free fall”. But the crucial condition is that the 
heavy mass is exactly identical to the inertial mass. Otherwise Newton’s second law and his law of 
gravitation would not “treat” the mass on equal footing. 
 
In 1915 the principle of equivalence was a more abstract supposition made by Einstein, but since 
the sixties with launching of manned spaceships, it has been irrevocably confirmed that the 
spaceship capsule is in fact an inertial system. 
The men in the capsule feel neither gravity nor acceleration. Gravity is transformed away by 
acceleration. In fact gravity is equivalent to acceleration, and by this token the principle of 
equivalence is formulated. 
 
The principle of equivalence implies the existence of local inertial frames at every space-time 
point. In a sufficiently small region a local observer will sense no effects of gravity. 
These considerations among others motivated Einstein to propose a geometrical curved space-time 
description of the gravitational field.  

1.2 Review of the Newtonian theory of gravitation 
It is one of the most fundamental principles in theoretical physics that a new theory of the physical 
world must comply with an established theory in some limit.  
For example The Special Theory of Relativity becomes classical Newtonian mechanics when the 
velocities involved are much smaller than the speed of light, that is, when v/c goes to zero. 
Likewise in quantum physics one regains the formulas of classical mechanics, in the limit where 
the Planck constant h goes to zero. 
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For the same reason, an extension of a theory of gravitation must comply with the Newtonian 
theory of gravitation in the area, where the theory has successfully been applied for more than two 
hundred years.  
In fact we expect some formal resemblance between Einstein’s General theory of Relativity and 
the Newtonian theory of gravitation. 
We shall therefore proceed giving a recapitulation of Newton’s theory in a mathematical compact 
form. 
 
Newton’s law of gravitation is illustrated below. Fm is the force on the mass m from the 
gravitational attraction from the mass M.  The distance between the centres of the two spherical 
bodies is r. e


 is a unit vector pointing from M to m. G = 6,67 10-11 Nm2/kg2 is the gravitational 

constant. Newton’s law of gravitation, may then be written: 
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From Newton’s second law we find the 
acceleration: 
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We say that the mass M gives rise to a gravitational field, as it is the case in electrostatics with 
Coulomb’s law and we can likewise apply Gauss’ law on the field:  
 
If we take the surface integral over a closed surface it equals 4πG times the source of the field 

inside the surface. Let Ad


 be an outward normal vector to the surface at the infinitesimal area dA. 
 

(1.3)  GMAdg
S

4


  

 
For at sphere with a point source in the centre this becomes obvious. 
Foe symmetry reasons a field from a point source (or just a spherical symmetric source) must have 
a radial direction, and must have the same numerical value at a constant radius. 
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Conversely, Stokes law can be used to derive the formula (1.2) for a point source. 
 
By applying Stokes law, we can transform the surface integral into an integral over the volume 
using the divergence of the field, and at the same time turn the right hand side of (1.3) into a 
volume integral, where ρ is the mass density. 
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Since the equation must hold for all volume elements, it must also hold for the differential volume 
elements, so we must have. 
 

(1.5)  Gg 4
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This is Newton’s field equation written in differential form. Mathematically it is identical to 
Gauss’ law for electrostatics. Since the gravitational field is free from rotation:  
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the gravitational field can be expressed as the gradient of a potential. 
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From Newton’s second law rmamF 
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ga , and the Newtonian equation of 

motion becomes.  
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One may notice, however that Newton’s theory of gravitation is not compatible with The Special 
Theory of Relativity. One reason is that the gravitational force is “acting at a distance” (propagates 
with infinite speed), and the other main reason is that space and time coordinates are not treated on 
equal footing, as they must be in Special  Relativity. 
 
The Special Theory of Relativity was published in 1905, and soon after completing it, Einstein 
began working on a relativistic theory of gravitation. In the period 1907 – 1914 he relied heavily 
on the equivalence principle to extract some general results. (Much in the same manner as Bohr 
used the correspondence principle to extract result from quantum mechanics). 
Not until 1915 he realized that gravitation could be described within the framework of Riemannian 
differential geometry, being a generalisation from the Gaussian theory from ordinary 3-
dimensional space to 4-dimensional space-time. 
 
The heart of the General theory of Relativity is to describe accelerated motion – not as a 
consequence of gravitation – but following the shortest path (in time) in a warped space time.  
 
On a surface in Euclidian space the geodesics are the “straight lines on a warped surface”.  
For example the geodesics on a sphere are great circles. Geodesics are quite fundamental in 
differential geometry, and it is closely related to the concept of covariant differentiation, since  
a geodesic is a curve along a path, where the covariant derivative is zero.   
“Covariant” refers to objects that transform as a tensor under covariant coordinate transformations. 
(For details see Differential Geometry 2). 
 
The concept of a geodesic follows one of the deepest principle in physics: The principle of least 
time, which also is the basis of the Lagrange approach of analytical mechanics.  
It states that a particle (including light), will always follow the path that takes the minimum time. 
For example the law of refraction can rather easily be deduced from the principle of least time. 
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The curvature of the 4-dimensional Minkowski space-time originate from massive bodies, but far 
away from such masses, we have a flat space-time that can be described by The Special Theory of 
Relativity. 
 
We will show that the General theory of Relativity can in fact make predictions, which can be 
verified experimentally, predictions which differ from that of Newtonian mechanics.  
Also General Relativity complies with the classical theory of gravitation in the non relativistic 
limit. 

1.3 Implications of the principle of equivalence 
We start out with Einstein’s precision of the equivalence principle, a formulation which he used, 
when making deductions. 
 
(1.8) Physics in a frame, freely falling in a gravitational field, is equivalent to 

physics in an inertial frame without gravity. 
 
Physics in a non accelerating frame with gravity g, is equivalent to 
Physics in a frame without gravity, but accelerating with a = -g  

 
Thus according to the equivalence principle, accelerating frames of reference can be treated in 
exactly the same way as inertial frames. They are simply frames with gravity.  
From this we also obtain a definition of an inertial frame (without reference to any external 
environment such as fixed stars), as a frame where there is no gravity. 
 
In this way we also avoid the problem of incorporating Special Relativity into gravity but rather to 
use gravitation as a means to broaden the principle of relativity from inertial frames to all 
coordinate systems including accelerating frames. 
 
We shall now study some consequence of applying the equivalence principle to various situations. 
We shall subsequently show that gravity can bend a light ray, shift the frequency of an 
electromagnetic wave and cause clocks to run slower. 

1.4 A spaceship in free fall 
We first consider the situation of an observer inside a spaceship in a free fall. According to the 
equivalence principle there is no gravitational effects in this inertial frame and Special Relativity 
applies. 
We shall then consider the events from the point of view of an observer watching the spaceship 
from outside. He sees a gravitational field, and the freely falling observer in the spaceship is seen 
to be accelerating in this gravitational field. 
According to the equivalence principle, the combined effect of acceleration and gravity as seen 
from the observer outside the spaceship must reproduce the Special Relativity description as 
observed by the observer in free fall.  
Physics should be independent of the choice of coordinate system. 
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First we look at a light ray travelling horizontally from one end of a spaceship to the other.  
The spaceship is falling vertically in a constant gravitational field g. From the viewpoint of an 
observer in the spaceship (and according to the equivalence principle), he finds himself in an 
inertial frame so there are no effects associated with gravity or acceleration. The light moves 
straight across the spaceship from one side to the other.  
Seen from the observer in the spaceship the light is received in the same height as it is emitted. 
 
However, to an observer outside the spaceship there is both gravity g and acceleration.  
From his point of view the light ray will follow the spaceship, and it will therefore appear to bend 
in the gravitational field, (since we know that the speed of light is independent of the speed of the 
emitter). (See figure). Since two observes agree that the signal was emitted and received in the 
same height, the equivalence principle suggest that a light ray is bended in the presence of a 
gravitational field. This is of course a thought experiment. With realistic scales the light will only 
be bended a fraction of the size of an atom.   

We shall then consider a situation, where 
the light ray is emitted along the direction of 
the free fall. 
From the equivalence principle, the observer 
in the spaceship is in an inertial frame and 
he cannot detect any effects, neither from 
gravitation nor from acceleration. 
Specifically the emitted and received 
frequency of the light will be the same. 
From the observer outside the spaceship, 
there will be a Doppler shift corresponding 
to a receiver moving away from the source. 
If the receiver moves with a velocity u, then 
the observed wavelength λ’ will be 
prolonged by a distance uT,’ where T’ is the 
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period of the signal, as measured from the receiver.  
If λ is the wavelength of the emitted signal, we therefore have the relation: λ’ = λ+ uT’ . 
  
Using the relation: λ = cT, we find:  cT’ = cT + uT’  or  (c-u)T’ = cT, and inserting  /2T , 
then dividing by c we get a formula for the (non relativistic) Doppler shift:  
(It is not a normal Doppler shift, however since the emitter and the receiver they are not in relative 
motion)  

(1.9) 
c
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What we see is that the received frequency is less than the emitted frequency, which means that 
the light is shifted towards the blue. 
But according to the equivalence principle the two observes must agree that the frequency has not 
shifted.  
The only possible explanation (apart from discarding the equivalence principle) is that the shift in 
frequency must be cancelled by gravity. We therefore postulate a shift due to gravity: 
 

(1.10)  
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We shall now analyze this a bit more closely. We express the right hand side of (1.10) in terms of 
the gravitational potential ϕ. In the time ∆t (as seen from the outside), it takes the light ray to travel 
the distance h, it has had an increase in velocity: ∆u = g∆t = gh/c. where. 
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For the difference in the two positions separated by h we find: 
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We thus find: 

(1.11)  
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This means that a light ray emitted at a lower gravitational potential will be received at a higher 
gravitational potential at a lower frequency, that is, the signal is red shifted. This is in accordance 
with the outside observer, who would expect a blue shift, associated with the movement of the 
spaceship. The two shifts in frequency however exactly cancel each other to uphold the 
equivalence principle. 
This gravitational shift in frequency is however impossible to observe directly, because it is of 
order 10-6 for the sun, and is masked by the Doppler shift due to the thermal motion of the atoms. 
 
It is therefore surprising that the first conclusive data came from a terrestrial experiment performed 
by Pound, Rebka and Sneider in 1960 and 1964.  
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They succeeded in measuring a extremely small shift in radiation travelling up 22.5 m, which was 
the height of an elevator shaft in the building housing the Harvard physics department. 
With these dimensions the relative shift in frequency is:    )10(// 152  Ocghg  

Normally it would be impossible to fix the frequency of an emitter or an absorber to this accuracy 
due to the thermal recoils of the atoms, but with the Mössbauer effect for crystals, the recoil is not 
from a single atom, but from the crystal as a whole, so with the bandwidth only limited by the 
Heisenberg uncertainty principle, it was possible to obtain this high accuracy. 
 
Pound and collaborators worked with the excited atom Fe*-57, which can be obtained through the 
nuclear beta-decay of Cobalt–57. It makes the transitions to the ground state by emitting a gamma 
ray.  
Because of the extreme narrow line width, gamma rays emitted at the bottom of the elevator shaft 
after climbing up 22.5 m up could no longer be resonantly absorbed in sheets of Fe-57 in its 
ground state. Pound and Rebka then moved the elevator slowly towards the bottom, so that the 
Doppler blue shift had just the right amount to compensate for the gravitational red shift. 
A calculation shows that to obtain this, the elevator should move with the speed 7.35 10-7 m/s. 
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1.4 Gravitational time dilation 
When you think about it, it becomes incomprehensible that an observer in a gravitational field 
stationary with respect to the emitter should receive radiation at a different rate, than it is emitted. 
And it appears certainly strange, but as Einstein was the first to explain the reason is not a change 
in frequency, but a gravitational time dilation dτ, where  d/2 and dτ is the proper time rate 
of the period of the wave crest. From the gravitational frequency shift formula (1.11):   
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we then get, when inserting    d/2 . 
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so we find 
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For a static gravitational field, this can be integrated to 
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Namely, a clock situated at a higher gravitational potential will run faster. This is in contrast to 
Special Relativity, where two observers are moving relative to each other. In that case both 
observers will claim, that the counterparts clock run slower, while with gravitational dilation, the 
observer at a higher gravitational point claims that the clock at a lower gravitational potential run 
slower, and the observer at a lower gravitational potential will claim that the clocks at a higher 
gravitational potential run faster.   
 
As an example we shall calculate the difference in clocks rates on the surface of the sun and on the 
earth. We must then calculate: 
 

 
2c

sunearth

earth

sunearth 






        Where    

r

M
G sun  

 
Inserting Msun=2.0 1030 kg,  rsun = 6.96  108 m , rearth = 1,50 1011 m and G = 6.67 10-11 J m/kg.  
 

6
2

101.2 





c
sunearth

earth

sunearth




 

 
This result together with other predictions from General Relativity, shows that Einstein’s theory 
(albeit its vast epistemological consequences), will probably never have influence on human life 
on earth in a way that mechanics, electrodynamics, quantum physics or even Special Relativity has 
had. 
 
Although the gravitational time dilation is extremely small, it has been possible to verify it in 
terrestrial circumstances using two identical Caesium atomic clocks, one in an airplane at an 
altitude of about 10 km and holding it there for a long time. After correcting for Special Relativity, 
the high altitude clock was found to gain over the grounds clock by an amount corresponding to 

tcght )/( 2    , where h was the altitude of the plane and g is the gravitational acceleration and 
gh is the gravitational potential difference. 
 
The gravitational time dilation should preferably be in accordance with Special Relativity.  
To establish that this is in fact the case, we shall analyze the free fall of a spaceship within the 
framework of Special Relativity. The spaceship is according to the equivalence principle an 
inertial system without gravity, and Special Relativity should apply. 
   
We consider the free fall at two positions, position (1), where the speed is v1 and position (2) 
where the speed is v2.  
Let t denote the time as recorded in the free fall frame and τ the time recorded in the two fixed 
positions. According to Special theory  

22

2

/1

'
'

cv

c

vx
t

t





  

 
For the observer in the spaceship ∆x’ = 0, so we can write to special theory relations. 
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We are interested in finding the clock rates ∆τ1 and  ∆τ2  when ∆t1 = ∆t2 .  
By division of the two equations above we get: 
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

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And by first applying the formula: h
h




1
1

1
 to the denominator, and afterwards using the 

formula: hh 2
111  :  we can simplify the expression above. 
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1 ,  

so again we find: 

 
2

21

2

1 1
c









 as in (1.12). 

1.5 Bending of a light ray. A classical approach 
We shall initiate to make a calculation of the deflection, when a particle 
with mass m and velocity v passes a much lager body with mass M (the 
sun) at the distance ρ between the centres of the two bodies.  
ρ is called the parameter of impact.  
The calculation of the deflecting angle is identical with Rutherford’s 
calculation of the deflection of the Alfa-particles when passing by an 
Au-nuclei. 
An exact calculation is mildly complicated, but one can show that you 
get the same result with a simplified geometry.  
We assume therefore that the force only acts on the distance 2ρ, and 
that the force is constant on this distance and equal the force, when the 
particle passes the mssive body at a distance ρ. 
We get the expression for force from the law of gravitation. 

2
mM

GF    ,   if we put  2s ,   the time for traversing s  is:   
vv

s
t

2



          

The (small) deflection (in radian) of the particle can then be calculated from: 
v

v
 , and the 

acceleration of the particle is: 
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In this way we find an expression for the deflection:   
 

2

2

v

GM

v

v


 


    

 
If you substitute for ρ, the radius of the sun rsun,, we arrive at the formula: 
 

(1.14)    
2

2

vr

GM

sun

          

 
One should notice however, that the deflection is independent of the mass of the particle.  
This is actually no surprise, since the heavy masse (from Newton’s 2. law) is equal to the 
gravitational mass, according to the weak equivalence principle. 
 
If we then “carelessly” substitute the velocity v of the particle with c, the speed of light, we could 
get an (non relativistic) indication of the deflection angle for a light ray passing near to the sun.  
The deflection is 

2

2

cr

GM

sol

       deg1045,21027,4
)100,3(1095,6

100,21067,62 46
288

3011








  

 
An arc second = 1/36000 = 2,78 10-4  degree, so Newton’s non relativistic theory predicts a 
deflection of about 1 arc sec. 
 
It is remarkably that the deflection is of the same magnitude as is predicted from General 
Relativity, however General Relativity predicts (fortunately) exactly the double deflection. 
 
It is obvious that if a deflection of this magnitude should be measured, it certainly requires a 
telescope of extreme accuracy. And this became the challenge for the prominent physicist and 
astronomer A. S. Eddington.  
In the early days following Einstein’s publication in 1915, Eddington had the reputation of being 
among the three persons in the world who had a full understanding of Einstein’s theory (although 
he wondered whom the third one might be) 
 
The only indirect confirmation of the General Theory was hitherto a General Relativity calculation 
of the precession of the perihelion of Mercury, but when there occurred a total solar eclipse in may 
1919. Eddington decided to go to the Caribbean island of Principe, where he made observations at 
the total solar eclipse on the 29’th of may 1919.    
 
As stated above it required rather sensitive telescope observations to measure deflection of 2 arc 
sec, which was the deflection from the normal line of sight to the observed star but nevertheless 
Eddington concluded that’s what he did. 
Actually a similar measurements performed in Brazil seemed to point towards the Newtonian 
deflection, but it totally drowned in international noise of Eddington’s alleged success. 
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1.6 Gravity induced index of refraction 
At a given position r with gravitational potential ϕ(r) a determination of the speed of light involves 
the measurement of a displacement dr for a time interval dτ, measured by a clock at rest at this 
position.  The result is the light speed, according to a local proper time. 
 

(1.15)   c
d

dr



 

 
Because of the gravitational time dilation as stated in (1.12)  
 

(1.12)  22
21

1 1  d
c

d 





 
   

 
An observer in another position with a different gravitational potential, will obtain a different 
value for the speed of light, when using a clock located at his position.  
We choose a reference point far away from the gravitational source, where ϕ(∞) = 0.  
Here the time is denoted t, whereas at a distance r from the source the local proper time is τ 
According to (1.12) we have 
 

(1.16) dt
c
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


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


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 
 2

)(
1  

 
This implies that the speed of light is measured by a remote observer as 
 

(1.17) c
c

r
d
dr

c
r

dt
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1)(


 (where 0)(  r ) 

 
Namely the speed of light will be seen by an observer, with his coordinate system to vary from 
position to position, as the gravitational potential varies from position to position.  
For such an observer the effect of the gravitational field is viewed as a gravitational index of 
refraction in space. 

 (1.18)  
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
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One should stress that the deviation of c(r) from c does not mean, that the speed of light has 
changed, or is no longer a universal constant, but merely signifies that clocks at different positions 
in a gravitational field measures a different time.  
The term gravitational index of refraction is actually misleading because it is an entirely different 
phenomena than the normal index of refraction, when light changes speed, when passing from one 
transparent material to another.  

2. Differential geometry and curved space 
Einstein’s law of gravitation is formulated in the geometric framework of curved space-time, so 
we shall now depart from the Newtonian theory of gravitation as an attraction acting on a distance. 
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The mathematical framework in which the General Theory is formulated is Riemannian 
differential geometry, which is a (non trivial) generalization of the Gaussian theory of intrinsic 
theory of two dimensional surfaces, but founded in Euclidian geometry. 
 
Differential geometry is a description of surfaces applying generalized coordinates, which are 
intrinsic to that space. While a two dimensional surface can be viewed as embedded in a three 
dimensional surface this is not the case when we consider four dimensional space-time. 
 
We may elaborate a bit on this.  
A surface in 3D space has a parametric description: (x(u1, u2), y(u1, u2), z(u1, u2)), where the 
parameters u1, u2  belong to some interval.  
The main achievement of Gauss is that he was to be able to describe the geometric properties of a 
surface (including curvature), in terms of the intrinsic coordinates (u1, u2) ,  and that the calculated 
curvature is independent of the choice of parameters. 
Gaussian differential geometry is treated in detail in: “Differential geometry 1”, on my physics 
Website. 
 
The necessity of applying intrinsic coordinates to obtain the Gaussian curvature of surfaces also 
explains why differential geometry is necessary for describing warped 4D space-time.  
However in 4D space-time the geometric must be treated in an highly abstract and complex form 
of Riemannian generalized differential geometry. 
 
Riemannian geometry and Tensor Analysis are treated in some detail in the paper: “Differential 
geometry 2”. However, while Gaussian differential geometry is mathematically demanding, it is 
still conceptually palatable, Riemannian geometry and tensor analysis, on the other hand is highly 
abstract and conceptually complex. 
   
The foundation of any geometric description requires a metric. In differential geometry it is called 
a metric form. 
 
The metric in ordinary Euclidian space is position independent, (it is the same at every point of 
space, and the square of the distance element is:  
 

2222 dzdydxds   
 

The square of the distance element is an invariant when changing the coordinate system.  
In differential geometry the metric is a quadratic form, which in general is position dependent. 
 
(2.1)  ji

ji dxdxgds 2  

 
gi j is called the metric form or just the metric. It is a function of the generalized coordinates xi. 
That the coordinates have upper indices, reflects the tensor notation, since the coordinate 
differentials transform as a contravariant tensor.  
Furthermore we have used the summation convention (due to Einstein), that whenever an index 
appears twice summation is implied. For more details see: “Differential geometry 2”  
 
The (Euclidian) 4-dimensional Minkowski space of Special Relativity has the coordinates:  
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(ct, x, y, z), an the distance element is written 
 
(2.2)  222222 dzdydxdtcds       
 
This distance element is position independent and positive definite, since dividing by dt gives: 
 

 0222222
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c
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For various reasons, the “distance element” is often used with the opposite sign: 
 
(2.3)  222222 dzdydxdtcds   
 
This has the advantage, that when projecting into the usual three dimensional Euclidian subspace, 
we regain the usual distance element. 
Here we shall follow most books on General Relativity and use (2.3).  
For the “flat” Minkowski space the metric form is therefore: 
 
(2.4)  gi j  = diag (-1, 1, 1, 1)  
 
Where “diag” signifies that all non diagonal elements are zero. For details of the metric form see 
“Differential Geometry 1” and “Differential geometry 2”. 
 
In his search for a relativistic description of gravity and to overcome the Newtonian theory as 
gravity acting of a distance, Einstein realized that the Riemannian geometric description with a 
curved Minkowski space-time might be the solution.  
Firstly, such a theory was born to comply with Special Relativity, which had shown to be 
incompatible with Newton’s law of gravitation. 
 
Far away from massive bodies the geometry is the flat Minkowski space of Special Relativity, but 
near massive bodies the space is warped, and the metric form is no longer diagonal. 
 
In differential geometry a geodesic in a surface (or in a higher dimensional space) is the shortest 
path between to points, if you are compelled to stay on the surface.  
The geodesics in Euclidian space are straight lines, and the geodesics on a sphere are great circles 
i.e. circles that have the same diameters as the sphere 
 
How can this be combined with movements in a gravitational field?  
Well one of the most fundamental principle in theoretical physics is the “Principle of Least Time”, 
which states that the path followed by a particle always is the path of least time.  
For a light ray one can rather easily show that the law of refraction is a consequence of the 
Principle of Least Time. This principle is also the foundation of Lagrangian analytic mechanics. 
 
In the description of the field of gravitation as a warped space, a particle will follow a geodesic 
according to the Principle of Least Time. Surely this is a description that differs largely from the 
description of a particle moving in a gravitational field. But fortunately General Relativity 
converges to the Newtonian description in the non relativistic limit. 
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In the presence of massive bodies 4D space-time is warped, the metric form is position dependent, 
and each point has a curvature given by the Riemannian curvature tensor. 
However, mathematically it is very complex. For details see “Differential geometry 2”.   

2.1 Metric on a sphere 
The simplest example of a curved surface is the sphere. A point P(x, y, z) has the polar coordinates 
(θ,φ) See figure below. θ is the polar angle and φ is the azimuth angle. The coordinates are when 
expressed by the polar angles. 
 
             sin,sincos,coscos rzryrx   
 
             To come from a point P (θ,φ) to Q(θ + dθ, φ + dφ)
             you first go “vertically” the distance r sinθdθ and 
then h             horizontally the distance rdφ. Since the two steps
             are perpendicular to each other, the square of the 
             distance is:              
             (2.5) 222222 sin  drdrds   
             This means that the metric tensor is. 
               

                       
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As mentioned before, the geometry on a surface can be visualized, but this is certainly not the case 
for a curved 4D-space. Here we must resort to two dimensional analogies and projections on a two 
dimensional subspace. 

2.2 The geodesic equation as the equation of motion. 
In the differential geometry of surfaces, as well as in the Riemann generalization to higher 
dimensions the geometry is defined by the metric form, which is generally a position dependent 
function of generalized coordinates. The distance element is defined by the quadratic form in 
generalized coordinates: 
(2.5)   ji

ji dxdxgds 2   

 
The derivation of the geodesic equation is done for 2D surfaces in “Differential geometry 1”, and 
for higher dimensions in “Differential geometry 2”. The method is the Lagragnian approach, with 
the Lagrange function:  
 

),...,,()( 321 nji
ji xxxxxwherexxxg

dt

ds
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and solving the Lagrange equation: 
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The result is 
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Here s is a natural parameter i.e. the length of the curve from a reference point, and j

ki  is the so 

called Christoffel symbol. 
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It makes little sense to try to solve the equation (2.8), since it consists of four second order coupled 
differential equation, and even if one had an analytic expression for the 4x4 components of the 
metric, the task seem unattainable.  Even to show that the geodesics on a sphere are great circles is 
controversial. See “Differential Geometry 1” for details. 
 
The differential equation for the geodesic has a direct connection to the concept of covariant 
differentiation. It turns out that the components of the derivative of a vector do not transform 
covariantly, that is, they are not tensors, even when the differential operator and a vector both are 
good tensors.. Instead it is possible, with the help of the so called Christoffel symbols to form a 
differential operator, which transforms as a tensor under coordinate transformation. 
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D denotes covariant differentiation. If we replace the vector vj with 
ds

dx i

 we get: 

 

(2.10)  
ds

dx

ds

dx

ds

xd

ds

dx
D

ik
j
ki

jj

i 







2

2

 

 
If we put the covariant derivative to zero, it marks “a straight line” in a curved space.  
For example the covariant derivative on a sphere is zero along a great circle.  
Not surprisingly the “straight lines” in a curved space is also the shortest path between two points, 
and if we put the covariant derivative to zero, we find again the geodesic equation. 
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It is mandatory for an enlargement of a physical theory that it complies with the existing theory in 
some limit. Concerning General Relativity, it must comply with Newtonian gravitation and 
mechanics in the non relativistic limit. To confirm this is however far more circumstantial than is 
the case of Special Relativity. 
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2.3 The Newtonian limit of General Relativity 
The Newtonian limit means:  

cdtdxc
dt

dx i
i
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Keeping only the dominant term in the double sum over i and j the geodesic equation: 
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Reduces to:   
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In a static field, 0
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g ji , so because all the time derivatives vanish, the Christoffel symbol takes 

the simple form 
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If we furthermore take the limit of a weak field, and we assume that the metric form is not too 
different from the flat space time metric: )1,1,1,1( diagd ji , so we write  

 
(2.15)   jijiji dg   

 
Where )(xji  is a small correction to the field: jiji dx )( .  
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, so the Christoffel symbol is of the same order as ji .  

To the leading order we have since di j constant.  
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Which, because di j is diagonal, (2.16) has for a static 00  has the following components: 
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If we put (2.17) into the non relativistic geodesic equation (2.13) the i = 0 part leads to: 
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And the  i > 0 part is: 
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To obtain the last equation, we have used:  
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The equation above together with (2.17) implies 
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This we should compare with the Newtonian equation of motion 
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00 /2 c , and using jijiji dg  ,  where di j =diag(-1, 1, 1, 1),  
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From (2.22) we may regard the metric tensor as a relativistic generalization of the gravitational 
potential. At the same time it also provides us with a criterion of the gravitational potential to be 
week namely 1/|| 2  c . 
 
Let us for example calculate the gravitational potential at the surface of the earth divided by c2.  
We know that  

2R

M
Gg    

so the potential 227226 /1026.6/10370.682.9)( smsmgR
R

M
Gr   

It then follows: 102 1095.6/||  c .  
 
So even in a gravitational field about a billion times larger than that from the earth will still be “a 
weak field”. A fact which overwhelmingly justify our approximations above. 

2.4 Space-time is locally flat 
In the Gaussian differential geometry every point P on the surface has a tangent plane, which in 
the vicinity of P approximates the surface. That is, in the vicinity of P, the surface is Euclidian. 
Assume that the surface has a parameter representation (u1, u2)  
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If D1P(u1, u2) and D2 P(u1, u2) are the tangent vectors along u1 and u2 , we can make a coordinate 
transformation to a system determined by D1P, D2 P and n = D1PxD2 P .  
If we denote the coordinates in this system (x1, x2, x3), and make a Taylor expansion of the surface 

given by x3 = f(x1, x2)  around P in these coordinates, the partial derivatives 0
1
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
dx

f
and 0

2



dx

f
  

so a differentiable surface will always be flat in the vicinity of P. If we expand to the second 
derivative, it can be shown, that we get an expression: 
 

(2.23)  2
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3 xxx       
 
where κ1 and κ2 are the main curvatures, that is, the curvatures along u1 and u2.  
Depending of the sign of the Taylor expansion will be a hyperboloid or an elliptic parabola. 
Although it is simple to visualise the “flatness theorem” in a Euclidian space, it is a bit more 
complicated, when you look at the 4 dimensional space-time, but the method is generally the same. 
 
The flatness theorem for space-time states that it is always possible to find a coordinate 
transformation, so that the metric form is “flat” at some point. That is ii xx   and jiji gg   and 

such that jijig )0(  and that )(xg ji  is constant up to the second correction, that is, the first order 

derivatives vanishes. 
 
We prove this by an explicit construction of the transformation. To determine the transformation, 
we take advantage of the definition of the covariant derivative:  
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and the fact that the “straight lines” in space-time is given by the geodesic equation   
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and we choose (being encouraged by the geodesic equation) the transformation. 
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Making a power expansion of the metric form up to the first order: 
 

(2.25)  m
m

lk
lklk x

x

g
gxg




 )0()(  

 
The transformation of a contravariant vi vector from the coordinates x to the coordinates x  is 
given by:   
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Using this for xi gives: 
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The transformation equation for the metric form is: 
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Inserting (2.24) and (2.25) w have 
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Keeping only up to first order terms, using (2.26) on the last tem, this can be reduced to: 
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The term in the bracket vanishes because of the identity: (See “Differential Geometry 2” for 
details)  
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So )0()( jiji gxg   to the first order of a Taylor expansion, which proves that there always exists a 

coordinate transformation, so that the space is locally (Euclidian) flat in the transformed system.  

3. General Relativity as a geometric theory of gravity 
The mathematical realization of the equivalence principle is the meaning of general covariance. 
This means that the equations of General Relativity must be covariant tensors to generalized 
coordinate transformations.  
The Equivalence Principle means that for a body in a free fall, you can transform to an accelerated 
frame, such that acceleration and gravity vanishes, and you are left with an inertial frame.  
 
General Relativity is a generalized differential geometric theory, where the geodesics are the 
trajectory of motion. 
 
In this space ordinary differentiation is replaced by covariant differentiation, symbolized with a 
capital D. 
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In Special  Relativity, the equation of motion of a free particle moving in Minkowski space, may 
be written as the derivative of the four velocity ui:    
 

(3.2)   0
d

du i

,  

where τ is the proper time. 
 
In General Relativity this corresponds to a free fall in a gravitational field, and the “only” 
difference is that the ordinary time derivative is replaced by the covariant derivative. 
 

(3.3)   0
d

Du i

   

 
We can then demonstrate, that (3.3) is in fact the geodesic for the equation of motion. In (3.1) we 
replace the vector vi with the velocity ui to get: 
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If we insert 
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j   we obtain. 
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Which, we recognize as the geodesic (the path followed by a particle or a light ray) for a particle 
moving in a gravitational field. The geometry of the fields is hidden behind the Christoffel 
symbols. 

3.1 Einstein’s equation for the gravitational field 
Einstein’s theory of gravitation is a geometrical theory, where the gravitational field is identified 
with the warped space-time described by the metric form gi j (x), and x are generalized coordinates 
in 4-space.  
Following the acceptance that space-time is curved and the Riemannian generalized differential 
geometry is the appropriate mathematical framework to describe it, we shall try to substantiate the 
Einstein Equation for the gravitational field. 
The underlying mathematics is described in some detail in “Differential Geometry 2”.  
There we derive the Einstein equation, which is a covariant equation satisfying The Principle of 
Relativity. 
 
We have already demonstrated that the metric tensor gi j(x) is the relativistic generalization of the 
gravitational potential.   
In our analyze of the gravitational time dilation, we found in (1.16) the connection between the 
proper time τ and the time t measured by someone far away from the gravitational source.  
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Where Φ(r) is the gravitational potential in the distance r from the source. 
Since gi j is a quadratic form in the generalized coordinates, and g0 0 is the time component, we 
shall make the identification. 
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This comes about because 00
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2 dxdxgds   when 0xd


 

We have introduced the energy momentum tensor Ti j , as the (General Relativity) generalization of 
the mass density. In the same limit as above, we may write: 00)( Tx  .  

The General Relativity equation of gravity must have the proper non relativistic limit. 
 
(3.9)    G42    
 
This equation is the familiar Newton law of gravitation written in differential form.  
 is the gravitational potential,  is the mass density and G is the gravitational constant. 
From this one can infer that the General Relativity equation of gravity must have the form: 
 
(3.10)   TgGop   

 
Where Gop is some differential operator, which must be a symmetric tensor of second rank, that is, 
it must be covariantly constant, implying that the covariant derivative = 0.  
Gop is both of second order in the derivative of the metric form g and quadratic in g. 
 
In “Differential Geometry 2”, it is substantiated that there is in fact only one such tensor, within 
the framework of Riemannian geometry, namely the so called Einstein tensor, symbolically 
written as Gi j. 
Einstein therefore proposed the following fundamental tensor equation to replace the Newtonian 
non relativistic scalar theory.  
(3.11)   jiji TG   

 
where the constant κ is to be determined by taking the Newtonian limit of this equation. 
 
Gi j can be expressed by means of the Ricci tensor Ri j , and the Ricci scalar R. See “Differential 
Geometry 2” for more details. 
 
(3.11)   jijijiji TRgRG  2

1  

 
If we take the trace of the equation we find: -R = κT. Since T = gi jTi j. we can rewrite the field 
equation in an equivalent form, by replacing Rgi j by –κTgi j. So we find the following form of 
Einstein’s field equation 
 
(3.12)  )( 2

1
jijiji TgTR    
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3.1.1 Newtonian limit of the field equation 
We shall then proceed to show that the Newtonian field equation for the gravitational field is 
simply the leading approximation to (3.12), for a non relativistic source producing a weak field, 
where weak field as usual means  Φ/c2 << 1. 
 
In the non relativistic limit of v/c << 1 and the rest energy density term T00 is dominant.  
We will focus only at the (0, 0) components of  (3.12), since all other terms are of order v/c. 
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Thus (3.12) becomes 
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To recover the Newtonian limit, we need to show that 00

2
00 gR   

From the definition of the Ricci tensor in terms of the Riemann curvature tensor Ri k j l , we have: 
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Here the indices only go from 1..3, since the components with 0 index vanishes, because of the 
symmetry properties of the Riemann tensor. 
 
Since the Newtonian limit also correspond to the weak field limit, we shall only keep the second 
derivatives of the metric form in favor of the square of the first derivative components of the 
metric form. 
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Since the Newtonian limit also correspond to a static situation, we can drop all terms with a 
derivatives with respect to x0= ct. So (3.18) reduces to: 
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Thus we see that Einstein’s equation indeed has the correct Newtonian limit 
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if we make the identification 
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Putting this back into the Einstein equation we get: 
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Or when written in the equivalent form  (3.12) )( 2
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This is a set of ten coupled nonlinear partial differential equations of which a more general 
solution does not exist. Only for a spherical symmetric source Karl Schwarzschild managed as 
early as in 1915, (when he was stationed at the eastern front in the First world war), to obtain a 
solution, which has been named after him. 

3.2 Spherically symmetrical metric of space-time  
We shall now demonstrate how Schwarzschild succeeded in finding an exterior solution to the 
Einstein equation valid for a spherically symmetric source with mass M.  
The solution is the metric form gi j(x) for the space-time geometry lying outside the source, which 
has become known as the Schwarzschild exterior solution.  
 
First we shall demonstrate that a spherical symmetric tensor has only two unknown functions to be 
determined, namely g00(t,r)  and grr(t,r). 
For a spherical source the metric function must also be spherical symmetric, at least in the spatial 
part. Therefore we need the spherical coordinates on a 2D sphere derived in (2.5) 
 
  222222 sin  drdrds   
 
This is easily to extend to 3D space, by adding dr2. 
 
 (326)  2222222 sin  drdrdrds  . 
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With the two unknown functions mentioned above, the metric function becomes. 
 
(3.27)  )sin,,,( 222

00 rrggdiagg rrji    

 
The solution should far away from a gravitational source approach a flat space-time. 
 
Then we shall try to demonstrate the assertion above: That a spherically symmetric tensor of rank 
2 has only two unknown scalar functions. The square of the distance element is. 
 

ji
ji dxdxxgds )(2   

  
It must be diagonal in the spherical symmetric case, and the spatial part must have the usual form  
 

2222222 sin  drdrdrds  . 
 
One may argue that for the spherical symmetric case, the most general (diagonal) form of the 
metric function must result in the following expression for the square of the distance element. 
 

(3.28) 222222222 )sin( dtdrdtrdrdrdrdrds     
 
Where α, β, γ and δ, are scalar functions of (r, t), which are to be determined. 
From tensor analysis, we know that we can perform a general coordinate transformation, chosen to 
give the metric function its simplest form. 
First we want to eliminate the product term drdt, and we do so by introducing a new time 
coordinate t’.  
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The product term 'drdt  has now (from 3.28) the coefficient )2(
dr

df  , which can be eliminated 

by choosing f to satisfy the differential equation: 
  



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Incidentally the absence of any linear dt term insures that the metric is time-reversal invariant. 
The next step is to choose a new radial coordinate, so that the angular dependence becomes trivial. 
 
  22 ),(' rtrr   
 
Then the right hand side of (3.28) reduces to )sin( 2222  ddr   
 
With these new choices of coordinates the expression (3.28) is left with only two unknown scalar 
functions in the metric.  Renaming r’ and t’ to r and t, the metric then takes the diagonal form. 
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(3.29) )sin(),(),( 2222222
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In particular gi 0 = g0 i where i ≠ 0 (i is the spatial index), which means that we may treat the spatial 
subspace separately. 
 
For each value of t, we may visualize the spherical symmetrical space as a series of spheres having 
different radial coordinates, but with its centre at the origin of the symmetrical source.  
On each sphere the clocks are synchronized. As a consequence of the spherical symmetry the 
proper radial distance ρ is defined as: 
 

(3.30)  222 ddsdr r   
 
dsr

2 is the invariant distance element with dθ = dϕ = 0, and the coordinate time t is the proper time 
τ for an observer in a fixed location. 
 

(3.31)  22222 dcdsdtc t   

 
Thus the coordinates (r, t) have the physical interpretation as the radial distance and time measured 
by an observer far away from the spherical gravitational source. 
In the presence of a gravitational source we have a warped space-time. In particular gr r ≠ 1, so 
there is a curvature in the spatial radial direction, leaving the proper radial distance r  as 
 

(3.32)  drgd rr  

 
Similarly the proper time differs from the coordinate time because  g00  ≠ -1 signifying the warping 
of the space-time in the time direction 
 

(3.33)  dtgd 00  

 

3.3 The Schwarzschild solution for a spherical source 
In classical dynamics we perceive the 3D space as the background, where physical processes take 
place. On the contrary, in the framework of General Relativity, space-time is the cause of physical 
processes. Space-time is determined by the distribution of mass and energy, (i.e. the energy 
momentum tensor), and generates the physical events.  
Given the distribution of mass and energy and solve the Einstein equation to find the metric gi j(x).   
 
In a following chapter, we shall derive the Schwarzschild exterior solution for a spherically 
symmetric source directly from Einstein’s equation, but fearing that you might give up in the 
process, we merely state the solution here, elaborating on some important consequences. 
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Here rS is the constant scale of length, called the Schwarzschild radius. We shall see that the 
deviation from flat space-time of (2.3)  222222 dzdydxdtcds   is determined by the ratio 
rS /r, and the resulting metric is called the Schwarzschild metric. 
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We can then relate the Schwarzschild radius to already known quantities by considering the 
Newtonian limit (3.38) 
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Comparing to (3.34) 
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The Schwarzschild radius is generally a very small distance, at least in our solar system e.g. 
 
(3.39)  rsun = 3 km         rearth = 9 mm 
 
So in general the ratio rS /r, which signify the space-time deviation from a flat Minkowski metric, 
is a very small quantity. 
For the exterior solution to be applicable the smallest value that r can take is the radius of the 
spherical source. For the sun and the earth the above relation translate into: 
 

(3.39)  )10( 6)(  O
R

r

sun

sunS        and      )10( 10)(  O
R

r

earth

earthS  

Clearly the second term in the metric 
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becomes singular at rS = r. 
 
However this singularity did no draw much attention in the physical society in the early days of 
General Relativity, mostly because the physicists occupied in this field did not consider rS = r to 
be physically realizable for the simple reason that rS  is so extremely small, and rS << r for the 
exterior solution. 
Another objection was that in the case where rS > Rsource the density of the source should be 
unrealistically high, actually comparable to the density of nuclei.  
Only 30 years later this possibility was recognized in what is now known as Black Holes. 
 
For a stellar object being a Black Hole having a mass comparable to the sun, the density would be: 
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A number, which is close to the nuclear density. 
 
Although it is easy to visualize a 2D curved surface from a 3D Euclidian space, it is clearly not 
possible to visualize a 3D curved space from a higher dimension space. To do so it is necessary 
resorting  to look into projections of the space (ct, r, θ, ϕ) onto a 2D subspace.  
The most obvious choice is a fixed t, and θ = π/2. This will reveal a 2D surface in the familiar 
coordinates (r, ϕ). Figure (3.41). 
 

(a) Shows the θ = π/2 plane  
(r, ϕ) cutting across the 
spherical source. (b) Shows a 
fictitious 3D embedding space, 
where the physical 2D 
subspace (a) is shown as a 
curved surface.  
In this example, the drawings 
have used the Schwarzschild 
solution. 

        1)1( 
r

r
g S

rr   

The singular nature of the 
space at rrS  is reflected by 

the steep slope of the curved 
surface near the Schwarzschild 
circle. 
In the absence of gravity there 
is just a flat space as depicted 
in fig. (3.41) (a), but in the 

presence of gravity this becomes a curved 2D surface. If we want to visualize this warped 2D 
surface, one way to do so, is to embed it into a fictitious 3D Euclidian space as shown in figure 
(3.41) (b).  
A particle moving in this θ = π/2 plane will trace out a bended trajectory, as it follows a geodesic 
of the warped surface. To illustrate this, we have used the Schwarzschild solution for a compact 

spherical source. Here ρ is the proper radial distance. ρ ≠ r , and drgd rr  
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In the embedded diagram the distance from the centre in the curved surface is ρ, while in the 
horizontal plane it is the coordinate distance r. Thus a small change in r correspond to a large 
change in ρ when r approaches rS , the Schwarzschild radius. 
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3.4 Deflection of a light ray due to gravity 
As mentioned earlier, Einstein deduced from the equivalence principle that a light ray will be a 
deflected when passing near the sun. And he concluded that this was due to the gravitational time 
dilation, expressed as the deviation from the flat space metric. See section (1.6). 
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In General Relativity the warping of space-time takes place both in the radial and time direction: 
g00  ≠ -1 and grr  ≠  1. 
We shall then proceed to calculate the deflection of a light ray (as a consequence of gravitational 
warping) arriving at the double angle from what we found earlier in the Newtonian approach. 
 
Measuring this deflection was actually the first attempt of an experimentally verification of 
Einstein’s theory. The experiment was conducted by the astronomer A. S. Eddington in a total 
solar eclipse on the island of Principe in the Caribbean in the year of 1919. 
  
The bending of a light ray passing close to a massive body is similar to a light ray passing a lens. 
Let us consider a light ray in the fixed direction dθ = dϕ =0 
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To an observer far from the source, using the coordinate time and radial distance (t, r), the 
effective speed of light is according to (1.17) 
 

(3.45)  
)(

)()(
1)( 00

2 rg

rg
c

d

dr

c

r

dt

dr
rc

rr







 



 

 
A slightly different way of arriving at the same results is by noting that the speed of light is 
universal.  

Thus  ddc /  and using drgd rr   and  dtgd 00  this relates the proper distance and 

the proper time, corresponding to the coordinate time and distance (t, r).  
 
From (3.45) it is then straightforward to find the “index of refraction”. 
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The relation  0222
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2  drgdtcgds rr   

 
shows us that the retardation of the light signal is twice as large as given by the Newtonian  
 

calculation(1.17):   c
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From (3.46) we then find: 
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To calculate the deflection we use the same method as the Newtonian calculation of the angular 
deflection, when a body at high speed passes the sun at a small distance.  
The method is an approximation, but it is known to give the correct (not approximated) result. 

First we differentiate (3.47) c
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The trick is to assume that the potential is constant equal to the value it has at the minimum radial 
distance rmin = ρ, and let it be effective only at a tangential distance 2 ρ. Namely ρ  before it passes 
the sun, and ρ after. In this way dr = ∆r = 2 ρ, and we get for the deviation δ.  
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It is seen, that it is twice the deviation, of the Newtonian that we found earlier in (1.18). 
The three figures below illustrate the phenomena of bending a light ray passing a massive star.  
The first figure shows a (vastly exaggerated) illustration of how the line of sight changes, when a 
light ray passes near a massive star, or better a Black Hole  
 
 
 
 
 
 
    Fig (3.50)  
    Graphical illustration of the change in the 

 line of sight, when a light ray is passing a 
 massive star. 
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     Fig (3.51) A graphical 
     illustration showing the 

bending a light ray, when 
passing a massive star 

 
 
      
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
     

Figure (3.52). This is probably the 
most famous example of a gravitational 
lens. It shows a galaxy, which 
apparently has four nuclei.  
 
A better explanation is that the four 
“nuclei” are really light from a very 
luminous stellar object (a Quasar) 
which is bended by a gravitational lens, 
probably a Black Hole, since it is 
“invisible” 
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3.4 Precession of Mercury’s perihelion 
The first and for several years the only prediction of General Relativity which deviated from 
Newtonian theory of gravitation, (and turned out to be correct), was Einstein’s calculation of the 
rate of precession from the planet Mercury’s perihelion   
 
So this section deals with the motion a particle, using the Schwarzschild solution for a spherical 
symmetric field, and specifically we shall calculate the (very small) deviation from the Newtonian 
case 
 
Newton’s celestial mechanics has since its introduction in the eighteen century been remarkably 
successful. However, about 1850 astronomers had observed a very small discrepancy between 
theory and the observed precession of the planet Mercury’s perihelion. 
 
The pure r-2 force from Newton’s law of gravitation predicted a closed elliptical orbit, which is 
fixed in space. However the perturbations due to the presence of other planets lead to a trajectory 
that was no longer closed. Since the perturbations are very small, the deviation from a closed orbit 
can be described as an elliptical orbit having a perihelion with precession.  
 

Fig. 3.53 An elliptical orbit, based on Newton’s law 
of gravitation which is subject to small 
perturbations can be described by an elliptical orbit 
with a precession perihelion.  
 
In the case of Mercury, the perturbation caused by 
the nearby planets can account for most of the 
perihelion advance, namely 1.556 0 per century. 
However, there was still a discrepancy on 
43 arc sec/century left to be accounted for. 
 
Following a similar situation involving Uranus that 
eventually led to the prediction and discovery of the 
outer planet Neptune in 1846, a hitherto not 
discovered planet named Vulcan was predicted to 
lie inside the Mercury orbit. But it was never found. 

This was the perihelion precession problem that Einstein solved by applying his new theory of 
gravitation.  
We have seen that corrections from General Relativity to masses corresponding to the mass of the 
Sun are of the order of 10-6, and as the calculation shows, the correction is indeed small. 
The calculations are far from simple, but since it is one of the only tangible confirmations of 
General Relativity, we shall present it in some detail.  
 
The problem to be solved is as follows:  Given the gravitational filed, that is, the Schwarzschild  
space-time due to the Sun, we are going to find the motion of the planet Mercury. 
We do this by solving the geodesic equation by means of the Euler Lagrange equation 
The well known Euler Lagrange equation is 
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Using the Lagrangian. (For justification of this choice, see “Differential Geometry 2”  
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Where τ is the proper time, gi j is the Schwarzschild metric, and a bullet over a variable as usual 
means differentiating with respect to time (τ). 
 
Because of the conservation of angular momentum the trajectory will always remain in a plane 
spanned by the initial position vector and the momentum vector.  
By choosing  2

1  in the Euclidian x- y plane, the Lagrangian takes the form.  
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rS  is the Schwarzschild radius, and the last equation follows from  2
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, since   

222 dcds   because dx = dy= dz = 0 when t = τ. 
 
If the Lagrangian  ),( ii qqLL   does not explicitly depend on qi then 
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Our L does not explicitly depend on ϕ and t. The two corresponding constants represent essentially 
the angular momentum L and the energy E. We invent two new integrating constants λ and ε. 
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Multiplying (3.58) by 
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Where we have used (3.38):  
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rS  ,  or when rearranging the terms. 
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Renaming the variables 
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The choice of the variable E indicates of course, that it is the total energy, and apart from the factor 
 rrS /1 , the equation is identical to that of Newtonian mechanics. Remember rS /r is O(10-6) 

If we define 
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(3.61) can be written: 
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The Newtonian equation 
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 is known to have the solution 
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Where we have set: 
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GMm

L
 . 

 
Since the factor  rrS /1  differs only from 1 by a small amount, it may be treated as a 

perturbation to the Newtonian solution in classic perturbation theory. So we proceed to solve the 
relativistic energy equation (3.61) as a standard central force problem, even if it becomes a bit 
complex. 
To obtain a the solution r =r(ϕ), we  first use the conservation of momentum:  
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By the same token: 
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Inserting in (3.61):  
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and reducing one finds: 
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Firstly, we solve the equation without the gravitational correction.  
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The equation (3.68) can be solved by differentiating with respect to ϕ. 
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When reducing with 
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 we obtain a more simple equation. 
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Which is simply the differential equation for the harmonic oscillator. 
The equation for the harmonic oscillator is usually written:  
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And it has the solution: 
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Where A is the amplitude, ω is the cyclical frequency, and ϕ0 is the initial phase. 
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Copying this expression, we find the solution to (3.71) 
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as already stated in (3.65).  

The minimum distance is 
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Now we are ready to make the relativistic correction, plugging in 1  , where ρ1 is the 
correction to (3.71):  

Cr
d

d
S  322 2

)( 






. 

 

(3.76) Cr
d

d
S 

 3
11

2
1

2
1 )()(

2
)(

)(








 

 

Cr
d

d

d

d

d

d

d

d
S 








 )33()(

2
)2(2)()( 3

1
2

11
23

11
2

1
21212 
















 

Then using (3.68):  C
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Keeping only the leading and next leading terms of ρ1 = O(rS),  (3.77) reduces to: 
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Inserting this solution to the unperturbed equation 
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You may then verify (if you have this kind of inclinations) that this equation has the solution. 
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The first two terms have the form of a zero-order solution: A+Bcosϕ.  
The third term, being periodic in ϕ as the zero-order terms are corrections that follow the non 
relativistic solution, and thus represent unobservable small corrections. So we shall only focus on 
the fourth non periodic term, which is ever increasing with ϕ. So we are left with: 
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Replacing ρ with ρ+ρ1 in the solution (3.74) 
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  being a very small quantity.  

The angular terms in the denominator can be cast into the same form as the denominator of the 
zero order solution, after approximating cos(δϕ) = 1 and sin(δϕ) =0, using:  
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Finally getting: 
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According to (3.84) the planet returns to its perihelion rmin , not at ϕ =2π, but at 
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namely the amount the perihelion advances (i.e. the whole orbit rotates) per revolution. 
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Using the Schwarzschild radius for the Sun : rS =2.95 km, Mercury’s eccentricity e = 0.206 and its 
perihelion rmin  = 4.6 107 km we can calculate the numerical value of the advance. 
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(3.86)  revolutionradian /105 7  
 
Which equals 5 10-7 x 180/π x 60 x 60 = 0.103 ´´ (arc sec) per revolution.  
In terms of the advance per century. 
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This was in beautiful accordance with observations, being an outstanding triumph for Einstein’s 
theory of gravitation, and it made the physical society aware, that the General Theory of Relativity  
was not just a mathematical abstraction, which had no relevance to the real world, but described 
realities of our physical world. (Almost the same situation, as when Einstein first presented his 
Special Theory of Relativity) 

3.5 Black Holes 
We shall now look into the space-time structure of an object with the mass so compressed, that its 
radius is smaller than the Schwarzschild radius 2/2 cGMrS  . Such objects have been given the 

name “Black Holes”, because it is impossible to transmit outwardly any signal, any light from the 
region inside the Schwarzschild radius.  
 
One simple argument for such a strange behaviour is that the escape velocity from the “surface” of 
a Black Hole is greater than the velocity of light. 
The escape velocity from a massive body is the velocity needed to escape its gravitational field. 
But this explanation does not immediately apply in General Relativity. The correct explanation is 
that a Black Hole gives rise to an infinite gravitational time dilation, that is, a vanishing small 
effective velocity of light, as seen for an observer far away from the gravitational source. 

3.51 A non relativistic approach to Black Holes 
If this is difficult to comprehend, it is a curiosum that this result also can be achieved from non 
relativistic Newtonian mechanics. The escape velocity e.g. from the Earth can easily be found 
from energy conservation.  
Let M be the mass of the Earth, R be the radius of the Earth and v0 the escape velocity, with which 
an object with mass m is launched from the surface of the Earth. If the body is at rest at infinity, it 
follows from conservation of mechanical energy: 
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Solving for v0 gives: 
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For the Earth the escape velocity is 11.2 km/s.  
Notice that the result is independent of the mass m of the body, so if tentatively put v0 = c, and 
solve for R, we find: 
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(3.90)  
2

2

c

GM
R   

 
which is recognized as the Schwarzschild radius! 

3.5.2 Singularities in the Schwarzschild metric 
In General Relativity Black Holes appear as singularities to the Schwarzschild metric. 
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The metric has singularities at r = 0, at r = rS, and at θ = 0 and π. The last singularity is a 
coordinate singularity that can be transformed away by a different choice of coordinate.  
It will not show up in physical measurements.  
However the r = 0 is real. This is not surprising since the Newtonian gravitational potential has 
this singularity for a point mass. 
 
The singularity at r = rS is technically also a coordinate singularity, that is, it can be transformed 
away, by a coordinate transformation. Meaning that physical measurements are in principle 
possible at r = rS. 
But it certainly does not mean that this singularity is not very special. r = rS constitutes an event 
horizon, where no signal emitted from within can reach an observer outside the event horizon. 
 
A Black Hole is made possible by the collapse of a massive star, where a physical singularity is 
formed at r = 0, and a spherical collapse proceeds onward, until the sufficient mass and density is 
enough to form a event horizon.  

3.5.3 Time measurements in the Schwarzschild space-time 
As mentioned the Schwarzschild radius 
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is technically a coordinate singularity, and is therefore due to physical measurements. 
 
Let us therefore consider a spaceship falling feely from the outside and traveling across the 
Schwarzschild surface of a Black Hole, and describe the time measurements made from the 
spaceship and from an observer far away (the coordinate time).  
The general central force energy equation reads: 
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The equation is simplified, if we specialize having no radial motion, i.e. the angular momentum    
L = 0, and if the motion starts from where the energy E = 0. It then reduces to: 
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Inserting 
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 , and solving with respect to dτ gives: 
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The plus sign corresponds to an exploding star, or an outward bound spaceship, while the minus 
sign corresponds to a collapsing star or an inward-bound spaceship. (3.95) is integrated to 
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where τ0 is the time, where the probe is at some reference point r0. 
 
Thus the proper time τ is perfectly smooth over the Schwarzschild surface. The time for the star to 
collapse from Srr 0  to the singularity at r = 0 is found by putting this into (3.96), giving: 
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Which is of order 10-4 s for a star with mass 10 times the solar mass, where rS is about 30 km. 

3.5.4 The Schwarzschild coordinate time 
While the time measurement done by an observer travelling across the Schwarzschild surface is 
perfectly smooth, this is not the case for the time t, measured by an observer far away. 
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we then get: 
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The result however, can not be evaluated for Srr   because we hit the pole at rS  in 
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of the integrand. Looking at (3.97) it is however clear that dt diverges, when Srr  , and we can 

therefore conclude, as seen from an observer far away, it will take a probe an infinite time to reach 
the Schwarzschild surface. 
 
There is however another way of viewing the event horizon and that is by studying the 
gravitational red-shift. We shall see that within the Schwarzschild surface the gravitational red-
shift becomes infinite. 
The relation between the coordinate time dt and the proper time d , is 
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Which shows, that the coordinate time interval becomes infinite when Srr  . 

3.5.5 Infinite gravitational red-shift 
In terms of emitted (em) and recorded (rec) frequencies: we have earlier seen 
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The received frequency approaches zero, when Sem rr   so it will take an infinite time to receive 

the next wave crest. Thus no transmission is possible from within a Black Hole. 

3.5.6 Orbital motion around a Black Hole 
The equation for the potential that was discussed in (3.62) 
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This equation can also be used to study the motion of a massive body around a Black Hole. 
 
The first term is the Newtonian potential, the second term is the classical centrifugal barrier, where 
L is the angular momentum of the body with mass m, with respect to the centre of the source, and 
the last term is the General Relativity contribution.  
This term is extremely small, as we saw in the calculation of the precession of the planet Mercury. 
But it becomes important, when the radial distance is comparable to the Schwarzschild radius rS, 
as it is the case of neutron stars or black holes. 
We can find the extremes of the potential by setting the derivative of the potential to zero. 
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Multiplying by m2 r4 gives: 
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Which is an ordinary second order algebraic equation, with the discriminant d. 
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       We note the difference between the effective potential
       in the Newtonian limit ( rS = 0) where the centrifugal 
       barrier always dominates:  0)(  rforreff

       In this case there is no r+ solution. A particle cannot 
fall into to the r = 0 centre, as long as L ≠ 0.  

 
In the relativistic case however for very small r the rS 
term becomes dominant, and  
 
 0)(  rforreff   
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When )(  rmE eff  a particle can plunge into the gravity centre even if L ≠ 0.  

If )(  rmE eff , it corresponds to a stable orbit at r = r- , as in the Newtonian case.  

However the radius of the orbit cannot be arbitrary small. As is seen from (3.103)   
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Because of the extraordinary feature of strongly warped space-time near the Schwarzschild 
surface, it took a long time for the physical community to accept the reality of the Black Hole 
prediction, presented by the Schwarzschild solution. 
 
One reason was the evident, since black holes do not emit light they cannot be observed, and 
physics has had a long tradition of rejection theories containing unobservable objects.  
 
However no other solution was applicable, when considering the collapse of a very massive star, 
running out of nuclear fuel. And by the end of the 1950’ties, Black Holes was generally accepted 
by the physical society, as the evidence from observations became manifest. 
 
However, although black holes cannot be observed directly, there are several indirect indications 
of there existence. One is a double star having an invisible partner. 
 
The other is the intense gamma rays produced from an invisible “star”. Gamma rays are produced 
when a Black Hole sucks gasses from its exterior. Near the Schwarzschild surface they become so 
energetic that they produce gamma rays, showing a spectrum in accordance with what one might 
expect if the source is a Black Hole. 

4. General Relativity and Cosmology 
 The framework required to study the whole universe as a physical system is General 

Relativity. 
 The universe, when observed at a distance scales over 100 Mpc is homogeneous and 

isotropic.  
 Hubble’s discovery that the universe is expanding suggests strongly that it had a beginning, 

when all objects were concentrated in a point of infinite density. The estimate of the age of 
the universe taken from the astrophysicists observed data is at least 12.5 Giga-years. 

 There is a considerable amount of evidence showing that most of the mass in the universe 
does not shine. The mass density in the universe, including both luminous and dark matter, 
has been estimated to around one third of the “critical density”. 

 The space-time satisfying the cosmological principle is described by the Robertson– 
Walker metric in co-moving coordinates, called the cosmic rest frame. 

 In an expanding universe with a space that may be curved, any treatment of length and time 
must be carried out with care. We investigate the relations between cosmic red-shift and 
proper distances as well as luminosity distances. 
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4.1 Astronomical observations and astronomical distances 
Before we dive into General Relativity concepts, we shall look a bit into the astronomical part of 
cosmology. 
From ancient times people have observed that there were two kinds of “stars”, the fixed stars and 
the wandering stars. The fixed stars were seen at the same fixed positions in the sky, but following 
the rotation of the earth. (“Were fixed on the glass sky spheres that rotated around the earth fixed 
in space”).  
The wandering stars followed the motion of the fixed stars, but were superimposed by an 
independent motion that differed from one wandering star to another. 
Since Copernicus and Galileo in the late 1400 abandoned the geocentric view of the world in 
favour of the heliocentric view, we have known that the “fixed stars” are stars and galaxies, 
whereas the wandering stars are the planets. 
However one of the most resistant arguments against the heliocentric view of the World, was that 
the fixed stars in fact seem to be fixed, even in a period over 200 years. 
The simple argument was, if the earth rotated around the sun, the line of sight to the fixed stars 
would be different from summer to winter. fig.(4.1)   
 

The change of the line of sight to a star, as a 
consequence of the earth’s orbital motion around the 
sun, is called the parallax of a star.  
 
In figure (4.1) the parallax α is the upper angle in the 
triangle. The figure shows that α = α1 – α2.  
Following the establishment of the Heliocentric view 
of the world, established by Copernicus and Galileo  

and verified by Kepler, encouraged several astronomers during the eighteenth and nineteenth 
century to pursue the measurement of the parallax for the nearest stars – but without success. 
This failure could have two reasons. Either the heliocentric view of the world was wrong or the 
stars were much father away in space than hitherto assumed. 
 
Not until 1838 the German astronomer (and constructor of precision binoculars) succeeded to 
measure a parallax for the star Sirius B, which is situated 4.26 ly (light years) away. 
                  
                The measurement of distance by parallax has lead to a 
                definition of a astronomical distances called 1 parsec, which is 
s                still heavily used in astronomy. Fig (4.2). 
                The arc a, corresponding to the angle α (in radians) is equal to
                 the radius of the arc r times α 
                  
                    ra    
 

If one measures the parallax α, and the arc a is well known, 
the distance r can then be calculated. 

  
1 parsec is then defined as the distance, under which the half great axis (a) of the Earth is seen 
under an angle of 1 arc sec = 1/3600 0.  
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If we put a = 149.6 mill km, we find. 
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 This can be compared to  
 
(4.5) 1 ly (light year) = c∙ 1 year = 3.0 108 365∙24∙3600 =9.46 1015 m. 
so 
(4.6)  1 pc = 3.26 ly 
 
The nearest star Alfa-Centauri has a parallax corresponding to a distance of 1.3 parsec. 
 
For stars, which are located more than 100 ly away, it is no longer possible to determine the 
distance by measuring their parallax. (There exist galaxies that are billions of light years away) 
 
For distant objects, it is necessary to use alternative methods. The Cepheid method has been used 
since the 1920’ties and after 1940 it has been supplemented by the so called photometric method. 
 
Some stars have a pulsating brightness and the frequency is dependent of the luminosity of the 
star. These stars are called Cepheid’s. (Named after the first observed “Cepheid” ). 
For Cepheid’s, where the distance can be measured by parallax, one has discovered the notable 
fact that the pulsating frequency has an almost on to one correspondence with the luminosity of the 
Cepheid.  
 
Equipped with the knowledge of the relation between luminosity and pulsating frequency, one has 
been able to determine the distance to Cepheid’s, where the parallax method no longer is available. 
 
From measuring the frequency, one can namely determine the absolute luminosity Labs, by 
measuring the apparent luminosity Lob. The distance may then be found by the quadratic-distance-
relation, i.e. the flux through a unit area of a sphere emitted from a source at its centre decreases 
with r-2. (Since without absorption the total flux is constant, and the area of a sphere is 4πr2). 
We then have the relation: 

(4.7)  
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From which the distance r to the star can be calculated. 
 
This was exactly the method used by Edwin Hubble when he in the 1920’ties determined 
corresponding values of the distances to and velocities of about 18 galaxies. 
The velocities of the galaxies were then measured by the red-shift in their radiation. 
 
The procedure of the photometric method is to establish a catalog of stars at known distances 
together with a detailed registration of their luminous spectrum. Then to apply this to distant stars 
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which match the spectrum, measure the apparent luminosity, and use the quadratic-distance-
relation. 
 
If two stars at distances r1 and r2 have the same absolute luminosity Labs , the apparent  
luminosities L1 and L2  are 
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And they will satisfy the equation: 
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4.2 The universe is not infinite and static 
Until the mid 1950’ties it was the most common view that the outer space “always” had existed, 
that it was infinite, homogenous and static in a galactic scale. (The steady state model). 
Also, before Hubble’s observations, there existed no observations to the contrary. 
There were however, two serious objections to the steady state model. 
 
Firstly, as Einstein had pointed out. 
 If Newton’s law of gravitation had unrestricted validity, also at cosmological distances, then the 
universe would necessarily over time begin to contract due to gravitation. 
 
And this would tend to be in conflict by the notion of a static universe. 
 
For this reason Einstein invented the so called cosmological constant in his theory of General 
Relativity, which implied a correction to the law of gravitation, but inferred a repulsive force to 
compensate for the gravitational attraction on a galactic scale. 
  
But, as it has been the case several times in the history of theoretical physics, such an invention is 
highly problematic, if it is done only to explain discrepancies between experimental observations 
and existing theory. Especially when the new “theoretically concept” has had no other 
manifestations in earlier observations or experiments. 
 
Einstein later denounced it, as “The greatest mistake in his life”. (Actually there have been others 
in the same weight class). 
Nevertheless the cosmological constant is still a “physical ghost” in scientific literature together 
with “dark matter”, “dark energy” and other non observable objects. 
 
But already in the 1930’ties some were on the track of a flagrant discrepancy between the 
rotational speed and the masses of the galaxies. 
It was a indisputable fact that the rotational speed of the galaxies were to big to be explained by 
the observable amount of matter.  
From this comes the notion of “dark matter”. Dark matter has however become an accepted 
ingredient of the universe, even if it never has been subject to a just reasonably good theoretical 
explanation, whereas to its nature or its origin. 
 
There is another and more specific reason why the universe cannot be infinite and homogenous 
(meaning an all over constant density of galaxies). 
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It is rather straightforward to show, that this notion implies that the heaven would be 
predominantly white and not black. 
 
 Let us therefore assume that the density, that is, the number of stars corresponding to say 1 cubic 
parsec is ns. And let us assume that their average luminosity is Lav . The luminosity of the sun is: 
Lsun = 3.827 1026 W. 
 
According to the quadratic-distance-relation the intensity in the distance r from a star will be 
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We now consider an arbitrary point P in space. At this point we shall calculate the intensity due to 
the infinity of stars in space. We do this by slicing the space around P up in spherical shells with a 
thickness dr and radius r. The number of stars in each shell is dN, and the contribution from each 
shell is dI(r). Finally we find the intensity at P by summing the contributions from all the shells by 
integrating.  
The volume of a sphere shell with radius r and thickness dr, is its surface 24 r  times dr.  
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Since Lav  and ns were assumed to be the same throughout the universe, it is clear the an integration 
necessarily must give infinity. 
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So according to the steady state model, the sky ought to be white and not black.  
 
Objections to this argument, e.g. that light is absorbed in galactic nebulae, may lead to a more 
complex calculation, but it does not alter the conclusion. 
 
So we may conclude that either the universe is not finite or the density of stars decrease with the 
distance from the earth. The last speculation has in fact much in common with the geocentric view 
of the world, and can hardly be substantiated by other than metaphysical arguments. 

4.3 Red-shift 
The red-shift is the designation of the phenomena that the wavelength (and frequency) of light is 
shifted, when it is emitted from a source, moving away from an observer.  
The corresponding situation, when a source is moving towards an observer is called blue-shift, and 
the generic designation for the phenomena is the Doppler shift.  
 
Although the galaxies move at very high speed, they are not relativistic and one may safely apply a 
non relativistic approach. 
The Doppler shift is well known from sound waves and the figure, which is shown below actually 
refer to sound waves. Fig (4.12) 
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           There are several ways to derive a formula for the
            Doppler shift, but it is most easily done by looking   

at the figure to the left.  
The source emits a periodic signal travelling at a 
speed v, and the source itself is moving towards the 
observer with a speed u. The emitted wavelength is 
λ and the observed wavelength is λ´.  
If T is the period of the signal, it is clear from the 

 figure that the following relation between λ and λ´ must hold: 
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This means that the wavelength is shortened, as seen from the observer, and it is called blue-shift, 
because it means a displacement of the spectral lines towards the blue end of the spectrum.  
If the source moves away from the spectator, all we have to do is to replace u by –u. And if we are 
talking about light and not sound waves, we replace u by v, and v by the speed of light c. 
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Since here the wavelength is widened, it is called red-shift 
The relativistic formula when the source moves away from the observer looks a bit different. 
 (See e.g. “The Special Theory of Relativity”, on the current Web-side) 
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A Taylor expansion of (4.15) after v/c to the first order leads to the non relativistic formula (4.14). 
If '  is measured and compared to the actual  , the velocity v of the source can be calculated 
from  
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Although the galaxies move fast some 100 km/s, it is still considered a non relativistic motion, so 
in most cases the non relativistic formula (4.14) is used, but written a bit different. 
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The relative change in the wavelength is equal to the fraction of the speed of light, at which the 

source is moving. Using the relation 

 v2

  we get almost the same expression for the 

frequencies as for the wavelengths, apart from a minus sign.  
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4.4 The universe is expanding 
 
A comparison between the spectre from galaxies with the 
familiar spectre from the atoms show that emitted spectre 
from distant galaxies are the same as we know from the 92 
elements on the earth. But also that they are all red-shifted, 
indicating that the galaxies are moving away from us.  
 
But likewise important, this applies only to distant galaxies, 
but not to the stars in our own milky way, where some are 
red-shifted and some are blue-shifted. 
 
The American astronomer Edwin Hubble conducted in the 
1920’ties a comparison between the speed and the distances 
for a dozen of galaxies. He calculated their velocity from the 
measured red-shift, and the distances from the Cepheid 
method. As mentioned above, he concluded that the light 
from all the galaxies were red-shifted, indicating that they  

were moving away from us, and furthermore that there seemed to be a simple proportionality 
between their velocities and their distances. See the figure.  
 
In Hubble’s original graphical publication however, the proportionality was much less obvious, 
since many of the measured distances were off with about 25%. 
Later and more accurate measurements have confirmed Hubble’s famous conjecture which is now 
known as Hubble’s law.  If r is the distance to the galaxy and v is the outward speed, Hubble’s law 
is usually written. 
(4.19)   v = H0∙r 
 
H0 is designated Hubble’s constant. The accepted value is today H0 = 33 10-18 s-1 with an 
uncertainty of about 20%. The zero suffix refers to the present period of the universe. 
Often Hubble’s law is written with the unit km/s per light-year. 
 
(4.20)   H0 = 1.9 10-5 (km/s)/ly 
 
The initial value, which Hubble obtained was only about a fifth of the present value, due to the 
very delicate job of determine the distances to remote galaxies. 
  
For very remote objects a direct determination of distances are impossible, but in those cases 
Hubble’s law is applied to find the distances from measuring the red-shift, using the relation 

cv //    to determine the speed v, and finally using Hubble’s law to determine the distance r. 

4.5 The cosmological principle 
Since all galaxies are moving away from us one could from a common line of thought conclude 
that the earth is the centre of the universe, but such a conjecture can only be substantiated 
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metaphysically. From physical rationality it is incomprehensible to conceive the earth as being the 
centre of the universe. Fig (4.21). 

However with the appearance of Einstein’s General Theory of 
Relativity, the possibility arose of a curved finite space-time, 
which might explain why all galaxies are receding from us. 
Since the beginning of the1960’ties the vast majority of the 
scientific world have agreed on the validity of the cosmological 
principle, which can be formulated as follows: 
  
The universe is homogenous and isotropic.  
On the largest scale of Mpc (mega parsec) this has not been 
contradicted by observations until now.  
Another evidence is the1960’ties discovery of the Cosmic 
Microwave Background (CMB), which are the remnants of the 
radiation created in the big bang. 
 
Homogenous: Means that on the largest scale the distribution of 
galaxies are the same overall in the universe. 
 
Isotropic: Means that the universe looks the same from every 
point in the universe. The universe is not confined, but it is neither 
infinite. 
It is however not possible to comprehend this model within the 
framework of Euclidian geometry, in which mathematical objects 
are either confined or infinite. On the contrary, the fact that all 
galaxies tend to move away from each other indicates, that they are 

not moving away in space, but it is space itself that expands. 
 
To comprehend this mathematically we have to resort to non Euclidian geometries i.e. Einstein’s 
General Relativity. Both in General Relativity and in Special Relativity time is treated on equal 
footing with the spatial coordinates, which certainly does not make the understanding of either  
more transparent from a common view of the physical world.   

 
In an attempt to visualize the curved expanding space, it is usual to use a two dimensional curved 
sphere. Often a two dimensional analogy is illustrated as an inflating balloon, inhabited with “2D 
spices”, which cannot move or see outside the two dimensions. But we can, because the 2D sphere 
is embedded in a 3D space.  
The space is curved, so if you walk along a “straight line” (a great circle), you will eventually 
reach the position, where you started. In principle, if you could look straight ahead “infinitely”, 
you should be able to see your back, since the line of sight is along a geodesic. 
 
When the balloon is inflated, it is obvious that no matter where you are placed on the sphere the 
“galaxies” will move away from each other. Furthermore if the radius increases with time, any arc 
b of a great circle will increase at the same rate, this because b = α∙r , where α is the constant 
radian of the arc.  
If r = kt, the speed of separation between to galaxies is: v=b/t = α∙r/(r/k)= αk, is  seen to be 
directly proportional to their angular separation α. The father away from each other, the faster they 
move away from each other. 
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Although the expansion of space-time is beyond common human imagination, this 2D analogy 
might give an explanation to the notion, that the velocity in which the galaxies are receding from 
each other is directly proportional to their separation (Hubble’s law) . 

4.6 The Big Bang 
While the universe is expanding, one could contemplate to “run the movie backwards”, and then 
one can hardly avoid the conclusion that the universe must originate from a very small size, rather 
a point, or more precisely, a singularity of infinite density. 

The Big Bang is a short formulation of the conjecture that the universe was created at t = 0, with  a 
gigantic outlet of energy caused by an inflation of vacuum. 

If one supposes that the galaxies, which were created 30 million years later, “have moved” 
(actually they do not move in space, rather the space is expanding) with the same velocity v (and 
has not been substantially slowed down, as a consequence of mutual gravitational attraction), then 
they will “now” have reached a distance r, given by:  
  
(4.22)   universetvr          

 
Where tuniverse  is the age of the universe. If one compares this with Hubble’s law:  
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Then it follows. 
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It is somewhat surprising that the age of the universe has this simple relation to Hubble’s constant. 
Presently we shall demonstrate that Hubble’s law is in fact a consequence of General Relativity.  
 
Inserting the present value for Hubble’s constant H0 =2.33 10-18 s-1 we find. 
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4.7 Critical density 
Until the 1950’ties (and in spite of General Relativity and Hubble’s law), the universe was still 
considered static and Euclidian flat.  
But in an 2D analogy to General Relativity it is depicted as an infinite plane covered by valleys, 
corresponding to stars and galaxies supplemented by some narrow and deep holes representing 
white dwarfs and neutron stars, and finally some infinite deep black holes, which were a point of 
no return. 
 
Even if stellar objects moved relative to each other and new stars were born and deceased, the 
universe was infinite and had always existed. The most common opinion was that the universe was 
static and flat and neither expanded or the opposite. 
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The obvious problem with a static universe, (as mentioned previously), was that a static universe 
eventually would draw together as a consequence of gravitational attraction and inevitably 
collapse in a “Big Crunch”. 
Observations indicating that the galaxies approach each other do not exist. After Hubble had 
shown that the galaxies on the contrary moved away from each other, Einstein invented the so 
called cosmological constant, (a correction to Newton’s law of gravitation), to compensate for the 
gravitational attraction in a cosmic scale, and in this way provide an explanation for the static 
universe.      
 
We are however left with the question of the curvature of the universe, which is rather closely 
connected with the average density of the universe.  
With a positive curvature (closed universe) the expansion will eventually stop, and the universe 
will begin a contraction, ending with a Big Crunch.  
 
A negative curvature means that the universe will continue to expand and with increased speed. 
 
A flat universe means that the curvature of the universe is zero. The universe is Euclidian for 
cosmological distances, and the expansion will continue ad infinite until it stops.  
The relevant physical concept to decide which of these pictures is correct is called the critical 
density. 
It is possible to make a (non relativistic) calculation resulting in finding the average density in the 
universe from Newton’s gravitational law, supplied by Hubble’s law.  
It is done in the same manner in which you find the escape velocity from the earth. 
 

If there is a homogenous distribution of mass in a cosmic scale, then 
one may calculate the force on a galaxy on the surface of a sphere 
with radius R, from the mass inside the sphere.  
The sphere is supposed to have an extension far greater than the size 
of the galaxy. One may show, (with a homogenous distribution of 
mass within the sphere), that the force on the surface depends only 
upon the mass within the sphere, and as if the whole mass was placed 
in the centre. (Gauss’ law).The force must (through symmetry 
considerations) be radial directed.  
If the density is denoted ρc, we obtain for the mass M in the sphere. 

 (4.26)  3
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The escape velocity v, that is, the velocity a galaxy must have at the surface of the sphere to escape 
its gravitational field, can be calculated from conservation of energy.  
At infinity both the kinetic and potential energy is zero. Putting the kinetic and potential energy at 
the surface to zero the escape velocity can be calculated.  
It should be clear that the escape velocity correspond to the critical density, namely a universe, 
where the expansion only will stop at infinite. (v = 0) 
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Now inserting (4.26) and Hubble’s law v =H0R, we get: 
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Using known values for the constants, we achieve the following value for the critical density. 
 
(4.29)  ρc = 7.2 10-27 kg/m3  
 
The mass of the hydrogen atom is close to 1 u = 1.67 10-27 kg, so the critical density correspond to 
about four hydrogen atoms per cubic meter. 
Attempts to “weigh” the universe, including luminous objects, interstellar gasses, neutrinos and 
black holes gives an estimate of only 1/100 of  ρc. 
 
Many theorists however, have the strong conviction that the universe is closed and flat, and that 
has risen many speculations on the nature of “dark matter”. 
 
Dark matter plays a role in several other connections. If the rotation velocities of the stars in a 
galaxy are measured (as well as it seem possible), and when they are compared to measurements 
of the mass of the galaxy (as well as it seem possible) within the orbit of the star, there is a 
discrepancy which cannot be subscribed to uncertainty in measurements. This is to be understood 
as the estimated mass is far to small to keep the stars in rotation when compared to their measured 
angular velocity. 
However the notion of “dark matter” is for the present just as speculative, as the notion of the 
cosmological constant. 

4.8 Luminous and dark matter 
During the 90’ties most astrophysicists had more or less been convinced of the existence of the 
“dark” matter in the universe. “Dark” refers to the fact that it does not shine and it does not emit 
electromagnetic radiation.  Neither as Planck radiation caused by high temperatures (as is the case 
for the stars), nor as secondary radiation, as is the case of interstellar gasses. 
On the contrary observations of the tangential velocity of the galaxy halo strongly indicate that 
only a fraction of the matter in the universe consist of “ordinary” matter, the major part is dark 
matter although its constituents and origin is unknown. 
 
If the observations are reliable (and they are for the present), the dark matter do not emit 
electromagnetic radiation, so either (if it consists of ordinary matter) must be neutral particles or 
have a low temperature. Obvious candidates for the dark matter could therefore be gas-planets like 
the outer planets in our solar system Jupiter, Neptune, Uranus or it might be neutron stars or Black 
Holes. 
However for various theoretical reasons these candidates for the dark matter have been ruled out. 
Also massive neutrinos have been suggested as a source of dark matter but it has later been 
discarded. 
 
Another more vivacious presumption is the existence of an unknown type of elementary particles. 
This suggestion has not created much happiness among elementary particle physicists, especially 
after the Standard Model in the late 90’ties obtained a consistency by the discovery of the W and Z 
bosens, and notably the τ bosons, which more or less closed the model.  
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But personally I cannot come up with a quick answer why the dark matter could not just be 
accumulations of proto-stars like Jupiter, with masses less than 0.07 Msun (which is the lower limit 
for initiating the fusion of hydrogen and forming a luminous star). 
 
That there must be more matter having gravitational properties in the galaxies then the luminous 
matter, has been manifest since the observations of the rotational frequency of the galaxies, made 
by Fritz Zwicky already in the 1930’ties. 
All measurements of the distribution of mass in the universe are inflicted with uncertainty, but this 
does not change the fact that the luminous mass cannot account for the mass necessary to explain 
the rotational motion of the galaxies.  
Previously it has been proposed that the galaxies might have a gigantic Black Hole (3 -4 mill. sun 
masses) at its centre, but this explanation does not comply with the observations. For an orbital 
motion in a central field, Kepler’s 3. law a3/T2= const. applies, where 2a is the great axe in the 
elliptic orbit, and T is the period. 
 
For such motions it is the central gravitational force which delivers the centripetal force. If the 
central mass of the galaxy is M,  and the rotating star has mass m, then we have for a circular orbit. 
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Using T = 2π/ω (where ω is the angular velocity) it follows: 
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If the whole galaxy mass is placed near its centre, the angular velocity of the stars will decrease 
with the distance r to exponent of 3/2, but neither this, is in accordance with observations.  
Fig (4.32) The Andromeda galaxy  
                 That the angular velocity of the stars in a 
                 galaxy decreases with the distance from 
                        the centre of the galaxy can be understood, even 
                  without any knowledge of physics or astronomy. 
 
                 Take for example a look at a photo from the  
                               Andromeda galaxy, where the backward turned 

spiral arms indicate decreasing angular velocity 
with increasing radius.  
If we, on the other hand assume that the mass of 
the galaxy is evenly distributed in a disc, it is 
only the mass which lies within the stars orbit 
that contributes to the gravitational force on the 
star. 
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If M0 is the total mass of the disc, r is the radius in the orbit of the star, and r0 is the radius 
in the galactic disc, then the mass within the disc is given by. 
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The mass density of the disc is namely ρ = M0/πr0 

2 , so M(r) = ρπr2, which gives the expression 
above. Making the same derivation of Kepler’s 3. law as above, we find: 
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This is in somewhat better accordance with the observations, but still the stars move with angular 
velocities corresponding to galactic masses which are some 60% larger than the observed. 
 
The dark matter is still subject to speculation. It could actually be accounted for, by a large 
“cosmological constant”, but this does not fit into numerous other observations.  
A Black Hole having a mass of some million sun masses could also compensate for the mass 
deficiency, but lacks to explain the dependency of the angular velocities on their distances from 
the centre of the galaxy. 

4.9 Quasars 
In the mid sixties some stellar objects were observed having an extreme high red-shift z > 0.5, 
which means that they are receding with a speed comparable with the speed of light. They have 
been named Quasars. According to the Hubble equation, we have namely. 
 
(4.35)  v = H0∙r        with      H0 = 1.9 10-5 (km/s)/ ly (lightyears) 
 
Plugging in v =0.5c, where c is 3.0 105 m/s one finds: 
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Quasars with a distance of 10 billion light years have been observed. 
Quasars have another remarkable quality. They are visible! A quasar can emit more light than 
1000 ordinary galaxies from an extension less than one light year. It is the supposition that the 
galaxies get their colossus amount of energy from matter falling into a Black Hole in the centre of 
the quasar. To supply the sufficient energy the Black Hole must have a mass at 100 to 1000 
million times the mass of the sun. 
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The conjecture is that the enormous quantity of energy comes from a so called active core, which 
is also a central part of other stellar systems, in which some of the most energetic processes in the 
universe take place. Roughly 1% of the galaxies have an active core. By an active core means that 
there is emitted far more energy from its centre, than one should expect from the abundance of 
stars in the vicinity.  
To explain the enormous outburst of energy from quasars, we can estimate that the mass that falls 
into the Black Hole at the centre at a yearly basis must be comparable to the mass of the sun. (The 
lifetime of the sun is about 9 billion years).   
The quasars are extreme examples of galaxies having an active core. Our own galaxy The Milky 
Way is supposed to have a core, with a mass which is “only” three million times the mass of the 
sun. 
While studying the quasars one should remember however, that we are looking perhaps 10 billion 
years back in time and that we view the universe as it appeared at that time. What it looks like to 
day is of course inaccessible. 

4.10 Neutron stars and Black Holes 
When a star has exhausted its ability to produce energy by fusion of lighter atoms to heavier, 
converting binding energy to radiation, starting from hydrogen to helium and further from helium 
to carbon until iron (which has the largest binding energy per nucleus) it is no longer possible for 
the star to resist the pressure from the outer layers of the star. Following a rapid contraction the 
star will eject the outer layers in space, leaving a most massive remnant of the star. 
  
How massive it becomes depends on the size of the star. If the mass is less than 1.4 MSun,the star 
will become a so called white dwarf , which is a small and very hot star with the size of the earth.  
The density is typically 1010 – 1011 kg/m3. 
 
If the mass of the star is above 2 MSun , the star will end its life in a so called Supernova Explosion. 
The contraction is rapid and violent, releasing an enormous outburst of energy, causing the outer 
layers of the star to be thrown out into space. 
 
The pressure in what is left over from the explosion is so high that the electrons are pressed back 
into the protons to form neutrons. The star is now a gigantic nucleus, consisting only of neutrons. 
The star has become a neutron star. The density is of the same magnitude as that of a nucleus.  
The order of 1018 kg/m3, and its radius is only about 10 km. 
 
If the mass is larger than 3 MSun , the life of the star will also end with a supernova explosion, but 
the contraction will continue past the neutron star state, onto a gravitational collapse, which we 
have described earlier as a singularity in space using the Schwarzschild solution to the Einstein 
equation of General Relativity.  
 
Back in the 1960’ties the situation was this, that even if Black Holes and neutron stars were 
predicted theoretically no one had any supposition on how to make observations, since they were 
by nature invisible.  
For this reason, even in the 1960’ties neutron stars were discarded by some members of the 
physical society for epistemologies reason, since the stronghold of the positivism by Ernst Mach 
was still manifest. 
But that changed with the discovery of the “pulsars”. A pulsar is an invisible object emitting signal 
at a frequency some ms in the radio band. The presumption was that the radio waves come from 
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the magnetic field of the neutron stars, emitting electromagnetic radiation, because of the extreme 
high rotational frequency. The radiated frequency is the same as the rotational frequency of the 
star. 
 
The first pulsar was discovered at the centre of the Crab nebular, which is the remnant of a 
supernova explosion (only recorded in China) in 1054. This pulsar was found in 1967 by the 
research student Jocelyn Bell and her tutor Anthony Hewish, (of which only the latter received the 
Nobel price). Since then more than 1000 pulsars have been detected, and the emitted radiation 
suits well with the theoretical framework.  
 
Until the 1970’ties several members of the physical society, had an epistemological problem with 
black holes for the simple reason that they could not be observed, and therefore could be no part of 
the physical science. 
But since then, there have been several indirect testimonies of their existence. The main reason is 
that satellites have made it possible to obtain observation data outside the atmosphere of the earth. 
Mainly the measurement of X-rays, which otherwise would be absorbed when passing though the 
atmosphere. 
 
When a Black Hole sucks interstellar matter or matter from a nearby star, the accelerations of 
ionized atoms and in particular the electrons, are so violent, that the emitted radiation are X-rays. 
Some galactic cores are called active, because they exhaust a disproportionately large amount of 
energy as radiation, including X-rays, in comparison to their extension. The presumption is that 
these galaxy cores are gigantic black holes with a mass of several million sun masses. 
 
Another indirect evidence of a black hole is Cygnus X-1, a star which orbits around an invisible 
companion. As the mass of the companion must necessarily be larger than Cygnus X-1, it seems 
plausible to assume that we are talking about a Black Hole. Observation of X-rays presumably 
coming from the invisible companion tend to confirm this assumption. 
 
A third kind of evidence are the gravitational lenses, which cause the same stellar object to be seen 
in different places. This comes about because the rays are bended when passing a very massive 
object. 
 
Below is illustrated (schematically) the principle of a gravitational lens where the rays from a star 
in the line of sight are deflected when passing near to a massive Black Hole.  
Further below is an authentic image of that phenomena, called Einstein’s cross.  
Apparently it shows a galaxy, with no less than 4 cores.  
The more probable explanation is that the 4 cores are in reality light from a very luminous object 
(a quasar), lying behind a massive Black Hole in the line of sight.  
Fig (4.37) Gravitational lens. 
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Fig (4.38)  Einstein’s cross. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 

4.11 The distribution of matter on a cosmic scale 
Distances in our planetary system are sometimes measured in astronomical units.  
1 AU is the mean distance from the earth to the sun. 1 AU = 150 million kilometres = 1.50 1011 m. 
The most common units for distances in the universe are 1 parsec =1 pc = 3.086 1016 m , and 
 1 light year = 1 ly = 9.46 1015 m. 1 pc = 3.26 ly.  
 
The nearest star Alpha Centauri is found 1.3 pc = 4.22 ly away.  
Our own Milky Way is a typical spiral galaxy that holds about 1011 stars in a disc with a diameter 
of 30 Kpc, and a disc thickness of about 2 kpc.  
Galaxies in turn arrange themselves in clusters, which are arranged in even larger super-clusters. 
Our galaxy is part of a small group called the Local Group comprised of 30 galaxies in a volume 
measuring 1 Mpc across, and where the distance to the (mythical) Andromeda Galaxy is 0.7 Mpc 
Galactic distances are thus measured in Mpc or even in millions of Mpc. 
 
We have previously calculated the critical density of the universe. This is the density that would 
result in a flat universe and from a Newtonian calculation turns out to be:   
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As mentioned above there is a considerably amount of evidence that most of the matter in the 
universe does not shine. This is referred to as dark matter. To do an estimate of the density of the 
universe, we therefore split the matter (M) in the universe up in luminous matter (LM) and dark 
matter (DM). 
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All entities are related to the present epoch, of course. 
 
In the resent years the parameters in (4.41) have been determined rather accurately by somewhat 
indirect methods, involving a detailed statistical analysis of the temperature fluctuations in the 
cosmic microwave background radiation (CMB). The details however go far beyond the scope of 
this chapter. 
The idea applied to measure the density for a luminous matter is through the relation to the 
luminosity density, denoted here by  . L is the luminosity, and M is the mass. 
 

(4.42)  
L

M
LM       

 
We have separated the mass density into the luminosity density and the mass luminosity ratio. 
The luminosity density can be obtained by counting the galaxies per unit volume, multiplied by the 
average galaxy luminosity. This method has resulted in an estimate. 
 
(4.43) λ = Luminosity density = 39 )/(102.0 MpcLsun  

 
The ratio M/L is the amount of mass associated on the average with a given amount of light.  
The latter quantity is much more difficult to ascertain. Depending of the methods, one finds 
results, of which the average is.  
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Plugging this into (4.43), we find:  
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this in turn gives the relative density of luminous matter (LM) 
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 (Other calculations give 0.005) 

 
This estimate asserts, rather surprisingly that only 0.5 - 0.7 % of the matter in the universe is 
luminous matter, the rest is dark matter! Non luminous matter could be planets, brown dwarfs (gas 
planets like Jupiter), black holes as well as interstellar gasses.  
This we shall denote atomic matter (AM), since it eventually is built from the elements in the 
periodic system. 
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For various reasons we shall not go farther into what the astrophysicists claim, namely that the 
dark matter cannot be subscribed to atomic matter. Most of the dark matter is called exotic matter. 
There have been proposed various candidates for the exotic particles, but until now it is pure 
speculation. Also the exotic particles can not be observed, since they have no electromagnetic 
interaction. 
Alternatively a revision of Newton’s law of gravitation on galactic distances has been proposed, of 
which Einstein’s cosmological constant is an example, but neither of the theories have prevailed. 
 
However there exists observational evidence on the amount of “exotic matter”.  
 
The fraction of atomic matter (AM) is the sum of luminous matter (LM) and atomic dark matter 
(ADM) 
(4.47)  ADMLMAM DDD     
 
The dark matter (DM) can again be written as the sum of atomic dark matter and exotic matter 
(EXO) 
(4.48)  ADMEXODM DDD   

 
So the content of matter (M) in the universe may be split up into 3 parts. 
 
(4.49)  EXOADMLMM DDDD   

 
In an attempt to estimate the amount of non exotic matter one must try to measure  < v2 > the 
mean square velocity of the galaxy haloes, and then apply the virial theorem of statistical 
mechanics. 
 
The virial theorem states that for a closed system in equilibrium the mean kinetic energy is 
numerically equal to half the mean potential energy per particle.  
 
In this context the kinetic energy is denoted T and the potential energy is denoted U. 
First we illustrate this by looking at a body in a circular orbit in a central gravitational field. 
Here we know: 
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This can now be extended an arbitrary number n of particles, moving in a gravitational field. 
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We find 
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The mean kinetic energy is half the loss in the mean potential energy and the other half goes to 
radiation. 

For a central force: 
r

Mm
GU i  and after inserting this in the virial theorem, we get: 

  02 2
1 

r

mM
Gvvm


 

And after reducing by m 

(4.53)  
r

GMv
12  

 
From such considerations and measuring the mean of the square of the velocity, applying 
gravitational lenses and several other means, it has been estimated that the relative mass density is 
only 30% of the critical density.  
(4.54)   30.0MD  
 
Further studies have revealed that the atomic matter (AM) is only about 4% of the critical mass 
density. 
Since DAM = 0.04 is greater than DLU = 0.007, it means that only a fraction of atomic matter is 
visible to us. Furthermore since DAM = 0.04 is much less than DM , the intriguing conclusion is that 
most of the matter in the universe is exotic of which neither its composition nor its origin is 
known. 
 
If your university education in physics goes back to the 1960’ties the notion of non atomic dark 
matter is very difficult to comprehend. Year back is was rather fundamental that the world 
consisted of elementary particles of which the missing ones that sustain the Standard Model have 
recently been found. 
The notion that about 90% of the matter in the universe is made up of yet unknown not atomic 
matter is simply incomprehensible. If it should be so, then why have we never observed non 
atomic matter in our planetary system. 
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 But rather than claim that the observations must be “wrong” it tends to a revision of the law of 
gravitation on galactic distances. But on the other hand the cosmological constant has also led to a 
dead end. 

4.12 The cosmological principle and the Robertson–Walker metric 
The Cosmological Principle has been stated in section (4.7). The main content is that the universe 
is homogenous and isotropic in a galactic scale of e.g. 1 Mpc.  
Homogenous means that there is roughly the same number of galaxies within a volume of perhaps 
1 cubic Mpc, and isotropic means that the universe looks the same no matter from where you 
observe it. Independently of your position in the universe you will observe that the galaxies are 
receding from you in accordance with Hubble’s law. 
 
This behaviour of the universe introduces a model where the universe is perceived as a cosmic 
fluid. Thus the universe is a physical system where the fluid particles are the galaxies.  
Each fluid element has its proper time t, and its spatial coordinate xi. A co-moving observer flows 
with a cosmic fluid element.  
 
The co-moving coordinate time can be synchronized over the whole system. For example the 
proper time is inversely proportional to cosmic microwave background temperature. 
We shall now present a model of the universe based on General Relativity conceived as a cosmic 
fluid. The corresponding metric is called the Robertson–Walker metric. 
First, however we shall take a review on the concept of curvature. 

4.13  Curvature in General Relativity 
In the next section, we shall occupy ourselves with the overall structure of the universe.  
When calculating the critical density we considered the three possibilities: 
 
An open universe:   criticaluniverse     

A closed universe:   criticaluniverse     

A flat universe:   criticaluniverse    

 
For the open universe the density is too low to stop the expansion and the expansion will continue.  
 
For a closed universe the velocities of the galaxies are lower than the escape velocity, so a 
contraction will eventually be initiated.  
 
In a flat space, the velocities of the galaxies are equal to the escape velocities, and the expansion 
will stop at a static universe within an infinite time. 
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4.13.1 Gaussian curvature 
Gaussian differential geometry describes a surface in generalized coordinates or parameters (x1, x2) 
For a spherical symmetric surface, one can use either the polar coordinate system or the cylindrical 
coordinate system. The notation is shown in the figure (4.55) 

A point P on the sphere have the cylindrical 
coordinates ),(  , so that: 

22,sin,cos   Rzyx  

 
Since  sinR and cosRz  , we get the  
spherical coordinates. (4.56) 
 

 cos,sinsin,cossin RzRyRx   
 
The variable r denotes the latitude measured 
from the North Pole, and ϕ is the longitude. 

R

r
 , and this allows us to write (4.56) in a 

manner called the polar coordinates: 
 

(4.57)  
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r
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r
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r
Rx cos,sinsin,cossin    

 
Gauss’ Teorema Egregium (The excellent theorem) is a formula for the Gaussian curvature 
expressed by the metric and its first and second derivatives. (See “Differential Geometry 1”).  
Without loss of generality we shall quote the result for a diagonalized metric: 
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The formula for the Gaussian curvature K is: 
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It is important to note that the curvature is expressed only in terms of the metric and its derivatives, 
thus the curvature K is an intrinsic geometrical object. 
 
If you view a surface from outside i.e. from a 3D space, you may wonder if there should not be 
two curvatures to describe the surface in a point. In fact there are, the normal curvature and the 
Gaussian curvature, but the first refers to how the surface looks from 3D space. 
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To illustrate this, consider a 1-dimensional curve. From an intrinsic point of view it is described by 
only one parameter, the length. This parameter can measure no intrinsic curvature whatsoever.  
So the number of curvatures are zero. Correspondingly the number of intrinsic curvatures for a 
surface is one. 
For a position independent metric as the Euclidian space, the curvature K = 0, simply because all 
the derivatives in (4.58) vanishes. 
If we change our coordinate system to a position dependent metric, e.g. for a plane  
 

),()( 21 rxx   where  sincos 21 rxandrx  , 

 
We find for the square of the distance element:  2222 drdrds   and therefore 111 g  and 

2
22 rg  , so the metric is position dependent.  

This should however certainly not change the curvature and it doesn’t, as the following calculation 
shows.  21 xandrx  
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For a spherical surface, where we use polar coordinates: ),()( 21 rxx   , we have the distance 
element 
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This leads to 
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So the curvature of a sphere is 1/R2.  
You will naturally get the same result (with a little effort) using cylindrical coordinates. 
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4.13.2 Spaces with a constant curvature 
The cosmological principle states that the universe is isotropic and homogenous. As a consequence 
of General Relativity the space must have constant curvature. Since it is not possible to visualize a 
3D space in the same manner as a 2D surface, we shall first study 2D surfaces, and subsequently 
make a plausible ad hoc generalization to three dimensions. 
 
We have already seen that a sphere has a constant curvature K = 1/R2 where R is the radius.  
A plane has the curvature K = 0.  
 
One can prove that there exists only 3 surfaces having a constant curvature: 2/ RkK  , where 
 k = {-1, 0, 1}.  K = 1, is the sphere, k = 0 is the plane, whereas k = -1 is called a 2-pseudosphere.  
If we merely want to try to change the metric to get a negative curvature 2/ RkK    it would 
(from a mathematical point of view) be worth trying to change the spherical parameters from 
trigonometric ones to hyperbolic ones.    
 
                              coshcossinhsin  and  
  
Indicating a change of the square of the distance element: 
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 Plugging this into (4.58) 
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 To give: 
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A surface (space) with a negative curvature is referred to as the hyperbolic case. 
 

If we want to express the metric in cylindrical 
coordinates ),(  , where: 
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The square of the distance element is: 
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To change the variable from θ to ρ we use 
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And the distance element becomes 
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Which yields the metric for the cylindrical coordinates (x1, x2 ) = (ρ, ϕ). 
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The (only) three surfaces having a constant curvature can be collectively expressed in polar 
coordinates.  
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Using 
R

r
  as a dimensionless radial coordinate, the distance elements can be written in a 

compact form: 
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Introducing i1  (the imaginary unit i2 = -1), and since )(sin 2
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, (4.6) can be further compressed to 
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We shall then argue (but not prove) how the geometry of a surface with constant curvature can be 
generalized to a 3D space.  
 
Compared to the 2D coordinates (r, ϕ) or (ρ, ϕ), the 3D spherical (r, θ, ϕ) or  (ρ, θ, ϕ) requires an 
additional (polar) angle coordinate. Specifically for the k = 0 case, we have the polar coordinates 
for the flat 2D surface, and the spherical coordinates for the Euclidian 3D space. 
Their respective metric relations are: 
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(4.67)      and     
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Now the idea is, that we do the same thing in (4.66), but also in the case where k  ≠ 0, replacing 

2d  with 2222 sin  ddd  , which brings us to have three (spherical polar) coordinates 
 and, . Making this alteration in (4.66) we have. 
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However, it is no longer possible to visualize this 3D metric as embedded in a space of higher 

dimension. Similarly if we replace the radial coordinate ρ in 222
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2
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 , by the 

dimensionless distance: R/   we get using (4.63)  
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Equation (4.68) and (4.69) reduces to 2D spaces if we make a projection by setting either dθ = 0 or 
dϕ = 0. This means that all 2D spaces are appropriately curved. 
A rigorous mathematical derivation of this result is more demanding, but the results are good. 
 
The metric in (4.68) and (4.69) with k = +1 describes a 3-sphere, and for k = -1 a 3-pseudosphere, 
and the overall distance scale R is identified as the radius of these spheres. 

4.13 The Robertson – Walker metric 
We shall now present a General Relativity model of the universe as a cosmic fluid.  
The corresponding metric is called the Robertson–Walker metric. 
Because each “fluid element” carries its own position coordinate, the fluid element is also a 
cosmic rest frame, as each fluid elements position coordinate are unchanged with time. 
 
As we shall see below the expanding universe with all the galaxies rushing away from each other, 
is not described by changing coordinate positions, but rather by an ever increasing metric. 
This emphasizes that the physics of the universe is not a universe expanding in space, but an 
expansion of space itself. 
 
We have earlier seen the spherical symmetry restricts the metric to have only two scalar functions.  
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Here we shall dwell into the geometry, outlined from the cosmological principle, which turns out 
to have the Robertson-Walker metric, when expressed in co-moving coordinates. 
Because the fluid elements coordinate time is its proper time, we must have g00 = -1, g0i = 0  and  
gi0 = 0, where i is only the spatial index. 
 
Assume that gi j is a metric that satisfies the cosmological principle, we have: 
 
(4.71)  ji

ji dxdxtrgdtcds ),(222   (i, j) = 1..3 

If we put 2),( dldxdxtrg ji
ji  , we get: 

 
  2222 dldtcds   
 
Because of the cosmological principle, (the universe is isotropic, and homogenous), dl2 can have 
no dependence on the spatial coordinates, and therefore it must be an overall time dependent scale 
factor R(t). 
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Where the reduced length element ld


 is both time independent and dimensionless. 
It use useful to define a dimensionless scale factor. 
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(4.72)  
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a(t) is normalized so that a(t0) = 1. R0 is often referred to, as the radius of the universe now. 
In this way the universe is pictured as a 3D map with a label fixed by the co-moving coordinates 

ix


. The evolution of the fluid elements enters entirely through the map scale R(t) = a(t)R0.   
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With ix


 being the fixed (time independent) dimensionless map coordinate, while a(t) is the size of 

the grids, and is independent of map coordinates.   
As the universe expands the relative distance relations are unchanged i.e. the shapes are not 
changed. 
The Robertson–Walker metric is designed for a space-time, which is homogenous and isotropic, 
and therefore it has a constant curvature. We have in (4.68) and (4.69) written down the metric in 
two spherical coordinate systems. 
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k takes the values: 0 for a 3D Euclidian space,  +1 for a 3-sphere, and -1 for a 3-pseudospere.  
In the context of cosmology, the structure of the universe is, for   
 
k = +1, a positively curved space, (parabolic-elliptic), and is referred to as a “closed universe”,  
 
k = -1, a negatively curved space (hyperbolic), and is referred to as a “open universe”, and  
 
k = 0  a “flat universe”. 

4.14  Proper distances in the Robertson–Walker metric 
In practice, one can use either of the geometries (4.73) or (4.74), since they are equivalent.  
In the following, however we shall use the (4.74) with the coordinates ),,(  . 
In an expanding universe that may be curved, one should be careful in any treatment of distances. 
We shall lay out with the most simple, the proper distances. 
 
The proper distance ),( td p   to a point at the co-moving radial distance ν, and cosmic time t, can 

be calculated from the metric (5.77) with dΩ =0, and dt = 0.  
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From which we have for a positive curvature k = +1  
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For a negative curvature k = -1 
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And for a flat space 
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The relation 
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Implies a proper velocity 
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What is recognized as Hubble’s law with: 
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Recall that the appearance of the overall scale factor in the special part of the Robertson–Walker 
metric follows from our imposition of the homogeneity and isotropy condition.  
Equation (4.80) then confirms the assertion that the cosmological principle automatically leads to 
Hubble’s law. 
Again we emphasize that the drift of galaxies away from any point in the universe, is not a drift in 
space but an expansion of space itself. 

5. The expanding universe 
In the last section, we studied the “kinematics” of the standard model of cosmology.  
The requirement of homogeneity and isotropy fixes the space-time to have the Robertson-Walker 
metric in co-moving coordinates. This geometry is specified by a curvature signature k = 0, +1, -1, 
and a time dependent scale factor a(t). 
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We shall now turn to the dynamics of the homogeneous and isotropic universe, and determine the 
unknown quantities k and a(t) by the matter and energy sources, using Einstein field equations. 
 
The fact that all galaxies are moving away from each other is a strong indication that the universe 
has been smaller and hotter, and ultimately has been concentrated in a point of infinite density. 
Considering the expanding universe, there are notably two evidences for the Big Bang theory. 
 
The first one is the discovery of an all pervasive cosmic microwave background (CMB).  
 
The idea is that when the universe became transparent, that is, the photon age, some 350 mill years 
after the big bag, it was inhabited with energetic photons, say some Gev. But when space 
expanded, so did the wavelength. So when one estimates the factor with which the universe has 
grown until now, and compare it to the factor of enlargement of the wavelengths of the early 
universe, the two numbers are in fact comparable.   
A photon of 1 GeV corresponds to a wavelength 
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The wavelength of the CMB radiation is peaked at λ = 2.4 10-3 m. This means that the wavelength 
is increased by a factor O(1012). However we neither know precisely the size of the universe at the 
photon age or now, but since the universe has an age of 13.6 109 y, the two factors of expansion 
are comparable, although a direct calculation requires a much more detailed knowledge of the 
early universe. 
Another indirect confirmation of the Big Bang theory of the expanding universe was delivered by 
the discovery of the CMB radiation, which is still here and everywhere.  
In an infinite universe the CMB radiation would long gone have disappeared at the speed of light. 
 
The CMB radiation in the universe can likewise, and more correctly be viewed as the Planck 
“black body” radiation of a closed universe, where the temperature has decrease from extreme 
temperatures to the present Planck temperature of 2.7 K. 
The second evidence is the observed abundance of the light nuclear elements, LiHHe ,, 2

1
4 in 

agreement with values predicted by particle physics. 

5.1 The Friedmann equations 
The Einstein equation relates space-time geometry to the mass/energy distribution.  
 

jiji TG   

 
We have already established the Robertson-Walker geometry with co-moving coordinates as the 
appropriate geometry for a homogenous and isotropic universe. 
The simplest choice of the energy momentum tensor is an ideal (a non viscous) fluid. 
The proper description of the ideal fluid tensor will be given later, but it is specified by two 
parameters mass density ρ(t) and pressure p(t). General Relativity relates the geometric parameters 
of curvature signature k and the scale factor a(t) = R(t)/R0 to the cosmic fluid parameters.  
The resulting equations are called the Friedmann equations. The first and second Friedmann 
equation are 
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Because pressure and density are positive quantities, the second derivative of a(t) is negative. 
This is in accordance with the increase in separation, as the gravitational attraction decreases. 
A linear combination of the two Friedmann equations gives: 
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This resembles the first law of thermodynamics on differential form, which is the most general 
statement of energy conservation. 
 
 PdVdEdQandPdVdQdE  0  
 
The more simple equation (5.3) is often used instead of (5.1) and (5.2), and is then referred to as 
the Friedmann equation.  
However since there are three unknown functions a(t), ρ(t), p(t), and only two equations, we shall 
need one more equation.  
The equation relates the pressure to the density, which we choose in its most simple form. 
 
(5.4)  2cwp   
 
Where w is a constant that determines the material content of the system. For non relativistic 
matter the pressure is negligible, so w = 0, and for radiation w = 3

1 , as we know it from 

electrodynamics. 
A more rigorous derivation of the Friedmann equations will be given later, here we shall proceed 
with a quasi Newtonian approach, which is more transparent. 

5.1 The critical density of the universe 
If we divide the first Friedmann equation 
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Using Hubble’s constant  
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Related to t =t0: 
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If the density is less than the critical density, that is, if D0 < 1, then k = -1, the universe has a 
negative curvature, and we have an open universe.  

If the density is equal to the critical density, that is, if D0 = 1, then k = 0, the universe is flat. 

If the density is greater than the critical density, that is, if D0 > 1, then k = +1, the universe has a 
positive curvature, and we have a closed universe. 

From the available phenomenological data D0 = DM,0 , and it therefore looks like that we have an 
negatively curved open universe. 

However this conclusion may be altered, if we modify Einstein’s equations by adding a 
“Cosmological Constant”. Adding such a constant does not alter the consistency of Einstein’s 
equation, the problem is (and this has always been the problem in theoretical physics), that such a 
constant has no other physical justification, than to explain a discrepancy between theory and data.  

Using the cosmological constant and interpreting new observational data have caused several 
physicist/astronomers to be inclined to conceive the universe as flat 

5.2 Particle physics and the Big Bang. The Cosmic microwave background 
The Standard model of particle physics was commonly accepted in the beginning of the 90’ties. 
This model has enabled us theoretically to give a description of the development of the universe 
down to 10-43 s after the big bang (Vacuum inflation).  It is impossible to give even a brief survey 
of the standard model, but its foundation is the knowledge of the four interaction of the 
fundamental particles of which we shall give a short review.  
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5.2.1 The four interactions 
There are four fundamental interactions in nature, but two of them are only found on a subatomic 
level. Below they are listed after their historical appearance in physics. 
 

1. Gravitational forces 
The gravitational force is responsible for holding the universe together. It holds together 
the planetary system, the stars, the galaxies etc. All particles including mass less particles 
like photons are influenced by gravity. The range of gravity is infinite. Gravity is the 
weakest of the 4 forces. If you compare the constant i Coulomb law 9

4
1 100.9

0
  (SI-

units) with the constant of gravitation 111067.6 G  (SI-units) the factor of strength is 
about 1020. 

 
2. Electromagnetic forces 

The electromagnetic interactions are responsible for holding the atoms together. 
Furthermore they are responsible for the whole spectrum of electromagnetic radiation. 
Both the gravitational forces and the electromagnetic forces are present in the macroscopic 
world, but the electromagnetic forces are much stronger than the gravitational forces, with 
a factor that is roughly the inverse relation of the scale between an atom and the size of the 
planetary system.  
As is the case with the gravitational forces the range of the electromagnetic forces are 
infinite. Electromagnetic forces are active on all charged particles including particles with a 
magnetic moment. 
During the last 100 years we have gained a complete understanding of the macroscopic 
electromagnetic forces, given by the Maxwell Equations, and extended to quantum physics,  
by the Dirac equation and quantum electrodynamics. 

 
3. Strong interactions 

These forces have no visibility in the macroscopic world, since they are the forces that hold 
the nuclei together. They are responsible for the α-decay of nuclei. Particles with strong 
interactions are called baryons and mesons and together for hadrons. Apart from the proton 
and neutron, there exist large families of unstable baryons and mesons. The range is very 
short some 10-15 m, about the size of the nuclei. Roughly speaking they are a million times 
stronger than the electromagnetic forces. With the introduction of the Standard Model, they 
are almost understood. 
 

4. Weak interactions 
The weak interactions are much weaker than the electromagnetic. They are among other 
things responsible for the β-decay of nuclei and other hadrons. Their range is the same as 
the strong interactions. All hadrons have weak interactions. Particles with weak 
interactions, but not strong interactions are called leptons. The neutral neutrino is a mass 
less particle with weak interactions only. 

 
Below is a table showing the properties of the four exiting forces of nature.  
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In the end of the sixties the physicists succeeded in to accomplish a theory: The electro weak 
theory, which at very high energies (109 GeV) unified the electromagnetic and the weak 
interactions to one interaction: The electro-weak. 
During the 70’ties, they finally succeeded to unify the electro-weak and the strong interactions to a 
grand unified theory (GUT), later to become the Standard Model, which unifies the 3 interactions 
at extreme high energies (1016 GeV ). The level of energies where the three or just two interactions 
are unified are excluded from laboratory experiments. Actually the only place, where the unified 
theory can be “tested” (indirectly) is the first 10-36 s after the big bang, and for the electro-weak  
10-36 s to 10-12 s. 

5.2.2 Elementary particles and Quarks 
Of the elementary particles, we know from the atomic nucleus, the proton and the neutron are 
hadrons. They have strong, electromagnetic and weak interactions. 
The electron has electromagnetic and weak interactions. The β-decay (weak interaction) emits an 
electron and a neutrino. The neutrino is mass-less and it has only weak interactions, which makes 
it virtually impossible to detect in the laboratory. Neutrinos coming from the cosmic radiation 
were first detected in 1970.  
Until 1950 these particles (and their antiparticles) were considered to be fundamental.  
Later from accelerator experiments, there were discovered a large number of new, but unstable 
particles, especially the π-mesons and the myon, (which is a heavy lepton with mass 200 times that 
of the electron) not to mention some so called “strange particles”.  
All the new particles were unstable, with a lifetime ranging from 10-10 s to 10-6 s. 
 
From a theoretical point of view it was not satisfactory with about 50 “elementary particles”, and 
more to come, so the American Physicist Murray Gell-Mann suggested in 1964, that all hadrons 
were built of three truly fundamental particles, which he (with a highly literary reference to a novel 
by James Joyce) named quarks. 
At that time he assumed, (encouraged by the group theory of SU2) that there were only three 
quarks, which he gave the rather picturesque names: up, down, and strange.  These were sufficient 
the explain the building of hitherto known (SU3) multiplets of particles. 
The quarks were “exotic” in the manner that, although they were spin ½ particles, they carried 
fractions of the charge of the electron, which for the up, down and strange quarks were 

eandee 3
1

3
1

3
2 ,,  , where e is the (elementary) charge of the electron. And they had a baryon 

number 3
1 .  
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Particles carrying a fraction of either e (charge of the electron) or a fraction of the baryon number 
have never been observed in nature 
For example the proton is built of two up quarks and one down quark, having the charge 

eeee  3
1

3
2

3
2 , and baryon number 13

1
3
1

3
1   

 
Free quarks have never been observed, and it is the general assumption, that they can not exist as 
free particles except under the extreme conditions that existed 10-36 s after the big bang. 
Since then accelerator experiments and theoretical considerations, have made it necessary to add 
another triplet of quarks with equally picturesque names: charm, top and Bottom.  
 
A baryon consists of 3 quarks, and a meson consists of a quark and an anti-quark. 
The description of the physics of the quarks is called Quantum Cronodynamics, which is part of 
the Standard model, but the theoretical framework of particle physics is at least as complex as the 
General Theory of Relativity. 
The theory has required the addition of yet another lepton, the tau-meson, the existence of which 
has been confirmed by accelerator experiments at CERN in 1995, so we now have a beautiful 
theoretical symmetry, with 6 quarks, their anti-quarks, 6 leptons ),,( e  their neutrinos 

),,(   e  and their anti-particles. The properties of the leptons and the quarks are shown 

schematically below. 
It should be mentioned, that the physicists at CERN in 2013 succeeded to detect the long searched 
for Higgs boson. This was important, since all the particles in the Standard Model had hitherto 
been mass-less. The Higgs boson has been predicted theoretically to be the source of mass through 
the vacuum field.   
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Following is a similar listing of the most well known hadrons. 
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5.2.4 The evolution of the universe in pictures 
The following pages illustrate the early development of the universe from the point of view of 
particle physics. 
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One may reasonably ask the question, why it is not possible to study on the universe before 10-43 s 
after the Big Bang.  
For the particle energies which rule between 10-42 s to 10-36 s there is a theory (GUT) which unites 
the strong, the electromagnetic, and the weak interaction to one interaction, and one imagines that 
at even higher energies these three interaction will unify with gravitation.  
 
However there is for the present no quantum field theory for the gravitational field. There is still 
no TOE (Theory of everything), and most physicist doubt that it will ever be found on a quantum 
field theoretical ground. 
 
It is expected (for theoretical reasons) that the unification of the four interactions will take place at   
A distance 10-35 m. This length is called the Planck length, and it can be expressed by three 
constants of nature: The gravitational constant G = 6.67 10-11 (SI-units), the speed of light 
 c = 3.0 108 m/s and Planck’s constant h = 4.15 10-15 eVs. 
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The time it takes the light to transverse the Planck length is: 
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We have no possibility to draw any conclusions of what happened to the universe before the 
Planck time since the universe was smaller than the Planck length. 

5.2.5 The cosmic microwave background 
Even if the notion of a Big Bang has been known since 1930’ties, (following the establishment of 
Hubble’s law), it had until the 1970’ties still a speculative nature, since no experimental 
verifications were anticipated, for obvious reasons.  
 
This situation changed, when two electro engineers Arno Penzias and Robert Wilson discovered 
(in their effort to eliminate radio background noise) a microwave radiation of unknown origin, 
being the same in all directions. 
Later when recording an analyzing the spectrum, it revealed that it coincided with the Planck black 
body radiation at a temperature 2.7 K. 
 
When the cosmologists became aware of this discovery, they did not hesitate to conclude that is 
was a decisive evidence of the Big Bang, considering that the radiation had to be relic from the 
early seconds of Big Bang, and since no other explanation could possibly account for it. 
 
From an everyday experience it might be difficult to accept that today, we can receive radiation, 
which was emitted 13.5 Gyr ago, but this explanation is not strictly correct.  
Rather, the notion is that a finite universe is a Planck “black-body” in thermodynamic equilibrium 
and for such a body Planck’s thermodynamic law of radiation applies. 
For the microwave radiation to prevail the universe must be finite, such that emitted radiation will 
never be lost in “space”, but one may also think of it, as when the space expands, so does the 
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wavelength, and there seem to be a fairly good linear accordance between the expansion of space 
and the stretch of the photon wavelength from the early universe. 

5.2.6 The Planck blackbody radiation formula 
All bodies in thermodynamic equilibrium (at a temperature T) emit radiation given by Planck’s 
law of radiation. This was actually the first quantum mechanical formula, where Planck introduced 
“Planck’s constant” h, writing the energy of the photon as: E = hν, where ν is the frequency of the 
radiation. 
The fraction I(ν)dν of radiation, which per unit volume of the material, is emitted in the frequency 
interval dν, is given by the formula (5.8), where h is Planck’s constant h = 4.15 10-15 eVs, and k is 
Boltzmann’s constant k = 8,617 10-5 eV/K.  
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Below is shown the registered curve for the Cosmic Microwave Background radiation (CMB), 
which fits nicely into Planck’s formula at a temperature of T = 2.7 K. Fig (5.9) 
 
 

  

6. The accelerating universe 
As pointed out by Einstein, the universe could not be static and unchangeable, because the 
gravitational forces would eventually pull it together.  
 
Having formulated his General Theory of Relativity, using Riemann’s generalized tensor 
differential geometry, he realized that the gravitational contraction could be compensated for, by 
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adding a constant, named the the Cosmological Constant multiplied by the metric form in his 
fundamental equation without changing the physical or mathematical (co-variance) consistency.  
 
Later he declared that the cosmological constant, “was the greatest mistake in his life”.  
The cosmological constant represents the “vacuum-energy” of the universe. This constant energy 
density corresponds to a “negative pressure”, giving rise to repulsive forces which increase with 
distance. A vacuum-energy dominated universe expands exponentially. 
 
The inflationary theory of the cosmic origin, asserting that the universe has experimented a huge 
expansion at the earliest moment of the Big Bang, can provide the initial conditions for the 
standard model of cosmology, solving the flatness and horizon problems, and providing an 
explanation of the origin of energy/matter. 

6.1 The cosmological constant 
From the Newtonian theory, one would expect that expansion of the universe would slow down as 
a consequence of the gravitational attraction. However, there have never been observations that 
could corroborate that.  
Before Hubble made his revolutionary discovery (At every point in space the galaxies move away, 
with a speed proportional to their distance.  rHv 0 ) almost everyone believed that the universe 

was static.  
You must remember that the discovery of the galaxies did not occur until the beginning of the 
20’th century, and therefore the view of the universe consisted only of our own galaxy The Milky 
Way. The Milky Way was static in the same sense as the planetary system, but rotating around its 
centre because of gravitation. 
But there exists no centre of the universe as a whole, about which the star and galaxies could rotate 
to maintain its stability, and therefore a static universe is (also from a Newtonian point of view) 
impossible. 
The Friedman equation (5.3)  
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is not compatible with the static condition of an unchanging scale factor, since 0 aa  , would 
lead to an empty universe with p =ρ= 0. 
The Einstein equation, which is the foundation of General Relativity 
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Where Gi j  is the Einstein curvature of space-time, and Ti j  is the energy/momentum source of 
gravity.  
In order to accomplish an equation which describe a static universe Einstein was led to alter his 
field equation such as it contained a repulsive component that became only potent at very large 
distances and increased with distance. The simplest choice that would preserve the consistency and 
covariance of Einstein’s equation, could be a constant Λ (the cosmological constant) as a prefix to 
the metric form gi j With this change the Einstein equation then reads. 
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Even if this formally can account for a static universe, there are several theoretical drawbacks.  
Λ is invented only to compensate for the discrepancy between observation and experiment.  
There exists no theory from which the existence or value of Λ can be predicted.  
Even if there existed a quantum field description of gravity (and there doesn’t) it is very unlikely 
that a cosmological constant would ever emerge from that theory.  
Another problematic thing is that a cosmological constant will change the Newtonian limit, unless 
it is so small that it would be undetectable except at very large distances. 
 
Although we have introduced the cosmological constant as an additional geometric term, we could 
as well move it to the other side of the equation and view it as an additional source of gravity.  
In particular, when the regular energy-momentum is absent, that is,  Ti j  = 0, the Einstein equation 
becomes. 
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Then it can be interpreted as the energy–momentum tensor of the vacuum. In the same manner as 
Ti j  for the cosmic fluid depends on two functions, the energy density ρ, and the pressure p, the 
vacuum energy–momentum tensor 

jiT , can be similarly parametrized by the vacuum energy 

density, which is independent of time and the position in space, and the vacuum pressure.  
We shall presently show, that these two quantities can be related to a positive cosmological 
constant Λ as follows: 
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And a negative pressure 
(6.6)   2cp     
 
Although a negative pressure is impossible in classical mechanics, as well as in thermodynamics, 
it is not formally inconsistent with the adiabatic version of the first law of thermodynamics: 
  

dE = -PdV.  
 
Since when the energy density is constant  
 

dE = ρc2dV,  
 
the pressure must necessarily be negative: p =- ρc2. 

6.1.1 Gravitational repulsion caused by vacuum-energy 
To understand why a negative pressure can give rise to a repulsive force, we shall first look into 
the Newtonian limit of the Einstein equation with a normal source composed of mass density ρ as 
well as pressure p.  
We will show later, that in the Newtonian limit, the equation written in terms of the gravitational 
potential Φ, is 
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This equation informs us that not only mass, but also pressure can be the source of gravitational 
field. 
 
If we also insert the vacuum contributions:    M  and  ppp M  
The Newton Poisson equation becomes. 
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M , and for the vacuum dominated case: 24 cG M  ,  

so we end up with  22 c . The Laplace operator in spherical coordinates is  
   

 

 
Since )(r  all the derivatives of θ and ϕ vanish, and we are left with. 
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And by integrating: 
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Or simply and crude, by setting  x = y = z = r, (because it really makes no difference in this 
context), so  
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This potential gives rise to a repulsive force (per unit mass) 
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6.1.2 The cosmological constant ensures a static universe 
We shall then look back at the two Friedmann equations:. 
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And then by adding a non vanishing cosmological constant, they become 
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The RHS of (6.13) does not necessarily need to be negative because of the negative pressure term 

2cp     Consequently a de-accelerating universe is no longer the ultimate outcome.  
For non relativistic matter , and after setting pM = 0 we have 
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The static condition 0a , leads to the constraint   
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The other static condition 0a  implies, using (6.12) the static condition a = a0 = 1 
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Since the RHS is positive, we must have k = +1, namely the static universe must have a positive 
curvature (a closed universe), with a scale factor (by solving (6.17) with respect to R0.  
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So, at the end of the day, our conclusion is, that the basic features of a static universe is, that the 
density and the radius are determined by an arbitrary input parameter. 
Not only is this theoretically unsatisfactory, but worse the solution is unstable, so that even a small 
variation would cause it to deviate from its starting point. 

7. Consequences of the Einstein equation 
In section 3, we have derived and elaborated on some consequences of the Einstein equation 
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Or when written in the equivalent form  (3.12) )( 2

1
jijiji TgTR    

 

(7.3)  )(
8

2
1

4 jijiji TgT
c

G
R 


 

7.1 The Schwarzschild solution 
We shall now engage in solving the Einstein equation for a spherically symmetric source with total 
mass M.  
The solution yields the metric function gi j(x) for the space-time geometry outside the source, and 
is called the Schwarzschild exterior solution. We have previously in (3.29) seen that a special 
spherical symmetric metric has only two unknown scalar functions. 
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The objective is now to use Einstein’s equation to solve it, to obtain expressions for 

),(),(00 trgandtrg rr . The first step is to express the Ricci tensor elements Ri j in terms of the 

metric elements.We shall do this, by calculating the connections symbols based on the spherically 
symmetric form (7.4), but first we introduce some convenient notation: 
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So that the unknown functions are ),(),( trandtr  . The mathematical procedure is a bit 
complex, so you may skip it. 
 
We proceed to compute the Christoffel symbols via the Lagrange equation. In principle we may 
obtain the functions ),(),( trandtr   by differentiating the metric tensor, but a more efficient 
method is through interpreting the geodesic equation. 
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The Euler Lagrange equation is: 
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As demonstrated in “Differential Geometry 2”, we may choose the Lagrangian as:  
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As long as the parameter is a natural parameter (e.g. the proper time τ.)  
 
Once the geodesic equation is derived from (7.7), we can extract the value of i

kj , by comparing to 

the geodesic equation (7.6). Because we have: 
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The i = 0 component of the Euler Lagrange equation (7.7) reads 
 

0
220

2
1

0



























































d

dr
e

d

dx
e

d

dx
e   

or 

  0
22

200

2

02



























  








e
d

dx

d

dx

d

dr

rd

xd
e


 

 
This is to be compared to the i = 0 component of the geodesic equation (7.6), where only the non 
vanishing )/)(/(  ddxddx kj  factors are displayed. It has the form: 
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From which we may extract the result 
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Following a similar procedure, and using the symmetry properties of the Christoffel symbols. 
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In “Differential Geometry 2”, the following expression for the Riemann tensor is derived. 
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We can then use (7.10) to calculate the curvature tensor i
lkjR , from which we can contract the 

indices of k
lkjR  to form the Ricci tensor. 
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Until now our calculations have been based only on what the spherical symmetry impose on the 
solution. Now we shall seek the actual solution to Einstein’s field equations. 
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7.1.1 The Einstein equation for the space-time exterior to the source 
Our aim is now to find the metric in the region outside a spherically symmetric source.  
Because the energy momentum tensor Ti j vanishes in the exterior the Einstein Field equation 
simply becomes. 
(7.12)   0jiR  

 
Although (7.12) looks simple, the Ricci tensor is actually a set of 16 second order non linear 
differential operators acting on the metric functions. 
 
Before getting the solution for the two unknown functions 
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We state that the solutions must necessarily be time independent, (as a consequence of the so 
called Birkhoff theorem, on which we relax the proof), and also since the alternative certainly 
would be strange. 
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After substituting in (7.11) this condition, all the time derivatives terms vanish. 0   , 
and the Einstein vacuum equation (7.11), yield three component equations. 
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Actually one of these equations is redundant. It can be shown that the solution from two of the 
equations automatically satisfies the third. 

7.1.2 Solving the Einstein equations for a spherically symmetric source 
We then carry out the solution to (7.14) and (7.15). After integrating (7.14) over r, and setting the 
integration constant to zero we find. 
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Inserting (7.14) into (7.15) we get: 
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To solve this equation, we introduce a new variable λ. 
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So that (7.18) becomes: 
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It has the solution 10 )()(   rr , where 0 is the solution to the homogenous equation: 
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And (7.21) has the solution 
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Thus the product r0 is a constant which we label -rS (S for Schwarzschild)  
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Combining this with the particular solution of  λ1 = 1, we have, (remembering the definition of α 
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 and noticing that the λ function is just 1/grr , yields the general solution.  
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The solution is called the Schwarzschild metric for the exterior of a spherical symmetric source.  
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The constant rS is related (by taking the Newtonian limit) to the gravitational constant, and the 
mass of the source (3.38). 
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In section 3, we have already discussed the consequences of the Schwarzschild metric concerning 
bending of light beams and Black Holes. 
 

7.1.3 The Einstein equation for cosmology 
After introducing his theory in 1915 the study of cosmology has been carried out within the 
framework of General Relativity. The foundation is Einstein’s equation 
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The solution for cosmology must comply with the cosmological principle of a homogenous and 
isotropic space, which has the solution of the Robertson-Walker metric. 
The model of the universe is that of cosmic fluid. The 4D metric in this co-moving coordinate 
system, has the form as (4.71)   
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Where the reduced length element ld
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 is both time independent and dimensionless, and 
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Normalized so that a(t0) = 1.  R0 is often referred to as the radius of the universe. 
We have previously argued that a universe complying with the cosmological principle must have a 
constant curvature. We extended in (4.74) (without a formal proof) the metric of a 2D constant 
curvature surface to 3D constant curvature space. 
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Where  is the dimensionless radial distance. This is the Robertson Walker metric.  
Here we shall make an alternative derivation, based directly on Einstein’s equation, using the same 
steps, as in arriving at the Schwarzschild solution. 
 
Homogeneity and isotropy mean that the space must be spherically symmetric, as seen from every 
point in space (7.4). 
(7.33)  )sin(),(),( 2222222

00
2  ddrdrtrgdtctrgds rr   

 
This means that the metric for the 3D space ),,(  , should have the form as outlined in section 
(4.13.2).  Keeping only the spatial part, we have 
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As mentioned earlier the metric element ĝ  is independent of time, and we shall follow the 

previous notation and put )(ˆ reg 
  .  

To elaborate further on homogeneity and isotropy, we demand that the Ricci scalar be constant. 
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This does actually imply that the 3D space should be with constant curvature.  
Looking up the Ricci tensor (7.11), and after setting:  
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we obtain the Ricci tensor elements for the 3D-space. 
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Which is to be contracted with the inverse metric jiĝ  of  (7.34). 
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Setting it to -6k as in (7.35), and rearranging: 
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It can be solved by integrating. 
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Where the constant C = 0, as can be seen in the 0  limit. We obtain the desired solution: 
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In accordance with (7.32).  
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This was obtained earlier by comparing with the two dimensional case. 

7.1.4 The Friedmann equations 
Her we shall explicate the exact relation between the Einstein and the Friedmann equations.  
The Einstein equation: 
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For the homogenous and isotropic universe, the LHS is determined by the Robertson–Walker 
metric, with its two parameters: The curvature constant k , and the scale factor R(t).  
 
What is necessary is to specify the energy momentum tensor.  
The simplest (and the only palatable) choice is to take the cosmic fluid as an ideal fluid, as 
discussed earlier in (5.1) to (5.3). 
 
In Special Relativity the energy momentum tensor is given by: 
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Where p is the pressure, ρ is the mass density and ui are the Minkowski 4-vectors. Since there are 
no derivatives, this expression must also hold in General Relativity.  
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In the cosmic rest frame, that is, the co-moving coordinates, in which each of the fluid elements 
(galaxies) carries it own position label.  
All the fluid elements are at rest in such a frame, with the metric given by gi j = diag(-1, gi j), and 
(i,j) =1..3. , the energy momentum tensor takes on a particular simple form. 
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So the cosmological Friedmann equations are just the Einstein equation with the Robertson – 
Walker metric with the ideal fluid energy momentum tensor. 
 
The 2

00 /8 cGG   equation can then be written (after a lengthy calculation) in terms of the  

Robertson–Walker metric in terms of the curvature constant k and the scale factor R(t). 
The first Friedmann equation (5.1): 
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From the equation: 4/8 cGgG jiji  , we get the second Friedmann equation: 

 

(7.46)   2
3
1

2

4

)(

)(
cp

c

G

ta

ta 



    or     2

3
1

2

4

)(

)(
cp

c

G

tR

tR 



 

 
Although the Friedmann equations have a rather simple Newtonian interpretation, they must be 
understood in terms of General Relativity, as they still have the geometric concepts of 4D metric 
and curvature. 

7.1.5 Einstein’s equations with a cosmological term 
As mentioned (several times), that until the mid 1950’ties the widespread view was that the 
universe was infinite and static, but as Einstein, among others, pointed out, this was not in 
accordance with universal gravitational attraction.  
The universe would eventually begin to contract and end in a “Big Crunch”. 
 
Looking only at our own galaxy, the Milky Way, there was no problem with stability, because it is 
in rotation in a gravitational field like the planetary system. 
 
But why the galaxies in 13.6 billion years had not come closer to each other was a mystery and it 
still is, by the way. 
This caused Einstein to modify his equations for General Relativity to include a constant, called 
the cosmological constant (The greatest mistake in my life, he wrote some years later).  
But nevertheless the cosmological constant is still spooking in scientific literature, although no one 
has ever been able to give a theoretical explanation of the cosmological constant or calculate its 
value from first principle. 
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What Einstein realized was that it was possible to modify his equation, without loss of consistency, 
by simply adding a constant Λ multiplied by the metric form to uphold its tensor nature 
(covariance). 
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One serious problem is that the introduction of a cosmological constant will alter the Newtonian 
limit, but this can be avoided if it can be totally neglected, except at huge distances. 
If we move the term with Λ to the other side: 
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This allows for a new interpretation of jig1 , namely as an energy momentum tensor, which we 

call the “vacuum energy tensor”. Since in the absence of ordinary mass/energy distribution 
0jiT  (vacuum) The source term  
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can however still bring about a gravitational field. 
 
This vacuum energy-momentum tensor can still be written in a form analogous to the conventional 
ideal fluid stress tensor. 
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Comparing with (7.44)  
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It implies a constant vacuum energy density. 
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If we take Λ > 0, so that ρΛ > 0, it further implies a negative vacuum pressure: 
 
(7.51)   2cp     
 
Thus the cosmological constant corresponds to an energy density, which is constant in time and 
space. No matter how we change the volume the energy density, it is unchanged.  
 
As we have discussed earlier this pressure is the source of gravitational repulsion on huge 
distances, which might haven driven the inflationary epoch of the Big Bang, and being sufficient 
to give the universe an accelerated expansion, as recent observations points toward. 
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