

Nutrient availability constrains on habitability of rocky worlds

Oliver Herbort¹ P. Woitke² Ch. Helling² A. L. Zerkle³

1) Institute for Astrophysics, University of Vienna 2) Institut für Weltraumforschung Graz 3) Blue Marble Space Institute of Science

Introduction - Science questions

Atmospheric model

- Liquid water, the most fundamental aspect necessity for life as we know it, is not only possible at the planetary surface, but also in the atmosphere in form of clouds
- Theoretical concept of aerial biospheres
- In order for life to form and sustain the presence of nutrients (CHNOPS) and metals are needed
- ► Do atmospheres of rocky worlds allow for the presence of CHNOS?
- ► If so, in what chemical state are they?
- Bottom to top atmosphere coupled to a crust- atmosphere layer in chemical phase equilibrium (Herbort et al., 2022)
- Based on GGchem (Woitke et al., 2018)
- Crust-atmosphere equilibrium (Herbort et al., 2020)
- Assuming a hydrostatic, polytropic atmosphere
- \triangleright All atmospheres presented reach T = 300 K at $p_{\rm gas} = 1$ bar
- Equilibrium chemistry with equilibrium condensation in every atmospheric layer *i* $\epsilon_0^i = \epsilon_{\rm gas}' + \epsilon_{\rm cond}'$

Defining nutrient availability

The number of nutrients present in the atmosphere at a given point defines the nutrient availability level

Nutrient availability	$H_2O[I]$	С	Ν	S	Ρ
Not habitable	×	-	-	-	_
Level 0	V	×	×	X	×
Level 1C	~	~	×	X	-
Level 1N	~	X	~	×	-
Level 1S	~	X	×	~	-
Level 2CN	V	~	~	×	-
Level 2CS	~	V	×	~	-
Level 2SN	~	X	~	~	-
Level 3	V	~	V	~	-
Level 3red	V	red	red	red	-
Level 3ox	V	OX	OX	OX	-
Ρ	V	-	-	-	V

- \triangleright Every thermally stable condensate ϵ_{cond} is removed from the atmosphere, so that no molecule is supersaturated throughout the atmosphere
- Gas phase of one layer becomes the total element abundance of the layer above $\epsilon_{gas}^i = \epsilon_0^{i+1}$

$\epsilon_{\rm cond}(0)$ Crust -> crust

i = 0

Figure: Schematic diagram of the atmospheric model. Thermally stable condensates are removed from the atmosphere.

Investigating one atmospheric model

Figure: Left panel: Gas-phase composition of the model atmosphere with the indicated habitability levels at the top. **Right panel:** Thermally stable cloud condensates in the model atmosphere.

- $T_{
 m surf} = 700$ K, $p_{
 m surf} = 70$ bar, Continental Crust (Schaefer et al., 2012)
- \blacktriangleright overall CO₂, H₂O, N₂ dominated atmosphere
- Reduced forms of C N S present at water cloud base!
- ► lack of N at lower pressures, caused by NH₄Cl condensation
- ► HCI and HF concentrations $> 10^{-4}$

I element is present in a molecule at concentration levels above 10^{-9} in the gas phase X: no molecules carrying this element are present at concentrations $> 10^{-9}$ '-': element does not matter for the definition of the respective level 'red': reduced form present 'ox': oxidised form present

Conclusion

Nutrient availability:

Reduced forms of C N S present in most

Changing surface compositions and temperature range

Figure: Nutrient availability levels for different total element abundances, varying surface temperatures.

Bulk Silicate Earth (Schaefer et al., 2012)

- ► No water at the surface
- ► H₂O clouds in reduced environment

Level 3red surface Temperature [K]

- Reduced C N S common at water cloud base
- General lack of bioavaiable N at lower pressures, Level 2CS
- \triangleright N₂ not present in case of high surf temp of MORB compositions.

Mid Oceanic Ridge Basalt (Arevalo & McDonough, 2010) \blacktriangleright High T_{surf} without any N₂ in

Carbonaceous (CI) chondrite (Lodders et al., 2009) Liquid water at the surface

atmospheres at water cloud base

Lack of P and metals

Updraft from surface or delivery necessary

Implications for aerial biospheres:

- Most fundamental nutrients present with thermally stable liquid water clouds
- ► HF and HCl only other non-CHNOS species

Carbon

- \blacktriangleright Mostly in CO₂, CH₄ Nitrogen
- ► NH₃ dominant
- \blacktriangleright Is N₂ available for prebiotic chemistry?

Sulphur

 \blacktriangleright present as H₂S and SO₂

0.0

0.5

1.0

MORB

400

- \blacktriangleright H₂S also in CO₂ dominated environments Phosphorus
- Not present in the atmosphere, bound in condensates
- Limitation for biosphere?

Metals

- Not present in the atmosphere at habitable temperatures, delivery needed Halides
- Prominent in many atm.
- Causes acidic environment

References

Arevalo, R. & McDonough, W. F. 2010, Chemical Geology, 271, 70 Herbort, O., Woitke, P., Helling, C., & Zerkle, A. 2020, A&A, 636 Herbort, O., Woitke, P., Helling, C., & Zerkle, A. L. 2022, A&A, 658, A180

Lodders, K., Palme, H., & Gail, H. P. 2009, Landolt Börnstein, 4B, 712 Schaefer, L., Lodders, K., & Fegley, B. 2012, Astrophys. J., 755, 41 Woitke, P., Helling, C., Hunter, G., et al. 2018, A&A, 614, A1

oliver.herbort@univie.ac.at Contact: