Formation of habitable planets by pebble accretion

Anders Johansen

GLOBE Institute, StarPlan section, University of Copenhagen Lund Observatory, Lund University

CELS Welcome Meeting, September 2021

Protoplanetary discs around young stars

(DSHARP survey: Andrews et al., 2018)

- Planets form in protoplanetary discs of gas and dust
- Protoplanetary discs reveal themselves from the thermal emission from cold pebbles of millimeter sizes
- ► Typical sizes of 100 astronomical units
- ► Contain 99% gas (transparent) and 1% dust and ice (opaque)
- ► Typical disc masses between 1% and 10% of the mass of the central star

Planet formation is a race against time

- The gas and dust in protoplanetary discs is accreted onto the star
- Discs around very young stars contain several 100 Earth masses of dust
- lacktriangle Dust mass falls to ${\sim}10~M_{
 m E}$ after a few million years
- ▶ Protoplanetary discs typically live for 2-3 million years
- Dust must grow rapidly before the disc is emptied onto the star

Planetesimal accretion and pebble accretion

(Johansen & Lambrechts, Annual Reviews, 2017)

SOURCE: M. LAMBRECHTS & A. JOHANSEN

- Planet growth by planetesimal accretion is very inefficient (Johansen & Bitsch, 2019)
- Most planetesimals are scattered by a growing protoplanet, yielding very long growth time-scales (Tanaka & Ida, 1999)
- Pebbles are accreted much faster due to energy dissipation by gas friction (Johansen & Lacerda, 2010; Ormel & Klahr, 2010; Lambrechts & Johansen, 2012)
- Planetary growth by pebble accretion outperforms migration (Bitsch et al., 2015; Johansen et al., 2019)

L. MODICA / KNOWABLE

The formation of super-Earths and terrestrial planets

- rate of approximately 100 $M_{\rm E}$ per Myr
- A nominal pebble flux leads to Mars-mass embryos, colliding over 100 Myr to form terrestrial planets as in the classical model (Izidoro et al., 2015)
- A high pebble flux leads to the formation of super-Earth systems
- ⇒ The formation of super-Earths and terrestrial planets are connected processes
 - ▶ Planetary instability breaks the resonant chains (Izidoro et al., 2017)

Terrestrial planet formation with pebble accretion

- ► The orbits and masses of Venus, Earth and Mars can be matched by forming a planetesimal belt at 1.6 AU and growing the planets by pebble accretion (Johansen et al., 2021)
- ► We also match the isotopic composition of the Earth with this model (Schiller et al., 2018; 2020)
- ► We must form an additional planet Theia that collides with Earth later to form the Moon
- Pebble accretion can explain why the Earth and the Moon have similar isotopic compositions

Volatile delivery by "pebble snow"

- Volatiles such as C and H₂O can be delivered to terrestrial planets by "pebble snow" (Ida et al., 2019)
- ► The water ice line the solar protoplanetary disc was likely interior of 0.7 AU during most of the disc life-time (Morbidelli et al., 2016; Flock et al., 2017)
- ▶ The envelope ice line sits beyond the radiative-convective boundary (Lambrechts & Lega, 2017; Popovas et al., 2019) and water vapour is transported back to the protoplanetary disc after the planet reaches $\sim 0.01 M_{\rm E}$
- Carbon in organics are sublimated and pyrolyzed between 325 and 425 K, while graphite burns at 1,100 K (Gail & Trieloff, 2017)
- ▶ Pebble accretion gives a good match to H₂O and C of Earth (Marty et al., 2012)

Differentiation and magma ocean

- Results of ADAP interior structure code (Johansen et al., submitted)
- Accretion heat leads to a run-away greenhouse effect that heats the surface to form a magma ocean (Matsui & Abe, 1986)
- The planet differentiates from the surface and down, with the energy released by the falling metal contributing to the heating
- Results in a fully molten mantle magma ocean
- ▶ The planet settles with a CO₂ greenhouse atmosphere after accretion

The outgassed atmosphere

- ► The composition of the outgassed atmosphere depends on the oxygen fugacity of the magma ocean (Ortenzi et al., 2020)
- ► The canonical oxygen fugacity yields a strongly reduced atmosphere that experiences significant mass loss by XUV from the young Sun
- More massive planets experience mantle oxidation at high pressures, this leads to outgassing of an oxidized atmosphere (Armstrong et al., 2019)

Dependence on partition coefficients

- ► The partitioning of water and carbon between mantle and core is a key process that determines the atmospheric composition
- ▶ Partition coefficient varies with pressure and temperature (Fischer et al., 2020)
- lacktriangle We get good agreement with Earth and Mars water for $D_{
 m wat}\sim 5$
- lacktriangle We get good agreement with Earth and Venus atm+mantle for $D_{
 m C}\sim 300$
- Pebble snow model gives predictable amount of volatiles delivered to terrestrial planets, but mantle oxidation state, core-mantle partitioning and atmospheric loss lead to (predictable) diversity in volatile budgets

Prebiotic chemistry and the origin of life

What was the origin of organic molecules on Earth?

- The magma ocean phase must have destroyed all organic molecules delivered before the moon-forming giant impact
- \bullet The young Earth likely held 100 bar of CO_2 atmosphere (like Venus) that would allow meteorites to land unharmed
- Carbonaceous chondrite meteorites contain nucleobases, amino acids, sugars and peptides that assembled in their warm and wet interiors
- Did life take its first steps towards molecular complexity inside of planetesimals whose fragments fell on the young Earth?

Was the early atmosphere oxidized or reduced?

- A reduced atmosphere consists mainly of H₂ and CO and allows assembly of complex organic molecules through Urey-Miller processes
- An oxidized atmosphere has significant H₂O and CO₂ that attack and oxidize organic molecules
- · Life could then originate at hydrothermal vents at the ocean floor
- Alternatively, wet-dry cycles in warm little ponds at the surface could lead to increasing molecular complexity

Is life common in our galaxy?

- Life established itself on Earth over 4 billion years ago (Rosing, 1999)
- James Webb Space Telescope (to be launched October 2021) and the Extremely Large Telescope (planned first light 2025) will characterize the atmospheres of nearby potentially habitable planets
- Possible to search for biosignatures such as O₂ and CH₄ and measure day/night albedo cycles to map continent and ocean coverage