Reduced-dimensional vibrational models of the water dimer
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A novel model based on the finite-basis representation (FBR) of a vibrational Hamiltonian expressed in in-
ternal coordinates, is developed. The model relies on a many-mode, low-order expansion of both the kinetic
energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to
control the size of the vibrational basis, to facilitate accurate computations of the OH stretch and HOH bend
intramolecular transitions of the water dimer, (H,'®0)s. Advantages and potential pitfalls of the applied
approximations are highlighted. The importance of choices related to the treatment of the kinetic energy
operator in reduced-dimensional calculations, as well as the accuracy of different water dimer PESs, are dis-
cussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber
shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes.
With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated,
predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also
predict accurate intramolecular transition wavenumbers for water dimer by combining a set of computationally
inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.

I. INTRODUCTION symmetry, if the possibility to break the four covalent OH
bonds is ignored. The eight versions, corresponding to

For more than half a century, vibrational spec- different numbering of the identical nuclei, can be inter-

troscopy of the water dimer, (Ho20O)2, has been of interest
from both experimentall™® 11029 aspects.
In the dimer, the HoO monomers are held together by an
OH- - - O hydrogen bond, considered to be the archetype
of hydrogen bonds.?’ Within the many-body-expansion

converted by so-called “tunneling” rearrangements, defin-
ing “donor-tunneling”, “acceptor-tunneling”, and “donor-
acceptor interchange” paths.3? The low-energy vibration-
rotation-tunneling (VRT) states of the water dimer are
sensitive to minor changes in the PES; thus, they pro-

vide important checks for modeling efforts.'? The bench-

and theoretica

approach, the interaction of the two water monomers pro- K of ted Tine list st . tallv ob
vide the leading contribution to potential energy surfaces fuatk of Compuied HRe HUSLs agaish expertientatly ob-

(PES) of larger water clusters.1529 served transition Wav.enumbers provides another accurate
measure of the quality of the PES. As a result, there

Similar to other weakly-bound complexes, under-  are several studies!22° which have been designed to ob-
standing the low-energy states of the water dimer is  gerve and assign VRT states. Due to its importance and
complicated by large-amplitude motions and, in partic- it complex nuclear dynamics, different theoretical and
ular, by complicated splitting patterns caused by low-  computational approaches, including variational(-type)

energy barriers hindering these motions. Developing nuclear-dynamics computations, have been tested for wa-
the ability to compute these observable splittings has ter dimer. The HBB,'® HBB2,!7:'® WHBB,!® MB-pol,2°
been an important goal of theoretical and computational and CCpol-8sf19:23 PESs are examples of water-dimer po-
spectroscopy.'#2731:32 For water dimer, there are eight tentials that allow for displacements along all 12 vibra-
versions® of its equilibrium structure, of C; point-group  tjonal degrees of freedom (DoF). Accurate VRT levels

have been computed with each of these PESs.

Computation of VRT states is reported in Ref. 19,
2) Corresponding author. based on the CCpol-8sf PES (which was renamed
hgk@chem ku.dk to CCpol-8sfIR[2012] in Ref. 23). The authors of



Ref. 19 used a (6+6)-dimensional (6D+6D) adiabatic ap-
proach, in which the six high-energy (small-amplitude)
intramolecular DoFs were separated from the six low-
energy (large-amplitude) intermolecular DoFs. For the
water dimer, and for its fully deuterated analogue, this
adiabatic approach resulted in accurate VRT energy
levels.'® At the same time, relatively large discrepancies
from experiment were observed for the high-energy in-
tramolecular transitions. The source of these discrep-
ancies was not determined. More recently, numerically
exact 12-dimensional (12D) calculations of the VRT lev-
els, also based on the CCpol-8sf PES, were performed up
to the region of the HOH bend states.?” The (6D+6D)
and 12D results were in excellent agreement with each
other and with experiments for the low-lying intermolec-
ular energy levels, confirming that the adiabatic approx-
imation is excellent in the low-energy region. 2" How-
ever, large differences (up to 11 cm™!) between the 12D
and (6D+6D) calculations were obtained for the bend-
ing fundamentals, implying a breakdown of the adiabatic
approximation for the intramolecular transitions. Due to
the rapidly increasing density of states, the 12D calcu-
lations could not be extended to the region of the OH-
stretch fundamentals.?”

Here, the focus is not on the low-energy VRT states
but rather on a related problem, the modeling of OH
stretch and HOH bend intramolecular vibrational tran-
The formation of the hy-
drogen bond redshifts and increases the intensity of
the bound OH stretch, OHj;, fundamental transition.
These hydrogen bond characteristics were captured in
the early anharmonic local mode effective Hamiltonian
calculations. 33334 Later, the inclusion of intermolecular

sitions of the water dimer.

low-energy modes that partially break the hydrogen bond
were found to affect the size of the redshift.??243% As a
consequence, to calculate accurate intramolecular tran-
sitions with an effective Hamiltonian, one needs a good
description of both the intramolecular and intermolecu-
lar modes, as well as the coupling between the two sets of
modes. However, it is not obvious which type of approxi-
mations are suitable to calculate accurate intramolecular
transitions from an effective Hamiltonian.

To address this question, we have developed a novel,
flexible finite-basis representation (FBR) model based on
a many-mode expansion of both the PES and the G ma-
trix elements in the vibrational kinetic energy operator
in internal coordinates. The model and the associated
code is termed VibMEMIC, in reference to its main char-
acteristics: Vibrational Many-mode Expansion Model

in Internal Coordinates. With VibMEMIC, we per-

form a set of reduced-dimensional calculations to in-
vestigate the transition wavenumber shifts caused by
the interaction between the intramolecular and inter-
Results are presented both for Vib-
MEMIC, as well as from computations performed with a
discrete-variable-representation-based model, GENITUSH
(GENIUSH stands for General code with Numerical,
Internal-coordinate, User-Specified Hamiltonians),3638
in which neither the PES nor the kinetic energy op-
erator are approximated. We used a newly calculated
CCSD(T)-F12a/cc-pVTZ-F12 PES, abbreviated as F12,
with VibMEMIC, and the CCpol-8sfIR!%:23 and the MB-
pol?? surfaces with GENIUSH. We discuss the degree to
which the transition wavenumber shifts caused by each

molecular modes.

of the low-energy intermolecular modes are additive. In
addition, we provide accurate intramolecular transition
wavenumbers from full-dimensional 12D computations
performed with VibMEMIC. We show that not only do
the reduced-dimensional calculations provide physical in-
sight into the transition wavenumber shifts, they can also
predict the intramolecular transitions rather accurately.

Il. VIBMEMIC

The VibMEMIC model was developed for the purpose
of calculating accurate stretch and bend intramolecular
transitions for hydrogen bound complexes. Most previ-
ous vibrational models focus either on the low-energy in-
termolecular modes or on the high-energy intramolecular
modes. In earlier work, the coupling between the two sets
of modes have typically been approximated or neglected.
Models based on an adiabatic separation of the two sets of
modes have proven useful for describing the affect of the
intramolecular modes on the intermolecular transitions,
however, this separation has been shown to work less
well for the intramolecular transitions.!?2” Models built
on effective Hamiltonians can yield accurate intramolecu-
lar transitions for hydrogen bound complexes, but often
these types of models rely to some extend on cancella-
tion of error. Their accuracy depends on both the type
of transitions and on the validity of the introduced ap-
proximation for the specific complex in question.??24 The
VibMEMIC model may be viewed as an extension of the
effective Hamiltonian approaches to include a more accu-
rate description of the low-energy intermolecular modes
and their coupling with the high-energy intramolecular
mode. Alternatively, it can be viewed as a reduction of
the exact or near-exact models, typically used for the
intermolecular modes, to facilitate calculations includ-



ing more vibrational modes. In Section IT A, the gen-
eral framework for constructing the Hamiltonian in the
VibMEMIC model is introduced. In Sections IIB-ITE,
we describe the employed coordinate system for water
dimer, general symmetry aspect of water dimer and how
symmetry is utilized, how the basis is truncated, and the
employed notation for the intramolecular transitions, re-
spectively.

A. The Hamiltonian

The current version of VibMEMIC can solve only the
vibrational Schrédinger equation, i.e., rotations are not
treated. The M-dimensional vibrational Hamiltonian is
expressed in the form derived by Podolsky:3°

M
~ 1 o . _ o
=3 %:g ViplGig' gt 4V, (1)

where M is the number of vibrational modes (M < 3N —
6(5), and N is the number of atoms in the molecule),
Di = _iha%iv with ¢; being the i’th coordinate, and g =
det(g). The 3N x 3N-dimensional g and G matrices
(covariant and contravariant metric tensor, respectively)

can be expressed as?®
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where the sum is over all Cartesian coordinates of the
atoms of the molecule, m,, denotes the associated masses,
the ¢; coordinates include all vibrational, rotational,
and translational coordinates, J is the Jacobian matrix
(Jia = %%), and M,3 = mq04s is the mass matrix. The
matrix G is obtained by inverting g, with elements of the
Jacobian calculated using the finite-difference method.
The Jacobian is of size 3N x 3N, and a full internal-
coordinate definition, including the three rotational and
three translational coordinates, is therefore required even
for the reduced-dimensional vibrational models. The vol-
ume element of integration is dr = dq1dge...dgn (Wil-
son’s normalization), for which the p; operator is Hermi-
tian. We use § = J2M [Eq. (2)], and write the Podolsky

form of the Hamiltonian as

M

: 1Z~_ oy e g

H:§ - J 1/2pZGiijjJ 1/2+V (4)
J

In reduced dimmentional models where M < 3N — 6,
there are constrained vibrational coordinates. These con-
straints can be taken into account by either deleting the
corresponding rows and columns of g and then inverting
it to obtain G, or by inverting the full g matrix and delet-
ing the corresponding rows and columns of G. The vibra-
tional basis functions in VibMEMIC are defined as prod-
These
1D Hamiltonians describe each mode as being decoupled

ucts of eigenfunctions of 1D Hamiltonians (k).

from the remaining vibrational modes,

1 - .
hi = 5725l Gaadpi T V2 4 Vi q),  (5)

where G;; is evaluated at the reference value of all other
vibrational coordinates and Vi(lD)(qi) is the PES along
the ¢th mode from the reference geometry. In Egs. (4)
and (5), the rotational and translational part of the de-
terminant of the Jacobian can be excluded as the p;
(and p;) operator only operates on the vibrational co-
ordinates. The vibrational part of the absolute value
of the determinant of the Jacobian can be expressed as
| Jein] = [Tnzy 72 [T, % sin(6;), where r is a bond length

and 6 is an azimuthal-type angle (0 < 0 < ).4!

The Jacobian does not depend on the dihedral angles
(0 < ¢ < 2m), and the 1D Hamiltonian for a dihedral
coordinate is simply

N 1. R
hi = 5p1Giapi + VP (@), (6)

where we use a basis set of sine and cosine functions

({x(g:)} = {(2m) =12, 7= /2 cos(qi - n), 7 /?sin(g; - n)},
withn = 1,2,...), and define the derivatives of these func-
— 9xu(ai)

tions with respect to the coordinate as x;j(g;) = =5,

For an azimuthal angle, the 1D Hamiltonian is
- 1
hi = 5 sin™/?()p} G sin(gi)pi sin ™/ (a0) + Vi (a)
(7)

where we use a basis set of associated Legendre polyno-
mials (P/"(z) with m = 0), parameterized in terms of
z = cos(g;). Matrix elements of this Hamiltonian are
now expressed as

—RZ [T
O / o) Gy (ao)das

+ /Tr Xk(Qi)Vi(lD)(Qi)Xl(Qi)in (8)
0

where x;(g:) = N;sin'/2(g;) P? (cos(q:)), with the normal-



ization constant N; = (l + %)1/2, and we define

0 COS\ q;
Xi(a:) = Nysin'/ Q(qz-)w 9)
N, -1 0 0
() [cos(qi) - P (cos(ai)) — Py (cos(qi)] -

Note that for azimuthal angles the xj(¢;) functions are
not the derivative of the x;(g;) functions with respect to
the coordinate as they were defined for dihedral angles.
However, the x;(g;) functions are chosen to satisfy Eq. 8
in both cases. The associated Legendre polynomials are
orthogonal with respect to the volume element of integra-
tion, dr = sin(g;)dg;; thus, making the x;(¢;) functions
orthonormal with respect to the volume element of inte-
gration, dr = dg;

/; Xk (a:)xi(qi)dg; (10)

= NkNl/ P (cos(q;)) P (cos(g;)) sin(g;)dg; = S
0

Associated Legendre polynomials with m = 0
are also used to solve the 1D Schrédinger equa-
tion for the stretches, analogous to what have just

been shown for azimuthal angles, but with ¢ —

s

(¢ — min(¢:)) mariay Smme -

For stretches and bends,
quadrature, and for dihedrals, we use Clenshaw—Curtis
quadrature, both with a total of 101 points. In Table S1,
we show the displacement ranges used for each internal
coordinate. We store the 1D eigenfunctions;

1/’1) (qz) = Z Cul X1 (QZ)

l

we use Gauss—Legendre

(11)

where ¢,; is the ['th coefficient of the v’th eigenfunc-
tions obtained from diagonalizing the 1D Hamiltonian,
and also the functions;

z) - Z Cle;(Qi)
l

Evaluating elements of the M-dimensional kinetic energy

(12)

operator with the v/ (g;) functions has the advantage
of removing the J terms in the Podolsky Hamiltonian.
For example, one kinetic energy matrix element between
states that depend on both an azimuthal angle (¢;) and
a dihedral angle (g;) is:

/ / o (@) Vu(q5)Ti500 (¢i) 0w (q5)dgidg;
(13)

_h2 a F
/ / qz {lpu (QJ) ijwv’ (Qz)w;’ (Qj)inde

4

where T;; = %j—1/2 TG Jp J=1/2 and @™in and gmex
are the minimal and maximal values of the ¢; coordi-
nate. Equation (13) can be verified from the definitions
of ¥ (¢:), x;(g;) and Juib, all of which have known ana-
lytical expressions.

To evaluate integrals needed to solve the M-
dimensional Schrédinger equation, both the elements of
the G matrix and the PES are represented with a many-
mode expansion, truncated at third order.

V(C]1aQ2>~-~7QM) = V(qief7q5efa' 7q§\?lf) (14)
+ZV1D i) +Z P(gi,q5) Z (i a5 k)

1<j i<j<k

with

‘/ilD(qi) = V(q{Efa qéefa ey iy - QRZf) V(q{Efv qEEfa ceey q}f@f)

(15)
and
ViP(ai,45) = V(@™ &5 o @iy s ajoahf)  (16)
V(@™ a5 dhy) = Vit (a) = VP ()
and likewise  for V{j]l? (gi, 95, qx), ie., with

V(g ¢t ..., ¢5f), the 1D and the 2D surfaces in-
volving the i’th, j’th, and k’th mode subtracted from
the 3D cut of the full PES from the reference geometry.

In this work, a new CCSD(T)-Fl12a/cc-pVTZ-
F124243 (abbreviated as F12) PES was calculated with
the Molpro2020 program.** The CCSD(T)-F12a/cc-
pVTZ-F12 calculations were performed with the recom-
mended correlation factor of g =
approximation, and default convergence criteria.*?43 For
the 1D, 2D, and 3D PES cuts, we use the displacement
range given in Table S1, with a step size of 5°/0.05

10°/0.10 A, and 15°/0.15 A, respectively. The PES
was subsequently evaluated at the respective quadrature

1.0, the frozen core

points using cubic spline interpolation to reduce the num-
ber of single points CCSD(T)-F12a/cc-pVTZ-F12 calcu-
lations. In contrast, the G matrix elements were not
interpolated, but calculated directly at each quadrature

point.

B. Coordinates

The structure of the water dimer can be described by
12 curvilinear internal coordinates; chosen to be ry, 73,
ta, r3, T4, ta, R, 0, ¢, a, B, and . The intramolecular
coordinates, {ry, ro, t.} and {rs, r4, tq} are the bond



FIG. 1. Definition of the intermolecular internal coordinates
of the water dimer and the numbering of the atoms of the two
HQO units.

lengths () and the bond angles (¢) of the acceptor and
donor units, respectively. As seen in Fig. 1, R is the dis-
tance between the center of masses (CoMs) of the two
units. The intermolecular angles: ¢ and - describe the
rotation of the acceptor and donor around the bisector of
their bond angles, respectively, and # and 8 denote the
angle between these bisectors and the CoM—CoM axis,
respectively. The angle a describes the rotation of the
two H2O units relative to each other along the CoM-
CoM axis. In Section S2 A of the Supplementary Infor-
mation (SI), we provide instructions on how Cartesian
coordinates are obtained from the internal coordinates.
The values of the internal coordinates corresponding to
the equilibrium structure for the different PES are shown
in Table S7. Since the CoM-CoM distance depends on
the masses of the atoms, we note here that the masses
mypy = 1.007825 u and mo = 15.994915 u have been
used.

C. Symmetry aspects

Molecular symmetry (MS) groups®? can be em-
ployed to describe the true (observable)
try of vibrational-rotational-tunneling (VRT) states of
molecules. The MS group includes feasible permuta-
tions of identical nuclei and the inversion operator. The
MS group of the water dimer is G4 (isomorphic to the
Dy (M) group), which includes permutation of the hy-

symme-

drogens within the monomers, permutation of the donor
and acceptor, and the inversion operation.??4% In Ta-
ble I, we show the effect of the generators of G4, and
its subgroup Gg (where the permutation of the donor
and acceptor units is excluded), on the internal coordi-
nates. Applying the operators of G4 results in 16 differ-
ent numbering of the nuclei of the water dimer. However,
since the equilibrium structure has C point-group sym-
metry (see Fig. 1), there are only eight distinct versions of

TABLE I. Action of the generators® of the molecular symme-
try groups Gs and G16 on the internal coordinates. See Fig. 1
for the definition of the coordinates.

GlG
Gs

E (12) (34) E* Paa
B B B B m—0
6 6 0 0 w-—p
¢ o+m ¢ 2m—¢ v+
- (0% « —Q [0}

Y oy yt+w2r—y ¢+
ST ] T1 T1 T3
T2 T1 T2 r2 T4
ta ta ta ta ta
T3 T3 T4 r3 r1
T4 T4 T3 T4 r2

ta  ta tq tq ta

& The generator (12) permutes Hy and Ha, (34) permutes H3 and
H4, and Ex denotes inversion. The generator Py, =
(0102)(13)(24) permutes the donor and acceptor nuclei.

the equilibrium structure that can be interconverted into
each other. These eight versions are separated by rel-
atively small barriers; therefore, tunneling between the
different minima is pronounced, causing each vibrational
level to split into eight VRT levels. For further details
on employing symmetry for the water dimer, see Refs. 32
and 45.

As the VRT states transform according to the irre-
ducible representations of the MS group(s), it is possible
to construct the Hamiltonian matrix in a block-diagonal
form, where each block corresponds to one irreducible
representation of (a subgroup of) the MS group. This
facilitates the assignment of the computed states and im-
proves the convergence properties of the diagonalization
routine, as the almost degenerate states are treated in-
dependently.

To take advantage of permutation-inversion symme-
try, the reference structure and the coordinate choice
should be compatible with the generators of the group.
This means that the 1D eigenfunctions (or their product)
corresponding to the 1D Hamiltonian of Eq. (5) should be
eigenfunctions of the permutation-inversion operators, as
well. Based on this restriction, we use the Gy MS group>?
to construct the block-diagonal form of the Hamiltonian
matrix. For the coordinate definition used in this work,
the reference value of OH bond lengths on the donor
should be equal as should the OH bond lengths of the



acceptor. We define the reference structure of a given
PES from the optimized geometry, where the OH bond
lengths of the donor is set to the average of the two OH
bond lengths (see Table S7 for reference and optimized
structures). In this case, the 1D potential along ¢ is sym-
metric for ¢ = ¢ + 7 and ¢ — 271 — ¢, and the same is
true for v, and the 1D potential along « is symmetric
for a — 27 — . Therefore, the 1D eigenfunctions for ¢,
~ and « are eigenfunctions of the generators ((12), (34)
and E*) of Gg [see Table I|. For the chosen reference
structure, the potential energy surface in the 8 and 6 di-
rections is not symmetric around /2. Therefore, the 1D
eigenfunctions for 5 and 6 are not eigenfunctions of the
P, operator present in G1g, and primitive basis func-
tions should be used for these two coordinates in order
to utilize G16. As Py, interchanges the donor and accep-
tor units, and in addition to the constraint on the basis
functions associated with the 8 and 6 coordinates, both
OH-bond lengths and HOH-bond angles of the reference
structure should be equivalent to take advantage of G1g.
To avoid this constraint, we have opted for using the sub-
group Gy, rather than G14. Using only Gg also allows us
to use reduced-dimensional models, where the internal
coordinates of one monomer is frozen while active for the
other monomer.

The generators (12) and (34), in Table I, interchange
the OH bond lengths of the acceptor unit and of the
donor unit, respectively. The two acceptor OH stretches
are equivalent, and we chose their basis functions as the
1D eigenfunctions. The product of the acceptor basis
functions are indeed eigenfunctions of the generator (12),

if the associated quantum numbers are equivalent

(12)1/17)(7’1)%(7“2) =1y (7“2)%(7”1) =1 %(7’1)%(7“2)

(17)
The two donor OH stretches are not equivalent. However,
the basis functions for both the OH; stretch and for the
OH,, stretch are chosen as the 1D eigenfunctions of the
OHg¢ stretch. With this choice, the product of the donor
basis functions become eigenfunctions of the generator
(34), if the associated quantum numbers are equivalent.

If the quantum numbers are different (v # v’), prod-
ucts of the 1D basis functions are not eigenfunctions of
the generators:

(12)9y (r1)Ywr (12) = Yo (r2)ther (r1) # X - Py (11) 0 (12)
(18)
There are two apparent solu-
tions to this challenge, either changing the coordinates
to symmetric/asymmetric displacements of the OH bond
lengths from their equilibrium values, or using a linear

where )\ is a constant.

combination of the 1D eigenfunctions as basis functions.
We have chosen the latter strategy, resulting in basis
functions of the type:
o (r1,72) = = (0 (ra by (r2) £ o ()05 (12))
V2
(19)
for both the donor and the acceptor OH stretches. The
full (12D) basis functions thus take the following form
(with the label of the quantum numbers excluded for ease
of notation):

W (ri,r2,ta, 13,74, 0, R, 8,0, ¢, 0, y) = (20)
PY(r1,m2) Y (ta) (13, 7a) Y (ta) Y (R)Y(B) Y (0)(d) () (7).

In order to construct the block-diagonal Hamiltonian, we
determine the character of each permutation-inversion
operator for a given W(ry, 1o, ta, 13,74, ta, R, 58,0, 6, a, ),
and compare the result with the character table of Gg
to determine which irreducible representation the given
basis function belongs to.3? Then, we construct the indi-
vidual blocks of the Hamiltonian matrix from those basis
functions that transform as a given irreducible represen-
tation. Using the Gg MS group results in eight blocks,
which significantly reduces the cost of the diagonaliza-
tion.

D. Polyad truncation & energy ceiling

In VibMEMIC, two strategies are followed to limit the
size of the variational basis: a polyad number truncation
and an energy ceiling. The polyad truncation is of the

type
M
P = anvn < Pmaxa
n

where v,, is the nth quantum number, P, is a coeffi-
cient, and Pyax is the maximum polyad number. For
the three vibrations of HoO, one would typically choose
P =2, P, =1, and P; = 2, such that the stretch-bend
Fermi resonances are included in the basis, for each value
of the quantum numbers included for the OH stretches.
Defining effective polyad truncations is crucial in terms
of reducing the computational cost of FBR calculations.
The maximum polyad number controls the size of the
Hamiltonian, but not the relative size of its blocks. For
a given value of P.y, blocks with basis functions that
transform as different irreducible representations can be
of different size. The states associated with the largest
block will be better converged compared to states as-
sociated with smaller blocks. The vibrational tunneling



states of water dimer transform as different irreducible
representations. An inappropriate value of Py, can in-
troduce errors in the calculated tunneling splittings, if
the magnitude of the tunneling splittings are comparable
to the convergence of the energy levels. Hence, we use a
polyad truncation for the ¢ and v modes, to ensure that
the different blocks in the Hamiltonian are of similar size.

Setting an energy ceiling is another way to control
the size of the basis (Fy,v,. .0
the E’U1’U2...1}M
ceiling is typically based on a sum of the 1D energy

. ~ M 1D approximate
1evelb (EU1U2...UM ~ Zn Eun - Evlvg...vM S EIH&X)'

v < FEhmax). However, as

energy levels are not known a priori, the

Again, care must be taken with respect to resolving tun-
neling splittings that are comparable to the convergence
of the energy levels as E,.x also controls the total size of
the Hamiltonian, but not the relative size of its blocks.
In VibMEMIC both the maximum polyad number and
the energy ceiling are chosen to best address the spe-
cific problem, and only basis functions that satisfy both
truncations are included. In computations with both in-
tramolecular (high-frequency) and intermolecular (low-
frequency) modes, polyad truncations and energy ceilings
are defined for each set of modes (see Section S1).

E. Notation of transitions

In Section IV, we present intramolecular transitions
calculated with different vibrational models. We only
give the final state of the transitions as all arise from the
ground state. The final state for the intramolecular ac-
ceptor transitions are denoted: |v;v;)+|vg), where v; and
v; refer to the OH stretch quanta and vy refers to the
HOH bend quanta. The two OH stretches of the donor
are not equivalent and the final states for the intramolec-
ular donor transitions are denoted: |v,,)¢|vn)b|vi), where
U, and vy, refer to the free (f) and bound (b) OH stretch
quanta, respectively, while v; refers to the HOH bend
quanta.

I1l. FBR VS. DVR

The so-called fourth-age*® variational nuclear-motion
code GENIUSH,363® based on the discrete variable
representation (DVR) of the Hamiltonian,*" 52 was
employed extensively to benchmark the FBR based
VibMEMIC code. The acronym GENIUSH stands

for General code with Numerical, Internal-coordinate,

User-Specified Hamiltonians. GENIUSH can be used
to solve the time-independent nuclear Schrédinger equa-
tion and obtain rovibrational eigenenergies for systems
which exhibit several interacting minima. Furthermore,
the code allows the straightforward setup of reduced-
dimensional models in arbitrary curvilinear internal coor-
dinates. In GENIUSH, both the kinetic and the potential
energy operators are treated “exactly”, that is, no approx-
imations are introduced. The latest version®® of the GE-
NIUSH code is capable of treating block-diagonal Hamil-
tonian matrices, formed according to the irreducible rep-
resentations of the MS group3? of the molecule, or at
least a subgroup of it.

Although GENIUSH is able to treat rotations,” here
we only discuss vibrations, for which the Hamiltonian is
given in Eq. (1). The basis is the direct product of one-
dimensional primitive DVR functions corresponding to
each internal coordinate:

M
1/}n1,n2..,nM (Q17 7qM) = H Xny, (qk)a (21)
k=1

where xn, (gx) is the ng’th DVR basis function corre-
sponding to the gi coordinate. If N?, N9,...N?, primi-
tive DVR functions are used for the first, second, ..., and
Mth coordinate, the size of the full direct-product basis

is Ntot = ;szl N?. The Nt x N**-dimensional matrix
of the potential energy becomes diagonal in this basis:
M
Wn17~-»nwf),("§»--7"§w) =V(qin1s - qMnar) H 5nk,n§€»
k=1

(22)
where gy, p,, is the nyth DVR quadrature (grid) point cor-
responding to the kth coordinate. The representation
of the kinetic energy operator is also an Nt x Ntot
dimensional matrix. Therefore, the elements of G as well
as g are evaluated at all the grid points and the matri-
ces of the differential operators are also constructed in
DVR. The resulting N**t x N*°t_dimensional vibrational
The re-
quired eigenvalues are computed using an iterative Lanc-
zos eigensolver.’® Table S11 specifies the DVR vibra-
tional basis used in the computations.

To test the accuracy of the FBR based VibMEMIC
model, we have performed a set of reduced-dimensional
computations with both VibMEMIC and GENIUSH. In
Section S3, we show several examples, illustrating that
the 1D, 2D, and 3D results with VibMEMIC and GE-
NIUSH generally agree to within < 0.2 cm~!.

Hamiltonian matrix is symmetric and sparse.

The water dimer has eight equivalent versions of its
equilibrium structure. These version are sampled, for



TABLE II. Fundamental intramolecular transitions (o), in
ecm ™!, of the donor (D) and acceptor (A) unit in water dimer
separated by 20 A. The results are obtained with a 3D vibra-
tional model utilizing the MB-pol potential?® and the DVR-
based code GENIUSH.

Final state Reduction in g Reduction in G

vD) @A) oD)  p(A)
0)[0)|1)  1586.8 1590.6 1594.4 1594.4
110)4]0)  3656.1 3656.1 3656.1 3656.1
|10)_|0)  3741.8 3748.6 3755.0 3755.0

example, in 5D calculations with 3, 8, ¢, o, and . How-
ever, these eight versions are not equivalent within the
many-mode expansion of the PES truncated at third or-
der, which is the approximation utilized in VibMEMIC.
As a consequence, the energy levels computed with Vib-
MEMIC appear as two sets of four states, rather than one
set of eight states (see Table S3). This symmetry break-
ing for the many-mode expansion also leads to small non-
zero elements in the Hamiltonian connecting the different
blocks. We set these small non-zero elements to zero in
VibMEMIC, to preserve the block-diagonal structure of
the Hamiltonian. From our reduced-dimensional compu-
tations we estimate that the difference between enforcing
or neglecting this symmetry leads to differences in the in-

tramolecular fundamentals of no more than 0.2 cm~1.

Both the new FBR-based VibMEMIC code and the
DVR-based GENIUSH code have advantages and limi-
tations and are optimal for slightly different situations.
The size of the Hamiltonian matrix is much smaller in
the FBR-based VibMEMIC code than in the DVR-based
GENIUSH code, which allows inclusion of more vibra-
tional modes. Furthermore, the efficient truncation of
the basis, by the polyad numbers and by the energy ceil-
ings, also helps limit the size of the Hamiltonian matrix
within VibMEMIC. Thus, compared to GENIUSH, the
diagonalization part of the computation is significantly
faster with VibMEMIC.

IV. RESULTS & DISCUSSION

A. The Kinetic Energy in Reduced Dimensions

In reduced-dimensional (ro)vibrational models with
M active coordinates, the remaining 3N — M coordinates
are inactive (constrained), and an effective Hamiltonian
that incorporates these constraints must be constructed.

The constraints can either be taken into account by re-
moving the rows and columns involving the constrained
coordinates in G, or by removing the corresponding rows
and columns in g. The latter option results in a con-
strained G after inversion of g [see Eqs. (2) and (3)].
If the coordinates are orthogonal, the two approaches
are equivalent. However, if the coordinates are not or-
thogonal, the two approaches give rise to different effec-
tive Hamiltonians and, consequently, different results. In
classical mechanics, constraining the coordinates corre-
sponds to dg;/dt = 0, where i is an index of an inactive
mode. The G matrix obtained from this type of con-
straints corresponds to removing columns and rows in g.
In comparison, the reduction in G is equivalent to setting
pi=0.

In Table II, we present reduced-dimensional (3D) cal-
culations of the fundamental intramolecular transitions
of the two water units in water dimer, where the two
monomers have been separated by 20 A (R = 20 A).
Since the two monomer units are separated by 20 A, we
expect the fundamentals of the donor and the acceptor to
be identical. This is indeed the case when G is reduced.
However, the calculated intramolecular transitions pre-
sented in Table II clearly depend on whether the con-
straints are introduced in g or G. When g is reduced,
the intramolecular fundamentals of the two units differ
significantly for the bend and the antisymmetric stretch.
If G is reduced, then the resulting G matrix is the same
as that of the free water molecule (see Section S2B). In
the 3D computations for the donor or acceptor units, the
G matrix does not depend on the R, and the 3D kinetic
energy operator is the same if R is fixed to its equilibrium
value or 20 A. As shown in Table II, for this particular
constrained model, reduction in g results in an erroneous
description of the intramolecular transitions of the two
H5O units as clearly illustrated in the dissociation limit.
Therefore, we employ the reduction in G for the rest of
the paper.

B. Choice of the intermolecular distance coordinate (0-O
vs. CoM-CoM)

For weakly-bound dimers, the coordinates associated
with the intermolecular modes are typically defined as
five Euler angles and one distance, describing the rela-
tive orientation and distance between the donor and ac-
ceptor units, respectively. The donor-acceptor distance
coordinate is typically defined from the CoMs of the two
units, for which an analytical expression for the kinetic



energy operator has been derived.®* In both GENIUSH
and VibMEMIC, the kinetic energy operator is repre-
sented numerically, which facilitates the exploration of
alternative coordinate definitions. One alternative inter-
molecular distance coordinate in the case of the water
dimer is the O-O distance, which is often the distance
coordinate of choice if one defines the coordinates from
a Z matrix. The CoM-CoM definition is general for bi-
molecular complexes, but unlike the O—O definition, it is
not isotopically invariant.

In terms of calculating the intramolecular fundamen-
tals accurately, we define the optimal coordinate as the
one which has the least impact on these transitions; thus,
likely requiring fewer basis functions to converge the in-
In Table III, we show the
wavenumber shift of the intramolecular fundamentals cal-
culated from a (3+1)D and a 3D calculation of the donor
and acceptor intramolecular modes. The 3D in (3+1)D
represents the donor or acceptor intermolecular modes

tramolecular fundamentals.

and the ‘41D’ refers to adding the intermolecular mode
associated with the distance coordinate. In other words,
a 4D calculations without an adiabatic separation. The
inactive coordinates were fixed to their reference value.
As seen in Table ITI, the CoM—CoM coordinate choice has
significantly smaller impact on the intramolecular funda-
mentals than the O—O choice. Therefore, we employ the
CoM—-CoM coordinate in all computations.

C. Interunit coupling

For most practical purposes the coupling between the
intramolecular modes of the donor and acceptor units is
expected to be negligible. The addition of such coupling
terms to a harmonically-coupled anharmonic-oscillator
model resulted in transition wavenumber changes of ~1

TABLE III. Wavenumber differences (A7, in ecm™!) of the
intramolecular fundamentals with and without including the
R mode. Two different definitions of the donor-acceptor dis-
tance coordinate are used. Results are shown for both the
donor, (D), and acceptor, (A), unit. The results are obtained
with the MB-pol PES?° using GENIUSH.

Final state CoM-CoM 0-0
Ap(D) Ap(A) Ap(D) Ap(A)
[0)¢]0)p|1) or [00)|1) —0.38 0.07 —1.21 0.72
0)¢[1)6]0) or [10)4]0) —0.10 0.01  1.21 —0.10
[1)¢]0)b]0) or [10)_[0)  3.41 0.28 —4.63 0.31

TABLE IV. Calculated transition wavenumbers, in cm ™, for
selected OH stretch and HOH bend transitions in the water
dimer. Results from a 3D model for either the donor or the
acceptor modes is compared with results from 6D model that
includes all six intramolecular modes. The results are ob-
tained using VibMEMIC and the F12 PES.

Final state 3D 6D AD

00)[1) 15967 15952 —1.5
0)0)|1) 1614.2 1614.5 0.3
00)[2)  3157.1 3155.1 —2.0
10)¢/0)u[2) 3191.1 3188.7 —2.4
10%/1)6]0) 3558.0 35555 —2.5
110)410) 36517 3651.6 —0.1
11)¢0)u]0) 3726.9 3726.9 0.0
110)_|0)  3746.6 3746.0 —0.6
cm~1.%% In Table IV, we compare selected intramolecu-

lar transition wavenumbers calculated with a 3D model
for the three intramolecular modes of either the donor or
acceptor, with those calculated with a 6D model that
includes all intramolecular modes simultaneously. As
seen in Table IV, the computed intramolecular transition
wavenumbers with (6D) and without (3D) interunit cou-
pling (IUC) do not deviate more than 2.5 cm~!. These
transition wavenumber changes are small compared to
the shifts induced by the intermolecular modes (vide in-
fra). In the forthcoming sections we focus on the coupling
of either the donor or the acceptor intramolecular modes
with the intermolecular modes, with the approximation
that the interunit coupling can be neglected.

D. Coupling between intramolecular and intermolecular
modes

In spectra of hydrogen-bonded complexes, the bound
XH-stretch fundamental (where X is an electronegative
donor atom, for example, O) is often detected, as it typ-
ically becomes redshifted and its intensity is enhanced
relative to the corresponding transition of the isolated
monomer.%%%7 For complexes with water as the donor
unit, the two OH stretches become partly decoupled upon
complex formation, due to the frequency shift associated
with hydrogen-bond formation. The bonded OH stretch,
OH,,, is redshifted relative to both OH stretches of the
monomer, because the hydrogen bond weakens the OHj,
bond. The free OH stretch, OHy, is redshifted relative to
the antisymmetric fundamental of the water monomer,
as the coupling between the two OH stretches is reduced.
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FIG. 2. Shifts of the donor (upper panel) and acceptor (lower
panel) transitions, due to coupling one intermolecular mode
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tramolecular modes (3D model). The results were obtained
using the F12 PES with VibMEMIC.

In contrast, the bending transitions of the donor unit are
blueshifted, because the hydrogen bond “locks” H},, which
hinders the bending motion.

In order to investigate the effect of the individual in-
termolecular modes on the OH stretch and HOH bend
transitions, we performed a series of (3+1)D computa-
tions, where the three modes of either the donor or the
acceptor unit and one of the intermolecular modes were
active. In these computations symmetry was not utilized.
In Figure 2, we show the shifts of the donor and acceptor
fundamentals, based on the (3+1)D computations rela-
tive to 3D computations. The shifts presented in Fig. 2
are obtained with the F12 PES with VibMEMIC, while
the results calculated with GENIUSH for the MB-pol and
CCpol PESs are given in Section IV E. Overall, the shifts
are similar to previous results obtained with a simplified
effective Hamiltonian approach with a similar coordinate
system as the one employed here.??

For the donor unit, the calculated shifts for the free
OH (OH;y) stretch are small, as this oscillator is not di-
rectly involved in hydrogen bonding. The shifts induced

10

by coupling to the intermolecular modes can be traced
back to either potential or kinetic energy coupling. The
small shifts associated with this mode reflect not only
that the potential energy coupling with the intermolecu-
lar coordinates is small, but also that the G matrix el-
ements of the intermolecular modes depend only weakly
on the OH bond lengths. The shift of the OHj, stretch
is positive for all coordinates, it is largest for S and
~. Coupling of 5 or v to the donor vibrations enables
partially breaking the hydrogen bond;???* thus, signifi-
cantly blueshifting the OHj, stretch with respect to the
3D values. A positive displacement of the R coordinate
increases the CoM—CoM distance, partially breaking the
hydrogen bond, but negative displacements along this co-
ordinate have the reverse effect. For water dimer, the net
effect of including R is small, in agreement with what has
been found in previous studies.??*® For the donor bend-
ing fundamental, we observe negative shifts for 8 and g,
and positive shifts for the other angle coordinates, but
practically zero shift for R.

Potential energy coupling is evident when 1D PES
cuts along the OHy, (r4) or the bending (¢4) coordinates,
depend on the value of the intermolecular coordinates.
Kinetic energy coupling is mostly caused by the depen-
dence of G;; (for the intermolecular angles) on the value
of the bond lengths and bond angle. The G,,,, and Gy,
elements do not depend on the intermolecular angles and
the off-diagonal elements of the G matrix have minuscule
effect on the vibrations of the donor unit. Cuts of the
PES along r4 and tg, corresponding to different values of
the intermolecular angles, are shown in Figs. S1 and S2.
The G;; element for i = a, 3,7, as a function of ¢ and 74
or t4, are shown in Fig. S4. In addition, (3+1)D com-
putations where all two- and three-mode terms involving
the intermolecular mode were excluded from the PES,
were used to “turn off” the potential energy coupling (see
Table S13). If the results from such computation are sim-
ilar to the 3D results, then the potential energy coupling
is responsible for the shift, while if it is similar to the
original (3+1)D results, then the shift is due to kinetic
energy coupling.

In the case of 6 and ¢, the shifts of the donor bend
and the OH}, stretch modes are due fully to potential en-
ergy coupling between the inter- and intramolecular co-
ordinates, since the G matrix elements involving 6 and
¢ do not depend on the donor’s intramolecular coordi-
nates, and vice versa. This was also confirmed by the
fact that we retrieved the 3D results when we turned
off the potential energy coupling in the (3+1)D calcula-
tions. In addition, the PES along r4 or t4 depends on the
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FIG. 3. Shifts of the bend and OHy, stretch donor vibrations obtained by coupling two intermolecular modes to the three donor
modes ((34+2)D model). The error of additivity is the difference of the (3+2)D shifts and two (3+1)D shifts that involve the
two intermolecular modes that are in the (3+2)D model. Note the significant difference in the color scale. The results were

obtained using the F12 PES with VibMEMIC.

value of 6 and ¢ chosen for the cut and this dependence
mostly explains the direction of the shift. For example,
the potential along r4 becomes steeper if ¢ is not at its
equilibrium value and activating the ¢ coordinate means
that these non-equilibrium values are sampled; therefore,
the OH}, fundamental transition wavenumber increases.

In the case of «, 3, and -y, both the potential and the
kinetic energy coupling may affect the frequency of the
donor bend and the OHy, stretch modes. The shift of the
donor bend induced by « and v is caused mainly by ki-
netic energy coupling, since the PES along t4 only slightly
depends on « and «. In contrast, Go and G, strongly
depend on tq. The redshift of the bending due to 8 can
be traced to potential energy coupling. This is evident
from the (3+1)D calculations with the potential energy
coupling turned off. The PES along tq becomes less steep
if B is not at its equilibrium value, and G/gg depends only
slightly on tq. The shift of OHy, due to 5 and « involves
both kinetic and potential energy coupling. In the case
of 5 and +, the potential energy coupling causes a large
positive shift (in agreement with the 1D PES cuts), while
the kinetic energy coupling causes a small negative shift
in the case of 5. The kinetic energy coupling between
and the donor turned out to be very sensitive to the OH
bond lengths and consequently, the induced shifts depend
on the average bond length which depend on the PES.
For example, in the case of the MB-pol PES, kinetic en-

ergy coupling for v induces —3.9 and —0.5 cm~! shifts in
the OHy, and OHy transition wavenumbers, respectively,
while the shifts are 1.2 and —1.9 cm™! for the F12 PES.

For the acceptor unit, the wavenumber differences
from the (3+1)D computations and the 3D computation
are shown in the lower panel of Fig. 2. The intramolec-
ular fundamentals of the acceptor unit are not strongly
affected by complex formation and are similar to those of
an isolated water molecule. The shifts seen for the fun-
damentals of the acceptor unit are indeed much smaller
than those seen for the donor unit in the upper panel of
Fig. 2. The largest corrections to the bending transition
are seen for 6 and ¢, the two intermolecular modes di-
rectly associated with the acceptor unit. By performing
calculations with only kinetic energy or potential energy
coupling between the intra- and intermolecular modes,
we traced the majority of effect to a single term in the ki-
netic energy operator for each intermolecular mode. The
diagonal G matrix elements for 0 and ¢, Ggs and G4,
respectively, both depend strongly on the HOH bend-
ing angle of the acceptor unit. This dependence is far
from linear and the vibrationally averaged kinetic energy
of these intermolecular modes are thus different for the
HOH-bending ground and excited states, resulting in the
observed wavenumber corrections seen in the lower panel
of Fig. 2 for the acceptor bending transition.



To investigate if the shifts from each of the inter-
molecular modes are additive, we performed 15 sets of
(3+2)D model calculations. The "42D” means adding a
pair of intermolecular modes to the 3D model of the in-
tramolecular modes, resulting in a 5D calculation. The
shifts calculated with 15 different (3+2)D models for the
OH,, stretch and HOH bend fundamental of the donor
unit are shown in the upper triangles of the two panels
of Fig. 3. In the lower triangles of Fig. 3, we show the
shifts computed for the (3+2)D models minus the shifts
calculated for the related two (3+1)D models. The up-
per triangles thus display the total shifts calculated with
different (3+2)D models, while the lower triangles reflect
the degree to which the shifts are additive.

For the donor HOH bend fundamental, the (3+2)D
shifts for pairs involving ~ are positive, while negative
values occur for pairs involving 5. This correlates with
the (3+1)D results for v or 8 (Fig. 2). The largest dis-
crepancies in the additivity of the (3+1)D shifts for the
bending are observed for the (0, 5) and (¢, 8) pairs (1.6
and —3.4 cm~! error in the —6.0 and —6.8 cm ™! (3+2)D
shifts, respectively). For the bound OH stretch funda-
mental, the largest discrepancy is found for the (6, ¢)
pair, with a 3.3 em™! error in the 18.9 cm~! shift. For
most pairs, the (3+2)D corrections are approximated well
by the sum of two (341)D shifts.

We attribute the partial breakdown of the additiv-
ity of the shifts for the bend, but not for the bound
OH stretch, to the difference in the nature of the cou-
pling to the intermolecular modes. The PES along
the bound OH-stretching coordinate changes significantly
upon varying the value of some of the intermolecular co-
ordinates. The intermolecular modes predominantly af-
fect the bound OH stretch due to vibrationally averaging
effects, and not through resonances between states with
excitations in both the bound OH stretch and the in-
termolecular modes. In contrast, analogous resonances
do play an important role for the bending states. The
strength of a resonance depends on the size of the cou-
pling element and the energy difference between the
states involved in the resonance. When two intermolec-
ular modes are included simultaneously, the two inter-
molecular modes couple, thus altering the energy levels
associated with each intermolecular mode and hence the
strength of the resonance(s) - leading to a partial break-
down of the additivity of the shifts for the bend.

In general, the additivity of the calculated shifts
works well, which indicates that the total shift induced
by all intermolecular modes can be approximated by the
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TABLE V. Transition wavenumbers, in cm™?, for selected in-
tramolecular transitions calculated for different PESs, based
either on 3D calculations or including the sum of the six cal-
culated (3+1)D shifts, (3+>_1)D.

Final state 3D (3+>-1)D

F12 MB-pol CCpol

F12  MB-pol CCpol

100Y[1) 1596.7 1594.4 1597.1 1603.8 1600.6 1601.5
0)¢|0)p|1) 1614.2 1607.9 1608.8 1618.7 1614.2 1613.3
00)[2)  3157.1 3150.9 3157.3 3172.6 3165.2 3167.6
0)¢|0)p[2) 3191.1 3177.5 3180.6 3197.7 3188.5 3189.6
|0)¢|1)p]0) 3558.0 3553.6 3543.3 3602.1 3598.5 3585.0
110)4|0)  3651.7 3654.4 3657.3 3649.9 3649.7 3647.5
11)¢|0)n[0) 3726.9 3728.4 3738.0 3723.4 3731.4 3734.0
110)_|0)  3746.6 3745.9 3750.7 3744.6 3743.8 3738.9

sum of the six (341)D shifts. The error of this approx-
imation can be estimated by the size of the errors in
the additivity found from the (3+2)D calculations. The
advantage of replacing a 9D calculation, including three
intramolecular and six intermolecular modes, with six 4D
calculations is obvious.

E. Comparison of potential energy surfaces

We have used three different PESs: CCSD(T)-
F12a/cc-pVTZ-F12 (abbreviated as F12), CCpol-
8sfIR,'9%® version from the SI of Ref. 23 (abbreviated
as CCpol), and MB-pol.?® In Table V, we show the
OH stretch and HOH bend transition wavenumbers from
3D calculations and from 3D including the sum of the
shifts from the six (3+1)D computations [the (34> 1)D
model]. We observe that the 3D wavenumbers of the
stretching transitions are similar for the F12 and the MB-
pol PESs, while the CCpol results are different. For ex-
ample, the OHy, stretch fundamental obtained with the
CCpol PES is about 15 cm™! lower than the F12 and
MB-pol values, while the OH; stretch fundamentals are
higher by the same amount. The three PES also give
rise to considerable differences for the donor bend, where
there is a ~ 6 cm ™! difference between the F12 and MB-
pol values for the fundamental transition.

In Figs. 4 and 5, we show (3+1)D shifts computed
with the different PES for the donor and acceptor OH
stretch and HOH bend transitions, respectively. The F12
and the MB-pol PES give very similar (3+1)D shifts, the
most noticeable difference is the difference in sign of the
shift of the OHy wavenumber due to R. The difference in



F12
‘o HfOHy, bend
'm OH,, stre.

N
o

=
wu

OHs stre.

~ 10"

£

(9]

2 0

E% -5 R

B

_10_

-15¢

MB-pol
200 HfOH, bend
15.2 OHy, stre.

10" OH; stre.

Shift / cm™

CCpol-8sfIR
200 HfOH, bend

15.= OHp stre.
m OHs stre

=
o

Shift / cm™!
AT
o u

-15: R

FIG. 4. Upper panel: F12 PES, VibMEMIC. Middle panel:
MB-pol, GENIUSH. Lower panel: CCpol-8fsIR PES, GE-
NIUSH. Shift of the donor vibration energies due to coupling
one intermolecular moe ((3+1)D model) to the intramolecu-
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scale with respect to Fig. 5.

sign gives rise to the increase in the difference of the OHy
wavenumbers computed with MB-pol and F12 PES, from
1.5 cm~! in the 3D model, to 8.0 cm~! in the (3+51)D
model.

The most significant difference between the results
with CCpol and the two other PES is the large nega-
tive shift of —12.1 cm™! for OHy, due to R. The OH,
shifts calculated with CCpol are slightly larger for the
other intermolecular modes. For the F12 and MB-pol
PES, the 1D cuts along OHj, (see Figs. S2 and S3) be-
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comes less steep if R is decreased and steeper if R is
increased. The magnitude of the change is similar for
positive and negative displacements of R from the ref-
erence value. Furthermore, the 1D ground state wave
function for R can to a first approximation be treated
as being symmetric with respect to positive and nega-
tive displacements, which explains the close to zero total
shift of OHy,. For the CCpol PES, the 1D cuts along OHj,
are similar to those obtained with the other two PES for
increasing R, but become much less steep for negative



displacements of R, thus explaining the large redshift of
OHy, due to R seen in Figure 4. Interestingly, for the
OH,, fundamental transition, the large redshift due to
R is partly compensated by the increased blueshift for
the other modes in the (3+>1)D model, and the dif-
ference between the F12 and the CCpol values is quite
similar in the 3D model and the (3+>_1)D model (Table
V). However, for the CCpol PES the resulting OH}, fun-
damental in the (3+3.1)D model is 16 cm~! less than
the experimental value of 3601 cm™! (vide infra), while
the agreement with experiment is better than 2 cm™! for
the two other PES. This suggests that the coupling of
OH,, with R is overestimated in the CCpol PES, which
is partly compensated by the overestimation of the cou-
pling with the other coordinates. For the CCpol PES,
we find from the (3+2)D donor computations that the
additivity of the (341)D shifts breaks down if one of the
coordinates is R, while there are no problems for F12 and
MB-pol. This again suggests that the coupling with R
may not be perfectly described in the CCpol PES.

The calculated (3+1)D shifts of the acceptor vibra-
tions are also different for the CCpol PES and the two
other PES. The redshifts of the symmetric and antisym-
metric stretches are larger in the case of the CCpol PES.
Overall, the results for the F12 surface and the MB-pol
PES are very similar for these reduced-dimensional com-
putations, but the CCpol PES gives somewhat different
results.

F. Reduced- vs. full-dimensional models

In Table VI, observed and computed wavenumbers
are presented for selected OH stretch and HOH bend
intramolecular transitions. The observed values are ob-
tained from different jet-expansion experiments.?? 64 The
computed values are obtained with different reduced-
dimensional vibrational models and with a full 12D vi-
brational model using VibMEMIC and the F12 PES.

As seen in Table VI, the wavenumbers computed with
the 3D model are already within about 6 cm™' of the
observed values, for five of the six fundamentals. The
exception is the bound OH-stretch, which is the mode
most affected by dimer formation and, as a consequence,
also by the intermolecular modes.??*6 For the bound
OH stretch fundamental, the shifts induced by the inter-
molecular modes were found to be largely additive (see
Section IV D). Based on the additivity analysis, it is not
surprising that the (3+3>1)D model significantly improve
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the OH}, fundamental transition wavenumber. The 3D
calculated OHy, fundamental transition wavenumber is 43
cm™! from the observed value, but improves to within ~1
cm ™! of the observed value with the (3+>.1)D model.

For the other intramolecular fundamentals, the calcu-
lated differences from the 3D to (3+>1)D results is less
than 7 cm™!, and the agreement with the experimen-
tal values remain good. The interunit coupling is small
(Section IV C), and adding the calculated corrections to
the (34> 1)D results slightly improves the agreement of
the two bending fundamental transitions and has little
impact on the stretching transitions.

The transition wavenumbers calculated with the 9D
models, where we include the three intramolecular modes
of one HoO unit and all six intermolecular modes, are
similar to those computed with the computationally inex-
pensive (3+).1)D model. The (34> 1)D and 9D results

are within 2 cm™1.

The transition wavenumbers calculated with the 12D
model are similar to the results calculated with the 9D
and (3+>_1)D models. The error arising from the inaccu-
racy of the electronic structure method is expected to be
about 5 cm~! with CCSD(T)-F12a/cc-pVTZ-F12.65°67
The estimated convergence error of the 12D calculations
is less than 2 cm~! (Table S6). All models give results
in excellent agreement with the experimentally observed
transitions from jet expansion experiments. The largest
difference between the 12D vibrational calculations and
the observed values is seen for the OH; stretch fundamen-
tal transition, i.e., also the transition with the largest dif-
ference in the (3+1)D shifts computed with the MB-pol
PES and the F12 PES (Section IV E).

Even in recent years, the assignment of the OHy
stretch fundamental transition in water dimer has been
debated.?* In jet expansion experiments, both dimers and
high-order (trimer, tetrameter, etc.) clusters often con-
tribute to the observed spectra. In our 3D calculations,
the OHy, stretch fundamental transition is located at 3558
cm™!, which happens to be close to the observed OHj,
stretch fundamental transition of the water trimer. How-
ever, including the coupling to the intermolecular modes,
the OH}, stretch transition of the water dimer blueshifts
to about 3600 cm ™! as seen from the (3+ > 1)D, the 9D
and the 12D models. The agreement of these vibrational
models suggest that the 12D values are reliable, and the
calculated OHy, fundamental transition is indeed in ex-
cellent agreement with the transition observed at 3601

Cmfl.GO
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TABLE VI. Transition wavenumbers, in cm ™!, for selected intramolecular transitions of the two water units in water dimer
calculated with different vibrational models. The calculated results were obtained using the F12 PES with VibMEMIC. The
convergence of the 9D and 12D results are shown in Section S1.

Final state 3D

(3+>°1)D (3+>_1)D+IUC 9D 9D+IUC 12D Jet

|00)|1) 1596.7 1603.8 1602.3 1605.8 1604.3 1605.5 1600.6°
|0)¢|0)p|1) 1614.2 1618.7 1619.0 1616.6 1616.9 1616.7 1620°"
|00)|2) 3157.1  3172.6 3170.6 3178.0 3176.0 3177.2 +#
|0)¢|0)b]2) 3191.1 3197.7 3195.3 3194.9 3192.5 3198.8 #
|0)¢[1)5]0) 3558.0  3602.1 3599.6 3600.0 3597.5 3597.5 3601°°
[10)4]0)  3651.7 3649.9 3649.8 3648.1 3648.0 3648.2 3651
[1)60)5]0) 3726.9 3723.4 3723.4 3721.9 3721.9 3723.0 3730%°
[10)_|0) 3746.6  3744.6 3744.0 3744.2 3743.6 3740.7 3745.5%°
V. CONCLUSIONS dimer.

A new vibrational model and an associated computer
code have been developed. The model is based on the
finite-basis representation (FBR) of a Hamiltonian ex-
pressed in internal coordinates and employes a low-order
many-mode expansion of both the kinetic energy oper-
ator and the potential energy surface (PES). The trun-
cations are needed to make the computations on many-
mode systems feasible. We use polyad truncations and
energy ceilings to control the size of the variational ba-
sis. In addition, permutation-inversion symmetry is used
to obtain a block-diagonal Hamiltonian, further reduc-
ing the cost of the computations. The FBR-based Vib-
MEMIC code developed is applicable to all molecular
systems described with either user-defined internal co-
ordinates or internal coordinates based on a Z matrix.
While the code is general in this sense, the polyad trun-
cation, the energy ceiling, and the use of symmetry needs
to be manually defined for the system of interest.

The VibMEMIC results were benchmarked against a
nuclear-motion code, GENIUSH, which does not involve
simplification in neither the kinetic energy nor the PES
For the OH stretch and HOH bend transi-
tions in water dimer, we find that the errors resulting
from truncations in the VibMEMIC model appear to be

operators.

less than the intrinsic inaccuracy of the PESs employed.
The truncation of the many-mode expansion of the PES
leads to a breakdown of the permutation-inversion sym-
metry (Gg) of the Hamiltonian, which primarily affects
the tunneling-splitting pattern. Most importantly, the
approximations applied in VibMEMIC significantly re-
duce its computational cost when compared with more
exact vibrational models and, as illustrated, facilitate
computations with the full 12 vibrational modes of water

We have performed a set of computationally inex-
pensive reduced-dimensional computations with both the
FBR and DVR based models, to understand the ap-
plicability of reduced-dimensional effective Hamiltonian
approaches. These were designed to investigate how
the high-frequency intramolecular transitions are affected
by their coupling to the low-frequency intermolecular
modes. Not surprisingly, the effects are largest for the
OH stretch directly involved in the hydrogen bond. For
this mode, the wavenumber shifts from each of the six
intermolecular modes were found to be largely additive.
The difference between the calculated and experimental
transition wavenumber for the bound OH stretch fun-
damental is improved from ~43 cm™! in the 3D calcu-
lations to only ~1 cm~! upon combining the shifts ob-
tained from six (3+1)D calculations. The same reduced-
dimensional models provide valuable physical insight into
the origin of the observable shifts, which may be used to
predict intramolecular transition wavenumbers of related
molecules and to guide the construction of effective vibra-
tional models.

The 12D results, augmented with the additivity anal-
ysis, indicate that the excellent agreement between the
experimentally observed and the computed transitions is
We show that this ex-
cellent agreement can be achieved even with the use of
reduced-dimensional vibrational models.

not due to error cancellation.

The accurate
calculations of intramolecular transition wavenumber is
the first step in obtaining reliable calculated water dimer
vibrational spectra.
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