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Modeling dynamics
Atmospheric stability

Radiative convective equilibrium
Aerosol and cloud microphysics

Microbes as ice nucleation particles



Model equations
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Surface boundary conditions: bulk scheme
Lateral boundary conditions: cyclic
Timestepping: Runge Kutta (third order)
Advection: 4th order central differencing



Our research

Why do clouds
organize?

How does this impact
on radiation and
precipitation?
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Energy balance in the climate system
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Radiative equilibrium
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Strongly reduced model

Top of Atmosphere:
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e real atmosphere not opaque

e heat transported by convection and radiation



Atmospheric stability

Unstable Neutral Stable

height, z

entropy



Atmospheric stability

height, z

radiative
equilibrium
alone

Unstable Neutral

Stable

entropy



Radiative convective equilibrium (RCE)

convective heating = radiative cooling 2.3
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Contributions from various absorbers
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Gas Name Chemical Formula Percent Volume
Nitrogen N2 78.08%
Oxygen 02 20.95%
*Water HO 0 to 4%
Argon Ar 0.93%
*Carbon Dioxide CO2 0.0360%
Neon Ne 0.0018%
Helium He 0.0005%
*Methane CH4 0.00017%
Hydrogen H»> 0.00005%
*Nitrous Oxide N20 0.00003%
*(Ozone O3 0.000004%




Contributions from various absorbers
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100 -

200

300

400 -

500 -

600 -

700 -

800

900

1000

Standard Radiative-Convective

-100

20

40

60

80

Gas Name Chemical Formula Percent Volume
Nitrogen N2 78.08%
Oxygen 02 20.95%
*Water HO 0 to 4%
Argon Ar 0.93%
*Carbon Dioxide CO2 0.0360%
Neon Ne 0.0018%
Helium He 0.0005%
*Methane CH4 0.00017%
Hydrogen H»> 0.00005%
*Nitrous Oxide N20 0.00003%
*(Ozone O3 0.000004%




Moist convection tends to aggregate in RCE

(d) ECHAM6-GCM

(a) CAM5-GCM
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Cloud feedbacks

Feedback parameter (W m2K™)

N = F+AAT

feedback
parameter

Caldwell et al. 2016 (28 models)
Vial et al. 2013 (11 models)
Zelinka et al. 2016 (7 models)
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Features of RCE

e convective updrafts widely spaced
e surface heat fluxes = vertically integrated radiative cooling
e precipitation = evaporation = radiative cooling

e radiation and convection highly interactive



Clouds rarely develop out of clear blue sky

more complex

€ long lived, abundant , suspended short lived, precipitation
Aerosol Cloud Precipitation
Freshly Nucleated Cloud condensation Sea-salt &
Aerosol Particles nuclei Mineral dust
Ice Crystals Snow flakes Graupel Hail
Cloud droplets Drizzle droplets Rain drops
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difficult to form ice in the atmosphere

common to find super-cooled liquid water
e talking about ice phase implies talking about liquid phase as well
e many processes depend on the nucleating substrate: Ice Nuclei.
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Cloud microphysical processes
(warm clouds)

Evaporation and condensation of cloud droplets
parameterized by saturation adjustment

Autoconversion
difficult, artificial process to separate cloud droplets and rain

Rain evaporation
very important: determines strength of cold pools

parameterization not easy: size dependence

conclusion
many unknowns, even for warm rain processes
(mixing/entrainment, turbulence, coalescence, nucleation processes)



Cloud microphysical processes
(including ice clouds)
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Ice nucleation-active bacteria

most efficient ice nucleators known

enabling the crystallization of water at temperatures close to 0 deg C

overcome kinetically hindered phase transition process
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Microbial influence on planetary climate
o Miguel Garrido’s project

e which role can microbes play in ice nucleation?

e how do they influence cloud dynamics?

e how does cloud dynamics influence bacterial evolution?
e which role does the inversion play?

e are clouds relevant to life?



Relative reflectivity
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(b) visible and near-infrared spectra
of an Earth-like

planet at six distinct geological
epochs, again in the absence of
clouds. The spectral lines (grey)
change significantly as the planet
evolves from CO2-rich (-3.9 Gyr),
through CO2 /CH4 -rich (-2.4 Gyr),
to a present-day atmosphere (lower
right). Solid curves show

a spectral resolution of 70,
comparable to the proposed TPF-C
mission concept. From Kaltenegger
et al. (2007, Figures 1 and 9),
reproduced by permission of the
AAS.



