Microbiological Influence on Atmospheric Dynamics

miguel.zornoza@nbi.ku.dk

Miguel Garrido Zornoza Biocomplexity Niels Bohr Institute, Blegdamsvej 17

Background

- Bachelor's degree in Physics Barcelona (Spain)
- Master's degree in Physics, Biophysics Copenhagen (Denmark)

... just diving into astrobiology

"PhD 4" - "Micro-biological influence on atmospheric dynamics"

- Dead, dormant or actively reproducing
- Model atmosphere as playground

<u>Ex:</u>

• Ideally \rightarrow Narrow down phenomenology and translate it into biosignatures

HOWEVET ... bacteria are unlikely to encounter "good" growth conditions outside batch cultures found in laboratories. This becomes evident by noticing that a single E.coli cell, if growing in the exponential phase, would grow to a population equivalent to the mass of the Earth within 2 days, a statement that obviously disagrees with both common sense, and the estimated (4-6)x10^30 prokaryotes on Earth.

- On Earth:
- Viral abundance correlates with microbial presence 5-10 VLPS per bacteria.
- Estimated to kill 4-50% of the bacteria produced every day.

Does it make sense to study bacteria alone?

- Simulate James Webb Telescope experimental noise
- Establish some lower limit for the significance of peaks

