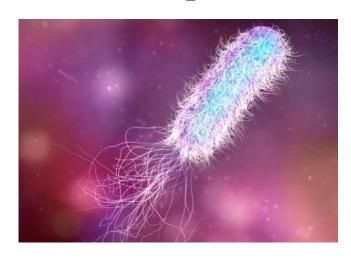
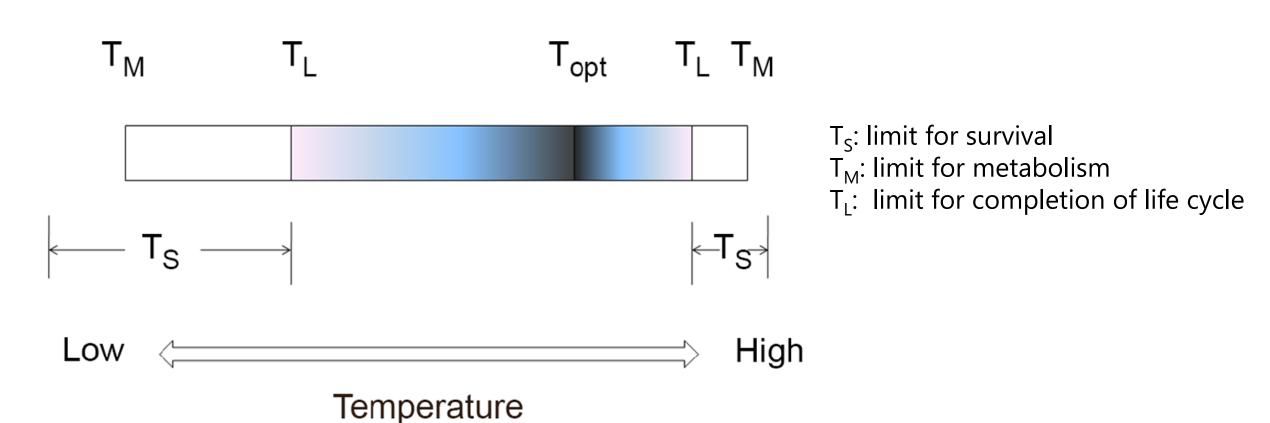
Microbiology in CELS

Anders Priemé
Section of Microbiology
Department of Biology
University of Copenhagen

Plan


- Limitations for life on Earth
- Challenges for Earth organisms on Mars
- Possibilities for Earth organisms on Mars
- Adapting Earth microorganisms to Martian conditions
- Microbial biosignatures for detection of life on exoplanets
- Bacteria and cloud formation

Requirements for life as we know it


- Elements
 - Carbon, nitrogen, phosphorus etc
- Energy source
 - Light
 - Chemical
 - Electron donor
 - Electron acceptor
- Liquid H₂O

Limits for life

- Survival
- Activity
- Growth/reproduction

Record-breaking extremophilic bacteria and archaea Limits for activity

		Lower limit	Optimum	Upper limit
Hyperthermophile	Geogemma barossii	85°C	???°C	130°C
Psychrophile	Planococcus halocryophilus	-25°C	25°C	37°C
Acidophile	Picrophilus oshimae	pH -0.06	pH 1.1	pH 4
Alkaliphile	Alkaliphilus transvaalensis	pH 8.5	pH 10	pH 12.5 ^a
Barophile	MT41	500 atm	700 atm	>1000 atm
Halophile	Halobacterium salinarum	15%	25%	32% (saturation)

^aA variety of β-proteobacteria, *Bacillus spp.*, and *Clostridium spp.* are found at pH 13.2 in Lake Calumet, SE Chicago

Main problems for life on Mars

- Very little water
- Very low temperatures
- Difficult to obtain chemical energy
- High UVC radiation level
- Low atmospheric pressure

Possibilities for life known on Earth to obtain energy on Mars

Light energy (40% of Earth)

Chemical energy

Protection from drying out: Endolithic and hypolithic cyanobacteria

Possibilities for life known on Earth to obtain chemical energy on Mars

Electron donors

- Organics from meteoric infall (total of 8.6 \times 10⁶ kg yr⁻¹ \sim 60 μ g m⁻² yr⁻¹)
- Ferrous iron (Fe⁺⁺)
- Carbon monoxide (CO), 750 ppm
- Hydrogen (H₂), 0.8 ppm
- Methane (CH₄), <0.001 ppm

Electron acceptors

- Ferric iron (Fe⁺⁺⁺)
- Perchlorate (ClO₄-), 0.5 solid wt%
- Sulphate (SO₄²⁻), 1.3 solid wt%
- Oxygen (O₂), 1,700 ppm
- Carbon dioxide (CO₂), 960,000 ppm

Mars analogs on Earth

Atacama Desert

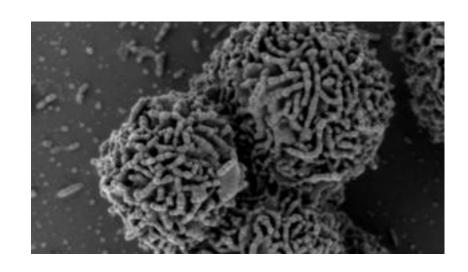
- Moderate temperatures
- Annual precipitation down to 1-3 mm
- Highest level of UVA and UVB radiation on Earth
- Up to 0.3 wt% perchlorate

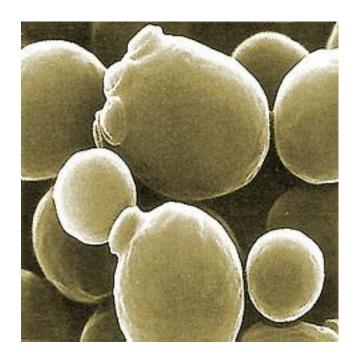
Mars, Gale Crater

- Mean annual temp. -60°C
- No precipitation
- High UVA, UVB and UVC radiation
- 0.5 wt% perchlorate

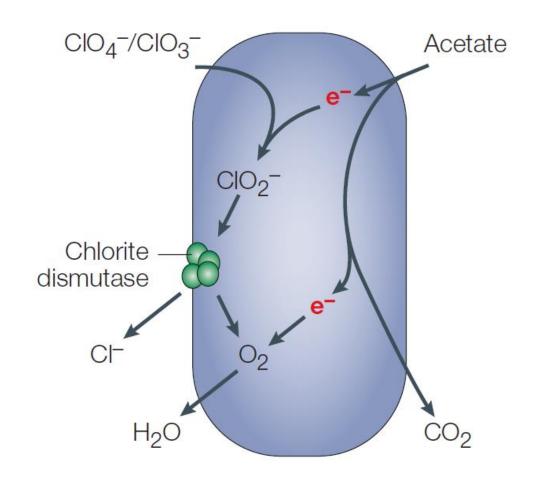
McMurdo Dry Valleys

- Mean annual temp. -20°C
- Annual precipitation <100 mm


Perchlorate


- Deliquescent
- An electron acceptor
- Made naturally in the Earth atmosphere
- Used in rocket propellants, fireworks, flares, etc.
- Toxic to humans
 - affects the thyroid gland
- Toxic to plants and (some) microorganisms
 - competitive uptake by nitrate reductase leads to highly reactive chlorite

$$O = CI - O^- Na^+$$


Microbial perchlorate tolerance records

- Bacteria: Planococcus halocryophilus and Halobaculum sp. 12 % NaClO₄
- Fungi: *Debaryomyces hansenii* 23 % NaClO₄

Using perchlorate as an electron acceptor: Bacterial perchlorate-reduction

Usual organization of perchlorate reductase operon and chlorite dismutase gene *cld* in bacterial genomes

Dechloromonas agitata (perchlorate-reducing β-Proteobacterium)

cld (Per)chlorate reductase operon

Dechloromonas aromatica (perchlorate-reducing β-Proteobacterium)

(Per)chlorate reductase operon

Bacterial perchlorate reduction

Besides simple organic compounds, perchlorate is known to be an electron acceptor coupled to oxidation of e.g.:

- Hydrogen
- Carbon monoxide

Carbon monoxide oxidation coupled to perchlorate

The archaea Halobaculum sp. WSA2 from salt flats in Utah can

- tolerates 12 % Na-perchlorate
- performs CO + ClO₄⁻ → CO₂ + ClO₃⁻
- consumes CO down to 2 ppm using perchlorate as electron acceptor

Biosignatures: Organic volatiles produced by microorganisms in thawed permafrost soil

Table 1 The most emitted compounds				
Compound	Emission rate (nmol g^{-1} dw soil h^{-1})	Relative abundance (%)		
Ethanol	1.345	51.2		
Methanol	0.673	25.6		
Acetaldehyde	0.198	7.5		
Acetone	0.134	5.1		
Formaldehyde	0.103	3.9		
Acetonitrile	0.062	2.4		
2-Butanone	0.023	0.9		
2-Butene/2-methyl-1-propene	0.010	0.4		
Propyne/1.2-propadiene/cyclopropene	0.009	0.3		
Cyclopropane/propene	0.008	0.3		

Bacteria in the atmosphere of Earth

Large global emission of bacteria into the atmosphere: **7.5*10**¹⁵–**3.3*10**¹⁶ **viable bacteria per sec**

Bacteria in the dry atmosphere

- 10⁴-10⁵ cells per m³
- Residence times: days-weeks
- Extreme environment: desiccation, UV radiation, low temperature, low concentration of nutrients

Bacteria in clouds

- · 1500 430 000 cells per ml
- 20% of time in cloud droplets
- Favorable compared to dry air
- Harsh environment: low temperature, low concentration of nutrients, cycles of drying and wetting or freezing and thawing

Bacteria and cloud formation

- Bacteria and non-biological cloud condensation nuclei have similar size:
 0.1-1 µm
- In lower troposphere (<5 km altitude): Bacteria and non-biological cloud condensation nuclei have similar abundance
- Large bacteria and bacterial aggregates may form "Giant CCN"
- Pseudomonas syringae and some other bacterial species produce icenucleating proteins

Thank you for your attention

