UNIVERSITY OF COPENHAGEN

Spectroscopy and Reactions relevant to (Exo)Planetary Atmospheres

Henrik G. Kjaergaard

Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.

CELS workshop Copenhagen, September 2021

Kjaergaard Research Group

Henrik G. Kjaergaard, C418, HCØ building. HGK @ CHEM.KU.DK

www.ki.ku.dk/forskning/fyschem/kjaergaard-group/

PhD physics Odense, 1992; Post doc Canada, 1992-1996 Lecture-Prof., Otago New Zealand, 1996-2009 Prof., CHEM, KU, since 2009

Jing

Emil

Casper

novo nordisk fonden CELS

Research Focus

• Experimental and theoretical spectroscopy of molecules (radicals) and molecular complexes.

Vibrational, Rotational and Electronic spectra. Theory: combine own codes + ab initio codes for potential and dipole surfaces

• Theory of atmospheric (gas-phase) reactions.

Bi-molecular and uni-molecular reactions. Compare with experiments from other groups.

We often combine theory and experiment.

Spectroscopy - Experiments

FT-IR & UV-vis Spectrometers

FT-IR, range 400-12000 cm⁻¹ resolution down to 0.1 cm⁻¹. UV-vis, range ~200-3000 nm resolution about 0.01 nm.

Including variable pathlength (0.1-16 m) cells to increase signal

Integrated CRD/FT-IR spectrometer (also PAS)

Range ~10000-16000 cm⁻¹, resolution down ~5 cm⁻¹. Very sensitive, equivalent to pathlength about 20 km signal

Spectroscopy - Experiments

Matrix isolation cryostat

Sample down to about 10 K

Facilitate aggregation, complexes.

Discovered a new hydrogen bond ^(C) OH - - P exist despite both H and P having partial positive charge.

Calculated vibrational spectra, to compare, identify and determine strength of this hydrogen bonding.

Spectroscopy - Theory

Reactions - Theory

Based on TST theory and use ab initio to get reaction surfaces and energetics

Oxidation reactions important in Earths atmosphere

Amine Oxidation in the Atmosphere

Modeling existing and find new chemistry in atmosphere

10¹³

OSSO in the Venusian atmosphere

Atmospheric reaction mechanisms, rates and new compounds ©

