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Abstract

Despite the success of the current standard model of structure formation, the Cold
Dark Matter (CDM) model, the nature of dark matter remains a mystery. In particu-
lar, it is an open question whether dark matter has additional interactions other than
gravity, which can impact the formation and evolution of galaxies.

Amongst these possibilities is that of Self-Interacting Dark Matter (SIDM), where
dark matter can collide with itself at a significant level. SIDM shares the successes
of CDM at large scales, and predicts a different dark matter distribution in the inner
regions of dark matter halos. The SIDM model has the potential to solve some of the
challenges faced by the CDM model, namely the core-cusp problem and the too big
to fail problem.

In this thesis, I explore the SIDM model using numerical N-body simulations of a
sample of 15 relaxed cluster-size halos, with the goal of analyzing their inner struc-
ture. Specifically, I quantify the difference between SIDM and CDM in the spherically
averaged radial density profiles and shape of the dark matter halos. For the latter,
I developed a code that computes the shape of concentric ellipsoidal shells using the
eigenvalues and eigenvectors of the shape tensor. I also examine the assembly history
of the halos and estimate their formation time. Unfortunately, due to constraints on
computational resources I was not able to simulate a sufficient number of halos in time
for the completion of this thesis and cannot draw firm conclusions. The current results,
however, quantify important differences in the inner structure of clusters that in the
future, with better statistics (more halos), should allow for a direct comparison with
the observed shape and density of clusters of galaxies. This is a promising application
with the purpose of tightening constraints on the collisionality of dark matter.



1 Introduction

A vast number of astronomical observations indicate that the majority of matter in the universe
today is composed by “dark” particles, invisible so far to our efforts of detection. Although little
is known of this dark matter, we have abundant gravitational evidence of its existence and some
clues about its elusive nature. In the following I will discuss some of the main points regarding
our knowledge of dark matter, that are relevant to this thesis.

1.1 Dark matter evidence

The first indication of the existence of “dark matter” in the universe came in 1933, when
Fritz Zwicky measured the velocity dispersion of eight galaxies in the Coma galaxy cluster (Zwicky
1933 [1]). The measured velocity dispersion was much larger than expected and Zwicky concluded
that the mean density of the Coma cluster must be much greater than the mean density obtained
from luminous matter alone. The missing density must then come from a non-visible form of mat-
ter (dark matter). Although Zwicky overestimated the total mass to baryonic mass ratio in the
Coma cluster by a large amount, modern analysis indicate that this ratio is indeed large, around
6, and thus, the cluster is held together by the invisible dark matter.

Further evidence for the existence of dark matter was provided by Babcock in 1939 [2], in
the form of rotation curves for the Andromeda galaxy, which were flatter than expected, although
this was not attributed to missing matter at the time. It was not until decades later that, through
inferences of the circular velocity of stars and gas in many spiral galaxies, Rubin et al. (1985) [3]
found out that, as a function of distance from the center of galaxies (rotation curves), the circular
velocity flattens out well beyond the visible edge of the galaxy. Newtonian mechanics predicts that
it should decrease as r~! once the enclosed mass is constant. To preserve the Newtonian laws, one
must invoke the existance of dark matter. Therefore, every galaxy is thought to be surrounded by
a dark matter halo.

In addition to the velocity dispersion of galaxies in galaxy clusters and the flatness of
the rotation curve of spiral galaxies mentioned above (and similarly with the velocity disper-
sion of stars in elliptical galaxies), which have an added value in the history of dark matter, there
is a number of more recent evidences for dark matter in the universe, summarized below:

X-Ray measurements of galaxy clusters and elliptical galaxies can be used to obtain
the total mass of a system via the equation for hydrostatic equilibrium, by assuming spherical
symmetry and using only information obtained about the gas of the system (e.g. density and tem-
perature). This can then be compared to the gas and stellar mass of the system and the difference
is attributed to the dark matter in the system. For example, Fabricant & Gorenstein (1983) [4]
measured the total mass of the giant elliptical galaxy M87 within 87 kpc using this method, ob-
taining Mo¢ = 2.1 x 10'® M, within an uncertainty of 2, and Mg, = 2.1 x 10"* M) and since the
stellar mass of such a system is of the order of the gas mass, or lower, we see that M87 is strongly
dark matter dominated.

Gravitational Lensing of distant objects can be used to estimate the total matter distribution
(including dark matter) of a foreground object. One of the most remarkable instances of gravi-
tational lensing being used as proof of the existence of dark matter, is that of the two “recently”
collided galaxy clusters known as the Bullet Cluster (Markevitch et al. 2002 [5]). This famous
collision shows the gaseous halos (highly collisional) of the clusters lagging behind the galaxies
(almost collisionless) after the collision, but gravitational lensing indicates that the majority of
the mass of the systems, most of which is dark matter, is moving with the galaxies of the clusters
(Clowe, Gonzalez & Markevitch 2004 [6]).

The Cosmic Microwave Background shows the structure of the universe as it was at the
time of hydrogen recombination (~380,000 years after Big Bang). In order for that structure to
evolve into the universe as we see it today a significant amount of non-baryonic matter is required.
Analysis of the CMB indicates that the level of density perturbations over the background (over-
density) was of the order of §p/p ~ 107° at the time. It is the subject of the structure formation
theory to explain how the distribution of matter that we observe today, with a vast range of over-



densities, came to be from the perturbations imprinted in the CMB. Galaxies, groups and clusters
have very high overdensities (dp/p > 1 in galaxies), which cannot be explained without dark mat-
ter under standard gravity.

It is important to note that all the evidence we have for dark matter is gravitational and, al-
though this evidence points to dark matter being a new type of particle, some form of modified
gravity might be possible. The most popular model for departures from the law of gravity is
Modified Newtonian Dynamics (MOND) (Milgrom 1983 [7]), which has some theoretical support
from a relativistically covariant framework (Bekenstein 2004 [8]). However, on large scales these
theories struggle and typically require some amount of dark matter (Famaey & McGaugh 2012 [9]
and Angus, Famaey & Buote 2008 [10]).

1.2 The nature of dark matter

The nature of a potential dark matter particle remains mostly a mystery, since all we know is that
it interacts gravitationally, but we do have some clues. In recent years large steps have been made
in obtaining constraints on the possible mass and interactions of an as yet undiscovered particle.

Dark matter interacts through gravity. As mentioned previously, the only evidence we have
of dark matter interactions is through its gravitational influence on visible matter.

Dark matter has not been observed to interact with light. The consequence of this is
that dark matter must be neutral or have a very small electromagnetic coupling, otherwise we
should have seen it already.

Most of dark matter must be dissipationless as a consequence of the last bullet point.
Or, in other words, it cannot radiatively cool and collapse, as happens with baryons in galaxies. If
dark matter could cool and collapse in this manner, we would not observe extended dark matter
halos but disks instead. While most of the dark matter cannot radiate, it is possible that a smaller
fraction (5-10%) could dissipate in such a manner, through interactions with a yet unknown “dark
photon” (Fan et al 2013). This type of dark matter belongs to models that propose the existence
of a rich dark matter sector, with several new particles and forces, not unlike the standard model
of particle physics.

Constraints on the possible mass of dark matter particles. While progress has been
made in recent years to constrain the possible mass of dark matter particles, a significant mass
interval across many orders of magnitude is possible, from about 10733 to 10'® GeV (see figure one
of Gardner & Fuller (2013) [12].

Dark matter self-interactions are permitted within current constraints. Observations
in conjunction with the theory of structure formation in the universe rule out particles with in-
teractions larger than the weak force (Lux coll. 2014 [13]) or very light particles (see section 1.4).
While gravitation is the only interaction between dark matter particles and baryons or photons
that has been detected, self interaction between dark matter particles has not been ruled out by
observations (see section 1.5). This is particularly interesting, because self interacting dark matter
can have a profound impact on the structure of dark matter halos. In fact, it has the potential for
alleviating problems within the ACDM model, as I will discuss later in the thesis (see section 1.5).

Dark matter requires physics beyond the Standard Model. Although neutrinos are the
obvious dark matter candidates, I will discuss later why they cannot be a major dark matter com-
ponent (see section 1.4). There are no known particles that have the required properties to be the
majority of dark matter.

CDM is the most widely accepted dark matter model for structure formation. In
it, dark matter particles are cold and collisionless, the only interaction is gravity. Modern simula-
tions show it is a very successful model that describes the evolution of the universe into the cosmic
web structure we observe today and it successfully matches a variety of observations on large scales
(Springel et al. 2005 [14]), and provides the cornerstone for the current theory of galaxy formation



and evolution.

1.3 Problems facing the ACDM model

However, for all the success of the model, there is a number of significant challenges to it at sub-
galactic scales, among them the core-cusp problem and the too big to fail problem:

The core-cusp problem. Due to the collisionless nature of CDM, the central radial density
profiles of dark matter halos is predicted to be cuspy. However, several observations of dwarf
galaxies and low surface brightness (LSB) galaxies indicate central density cores out to 1 kpc in
radius (e.g. Kuzio de Naray et al. 2008 [15] and Walker & Penarrubia 2011). This issue, however,
remains controversial, since different groups find cusps and cores to beconsistent with the data,
depending on the method that is used (e.g. Breddels & Helmi 2013 [17]).

The too big to fail problem. Simulations of Milky Way sized systems have proven to have
satellites that are too dense to be consistent with the observed kinematics of stars in Milky Way
dwarf spheroidals (Boylan-Kolchin, Bullock & Kaplinghat 2011,2012 [18,19]).

In the future, these problems could be resolved by better knowledge of the processes of galaxy
formation. In particular, a better understanding of the effects of supernova feedback and tidal
stripping on the formation history of dwarf and LSB galaxies (for a review see Pontzen & Gover-
nato 2014 [20]). However, it remains unclear whether significant gas removal by supernova feedback
is consistent with the stellar population and star formation history of these types of galaxies.

1.4 Classification of dark matter in structure formation

Because of its key role in structure formation, dark matter candidates are often classified as hot
dark matter (HDM), warm dark matter (WDM) or cold dark matter (CDM). These classifications
are tied to the suppression, or washing out, of dark matter fluctuations in the early universe.
Fluctuations below a free-streaming scale are washed out by the random thermal motions of the
particles. This scale is determined by the comoving distance a particle can travel before the onset
of structure formation.

HDM. With the exception of axions, which behave like cold dark matter, less massive (m,, ~ 30eV)
particles, such as neutrinos, have higher velocities and are classified as HDM. In terms of charac-
teristic masses of the smallest structure which can form directly from the initial perturbation, the
free-streaming length of the HDM particles corresponds to the mass of a large galaxy cluster. This
means that for HDM, superclusters form first and fragment to form smaller structures, which is
ruled out by observations (White, Frenk & Davis 1983 [21]).

WDM. Intermediate mass particles (m, ~ 2keV’), potentially the sterile neutrino (for a re-
view see Abazajian et al. 2012 [22]), are classified as WDM. For WDM, the free-streaming length
corresponds to the mass of a dwarf dark matter halo. This means that for WDM (and CDM)
structures at galactic scales and above can form directly and grow by accretion and mergers to
form more massive structures in a hierarchical scenario. Structures near the free-streaming length
are, however, very different in WDM compared to CDM (e.g. Lovell et al. 2014 [23]).

CDM. Particles with low primordial velocities, typically more massive particles (m, ~ 100GeV),
which could be a supersymmetric particle or the low mass axion, are classified as CDM. Although
model dependent, the canonical free-streaming length for CDM corresponds to the Earth’s mass.
The actual free-streaming scale for CDM is therefore irrelevant for structure formation.

1.5 Self-interacting dark matter

Considering the challenges facing the CDM paradigm and our limited understanding of the pro-
cesses involved in galaxy formation, it is reasonable to question the central hypotheses of the CDM
theory. Within the framework of the theory, it is assumed that DM particles do not interact with
baryons, photons or other DM particles, except through gravity. While interaction between DM
particles and ordinary matter is ruled out to very high precision by observations, as mentioned



above, constraints on the self-interacting nature of DM particles allow for significant interactions
between dark matter particles.

At least one type of interaction, elastic scattering, appears to be permitted. This can take one of
two different forms, velocity dependent scattering and interactions between dark matter particles
using a constant cross section (Spergel and Steinhardt 2000 [24]). The latter case is the one I will
investigate further in the thesis. The interaction regime of interest is a cross section per unit mass
(0/m) in the range 0.1 cm? gr=! to 1.0 cm? gr—!. The reason for this interval is because it contains
the region allowed by observations and the rate of interactions is sufficiently high to be of interest
for galactic physics. In this range, with as little as one interaction per Hubble time, dark matter
structures have markedly different properties compared to those in CDM.

The most relevant feature of self-interacting dark matter (SIDM) is that the model introduces
a physical mechanism for creating dark matter cores in dwarf galaxies, by reducing the central
densities of the inner halos due to the exchange of energy from the inside out due to particle colli-
sions. Thus it can solve both the core-cusp problem and the too big to fail problem facing ACDM
(see Zavala, Vogelsberger & Walker 2013 [25]).

For constant cross section SIDM, a suitably high cross section (¢/m ~ 1 cm? gr=!) is required to
produce the desired effects while avoiding current constraints. As shown recently by Peter et al.
(Peter et al. 2013 [26]) the current upper limit on constant cross section SIDM is around o/m
1.0 cm? gr—!, from an analysis on the halo shapes of massive elliptical galaxies and clusters. This
constraint is, however, not very precise and was done using numerical simulations in a low mass
range of dark matter structures (10'® — 10'* M,). These factors motivated the present thesis.

1.6 Objectives of the thesis

e Learn the procedure for running numerical simulations of structure formation that follow
the evolution of dark matter structure across time.

e Run high resolution simulations of cluster-size halos (~ 10'® M) in CDM and SIDM.

e Develop the tools to analyze the structure of these halos and quantify the difference between
CDM and SIDM in the center of clusters.

e Discuss if those differences would make it possible to improve current constraints on the
amplitude of the dark matter elastic cross section.

2 Simulations

Computer simulations have been of particular importance in developing the structure formation
theory, serving as a tool to constrain the nature of dark matter particles and the cosmology of the
Universe. The type of simulations relevant to this thesis are N-body simulations, which, in essence,
are a discretization of the density field by a set of N particles whose gravitational interactions are
evolved numerically through time.

2.1 History of simulations

An important step in the study of dark matter was the development and use of N-body simula-
tions to study the evolution of dark matter in the universe. The history of dark matter N-body
simulations begins with Press & Schechter in 1974 [27]. They used numerical simulations to test
their analytical model for the evolution of cosmic structure from a density field with Gaussian
initial conditions. This was closely followed in 1976 by Simon White, who simulated the formation
of a Comar-like cluster (White 1976 [28]). These were pioneer studies that eventually led to the
current standard model of structure formation ACDM. The following is a summary of some of the
most important scientific events leading up to the currently favored cosmology, ACDM, rising to
preeminence.



2.1.1 Scientific events leading up to ACDM

Early 1970s Observational evidence and theoretical arguments indicated galaxies and galaxy clus-
ters might be embedded in massive dark matter structures.

1974 and 1976 First numerical N-body simulations of structure formation (using 1000 parti-
cles) were carried out by Press & Schechter in 1974 [27] and White in 1976 [28]. The very low
number of particles and edge effects made drawing conclusions problematic.

1978 White & Rees were the first to propose a galaxy formation theory in which gas condenses to
form galaxies in the centers of dark matter structures (White & Rees 1978 [29]).

Early 1980s Use of Fourier calculation of long range forces increased the number of possible par-
ticles to N= 10° (Efstathiou & Eastwood 1981 [30]) and N= 10° (Centrella & Melott 1983 [31]).
Comparison with observations was still difficult because of simplistic initial conditions, uncertainty
regarding the relationship between particles and galaxies and the relatively low number of particles.

1982 First redshift survey of galaxies, the CfA redshift survey, was published (Davis et al.
1982 [32]).

1983 Up until this time, neutrinos (HDM) had been the favored dark matter candidate. However,
it became clear that the structure formation predicted by inflationary models of HDM-dominated

universes were not reconcilable with the observed universe as revealed by the CfA redshift survey
(White, Frenk & Davis 1983 [21]).

1985 First CDM structure formation simulations were carried out (Davis et al. 1985 [33]). The
preferred cosmology in the following years was a biased Einstein-de Sitter model called Standard
Cold Dark Matter (SCDM), or in other words inflation leading to a flat universe containing no
cosmological constant and galaxy placement within dark structures biased towards higher density
regions.

1998-2000 After years of contention, ACDM became the favored cosmology when supernova data
ruled out the possibility of an Einstein-de Sitter universe (Riess et al. 1998 [34] and Perlmutter et
al. 1999 [35]) and the CMB confirmed the universe is flat (Hanany et al. 2000 [36]).

2.1.2 Modern day simulations

High resolution dark matter simulations like the Millennium (Springel 2005 [14]) and Aquarius
(Springel et al. 2008 [37]) projects have pushed the frontiers for numerical simulations leading to a
spectacular agreement with the observed large scale structure of the Universe, and unprecedented
predictions from the CDM model of the structure of our own Milky-Way halo. Simulations today
are able to follow structure formation in CDM from the scales of ~kpc within the center of dwarf
scale structures to ~Gpc tracing the large scale cosmic web (for a review see Kuhlen, Vogelsberger
& Angulo 2012 [38]). The largest simulations today have trillions of particles and are run in
supercomputer clusters, with allocated time of over tens of millions of CPU hours for the most
expensive ones.

2.2 N-body simulations

As previously mentioned, an N-body simulation is a discretization of the density field in a cubic
volume (box), containing N point particles with mass m,,, that is evolved in time according to the
physical forces present in the problem. For cosmological simulations, the box has periodic bound-
ary conditions and typically ranges in size from around 100 Mpc to tens of Gpc, containing millions
to many billions of particles. The problem to evolve is that of the evolution of the gravitational
growth of dark matter structures from an early time (z ~ 100) until today. The initial conditions
are constructed from the statistical properties of the primordial dark matter perturbations as given
by the CMB.

The only interaction in a CDM N-body simulation is Newtonian gravity. Since the continuous



density field is discretized into particles, we can then get unphysical hard scatterings between par-
ticles, if they pass sufficiently close to each other. Therefore, an important parameter for N-body
simulations is the gravitational softening, which plays a role on scales smaller than the softening
length (e). The value of the softening length is typically kept as small as possible (relative to the
scales one wishes to resolve) and is generally given by a fraction (often around 1/20 to 1/45) of
the mean interparticle separation (for a review of N-body simulations see Kuhlen, Vogelsberger &
Angulo 2012 [38]).

2.2.1 Zoom simulations

A common zoom technique is the multimass technique. It involves selecting an area of interest in a
low resolution simulation (often called the parent simulation) and re-running the simulation with
higher resolution (lower mass) particles in this region. This is done while keeping the long range
forces of gravity accurately represented, while computational resources are focused on the region
of interest.

In practice, what is done is that the particles in the region of interest are traced back in time
to their initial position in the initial conditions. These particles trace the flow of matter in the
selection region through time, so this is called a Lagrangian region. In this Lagrange volume you
recreate initial conditions for the simulation with higher spatial and mass resolution, while leaving
the rest of the volume with a lower resolution like that of the parent simulation. Usually a number
of intermediate resolution buffer regions are added around the high resolution region.

The advantage of these zoom simulations, is that you can run simulations with a large enough
box to simulate a cosmological volume but with sufficient resolution to study galaxy or cluster
sized structures, while minimizing computational time (for an introduction to zoom simulations
see Oforbe et al. 2014 [39]).

2.2.2 SIDM in simulations

The simulations used for this thesis were run with the N-body code Gadget 3 (last described in
Springel et al. 2005 [14]), with an extra module for computing interactions between the particles
(Vogelsberger, Zavala & Loeb 2012 [40]). This module computes the elastic scatterings between
pairs of particles via an N-body Monte Carlo method that implements the physical consequences
of the interactions in a statistical, probabilistic sense, with the interaction rate given by (Rocha et
al. 2013 [41])

o
Toc = Ploc — VUrms,loc (1)
My
where pio. is the local density, o/m,, is the cross section per unit mass and vyms joc i the root mean
square of the local velocity. If a pair is selected for collision, this gives rise to an elastic scattering
and the new velocities of the particles are then given by:

V; = Vem + (’U”/2)é (2)
Vj = Vem — (vij/2)é (3)

Where vy, is the center of mass velocity of the two particles, v;; is the relative velocity between
the particles and € is a unit vector randomly selected from the unit sphere.

2.3 What are the most important statistics I will analyze?

Dark matter halos are the fundamental non-linear building blocks of the Universe. Structures from
the smallest dwarf galaxies to the largest galaxy clusters appear to exist in large enveloping dark
matter halos. A halo is a gravitationally self-bound dark matter structure that has separated from
the global expansion of the Universe. Although dark matter halos are triaxial with important non-
spherical features, it is a common practice to analyze their structure through spherically averaged
radial profiles from their center.

The important statistics that will be analyzed in this thesis are the density profile and the halo



shapes, which together give a measure of the halo structure. In addition to the density as a function
of radius, I will also be examining the ratio between the minor and major axes and the intermediate
and major axes as a function of radius. I will be looking at the difference between CDM and SIDM
at different radii, in order to obtain a measure of the effect of increasing the scattering cross section.

We are interested in studying dynamically relaxed systems, which could potentially be compared
with observed clusters with no obvious sign of recent mergers. Therefore, I adopt the criteria
described in (Ludlow et al. 2012 [42]) to select a subsample of relaxed haloes from our parent
simulation (see section 2.4 below):

(i) The subhalo mass fraction must be below 10% (fsup = Mgun/Mago < 0.1). Otherwise, very
massive subhalos might perturb the halo significantly.

(ii) The distance between the center of mass of the halo and its potential minimum, in units of
the virial mass, must be less than 0.07 (dog = |rpot - o] < 0.07). A larger difference indicates a
substantial merger is in progress.

(iii) The virial ratio of total kinetic to potential energies must be less than 1.35 (2T/|U| < 1.35),
this is the criterion for virialization, dynamical equilibrium.

2.4 Description of the simulations used in the Thesis

The parent simulation I used is a 1 Gpc? box, containing 5122 dark matter simulation particles.
The zoom simulations used for the analysis have a resolution of 40963 particles for the high reso-
lution region, which means if the entire box was this resolution, it would contain 4096> particles.
This high resolution region is surrounded by regions of intermediate resolution and finally a low
resolution volume with an effective resolution of 2563 particles. The mean interparticle separation
in the initial conditions for the high resolution region is dx = 244.141 kpc h=!. For the softening
I used € = dx/45, so the softening used for the high resolution region is € = 5.42534 kpc h=!. We
run simulations in CDM and in SIDM with two values for the scattering cross section: o/m, =1
cm? gr=! (SIDM1) and o/m, = 0.1 cm? gr=! (SIDM 0.1).

We can calculate a radius that gives an indication of the lowest radius at which we can trust
the density and halo shapes profiles (Power et al. 2003 [43]) (I will return to this in section 2.6),
the so called power radius. This is done by finding the minimum radius that satisfies (the following
is based on (Springel et al. 2008 [44])):

V200 N(r) {pm] e @
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Here N(r) is the number of particles within a radius r, p(r) is the mean density within r and
perit = 3H?/(87G) is the critical density of the universe today. We have that the mean density
within r is

_ N(r)m
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where m,, is the particle mass. For an an NFW profile (Navarro, Frenk & White 1997 [45]), which
is a good description of CDM halos, the number of particles within r is given by

M,
N(r) = NEW () (6)
mp
where Mypw (r) is the mass within r:
Ts+ T T
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where 5 and ps are a characteristic radius and density, respectively. For the scale radius we can
use rs = Rapo/c, where c is the concentration, while ps; can be obtained from

5, = L — 72135, (8)
Perit
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where we have both Vj,.x, which is the maximum circular velocity, and rpy.x, the radius where
Vinax is attained, from our simulated halos using the halo catalogue information extracted with the
code SUBFIND (Springel et al. 2001). We can use 4. to find the concentration via

m o
3 In(1+¢)—c/(1+¢)

8. = (10)
giving us all we need to calculate the power radius, which we refer to as the trust radius. This is
approximately I'iyust &~ 40kpc h™! at the resolution level we use for most of our results.

To obtain the zoom simulations I did the following:

1. Pick “relaxed” halos in the parent simulation.

2. Use my own code to select the Lagrangian region containing the halo particles and surrounding
area at z=0 in the parent simulation.

3. Traceback the particles to the initial redshift z=50 using my own code, by matching the particle
ID numbers between redshifts.

4. Compute initial conditions for the zoom simulation using MUSIC (Hahn & Abel 2011 [46]),
specifying the ellipsoidal (or cuboid) region containing the particles at z=50 as the high resolution
region.

5. Run zoom simulations of each individual halo based on the initial conditions generated by
MUSIC, switching the particle interaction module for the SIDM simulations.

Of the ~40 relaxed halos found in the box with masses Mooy > 6.5 x 10" Mg, h™!, I have so
far simulated 15. These will be the ones analyzed in this thesis.

For the 15 halos, the radius within which the average density of each halo is 200 times the critical
density of the universe covers a range of Rogg &~ 1500 — 2000 kpc and we have that the mass
within Rago covers a range of Mooy ~ 0.8 — 1.9 x 10'®> M, with a high resolution particle mass of
m, = 1.271 x 10° Mg.

Figure 1 shows the distributions in Msgy and Rsggg for the 15 halos simulated for this thesis.

Except for the most massive cluster, the sample has a narrow distribution centered around Msgg ~
0.9 x 10'° M@ h~! and Rogp ~ 1550 kpc h—!
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Figure 1: The distribution of virial masses and radii for the 15 simulated CDM halos used
in this thesis. Left: Number of halos vs virial mass. Except for one outlier near 1.9 M,
h=1, we have a heavily peaked distribution around 0.9 Me =1, Right: Number of halos
vs virial radius. We see a peaked distribution around 1550 kpc h™', with the same halo as
before showing up as an outlier at near 2000 kpc h='. For the SIDM 1 and SIDM 0.1 halos
(not shown) the distributions are virtually the same, because SIDM does not alter the virial
mass or radius of a halo in any significant way.

2.5 Analysis tools

Density profiles. In order to obtain the density profile of the simulated halos, the center of the
potential is taken as the center of the halo. From here the density is calculated in concentric radial
shells by summing up the mass of the particles and dividing by the volume.

Halo shapes code. For the purpose of determining the halo shapes of the simulated dark matter
halos, I created a halo shapes code based on the methods described in Zemp et al. 2011 [47]. The
method in question uses the eigenvectors and eigenvalues of the shape tensor of the distribution
of particles, in order to determine the orientation and magnitude of the principle axes of the halo.
In essence the code divides the halo into a number of ellipsoidal shells and for each shell itera-
tively finds the shape of the shell by calculating the eigenvectors and eigenvalues of the momentum
shape tensor of the shell particles, until convergence of the eigenvalues is obtained. It typically
takes between 20 to 40 iterations for convergence to be obtained, but a low number of particles
or a very spherical system can cause the code to struggle and not converge in a reasonable time
frame. For each iteration, the code deforms the volume of the ellipsoidal shell according to the pre-
vious result, while keeping the size of the major axis constant. This means a new set of particles is
selected for each iteration, until convergence is obtained and the set of particles is roughly constant.

Central to the halo shapes code is the shape tensor. From Zemp et al. 2011 [47] we have the
definition of the shape tensor as

M [, p(r)rrTdV

S —
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(11)

where p is the density and r is the radius. Moz = fV p(r)dV is the total mass of the system and
M describes the matter distribution of the system and is related to the moment of inertial tensor
via

I=tr(M)1-M (12)
where 1 is an identity tensor. Discretizing the individual elements of the shape tensor we have:

o Dok Mu(rr)i(rr);
Sij = S (13)




Where my, is the mass of the k’th particle (in our case all the particles in the high resolution region
have the same mass) and (ry); is the i’th component of the position vector of the k’th particle.
Likewise with (rj); for the j’th component. In our case the mass cancels and we are left with:

Sij =Y _(rr)i(rs); (14)

k

Which is the fundamental equation of the halo shapes code.

I implemented additional options in halo shapes code for variable particle mass and a number
of different halo shapes methods. Depending on which flag is set, the code can either keep the
major axis of the shell fixed (as described above) or the volume of the shell constant. There is
also the option to calculate the halo shapes based on the entire enclosed mass (as opposed to
a shell) or weight the contribution of each particle to the shape tensor by the elliptical radius

2
Tell = \/ xgu + (b%l)z + (C%“)z, where Ze1, yeu and zep is the distance along the principal axes of the
ellipsoid and a, b, ¢ are the major, intermediate and minor axes, respectively.

2.5.1 Test of halo shapes code

I tested my halo shapes code with a number of halos with known properties and the code success-
fully and consistently obtained halo shapes estimates very close to the true halo shape. The halos
were generated using Marcel Zemp’s HALOGEN code (Zemp et al. 2008 [48]). I used halos with
a number of different shapes, including halos that were very spherical, prolate or oblate and halos
rapidly increasing or declining in ellipticity as a function of radius. Additionally, I used different
density profiles given by

p(r) = ps/1(r/rs) 1L+ (r/75) 1B = ) /o] (15)

where ps and r; is scale density and radius, respectively. I set « =1, 5 = 3 and v = 1 to obtain an
NFW profile with cuspy central densities and v = 0 to obtain a profile with cored central densities.

I tested the different methods of the halo shapes code outlined above (see section 2.5), the
most accurate ones are shown in Figure 2. We see that the method keeping the size of the major
axis fixed is the most successful method, and this is the method I will be using in the remainder
of the thesis.

The code has a tendency to slightly overestimate, by about 8-9% for well converged bins, the
axis ratios for halos increasing in ellipticity with radius (see left column of Figures 3 and 4) and
slightly underestimate by a similar amount, the axis ratios for halos with decreasing ellipticity
(see right column of Figures 3 and 4). Additionally, I find that the code struggles to estimate
halo shape of very spherical systems, and results for such systems cannot be trusted to more than
approximately 10%.

However, the most severe constraint on the accuracy of the code is particle number within a
given ellipsoidal shape, as is seen by comparing the inner structure (< 100 kpc) of the halos in
Figures 3 and 4. The former has a cuspy density profile (resembling CDM halos) and thus more
particles in the inner region, whereas the latter has a cored density profile (resembling SIDM halos)
and therefore fewer particles in the center. Obtaining convergence for shells with much fewer than
O(10%) particles is often problematic and results are less accurate (or simply fail to converge). This
is seen for the inner bins in Figure 4, where the results are overestimated or underestimated by as
much as about 20%. This is something to keep in mind if we attempt to analyze SIDM (cored)
halos close to center. For the analysis in this thesis I used a minimum of O(10%) particles (1500
for the initial spherical shell).
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Figure 2: Comparison of the most accurate halo shapes methods of my code, using known
halo shape profiles created using HALOGEN (Zemp et al. 2008 [48]). The figure shows the
ratio of the minor (c) to major axis (a) vs radius, with the analytical halo shape profile used
in HALOGEN indicated by a black dotted line (v = 0 was used for the density profile, see
eq 15). The vertical dashed line marks ten times the softening for this simulation. Above
this line the different methods are reliable. We see that the method with the size of the
magjor axis fived (red bins) is somewhat more accurate than the methods keeping the volume
of the shells constant (black and blue bins). For the rest of the thesis we will be using only
the fixed major axis method.

11



1.0 ‘ 1.0 ‘
| |
1 1
*—eo I 1
0.8F. , g—o—g 0.8F !
: ol o i
re 188 o ' g e
R | e
0.6 ‘ Se—g 0.6 w P o
. 8 o | e e—a
© [ T8 © e e
D) ! Rz o S =
0.4+ | 0.4r "s—o—o |
I e 1
) |
| |
0.2¢ ! . 0.2F ! 4
| halogen shape profile | halogen shape profile
| |
' | #—= halo shapes code ' | == halo shapes code
0'0 L 1 1 0'0 1 1 1
10! 10° 10° 10! 10° 10°
Radius [kpc] Radius [kpc]
1.0 ‘ .
88 o |
sale R 8 J
: I
| |
0.6F I I
| |
o } o }
Q I Q I
0.4 ! 0.4t |
I I
1 |
| |
0.2¢ ! 4 0.2¢ ! 4
| halogen shape profile | halogen shape profile
| |
Lo halo shapes code Lo halo shapes code
0.0 ! . . 0.0 ! . .
10! 10° 10° 10! 10° 10°

Radius [kpc]

Radius [kpc]

Figure 3: The halo shapes for two distinct halos with cuspy central densities (v = 1, see
equation 15). The analytical halo shape profiles are shown by black dotted lines. The black
dashed line indicates ten times the softening, which is a measure of a radius above which we
can trust the halo shapes results, and the red bins show the result of my halo shapes code.
Top row: Ratio of the size of the minor to major axis vs radius. Bottom row: Likewise
for the intermediate and major azes. Left column: We clearly see the halo shapes code
slightly overestimates, by ~ 8%, the halo shape profile of halos declining in sphericity with
radius. Right colummn: Similarly, for halos increasing in sphericity with radius the code
underestimates, again by about ~ 8%, the halo shape profile.
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Figure 4: Similarly shows the halo shapes, but for two v = 0 halos (see equation 15)
with cored central densities. The results from the halo shapes code is shown as red bins
and the analytical halo shape profiles are denoted by black dotted lines. A measure of the
radius beyond which we can trust the results is indicated by ten times the softening as
a black dashed line. Top row: Ratio of the size of the minor to major axis vs radius.
Bottom row: Likewise for the intermediate and major azes. Left column: We see that
for halos with increasing ellipticity with radius the halo shapes are again overestimated (see
Figure 3), by less than ~ 10%, for the well converged bins. However, we see that due
to the low number of particles at lower radii (because of the cored central densities of the
halos), the halo shapes code struggles to converge and overestimates the halo shape by as
much as ~ 20%. Right column: Again the code underestimates, by less than ~ 10% the
halo shape for halos decreasing in ellipticity with radius, but struggles close to the center,
underestimating the halo shape by almost ~ 20%.

2.6 Convergence

I did a number of convergence tests for one of the halos (the most massive one) in order to eliminate
numerical artefacts. I do convergence tests across resolution, the size and type of the Lagrangian
region. The properties of interest in these tests are the density profile and the halo shapes. I
also checked the level of contamination, i.e. the number of lower resolution particles in the high
resolution region, which I found to be non existent to negligible.

In order to test which type of Lagrangian region was optimal (cuboid or ellipsoidal around a
halo of interest), I ran simulations with resolutions corresponding to 20483 and 40963 particles for
the high resolution region. I did not find any significant difference between ellipsoidal and cuboid
Lagrangian volumes, so I used an ellipsoidal Lagrangian region for the rest of the simulations, in
order to save computational time, due to its reduced volume (see Figure 5, the differences are at
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the percent level for r>rgust).

For testing the size of the ellipsoidal Lagrangian region, I used a fixed resolution correspond-
ing to 40962 particles for the high resolution region and I varied the size of the ellipsoid to include
12, 13, 15 and 17 times the virial radius of the halo (Ry). I found some numerical artefacts using a
Lagrangian region size of 12 Ry, whereas 13, 15 and 17 Rv did not display significant differences.
In order to save computational time, I used a Lagrangian region size of 13 R, for the rest of the
simulations.

For the resolution tests I used three different levels of resolution for the zoom region corresponding
to 20483, 40963 and 81923 particles (see Figure 6). This figure gives a quick impression of the
differences between resolution levels and it also shows the main features that distinguish SIDM
halos from CDM ones: A central spherical core instead of a cuspy triaxial central region. As antic-
ipated, a resolution corresponding to 20483 particles does not resolve the inner halo structure to
the degree necessary to fulfill our objectives, while a resolution corresponding to 40963 particles is
reasonably well converged (to 3¢ for the density profile and ry,.,s¢ for the halo shapes) with respect
to that of the highest resolution I ran (81923) (see Figure 7). Although using a higher resolution
corresponding to 81923 particles would be able to provide a clearer picture of the inner halo struc-
ture of the simulated halos, the computational time to run a suitable number of simulations was
prohibitive relative to the scope of the project (taking 5-10 times longer per simulation).

. 1.0, : Y
10° ! ' e—e CDM Lagr. size 2p5
: ol - e—e CDM Lagr. size 3
—_ ! ! e— CDM Lagr. size 4
.?U 107 ! ! e—e CDM Lagr. size 5
g E 0.6 E
2 106 L E g -E—- —4
.‘? ‘ 0.4r H'_%E‘g%
g e—e CDM, Lagr. size 2p5 'f:‘_‘
O 105L| =—e CDM, Lagr. size 3 . '
e—e CDM, Lagr. size 4 i
e—e CDM, Lagr. size 5 E
10° 107 107 10° 0'100'2 ' 107 10°
R/Rv R/Rv

Figure 5: Conwvergence plots for the Lagrangian region size. In the legend size 2p5, 3, 4
and 5 denote sizes of 12 (blue), 13 (green), 15 (red), 17 (black) times the virial radius
respectively. The vertical dashed lines indicate the trust radius. Left: Density vs radius
scaled by the wvirial radius. The figure shows the density profile of zoom simulations of
the most massive halo. We see the Lagrangian region size has virtually no effect on the
profile. Right: Ratio of minor to major axis for the same four CDM simulations of the
most massive halo. We see that beyond the trust radius they are all fairly close within a
few percent, except for the 12 Rv simulation, which shows some difference.
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Figure 6: Visualization plots showing the projected density for y vs x. Left column: CDM
simulations of the most massive halo at resolution levels 2048, 4096 and 81923, from
top to bottom. We see the effect of resolution in resolving substructure and we can see the
highly triaxial cuspy central density. Right colummn: SIDM 1 simulations of the same
halo at the same resolution levels. We see the cored central density typical of SIDM, with

a more spherical central density. 15
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Figure 7: Convergence plots for the resolution. The most massive halo was simulated in
a CDM cosmology at three different resolution levels: 2048 (denoted 11, in blue), 4096°
(denoted 12, in green) and 8192% (denoted 13, in red). Left: The density vs the radius
scaled by the virial radius. The vertical dashed lines indicate the trust radius (3 times
the softening for the density profiles) for each of the three resolution levels (low in blue,
intermediate in green and high in red). We see that the low and intermediate resolution
density profiles are well converged beyond the trust radius, when compared to the high
resolution one. Right: The ratio of minor to major axis vs radius scaled by the virial
radius. The vertical dashed lines indicate the trust radius for each resolution level (low
in blue, intermediate in green), please note the red (high resolution) would be to the left,
outside the figure. We see that outside the trust radius for a given resolution, the halo
shapes are converged, to within a few percent, for the low and intermediate resolutions,
when compared to the high resolution simulation.

3 Results

3.1 Density profiles

I created combined density profile distributions for each of the three types of simulations, CDM,
SIDM1 and SIDMO.1, for all our simulated halos (i.e. stacking all 15 halos). This is shown in
Figure 8, where the central lines are the medians of the distributions and the shades of the regions
indicate the one sigma regions of each distribution.

Figure 8 shows important differences between CDM and SIDM above the minimum radius we
can trust for all our halos (R/R, ~ 1072, dashed line). The SIDM 1 halos have a clear core with
a size of Reore ~ 6 x 1072 with a central density of ~ 6 x 10° Mg kpc™3, a factor of ~ 7 smaller
than CDM at R/Ry ~ 1072. The SIDM 0.1 case is much closer to CDM, but our resolution is
enough to clearly separate the halo distributions (at the 1 o level) at R/R, ~ 1072, This is a
radius well within the inner region of the clusters (~ 15 kpc), where the effects of the luminous
matter in the dark matter distribution are quite important. This makes the level of 0.1 cm? gr—!
a difficult target to reach using DM-only simulations. The situation near a value of 1.0 cm? gr—!
is very different, here there is a clear separation already at ~ 100 kpc, far from the influence of
baryons. Our simulations can then be used with confidence to constrain SIDM at this level.
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Figure 8: Density vs radius scaled by the virial radius (R/Ry ). Shown is the density profile
of a distribution of 15 cluster-size halos, where the radius of each halo is scaled by its
virial radius, for each of the three different types of simulation (CDM in blue, SIDM 0.1
in green and SIDM 1 in red). The median of each distribution is shown as a solid line
and the shaded region indicates the standard deviation of the distribution. The dashed line
indicates three times the softening (€) of the simulations scaled by the virial radius of the
smallest halo, which is the radius to which we can reliably trust the stacked density profiles.
As expected, we clearly see cored central densities for the SIDM 1 halos and also a clear
tendency at R> 3e towards less cuspy central densities for the SIDM 0.1 halos.

3.2 Halo shapes

I created combined (stacked) halo shapes profile distributions in the form of the principal axis
ratios ¢/a and b/a, for all our simulated halos. This is shown in Figure 9, where the central lines
indicate the medians of the distributions and the shaded regions indicate the one sigma regions of
the distribution.

Figures 9 and 10 show that already with the sample of halos I have simulated, we can use the
halo shapes to distinguish CDM from SIDM 1 for massive clusters within most of the radial range;
except very close to the virial radius. Although my halo shapes code has some problems around
the trust radius, we can clearly see that between 5 x 1072 < R/R, < 3 x 107! the SIDM 1 and
CDM distributions do not overlap at the ~ 1o level.

Although the code has some biases (see section 2.6), they are expected to be of similar magni-
tude for both CDM and SIDM 1, therefore we are optimistic that our simulations can be used to
reliably test the amplitude of a possible dark matter cross section 1.0 cm? gr—'. We notice that at
the 1 o level, the halo shapes separate at larger radii than the density profiles, making this method
potentially more free of baryonic effects.

The SIDM 0.1 case is unfortunately too close to CDM even at the lowest radii we can trust. A
more detailed analysis of the actual distributions of ¢/a (b/a) at a small fixed radius might indicate
to which extent we can separate both cases.
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Figure 9: Ratio of the minor to major azis (c/a) vs radius scaled by the virial radius of
each halo (R/Ry). The figure shows the combined distribution of 15 halos of each of the
three different simulation types (CDM in blue, SIDM 0.1 in green and SIDM 1 in red).
The central line for each distribution is given by the median of the distribution and the
standard deviation is indicated by the shaded region. The trust radius (see section 2.4)
is indicated as a vertical dashed line. We see that for the SIDM 1 distribution (red), the
trust radius is too optimistic. This is due to the cored central densities of these halos
(see Figure 8), resulting in too few particles for the halo shapes code to reliably converge.
Nevertheless, the differences between SIDM1 and CDM are clear at all radii. We see a hint
of divergence between the CDM (blue) and SIDM 0.1 (green) distributions at R/R, < 0.1,
but unfortunately the statistics are too poor to draw any firm conclusions. With an increased
number of halos it should be possible to quantify this divergence.
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Figure 10: Similar to the c/a plot (see Figure 9), but instead showing the ratio of the
intermediate to major axis (b/a) vs the scaled radius (R/Ry). Again we see a hint of a
divergence between the SIDM 0.1 (green) and CDM (blue) distributions, but better statistics
(more halos) are required to draw any sound conclusions. The difference between SIDM 1
and CDM is clear at most radii.

3.3 Assembly history

The mass assembly history was constructed by a code I created that traces each halo back from
z= 0 through successive snapshots, picking the most likely progenitor based on mass proximity
and on distance from the selected halo in the previous (lower redshift) snapshot.

Figure 11 shows the mass assembly history for all our 15 halos for the CDEM case. The clusters
acquire mass through slow smooth accretion and a few merger events (clearly visible in the plot
for some of the halos as sudden jumps in the curve).

The purpose of having the mass assembly histories for our halos is to try to understand the
dispersion in the density profiles of halos of similar mass. At a fixed radius, it is well known that
more massive halos are denser than less massive ones, while (at a fixed mass) more concentrated
halos form earlier than less concentrated ones.

We use a simple measure for the “formation” time of a halo as the redshift where it acquires
half of its mass today. This gives us a way to explore if the dispersion in the density profiles is
related to when the halos assembled most of their mass.

Figure 12 is a first attempt to make this exploration, it shows the density at a fixed radius (4¢)
as a function of Vy,.x (a proxy of halo mass) for the different halos and cosmologies. The size of
the symbols are proportional to the formation redshift, larger symbols corresponds to halos formed
earlier. As expected for CDM, more massive halos (larger V.. ) are denser than less massive ones.
This correlation is more or less preserved in the SIDM 0.1 case, while it disappears for SIDM 1 (see
Figure 12 of Rocha et al. 2013 [41]). With the low number of halos we have, we detect no clear
trend with formation redshift, but notice that the dispersion in SIDM 1 is smaller than in CDM.
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Figure 11: Halo mass assembly history for our sample of halos: The virial mass as a
function of redshift, scaled by Mooy at z= 0, vs redshift. We see halo growth by smooth
accretion and some merger events indicated by large jumps in the mass of the system. The
halo mass assembly history is almost identical for the SIDM halos, as SIDM does not in
any significant way alter the virial mass of the halo.
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Figure 12: Density at four times the softening vs the mazimum velocity of the halo (a prozy
of halo mass). The type of simulation is shown by the color (blue for CDM, green for SIDM
0.1 and red for SIDM 1) and the symbol size indicates the square of the formation redshift
(where the halo had obtained half its mass); meaning smaller symbols denote halos more
recently formed whereas larger symbols indicate older halos. For the CDM (blue) and SIDM
0.1 (green) halos we see a mild correlation between the central density and the maximum
velocity of a halo. We also see that SIDM 0.1 and SIDM 1 (red) have a slightly narrower
distribution (lower dispersion) of around a factor of 2 compared to CDM which has around
a factor of 3, indicating a smaller scatter in the central densities of SIDM halos.

4 Conclusion

I have performed high resolution N-body simulations of cluster-size dark matter halos within the
Cold Dark Matter and Self-Interacting Dark Matter cosmologies. For the latter I used two values
for a constant dark matter self-scattering cross section: 0.1 cm? gr=! (labeled SIDM 0.1) and 1.0
cm? gr=! (labeled SIDM 1). These values cover the interesting range where constant cross section
SIDM is both allowed by observations and provides a solution to the structural problems of CDM
at small scales.

After developing a set of analysis tools, more importantly a code to compute the principal axes
of ellipsoidal shells centered in a halo, I have analyzed the structure of a sample of 15 cluster-size
halos.

I have found that statistically I can differentiate SIDM halos from the CDM ones at the 1 o
level of a radius of ~ 15 kpc (100 kpc) for a cross section per unit mass of 0.1 cm? gr=! (1.0 cm?
gr~1). Given the impact of luminous matter in the inner dark matter distribution, I conclude that
our DM-only simulations can potentially be used to constrain values close to 1 cm? gr—!, but likely
not much lower.

The halo shapes, as given by the ratios of the principal axes, can also be used reliably to
constrain the 1.0 cm? gr=! at even larger radii (a factor of a few) than in the case of the density
profiles.
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I performed a preliminary analysis of the dispersion of the distribution of density profiles and
found that it is lower in SIDM than in CDM. In the latter there is a mild correlation with halo
mass that disappears in SIDM 1. T also explored if the formation time of a halo (defined as the
redshift where the halo acquired half of its mass today) plays any role in this dispersion, but found
no clear trend.

For the future this work can be used to compare with the structure of observed galaxy clusters,
by comparing the results obtained with the density profile and halo shapes obtained from X-Ray
and Weak Lensing observations.
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