A Carbon/Oxygen-dominated Atmosphere Days after Explosion for the "Super-Chandrasekhar" Type Ia SN 2020esm

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Georgios Dimitriadis
  • Ryan J. Foley
  • Nikki Arendse
  • David A. Coulter
  • Wynn Jacobson-Galan
  • Matthew R. Siebert
  • David O. Jones
  • Charles D. Kilpatrick
  • Yen-Chen Pan
  • Kirsty Taggart
  • Katie Auchettl
  • Daniel Kasen
  • Anthony L. Piro
  • Enrico Ramirez-Ruiz
  • Armin Rest
  • Jonathan J. Swift
  • Stan E. Woosley

Seeing pristine material from the donor star in a type Ia supernova (SN Ia) explosion can reveal the nature of the binary system. In this paper, we present photometric and spectroscopic observations of SN 2020esm, one of the best-studied SNe of the class of "super-Chandrasekhar" SNe Ia (SC SNe Ia), with data obtained 12 to +360 days relative to peak brightness, obtained from a variety of ground- and space-based telescopes. Initially misclassified as a type II supernova, SN 2020esm peaked at M-B = -19.9 mag, declined slowly (Delta m(15)(B) = 0.92 mag), and had particularly blue UV and optical colors at early times. Photometrically and spectroscopically, SN 2020esm evolved similarly to other SC SNe Ia, showing the usual low ejecta velocities, weak intermediate-mass elements, and the enhanced fading at late times, but its early spectra are unique. Our first few spectra (corresponding to a phase of greater than or similar to 10 days before peak) reveal a nearly pure carbon/oxygen atmosphere during the first days after explosion. This composition can only be produced by pristine material, relatively unaffected by nuclear burning. The lack of H and He may further indicate that SN 2020esm is the outcome of the merger of two carbon/oxygen white dwarfs. Modeling its bolometric light curve, we find an Ni-56 mass of 1.23(-0.14)(+0.14) M-circle dot and an ejecta mass of 1.75(-0.20)(+0.32)M(circle dot), in excess of the Chandrasekhar mass. Finally, we discuss possible progenitor systems and explosion mechanisms of SN 2020esm and, in general, the SC SNe Ia class.

Original languageEnglish
Article number78
JournalAstrophysical Journal
Volume927
Issue number1
Number of pages16
ISSN0004-637X
DOIs
Publication statusPublished - 1 Mar 2022

    Research areas

  • WHITE-DWARFS, LIGHT CURVES, THERMONUCLEAR EXPLOSIONS, OPTICAL-SPECTRA, MASS, EVOLUTION, DISTANCE, PROJECT, 2011FE, SAMPLE

ID: 302552733