Pairing in the two-dimensional Hubbard model from weak to strong coupling

Research output: Contribution to journalJournal articlepeer-review

Documents

The Hubbard model is the simplest model that is believed to exhibit superconductivity arising from purely repulsive interactions and has been extensively applied to explore a variety of unconventional superconducting systems. Here we study the evolution of the leading superconducting instabilities of the single-orbital Hubbard model on a two-dimensional square lattice as a function of onsite Coulomb repulsion U and band filling by calculating the irreducible particle-particle scattering vertex obtained from dynamical cluster approximation (DCA) calculations, and compare the results to both perturbative Kohn-Luttinger (KL) theory as well as the widely used random phase approximation (RPA) spin-fluctuation pairing scheme. Near half-filling, we find remarkable agreement of the hierarchy of the leading pairing states among these three methods, implying adiabatic continuity between weak- and strong-coupling pairing solutions of the Hubbard model. The d(x)(2)-(2)(y) - wave instability is robust to increasing U near half-filling as expected. Away from half-filling, the predictions of KL and RPA at small U for transitions to other pair states agree with DCA at intermediate U as well as recent diagrammatic Monte Carlo calculations. RPA results fail only in the very dilute limit, where it yields a d(xy) ground state instead of a p-wave state established by diagrammatic Monte Carlo and low-order perturbative methods, as well as our DCA calculations. We discuss the origins of this discrepancy, highlighting the crucial role of the vertex corrections neglected in the RPA approach. Overall, a comparison of the various methods over the entire phase diagram strongly suggests a smooth crossover of the superconducting interaction generated by local Hubbard interactions between weak and strong coupling.

Original languageEnglish
Article number013108
JournalPhysical Review Research
Volume2
Issue number1
Number of pages9
DOIs
Publication statusPublished - 31 Jan 2020

    Research areas

  • WAVE SUPERCONDUCTIVITY, SPIN-FLUCTUATION, INSTABILITIES, MECHANISM

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 255043349