
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

Angular distributions of
atmospheric leptons via
two-dimensional matrix

cascade equations

Master of Science Thesis

Tetiana Kozynets

Supervisor
D. Jason Koskinen

Date
31st October, 2022



Abstract

Hadronic interactions of cosmic rays in the atmosphere induce rich cascades
of daughter particles, including atmospheric neutrinos and muons. The atmo-
spheric neutrino flux constitutes the main signal for neutrino oscillation mea-
surements in experiments such as IceCube, KM3NeT, and Super-Kamiokande,
and an accurate prediction of the flux expected prior to oscillations is crucial.
This requires comprehensive modelling of the evolution of hadronic cascades
in the atmosphere, which is unfeasible to do analytically. The Monte Carlo
simulations, on the other hand, remain computationally expensive and lack
flexibility when it comes to the investigation of systematic uncertainties.

These complications are mitigated in the numerical Matrix Cascade Equa-
tions (MCEq) code, which solves the system of coupled di↵erential equations
for particle production, interaction, and decay at extremely low computa-
tional costs. Previously, the MCEq framework included longitudinal-only
development of air showers, which is a su�cient approximation for mod-
elling neutrino fluxes at energies of O(10GeV) and above. However, the
mentioned experiments are expected to be sensitive to neutrino energies
of a few GeV and below within the next decade, following the deployment
of the IceCube-Upgrade, KM3NeT/ORCA, and Hyper-Kamiokande, respec-
tively. Since the lateral component of hadronic cascades becomes important
at these low energies, three-dimensional calculation schemes are required for
precision calculations of atmospheric neutrino angular distributions.

The necessary transition step between the one-dimensional and the three-
dimensional treatments is a two-dimensional calculation, which takes into
account the angular development of the air showers due to the deflection
of the cascade secondaries from the primary cosmic ray axis. In this thesis,
we develop a novel numerical technique for the combined longitudinal and
angular evolution of the air showers using the MCEq code. By comparing our
numerical solutions to those obtained with the standard Monte Carlo code
CORSIKA, we show that our tool (dubbed “2D MCEq”) is fast and accurate.
This work is therefore providing a compelling alternative to the Monte Carlo
codes and pushing the atmospheric neutrino flux calculations to the frontier
of computational performance and precision.
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Statement of contributions

This work develops an extension to an existing software framework, MCEq,
which was written and is maintained by Anatoli Fedynitch [1, 2]. The idea
to treat angular development of hadronic cascades as convolutions, which
draws inspiration from image processing techniques, belongs to A. Fedynitch.
Based on this idea and the numerical formulation of the one-dimensional
cascade equations within the 1D MCEq framework, I have developed the
two-dimensional cascade theory in angular and frequency domains and have
independently performed all of the computations and code development
thereon. Notable exceptions are the usage of the public impy interface [3] for
running hadronic interaction models, which was also developed primarily by
A. Fedynitch, as well as the model-to-matrix conversion tool. This tool was
written by A. Fedynitch for the pre-generation of the 1D MCEq histograms
and extended by me to include the production of the 2D MCEq matrices. The
large-scale Monte Carlo simulations necessary to produce these matrices were
performed by me on the DiCOS computing clusters at Academia Sinica, with
access granted to me by A. Fedynitch. The integration of all the 2D MCEq
methods into the MCEq framework was performed by me independently,
except for the implementation of the energy losses due to ionization, which
fully follows that of 1D MCEq and was not re-implemented in this work. All
of the CORSIKA simulations used to cross-check the 2D MCEq results were
run by me independently. Unless explicitly stated in the figure/table captions,
all of the figures/tables in this thesis are my original work.

The early stages of this project were presented by me at multiple scien-
tific conferences, including VLVnT-2021, ICRC-2021, Nordic Physics Days
2021, and NEUTRINO-2022. The proceedings of the ICRC-2021 conference
were published in [4] and are included in the appendices of this thesis. The
NEUTRINO-2022 poster was also published online [5].
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chapter 0
Introduction

The discovery of cosmic rays and their “terrestrial imprint” in the form of
atmospheric air showers marked a crucial milestone in the astroparticle
physics research. The advances in the cosmic ray detection techniques
uncovered the existence of a plethora of elementary particles and provided the
first peek into their intricate dynamics – from creation in energetic collisions
to numerous re-interactions and eventual spontaneous disintegration. These
complex “cascading” processes have been successfully replicated at the
man-made particle collider facilities, yielding even more insight into the
building blocks of matter and the nature of their mutual interactions. Yet,
as the cosmic rays maintain superiority in the range of accessible energies
and constantly bombard the Earth’s atmosphere from all directions, the air
showers continue to provide a unique source of data for probing fundamental
physics.

This chapter will review the historical trails that led to the discovery of cosmic
rays and air showers, setting up the stage for the main actors in this thesis –
the atmospheric leptons (neutrinos and muons). We will explain why, while
being a mere “byproduct” of cosmic ray interactions in the atmosphere, these
particles are at the forefront of modern particle physics research, and thus
motivate the need to model their production and propagation with great care.
With this motivation in mind, we will outline the essence of this work – the
development of a novel numerical approach to air shower modelling, with
a particular focus on the atmospheric lepton fluxes and the energy regime
where the geometry of the air shower development becomes important.
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0 .1 historical overview

It was a seemingly mundane question, and a tedious investigation into it
that followed, that jump-started an eventful century of cosmic ray research.

In 1785, the father of electrostatics Charles-Augustin de Coulomb [6] discov-
ered that the charged spheres in his torsion balance experiment eventually
underwent a discharge, which was not expected as they were enclosed in an
electrically insulated electrometer. This observation turned the community’s
attention to the conductivity of air – as the latter could then be the medium
through which the charge flows out of the electrometer – and in particular,
towards the reason why air becomes conductive. The existence of a source of
ionizing radiation penetrating the air was a plausible hypothesis, confirmed
in 1899 by Elster and Geitel [7]. Importantly, they showed that the discharge
could be reduced if the device were put into a thick metal box, which pointed
towards a literal “outside the box” solution in the form of external ionizing
agents. Yet, this conclusion left the discharge problem enthusiasts with the
entire 4⇡ solid angle around the metal container to explore.

The first attempt to cover some portion of the 4⇡ with experimental ev-
idence was to, perhaps most naturally, look down. In 1909, Theodor Wulf
conducted a series of discharge measurements using his own two-string elec-
troscope and concluded that the sources of ionizing radiation must be located
up to 1m below the surface of the Earth [8, 9]. Importantly, thanks to the
discovery of radioactivity by Becquerel just 13 years earlier [10], Wulf could
associate the claimed underground sources with radioactive �-isotopes, and
thereby “blame” the discharge phenomenon on the �-radiation. According
to Wulf, any possible contribution to the ionization rate coming from the
atmosphere itself had to be negligibly small and impossible to measure.

In 1910, a contradicting piece of evidence came from Domenico Pacini,
who continued the attempts to “look down” but added the twist of relocating
from land to open sea to do so. At distances of nearly 500m away from
the shore, where the water depths were larger than 4m, Pacini could safely
neglect any ionization sources hiding in the soil. Surprisingly, using the
same Wulf-type electrometer, Pacini found that the discharge-responsible
ionization on the sea constituted nearly 2/3 of its terrestrial levels. At the
same time, the ionization rates decreased significantly when the container
with the electrometer was submerged in water [11, 12]1. This meant that a
sizeable portion of the radiation must come from the atmosphere... and that it
was finally time to look up.

It is worth noting that the idea of performing a dedicated measurement of
the ionization rate in the atmosphere itself was entertained even earlier (i.e.,
prior to Pacini’s findings) by Franz Linke [14]. Between 1902–1903, he carried
out multiple balloon flights up to an altitude of 5500m and measured the

1See also [13] for translation.
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discharge in a gold leaf electrometer as a function of altitude. He found that
the ionization rate at 1000m above the Earth’s surface dropped compared
to the sea level, which was consistent with Wulf’s hypothesis that most of
the radiation must come from the isotopes in the upper layers of the Earth.
However, this expected initial decrease in the ionization rate was followed by
an increase – so dramatic that at at the maximum altitude of Linke’s flights it
exceeded the ionization levels at Earth by a factor 4.

While Linke’s measurements were not taken seriously at the time, the
work of Pacini could not be as easily overlooked. Further evidence of the
existence of the ionizing radiation in the atmosphere was once again sought
by Wulf, who carried his electrometer to the top of the 300m-high Ei↵el
tower in 1910 [15]. In parallel, Albert Gockel condected a series of balloon
flights in Switzerland, where he measured the ionization rate up to 4500m
above the sea level [16, 17]. Both studies found no increase in the ionization
rate with the altitude, although the observed decrease was much smaller
than expected had the Earth’s radioactivity been solely responsible for the
electrometer discharge.

The dispute was solved by Victor Hess, who took the balloon measure-
ments to the next level of precision. In particular, he conducted measurements
during both day and night to check if solar activity had any influence on the
ionization rate, and brought separate electrometers to measure �- and �-
radiation as a function of altitude. When Hess reached the highest altitude
of his flights in 1912 (4800m), he could make three conclusions with great
confidence [18]. First, after the slight initial decrease, the ionization rate
showed an increase as a function of altitude for all three electrometers he
brought on board – suggesting that the highly penetrating ionizing radiation
must be entering the atmosphere from above, and thus confirming the previous
study by Linke. Second, Hess found no di↵erence in the ionization rate

Figure 0.1 – Altitude
dependence of the

ionization rate [18–20].

measurements between day and night, excluding the possibility of the Sun
being the prime source of this radiation. And third, as the altitude depen-
dence of the ionization rate was similar between the � and the � detectors,
both must have been either the primary constituents of the incident radiation
or its secondary products upon entering the atmosphere. In 1913–1914, the
findings of Hess were confirmed by Kolhörster, who reached a record altitude
of 9300m during his balloon flight and measured the � ionization rate which
exceeded, by a factor 4, that recorded by Hess at 4800m [19, 20]. Twenty years
later, the characteristic altitude dependence found by Hess and Kolhörster
was continued by Regener all the way up to 30 km above the sea level [21].

Despite the remaining skepticism regarding the apparent extraterrestrial
origin of the discovered ionizing radiation, the arguments in its favour solid-
ified by the late 1920s. At this point, the focus shifted to the nature of the
radiation rather than its origin – and in that regard, significant advances were
made thanks to the emerging new technology. The early images fromWilson’s
cloud chamber, where the exposure of the water vapour to the ionizing radia-
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tion led to the formation of water droplets around the electron-stripped ions,
already showed several straight tracks. In 1927, Skobelzyn (by pure accident)
also found two high-energy tracks in his cloud chamber photographs – an in
a dedicated follow-up observation, discovered 32more [22]. The estimated
energy of these tracks (>15MeV) pointed to their association with the cosmic
rays, and the very fact that they were visible in the cloud chamber – to them
being electrically charged. Further evidence supporting the “charged parti-
cle” nature of the cosmic radiation came from the measurements with the
Geiger-Müller counter, which was developed by Geiger and Müller in 1928
[23]. The operational principle of the counter consisted in accelerating the
knock-on electrons using a strong electric field, causing further ionization
of the gas filling the counter tube and the subsequent multiplication of the
electron cascade. While the Geiger-Müller detectors successfully triggered on
the incident charged radiation, there was no way to tell from the response of
a single detector whether the charged particles are a “soft” secondary compo-
nent of the primary cosmic radiation, or a part of the primary radiation itself.
The stakes for making this distinction were especially high at the time when
the dominant view in the community was still that promoted by Millikan,
i.e. that any charged component to the ionizing radiation in the atmosphere
must be secondary to the cosmic �-radiation. It was thanks to the coincidence
experiment by Bothe and Kolhörster that the “primary �” hypothesis started
losing its original popularity [24]. In 1929, they constructed a setup with
two Geiger-Müller counters placed next to each other, aiming to measure
temporally coincident signals in the two detectors. They showed that when
a gold absorber is placed between the two counters, the rate of the signal in
the second counter decreases only slightly compared to the setup without the
absorber. According to Bothe and Kolhörster, the electrons would not have
had a su�cient energy to pass the gold absorber had they been produced in
a Compton scattering of the primary � rays. While this did not conclusively
mean that the primary cosmic rays2 consisted of the charged electrons, it raised
significant doubts about the high-energy photons being the definite and the
only primaries. Thus, the Bothe-Kolhörster coincidence experiment helped
the emerging community move forward to the exploration of other primary
composition hypotheses.

That the primary cosmic rays are, in fact, charged particles, was finally
confirmed by the geomagnetic latitude dependence of the ionization rate.
Indeed, if the primary particles were charged, the intensity of the secondary
signal would have to be smallest along the geomagnetic equator due to the
stronger deflection in the geomagnetic field. This was exactly the behaviour
observed by Compton, Turner, and others [25]. In addition, the possibility of
determining the sign of the primary radiation charge from the asymmetry in

2The term “cosmic rays” is typically attributed to Millikan, who, ironically, disputed the
extraterrestrial origin of the cosmic radiation in the 1920s.
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its arrival directions was predicted by Rossi in the 1930s [26]. Shortly after,
Alvarez and Compton [27], and eventually Rossi himself [28], experimentally
found that the intensity of charged particles arriving from the east is less
than that of the particles arriving from the west (later called an East-West
e↵ect). This meant that the cosmic ray primaries had to be predominantly
positively charged. In 1941, Schein concluded that these charged particles
were, for the most part, protons [29] – although that conclusion required
several more puzzle pieces to complete the picture of the cosmic rays’ journey
in the atmosphere.

In particular, it required the discovery of the so-called air showers – the
cascades of particles developing in the atmosphere as the result of cosmic ray
interactions. Rossi was the first to detect the development of such cascades in
dense matter [30, 31]. Building upon the coincidence technique of Bothe and
Kolhörster, he arranged three Geiger-Müller counters in a circuit and put them
in a lead box with a removable lid. The latter acted as an absorber screen, and
using the lids with di↵erent thicknesses allowed Rossi to obtain the so-called
“transition curves” – i.e. the coincidence rate as a function of the absorber
thickness. Importantly, Rossi found that when the thickness was increased,

Figure 0.2 – Rossi’s
transition curves [30, 31].

the coincidence rate first rose and only then dropped, which pointed to the
production of extra particles in the lid itself. The same principle obviously
held in the atmosphere, which, albeit less dense, also acted as a target medium
for the cosmic ray primaries to produce particle showers. Schmeiser, Bothe,
and Kolhörster confirmed this experimentally in 1938, additionally showing
that the rate of coincidence dropped as a function of separation distance
between the counters [32]. Not only did this speak in favour of the air shower
hypothesis, but it also showed, for the first time, that these showers had
a lateral extent3. This was further confirmed in 1939 by Auger [33], who

Figure 0.3 – First evidence
of the lateral extent of air

showers [32–34].

separated the Geiger counters by distances up 300m and provided the first
estimate of the primary energy (1015 eV, which is now known to be roughly
the upper energy limit for the Galactic cosmic rays [35, 36]).

In a later analysis of Rossi’s counting experiments, the “soft” component of
the transition curve (the one exhibiting an initial increase followed by a drop)
was attributed to secondary electrons, whose contribution to the radiation
at the top of the atmosphere was negligible. This conclusion was a success
of the electromagnetic cascade theory developed by Bhabha and Heitler [37]
– the framework that put together the ionization energy losses by electrons,
electron-positron pair production, Bremsstrahlung radiation, and Compton
scattering. However, Rossi’s transition curves also featured a long tail – the
so-called “hard” component – which was far more penetrating and dropped
o↵ less rapidly as a function of the absorber thickness. Through balloon
experiments, Schein, Jesse, and Wollan discovered that the counting rate
of this hard radiation increased steadily with altitude and did not exhibit a

3The notion of the lateral (or angular) extent of the air showers will be central to this thesis.
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maximum [29]. Therefore, it meant that the primary particle that produces the
hard radiation cannot be unstable – else its decay would cause the drop-o↵ of
the hard radiation curve early in the atmosphere. This excluded the so-called
mesotron – the particle postulated in 1937 by Anderson and Neddermeyer and
now known to be a muon [38, 39] – as a possible primary. All of the gathered
evidence on the particle nature of the primary radiation thus pointed to the
protons, which, as we know now, indeed dominate the cosmic ray spectrum
composition.

What about the muons, the “uncalled for” unstable particles whose ex-
istence was discovered amidst the hunt for the cosmic ray primaries? With
their charge being equal to that of the electron and their mass being nearly
200 times larger, they were found to have suppressed radiative losses and
penetrate matter further, thereby contributing to the hard radiation tail in
Rossi’s curves. At the same time, the muons were speculated to be responsible
for the binding force between nucleons (e.g. protons and neutrons) inside a
nucleus – i.e., to mediate the Yukawa interaction. However, even though the
mass of the muon was roughly consistent with that postulated in the Yukawa
theory, the mean lifetime of the muon at rest (⇠ 2µs) exceeded the prediction
by nearly 100 times [40, 41]. The paradox was solved in 1947, when Powell
[42] and Perkins [43] independently observed the nuclear disintegration in
the photographic plates due to the capture of a “slow charged particle.” This
particle turned out to be a pion – a crucial intermediate link between the
primary protons and the secondary muons, which also happened to perfectly
satisfy the Yukawa theory of nuclear forces. Shortly after, the kaon was discov-
ered by Rochester and Butler [44] via the decay to charged pions. Nowadays,
the pion and the kaon are known to form the group of light mesons whose
disintegration in the atmosphere is responsible for the evolution of particle
showers and the production of atmospheric leptons – muons and neutrinos.
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Figure 0.4 – Neutrino
production in an air shower.

Neutrinos, unlike most cosmic ray secondaries discovered in the mid-20th

century, do not carry an electromagnetic charge and are therefore practically
“invisible” as they pass throughmatter. They are only observable through their
extremely rare (weak) interactions with matter and subsequent production of
charged particles. Due to these experimental complications, the first atmo-
spheric neutrinos were detected via production of muons in deep underground
observatories only in the 1960s [45, 46] – which is almost 30 years after the
existence of neutrinos was first postulated from a completely di↵erent angle.
In the 1910s, which most of the cosmic ray physicists spent in flights to the
top of the atmosphere and back, the “terrestrial” particle physics was preoc-
cupied with understanding the continuous electron spectrum in the nuclear
beta decay. Assuming that a neutron had to decay into a proton and an elec-
tron via a two-body process, the electron was expected to have a very narrow
kinetic energy distribution. However, the experiments by Chadwick, Ellis,
and Wooster [47, 48] did not support this hypothesis and showed a spread of
the electron kinetic energies instead. In 1930, Pauli proposed a neutral and
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weakly interacting particle (now identified as a neutrino), which would take
away some of the kinetic energy in a three-body decay of the neutron and
thereby explain the electron’s di↵use spectrum [49]. The introduction of neu-
trinos into the so-called Standard Model of particle physics thus helped resolve
one of the biggest experimental conundrums of the 20th century – and it is
perhaps ironic that at present, neutrinos constitute a big conundrum of their
own. In particular, the modern neutrino physics research revolves around
the question of the origin of neutrino masses, which cannot be assigned to
neutrinos via the same mechanism that gives all other particles mass (namely
the Higgs mechanism). The presence of neutrino masses manifests itself in
the observable phenomenon of neutrino flavour oscillations, which accompany
neutrino propagation through space and time. Discovered on the verge of
the 21st century by the Super-Kamiokande and the SNO collaborations [50,
51], these oscillations are now known to a↵ect the propagation of neutrinos
regardless of their source4, whether it be the Sun, supernovae, or a population
of extreme astrophysical objects such as blazars. The atmospheric neutrinos
– those produced in decays of the air shower mesons and muons – are not
an exception to the rule. They span a broad energy range from MeV to PeV
and, once produced as a particular flavour (such as the muon neutrino, or
⌫µ) in the atmosphere, may end up appearing as a di↵erent flavour (such as
the tau neutrino, ⌫⌧ , or the electron neutrino, ⌫e) when detected at Earth5.
The precision measurements of neutrino oscillation parameters (related to the
frequency and the magnitude of the oscillations) fuel the quest for neutrino
mass generation mechanisms [52–54] and are therefore of extreme value to
the modern neutrino physics research. As we shall see in Section 0.2, these
measurements require extra care when the low-energy (O(GeV) and below)
atmospheric neutrinos are used as the main signal, which leads directly to the
“spotlight topic” of this thesis – the precision modelling of low-energy atmospheric
neutrino fluxes.

0 .2 this work in the context of modern particle physics

The probability of neutrino flavour oscillations depends on the neutrino en-
ergy as well as the path length travelled from production to detection. In
atmospheric neutrino studies, this distance is typically approximated by the
cosine of the angle at which neutrino is incident at the detector (the zenith
angle). Thus, to correctly evaluate the expected count rates of neutrinos
post-oscillations under a presumed set of oscillation parameters, accurate
modelling of the “unoscillated” neutrino angular distributions is necessary.
At O(GeV) and sub-GeV energies, the angular distributions of the air shower

4The only di↵erence is the frequency of the oscillations, which is driven by the energies
accessible at the source and its proximity to the Earth.
5We will delay the explanation of the physics of this conversion until Chapter 2.
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secondaries are a↵ected by the Earth’s magnetic field, which curves the tra-
jectories of the charged cosmic ray primaries and the secondary muons. In
addition, the angular spread of the low-energy secondaries about the direction
of the primary cosmic ray (e.g. a proton) is large. This is understood from
simple kinematical considerations: as the transverse momentum is Lorentz-
invariant, its contribution to the total momentum (and therefore the deflection
angle) grows with decreasing energy. Both of these e↵ects are necessary to
properly describe the angular evolution of atmospheric air showers and the
resulting angular distributions of the low-energy atmospheric neutrinos from
the full cosmic ray sky.

Themost natural approach to incorporate themany stages of the air shower
modelling into a single computational framework, including the aforemen-
tioned “geometric” e↵ects at low energies, is via the Monte Carlo simulations
[55–60]. The Monte Carlo treatment implies that the generation and prop-
agation of the cosmic ray primaries is executed on an event-by-event basis,
which also applies to interactions and decays of the secondary particles. While
having high precision as a natural advantage, the Monte Carlo approach to
atmospheric neutrino flux calculations su↵ers from computational complexity
and lack of flexibility with regards to propagation of systematic uncertain-
ties. An alternative path towards the “unoscillated” atmospheric neutrino
flux predictions is via the di↵erential cascade equations describing particle
production, interaction, and decay in the atmosphere [1, 61, 62]. The cur-
rent state-of-the-art software providing high-precision numerical solutions to
these equations is the MCEq (Matrix Cascade Equations) code6 [1, 2]. A fully
numerical approach to the particle cascade evolution guarantees a significant
speedup over the Monte Carlo codes and the flexibility to study the impact
of the systematic parameters. However, prior to this work, the MCEq code
could not be readily used to predict the angular distributions of the O(GeV)
atmospheric neutrinos. The reason for this constraint was that the original
MCEq software was written in the 1D approximation of the air shower geom-
etry development, i.e. under the assumption of the collinear (with respect to
the primary cosmic ray axis) secondary particle production and propagation.
Such an approximation is justified for neutrino energies above a few GeV,
however is not valid at energies of O(GeV) and below, where it results in an
underestimation of the near-horizontal neutrino fluxes [63–65].

Given the limitations of the existing methods, this thesis seeks to improve
the low-energy atmospheric neutrino flux modelling by extending the MCEq
framework with the angular evolution of the atmospheric air showers. To that
end, the main goals of this work are:

n To mathematically formulate the cascade theory in two dimensions
(longitudinal + angular development);

6https://github.com/afedynitch/MCEq

https://github.com/afedynitch/MCEq
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n To develop the methodology for the 2D cascade equations solution in
the MCEq framework;

n To build the software with the respective functionality (dubbed the
“2D MCEq” cascade equation solver) and make it available for public
use 7;

n To benchmark the results obtained with this software (focusing on the
fluxes of atmospheric neutrinos and muons) against the existing Monte
Carlo codes.

In the broader landscape of particle physics, fulfilling these goals means
pushing the field of the air shower modelling to the frontier of computational
performance and precision. This work thereby aids the transition from the
“brute-force” Monte Carlo codes to fully numerical three-dimensional cal-
culations of atmospheric neutrino fluxes, which is an important milestone
for any atmospheric neutrino oscillation analyses sensitive to the . O(GeV)
neutrino energies. This energy regime is of great relevance to several upcom-
ing experiments such as the IceCube-Upgrade [66], Hyper-Kamiokande [67],
KM3NeT/ORCA [68], DUNE [69], and JUNO [70], which will all benefit from
the numerical recipes and the practical software solutions developed in this
thesis.

7https://github.com/kotania/MCEq/tree/2DShow: preliminary version soon to be merged
into the main MCEq repository.

https://github.com/kotania/MCEq/tree/2DShow
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chapter 1
The Standard Model

This chapter describes the foundations of the Standard Model of particle
physics – the most complete encyclopedia of the constituent blocks of matter
compiled to date and the most accurate rulebook according to which these
constituents have been observed to behave and interact. Starting o↵with some
essential preliminaries in Section 1.1, we will dedicate the remainder of this
chapter to the aspects of the Standard Model of prime relevance in the context
of this thesis. This includes the phenomenology of hadronic interactions and
the production of leptons, which we cover in Sections 1.2 and 1.3, respectively.
A more complete introduction to the subject of particle physics can be found
in classic textbooks, e.g., [61] and [71–75], which were used as the references
for this chapter. The phenomena unexplained in the Standard Model
framework at the time of writing, such as the origin of the matter-antimatter
asymmetry, the particle nature of dark matter, and the quantization of
gravity are summarized in e.g. [76–79] and left outside the scope of this thesis.

1 .1 fields, particles, and forces

The most fundamental objects of Nature are fields – continuous entities
permeating all of spacetime, such that each spacetime point xµ = ht,x,y,zi
has a specific value  (xµ) of the field assigned. This value can be a scalar, a
vector, or a more exotic object such a spinor1. While all three types of fields
are found in Nature, the fundamental di↵erence between them is the way they

1There are also tensor fields, such as the electromagnetic field tensor Fµ⌫ , but we will need
only scalar, vector, and spinor fields to describe the known particles of the Standard Model.

11
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transform under the Poincaré transformations, which include translations,
rotations, and Lorentz boosts. Such coordinate transformations leave the
scalar fields unaltered; a less trivial yet familiar example is the transformation
of the four-vector fields:

n a
µ! a

µ + b
µ under translation by a four-vector bµ;

n aµ! R
x
µ⌫(✓)a⌫ under rotation about the x-axis by an angle ✓;

n aµ!⇤z
µ⌫(v)a⌫ under the boost along the z-axis by velocity v = h0,0, vi.

R
x
µ⌫(✓) and ⇤z

µ⌫(v) are the usual 4 ⇥ 4 rotation and Lorentz boost matrices,
respectively, whose explicit form we provide in Appendix A.1. The spinors
obey even less trivial transformation rules under the Poincaré group. Impor-
tantly, they come in two fundamental types – the left-chiral spinors  L and
the right-chiral spinors  R, both of which are two-component objects2. The
 L and  R spinors transform identically under rotations but di↵erently under
boosts (see Equations (A.3) to (A.5)), and it is this di↵erence that makes them
physically distinct. The characteristic feature of the  L( R) objects is their
transformation into each other under the action of the parity P(x!�x):

P[ L(ht,xi)] =  L(ht,�xi) =  R(ht,xi);
P[ R(ht,xi)] =  R(ht,�xi) =  L(ht,xi).

(1.1)

This mutual mirror-like behaviour between the fundamental spinors is what
gives them the name “chiral,” i.e., not identical to the original “image” after
the parity transformation.

The reason why we introduced these three kinds of fields is that the
excitation of a field via external energy input corresponds to the creation of a
physical particle. In other terms, particles can be viewed as the localizations
of the respective field’s energy in spacetime. From this angle, the ways in
which the di↵erent fields transform under the Poincaré group become much
more than a mathematical abstraction and translate directly into the physical
properties of the particles.

For example, the excitations of the spinor field correspond to the “spin-
1/2”3 particles called fermions. In the Standard Model, these encompass
quarks and leptons – the elementary particles that make up all of the (visible)
matter. A physical fermion is always a superposition of the left-chiral and the
right-chiral components4,

 =
 
 L
 R

!
(1.2)

2Following [74], we refrain from calling spinors “vectors” to reserve the name “vectors”
only for those objects that transform like four-vectors under Poincaré transformations. Mathe-
matically, however, spinors do exist in the C2 space.
3To say that a particle has spin 1/2 implies that one needs to rotate the respective spinor

object by 4⇡ about a given axis to have it return to the original state, as seen from Equation (A.5).
The spin-1 (vector) particles need to be rotated only by 2⇡ (as per Equation (A.1)), and the
spin-0 (scalar) particles can be rotated by any angle to return to themselves.
4Here we wrote the Dirac spinor in the chiral basis; other choices of the basis (such as the

mass basis) are also possible.
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where  is called a Dirac spinor. Such an object is a solution to the Dirac
equation describing the propagation of free fermions in spacetime:

i@µ�
µ �m = 0, (1.3)

where m is the fermion mass and �µ are the usual “gamma matrices” linking
the spacetime derivatives @µ and the four “spinor space” components of
 . Neither of  L or  R individually are solutions to Equation (1.3); even
if a fermion is prepared in a purely left-chiral state, it will evolve into a
superposition of the two states throughout its propagation in spacetime and
may eventually be measured as a purely right-chiral state. The rate at which
the “flipping” between the two chiralities occurs is related to the fermion mass
m (via the phase factor eimt), which is a direct consequence of Equation (1.3).
From a deeper physical perspective, the chirality flipping occurs because
the fermions are not really fully free even when they propagate as single
objects in vacuum. The “vacuum” of spacetime is, in fact, still permeated by
a scalar (“spin-0”) field with a non-zero expectation value, called the Higgs

field, which couples to all massive fermions throughout their propagation.
The strength of the coupling is proportional to the fermion’s mass, such that
more massive fermions are more likely to interact with the “background”
Higgs field. Every such interaction collapses the wavefunction of the physical
fermion  into a state of definite (and opposite) chirality; what used to be
( L,0)> becomes (0, R)>, and vice versa. Once right-chiral, the fermion loses
the ability to participate in the weak interactions – which is one of the four
fundamental classes of interactions provided by Nature (among which three,
excluding gravity, make it into the Standard Model).

To explain these three classes of interactions, and the three respective
forces that they are mediated by, we shall make an obvious note the fermions
can couple not only to the Higgs field, but also to other fermions. The con-
finement of quarks within protons and neutrons, the annihilation of electrons
and positrons into a pair of photons, and the decay of a pion into a pair of
leptons are some of the very many examples in which the strong, the electro-
magnetic, and the weak forcesmanifest themselves. We will summarize some of
their most important properties below, relying on the “library” of elementary
particles and force mediators in Figure 1.1 as a visual aid.

The strong force

The strong force governs the interactions of quarks and gluons, which are
described within the theory of Quantum Chromodynamics (QCD). The quarks
are fermions with fractional electric charge, which come in three “genera-
tions”:  

u

d

!
,

 
c

s

!
, and

 
t

b

!
.
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Figure 1.1 – The elementary particles of the Standard Model, including the matter
particles (fermions), the force carries (vector bosons), and the Higgs. The antifermions
are not included in this figure but can be obtained from the respective fermions via
charge conjugation. The listed particle masses correspond to the central fit values
from the 2022 edition of the Particle Data Group Review [80].

As per Figure 1.1, the quark generations di↵er by the mass scale of the quarks;
the reason for their arrangement in doublets within each generation (e.g.
(u,d)) will become obvious in the context of the weak force. In the context
of QCD, the important property of the quarks is their colour – a degree of
freedom added on top of the “standard” particle properties (such as charge,
parity, and spin) to explain the existence of composite particles such as ⌦� =
|sssi. Indeed, without any ability to di↵erentiate between the strange (s)
quarks in⌦�, the latter would violate the Pauli exclusion principle by hosting
three identical fermions. Thus, three extra “colour labels” are necessary,
which are by convention referred to as red (r), green (g), and blue (b).

While important to keep track of the di↵erent quarks in composite systems,
the colour does not make the quarks physically distinct, and the assignment of
colour labels at each individual spacetime point xµ is arbitrary. For example, a
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quark qi at x
µ

i
can be defined as a linear superposition of colours r, g , b, while

a quark qj at x
µ

j
can be defined in the “coordinate system” r 0g 0b0 rotated with

respect to rgb by an arbitrary angle. Locally, the quark physics (i.e., the QCD
Lagrangian) remains invariant with respect to the choice of the coordinate
system. However, to describe the interactions of quarks, one needs to take
into account the relative relations between rgb and r

0
g
0
b
0 so that qi and qj

could enter the interaction on equal footing. This necessitates the existence of
an extra vector field – also called a gauge field – which connects the two local
coordinate systems at xµ

i
and x

µ

j
and thereby mediates the interaction between

the quarks. In QCD, the gauge field is that of gluons. Accordingly, the gluon
itself is a massless boson (“spin-1” particle), which also carries the colour
charge (conventionally one colour and one anticolour, such as rb̄). There exist
8 kinds of gluons, allowing for all permutations of colour and anticolour but
typically omitting the colourless state / (rr̄ +gḡ +bb̄). The fact that the gluons
carry the colour charge implies that they are prone to self-interactions, which
makes the strong force extremely short-range (O(fm)) and confines the quarks
within the bound states called hadrons.

The local invariance of the strong interactions with respect to the rotations
in the abstract colour space of dimension 3 manifests itself as the SU(3)
symmetry of QCD5. The global symmetries of QCD result in the conservation
of the quark flavour (e.g. strangeness or topness), the colour charge, in
addition to the electric charge of Quantum Electrodynamics. The flavour
conservation in particular implies that the quarks can only be created in
quark-antiquark pairs of identical flavour (e.g. uū) in the strong interactions.

The electromagnetic force

The electromagnetic force mediates the interactions between all charged
particles of the Standard Model, i.e., quarks and all leptons but neutrinos. The
theory of electromagnetic interactions (Quantum Electrodynamics, or QED) is
in many ways similar to QCD. The physics of electromagnetically interacting
fermion fields is locally invariant with respect to the multiplication by an
arbitrary complex phase, ei✓(x

µ), which is referred to as the U(1) symmetry.
As in QCD, this local symmetry implies that the phases ✓(xµ

i
) and ✓(xµ

j
) need

not be equal for xµ
i
, xµ

j
, but a “connecting” gauge field is necessary to keep

track of their relative di↵erence and thereby put the interacting fermions on
equal footing. In QED, this gauge field is that of the photon – once again
a massless boson, which does not carry the charge of the QED (the electric
charge) and therefore conserves it at interaction vertices. Being electrically
neutral, the photon does not self-interact, which makes the electromagnetic

5“SU” stands for the “special unitary” group, which imposes unitarity on the complex-
valued transformations M in the group (M†M = I) and demands that detM = 1.
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force long-range and lets the colour-neutral fermions avoid the QCD-like
confinement.

The weak force

The weak force mediates the interactions between all left-chiral fermions (and
right-chiral antifermions) of the Standard Model. The fact that the weak force
has a preferred chirality was experimentally determined in the famous 60Co
decay experiment by Wu [81] and is nowadays referred to as the maximal

parity violation. This distinguishes the weak force from the parity-conserving
strong and electromagnetic forces. However, the weak interactions are not
completely devoid of symmetries; they conserve a property called flavour.
The three quark and the three lepton generations in Figure 1.1 are grouped
by flavour into the weak iso-doublets, such that e.g. (u,d) and (c, s) are
considered separate flavours/iso-doublets, while u and d belong to the same
weak iso-doublet. Similarly, in the lepton sector, (e�,⌫e) and (µ�,⌫µ) constitute
the doublets of separate flavours, while e� and ⌫e share the same flavour. Just
like in QED and QCD, the orientation of the doublet axes at each spacetime
point might be arbitrary, which reflects the local SU(2) symmetry. Based on the
intuition inherited from QCD and QED, we could expect that this symmetry
leads to introduction of a massless gauge boson field – a “connector” keeping
track of the coordinate system transformations across spacetime. However,
the bosons mediating the weak interactions (W± and Z

0) are massive, which
reflects the spontaneous breaking of the SU(2) symmetry and implies that we
can, in fact, tell the physical di↵erence between the members of each weak
iso-doublet (e.g. e� and ⌫e). That the weak interaction mediators are not just
massive but also quite heavy leads to the strong suppression of the weak force
range (by the factor e�MW,Zr , where r is distance). Thus the weak force is the
shortest-range force in Nature, acting on distance scales . O(10�3 fm).

1 .2 aspects of quantum chromodynamics

1.2.1 Quark-parton model

As discussed in Section 1.1, the self-interactions of gluons imply that the
strong force has an extremely short range and confines the quarks within
hadrons – the colourless bound states. Hadrons are further classified into two
groups – baryons (made up of 3 quarks of di↵erent colours) and mesons (made
up of a quark of some colour and an antiquark of the respective anti-colour).
For example, a proton (p = |uudi) is a baryon, whilst a pion (⇡+ = |ud̄i) is
a meson. Only these bound states can be observed in Nature. However,
their parton (quark and gluon) structure is revealed in high-energy hadronic
collisions, where each of the partons acts as an independent scattering center
[82–84]. The high-energy regime is thus also referred to as the regime of
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Figure 1.2 – The proton structure. Image credit: H1 and ZEUS experiments at
HERA/DESY. Adapted the DESY press release [85].

an asymptotic freedom, where the quarks need not be treated as confined.
The partonic structure of hadrons also includes the sea quarks (in addition to
the valence quarks listed as part of the bound state), which pop in and out of
existence as quark-antiquark pairs. To visualize these concepts, we present a
schematic illustration of the proton structure in Figure 1.2.

1.2.2 Hadron-hadron scattering

In the context of hadronic collisions, an important feature of the quark-parton
model is that the partons are allowed to radiate more partons (e.g. via the
gluon splitting into a quark-antiquark pair, or through a gluon radiating a
gluon). These “o↵spring” partons can exist only on short distance scales
as prescribed by the Heisenberg uncertainty [61]. The scale at which these
short-lived “virtual” partons can be resolved is set by the momentum transfer
of the interaction; the higher the momentum transfer, the smaller distances
can be resolved and the more partons e↵ectively participate in the scattering
process. The amplitude of each Feynman diagram contributing to the scat-
tering process is weighted by the QCD coupling constant, ↵QCD, raised to
the power of the diagram’s order6. Such perturbative calculations are possible
thanks to the running of ↵QCD with momentum transfer (Q2). Indeed, as

6The order of the diagram is decided by the number of the virtual particles exchanged.
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Figure 1.3 – The evolution (running) of the QCD coupling constant �QCD with the
momentum transfer Q2 of the interaction. Here, ↵QCD(Q2) is computed to leading
order in perturbation theory from the Renormalization Group Equation, using the
quark flavour schemes appropriate for each Q

2 region (bounded by the dashed lines)
[80, 86]. To the left of the vertical dotted yellow line, ↵QCD & 1, and the perturbative
theory of QCD is no longer applicable.

seen from Figure 1.3, ↵QCD . 0.1 above the mass scale of the Z boson (mZ ),
and keeps dropping at higher momentum transfers. This regime corresponds
to extremely small distances, where the quarks “feel” the dilution of color
carried away by the gluons and are not coupled as strongly [86].

The weakening of the QCD coupling at high energies allows one to for-
mulate the total hadron-hadron collision cross section in terms of the cross
sections of individual quark-quark scattering processes, which are convolved
with the parton distribution functions f (x,Q2) of the respective quarks. The
parton distribution functions describe the probability density of the struck
parton momentum relative to the momentum of the primary hadron, which
is encoded in the “Bjorken x” variable. The total hadron-hadron cross section
then reads:

�
ab!X

tot =
X

i,j

Z
dxadxbfi(xa,Q2)fj (xb,Q2)�̂ ij!X (xapa,xbpb,Q2), (1.4)

where a,b are the primary hadrons; i, j are the partons participating in the
hard scattering; X are the final state particles; xa and xb are the fractions of the
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primary parton momenta pa and pb carried away by i and j , respectively; and
Q

2 is the momentum transfer of the interaction. The individual parton-parton
cross sections, �̂ ij!X , can be calculated from the Feynman rules, while the
structure functions are obtained from fits to the scattering data7 (see e.g. [88,
89]). This makes the hadron-hadron cross section straightforward to compute
at high energies.

However, moving towards lower energies or momentum transfers, the
running of the QCD coupling is no longer a helpful property: already at
Q

2 ⇠ 0.5GeV2, ↵QCD ⇡ 1, which makes any perturbative calculations invalid.
The regime of low momentum transfer corresponds to large distances, which
cannot be treated in the framework of the short-range QCD potentials.

Two predecessor theories of the quark-parton model of hadronic inter-
actions were quite successful in describing the problematic “soft” (low Q

2)
hadronic collisions. These are the theories of Regge [90] and Pomeranchuk
[91], which were formulated in the late 1950s based on the solutions to the
non-relativistic scattering equations and the analytical continuation of the
angular momenta in the complex plane. These theories interpret the soft
hadron-hadron scattering as the exchange of a reggeon and a pomeron, re-
spectively. The reggeons correspond to several unflavoured mesons (⇢, a, f ,
!), while a pomeron does not have a known corresponding particle. The
Regge-Pomeranchuk phenomenology yields the following parametrization of
the cross sections in the low-Q2 processes [92, 93]:

�
ab

tot(s) = Y
ab
s
�⌘ +X

ab
s
"
, (1.5)

where the coe�cients Yab and X
ab are specific to the interacting hadrons a,b

and {�⌘,✏} are global parameters determined from the fits to the hadron-
hadron scattering data. The Regge term alone (Yab

s
�⌘ ) is su�cient to explain

the pp and pp̄ scattering data at the center-of-mass energies
p
s . 10GeV8,

while the Pomeron term (Xab
s
") is necessary to describe the rise of the �(s)

curve at higher energies [92].
To accurately reflect both low-Q2 and high-Q2 physics in practical calcu-

lations, typical Monte Carlo implementations (event generators) of hadronic
interactions transition between the Regge-Pomeron parametrization of the
cross sections and the perturbative QCD calculations of hard scattering pro-
cesses in the quark-parton model. This is supplemented with extension of
the hadron-hadron collisions to the hadron-nucleus collisions via e.g. the
Glauber multiple scattering formalism [94], while the final hadronization of
the scattered partons back into bound states is normally handled via the Lund
string fragmentation model [95].

7If the measurements were performed at a di↵erent Q2 scale, the parton distribution
functions can also be evolved to the Q2 scale of interest via the DGLAP equations [87].
8
s is a Mandelstam variable; in a 1+2! 3+4 scattering process, s = (p

µ

1 +p
µ

2)
2 = (p

µ

3 +p
µ

4)
2.
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1 .3 aspects of the electroweak theory

1.3.1 Pion decay

High-energy hadron collisions at particle colliders and cosmic ray-nucleus
interactions in the atmosphere are accompanied by production of secondary
particles, including the charged pions ⇡±. The subsequent re-interactions
and decays of ⇡± play a crucial role in the evolution of hadronic cascades.
Being a light meson, the pion cannot decay strongly; the main weak decay
modes of ⇡� include ⇡� ! µ

�
⌫̄µ (�̂1 = 0.99987), ⇡� ! µ

�
⌫̄µ� (�̂2 = 2 ⇥ 10�4),

and ⇡� ! e
�
⌫̄e (�̂3 = 1.23⇥ 10�4), where �̂i are the branching ratios [80]. The

two-body decay to a muon and a muon antineutrino (alternatively, to an
antimuon and a muon neutrino in the case of ⇡+) is therefore one of the main
means of muon neutrino production in air showers. Electron (anti)neutrinos,
on the other hand, appear from the pion decay extremely rarely, and come
predominantly from the three-body decays of kaons (K� ! ⇡

0
e
�
⌫̄e, �̂ ' 0.05)

and muons (µ� ! e
�
⌫̄e⌫µ, �̂ ' 1).

The reason why the ⇡� ! e
�
⌫̄e decay is heavily suppressed compared to

⇡
� ! µ

�
⌫̄µ is the violation of parity in the weak interactions. Specifically,

the W
� mediating the ⇡� decay can couple only to the left-chiral fermions

(uL) and the right-chiral antifermions (vR). However, as discussed earlier in
Section 1.1, the chiral eigenstates are not the eigenstates of the Dirac equation
(Equation (1.3)), i.e., they do not correspond to physical fermions propagating
in spacetime. The physical fermions are eigenstates of the helicity operator,
ĥ, defined as

ĥ =
Ŝ · p̂
p

, (1.6)

where Ŝ is the spin operator, p̂ is the momentum operator, and p is the
magnitude of the fermion three-momentum. The eigenstates of ĥ are the
right-helical (right-handed) state u" and the left-helical (left-handed) state
u#, which correspond to the fermion spin s being completely aligned or
anti-aligned with the momentum p, respectively. In general, u" and u# are
superpositions of the right-chiral and the left-chiral states. For example, u"
can be expressed in terms of uL and uR as follows [71]:

u" =
1
2

✓
1+

p

E +m

◆
uR +

1
2

✓
1� p

E +m

◆
uL, (1.7)

where m,p,E are the mass, the three-momentum magnitude, and the energy
of the fermion, respectively. In the ultrarelativistic limit, where E �m and
p ⇡ E, we find that u" ⇡ uR, i.e., the fundamental right-chiral eigenstate of
the weak interaction and the right-handed eigenstate of the helicity operator
become equivalent. An analogous correspondence is acquired for u# and uL.
This implies that in the ultrarelativistic (massless) limit, the right-handed
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Figure 1.4 – The decay of ⇡� = |ūdi, represented as a Feynman diagram (left) and
a schematic illustration in the pion rest frame (right). In the left panel, the “blob”
alongside the incoming ⇡� indicates that the pion is a bound state. In the right panel,
the black arrows represent the directions of the outgoing lepton momenta, and the
coloured arrows – the spin directions under the assumption of a massless neutrino.

fermions and the left-handed antifermions are disfavoured by the weak interac-
tions, since they almost completely lack the necessary left-chiral/right-chiral
component. On the other hand, the left-handed fermions/right-handed an-
tifermions are almost exclusively left-chiral/right-chiral at high energies, and
are therefore preferred.

This picture, applied in the context of pion decay, explains the helicity
suppression of ⇡� ! e

�
⌫̄e. In Figure 1.4, we show the Feynman diagram of the

⇡
� decay to a generic lepton pair (l�⌫̄l) and the respective spin/momentum

assignments in the pion rest frame. The conservation of linear momentum dic-
tates that p⌫ = �pl . Since the neutrino is almost massless, the ultra-relativistic
limit applies, where the right-chiral antineutrino is always right-handed. This
implies that s⌫ "" pl . Furthermore, ⇡� is a scalar (spin-0) particle, and the
conservation of the total angular momentum demands that s⌫ = �sl . The spin
and the momentum of the lepton l

� are therefore aligned, too, and l
� emerges

from the decay as right-handed. In the above discussion, we have shown
that right-handed fermions cannot couple to the weak force unless they are
su�ciently massive. The electron, with me ' 511keV, is e↵ectively massless
and therefore u"(e�) almost completely lacks the left-chiral component uL(e�)
necessary to couple to W

�. On the other hand, the muon is nearly 200 times
as massive (mµ ' 105.7MeV), and u"(µ�) has a su�cient contribution from
uL(µ�). Thus, the decay ⇡� ! µ

�
⌫̄µ can proceed, providing a source of muon

neutrinos in the decays of atmospheric pions.
An important consequence of the above discussion is that the muons (µ�)

always emerge as right-handed in the rest frame of the decaying ⇡�. A similar
argument applies to the decay of ⇡+, which produces exclusively left-handed
µ
+ in the ⇡+ rest frame. This phenomenon is referred to asmuon polarization.

However, the eigenvalue of the helicity operator ~, i.e., the helicity itself, is
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not a Lorentz-invariant quantity:

h =
s ·p
|p| , (1.8)

since the three-vectors s and p (i.e. the spatial components of the respective
four-vectors s

µ and p
µ) both transform under boosts9. This means that in

the frame of a boosted pion (i.e. the lab frame), the muon can have either
either a positive or a negative helicity with a certain probability. In a scenario
where the pion moves with a velocity v⇡ along the z-axis (such that its Lorentz
velocity factor �⇡ = v⇡/c ⌘ v⇡ in the natural units) and the emitted muon
makes an angle ✓⇤ with the z-axis in the pion rest frame, the lab-frame helicity
of the muon reads [96]:

hlab(�⇡,✓⇤) =
1
�µ

·
(1� r⇡) + (1 + r⇡)cos✓⇤�⇡
(1 + r⇡) + (1� r⇡)cos✓⇤�⇡

, (1.9)

where �µ is the muon velocity in the lab frame and r⇡ = (mµ/m⇡)2. The
helicity in the boosted frame is no longer restricted to ±1 (in our choice of
normalization) and can take values in the continuous -1..1 range. In practice,
the spin states of individual muons are often not important and only the
average behaviour of a muon population is of interest10. It is then convenient
to model the muon ensemble as a superposition of purely right-randed muons
(µ�" with h = +1) and purely left-handed muons (µ�# with h = �1), appearing
with probabilities P" and P#, respectively. Expressed in terms of hlab, these
probabilities are

P",#(�⇡,✓⇤) =
1
2
[1± hlab(�⇡,✓⇤)] , (1.10)

where “+” corresponds to the µ�" state and “-” – to the µ�# state [96]. For µ
+,

the correspondence between the right-/left-handedness and the +/- sign in
Equation (1.10) is flipped. The same formalism applies to the two-body decays
of charged kaons, K±, replacing �⇡ with �K and r⇡ with rK = (mµ/mK )2.

1.3.2 Muon decay

In Section 1.3.1, we established that muons emerging from the two-body
decays of ⇡± and K

± are completely polarized in the rest frame of the decaying
mesons. In the lab frame, the asymmetry in the orientation of the muon
spin with respect to its momentum remains. The muon polarization has an
important consequence for the spectra and the angular distributions of the
µ
� ! e

�
⌫̄e⌫µ decay secondaries, which is best illustrated with the following

example.

9In the definition of h in Equation (1.8), we implicitly assume that s is a unit vector and
therefore do not include its magnitude in the denominator. However, we note that the spin
operator eigenvalues are quantized and are necessarily integer multiples of ~/2.
10This concerns, in particular, the modelling of muon fluxes in cascade equations.
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Figure 1.5 – The three-body muon decay (µ� ! e
�
⌫̄e⌫µ), represented as a Feynman

diagram (left) and a schematic illustration in the muon rest frame (right). The arrows
in the right panel are coloured in the same way as in Figure 1.4. The two spin
assignment choices correspond to the edge cases of the maximum (top) and the
minimum (bottom) electron energies.

Let’s assume a µ� decaying at rest, with its spin unit vector pointing along
the direction of the negative z-axis (sµ = h0,0,�1i). The Feynman diagram of
the muon decay is shown in the left panel of Figure 1.5. From here, two regions
of the electron energy distribution are instructive to examine: the regime
where the electron energy is maximal and where the electron is practically
at rest. In the first case (which corresponds to E

⇤
e = E

⇤
e,max = mµ/2 in the

muon rest frame), the two neutrinos are emitted collinearly in the direction
opposite to that of the electron. In the limit of massless neutrinos, ⌫̄e must
be right-handed, and ⌫µ must be left-handed; thus, s⌫̄e "" p⌫̄e , and s⌫µ

#" p⌫µ .
It follows that the spins of the neutrinos are anti-parallel and cancel each
other out, meaning that the spin of the electron has to be oriented in the same
way as the spin of the muon to preserve angular momentum. Thus, we find
that se #" pe, i.e., the emitted electron is left-handed at the maximum allowed
energy. This corresponds to our intuition that the fermions emerging from
weak decays should be preferentially left-handed, and we can therefore expect
the electron energy distribution to be peaking at E⇤e,max. In the second edge
case (where E⇤e 'me), the electron is nearly still, and the muon’s rest energy
is split between the two neutrinos emitted back to back. The handedness
assignments for neutrinos do not change, and now their spins are pointing in
the same direction. To compensate for this and recover muon’s original spin
vector, the electron spin direction must be opposite to that of neutrinos. Once
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f0(x) f1(x)
⌫̄µ(⌫µ), e+(e�) 2x2(3� 2x) 2x2(1� 2x)
⌫e(⌫̄e) 12x2(1� x) 12x2(1� x)

Table 1.1 – Energy-dependent coe�cients for the polarized muon decay spectra in
Equation (1.11). The secondaries outside (inside) the parentheses correspond to the
decay of µ+(µ�).

again remembering that the left-handed fermions are preferred by the weak
interaction, we arrive at a preferred orientation of the electron momentum at
low energies – which is parallel to the direction of the muon spin.

Since ⌫µ is also left-handed, it will follow the same asymmetry in the
angle-energy distributions as the electron, while for ⌫̄e the qualitative picture
is reversed. Quantitatively, the double-di↵erential spectra of the µ

± decay
secondaries read [97]:

d2Nl

dxdcos↵
= f0 ⌥ f1(x)cos↵, (1.11)

where ↵ is the angle between the muon spin and the momentum of the
outgoing lepton l (cos↵ = sµ ·pl / |pl | ⌘ sµ · p̂l), x is the lepton energy fraction
(x = 2E⇤

l
/mµ, with E

⇤
l
being the lepton energy in the muon rest frame), and

fi(x) are the functions defined in Table 1.1. In Figure 1.6, we show these
double-di↵erential distributions for the daughters of µ�. As expected from
the qualitative analysis of the two extreme cases, the left-handed daughters
are preferentially emitted in the direction opposite to that of the muon spin
(cos↵ ' �1), and the right-handed ones (in this case ⌫̄e) – in the direction
aligned with the muon spin (cos↵ ' 1). In Section 5.2.3, we will see how
muon polarization a↵ects the angular distributions and the energy spectra of
the daughters in the lab at the muon energies of interest for this work.

Figure 1.6 – The double-di↵erential spectra of the µ� ! e
�
⌫̄e⌫µ decay daughters in

the µ� rest frame, as predicted by Equation (1.11) (see also [96, 97]).



chapter 2
Neutrinos

In Section 1.1, we talked about neutrinos as members of the weak iso-doublets
of the Standard Model; separately, Sections 1.3.1 and 1.3.2 covered their
creation in the decays of a pion and a muon, respectively. However, the prop-
erties of neutrinos on their own deserve a closer look, in particular when it
comes to the phenomenon of neutrino flavour oscillations and its apparent
inconsistency with the Standard Model. In this chapter, we will cover the
phenomenology of neutrino flavour and mixing (Section 2.1), highlighting the
role of atmospheric neutrinos in constraining neutrino oscillation parameters.
Section 2.2will then give an overview of atmospheric neutrino production, de-
tection, and oscillations, and explain how the di↵erent choices of atmospheric
neutrino flux modelling approaches can a↵ect the oscillation measurements.

2 .1 neutrinos in the standard model (and beyond)

In the Standard Model, neutrinos are neutral leptons which appear in three
flavours: ⌫e, ⌫µ, and ⌫⌧ , one for each corresponding charged lepton (e, µ,
and ⌧). The |⌫ei, |⌫µi, and |⌫⌧i particle states are known to only couple to
the weak force1 and are therefore necessarily left-chiral (see Section 1.1).
Accordingly, the respective weak eigenstates for antineutrinos (|⌫̄ei, |⌫̄µi, |⌫̄⌧i)
are exclusively right-chiral. An important twist to the story is the 1958
experiment by Goldhaber, Grodzins, and Sunyar, whomeasured the ⌫e helicity
of in the 152mEu decay [98]:

152mEu+ e
� !152Sm⇤ + ⌫e!152Sm+ ⌫e +� (2.1)

1Besides gravity, which neutrinos can still couple to as they are not completely massless.
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Group Year Flavour Process h⌫ ± unc. Ref.

Golhaber et al. 1958 ⌫e

152mEu+ e
� !

152Sm+ ⌫e +�
�1.0± 0.2 [98]

Roesch et al. 1982 ⌫µ

12C+µ
� !

12B+ ⌫µ
�1.06± 0.11 [99]

ALEPH 1994 ⌫⌧

e
+
e
� ! ⌧

+
⌧
� !

⇡
�
⌫⌧ , ⇢

�
⌫⌧

�0.99± 0.07± 0.04 [100]

ALEPH 1995 ⌫⌧

e
+
e
� ! ⌧

+
⌧
� !

⇡
�
⌫⌧ , ⇢

�
⌫⌧

�1.006± 0.032± 0.019 [101]

CLEO 1997 ⌫⌧

e
+
e
� ! ⌧

+
⌧
� !

⇡
+
⇡0⌫̄⌧(⇡�⇡0⌫⌧)

�0.995± 0.01± 0.003 [102]

SLD 1997 ⌫⌧

e
+
e
� ! ⌧

+
⌧
� !

⇡
�
⌫⌧ , ⇢

�
⌫⌧

�0.93± 0.10± 0.04 [103]

Table 2.1 – A summary of the direct neutrino helicity measurements.

The result of the measurement was that the neutrino was left-handed (h ' �1),
with about 20% experimental uncertainty. Several more experiments for direct
helicity measurements of neutrinos followed, with their summary given in
Table 2.1. As is apparent from the measurements of all flavours, the neutrino
seems to have left-handed helicity, in both Goldhaber-like experiments (such
as [99]) and polarized ⌧ decays (such as [100–103]). Now, as we have shown
in Section 1.3.1, in particular Equation (1.7), the helicity eigenstates are only
equivalent to the chiral eigenstates in the ultrarelativistic (massless) limit,
thereby hinting at the masslessness of neutrinos. The direct measurements of
neutrino mass from the electron spectrum endpoint in the tritium decay,

3
1H!

3
2 He+ e

� + ⌫̄e, (2.2)

are providing an independent constraint on the (electron-based) upper mass
limit, which improved from 1.7keV in 1948 [104] to 0.1eV in 2022 (by the
KATRIN experiment at the 90% confidence level; see [80, 105]). A compre-
hensive review on direct neutrino mass measurements can be found in [106].
Another set of upper bounds is provided through cosmological observations,
which yield the limit of about

P
m⌫ . 0.1eV (at the 95% confidence level)

on the sum of the “active” (⌫e,µ,⌧) state masses in the ⇤CDM cosmology [80,
107–109].

The results of the neutrino mass measurements combined with the mea-
surements of helicity point to the fact that neutrinos must be very light – more
than 106 times lighter than the next lightest elementary particle, the electron.
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But are they truly massless? It is nowadays known that this is not the case,
as each of the weak eigenstates |⌫↵i (↵ = {e,µ,⌧}) is a superposition of three
distinct mass eigenstates, |vii (i = {1,2,3}). The mass eigenstates |vii are the
“physical” eigenstates of the free-particle Hamiltonian, which satisfy the Dirac
equation (1.3) and thus describe a neutrino propagating in spacetime. This
is contrasted with the chiral neutrino eigenstates |⌫↵i, which couple to the
weak force and are only “physical” at production or detection. |⌫↵i and |⌫ii
are related via the unitary2 mixing matrix U :

|⌫↵i =
X

i

U
⇤
↵i
|⌫ii, (2.3)

where the unitarity implies that U†U =UU
† = I, i.e., that the inverse of U is

also its Hermitian conjugate (U�1 =U
† ⌘ (U ⇤)>). Given a state |⌫↵i produced

in a weak interaction, the probability to measure a (possibly di↵erent) state
⌫� after a neutrino with energy E has travelled a distance L is [73]:

P↵!� =
���h⌫� |⌫↵i

���2 = �↵� � 4
X

i<j

Re(U ⇤
↵i
U�i

U↵jU
⇤
�j
)sin2

0
BBBBB@
�m2

ij
L

4E

1
CCCCCA

+2
X

i<j

Im(U ⇤
↵i
U�i

U↵jU
⇤
�j
)sin2

0
BBBBB@
�m2

ij
L

4E

1
CCCCCA ,

(2.4)

where
�m2

ij
=m

2
i
�m2

j
(2.5)

is the mass splitting between the state |⌫ii with a definite mass mi and the
state |⌫ji with a definite mass mj . For antineutrinos, the sign of the last term
(2

P
i<j

Im . . .) is reversed. Importantly, if the neutrinos were massless, we
would have mi =mj for all i, j , and the oscillation amplitude would always be
0 – which is in contradiction with numerous modern experiments (for a review,
see [80, 110]). This creates tension with the Standard Model, where only left-
chiral neutrino fields exist and the right-chiral counterpart is necessary to
generate neutrino masses via the Higgs mechanism [111].

To simplify Equation (2.4), the mixing matrix U is often parametrized in
terms of the three rotation matrices R23, R13, and R12:

U = R23R13R12 ⌘

0
BBBBBBB@

1 0 0
0 c23 s23
0 �s23 c23

1
CCCCCCCA

0
BBBBBBB@

c13 0 s13e
�i�

0 1 0
�s13ei� 0 c13

1
CCCCCCCA

0
BBBBBBB@

c12 s12 0
�s12 c12 0
0 0 1

1
CCCCCCCA
, (2.6)

2The unitarity of the mixing matrix is an assumption of the Standard Model.
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where � is a (physical) complex phase3, cij ⌘ cos✓ij , sij ⌘ sin✓ij , and ✓ij is the
mixing angle between eigenstates i and j . The physical meaning of the mixing
angles is revealed in the two-flavour approximation, where only flavours ↵
and � (and no other flavour � < {↵,�}) exist. In this scenario, the probability
to oscillate from |⌫↵i to |⌫�i is

P
2flav.
↵!�,↵,� = sin2(2✓ij )sin2

0
BBBBB@
�m2

ij
L

4E

1
CCCCCA , (2.7)

where i, j are now simply 1,2, respectively. Equation (2.7) makes it transparent
that the mass splittings�m2

ij
control the frequency of neutrino oscillations as a

function of L/E, while the mixing angles ✓ij control the oscillation amplitude.
We note that the “frequency term” is commonly rewritten in the convenient
units of baseline length L and energy E:

sin2
0
BBBBB@
�m2

ij
L

4E

1
CCCCCA �! sin2

0
BBBBB@
1.27�m2

ij
(eV2)L (km)

E (GeV)

1
CCCCCA (2.8)

The baseline length L and the energy E are specific to the source of neutrinos
and the type of detector measuring the oscillations, such that the di↵erent L,E
combinations allow one to probe di↵erent parts of the �mij and ✓ij parameter
space. The rotation matrices Rij are for that reason sometimes called after
the respective type of experiment: R12 is conventionally referred to as the
solar matrix (probing the oscillations of ⌫e produced in the nuclear fusion
reactions in the Sun); R13 – as the reactor matrix (probing the oscillations
of ⌫̄e from the �� decays of unstable isotopes in nuclear reactors); and R23 –
as the atmospheric matrix (probing the oscillations of atmospheric neutrinos
originating from the cosmic ray-induced air showers). As a transition to
a more detailed discussion on the latter, which we provide in Section 2.2,
we illustrate the phenomenon of neutrino oscillations at three characteristic
atmospheric neutrino energies – 2, 10, and 100GeV – in Figure 2.1.

2 .2 atmospheric neutrino fluxes and oscillations

The Earth’s atmosphere is constantly bombarded by cosmic rays4, whose colli-
sions with the atmospheric nuclei induce atmospheric air showers. As shown
schematically in Figure 2.2, neutrinos are one of the byproducts of the cosmic
ray interactions, where they originate primarily in decays of light mesons and
muons (as described in Section 1.3.1 and Section 1.3.2, respectively). On their

3Also called the Dirac phase, which we by convention incorporated into R13. The Majorana
phases, which do not a↵ect neutrino oscillations, are not included.
4In Chapter 0, we have provided the historical evidence for cosmic rays being composed of

predominantly protons; a modern view on cosmic ray composition and flux can be found in
e.g. [114, 115].
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Figure 2.1 – The probability of ⌫µ oscillation into ⌫e (red), ⌫⌧ (orange), as well as its
survival as ⌫µ (blue), shown at three characteristic energies of atmospheric neutrinos.
The oscillation probabilities were computed in the full three-flavour scheme using
the NuOscProbExact software [112]. The oscillation parameters follow NuFit 5.1
(2021) [113], assuming normal ordering of the mass states.

way to a terrestrial detector, neutrinos can cross the entire Earth unimpeded,
modulo the Earth absorption e↵ects at energies & 40TeV [117] and the flavour
oscillations. From Figure 2.1, we can see that for a neutrino produced as a ⌫µ
flavour state, the probability of being detected in the same state after crossing
L = 2REarth is & 0.8 for 100GeV neutrinos but only about ⇠0.5 at neutrino
energies of 2 and 10GeV. This is reflected in the increased tau neutrino ap-
pearance probability, which is . 0.2 for the high-energy neutrinos and ⇠0.5 for
the low-energy neutrinos in our example. Therefore, to measure the neutrino
oscillation parameters from the neutrino flavour composition observed at
Earth, it is crucial to accurately predict how many neutrinos within each
energy band are expected from the cosmic ray interactions prior to oscillations.
This is represented by the quantity called the neutrino flux,

�⌫(E,⌦) =
dN

dEdAdtd⌦
, (2.9)
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π - θ zen
  

Figure 2.2 – Production of atmospheric neutrinos followed by propagation towards a
terrestrial detector (in this case using the IceCube Neutrino Observatory at the South
Pole as an example) in the direction defined by the zenith angle ✓zen. Image credit:
The IceCube Collaboration. Adapted from the IceCube press release [116].

i.e., the energy spectrum dN/dE of neutrinos produced per unit area A, unit
time t, and solid angle⌦ as viewed from the detector. In spherical coordinates,
the unit solid angle is d⌦ = dcos✓zend', where ✓zen is the zenith angle (as
defined by the orientation of the neutrino arrival direction relative to the
detector axis; see Figure 2.2), and ' is the respective azimuthal angle. The
latter is only sensitive to the local geomagnetic field e↵ects (i.e. the curving of
the charged cosmic ray primary and secondary trajectories in the magnetic
field of the Earth), which are near-negligible in high-energy (& O(10GeV))
neutrino flux calculations [63]. Averaging over the azimuthal angle, the
neutrino flux becomes a function of only E and cos✓zen. We show the cos✓zen
dependence of the ⌫µ + ⌫̄µ and ⌫e + ⌫̄e fluxes in Figure 2.3, fixing the neutrino
energies at the same three values as in Figure 2.1. We additionally show the
cos✓zen-averaged fluxes as a function of energy in Figure 2.4.

There are several relevant observations to be made from the two figures:
n In both the zenith-averaged and the zenith-dependent plot, only the

⌫e and ⌫µ flavour fluxes are shown, as the ⌫⌧ flux is negligibly small
across the chosen energy range. This is related to the fact that in the
air showers, ⌫⌧ are only generated in the decays of the tau lepton (⌧)
and the charged mesons (D±, D0, and Ds). Both ⌧ and the D-mesons
are relatively heavy (m⌧ ⇡ 1.78GeV, mD ⇡ 1.9GeV) and require more
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Figure 2.3 – cos✓zen dependence of the atmospheric neutrino fluxes at three fixed
energies. The fluxes were computed via the (1D) MCEq software [1, 2], using the
DPMJet-III 19.1 hadronic interaction model [62], Global Spline Fit cosmic ray flux
[114], and the NRLMSISE-00 atmosphere for the South Pole in January [118]. The
di↵erent coloured lines highlight the contributions of the di↵erent neutrino parents
to the total flux (solid purple).
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Figure 2.4 – Energy dependence of the cos✓zen-averaged atmospheric neutrino fluxes,
scaled by E

3
⌫ . The fluxes were computed in the same way as in Figure 2.3.

energy to be produced than the light mesons. The flux of neutrinos
produced in ⌧ andD decays is referred to as the prompt flux, as opposed
to the conventional flux of neutrinos from ⇡

±
,K
±, and K

0.
n That the flux of the air shower ⌫⌧ is extremely small at energies
O(100GeV) implies that any ⌫⌧ detected at these energies most likely
originate from neutrino flavour oscillations (e.g. ⌫µ! ⌫⌧ , as shown in
Figures 2.1 and 2.2).

n In general, atmospheric neutrino fluxes are dominated by low-energy
neutrinos: for example, in Figure 2.4, the ⌫µ (flux ⇥E3

⌫ ) curve remains
approximately flat between 1 and 103 GeV, indicating that flux /E�3,
to first order. For E⌫ < O(100GeV), the largest contribution to the ⌫e
flux comes frommuons, and to the ⌫µ flux – from pions (with the muon
contribution dominating only until ⇠3GeV).

n The flux in Figure 2.3 is almost completely up-down symmetric by
construction (where “up” corresponds to cos✓zen < 0, and “down” –
to cos✓zen > 0). The reason for this is that no geomagnetic cuto↵ (i.e.,
allowing only cosmic ray primaries with a su�cient energy to come
from a certain direction to a specific location on Earth) has been im-
posed in these calculations, which were carried out with the MCEq
software [1, 2]. Another simplification of the presented calculations
is the collinear approximation of neutrino production with respect
to the cosmic ray primary axis – i.e., the simplification of the full air
shower geometry (including both longitudinal and angular develop-
ment) to longitudinal-only. The distinction between the two geometries
is illustrated in Figure 2.5.

While valid for the > 10GeV atmospheric neutrino flux calculations, both
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Figure 2.5 – Air shower development in the 1D geometry (left panel: neutrinos
collinear with the primary proton axis) and the 2D geometry (right panel: neutrinos
can deflect from the primary axis).

the |B| ⇡ 0 and the collinearity assumptions need to be lifted for  O(GeV)
neutrinos. To stress the importance of the latter aspect, Table 2.2 quotes the
average angles ✓⌫ of the neutrino deflection with respect to the primary parti-
cle axis, as obtained in [65] via a three-dimensional Monte Carlo simulation.
We see that at energies above 5GeV, the neutrino emission angle is . 2�, and

E⌫ [GeV] h✓⌫e+⌫̄ei [deg] h✓⌫µ+⌫̄µi [deg]
0–0.25 47.6 53.4
0.25–0.5 23.8 27.6
0.5–1.0 15.6 15.9
1.0–2.0 8.9 9.0
2.0–5.0 4.4 4.6
5.0–20.0 1.8 1.8
20.0–200.0 0.5 0.5

Table 2.2 – Average neutrino emission angle ✓⌫ with respect to primary particle axis
as a function of neutrino energy E⌫ . The values are quoted directly from [65]

the collinearity assumption can be justified. However, in the 1–2GeV range
the average emission angle is already at ⇠9� and increases dramatically at
lower energies. This has a large e↵ect on the full-sky angular distributions of
. O(GeV) atmospheric neutrinos, as illustrated in Figure 2.6. In particular,
we notice that the main di↵erence between the collinear and the non-collinear
treatments of neutrino production (i.e., the thin solid line and the thick solid
line in Figure 2.6, respectively) is in the strong enhancement of the near-
horizontal (cos✓zen 2 [�0.3,0.3]) fluxes at E⌫ . 3GeV. The inclusion of the
geomagnetic field into the calculations, on the other hand, a↵ects mostly the
fluxes of the upgoing cos✓zen . �0.3 neutrinos. To highlight the importance
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Figure 2.6 – cos✓zen distributions of ⌫µ neutrinos, as calculated for the magnetic
north polar region (sin�mag 2 [0.6,1], where �mag is the geomagnetic latitude). The
dashed line corresponds to the calculation without the geomagnetic (B) field and
with the collinear approximation of atmospheric neutrino production with respect to
the primary particle axis. The thin solid line adds the B-field, and the thick solid line
includes both the B-field and the o↵-axis production of neutrinos. The figure is taken
from [63].
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{ 2D geometry

B-field{
Figure 2.7 – The probability of ⌫µ ! ⌫⌧ oscillations for atmospheric neutrinos, as
computed using the NuCraft software [119] with the NuFit 5.1 (2021) oscillation
parameters [113]. The PREM Earth model [120] is assumed for the computation of
matter e↵ects [121, 122]. The two highlighted regions correspond to the low-energy
regime, where the cos✓zen distributions of the unoscillated ⌫µ neutrinos are a↵ected
by the deflection of neutrinos from the cosmic primary ray axis (“2D geometry”) and
the curving of the charged particle trajectories in the geomagnetic (B) field.

of these two aspects for neutrino oscillation measurements, we present the
oscillation probability of ⌫µ! ⌫⌧ across the (E⌫ ,cos✓zen) space in Figure 2.7.
As clear from the figure, the regions of the oscillogram where the neutrino
flux is a↵ected by the o↵-axis neutrino production and the geomagnetic field
both contain strong oscillation signatures. This means that for an accurate
determination of the neutrino oscillation parameters in a real analysis, where
P⌫µ!⌫⌧ (E,cos✓zen) is convolved with the unoscillated flux �⌫µ(E,cos✓zen), the
modelling of the latter has to include both the “2D geometry” and the mag-
netic field e↵ects. In this thesis, we focus on the 2D geometry implementation
only, extending the MCEq software used to produce the fluxes in Figures 2.3
and 2.4 with the angular development of air showers.
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chapter 3
One-dimensional cascade
equations

With this chapter, we begin the detailed discussion of cascade equations,
which are the coupled di↵erential equations describing production, interac-
tion, and decay of particles in the atmosphere. These equations compute the
evolution of the particle flux �, i.e., the number of particles per unit energy,
time, area, and solid angle expected to reach a certain atmospheric altitude
on average. This is in contrast with the Monte Carlo approaches to air shower
evolution, e.g. via the codes such as CORSIKA [55] or AIRES [56], where
every individual particle is tracked and the expectation values of the fluxes
are computed from the ensemble of simulated particles. For the purpose
of atmospheric neutrino flux modelling, only the expectation values are in
the end of interest, and obtaining them directly from the cascade equations,
while avoiding the statistical uncertainties and high computational costs of
the Monte Carlo simulations, is an appealing approach.
A natural way to introduce the cascade equations is via formulating them in
one dimension first, namely in the approximation where all secondary parti-
cles in an air shower evolve collinearly with the shower-inducing primaries.
We will provide an analytical formulation of such equations in Section 3.1 and
show how they are formulated numerically in terms of matrices in Section 3.2.
The latter form the basis of the Matrix Cascade Equations (MCEq) code [1, 2],
and the description of the 1D MCEq framework concludes this chapter.
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3 .1 analytical formulation

Starting with the flux of cosmic rays incident on the top of the atmosphere,
the evolution of the particle showers is typically described in terms of the
atmospheric slant depth X. At the observation altitude ho above surface,

X(ho) =
Z

ho

0
d`⇢air(`), (3.1)

where ⇢air is the air density and the integral is evaluated along the trajectory `
of the shower core. With ⇢air given in gcm�3, and ` by convention taken in cm,
the unit of X is gcm�2. The coupled cascade equations [1, 2, 61] prescribe that
the flux�h of the particle species hwith energy E (defined as in Equation (2.9))
evolves as a function of X according to

d�h(E,X)
dX

=� �h(E,X)
�int,h(E)

� �h(E,X)
�dec,h(E,X)

(3.2a)

� @

@E
(µE�h(E,X)) (3.2b)

+
X

l

Z 1

E

dEl

dNdec
l(El )!h(E)

dE
�l(El ,X)
�int,l(El )

(3.2c)

+
X

l

Z 1

E

dEl

dN int
l(El )!h(E)

dE
�l(El ,X)
�dec,l(El ,X)

. (3.2d)

The sink terms in Equation (3.2a) represent the loss of the particle h as the
result of its interactions in the atmosphere after travelling the interaction
length �int,h, or its decay (if applicable) after travelling the decay length
�dec,h. Another sink term in Equation (3.2b) stands for the energy losses of
the charged particles due to ionization, where µE = h dEdX i is the average energy
loss per unit length. The source terms in Equation (3.2c) and Equation (3.2d)
describe the production of this particle in the interactions and decays of
other particle species l with energy El , with the respective yields of particle h
reflected in the

dNl(El )!h(E)

dE factors. The energy conservation constraint is given
in the integral bounds (

R 1
E
) of Equations (3.2c) and (3.2d): it requires that the

total energy El of the primary particle l must be greater than, or equal to, the
total energy E of the secondary particle h.

As seen from Equation (3.2), the evolution of the particle fluxes is driven
by the interplay of interactions and decays. The interaction length and the
decay length are both energy-dependent, with

�int,h =
mair

�
inel
h�air(E)

(3.3)

and

�dec,h(E,X) =
c⌧hE⇢air(X)

mh

, (3.4)
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Figure 3.1 – Decay lengths �dec shown for several light mesons as a function of
their kinetic energy (solid lines), where the same density profile as in fig. 2.3 is
assumed. The interaction length of K± is shown for comparison (dashed line), where
the DPMJet-III 19.1 inelastic cross sections [62, 123] were used for Equation (3.3).

where mair [g] is the mean mass of the atomic nuclei in the atmosphere
(weighted by the respective mass fractions); � inel

h�air [cm
2] is the inelastic scatter-

ing cross section; ⌧h [s] andmh [GeV] are the mean lifetime and the mass of the
particle h at rest, respectively; E is the total energy of h in the lab frame; and
⇢air(X) [gcm�3] is the slant depth-dependent atmospheric density. That the
factor of E/mh (i.e., the Lorentz boost �) enters Equation (3.4) is a reflection
of the relativistic time dilation e↵ect.

In Figure 3.1, we show the energy dependence of the decay lengths for
the ⇡±, K±, and K

0
L mesons, as compared to the interaction length for K±1.

Whenever �dec < �int, the decay processes dominate, and vice versa; for
example, at the plotted altitude of h = 10km, interactions dominate over
decays for ⇡± with energies > 70GeV.

3 .2 numerical formulation and the mceq code

For a shower particle h which can interact with the nuclei in the atmosphere
(e.g. 14N or 16O), the interaction cross section �h�air is energy-dependent, as
is the yield of the interaction products in an inelastic collision. Similarly,
if the particle is unstable, the energy spectra of its decay products depend

1The interaction lengths of other mesons are within 20–40% of �int(K±).
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on the boost of the parent particle. It is therefore natural to discretize the
transport equation (3.2) in energy, i.e. to distribute the particle fluxes between
the discrete energy bins Ei , i 2 [1,NE]. To simplify the notation in this and
subsequent chapters, we will define the “1D” flux of the particle h at the
energy Ei as

�h

Ei
=
dNh

dE

����
E=Ei

, (3.5)

i.e., the di↵erential of the particle number Nh with respect to energy, where
the integration over a unit of area, time, and solid angle will be implied. The
discrete cascade equation then reads:

d�h

Ei

(X)

dX
=�
�h

Ei

(X)

�
h

int,Ei

�
�h

Ei

(X)

�
h

dec,Ei

(X)
(3.6a)

�ri [µhEi
�h

Ei
(X)] (3.6b)

+
X

l

X

E
⇤
k
�E⇤

i

cl(Ek )!h(Ei )

�
l

int,Ek

�l

Ek
(X) (3.6c)

+
X

l

X

E
⇤
k
�E⇤

i

dl(Ek )!h(Ei )

�
l

dec,Ek

(X)
�l

Ek
(X), (3.6d)

where we arranged the terms in the same order as in Equation (3.2) to
clarify the correspondences between the continuous and the discrete equation
versions. In Equation (3.6c), we defined the coe�cient c for the yield of
particle h in interactions as

cl(Ek )!h(Ei ) =
dNl(Ek )!h(Ei )

dE

����
E=Ei

�Ek, (3.7)

which translates as the flux of particles hwith energy Ei generated per primary
l within the energy bin Ek . An analogous definition holds for the decay
coe�cient d in Equation (3.6d). These definitions let us replace the integralR 1
E

by the sum
P

E
⇤
k
�E⇤

i

, which once again reflects the energy conservation
constraint. Here we explicitly clarify that the energy conservation must be
reflected by the total particle energies E⇤

k
and E

⇤
i
, as opposed to the kinetic

energies Ek and Ei
2 which form the grid of Equation (3.6) in 1D MCEq [1, 2].

If H species participate in the coupled transport, the all-species particle
flux vector � has the dimension NE ·H :

� = (�p

E0
�

p

E1
. . .�

p

ENE�1
. . . �⇡

+

E0
�⇡

+

E1
. . .�⇡

+

ENE�1
. . .)> (3.8)

2This distinction is important as the energy conservation constraint does not necessarily
have to hold for kinetic energies, especially in the case of low-energy primaries and low-mass
secondaries.
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The particle yield coe�cients cl!h and dl!h associated with the production
of h by di↵erent primaries l can then be put in a matrix form, where the
dimension of such matrices is (NE ·H) ⇥ (NE ·H). For example, the all-species
matrix of interaction coe�cients is constructed as

C =

0
BBBBBBBBBBBBB@

Cp!p Cn!p C⇡+!p . . .

Cp!n Cn!n C⇡+!n . . .

Cp!⇡+ Cn!⇡+ C⇡+!⇡+ . . .

. . . . . . . . .
. . .

1
CCCCCCCCCCCCCA
, (3.9)

where each individual sub-block is

Cl!h =

0
BBBBBBBBBBBBBBB@

cl(E0)!h(E0) . . . cl(ENE�1)!h(E0)

cl(ENE�1)!h(E1)
. . . . . .

0 cl(ENE�1)!h(ENE�1)

1
CCCCCCCCCCCCCCCA

. (3.10)

An analogous definition holds for the all-species decay coe�cient matrix D.
In this way, the matrices C and D filled with cl!h and dl!h across the entire
energy grid couple the cascade equations for the di↵erent particle species.
The interaction and decay lengths can also be put in a matrix form, with

⇤int = diag
⇢ 1
�
p

int,E0

,
1

�
p

int,E1

, . . .
1

�
p

int,ENE�1

, . . .

1
�
⇡+

int,E0

,
1

�
⇡+

int,E1

, . . .
1

�
⇡+

int,ENE�1

, . . .

�
,

(3.11)

and ⇤dec constructed analogously from the reduced decay lengths �h,⇤dec,Ei

⌘
�
h

dec,Ei

⇢
�1
air(X). With these definitions, the matrix form of the coupled system

of equations (3.6) can finally be written as [1, 2]:

d�
dX

= �rE[diag(µ) ·�] +
"
(�I+C)⇤int +

1
⇢air(X)

(�I+D)⇤dec

#
�, (3.12)

where the �I matrices absorbed the sink terms from Equation (3.6a), and rE
is the finite di↵erence operator for the first-order energy derivative. Equa-
tion (3.12) is solved by the forward integration in X, which forms the basis of
the longitudinal air shower development in the 1D MCEq software [1, 2].

In MCEq, the yield coe�cients are derived from event generators (e.g.
UrQMD [124], DPMJet [62, 123], Sibyll [2, 125], or EPOS-LHC [126] for
hadron-nucleus collisions, and Pythia [127] for decays) by histogramming the
secondary particle yields as a function of the secondary and the primary ki-
netic energies (Ei and Ek). The kinetic energy grid in MCEq is logarithmically
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Figure 3.2 – Left: interaction yield coe�cient cp!⇡+ for production of ⇡+ in the
proton-air collisions. Right: decay yield coe�cient d⇡+!µ+ for production of µ+ in the
⇡
+ decays. The c and d coe�cients are computed according to Equation (3.7) after

histogramming the secondary particle yields from the DPMJet-III 19.1 [62, 123] and
Pythia [127] event generators, respectively.

spaced between 10�2 and 1011GeV, with � log10E = 0.1 (thus giving 10 bins
per decade of energy). In the 1D approximation, all secondary particle angles
with respect to the primary particle direction of motion are contributing to the
yield coe�cients, thereby resulting in the angle-integrated interaction/decay
yields inside each energy bin. Example 1D MCEq matrices for the pion yields
in the proton-air interactions and the µ+ yields in the ⇡+ decay are shown in
Figure 3.2.

In Section 2.2, we have already provided the example 1D MCEq solutions
for the ⌫µ and ⌫e fluxes at the Earth’s surface. As we have now revealed that
they originate as solutions to Equation (3.12), it is also instructive to present
these solutions “in the making,” i.e., following the evolution of fluxes with the
slant depth. Figure 3.3 shows the combined µ

� +µ
+, ⌫µ + ⌫̄µ, and ⌫e + ⌫̄e fluxes

integrated over the kinetic energies E < 10GeV. As expected, the µ
� + µ

+

fluxes have a maximum (at about h ' 12km), which reflects the interplay
between the production of muons and their decay. Since neutrinos are stable
and e↵ectively non-interacting in the atmosphere due to its low density, their
fluxes increase monotonically as a function of X. The neutrino production
rate, however, decreases with increasing slant depth; this is due to the fact that
muons, pions, and kaons eventually decay and have no “replenishment” from
the shower when the primary protons lose energy. In the next chapter, we
will show how to add an “orthogonal” dimension to Figure 3.3, i.e., to extend
the MCEq framework in such a way that the flux evolution is computed as a
function of both X and the angle ✓ with the respect to the primary axis.
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Figure 3.3 – Longitudinal evolution of the lepton fluxes integrated over kinetic
energies 0  E  10GeV. The shower inclination in this case is 30�, and the rest of
the setup follows that of Figure 2.3. The top axis shows the slant depth X converted
to the height h above the Earth’s surface, according to the density profile ⇢air(X).



chapter 4
Two-dimensional cascade
equations

As a rule of thumb, the angular deflection of the secondary (daughter) particles
in inelastic collisions or decays of high-energy projectiles is small, meaning
that the secondary particles will mostly follow the primary particle trajectories.
This justifies the use of the 1D approximation in the evolution of high-energy
hadronic cascades, which leads to the 1D cascade equation discussed in
Chapter 3. However, this approximation becomes increasingly less valid
with decreasing energy, which we already saw in Table 2.2 by examining
the mean deflection angles of O(GeV) neutrinos. The accuracy of the one-
dimensional cascade equation solutions is therefore limited when it comes to
angular distributions of low-energy secondaries. In this chapter, we develop
an approach to add a second (angular) dimension to the cascade equation,
which is described in Section 4.1. Further, in Section 4.2, we show how to
simplify these equations and gain significant speedup by reformulating them
in the frequency domain via the Hankel transform.

4 .1 numerical formulation in the angular space

To smoothly transition to the 2D cascade equations, let us imagine a simple
scenario with a primary particle l travelling along the z-axis and producing a
particle h as the result of interaction or decay. In the 1D approximation, the
velocity unit vector ûl!h of the secondary particle relative to the direction of
l can be written as h0,0,1i. This is the idealistic case of perfect collinearity,
where the polar angle ✓l!h between h and l is negligibly small. At low
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energies, where the 1D approximation breaks down, one has to take into
account the x and y components of the velocity unit vector to accurately
compute the angular distribution of the secondary particles. Writing out
û
l!h = hsin✓l!h cos'l!h, sin✓l!h sin'l!h, cos✓l!hi, we no longer assume

that sin✓l!h is negligible and that cos✓l!h is infinitely close to 1. However,
for a single interaction/decay, we can still rely on the smallness of the polar
angle to write sin✓l!h ' ✓l!h, as well as invoke azimuthal symmetry (i.e.
invariance wrt. 'l!h). Then, to second order in ✓,

û
l!h = h✓l!h cos'l!h, ✓l!h sin'l!h, 1�

(✓l!h)2

2
i (4.1)

Similarly, the initial particle l can be assigned a unit velocity vector û
l =

h✓l cos'l , ✓l sin'l , 1�
(✓l )2
2 i (albeit in our example ✓l = 0). In a Monte Carlo

simulation, where the interactions or decays would be treated on an event-
by-event basis, the two full velocity vectors (i.e., ûl and û

l!h scaled by the
respective magnitudes) could be simply added together to find the absolute
direction û

h of the secondary particle h in the lab frame. However, for inclu-
sive flux calculations in a numerical code like MCEq, one has to remember
that both the lab frame angle ✓l of the primary particle and the relative scat-
tering/decay angle ✓l!h have a certain probability density. For example, the
total flux �l

Ek

of the primary l with energy Ek can have an angular probability
density �l

Ek

(✓l ) such that

�l

Ek
=

Z
✓max

0
�
l

Ek
(✓l )✓ld✓l . (4.2)

Comparing to Equation (3.5), we find:

�
l

Ek
(✓l ) =

1
✓l

d2Nl(✓l )
d✓ldE

����
E=Ek

. (4.3)

Throughout this thesis, we will assume ✓max = ⇡/2, i.e. consider only forward-
going particles. In general, the distribution of ✓l is either defined by the
user as the initial condition (e.g. a delta function denoting the direction
of a single cosmic ray primary) or is an input to the di↵erential equation
integrator from the previous propagation step. In that sense, the probability
density of ✓l is dynamic, i.e. evolving with the slant depth X. On the other
hand, the distribution of ✓l!h is defined by the allowed phase space in a
given interaction or decay process (following the prescription of a given
event generator) and constitutes a static di↵usion kernel. With these two
ingredients at hand, the angular distribution of the particle h in the XY plane
can be obtained as the 2D convolution of the angular distribution of particle l
with the di↵usion kernel l! h, which we will denote as &l!h for interactions
and �l!h for decays. We schematically show the 2D convolution principle in
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Figure 4.1 – Schematic development of a hadronic cascade (p! ⇡
+ ! ⌫µ) in the 1D

(longitudinal-only) and the 2D (longitudinal + angular) geometries. The longitudinal
propagation is discretized into four steps along the slant depth X. At each step in
X, we draw the angular distribution of the primaries from the previous step as the
dotted line, and the current angular distribution of the specified particle as the solid
line. The distributions of secondaries get wider further down the chain due to the
convolution with the di↵usion kernels &p!⇡+ and �⇡+!⌫µ (see text for details).

Figure 4.1. In this toy setup, a beam of protons with the total flux � enters
the atmosphere at the slant depth X0, making an angle ✓primary = 0 with the
z-axis (pointing down). The direction of the proton beam is represented by
the unit vector ûprimary. After propagating longitudinally to the next slant
depth step X1, the proton interacts with atmospheric nuclei and produces
pions (⇡+) at X2. Between X2 and X3, some of the pions decay, leading to the
flux of muon neutrinos at X3. In the 1D geometry, the velocity unit vector
ûsecondary of ⌫µ is aligned with ûprimary, while in the 2D geometry, this does
not hold beyond X0. As the proton interacts with the atmospheric nuclei,
the secondary products of the interaction (including the ⇡+) gain transverse
momentum, and their angular distribution widens. This is represented by the
convolution with the di↵usion kernel of the interaction, &p!⇡+ . As the pion
decays, the muon neutrinos get an even wider angular distribution due to the
convolution of the pion angular density with the decay kernel �⇡+!⌫µ .

Mathematically, the production of the particle h with energy Ei by the pri-
mary l with energy Ek leads to the following change in the angular probability
density of h:
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d+

dX
�
h

Ei
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1
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l

int,Ek
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⇡/2

0
&l(Ek,✓l )!h(Ei ,✓h)�

l

Ek
(X,✓l )✓l d✓l
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dec,Ek
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�l(Ek,✓l )!h(Ei ,✓h)�

l

Ek
(X,✓l )✓l d✓l ,

(4.4)

where we used (d+/dX) as a shorthand for the source term of the X-derivative
of �h

Ei

. The appearance of the ✓l factor in the integrals of Equation (4.4) is
an important feature of the 2D convolution in the XY plane, where ✓l and
✓l!h are interpreted as the radii of the ûl and û

l!h velocity vectors projected
onto XY . As the two functions being convolved are azimuthally symmetric,
we have absorbed the integration over the azimuthal variable ' into &l!h and
�l!h, following the formalism of [128]. The integrals of these di↵usion kernels
over the polar scattering angle are equivalent to the total yield coe�cients
cl(Ek )!h(Ei ) and dl(Ek )!h(Ei ) from Equation (3.6). In particular, for interaction
coe�cients we postulate

cl(Ek )!h(Ei ) =
Z
⇡/2

0
&l(Ek,✓l )!h(Ei ,✓h)✓l!hd✓l!h

=
Z
⇡/2

0
&l(Ek,0)!h(Ei ,✓)✓d✓,

(4.5)

where the change of variables is possible thanks to the translational equivari-
ance of the di↵usion kernel. The normalization of the decay coe�cients is
fully analogous to that in Equation (4.5), swapping c$ d and &$ �. Finally,
we note that the sink terms in Equation (3.6a) and Equation (3.6b) do not
change the angular distribution of the primaries and simply contribute to
the change in the overall normalization. Combining this observation with
Equation (4.4), we can write down the 2D version of Equation (3.6) as follows:
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+
X

l

X

E
⇤
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�E⇤

i
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⇡/2

0

�l(Ek,✓l )!h(Ei ,✓)

�
l

dec,Ek

(X)
�
l

Ek
(X,✓l )✓ld✓l ,

where we have now dropped the h index in ✓h to simplify the notation. Impor-
tantly, this equation gives the evolution of the angular and energy density of
all particle species as a function of the slant depth X in the atmosphere. The
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longitudinal development of the secondary particle cascades is computed, as
before, through the forward di↵erence integration of Equation (4.6). The new
component in Equation (4.6) compared to Equation (3.6) is the angular de-
velopment of the secondaries, which is taken care of via the 2D convolutions
of the angular densities of the primaries with the interaction/decay di↵usion
kernels.

4 .2 numerical formulation in the frequency space

Depending on the energy scales of hadronic interactions and unstable par-
ticle decays in the atmosphere, the widths of the angular distributions of
the secondary particles can vary by orders of magnitude. The low-energy
secondaries normally have a large spread about the primary particle axis,
whereas the high-energy ones do not deflect from the primary axis signifi-
cantly. Furthermore, the evolution of hadronic cascades over sizeable slant
depths can have a visible impact on the angular distributions of the secon-
daries even if the angular deflection in a single interaction/decay is small. As
the result, Equation (4.6) demands a “universal” ✓ grid which could accom-
modate both large and small angular deflections. Making such a grid linear
would imply an extremely fine discretization, and the numerical evaluation of
the 2D convolution integrals would become prohibitively expensive. On the
other hand, if the ✓ grid were made logarithmic, the product of convolution
would not exist on the same grid as the di↵usion kernel and the primary
particle angular density, even if the grids of the latter were aligned. While the
techniques for convolving functions defined on logarithmic grids exist, they
often come with hyperparameters to be tuned by the user in order to keep the
numerical errors to the minimum [129–131]. This extra freedom in the choice
of hyperparameters could lead to an unpredictable numerical behaviour in
the integration of Equation (4.6) over thousands of steps in X.

To avoid the complications of the 2D convolutions in the ✓ space (which
we will also refer to as the “real” space), we choose to operate in the spectral
(“frequency”) domain instead. For the 2D convolutions of Equation (4.6), the
correct kind of transform between the two domains is the Hankel transform,
which we define and justify in Section 4.2.1. The derivations in Section 4.2.1
are modified and expanded from [128].

4.2.1 Hankel transform and the 2D convolution theorem

The two-dimensional convolution of two functions f (r) = f (r,') and g(r) =
g(r,') in polar coordinates (r,') is defined as

h(r) = f (r) ⇤ ⇤g(r) =
Z 1

�1
g(r0)f (r� r0)dr0, (4.7)
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where dr0 = r0dr0d'0. The functions g(r0) and f (r� r0) can be expanded in
terms of the Fourier series; the expansion of g(r0) is trivial:

g(r0) = g(r0,'0) =
1X

m=�1
gm(r0)eim'0 , (4.8)

where

gm(r0) =
1
p
2⇡

Z 2⇡

0
g(r0,')e�jm'd' (4.9)

is the standard Fourier coe�cient1. The expansion of f (r� r0), as a function
which is spatially shifted from r0 to r, is more complex:

f (r� r0) =
1X

k=�1
[f (r� r0)]k e

ik'

=
1X

k=�1
e
ik'

1X

n=�1
e
�i(k�n)'0

Z 1

0
fn(u)Sk

n(u,r, r0)udu,

(4.10)

where fn(u) is the familiar Fourier coe�cient (defined analogously to Equa-
tion (4.9)) and S

k
n is the shift operator:

S
k

n(u,r, r0) =
Z 1

0
Jn(⇢u)Jk�n(⇢r0)Jk(⇢r)d⇢. (4.11)

In Equation (4.11), Jn(x) is the nth order Bessel function of the first kind. With
these definitions, the 2D convolution reads

h(r) =
Z 1

0

Z 2⇡

0

1X
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gm(r0)eim'0

1X
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e
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1X
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⇥
Z 1

0
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n(u,r, r0)udur0dr0d'0.

(4.12)

The inner integral over '0,
R 2⇡
0 e

im'0e
�i(k�n)'0d'0, is only non-zero ifm = k�n,

in which case it reduces to 2⇡. This also means that gm$ gk�n. Then, using
the definition of Sk

n and re-grouping the Bessel function terms, we find

h(r) =
1X

k=�1
2⇡eik'

Z 1

0

 1X

n=�1

Z 1

0
gk�n(r0)Jk�n(⇢r0)r0dr0

⇥
Z 1

0
fn(u)Jn(⇢u)udu

�
Jk(⇢r)⇢d⇢.

(4.13)

1Note that [128] have a normalization factor 1
2⇡ instead, which does not preserve the

equivalence between the forward and the inverse transforms.
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A cumbersome expression at first, Equation (4.13) is significantly simplified if
we define the nth

-order Hankel transform Hn:

Hn[f (r)]() =
Z 1

0
f (r)Jn(r)r dr (4.14)

As we shall see further, an important property of this transform is that it is
functionally equivalent to its inverse, i.e.,

f (r) =
Z 1

0

⇢
Hn[f (r)]()

�
Jn(r)dr =H�1n Hn[f (r)] (4.15)

Under these definitions, Equation (4.13) becomes:

h(r) =
1X

k=�1
2⇡eik'

Z 1

0

 1X

n=�1
Hk�n[gk�n](⇢) · Hn[fn](⇢)

�
Jk(⇢r)⇢d⇢ (4.16)

Further simplification is achieved for the special case of radially symmetric
functions g and f , i.e., the functions which are invariant with respect to
rotation by an arbitrary angle ' in polar coordinates. For such functions,
only the m = 0 term has a nonzero coe�cient gm in the Fourier expansion in
Equation (4.8); similarly, only the k = n = 0 term in Equation (4.10) is non-zero
(otherwise there would be a dependence on ' remaining). This means that
we can rewrite Equation (4.16) as

h(r) = 2⇡
Z 1

0


H0[g0](⇢) · H0[f0](⇢)

�
J0(⇢r)⇢d⇢, (4.17)

where g0 and f0 are equivalent to simply g(r)p
2⇡

and f (r)p
2⇡

, as follows directly from
Equation (4.9). We also note that since there is no more ' dependence left in
Equation (4.17), h(r) = h(r). Finally, we identify the integral in Equation (4.17)
as the inverse Hankel transform, H�1, from Equation (4.15):

h(r) =H�10

H0[g(r)](⇢) · H0[f (r)](⇢)

�
(4.18)

Applying the forward transform to both sides of Equation (4.18), we arrive at
the convolution theorem for two-dimensional radially symmetric functions:

H[h(r)] =H[f (r) ⇤ ⇤g(r)] =H[f (r)]() · H[g(r)](), (4.19)

where we replaced ⇢ with  and dropped the “0” in H0 for cleaner notation.
As we will see in Section 4.2.2, it is this theorem that will help us transform
the angular space cascade equations (4.6) to the Hankel frequency space .
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4.2.2 2D cascade equations with discrete Hankel modes

The di↵usion kernels &l!h and �l!h, which represent the probability den-
sities of the secondary particle deflections relative to their primaries in the
two dimensional cascade equations (4.1), are azimuthally symmetric. This
is equivalent to the “radially symmetric functions” we introduced in Sec-
tion 4.2.1 when talking about the convolutions on a 2D plane; both of these
terms imply invariance with respect to the angle ' in e.g. Equation (4.1) and
Equation (4.12). When the geomagnetic field is not taken into account in the
air shower evolution, the angular densities �(X,✓) of all particle species are
also azimuthally/radially symmetric. Further, in Section 4.1, we made an
important observation that the three-dimensional polar angle ✓ is to be inter-
preted as the radial variable in the XY plane. This means that ✓ is equivalent
to r in Section 4.2.1. Putting these arguments together, we see that the convo-
lution theorem in Equation (4.19) is fully applicable to our two-dimensional
cascade equations. With that in mind, we bring the di↵usion kernels and the
angular densities of the cascade particles to the Hankel frequency space by
defining their 0th-order Hankel transforms as follows:

�̃
h

Ei
(X,) ⌘H[�h

Ei
(X,✓)]() (4.20a)

&̃l(Ek )!h(Ei )() ⌘H[&l(Ek )!h(Ei )(✓)]() (4.20b)

�̃l(Ek )!h(Ei )() ⌘H[�l(Ek )!h(Ei )(✓)]() (4.20c)

In the formal definition of H (see Equation (4.14)), the upper limit of the
✓ integral is 1, however we only consider the forward-going particles in
practice and therefore restrict our attention to ✓  ⇡/2 when evaluating the
forward transforms in Equation (4.20). Then, using the convolution theorem,
we reformulate Equation (4.6) as

d�̃h

Ei

(X,)

dX
=�

�̃
h
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(X,)

�
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�
�̃
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h
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E
⇤
k
�E⇤

i

[&̃l(Ek )!h(Ei ) · �̃
l
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]()
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l

int,Ek

+
X

l
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E
⇤
k
�E⇤

i

[�̃l(Ek )!h(Ei ) · �̃
l

Ek

]()

�
l

dec,Ek

(X)
,

(4.21)

which is the main equation of the “2D MCEq” software developed in this
thesis. Notably, in Equation (4.21), the Hankel-transformed di↵usion kernels
and the Hankel-transformed angular densities of the primaries are simply
multiplied. The multiplication is performed elementwise with respect to
frequency modes , which are chosen to be discrete in practical calculations.
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The matrix form of Equation (4.21) is then defined analogously to the 1D
MCEq equation (3.12), but separately for each :

d�̃


dX
= �rE[diag(µ) ·�] +

"
(�I+ C̃)⇤int +

1
⇢air(X)

(�I+ D̃)⇤dec

#
�̃

. (4.22)

We note that the 1D MCEq equation is a special case of Equation (4.22) for
 = 0, as J0(0) = 1 and Equation (4.14) becomes equivalent to our earlier
definition of the total flux normalization from Equation (4.2). This implies
that Equation (4.22) retains the computational complexity of Equation (3.12),
up to a linear scaling by the number of the frequency modes (N). One can
then either choose to solve the N equations (one for each ) sequentially
or in parallel, or to assemble the Hankel-transformed yield coe�cients and
angular densities into a more complex matrix structure2. The implementation
developed in this thesis relies on the sequential solution of the N equations
but can easily be adapted to the user’s preference. Our choice of the 2DMCEq
matrix structure and the pipeline we followed to produce these matrices are
described in detail in Chapter 5.

2Some possible structures are a tensor with  being the third dimension in addition to
the primary and the secondary particle energies, or a block-diagonal matrix with each block
dedicated to a separate  mode.
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2D MCEq code
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chapter 5
2D MCEq matrices

5 .1 matrix structure

For the purpose of the low-energy atmospheric neutrino flux calculations,
we use a fixed logarithmically spaced kinetic energy grid extending between
10MeV and 10TeV. We note that while 10MeV is our lower energy limit de
jure, we found that the 2DMCEq solutions for atmospheric neutrino fluxes
are de facto valid only down to the energies of ⇠50MeV. Energies higher than
10TeV were not included as their (spectrum-weighted) contribution to the
O(GeV) neutrino flux is negligible. The bin width of the energy grid is set to
� log10Ekin = 0.1 as in 1D MCEq, which results in NE = 60 energy bins. Our
Hankel frequency () grid is also near-logarithmically-spaced, with min = 0,
max = 2000, and a total of N = 24 integer modes  2 [min,max]. The flux
of every particle species in 2D MCEq exists on the (,Ekin) grid.

As the electromagnetic cascades are not included in 2D MCEq at the time
of writing, the only particles that contribute to the coupled cascade equa-
tions (4.21) are those participating in the hadronic cascade development and
atmospheric neutrino production. This includes 6 baryon species (p/p̄,n/n̄,
and ⇤0

/⇤̄0), 5 meson species (⇡±, K±, K0
L ,), and 10 leptons (µ±R/L, µ

±
, ⌫e/⌫̄e,

and ⌫µ/⌫̄µ), thus giving a total of H = 21 particles. The muons contribute
6 species, with each of µ± contributing two polarizations: left-handed “L”
and right-handed “R”, as well as an unpolarized component (denoted as µ±

without a subscript). We stress that the polarized muon species correspond
to the left-helical and the right-helical eigenstates µ±" and µ

±
# of Section 1.3.1,

where we switched notation via µ
±
" ! µ

±
R and µ

±
# ! µ

±
L. These species are

not to be confused with the chiral eigenstates of the weak interaction. Given

54



55

2D MCEq matrices 2D cascade equation
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Λint
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Figure 5.1 – Left: The structure of the 2D MCEq yield coe�cient matrices (C̃) in the
Hankel space. Right: 2D cascade equation in the Hankel space, formulated in terms
of the individual Hankel modes i (see Equation (4.22)).

H particle species, NE energy bins, and N Hankel frequency modes, the
resulting dimension of the flux vector �̃ is N ⇥ (NE ·H), which in our case
amounts to 24⇥1260. The 2DMCEqmatrices themselves hold the “couplings”
(yield coe�cients) between pairs of primary and secondary particles, such
that their dimension is N ⇥ (NE ·H) ⇥ (NE ·H) = 24⇥ 1260⇥ 1260. We visu-
alize the structure of a typical 2D MCEq matrix in Figure 5.1. We also show
how the individual “slices” of the yield coe�cient matrix, C̃i , multiply the
Hankel-decomposed flux vectors, �̃

i
, resulting in a di↵erential increase in

the flux of the secondary particles d+

dX

h
�̃
i

i
according to Equation (4.22). That

the multiplication is done elementwise for the di↵erent discrete modes i is
the success of the convolution theorem (4.19).

5 .2 event generation

The main computational advantage of the MCEq code compared to the Monte
Carlo simulations comes from the pre-generation of the particle yield coef-
ficients, which is done outside of the user interface. The user receives the
prepared interaction/decay matrices for solving Equation (3.12) (in the case
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of 1D MCEq) and Equation (4.22) (in the case of 2D MCEq). In that sense, the
procedure of the 2D MCEq matrix production closely follows that of the 1D
MCEq [1, 2]. It relies on the execution of a given event generator of hadronic
interactions or decays and the histogramming of the corresponding particle
yields within each channel. These histograms have two dimensions (primary
and secondary particle energies, Eprim and Esec) in 1D MCEq, whereas in 2D
MCEq we add the Hankel mode  as shown in Figure 5.1. Below, we describe
how this (,Esec,Eprim) grid is populated with events from event generators
before it is made available to the user. In particular, Section 5.2.1 explains
the event generation and matrix production procedure for the generic case of
hadronic interactions and decays of particles without polarization treatment,
while Sections 5.2.2 and 5.2.3 explain how the procedure is di↵erent when
handling polarized muon production and decay.

5.2.1 General case

For each particle capable of producing secondaries (i.e. all particles in the
list of section 5.1), we are running event generators to compute the respective
secondary particle yields. For hadronic interactions, we consider the following
hadronic interaction models: UrQMD [124], EPOS-LHC [126], Sibyll-2.3c [2,
125], and DPMJet-III 19.1 [62, 123]. These models are accessed via the impy
interface [3]. For unstable particle decays, we run Pythia 8.306 [127]. Notable
exceptions are the production of polarized muons in the two-body decays
of ⇡± and K

±, as well as the three-body decay of polarized muons. Neither
of these scenarios can be simulated in Pythia, which generates events in the
spin-averaged phase spaces, and therefore require special treatment.

Universally for all interaction/decay channels, we employ the following
event generation and histogramming scheme. For all primaries falling into
the kinetic energy bin k, we use the logarithmic center of that bin as the
initial energy of the primary. For example, if the edges of the energy bin are
[Ek0 ,Ek00 ], then Ek =

p
Ek0 ·Ek00 is assigned to the interacting/decaying primary

particle. This particle then enters the event generator of choice with the four-
momentum p

µ

prim = hEk,0,0,
p
Ek +2Ekmprimi, i.e., moving along the positive

z-axis. For hadronic interactions, we make the projectile collide with the
nitrogen nucleus (14N) at rest; including 16O or other atmospheric nuclei as
the targets results in negligible modifications to the secondary particle yields.
For decays, we put the decaying particle at rest and then boost its daughters
to the lab frame, applying the transformation rule in Equation (A.2).

In our pipeline, the energies of the secondaries/decay daughters are
recorded in the same way as in 1D MCEq, i.e., by filling in the yield his-
tograms in the (Esec,Eprim) space (see Figure 3.2 for an example). To solve
the 2D cascade equation (4.21), one needs to additionally derive the Hankel-
transformed angular densities of the secondary particles, i.e., to discretize the
yield coe�cients cl(Ek )!h(Ei ) into the amplitudes &̃l(Ek )!h(Ei )() of the Hankel
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particle log10
⇣
Ek0
GeV

⌘
[Ek0 (GeV)] log10

⇣
Ek

GeV

⌘
[Ek (GeV)] log10

⇣
Ek0
GeV

⌘
[Ek00 (GeV)]

p 2.0 [100.0] 2.05 [112.2] 2.1 [125.8]
⇡
+ 1.0 [10.0] 1.05 [11.2] 1.1 [12.6]

⌫µ 0.5 [3.2] 0.55 [3.5] 0.6 [4.0]

Table 5.1 – Energy grid settings for the event generation chain example. The three
columns (from left to right) correspond to the left bin edge, the bin center, and the
right bin edge of the respective particles on the MCEq kinetic energy grid.

modes . We will illustrate how this is done using the muon neutrino produc-
tion chain from Figure 4.1, i.e., p +14N! ⇡

+ +X⇤ ! ⌫µ +µ
+, focusing on the

angular distributions of ⇡+ and ⌫µ. As these angular distributions populate
a discrete two-dimensional energy grid, we choose the primary proton and
the secondary pion/neutrino energy bins as in Table 5.1 for this example.
This choice reflects the characteristic energies for the low-energy neutrino
production in air showers. We begin our simulation chain with a beam of
protons incident at 14N in the EPOS-LHC event generator, which returns
the kinematic properties of the secondary particles produced in the inelastic
scattering. This includes the ⇡+ of interest. The top left panel of Figure 5.2
shows the distribution of angles ✓p!⇡+ that the secondary pions make with the
primary proton axis. The number of entries n⇡+ in the histogram (normalized
to the number of the primary protons np) is equivalent to the total secondary
pion yield cp!⇡+ in this interaction channel, i.e., n⇡+ ⌘ np · cp!⇡+ . Each of the

secondary pions contributes a delta function �(✓ �✓j

p!⇡+), j 2 [1,n⇡+], to the
overall angular density1. The Hankel transform of the delta function has an
analytical representation2,

H
1
a
�(✓ � a)

�
() = J0(a), (5.1)

meaning that the Hankel-space representation of an individual particle angu-
lar density can populate the -grid as soon as the respective event is generated
in the Monte Carlo simulation. Then, thanks to the additivity of the Hankel
transform, the sum of the Hankel-transformed delta functions �(✓ �✓j

p!⇡+)
asymptotically approaches the Hankel transform &̃p!⇡+() of the underlying
angular density &p!⇡+(✓) of the secondary pions:

&̃p!⇡+()
np !1
=

1
np

n⇡+X

j=1

J0(✓
j

p!⇡+) (5.2)

1Note that we used � to denote a Dirac delta function to distinguish it from the decay
coe�cient �l!h used earlier in Equation (4.6).
2We scale the delta function centered at ✓ = a by a

�1 to be consistent with the angular
density definition in Equation (4.2).
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∈
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∈−1

∈
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Figure 5.2 – Top left: angular distribution of the secondary pions in the p+14N!
⇡
+ +X

⇤ process, as extracted from the EPOS-LHC event generator (solid blue line)
and as obtained from the inverse Hankel transform (dashed red line) of the top right
panel. Top right: Hankel transform of the angular distribution of the secondary
pions (obtained directly using Equation (5.2)). Middle: same as top, but evaluated for
daughter ⌫µ in the ⇡+! µ

+ + ⌫µ decay. Bottom: the application of the convolution
theorem to the p ! ⇡

+ ! ⌫µ chain: the inverse transform of the product of the
Hankel transforms (top right and middle right) reconstructs the angular density of
the tetriary neutrinos (bottom left). The dotted black line in the bottom left panel
shows the appropriately normalized angular distribution of the secondary pions for
comparison.
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The angular density can therefore be expressed via the inverse Hankel trans-
form as3

&p!⇡+(✓) ⌘H�1
h
&̃p!⇡+()

i np !1
=

1
np

H�1
2
6666664

n⇡+X

j=1

J0(✓
j

p!⇡+)

3
7777775 (✓). (5.3)

We emphasize that Equation (5.3) holds only in the limit of a large number
of delta functions being summed, i.e., large Monte Carlo statistics. We prove
this for toy functions in Appendix B. For that reason, we always generate 107

events for every energy bin of every primary particle to arrive at accurate
angular density estimates of the secondaries via the delta function summation
in the Hankel space4.

The Hankel mode amplitudes &̃p!⇡+() calculated via the delta function
summation are shown in the top right panel of Figure 5.2. The respective
inverse transform &p!⇡+(✓) is overlayed with the original histogram of the sec-
ondary pion angles in the top left panel. In this representative example, two
observations are of particular importance. First, the inverse Hankel transform
as evaluated through Equation (5.3) matches the original (histogrammed)
angular distribution of the pions very well. This provides an empirical valida-
tion to the Hankel transform as a tool to “compactify” the angular densities of
secondary particles in hadronic interactions, as well as to our specific choice
of the -grid. Second, from the top right panel of Figure 5.2, we notice that
the amplitudes of the Hankel modes with  � 100 become near-negligible.
This means that the angular density of the ⇠10GeV pions produced in the
interaction of a ⇠100GeV proton with 14N is su�ciently wide so as not to
involve the higher-frequency modes. This is not the case for all processes
occurring in a typical air shower. For example, in the decay of the ⇠10GeV
pion to ⇠4GeV muon neutrinos, the angular distribution of the latter is sharp-
edged and only about 0.25� wide, as illustrated in the middle left panel of
Figure 5.2. In this case, even  as high as 2000 is not su�cient to accurately
reconstruct the angular density �⇡+!⌫µ(✓), and the inverse Hankel transform
exhibits a lot of “ringing.” However, this would only be concerning if we set to
reconstruct the angular distributions of neutrinos in the decay of an infinitely
narrow beam of pions. In a realistic air shower and at the energies of interest,
the pions already get a reasonably wide angular distribution prior to decaying
into neutrinos, which we saw in the proton-14N scattering example. As the re-
sult, the neutrinos from the p! ⇡

+! ⌫µ chain (and all analagous processes)
inherit the smooth angular distribution of the parent mesons, only slightly
widening it as the result of convolution of &p!⇡+ with �⇡!⌫µ . In the Han-
kel space, the equivalent explanation is the e↵ective “disappearance” of the

3A more general expression for a process with a primary l and a secondary h can be
obtained by replacing p$ l and ⇡+$ h.
4We have developed this density estimation method specifically for this study and are not

aware of its mentions or applications in any other literature.
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higher-frequency modes in �̃⇡!⌫µ() after multiplication with &̃p!⇡+ , which
is e↵ectively 0 at k � 100. This is an example of the convolution theorem
application, which, following the inverse transform of &̃p!⇡+() · �̃⇡+!⌫µ(),
results in an accurate reconstruction of the ⌫µ angular distribution from the
Monte Carlo simulation chain5:

&p!⌫µ(✓) =H
�1

h
&̃p!⇡+() · �̃⇡+!⌫µ()

i
(✓). (5.4)

Thus, given its success in a representative example, our general method for
populating the 2D MCEq matrices with event generator yields consists in
the usual 1D MCEq histogramming of the primary and secondary energies
supplemented with the delta function summation in the Hankel space.

5.2.2 Production of polarized muons

Since the Pythia event generator that we use to process most of the particle
decays does not keep track of the particle spins, we use Equation (1.9) [96]
to assign the muon helicities in the two-body decays of ⇡± and K

±. We then
convert the obtained helicities to probabilities of a muon being purely right-
/left-handed (h = ±1) via Equation (1.10), where these two states act as a
basis in which we represent the entire population of muons with continuous
helicities. Then, after ⇡± and K

± undergo a two-body decay in Pythia, we
draw a number from a random uniform distribution in the [0,1] interval
and compare it to the evaluated probability of e.g. right-handedness. If the
probability is larger than the number drawn, we keep the muon as right-
handed (µR); otherwise, we keep it as left-handed (µL). The muons produced
in the three-body decays of K± and K

0
L are considered unpolarized and fall

into the generic “µ” category with the h = 0 label. The energy and angular
distributions of all muon species are kept from Pythia. This way, we populate
the �̃K±(⇡±)!µ

±
R,L

matrix blocks, following the procedure from Section 5.2.1.

5.2.3 Polarized muon decay

To compute the energy and the angular distributions of the daughters in
the µ� ! e

�
⌫̄e⌫µ and the µ+! e

+
⌫e⌫̄µ decays, we use the WHIZARD Monte

Carlo [132] instead of Pythia. WHIZARD includes full spin correlations in
particle decays and allows one to specify the direction of the parent muon spin.
For each of µ±, we simulate two spin configurations: sµ = h0,0,�1i and sµ =
h0,0,+1i. In Figure 5.3, we show the double-di↵erential distributions of the
polarized µ

� decay secondaries as computed in WHIZARD and compared to
the analytical prediction from Equation (1.11). We find a very good agreement
between the two, which validates the usage of theWHIZARDMonte Carlo for
processing the polarized muon decay at rest. To fill in the 2D MCEq matrices,

5Here we use the symbol & to denote the angular density of neutrinos from the interac-
tion+decay chain, even though we previously reserved this symbol for interactions only.
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Figure 5.3 – Angular and energy spectra of the polarized µ
� decay secondaries as

simulated in theWHIZARDMonte Carlo [132] (top) and computed analytically using
Equation (1.11) (middle). The bottom panel shows the ratio of the binned Monte
Carlo simulation over the analytical prediction.

we further boost the muons in the two simulated spin configurations to the
required kinetic energy along the z direction, thereby obtaining the angular
distributions and energy spectra of the secondaries for the left-handed and the
right-handed muon parents in the lab frame. Example angular distributions
of the ⌫̄e neutrinos resulting from the decay of a 5GeV µ

� are shown in the
left panel of Figure 5.4, where we compare the left-handed, the right-handed,
and the unpolarized muon cases. Having restricted the neutrino energy to the
E < 2GeV range, we see that both the angular and the energy distributions
of neutrinos are visibly a↵ected by the muon polarization. The di↵erences
between the three polarization scenarios propagate to the amplitudes of the
Hankel modes, as seen from the right panel of Figure 5.4. As expected, the
widest distribution (that of µL) decays the fastest in the Hankel space, and the
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Figure 5.4 – Left: The angular distributions of the daughter ⌫̄e in the µ
� decay for

three muon polarization configurations (left-handed µ
�
L, unpolarized µ

�, and right-
handed µ

�
R). Right: Hankel transform of the angular distributions in the left panel,

computed numerically via the delta function summation method (see Equation (5.2)).

narrowest one (that of µR) has a longer tail extending towards larger values of
. Once properly histogrammed in terms of both parent muon and secondary
neutrino energies, the Hankel amplitudes from Figure 5.4 become the values
that we eventually store in the decay coe�cients �̃µ�R,L!⌫µ , �̃µ�R,L!⌫̄e , �̃µ+

R,L!⌫̄µ ,
and �̃µ+

R,L!⌫e of the 2D MCEq matrices.

5 .3 model interpolation

Following the procedure outlined in Section 5.2, we generate 107 events per
every primary species and energy bin on the MCEq grid in each of the consid-
ered generators of hadronic interactions or decays. Except for UrQMD and
DPMJet-III 19.1, our chosen hadronic interaction models are nominally valid
down to the primary energies of Ethresh ' 80GeV, with decreasing applica-
bility below this threshold. For that reason, we create interpolated matrices,
where the low energy-compatible models (UrQMD or DPMJet-III 19.1) are
used below Ethresh, and the high-energy models (either of Sibyll-2.3c, EPOS-
LHC, or DPMJet-III 19.1) are used above Ethresh. At Ethresh and in the two
adjacent energy bins (one on each side of Ethresh), a linear6 spline is used to
smoothly transition between the low-energy and the high-energy models. An
example interpolation between the two energy regimes is shown in Figure 5.5
for the one-dimensional (Esecondary,Eprimary) histograms of the ⇡+ yields in
the p+14N interactions, and in Figure 5.6 for the angular densities of ⇡+. This

6In this case, “linear” refers to the order-1 spline interpolation on the logarithmic MCEq
energy grid.
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Figure 5.5 – Low-energy/high-energy model interpolation for the 1DMCEqmatrices.

Figure 5.6 – Angular density of the secondary ⇡+ obtained in the p+14N scattering,
as simulated in the UrQMD and the EPOS-LHC event generators. The protons in
the MCEq energy bin centered at ⇠70GeV fall into the intermediate energy regime,
where we use a linearly interpolated model as described in text.

step completes the generation of the 2D MCEq matrices, and they are now
ready to be used in the cascade equation solver as described in Chapter 6.



chapter 6
Solving 2D cascade
equations with MCEq

6 .1 solution in the hankel space

6.1.1 Forward integration

To integrate Equation (3.12), the 1D MCEq code employs a forward Euler
scheme, where the solution to

dy
dX

= f (X,y(X)) (6.1)

is computed iteratively in discrete steps of X:

y(Xt+1) = y(Xt) + f (Xt)�Xt. (6.2)

The step size �Xt is in general adaptive and depends on X, which is precisely
the strategy employed in MCEq to accurately capture the variations in the
atmospheric density ⇢air(X). In 2D MCEq, we adopt this strategy for every
mode  of Equation (4.22) separately. The longitudinal evolution of the
Hankel-transformed angular densities of the cascade secondaries is therefore
written as

�̃

(Xt+1) = �̃


(Xt)��XtrE[diag(µ) ·�(Xt)]

+�Xt

"
(�I+Ck)⇤int +

1
⇢(Xt)

(�I+Dk)⇤dec

#
�̃

(Xt),

(6.3)

where Xt and Xt+1 = Xt + �Xt are two successive slant depth values along
the integration path. We thereby evolve the fluxes �̃


for each  from X ' 0,
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which corresponds to the top of the atmosphere, to Xfinal, which corresponds
to the Earth surface level. The exact value of Xfinal, and therefore the number
of steps t needed to integrate Equation (6.3), varies depending on the cosmic
ray primary axis inclination. Given the same altitude of production, the
secondaries in the more horizontal showers have to traverse more atmosphere
(compared to the vertical showers) before they hit they ground. For that
reason, the near-horizontal showers always take more steps/time to evolve.
Equation (6.3) is the main computational task of 2D MCEq which is executed
by the user at runtime, as opposed to the pre-generation of the yield matrices,
which are made available to the user. Once �̃(Xfinal,) is calculated, the final
step is to reconstruct the angular densities of �(Xfinal,✓) using the inverse
Hankel transform.

6.1.2 Muon multiple scattering treatment

An additional e↵ect not explicitly included in Equation (6.3) is that of the
Coulomb scattering of charged particles o↵ of the atomic nuclei in the atmo-
sphere. In the limit of a large number of scatters per unit length traversed
by a charged particle, this process is called multiple scattering, and the total
angular deflection is described by the Molière theory [133]. The calculation
by Molière includes full quantum mechanical treatment of the scattering in
the Coulomb field of the electron-screened nucleus and yields a power series
expansion for the probability density of the deflection angle ✓ [133, 134].
Including higher terms in the series corresponds to a more accurate treatment
of the tails of the distribution. However, to within 2% accuracy, occasional
deflections by large angles can be neglected [55], and only the first term in the
expansion is kept. This results in a Gaussian approximation of the probability
P of a charged projectile deflecting by the space angle ✓1 after traversing �X
of the atmospheric slant depth:

P(✓,�X) =
1

⇡✓
2
s�X

· exp
"
�✓2

�X✓2
s

#
, (6.4)

where ✓2
s = 1

�s

✓
Es

Epr,lab �pr

◆2
, Es = 0.021GeV, �s = 37.7gcm�2, Epr,lab is the total

projectile energy in the lab frame, and �pr – its lab-frame Lorentz velocity fac-
tor [55, 135, 136]. In principle, all charged particles (including hadrons) are
subject to Coulomb scattering; however, since inelastic scattering dominates
the propagation of high-energy hadrons in the atmosphere, the Monte Carlo
codes such as CORSIKA include the e↵ect of the Coulomb scattering only

1Here we follow the terminology of [135], where the space (unprojected) angle ✓ is con-
trasted with the plane (projected) angles ✓x and ✓y , such that ✓2 ⇡ ✓2x +✓2y . Our P(✓,�X) is

normalized so that
R 2⇡
0

R
⇡/2
0 P(✓,�X)✓d✓d' = 1, which is why the normalization factor in

Equation (6.4) is di↵erent from that of [55].
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Figure 6.1 – Left: Gaussian approximation of the muon deflection angles due to their
multiple scattering on atmospheric nuclei (see [55, 134, 135] and Equation (6.4)).
Right: Hankel transform of the angular distributions in the left panel.

for muons [55]. We adopt the same approach in this work and implement
the Gaussian approximation (6.4) in MCEq. In the left panel of Figure 6.1,
we show several representative probability densities computed according
to Equation (6.4). For illustration, we use �X = 1gcm�2. In general, how-
ever, �X varies with X in response to the longitudinal atmospheric density
variations, and the width of the muon multiple scattering kernel is variable.
While in just 1gcm�2 the expected muon deflection is small (O(0.1�) at GeV
energies), this e↵ect accumulates with the slant depth and results in a notice-
able shift of the sea-level muon angular distribution especially in horizontal
showers. To incorporate this additional di↵usion kernel into the solution of
Equation (4.21), we find the Hankel transform of Equation (6.4):

P̃(,�X) = exp
"
�2�X✓2

s
4

#
, (6.5)

which is shown in the right panel of Figure 6.1. Equation (6.5) is scaled so that
the overall normalization of the muon angular distribution (represented by
the  = 0 mode) is left intact, which in practice means that the muon energy
spectrum is una↵ected by the multiple scattering. This is a fair approximation
given that the atmospheric nuclei are much heavier than the muon [55]. Since
the muon energies are not a↵ected, we can directly multiply Equation (6.5)
by the Hankel amplitudes of the muon angular distributions, �µ


2 after each

integration step �X. This way, the simplified muon multiple scattering model
becomes a natural part of the matrix cascade equations.

2This applies to all of the muon species, i.e. µ±L,µ
±
R, and µ

±.
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Figure 6.2 – Normalized Hankel amplitudes of the neutrino angular distributions
in three di↵erent energy bins at the Earth’s surface, as computed via 2D MCEq by
evolving a 100GeV proton shower incident at 30�. The markers represent the discrete
2D MCEq solutions in the Hankel space, while the solid lines correspond to the fits
with the Student’s t probability distribution function (6.7).

6 .2 inverse hankel transform and solution reconstruc-
tion

After the final integration step, the 2D MCEq solver returns the state vector
�̃(Xfinal,), which contains the flux amplitudes in the Hankel frequency space
for all participating cascade particles on the MCEq energy grid. In Figure 6.2,
we show example Hankel amplitudes of the ⌫µ + ⌫̄µ and ⌫e + ⌫̄e angular distri-
butions obtained after solving Equation (4.22) for a 100GeV proton shower
incident at the zenith angle of 30�3. To obtain the solutions as a function of
the angle from the shower axis, one needs to further apply the inverse Hankel
transform:

�(Xfinal,✓) =H�1
h
�̃(Xfinal,)

i
(✓) ⌘

Z 1

0
�̃(Xfinal,)J0(✓)d

'
Z
max

0
�̃(Xfinal,)J0(✓)d.

(6.6)

The  grid in 2D MCEq is discrete, and the modes are nearly logarithmically
spaced. To accurately compute the integral in Equation (4.15), one needs to

3This corresponds to Xfinal ⇡ 1200gcm�2 at the surface, depending on the choice of the
atmosphere.
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Figure 6.3 – Left: Hankel-space 2D MCEq solutions to Equation (4.22) for the
1.0..1.3GeV ⌫µ + ⌫̄µ neutrinos at the Earth’s surface, computed with the same initial
conditions as in Figure 6.2. The solid lines show the two di↵erent continuous ap-
proximations to the discrete amplitudes �̃(), as described in text. Right: angular
densities of ⌫µ + ⌫̄µ obtained via the inverse Hankel transform of the left panel.

come up with a continuous approximation of �̃(Xfinal,), for which we have
explored two methods. The first method is fitting the Student’s t probability
distribution function [137–139] to the discrete Hankel amplitudes, as shown
in Figure 6.2. The Student’s t function is defined as

f (|↵,⌫) =
�
⇣
⌫+1
2

⌘

p
⇡⌫�

⇣
⌫

2

⌘
 
1+

(↵)2

⌫

!� (⌫+1)
2

, (6.7)

where � is the gamma function, ⌫ is the degrees-of-freedom parameter, and
↵ is the scaling parameter we introduced to account for the di↵erent widths
of the distributions. We find that all of the Hankel space solutions at O(GeV)
energies are well-fit by the Student’s t function. If all of the angular distribu-
tions of the MCEq cascade secondaries at all altitudes were well-described by
Equation (6.7), only two parameters (↵ and ⌫) would be required to explain
the shapes of the angular distributions. In this case only three Hankel modes
would be necessary to uniquely determine ↵ and ⌫ and find the continuous
functional form of �̃(). Since we are not aware of the a priori reason why
the solutions to the two-dimensional cascade equation would always result in
Student’s t-like functions, we have compared this method to a straightforward
cubic spline in the Hankel space. Figure 6.3 compares the two methods in
both the Hankel space and the real (angular) space. We see that while the
Student’s t fit gives a strikingly good qualitative representation of the overall
shape of �̃(), it is still only an approximation which is optimal in the least-
squares sense and is not designed to pass through all the points exactly. The
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spline interpolation, on the other hand, by construction returns the input
�̃() amplitudes at the spline knots. The di↵erences between the two methods
can already be seen in the Hankel space but are even more visible in the
angular space, where the inverse Hankel transform of the spline interpolation
results in a more peaked/narrower angular distribution compared to the
Student’s t fit. Given that the spline interpolation matches the input Hankel
amplitudes better, and is capable of capturing the negative amplitudes4 as
in the middle panel of Figure 5.2, we expect it to be a better estimator of
the true angular density. While the ground truth of the neutrino angular
densities is not known, it is possible to put the two methods to test using a
toy function. We report the results of this test in Appendix B (Figure B.3),
which confirm that the spline interpolation does in fact yield a more accurate
angular density estimate. We therefore proceed with this method for the
reconstruction of the angular-space solutions of 2D MCEq, evaluating the
cubic spline on an oversampled  grid to form a continuous approximation.
The di↵erent oversampling resolutions noversamp are explored in Figure B.4;
in this work, we settle on a linearly spaced grid of 10,000 points5 between
0 = 0 and 23 = 2000 for the evaluation of the integral in Equation (6.6).

We note that the reconstruction of angular densities of high-energy secon-
daries (with kinetic energies of 10GeV and above), as well as those created
very early in the cascade evolution, must be treated with care if the starting
angular distribution of the primaries is narrow (e.g. delta function-like). In
the high-energy regime, the secondaries are created very close to the pri-
mary particle axis, while in the low-X regime, the cascade has not yet had a
chance to su�ciently spread in ✓. This means that the angular distributions
of such secondaries will be too narrow to be accurately reconstructed even
with max = 2000, and the direct application of Equation (6.6) may result
in the characteristic “ringing.” We therefore recommend that the method
described in this section is applied to reconstructing the angular distribu-
tions of . 10GeV secondaries at slant depths of several kilometers into the
atmosphere, and that the 1D approximation is used at high energies/altitudes.

4This is not the case for the Student’s t function, which is positive for all .
5This corresponds to noversamp = 5.
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chapter 7
Benchmarking against
CORSIKA

7 .1 experimental setup

To validate our solutions to the two-dimensional matrix cascade equations
via 2D MCEq, we use the CORSIKA v7.7410 Monte Carlo code [55] as a
benchmark. We aim to compare the angular distributions of the GeV-scale
atmospheric neutrinos and muons generated in the cosmic-ray induced air
showers. All of our simulations are run for a single angle of incidence of the
cosmic ray primary flux, and the secondary particle angular distributions are
computed with respect to the primary particle axis.

To make these comparisons as fair as possible, we e↵ectively disable1

the geomagnetic field in CORSIKA by setting Bx = Bz = 10�5µT . This is
done because the geomagnetic field and the respective curving of the charged
particle trajectories are not implemented in 2D MCEq at the time of writing.
We also match the choice of hadronic interaction models by using UrQMD
[124] as the low-energy model and EPOS-LHC [126] as the high-energy model
in both CORSIKA and 2D MCEq. The transition energy is set to the default
value of 80GeV, which means a sharp transition between the two hadronic
interaction models in CORSIKA and a smooth interpolation between the
models in 2DMCEq (see Section 5.3). Some discrepancies between the two
codes are therefore possible due to the di↵erent implementations of the

1CORSIKA requires |B| > 0, which is why we set the individual components to negligibly
small values instead of 0.
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low-energy/high-energy model transition as well as the di↵erent low-energy
model versions2.

Our typical setup for the lepton flux benchmarking consists of a proton
primary incident onto the Earth’s atmosphere at a certain inclination angle ✓0.
We test both vertical (✓0 = 0�) and inclined (✓0 2 {30�, 60�, 80�}) showers; for
✓0 � 60�, we use CORSIKA compiled with the CURVED option. The energy
of the proton either is fixed at a certain value (e.g. 100GeV) or follows a
spectrum with a realistic power-law dependence (e.g. / E

�2.7). In CORSIKA,
the azimuthal angle of incidence is fixed at '0 = 0 for concreteness in the
computation of space angle between the primary proton and the secondary
lepton directions. The height of the first interaction of the proton with the
atmospheric nuclei is set to 112.8 km in bothMCEq and CORSIKA. The atmo-
spheric density as a function of the slant depth X is modelled according to the
Linsley parametrization of the US Standard atmosphere [55]. The continuous
energy losses of the charged particles due to ionization follow the Bethe-Bloch
prescription [135, 140] in both codes, and the Gauss approximation (as per
Section 6.1.2) is employed for muon multiple scattering.

For each considered permutation of initial conditions and hadronic inter-
action models in the above setup, we simulate ⇠1million events in CORSIKA
with di↵erent random seeds. This lets us gather enough statistics for the
low-energy muons and neutrinos at several observation altitudes. The corre-
sponding binned angular distributions are compared directly to the angular
probability densities obtained with 2D MCEq by solving Equation (4.22).

7 .2 benchmarking results

In this section, we present the results of the MCEq-CORSIKA comparisons
for three representative sets of initial conditions:

n 100 GeV proton shower incident at 30� (Figures 7.1 and 7.2);
n E

�2.7 proton spectrum sampled between 10GeV and 10TeV and inci-
dent at 30� (Figures 7.3 and 7.4);

n 100 GeV proton shower incident at 80� (Figures 7.5 and 7.6),
as simulated with the UrQMD+EPOS-LHC hadronic model combination. The
rest of the results exhibit similar features and are reported in Appendix C.
We provide both the angular distributions and the energy spectra of ⌫e + ⌫̄e,
⌫µ + ⌫̄µ, and µ

�+µ
+, where the energy spectra are extracted from 2D MCEq as

the  = 0 mode of the 2D cascade equation solution (see Section 4.2.2). For
all showers with the 60� inclination or less, the comparisons are performed
at 3 observation altitudes (15km, 5km, and 0km above the Earth’s surface)
and in 3 energy bins (centered at ⇠1, 2, and 5GeV). For showers with a larger
inclination, only the solutions at the Earth’s surface (h = 0km) are recorded.

2CORSIKA uses the older UrQMD-1.3, while our 2D MCEq matrices were produced with
the newer UrQMD-3.4model accessible via the impy interface [3].
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Figure 7.1 – Angular distributions of atmospheric leptons in a proton-induced air
shower (E0 = 100GeV, ✓0 = 30�), as computed numerically in 2D MCEq (solid line)
and simulated in the CORSIKA Monte Carlo (filled histograms with errorbars). The
angle ✓ on the x axis is the angle a given secondary makes with the direction of the
primary proton. The di↵erent colors correspond to the di↵erent energy bands, and
the bottom sub-panel in each plot shows the ratio of CORSIKA (“C”) to MCEq (“M”).
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Figure 7.2 – Energy spectra of atmospheric leptons in a proton-induced air shower
(E0 = 100GeV, ✓0 = 30�), as computed numerically in 1D MCEq (solid line) and sim-
ulated in the CORSIKA Monte Carlo (filled markers). Here, “1D MCEq” corresponds
to the  = 0 slice of the 2D MCEq solution. The bottom sub-panel in each plot shows
the ratio of CORSIKA (“C”) to MCEq (“M”).
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Figure 7.3 – Same as Figure 7.1, but for the initial proton energies sampled from the
E
�2.7 spectrum.



76

Figure 7.4 – Same as Figure 7.2, but for the initial proton energies sampled from the
E
�2.7 spectrum.
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Figure 7.5 – Same as Figure 7.1, but for the 80� shower inclination.

Figure 7.6 – Same as Figure 7.2, but for the 80� shower inclination.

We make several observations from the presented cross-checks:
n The angular distributions of O(GeV) neutrinos agree very well between

CORSIKA and 2D MCEq at the medium (30�) inclination at all obser-
vation altitudes for both the fixed-energy proton and the power law
proton spectrum initial conditions, with at most 5�10% discrepancies
between the two codes. The same behaviour is observed for the 0�

and the 60� inclinations, which we show in Figure C.2 and Figure C.3,
respectively.

n The neutrino energy spectra at the  60� inclinations are also in a very
good agreement between CORSIKA andMCEq in the 1–10GeV regime,
with at most 10% discrepancies. However, the CORSIKA-to-MCEq
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ratio shows a clear energy dependence in the fixed-energy shower
case, and the discrepancy increases further at energies above 10GeV.
For the E

�2.7 spectrum, the energy dependence of the CORSIKA-to-
MCEq ratio is a lot milder. The disagreements in the energy spectra
between CORSIKA and 1D MCEq have been previously discovered
and investigated in detail by the MCEq development team3 (see e.g.
Figure C.9), and their origin is not fully understood.

n At medium inclinations, the angular distributions of muons exhibit a
characteristic tilt in the CORSIKA-to-MCEq ratio, with increasingly
smaller C/M values at larger angles with respect to the shower axis.
This tilt exists to a very small degree also in the neutrino angular
distributions (e.g. in Figure 7.4), which is natural since some of the
neutrinos come from the muon decays.

n Among all cases presented, the near-horizontal showers exhibit the
largest discrepancy between CORSIKA and MCEq, which di↵er by
as much as 20% when comparing neutrino angular densities at the
Earth’s surface. The ratio of the estimated angular densities acquires
a strong angular dependence, and the discrepancies in both < 1GeV
and > 10GeV energy spectra of all leptons are more pronounced than
at medium inclinations. Neither of these e↵ects are “remedied” by
switching to the E�2.7 spectrum, as shown in Figures C.4 and C.8. This
is not surprising since the horizontal showers develop over longer
distances in the atmosphere, and any existing discrepancies between
the two codes might accumulate.

Thus, setting aside the very good agreement of the neutrino angular distri-
butions originating from the showers at medium inclinations, we have two
main categories of the CORSIKA-MCEq discrepancies: the tilt of the muon
angular distribution ratios at medium inclinations (as in Figure 7.1), and the
tilt of both neutrino and muon angular distribution ratios for near-horizontal
showers (as in Figure 7.5). The two aspects do not necessarily have the same
origin. In the remainder of this chapter, we speculate on several possible
sources of the disagreement, including the low-energy/high-energy model
transition implementation; the di↵erences in the low-energy model imple-
mentation (UrQMD); the geometry of the observation planes used to record
the particle information; and the distance-dependent e↵ects such as muon
multiple scattering and ionization energy losses.

3A. Fedynitch, personal communication, October 2022. Figure C.9 contains the supporting
evidence from the unpublished work of A. Fedynitch (reproduced with permission).
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7 .3 mceq-corsika discrepancies

Low-energy/high-energy model transition

It could be possible that the slightly di↵erent implementations of the tran-
sition between the low-energy (. 80GeV) and the high-energy (&80GeV)
hadronic models – in our case UrQMD and EPOS-LHC, respectively – con-
tribute to the MCEq-CORSIKA discrepancies. To test this, we simulated a
50GeV proton shower in both codes, as in this regime only the low-energy
model is active. The results are presented in Figures C.1 and C.5, which show
that the characteristic “muon tilt” at all altitudes does not disappear in the
pure low-energy regime, and that the O(10%) discrepancies in the energy
spectra remain. This rules out the low-energy/high-energy model transition
as the possible source of disagreement. This is also unlikely to cause the dis-
crepancies observed for the near-horizontal showers, since the E�2.7 spectrum
at 80� (Figure C.4) is low-energy dominated and exhibits the same issue.

Low-energy model implementation

Another possible source of disagreement could hide in the di↵erent implemen-
tations/versions of the low-energy model itself. CORSIKA v.77410 uses the
older UrQMD-1.3, while we use UrQMD-3.4. To see what kind of an impact
the choice of the low-energy hadronic model has on the angular distributions
and the spectra of atmospheric leptons, we performed a test in MCEq where
the low-energy model was switched to DPMJet-III 19.1. The results of this
test are reported in Appendix D.1. We find that the shape of the angular
dependence of the DPMJet-III 19.1 / UrQMD ratio resembles that found for
CORSIKA / MCEq at the 80� inclination. However, the MCEq-to-MCEq com-
parisons exhibit this shape at both medium and high inclinations, whereas in
CORSIKA-to-MCEq this shape becomes apparent only at 80�. The magnitude
of the MCEq-to-MCEq ratio with di↵erent hadronic models is also smaller
than that of CORSIKA-to-MCEq for both the angular densities and the energy
spectra. We therefore conclude that the similarities between the results of the
hadronic model impact test in MCEq and the benchmarking of MCEq against
CORSIKA are likely a coincidence. A dedicated comparison performed be-
tween the di↵erent UrQMD versions, or with another low-energy model in
CORSIKA, is warranted.

Geometry of the recording plane

In 2D MCEq, all the Hankel modes (and therefore, all the secondary particle
angles) are longitudinally evolved according to the same cascade equation
(4.22). This approach bakes in an implicit assumption that the secondaries
travel the same distance between two subsequent slant depth steps Xt and
Xt+1, regardless of which angle they make with the shower axis. The distance
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�X = Xt+1 �Xt , however, is always computed along the shower axis, and the
secondaries that deflect from the core by large angles (e.g. 20�) naturally travel
longer distances before they reach the next integration step. This implies, in
particular, that the scattered hadrons have more matter to interact with and
that the muons lose energy over a longer path. The current implementation of
the “observation plane” in MCEq is e↵ectively a circle of radius X (centered
at the point of first interaction), which does not take into account the increase
in the travel path of the deflected secondaries. This is e↵ect is, however,
naturally taken into account in CORSIKA, where the observation planes are
flat at medium inclinations and reflect the curvature of the Earth at high
inclinations. This could at least qualitatively explain the deficit of the muons
at large angles in CORSIKA compared to MCEq, i.e., the “muon tilt” from
Figures 7.1 and 7.3. However, it does not explain the excess of the muons
at small angles (i.e., close to the shower axis), where the two geometries are
identical.

Muon multiple scattering

We can consider the possibility of muon multiple scattering contributing
to the discrepancy between CORSIKA and MCEq, since it is an e↵ect that
accumulates with distance as per Equation (6.4) and the agreement between
the two codes is noticeably worse for the near-horizontal showers. In our tests,
the Gauss approximation (i.e. the zeroth-order Molière theory) is employed
in both CORSIKA and MCEq, and we are not aware of any conceptual or
quantitative di↵erences between the two implementations. We test the impact
of the muon multiple scattering being turned on/o↵ in MCEq in Section 6.1.2.
We find that inclusion of multiple scattering does produce the expected shift
of the muon distribution compared to the no-scattering case, and the resulting
shape of the distribution ratio is similar to that observed in the near-horizontal
shower case in Figure 7.5. However, if the muons were scattered to larger
angles in CORSIKA than prescribed by the Gauss approximation (e.g. if the
full Molière theory is used in practice despite the settings), we would see a
similar shape also in Figures 7.1 and 7.3, where instead we observe a tilt in
the opposite direction. In addition, the neutrino angular distributions are
a↵ected very little by muon multiple scattering, while the CORSIKA/MCEq
ratio for neutrinos shows a strong angular dependence at the 80� inclination.
Finally, muon multiple scattering by construction does not a↵ect the muon or
the neutrino energies (which we have also verified practically), and therefore
cannot explain the discrepancies in the energy spectra. Considering these
arguments, we do not find any evidence that muon multiple scattering is
driving the observed di↵erences between CORSIKA and MCEq.
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Muon energy losses

The implementations of the energy losses in CORSIKA and MCEq are sup-
posed to match exactly as they are described by the standard physics of elec-
tromagnetic interactions, namely the Bethe-Bloch description of the charged
particle passage through matter. However, previous investigations4 into the
1D MCEq-CORSIKA agreement suggest that the muon energy losses in COR-
SIKA when measured directly from the muon propagation Monte Carlo are
not in a perfect agreement with the Particle Data Group (PDG) reference for
the muon h dEdX i in dry air [141]. Specifically, at high inclinations, the stopping
powers estimated from CORSIKA are smaller than the PDG reference values.
Intuitively, this should result in the excess of muons in CORSIKA compared
to MCEq, as the latter does reproduce the h dEdX i values from PDG. This is
not what we observe in our tests, where the energy spectra in CORSIKA are
consistently underestimated compared to MCEq. Still, we flag the energy loss
implementation in CORSIKA as inconsistent with a standard reference and
suggest that this is looked at more closely in future studies.

4A. Fedynitch, personal communication, October 2022. Figure C.10 contains the support-
ing evidence from the unpublished work of A. Fedynitch (reproduced with permission).
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Summary

This thesis focused on the evolution of the cosmic ray-induced atmospheric
air showers with applications to atmospheric neutrino flux modelling. At-
mospheric neutrinos of GeV-scale energies, which originate from the disin-
tegration of mesons and muons in the air showers, provide the main source
of signal for neutrino oscillation studies in several modern experiments. The
upcoming upgrades or expansions of these experiments will give birth to facil-
ities such as the IceCube-Upgrade, KM3NeT/ORCA, and Hyper-Kamiokande,
all of which will be sensitive to neutrino energies of a few GeV and below.
This prompted us to focus specifically on the O(GeV) regime when modelling
the fluxes of atmospheric neutrinos. A significant portion of this thesis was
also dedicated to atmospheric muons, which, besides being every particle
physicist’s irreducible background, are one of neutrinos’ immediate parents
and contribute plenty of complex physics to the cascade evolution.

For atmospheric neutrino oscillation studies, the flux of neutrinos prior to
oscillations must be modelled in terms of both the energy spectrum and the
angular distributions, as the neutrino arrival direction serves as a proxy for
travelled distance and thereby couples directly to the oscillation probability.
At the O(GeV) scales, the angular distributions of the hadronic cascade secon-
daries, including neutrinos, become significantly a↵ected by the air shower
development geometry. This comprises the e↵ects such as the bending of the
charged particle trajectories in the Earth’s magnetic field and the deflection of
the cascade secondaries from the direction of the primary particle. The main
outcome of this thesis is having developed the methodology and a practical
software tool to tackle the latter aspect. This tool was dubbed “2D MCEq,”
which represents a two-dimensional (2D) extension to the existing MCEq
(Matrix Cascade Equations) code. We have successfully achieved the goal
set out for this software, which was to complement the longitudinal-only
evolution of the air showers in 1D MCEq with the angular development.

The 2D MCEq tool is based on a novel numerical method for hadronic
cascade evolution, which consists in successive two-dimensional convolutions
of the particle angular densities with the pre-generated scattering kernels. We
have significantly simplified this problem by reformulating it in the spectral
domain, where the continuous angular variable is replaced with a set of
discrete frequency modes. To achieve this, we have identified the correct kind
of a spectral transform and the convolution theorem applicable to our case,
thereby formulating the two-dimensional cascade theory in both the angular
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and the frequency spaces. This approach fits naturally into the 1D MCEq
framework, and its complexity scales linearly with the number of frequency
modes included into the system of coupled cascade equations.

The 2D MCEq code includes all important hadronic and leptonic physics
for atmospheric neutrino flux modelling – including inelastic interactions of
hadrons with the atmospheric nuclei, decays of unstable particles (including
production of polarized muons and polarized muon decay), energy losses
due to ionization, and muon multiple scattering. We have benchmarked the
angular distributions obtained with 2DMCEq against CORSIKA, which is the
reference Monte Carlo code in the air shower modelling domain. Our results
show that the neutrino angular distributions in the two codes agree within
1-10% percent at low-to-medium air shower inclinations (. 60�), while up to
20% discrepancies were observed for the near-horizontal showers. Further,
we found that the muon angular distributions exhibit a small bias/shift with
respect to one another when compared between the two codes at large deflec-
tions from the shower axis. While the origin of these discrepancies is not fully
understood, we have proposed and eliminated several hypotheses regarding
the possible sources of discrepancy. On the MCEq side, one remaining can-
didate is the implementation of the “recording plane” geometry, which does
not currently reflect the fact that the significantly deflected secondaries travel
longer distances towards a given observation level. On the CORSIKA side,
a follow-up investigation into the muon energy losses due to ionization is
recommended, as they were found to disagree with the standard reference
values in an external study.

Given the very high level of agreement with CORSIKA in most of our test
cases and a significant computational advantage of the numerical solution over
the Monte Carlo approach, 2D MCEq provides a very appealing alternative
for atmospheric neutrino flux calculations. The computational cost of the 2D
MCEq calculations at the current stage is between several CPU-seconds for
vertical showers and 1 CPU-minute for the near-horizontal showers, compared
to multiple CPU-hours it takes to gather su�cient statistics for inclusive flux
calculations via the Monte Carlo simulations. Our tool therefore opens the
pathway to fast exploration of the systematic uncertainties on the angular
distributions of atmospheric leptons, including those associated with the
hadronic interaction models and the cosmic ray primary flux.



Outlook

The future of the 2D MCEq calculations is three-dimensional. Practically, to
compute the full-sky angular distributions of atmospheric neutrinos necessary
for neutrino oscillation studies, the angular development of the individual air
showers available via 2D MCEq will have to be combined with the spherical
geometry of the Earth’s atmosphere as well as the initial angular distribution
of the cosmic ray primaries. This will imply the integration over the cosmic
ray showers starting from every location on the sky and propagating towards
the Earth in all directions. A complete three-dimensional calculation will
additionally have to take into account the geomagnetic cuto↵ for the cosmic
ray primaries (i.e. restricting their arrival directions depending on energy
and the observation location) as well as the deflection the hadronic cascade
secondaries in the geomagnetic field. The Monte Carlo studies suggest that
the geomagnetic e↵ects will have more impact on the low-energy atmospheric
neutrino fluxes in the upgoing (Earth-crossing) region compared to the impact
of the geometrical (2D) e↵ects in the same portion of the phasespace, which is
yet to be verified via a numerical approach.

The final goal of a numerical three-dimensional atmospheric neutrino flux
calculation is to fully control all of the inputs to and all of the machinery
of the modelling process, such that the impact of individual ingredients or
their correlations can be tested on short time scales without any associated
statistical uncertainties or “unknown unknowns” typically baked into the
large-scale Monte Carlo simulations. The ultimate impact on the neutrino
oscillation studies will be in the reduction of the systematic uncertainty
associated with the atmospheric flux predictions, which contribute multiple
nuisance parameters to the experimental neutrino oscillation measurements.
Breaking down this degeneracy will help push these measurements towards
improved sensitivities, while simultaneously clearing up the phasespace for
the Beyond the Standard Model physics searches with O(GeV) atmospheric
neutrinos.
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appendix A
Mathematical
preliminaries

a.1 transformation matrices

A.1.1 Transformation rules for vectors

The matrix applying the rotation of a four-vector by an angle ✓ about the x
axis is given by:

R
x

µ⌫(✓) =

0
BBBBBBBBBBB@

1 0 0 0
0 1 0 0
0 0 cos✓ �sin✓
0 0 sin✓ cos✓

1
CCCCCCCCCCCA

(A.1)

The matrix describing the boost of a four-vector into the frame moving with
velocity v along the z axis, such that its Lorentz factors are �(v) and �(v), is:

⇤z

µ⌫(v) =

0
BBBBBBBBBBB@

�(v) 0 0 ��(v)�(v)
0 1 0 0
0 0 1 0

��(v)�(v) 0 0 �(v)

1
CCCCCCCCCCCA

(A.2)

A.1.2 Transformation rules for spinors

The matrix describing the boost of the left-chiral Weyl spinor  L along the z
axis reads:

⇤L,z
ab

(�) =

0
BBBB@
e
�

2 0
0 e

� �2

1
CCCCA , (A.3)

where � = tanh�1(�(v) is the rapidity of the boost and the subscripts (a,b)
refer to the two components of the spinor. Similarly, for the right-chiral spinor
 R:

⇤R,z
ab

(�) =

0
BBBB@
e
� �2 0
0 e

�

2

1
CCCCA (A.4)

The rotation matrices (e.g. by an angle ✓ about the x axis) are identical for the
left-chiral and the right-chiral spinors:

R
L,x
ab

(✓) = R
R,x
ab

(✓) =
 
cos ✓2 i sin ✓

2
i sin ✓

2 cos ✓2

!
(A.5)
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appendix B
Hankel transform
implementation

As discussed in Section 5.2, we compute the Hankel transforms of the angular
densities of the secondary particles coming out of the event generators numer-
ically via the “delta function summation” method. The method consists in
adding up the Hankel transforms of the Dirac delta functions � corresponding
to the generated angles ✓ one-by-one, thereby providing a kernelless density
estimate. The reliability of such an estimate depends on the number of delta
functions n� being summed. To prove this, we define a toy function �(✓),

�(✓) =N ✓b · e�a✓ (B.1)

over the domain ✓ 2 [0,⇡/2], which closely resembles the shape of the angular
densities of the actual secondaries obtained in the solutions to the 2D MCEq
equations (see e.g. Figure 6.3 and Section 7.2). The normalization factor N
in Equation (B.1) ensures that

R
⇡/2
0 �(✓)d✓ = 1. We set the true parameters to

{a = 20;b = 1} and draw ✓i samples (i = 1..n�) from the �(✓) distribution. We
then compute the Hankel transforms of the obtained ✓i distributions via

�̃(j ) =
1
n�

n�X

i=1

H
"
1
✓i

�(✓ �✓i )
#
(j ) =

1
n�

n�X

i=1

J0(j✓i ) (B.2)

for the discrete modes j . Finally, we apply the inverse Hankel transform
to �̃(j ), which requires a continuous approximation �̃(j )! �̃(). In Fig-
ures B.1 and B.2, we provide the results of the �(✓) reconstruction using
di↵erent values of n�, which correspond to the spline-based and the Student
t-based continuous approximations of �̃(j ) as described in Section 6.2.
We see that the accuracy of the spline-based continuous approximation to
�̃() depends heavily on the number of the Hankel-transformed delta func-
tions � entering Equation (B.2), i.e., the number of samples drawn from the
distribution. This dependence is much more mild for the Student t-based
reconstruction, which provides a very good estimate of the true density even
for n� as low as 102. However, as shown in Figure B.3, the accuracy of the
spline-based reconstruction near the peak of the �(✓) distribution is better
than that of the Student t-based reconstruction for the largest tested n�. This
is why we select the spline approximation to �̃() when converting the 2D
MCEq Hankel modes to the angular densities of the cascade secondaries.
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Figure B.1 – The accuracy of the probability density reconstruction for the toy
distribution (B.1) via the delta function summation using di↵erent numbers of deltas
(n�). Here, the continuous approximation to the numerical Hankel transform is found
via the cubic spline prior to evaluating the integral in Equation (6.6).

Figure B.2 – Same as Figure B.1, but with the continuous approximation to the
numerical Hankel transform found via the Student’s t fit (see Equation (6.7)).



90

Figure B.3 – The reconstruction of the probability density (B.1) via the inverse Hankel
transform of the Student’s t- and the spline-based continuous extensions of (B.2).

Figure B.4 – The e↵ect of the oversampling resolution on the reconstruction of (B.1).

Finally, we note that our tests in Figures B.1 to B.3 use the oversampled  grid
for the evaluation of H�1 integral. This grid is linearly spaced between min =
0 and max = 2000, and the total number of grid points is noversamp ·max + 1.
Testing noversamp = {1,2,5,10} in Figure B.4, we find that noversamp  2 results
in an undesirable artefact around the reconstructed distribution tails, namely
the slope towards �(✓) < 0. Since probability density functions can never take
negative values, we choose noversamp = 5 to remove this artefact.



appendix C
MCEq-CORSIKA
comparisons (continued)

Figure C.1 – Angular distributions of atmospheric leptons in a proton-induced air
shower (E0 = 50GeV, ✓0 = 0�), as computed in 2D MCEq (solid line) and simulated
in CORSIKA (filled histogram). “C/M” stands for the CORSIKA/MCEq ratio.
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Figure C.2 – Same as Figure C.1, but for the primary proton energy E0 = 100GeV.
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Figure C.3 – Same as Figure C.1, but for the primary proton energy E0 = 100GeV
and inclination ✓0 = 60�.

Figure C.4 – Same as Figure C.1, but for the primary proton energies sampled from
the E�2.7 spectrum and inclination ✓0 = 80�.
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Figure C.5 – Energy spectra of atmospheric leptons in a proton-induced air shower
(E0 = 50GeV, ✓0 = 0�), as computed in 1D MCEq (solid line) and simulated in
CORSIKA (filled markers). Here, “1D MCEq” corresponds to the  = 0 slice of the
2D MCEq solution. “C/M” stands for the CORSIKA/MCEq ratio.
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Figure C.6 – Same as Figure C.5, but for the primary proton energy E0 = 100GeV.
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Figure C.7 – Same as Figure C.5, but for the primary proton energy E0 = 100GeV
and inclination ✓0 = 60�.

Figure C.8 – Same as Figure C.5, but for the primary proton energies sampled from
the E�2.7 spectrum and inclination ✓0 = 80�.
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Figure C.9 – CORSIKA/MCEq ratios of the ⌫µ + ⌫̄µ yields in the proton-induced
showers at di↵erent energies and inclinations. The x axis shows the ratio of the
secondary neutrino energy to the primary proton energy. The plot is reproduced
from an unpublished study on 1DMCEq-CORSIKA comparisons with permission
from the author (A. Fedynitch).
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Figure C.10 – Comparison of the muon energy losses (ionization + radiative) from the
muon propagation simulations in CORSIKA and the standard Particle Data Group
reference for muon energy losses in dry air [141]. The plot is reproduced from an
unpublished study on 1D MCEq-CORSIKA comparisons with permission from the
author (A. Fedynitch).



appendix D
MCEq physics impact

d.1 the impact of the hadronic interaction model choice

Figure D.1 – Comparison of the 2D MCEq angular distributions of 1.0..1.3GeV
atmospheric leptons in a proton-induced shower (E0 = 100GeV, ✓0 = 30�) evolved
with two di↵erent low-energy hadronic interaction models: UrQMD (“U”) and
DPMJet-III 19.1 (“D”). The solutions are shown at the Earth’s surface; �✓ = 0.15�.

Figure D.2 – Same as Figure D.1, but for the 80� inclination.
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Figure D.3 – Comparison of the 1D MCEq energy spectra of atmospheric leptons
in a proton-induced shower (E0 = 100GeV, ✓0 = 30�) evolved with two di↵erent
low-energy hadronic interaction models: UrQMD (“U”) and DPMJet-III 19.1 (“D”).
The solutions are shown at the Earth’s surface.

Figure D.4 – Same as Figure D.3, but for the 80� inclination.
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d.2 the impact of muon physics

D.2.1 Muon multiple scattering

Figure D.5 – Comparison of the 2D MCEq angular distributions of 1.0..1.3GeV
atmospheric leptons in a proton-induced shower (E0 = 100GeV, ✓0 = 30�) evolved
with/without muon multiple scattering (“on”/“o↵”). The solutions are shown at the
Earth’s surface; �✓ = 0.15�.

Figure D.6 – Same as Figure D.5, but for the 80� inclination.
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D.2.2 Muon polarization

Figure D.7 – Comparison of the 2D MCEq angular distributions of 1.0..1.3GeV
atmospheric leptons in a proton-induced shower (E0 = 100GeV, ✓0 = 30�) evolved
with/without muon polarization (“on”/“o↵”). The solutions are shown at the Earth’s
surface; �✓ = 0.15�.

Figure D.8 – Comparison of the 1D MCEq energy spectra of atmospheric leptons
in a proton-induced shower (E0 = 100GeV, ✓0 = 30�) evolved with/without muon
polarization (“on”/“o↵”). The solutions are shown at the Earth’s surface.
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A Numerical Approach to Angular Distributions in Hadronic Cascades Tetiana Kozynets

1. Introduction

Hadronic interactions of energetic projectiles in matter produce a wealth of daughter particles,
whose subsequent reinteractions and/or decays result in a hadronic cascade. Such processes are
central to the evolution of the cosmic ray air showers and form a natural environment to probe
fundamental particle physics across a wide range of energies, from MeV to PeV. A particularly
important byproduct of the atmospheric hadronic cascades are neutrinos, which, at the energies of
O(10 GeV) and below, provide the leading signal for neutrino oscillation measurements. The angular
distributions of neutrinos at these energies depend on the complete three-dimensional treatment
of atmospheric neutrino production [1–5]. This presents one of the many physics cases where
including both longitudinal and lateral components into hadronic cascade modelling is necessary.

The modern hadronic cascade codes are predominantly Monte Carlo based. These include e.g.
����� [6], �����4 [7], and ����� [8] general purpose simulation packages for arbitrary materials, as
well as dedicated atmospheric air shower codes such as ������� [9] and ����� [10]. A sophisticated
treatment of the individual particle interactions in such codes comes with high computational costs.
The complexity of the Monte Carlo solvers also makes immediate and comprehensive benchmarking
of the di�erent codes against each other rather di�cult. These limitations make the existence of a
precise, fast, and customizable hadronic cascade code particularly appealing.

A natural mathematical formulation of the cascade development problem is through the coupled
di�erential equations for particle propagation, interaction, and decay. A current state-of-the-art
software employing such an approach is the Matrix Cascade Equations (����) code1, which
formulates the transport equations in the matrix form [11–13]. Up until now, ���� has provided
only longitudinal cascade development. To extend its applications to the low-energy atmospheric
neutrino flux modelling as well as air-shower and radiation dose calculations, we focus on including
the angular component into the ���� framework. This study demonstrates that multi-dimensional
hadronic cascade development can be well modeled as a sequence of angular convolutions.

2. Overview of the Matrix Cascade Equations and the MCEq Code

The longitudinal evolution of a hadronic cascade is governed by the 1D multi-species Boltzmann
transport equation. Discretizing this equation in energy allows one to put the probabilities of
interaction and decay processes in a matrix form and to solve for the particle fluxes � on a fixed

energy grid. Explicitly, for a cascade particle ⌘, the di�erential spectrum �⌘
⇢8

⌘
d# ⌘

⇢8
d⇢ evolves as a

function of the traversed slant depth - according to

d�⌘
⇢8
(-)

d-
= �

�⌘
⇢8
(-)

_⌘int,⇢8

�
�⌘

⇢8
(-)

_⌘dec,⇢8
(-)

(1a)

+
’

⇢: �⇢8

’
;

2; (⇢: )!⌘ (⇢8)

_;int,⇢:

�;
⇢:

(-) +
’

⇢: �⇢8

’
;

3; (⇢: )!⌘ (⇢8)

_;dec,⇢:
(-)

�;
⇢:

(-). (1b)

The particle ⌘ in the energy bin ⇢8 can undergo inelastic collisions in the target medium and decay
into other species following (1a), with the corresponding probabilities defined by the interaction

1https://github.com/afedynitch/MCEq
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A Numerical Approach to Angular Distributions in Hadronic Cascades Tetiana Kozynets

length _⌘int,⇢8
and the decay length _⌘dec,⇢8

. The same particle can also be produced by other cascade
species ; with energies ⇢: � ⇢8 through interactions or decays as per (1b). The probabilities of
producing the secondary ⌘ are represented as the yield coe�cients 2; (⇢: )!⌘ (⇢8) and 3; (⇢: )!⌘ (⇢8) .
The equations for the di�erent particle species are coupled and can be solved in a matrix form by
the forward propagation of Eq. (1) in - , which is further detailed in [11, 13].

In ����, the coe�cients 2; (⇢: )!⌘ (⇢8) and 3; (⇢: )!⌘ (⇢8) are derived directly from event gen-
erators by histogramming the yields of ⌘ from an ;-target collision or a decay of ; as a function
of ⇢8/⇢: . For ;-target collisions, interaction models such as ����-��� [14], ����� [15], and
������-��� [16] can be employed, while ������ 8 [17] is used to handle the kinematics of decays.

3. Angular Cascade Development in the MCEq Framework: “2D MCEq”

3.1 Evolving the Cascades via Sequential Angular Convolutions

In Section 2, the spectra �⌘
⇢8

entering the cascade equation are integrated over the angle \ that
the secondaries make with the primary axis. We now wish to evolve the spectra as a function of
\ in addition to the slant depth - . In what follows, we will consider only forward-going particles,
i.e. those with 0  \  c/2, and assume azimuthal symmetry wrt. the initial particle direction.

Defining q⌘
⇢8
(- , \) ⌘

d# ⌘
⇢8

(- ,\)
d⇢d\ , we can expand Eq. (1) as

dq⌘
⇢8
(- , \)

d-
= �

q⌘
⇢8
(- , \)

_⌘int,⇢8

�
q⌘
⇢8
(- , \)

_⌘dec,⇢8
(-)

+
’

⇢: �⇢8

’
;

π c/2

0

e; (⇢: ,\0)!⌘ (⇢8 ,\)

_;int,⇢:

q;⇢:
(- , \ 0)d\ 0 (2)

+
’

⇢: �⇢8

’
;

π c/2

0

X; (⇢: ,\0)!⌘ (⇢8 ,\)

_;dec,⇢:
(-)

q;⇢:
(- , \ 0)d\ 0.

The new double-di�erential yield coe�cients are normalized through integration over \ to match
the particle yield coe�cients of 1D ����

2; (⇢: )!⌘ (⇢8) ⌘
π c/2

0
e; (⇢: ,\0)!⌘ (⇢8 ,\)d(\ � \ 0) =

π c/2

0
e; (⇢: ,0)!⌘ (⇢8 ,\)d\. (3)

As we restrict ourselves to 0  \  c/2 and set particle fluxes outside this domain to 0, the
integration bounds may well be extended to the periodic �c..c interval. This lets us formulate the
collision integral in terms of the circular convolution operator ~:

π c/2

0
e; (⇢: ,\0)!⌘ (⇢8 ,\)q

;
⇢:

(- , \ 0)d\ 0 ⌘ [e; (⇢: )!⌘ (⇢8) ~ q;⇢:
] (\) (4)

The inclusion of the angular variable then becomes a straightforward extension of the 1D ����
functionality. As before, one proceeds by simulating the ; (⇢:)-target collision events or the decays
of ; (⇢:) in a Monte Carlo event generator. An extra step in the 2D case is to keep track of the angular
distribution e; (⇢: )!⌘ (⇢8) (\) when histogramming the yields of the particle ⌘ in the ; (⇢:) ! ⌘(⇢8)
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upgoing

downgoing

primary particle

X1
X2
X3

X0

�3
�2

�1

circular convolution

� = �/2

radial convolution

r1 � �1X1

r2 � �2X2

r3 � �3X3
� = � �/2

� = ± �

� = 0

towards ground⊗

primary particle
�

�
�

Fourier transform � Hankel transform�

top-down viewside view

Figure 1: Two di�erent views on the evolution of a hadronic cascade in the longitudinal (-) and angular (\)
dimensions. In both cases, the primary particle (e.g. a cosmic ray proton) is injected at \ = 0 and -0 = 0.
At a depth -8 , the secondaries make an angle \8 with the primary axis. On the left panel, \ is treated as a
quasi-periodic circular variable, which we restrict to the forward (|\ |  c/2) region. On the right panel, \8
is interpreted as the radius of the circle containing the secondaries at -8 . This leads to the appearance of
either circular or radial convolution operators in Eq. (4), which correspondingly translate to either Fourier or
Hankel transforms in the spectral formulation of the problem (see Section 3.2).

process. The probability density of the outgoing secondary angle with respect to the primary
direction then acts as a convolution kernel for Eq. (4).

Note that if we instead defined q⌘
⇢8
(- , \) ⌘

d# ⌘
⇢8

(- ,\)
d⇢ sin \d\ ⇡

d# ⌘
⇢8

(- ,\)
d⇢\d\ for small \, the linear

integration in \ in Eqs. (2) to (4) would be replaced by the radial one: d\ ! \d\, and the “1D”
circular convolution operator (~) would change to the “2D” radial convolution operator (⇤⇤). These
two di�erent approaches to the angular evolution of particle cascades are illustrated in Fig. 1.

3.2 The Spectral Convolution Method

Depending on the energies involved in a hadronic cascade, the angle \ that a daughter particle
makes with its immediate parent may vary significantly and span several orders of magnitude. Thus,
if the convolutions were performed on a uniform \ grid, the latter would have to be discretized very
finely to capture the processes at all angular scales, presenting a major computational challenge.
A convenient way to get around this complication is to bring the 2D cascade equation to the
spectral domain, where the particle fluxes are given as a function of frequency 5 . Specifically,
in case of the circular convolutions, one can Fourier-transform both sides of Eq. (2), so that
q̃⌘
⇢8
(- , 5 ) ⌘ F [q⌘

⇢8
(- , \)] ( 5 ) and ẽ; (⇢: )!⌘ (⇢8) ( 5 ) ⌘ F [e; (⇢: )!⌘ (⇢8) (\)] ( 5 ). Then, via the

convolution theorem, the circular convolution ~ transforms into simple multiplication:
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dq̃⌘
⇢8
(- , 5 )

d-
= �

q̃⌘
⇢8
(- , 5 )

_⌘int,⇢8

�
q̃⌘
⇢8
(- , 5 )

_⌘dec,⇢8
(-)

+
’

⇢: �⇢8

’
;

[ẽ; (⇢: )!⌘ (⇢8) · q̃;⇢:
] ( 5 )

_;int,⇢:

+
’

⇢: �⇢8

’
;

[X̃; (⇢: )!⌘ (⇢8) · q̃;⇢:
] ( 5 )

_;dec,⇢:
(-)

. (5)

For the 2D radial convolutions (as in the right panel of Fig. 1), the equivalent transform is the Hankel
transform H [18, 19]. With discrete transforms, a finite number # of frequencies 5= is implied
in Eq. (5), and the multiplication [ẽ; (⇢: )!⌘ (⇢8) · q̃;⇢:

] ( 5 ) is performed independently for each 5=.
This means that 2D cascade equation in ���� will preserve the matrix form and the computational
advantages of the 1D ���� solution, albeit now requiring one to solve # matrix equations in parallel
for each frequency mode or assembling a larger block-diagonal sparse matrix.

4. Validation and Benchmarking

To validate the numerical approach developed in Section 3.2, we solve Eq. (5) for a 100 GeV
proton primary injected into the Earth’s atmosphere at \0 = 0 and the altitude ⌘0 = 112.5 km
(-0 = 0 g cm�2). For the atmospheric profile, we choose the Linsley parametrization of the
US Standard atmosphere. The combination of ������-��� 19.1 2 (⇢8  80 GeV) and ����-���
(⇢8 > 80 GeV) hadronic interaction models is used to generate the yields of the secondary particles
as a function of their energy and angle relative to their immediate primary. To run the interaction
models we use the new ���� interface 3. The energy grid is log-spaced following [11] and extends
from 1 GeV to 2 TeV. The electromagnetic processes, including multiple scattering of the shower
muons, as well as the deflection of charged particles in the geomagnetic field are not taken into
account. For both of the convolution approaches, we use # ' 400 frequency modes 5=, and obtain
the final fluxes in the \ space through the respective inverse transforms (F �1 or H�1) of q̃⌘

⇢8
(- , 5=).

For benchmarking, we use the ������� Monte Carlo code, v.7.7410 [9], and perform 170,000
simulations of proton showers using the same atmospheric profile. As in ����, ����-��� is the
high-energy (� 80 GeV) hadronic interaction model. At lower energies, ������� is set to �����
since ������-��� is not supported. The geomagnetic field is disabled, while the muon multiple
scattering remains present in the simulations.

Fig. 2 shows the resulting angular distributions of the secondary muons from ������� and those
obtained via the method from Section 3.2 (“2D ����”). We find a good agreement between the
angular distributions obtained with 2D ���� (via the radial convolution and the Hankel transform)
and ������� for all altitudes and energy bins considered. These results are further cross-checked
against the ����� Monte Carlo [10] and the circular (Fourier) convolution method for 2D ����
in Fig. 3. The angle-integrated muon spectra are given in Fig. 4. We observe that the angular
distributions returned by the circular convolution method are in a worse agreement with both �������
and ����� than the radial convolution. With the circular convolution, one consistently obtains
more widely spread secondaries than predicted by both Monte Carlo codes. This is an intuitive

2https://github.com/DPMJET
3https://github.com/impy-project
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Figure 2: The angular distributions of secondary muons at three di�erent altitudes: the numerical solution
of Eq. (5) via ���� (solid line) as compared to the output of the ������� simulations (shaded histogram).
The primary particle inducing the hadronic cascade is a 100 GeV proton. The ������� results are shown
with their respective statistical errorbars. The ���� solution uses the radial (Hankel) convolution approach.
The bottom panel provides the ratio of the �������:���� angular spectra integrated within the 0.5� bins.

consequence of the fact that the secondary particle angle can only increase at each propagation step
(i.e. the rotation illustrated in the left panel of Fig. 1 is performed strictly counter-clockwise). At
\ = 0, such a deficiency of the circular convolution approach turns out to be particularly problematic,
and the bias of the respective angular spectra is most evident in the low-energy hadrons (top left
panel of Fig. 3). This is expected as the angles of the hadronic interaction secondaries relative to
their primaries are larger than the angles of the decay daughters relative to their parents. As the
result, each circular convolution introduces a larger error for interactions than for decays.

Finally, we note that the ������� and ����� distributions are not fully in agreement with
each other. This discrepancy could be attributed to the fact that ����� employs a di�erent hadronic
interaction model, namely the Hillas splitting algorithm [20], at low energies, while the high-energy
hadronic interaction model (����-���) is matched with those of ������� and ����. At present,
elucidating the origin of any disagreement between the two Monte Carlo codes falls beyond the
scope of this work.

5. Conclusions

This study focused on extending ����, a state-of-the-art numerical code for hadronic cascade
evolution, to two dimensions. By treating angular development as a sequence of convolutions, we
naturally incorporated it into the ���� framework. We compared two spectral convolution methods
and benchmarked them against two Monte Carlo cascade codes, using an example of a proton-
induced air shower. A very good agreement between the “2D ����” solution and the output from
a standard Monte Carlo code was reached. This suggests that our tool has a significant potential to
be used as a fast and accurate alternative to the Monte Carlo cascade development approaches.

6
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Figure 3: Comparison of the angular distributions of the secondary particles in a 100 GeV proton air shower
as evaluated by the two numerical methods from this study (solid and dashed lines) and the two benchmark
Monte Carlo codes (barred markers). The best agreement is reached between the 2D ���� solution with the
radial convolution method and �������, which is most prominent in low-energy muons and protons.

Figure 4: Angle-integrated muon spectra from 2D ���� (radial convolution method) as compared to those
from ������� and ����� Monte Carlo simulations. All three codes are found to be in agreement.
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